
A SCHEME _'FOR DYNAMIC OBJECT
MIGRATION IN STATICAIJ"JY- TYPED

OBJECT-ORIENTED DATABASES

Dissertation submitted to the Jawaharlal Nehru University
in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY
tn

co-MPUTER SCIENCE

by

SIBA CHARAN BESHRA

1"""~1\UUIUlli>l\>I..Jl.WI,
.. .,._nrur

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI - 110 067
· INDIA

JANUARY 1996

.... Dedicated

to

Daai & Teng-ang

\ifCfTQ~~m "Q~ f~~f<f~ffiq
JAWAHARLAL NEHRU UNIVERSITY

School of Computer & Systems Sciences

New Delhi-110067

CERTIFICATE

This is to certify that the dissertation entitled "A SCHEME FOR DYNAMIC

OBJECT MIGRATION IN STATICALLY-TYPED OBJECT-ORIENTED DATABASES"

being submitted by SIBA CHARAN BESHRA to School of Computer and Systems

Sciences, Jawaharlai Nehru University, New Delhi, in partial fulfilment of the requirements

for the award of the degree of Master of Technology in Computer Science, is a record of

the original work done by him under the guidance and supervision of Dr. R. C. Phoha,

Associate Professor, School of Computer and Systems Sciences, Jawaharlal Nehru

University. New Delhi, during monsoon semester, 1995.

This work has not been submitted in part or in full, to any other university or

Institution for the award of any degree or diploma.

(Prof.G.V.Sin h)
Dean, SC & S

~
(Dr.R.C.Phoha)

Supervisor

Grdm JAY~~U Tel 6fi7676. E~7557 (brn 3~41 Telex: 031-73167 JNU IN * FAX· 91 11-5865886

I wisli to ta/(g tfiis opportunity to e:tl'ress my deep sense of gratitude to 'Dr. !!(C.

Pfiofia, 5'lssociate Professor, for fiis superoision, constant fiefp, suggestion and

encouragement during tfiis project work:, I am afso tfian/ifu[to liim to e:tl'ose me into

a new fie!d.

I am tfianl(ju[to Prof(j. o/. Singh, 'Dean, SC&SS for e~tending necessary computing

facilities.

I am afso tfianf(ju[to Shri !Manoj X..umar Sarangi for his timely suggestion which

fiefped me a [ot for tfie improvement of this project.

I u1is/i to tfianl(Pratap, !Manoj, Cfiitrasen, .9tmufya, Susfianta, 'Diffip, !Meghnath,

fJ3ajinath and (jopa!for tfieir fie[p.

It wouU 6e a sacri!ege to record any formal gratitude to my motfier, sisters, 6rotfiers,

and !l(_ima for tfieir perennial encouragement and mora! support witfiout wliicfi it

worU liave 6een impossi6fe to accomp[isfi tfiis study.

:F ina[[y, I gratejuf{y ack!Jowfedge tfie J!llf provided 6y tfie University (jrant

Commission.

Si6a Cliaran 'lJeslira

Certificate

Acknowledgement

CONTENTS

Chapter I Introduction and Organisation of Chapters 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1-5

Chapter II An Overview of Object-oriented Database

En~ronmento 0. 0 0 0 0 •• ~39

201 Introduction

202 Database acess and query relevance

2.3 A new look at the database utility

2.4 The architecture of an object base environment

20 5 Towards a common definition

Chapter Ill The Problem 0 • 0 0 0 0 0 0 • 0 • 0 0 0 0 0 0 0 • 0 0 • 0 0 0 • 0 • 0 0 •• 0 0 • 0 40-49

301 Introduction

302 Statically typed object oriented languages

303 An object migration model

Chapter IV The Scheme 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 •• 0 • 0 0 •• 0 0 0 0 • 50-63

40 1 Migration Operators

402 Object Migration Control

403 Specification Design and lmplemetation

Chapter V Conclusion 0 • 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 •• 0 0 0 0 • 0 • 0 0 0 0 •• 0 • 64

Bibliography 0 0 0 0 0 • 0 •• 0 0 • 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 •• 0 0 0 65

C-hapter I

Since half a decade or so, object-oriented database systems have become

an extremely hot topic of database research and development. At many places

all over the world, peopie work on individual aspects or complete system

prototypes. Already, some systems have even reached the market place.

However, the notion of "object orientation" in the context of database systems

is unfortunately still widely unclear and means different things to different

people. When the database community got attracted little latter and started

to carry over object-orientation to datahasesid.atabase management systems ..

Object-oriented database management is a new technology that aims to

provide data management su-pport to applications (such as computer-aided

design, computer-aided s-oftware engineering, geographic information

processing, and office automation) that currently are not well served by

conventional, record-oriented database management systems (DBMSs).

Conventional DBMSs provide only a small, fixed set of data types (e.g.,

integers, real, strings) and conceptual data structures (e.g., records, relations)

that were designed for business data processing applications. These data types

and structures have been found to be inadequate for representing the richly

structured, complex objects (e.g., maps, documents, programs, part assemblies)

encountered in the new applications. Furthermore, conventional DBMSs

provide only a fixed repertoire of operations for manipulating records or

relations, and a fixed set of access methods and processing strategies for

efficiently implementing these operations. These require the application

programmer to coerce the objects and operations of his application domain into

those supported by the DBMS; such mappings are clumsy and inefficient at

1

best, and often impossible because conventional database query language are

computationally incomplete.

Conventional "modern" programming languages are computationally

complete and have rich type systems. However, they are inconvenient,

inefficient, and inadequate for applications that require access to shared

persistent data, i.e. data whose lifetime is longer than a single program

execution. They provide only files for the storage and retrieval of persistent

objects; before a persistent object can~anipulated, it must be retrieved from

the file and translated into an "internal" format, afterwards, it must be

translated back into the "external" format suitable for secondary storage, and

then stored in the file. Sharing is at the level of mutual exclusion over files

provided by the operating systems.

The conventional approach to supporting application development has

been to embed a database query language in a programming language (e.g.,

SQL embedded in PL/1 or C). The complex structures and complex operations

of the application are implemented over transient data in the host

programming language; calls are made from the program to the DBMS to store

persistent data records in the database, are to retrieve persistent data into the

program's data structures. This approach does not eliminate the translation

problem : since arbitrary objects cannot be made to persist, theRe still are two

different type systems to deal with, each with its own set of operations. The

application programmer has to learn two different languages. Also, the

translations are likely to be inefficient, since each complex operation may

require several database operations, which cannot be optimized in toto by the

DBMS.

Object-oriented database systems lie at the confluence of research m

DBMSs and programming languages. Their goal is to simplify application

development by alleviating, and ultimately eliminating, the translation

problem.

2

The first stage beyond relational DBMSs was the development ofDBMSs

based on semantic data models. These DBMSs retained the powerful concepts

of transactions and set-at-a-time queries, but introduced enhanced data

modelling features in support of "structural object orientation". Entities were

introduced to model real world objects each entity was uniquely identified by

a system-generated identifier, rather than by a user-supplied key; entities

existed even if their attributes had not been assigned any values. Attributes

were allowed to be non-scalar; this permitted the direct modelling of

entity-to-entity relationships, and as a special case, the structure of complex

objects. In these semantic models, entities were typed and the entity types

participated in type hierarchies, down which attributes were inherited.

Progress towards object-oriented DBMSs has required extending

semantic DBMSs with concepts to support "behavioural object orientation".

These include user-defined type-specific operations or methods (which are

implemented by procedures or rules), computed and derived attributes, single

and multiple inheritance of attributes and operations down type hierarchies,

and encapsulation of structure and behavior with the object types.

Encapsulation means that, while the implement its operations, the user of the

type sees only its interface, i.e., the name of the type and the signature of its

operations.

In recent years, a great deal of research and development in database

management has taken place to satisfy the need for database support for

complex application areas such as computer- aided design, computes-aided

software engineering, office information systems, pictorial and graphics

databases, etc. The result of this research is the emergence of a new generation

of database managell1ent systems. These new system fall roughly into three

categories; extensible database systems, DBMS, object- oriented database

systems and database system generators.

The term extensible database system to refer to a DBMS which allows

an application programmer or database administrator to add new data types

3

and new operations on these new data types to an existing DBMS. In an

extensible database systems, the underlying DBMS will always be the same

in such models as concurrency control, recovery, basic storage, and query

language. Extensible databases may also allow the addition of access methods

and hooks to allow the query optimizer to make use of these new access

methods. Note that the new operatiohs added usually pertain to operations on

what would be the domains in the relational model, and that the major

operators of the query language would not be modifiable. Assumption is that,

there is already a database system so that persistence of data and data

structures from one instantiation of .a program to another is already taken care

of. Persistence only becomes an issue if such a system is implemented by

augmenting a traditional programJ!ling language.

An object-oriented database/systems is an extensible database systems

which incorporates a semantic cj.ata model, which in turn is sufficiently

powerful to allow reasonably str~Ight forward modelling of complex objects.

Complex objects are objects which! nave a highly nested structure, like a large

piece of software or an engineering design. They may also be very large. The

semantic data model should be able to model such things as arbitrary levels

of aggregation, components of aggregates which may be sets of other objects,

and IS-A or generalization hierarchies with inheritance of object components

and of operations. Some object-or~ en ted database systems also model revisions

and knowledge. One should be aple to define new operations on these objects,

which could have the effect df changing the query interface. It is also

reasonable to expect that the otHer pieces of the database management system

work at the object level, for exatnple that the object are passed to the storage

manager as a unit, that locking and recovery are done on a per-object basis etc.

Since this definition inherits ,'all the properties of an extensible database

system, object-oriented databa~e systems also allow the definition of new data

types, operations on them and access methods. They will have the same

underlying concurrency contra• methods, recovery etc., from one instantiation

to another, although, being o~ject-oriented, these modules may differ quite a

lot from those found in traditionally DBMS's. Some example of object-oriented

4

database system are GemSt<;>me, Probe and Iris.

The third category of hew systems is the database system generators,

customizers Lrr compilers. Tliese system allow a database system implementor

or architect to design and ir)'lplement a new type of database management

system without having to wrtte all the code for his new system from scratch.

Using one of these database generators, one could generate different database

management systems which differ in virtually all of their modules. The

resulting could be traditional (non-extensible) DBMS, an extensible one.nr an

object-oriented one. Example& of database generators are EXODUS, the Data

Model Compiler and GENESIS.

Organization of Chapters

The rest of the report is organized as follows :

Chapter II

Chapter III

Chapter IV

is an overview of object-oriented database environment.

is the introduction to the problem and the object

migrations rare discussed. The general goals for supporting

object migration are also discussed and a model for

describing ltinds of object migration is specified.

presents a set of operations for facilitating object

migration. The issues of controlling such object migration,

by a "migration control specification" is addressed and

discussed. Some theoretical issues of object migration,

which include inference rules for migration control

specification~ are also focused. The issue of conducting more

meaningful and desirable migrations are also stated.

Design and implementation details are given.

Finally conclusions are given.
I

5

Chapter II

AN OVERVIEW OF OBJECT-ORIENTED

DATABAS~ENV1RONMENT

2.1 Introduction

We need large databases, their main goals is to provide facility in

storing, retrieving, and manipulating information elements. The advantage of

using an object oriented approach is information elements and operations an

database contents can be linked together. The object-oriented design is useful

because of its dynamic aspects, giyen the complexity of working through more

traditional approaches.

An object databases are not searched in sequential fashion but in

parallel, with particular emphasi~ on query relevance and flexible interlinking.

If a flat file structure prevails, forlinstance, there will be separate processor for

each tuple whose task is to store the information in that row and to wait for

a query. If a query requires som~ part or all of the information that is stored

on a processor, the latter will respond; otherwise it will do nothing.

In an object-oriented databases organization on the other hand, a more

elegant solution is possible. In terms of search time, it no longer matters where

in a database an object is located. A system optimizer sees to it that databases,

or sections thereof, that are accessed frequently are searched first. This

reduces the response time and ificreases flexibility for the enduser.

2.2 Database Access and Que.ljY Relevance:

The database model must :consider object behavior requirements when

6

classes have already been defined and composed. Such models, will

increasingly be tailored for reu~ability of object class specifications, the basic

mechanism providing a descrip:twn of the behavior of objects of a given class

in a specific application. Thus

Computational requirements can specify implementation of each

object in a given o;bject-oriented language.

Operation and properties associated with an object can be

portioned according to the different roles played by that object.

For each role status graphs can be associated with incoming and

outgoing message15, for the instantiated role and at each state.

An object database c~n be built with schema construction tools

independent of an object progr~mming language, and with query language that

can deliver information elemel)ts to languages such as C++.

Database management $ystems (DBMS) that address the more classical

extentional aspect of accessmg and manipulating information elements.

Contrary to the general acceptance of relational database management

systems, there is no consensllls on the proper model for an object-oriented

DBMS. One of the reasons islthat this fact of DBMS is only now emerging;

another is that object-orientedl approaches are seen as a set of concepts drawn

from several areas in informa~ion science, which researchers adopt

to their idiosyncrasies and that of their problem domain.

2.3 A New Look at the Database Utility

The mission of an object-oriented database utility should be that of

combining the features of objects with traditional database capabilities. The

goal is the structuring of referential and concurrent sharing of objects through

7

the support of meta conc$pts, data abstraction and inheritance.

Among the functionalities to be added to the database utility are

integrity, versioning and control of a distributed environment of objects. The

aim is to create true rep~sitory of information elements shared by multiple

platforms, by removing the semantic gap between an application domain and

its representation. To rel\lch this goal we must overcome some important

constraints.

1. The heterogeneity in the design of information elements to be

encapsulated f.vithin objects.

2. The heterogeneity of platforms runmng within the same

applications environment.
I

3. Internal cultutal issue in systems usage which magnify and

perpetuate the)Se heterogeneity issues.

4. Requirements for increasingly rapid transaction and message

turn around.

5. The specificity bf hardware and software characteristics, which

add further to qeterogeneity.

Rules are the actual triggers. Instance can go in and out of a frame, a

frame being like a query. !Declarative facilities are added, as rules are
I

procedural, not declarative. 'I1,he methodology includes the notion of setting up

a query by reformulation.

The links and relation~hips among entities in the complex real world

are represented and manipul~ted directly.

8

This approach achieves its modeling capability through object- based

concepts while trying to alleviate the mismatch between heterogeneous

programming languages and incompatible data structures. Most important, the

method just described could not be without object-oriented concepts.

2.3.1 Application domain for object databases

A conceptual framework is of fundamental importance. It is most

necessary in connection with the design of object-oriented databases and their

access through a query language or , retrieval paradigm.

Object oriented approaches support the necessary expressive power for

performing complex computations associated with an applications. The need

for associating specially adapted programming products to the object database

metaphor has been present for some time. The problem that have been

encountered with traditional approaches have meant that today the main

markets for object-oriented solutions are:

-Computer-Aided Design (CAD)

- Computer-Aided Manufacturing (CAM)

- Computer-Integrated Manufacturing (CIM)

- Cross-Functional Projects (Such as task management)

- Cross-Departmental Projects (for instance, cost control)

- Cartographical Implementations

- Computer-Assisted Software Engineering (CASE)

- Office Automation (OA)

Not only the characteristics of these applications different from

traditional accounting type routines, but for some of them, such as office

automation, there exist rather rich libraries of programming products that are

well accepted by the user communities. What particularly characterizes these

applications, however, is that they present stringent requirements in terms of

9

database manipulations.

There is another fundamental reason why CAD, CAM, CIM, risk

management, cost control, CASf. and office automation applications tend

toward object-oriented, multimedia databases. They all require fast-growing

amount of computer storage, and the connections between the information

elements in storage is much more complex than in classical data processing.

In many cases, database size and complexity make it nearly impossible to

cluster related multimedia information elements (or even data) in a effective

manner through pre-established paradigms, as has been done for nearly 40

years. A considerable amount of navigation is necessary to access and update

such databases-object orientation presents !1 demonstrable advantage.

2.3.2 Object-Oriented Paradigms and Long Transactions

An object program is a construct of interacting objects that encapsulate

information element (IE) and the algorithms that specify the behavior of the

IE. Operation on object can take place only through a well-defined interface to

the objects behavior, the actual implementation of such behavior being hidden

from every user but the designer and the database administrator.

The routine that act on an object are the primary means through which

the IE, encapsulated in that object, may be manipulated or modified.

An object invoke a given object's resource by sending a message, the

target object interprets that messages, and the appropriate action is performed.

This the simplest form of an object-orientation paradigm. The evoked

action (or method) uses known components: information elements and

procedures, as well as encapsulation and interfacing.

10

The decomposition consist of a high-level analysis will be accomplished

on an object-oriented approach not only in terms of objects, but also in terms

of the services they provide. Each services will help define the properties and

behavior of a set of common objects, or more precisely instances of classes

created as a program running.

This identifies another limitation of functional decomposition, which

becomes obvious when account for the fact that each object has the same

number and types of fields, and differs from other objects only in the class of

values stored in those fields. While class templates provide a basis for

modularity, leverage is really gained by the ability to define one class of objects

in terms of other classes-which requires new departures.

Methodologies currently being developed for object-oriented databases,

and associated programming approaches are:

1. Identifying existing library classes,

2. Extending these by us.ing inheritance, and

3. Developing new classes as requirements evolve.

Object descending from the same parent class are essentially compatible.

Each understand the same message as the others, yet each performs the task

in its own way.

This modularity allows the transparent creation and insertion of new

class instances into the program, but to be implemented in an able manner, it

also calls for an object-oriented methodology, starting at the design level. This

path is feasible, but there are problems.

A rational methodology starts at the database level, focusing on

object-based paradigms. It will elaborate on classes and their characteristics,

identity objects and attributes, c3Yert operations affecting objects, establish

11

visibility, and work out relational interfaces. These are necessary conditions

for implementing a fundamental object solution, always keeping in mind the

characteristic prerequisites: meta, inheritance, equilibration, data abstraction

and so on.

Some of the preconditions in an object-oriented environment stand at a

system level. Others are more strictly related to design and implementation

details. But together such preconditions help provide;

- Direct support of object concepts

- Development of sh~able objects

- Persistent constructs

- Dynamic schema evolution

- Queries on class lattices

-Version management capabilities.

2.3.3 Database-wide Object Identification

The identification and classification of objects within the database are

necessary. It establish interactions between objects in terms of services

required and services rendered. This is written in any-to-any sense, that is,

-cross-database

-Any object to any object

-Any location to any location

-Any time to any time

In a dynamic environment we never know in advance which object will

be needed at any given time. Hence there is a need for steady accessibility,

valid notation, and any-to-any connectivity.

12

Object notation pertains to design level as well as to the classes of

runtime objects prior to and during implementation. Interrelationships

between design objects and classes can and should be represented through

different stages of the life cycle.

In a distributed database landscape, umque and unambiguous

identification is a demanding task using traditional methods. The

organizational prerequisite is object classification. Once the classification is

done properly, the identification is fairly simple - provided we have clear

concepts and the appropriate supports.

The handling of classes requires an iterative analysis of whether a new

organization will be useful. This creates the needs for inheritance diagrams,

but helps assure that future projects can reu.se the structure without having

to design class and object and object relationships.

Prototyping helps in providing constructive feedback, assuring that

object identification requirments receive the appropriate documenattion and

classifiaction. Such feedback is made possible by object-oriented techniques,

which help provide a more reliable and robust database structure.

The identification can start with the persistent objects that can be

handled early in the development cycle. These may be presented to

programmers as object classes to be handled at a rather early stage, with a

degree of confidence that even if system specifications change, such classes

stand a good chance of remaining invariant.

The database is the root of the consistent object space. Every object

reachable from this database root must itself be consistent. Instantiation

variabl~s should contain the names of all objects that serve as the root of such

consistent object space. Only objects thus specified can be shared and accessed

through different transactions (are queries) with the users assured access

13

rights in the database under authentication and authorization conditions.

These qua~lities are upheld through an object-type orientation, and have

been found to be quite helpful in a query and/or transaction environment.

Transactions are typically atomic, and their program is either executed

entirely or not at all: If the user (software, terminal, enduser) performs

updates to the persistent database related to a given transaction, then either

an the updates must be visible to the outside world or none must be seen.

This consistency aspect and all related functionality must be supported

by database languages and their primitives. But consistency per se is a meta

concept.

Committing a transaction in an object environment is achieve by sending

a commit message to the system, which however, must be interpreted m a

homogeneous manner.

2.3.4 Making Sense of Database Heterogeneity

. The object-orientation is not the way to solve all problems. This is

particularly true when incompatibilities in database solution approach and

programming tools perpetuate if not accentuate damaging discrepancies. It is

wise to take the proverbial longer, hard look at object database solutions before

making definite commitments, studying these in detail and establishing the

research for, heterogeneity, benchmarking them with transactions, messages,

and ad-hoc queries, and making a factual and documented choice of tools and

concepts, then sticking to it.

Under no conditions should there be one type of object-oriented solution

for a transaction environment, a second for messages a third for queries. If

this happens, most of the benefits of the implementation of object-based

databases will be lost.

14

l

Account should also be taken of the need for concurrency control within

a given implementation perspective. In the typical execution environment

transactions run concurrently under a given DBMS, with multiple transactions

being active at the same time. These transactions can access and update the

same consistent objects, with a DBMS guaranteeing the handling of a given

database and of the transaction results.

But in a distributed database environment if transactions are allowed

to run concurrently without any conflict resolution, there can be anomalies in

both the database consistency and the transactions' execution. A similar

statement can be made of queries and messages. This leads to the need to:

Specify object-oriented systems requirements

Identify the objects and the services they must provide

Establish their interactions in terms of interfaces

Always observe inheritance relationships as well as the

aggregation of classes.

Since transactions are automatic, the design to be adopted must

guarantee that partial results ar,• updates that fail are not propagated through

the object database. There are also several types of failure from which a

system must recover.

The important concept associated with object databases is the notion of

nested transactions. In a nested model, each transaction consist of atomic

subtransactions, which can well nested. For a transaction to commit, each of

its subtransactions must also commit.

The updates of the transaction tree becomes visible only after the

higher-level transaction commits. The updates of the committed transactions

at the intermediate level (the leaves) become visible only within the scope of

their immediate predecessors.

15

A system-wide "commit transaction" may ask the underlying system to

commit its transaction (s), while the user might choose to continue the session

after the commit. This will start a new transaction and create a new

workspace. Alternatively, the user might decide to uncle all the updates to the

database and abort the transaction through a message such as "System abort

transaction"

But the solution is not always so simple. A commit indicates success.

For example, if a parent in a transaction tree has three children that are doing

subtransactions, and if two of them commit and one child is running on a node

that crashes, then parent might find out about it and abort its own

transaction, but two of the children are committed. They cannot be rolled

back, so there must be a cleanup to correct erroneous data. A simple approach

is to use only phase 1 commits. But this does not solve for complex

transactions.

The best way to look at this issue is to appreciate that solutions within

an object-oriented transactional environment are a composite of the best parts

of applications we did in the past and of new concepts substantiated through

an object orientation. The latter can enhance the sophistication of database

design, and help in assuring reasonable homogeneity provided we know how

to use to advantage the object-oriented approaches that are available today.

2.4 The Architecture of an Object Base Environment

A system architecture present us with the need for fundamental choices.

These determine what we will do and what not, but art of architecturing large

artifacts is only now being developed. There are no priori criteria for choices;

only basic system study can define fundamental requirements and how to

characterize the products we want.

16

An architecture refers to a set of design principles that define

relationships, interactions among elements, and ways and means for

integration. In object-oriented implementation, such design principles

characterize various part of network objects.

The difference between the object-base and object -oriented approaches

lies in the fact that in a object base system, object encapsulate a collection of

services accessible by a message passing interface. Typically object have an

identity and a mutable state. By the contrast, the same definition suggest that,

an object-oriented environment, an object can be instantiated from classes with

subclasses defined by inheritance. As we have seen, classes are also objects,

with new classes possibly created at run time.

The object-oriented representation supported by a message-passing

model is the dominant scheme. Object have associated messages, which

sometimes referred to as methods. By representing design components as

object capable of sending and receiving messages, the responsibility for

assimilating run time changes becomes distributed. Message can be received

by a class of objects or a single object only when the domain defined by them

is idle. Message sent to domain that is active or blocked are queued up and

wait to be delivered, which typically happens a first-come, first-served basis.

This notion is important since, in object-oriented applications, message

are the only form of interobject communication.

The concept behind message-passing approach akin to that of pipes in

UNIX implementation. The pipe is an input/output buflfer that accepts one

input and gives one output. In such an environment, programs are connected

with pipe files that have the ability to pass data from writer to a reader.

Object-oriented computation in the broad sense is computation described

as sequence of requests to the objects through a single access method such as

17

message passing. The class method mechanism handles well the requirements

for the type definition and information hiding. The message protocol provides

a useful way of controlling the updates that can be performed on a data object.

In addition the inheritance mechanism makes database schemas easy to

modify,and new variant can be constructed as easily as subclasses.

An object base is defined to be a system which contains a large set of

active as well as as passive objects. For active objects, not only the data

portion, but also the control and knowledge portions of an object are stored and

managed.

In the past, researcher and developer have approached object- oriented

database implementation along two direction:extending the relational model

or applying the ideas of object-oriented programming to permanent storage.

Most of the system in the first category have been designed to simulate

semantics data models by including mechanisms such as abstract data types,

procedural attributes, inheritance, union type attributes, and shared

sub-objects. Most of system in the second category extend an object-oriented

programming language with persistent objects and some degree of declarative

object retrieval. Both approaches have drawbacks in processing a large number

of active objects. The first approach suffer from the unstability problem

resulting from separation of control and data. The second approach, on the

other-hand losses the advantages provided by fact-oriented database

operations.

2.4.1 Representing objects

In the work C++ is chosen to be extended as the object representation

language. It is chosen based on the observation that C++ has acquired enough

attention and acceptance as the object-oriented language in the computer

community. These extension are described in the following subsections.

18

2.4.1.1 Complex objects

A complex object is an object consisting of a set of (possibly complex)

objects in the sense tb,at

(1) domain of an attribute can be any class;

(2) The value of an attribute can be set of objects.

A complex object is an abstraction of its component objects.
p

Consequently a method associated with a complex object irn)ements a function

of its own component object as a whole; so are the attributes of the complex

object. Non-complex object are called simple objects. To realize the concept of

complex object, it is necessary to explicitly incorporate the notion of 'set' in the

object language:

set classes: Given a class a, the class of all possible ordered sets which can

be derived from instances of a is declared as :

class set_o{_a

{

methods

}

The following declaration defines a set a of class a:

set_of_a a;

Set Projection given a set or an object of a class a, the following notation

designates the projection of an attributes ~, ... An:

19

2.4.1.2 Active Object and Models

The construct provide in C++ are sufficient to describe a passive objects,

i.e.,objects whose activities are triggered when a method associated with the

objects is called. In real applications, a special class of objects need to be

defined in order to describe objects which are continuously active according to

some control mechanism. Such object are called active objects.

Control: An active object can be characterize by a set of state transition rules.

In the extended language, a class of active objects is declared as a subclass of

the class active, for which any attribute, one defined, can be a state as follows: ·

state attribute, ... , attribute;

The control portion of an active object is expressed as a set of production

rules, which is designated as the attribute control (where domain is

set_ of _production) of the object. A production is asserted in the following form:

condition => statement;

Where condition is any logical expression over states and inputs, and

can include any quantifier over sets:

Universal Quantifier

A variable in a logical expression can be universally quantified by the

quantifier:

(forall < variable _id > in < set _id >)

20

Existential Quantifier

A variable in a logical expression can be existentially quantified by the

quantifier:

(exist < variable _id > in < set _id>)

Membership

The following function returns 1 if <variable id> 1s an element of

<set id>:

<set _id> : member (< variable _id >);

Similar to complex objects, we can define a complex active object to be

a set of (possibly complex) active objects. With this definition, a complex active

object can be regarded as a concurrent production system.

Communication

For a complex active object, we classify the styles of communications

among its components objects into two categories: synchronous and

asynchronous. Communication between two objects is defined to be

synchronous if;

1. The calling object suspends its execution after a message is sent to the

other objects and

2. Th~ calling object resumes execution immediately after reply is received

from the called object.

Communication between two objects is said to be asynchronous if the

calling object continues its execution after a call is made. Asynchronous

communication is achieved in the extended language via messages. The class

message is defined as follows:

Class message{

Public:

time time-stamp, reference;

object sender, recipient;

set-of-objects arguments;

void send ();

boolean receive();

};

An asynchronous call to method associated with object C with arguments

is made by first creating message objects, assigning appropriate values to its

attributes, followed by sending the message with the send operation:

b. send();

Where b is message just created, on the other hand, any message sent

to an object is picked up by the boolean function receive, which is called in the

form of;

m.receive();

The junction returns true if a message has been received; in this case m

is instantiated to the message received. It returns false otherwise. A message

m is regarded as the reply to a previously sent message~. if:

m. reference= b.time-stamp

m. sender = 8.recipient

m. recipient = 'fl.sender

22

According to the above.) an ordinary C++ function call c.a. (x1 .. , xn)

implements a synchronous communication sessions; it is equivalent to a send

operation followed immediately by a receive operation.

Inputs, Outputs and links in the extended language, some attributes of an

active objects can be chosen to be the inputs and outputs of the object as

follows:

Classifier attribute, ... , attributes;

Where classifier can either be the keyword input or the keyword output.

The assignments of inputs and outputs allows different objects be connected

directly in order to form an interconnected complex object. A linkage between

two objects can be established by the operation link:

link (a.r,c.s)

The operation connects a.r presumably to be an output of object a, to c.s

presumably to be an input object b, so that any assignment to a.r is made to

be b.s as well instantaneously.

Class Template In summary, the general form of the class declaration for an

active object class is;

class <class.id>{

<class-id> <variable-id>, [... <variable-id>];

<class-id> <method-id> (parameter.l: domain-1, ... ,

parameter-n; domain-n);

23

classifier attribute, , attribute;

int clock;

set-of-production control={

<logical-expression> => actions;

}

}

In the above, classifier can be one of the following key words; state,

input, and output.

Associative object Retrieval The availability of sets as described in the

above also allows objects be retrieved in an associative fashion. It is assumed

that the following functions/statements are used to access the elements in a

set:

1. <set-id> <variable-id> J./
2. <set-id> ; delete (<variable-id>);

3. (foreach <variable-id> <set-id>) statement;

2.4.1.3 Management of Active Objects

Given a set of active objects, the problem of object ma~agement is

concerned with the impact created by any change made to the system. It is

desirable that adjustments can be made automatically according to any change

so that the system is always consistent.

State Space and Criteria

Given an active object P with an states s1, ... , sn, we define the state

space of the object to be Domain (s1) x Domain (s2) x ... x Domain (sn). Among

24

the states, we assume that one is chosen as the final states. Let's define the

set of reachable states of P to be the set of all possible states which can be

reached, either directly e.r indirectly, from the initial state. The following

criteria are chos~m as the constraints when an active object is updated:

Liveness: An active object should have no state which is a dead- end state,

where a dead-end state is a state from which no further state transition can

occur and it is not a final state.

Consistence: An active object should be consistence in the sense that, in any

state, there exist no conflicting actions, where two actions conflict each other

if their effects logically violate each other.

Other criteria, such as reachability and deadlock-freeness, can be

considered in a similar way.

Adding and Removing a State

If an active object 1s live and consistent, these two operations are

processed as follows:

Adding a state: Assuming sn+l is added to object P and the object becomes

P', the state space of Pis enlarged to Domain (s1) x Domain (s2) x ... x Domain

(sn) x Domain (sn+ 1). Any active V in the original state space now corresponds

to Domain (sn+l) state (v,u1) ... (v, ur), where r=Domain (sn+l) and the set ofu/s

spans all possible values of sn+ 1. Let us assume that v is not a final state.

Since Vis not a dead-end state in P, there must exist a rule in P for which v

satisfies its left hand side. Clearly, in P' each of (v, u 1) ... (v, ur) still satisfied

that LHS of the same rule. Consequently, rf remains to be live. On the other

hand, since no new rules (and actions) are added to r/ no conflicting actions

may be taken in each of the new states. In summary, adding a state variable

to a line and consistent object does not damage such properties.

25

Deleting A State: Deleting a state is more complicated than adding a state.

Assuming si is removed from object P and the object becomes P', the state

space of P is shrunk to Domain (s1) x ... x Domain (si_1) x Domain (si+l) x ... x

Domain (sn). Domain (s) states (v,u 1) ••• (v, ur), where R= Domain (s) and the

sets of u/s spans all possible values of si, now converge to a single state v.

Since non of the original states (v,u1) ... (v,ur), where R= Domain (s), is a

dead-end state, it is clear that v is not a dead-end state. Consequently, P

remains to be live after si is deleted.

Deleting a state is complicated due to the requirements of consistence.

The complication arises from the fact that the left hand side of some rules may

include conditions on si. Simply dropping such conditions from those rules can

create the following problems;

(a) An update rule can violate the intention of the users;

(b) Actions which used to be taken in states (v, u) ... (v,ur) are

now collectively taken in the state v; and some of them may be

conflicting. Instead of inspecting very state for possibly conflicting

actions, the following procedure can be taken: for each pair of

conflicting actions ai and ayidentify conditions (ai) and conditions

(a). In the above, conditions (~) designates the set of LHS's of

those rules whose actions include ai; conditions(~) can be defined

in a similar way. Intersection of conditions (ai) and conditions (a)

identifies the states in which conflicting actions ai and ~ can be

taken at the same time. Due to these factors, the user is

consulted when a state is deleted and some rules are affected by

this change. The conflicting actions are reported in the mean

time, assuming all conditions including the deleted state are

dropped. Subsequent actions from the user are handled according

to the procedures for adding rules and deleting rules.

26

Adding and Removing a Rule

If an active object 1s alive and consistent, these two operations are

processed as follows:

Adding a Rule: Assume a ruleR of the form C~: =>A.._ is added to object P.

That state space clearly remains to be the same. Let state (R) be the set of

states in which Ctt can be satisfied. It is possible that executing R from a state
I1J:

in states (R) can result in a state . ~ from which no rule is applicable: a

dead-end state. Such states can be detected by identifying all the states which

may be directly reached from the states in states (R) and followed by

inspecting each of such states and looking for applicable rules. If a dead-end

state can be discovered the addition of R is not safe.

The addition of R may as well create conflicting actions, smce the

actions associated with R may be in conflict with actions of some rules which

are applicable in a state of states(R). The procedure described in the section

"Deleting a State" can be applied to delete such states.

Deleting a Rule: Assume a ruleR of the form CR => AR is removed from

object P. The state space clearly remains to be the same. Let states (R) be the

set of states in which CR can be satisfied. It is possible that removing R can

result in a state which to be directly reachable from a state in states (R) no

longer satisfies the LHS of any remaining rules: a dead-end state. Such states

can be detected by identifying all the states which may be directly reached

from the states in states (R) and followed by inspecting each of such states and

looking for applicable rules. If a dead-end state can be discovered, the removal

of R is not safe.

On the other hand, the removal of R from P causes no problem as far as

consistence is concerned. This is because each state v of the original state

space is consistent, and the removal of R does not create any new action in v.

27

Adding and Removing an Attribute

If an active object 1s live and consistent, these two operations are

processed as follows:

Adding an Attribute: Adding an attribute of a class in an object causes no

problem since the state and the rules of the object remain intact.

Deleting an Attribute: Deleting an attribute from a class of an object has

not impact on the liveness of the object. Since some actions of the rules may

include the attribute to be deleted, the removal of the attribute may make the

action part of such rules incomplete. Simply dropping such updates from such

rules may create problem as the updated rules may violate the intended

semantics of the object, although the object remains consistent (as no new

actions are taken). User involvement is required in this case.

Adding and Removing a Method or a Class

Adding a method is like adding an attrubute ; and deleting a method is

like deleting an attribute. Adding a class is equivalent to adding a set of states,

attributes, methods, and rules. Deleting a class is equivalent to deleting a set

of states, attributes, method and rules.

2.5 Towards a Common Dermition

A List of features and characteristics that an ideal OODBs should have

and that together constitute a definition of the notion "Object-oriented

database system".

Like a relational database systems is one which is based on the

relational data model, an object-oriented database system to be database

management system with an object-oriented data model.

28

To fall into the category of database management systems means to

have the following features.

1. Persistence

2. Disk management

3. Concurrency control

4. Recovery

5. Ad hoc query facility

Access control and distribution might be added. Above listed are the

characteristics that are required and not the mechanisms by which they are

· provided (e.g. locking, transactions etc. for concurrency control, recovery, ...).

Disk management include such things like access paths, clustering, or

buffering they are not directly visible to the user, but no realistic DBMS can

fulfill its task without them. Under a ad hoc query facility, we understand any

means that allows access to database data without the necessity to go through

the usual cycle of programming, compilation, execution and debugging. For

example, a descriptive query language, a graphical browser are some "fill in

the form" facility would do that job.

The list of characteristics we require for an object-oriented data model

is much more controversial. First of all, the concept of data model itself has to

be understood in a broad sense as a framework in which to express real would

semantics in a database system. Though this is not at all a novel view,

traditional data models offer rather limited means and do not address at all

some features for advanced semantic capture. They should thus not be taken

as a yardstick for understanding what a data model is. The requirements

include the following.

1. Composite objects

2. User-definable types

3. Object identity

29

4. Encapsulation

5. Types/classes

6. Type/class hierarchies

7. Overloading/overriding/late binding

8. computational completeness

The units an OODBS deals with are called objects. They have a

representation i.e. a (possibly structured) value or state (sometimes also called

a set of instance variable), and a set of operations that are applicable for that

object.

Composite objects (or, synonymously, complex objects, structured objects,

molecular objects) are built from (among others) components that are objects

in their own right and may be composite themselves. The presence of this

characteristic especially means that objects of any level of composition have to

be supported in a uniform way, that object constructor (e.g., for tuples, sets,

lists) have to exists, and that specific operations to dynamically modify and

exploit object structures (both in their entirely and specific parts of them) are

needed.

Every data model come with a number of predefined data types (which

are usually simple ones like integers, characters, strings). Above that,

traditional record-oriented data models provide some sort of "parameterized"

types with fixed sets of generic operations. In the relational model, for

example, there is the parameterized type "(homogeneous) set of (flat) tuples,

called a relation. The only parameter to be chosen for a relation by the users

are the number of attributes, their name, and there (predefined, simple) types

(plus the name of the relation itself). In contrast, the user-definable types

requirements means that really new types can be introduced to the system by

its users, and afterwards dealt with in the same way as with predefined ones.

This includes particularly that mechanism are needed to program new

operators and register them with the system.

30

Object Identity: means that the existence of an object is independent of its

value. It is thus possible within the database to distinguish between the

equality of two objects (i.e. happen to have - at a given point in time - the same

value) and their identity (they really are-always-the same object). An object

thus has tobe considered as a pair (<Oid>, <value>) where <Oid> is an object

identifier and <value>, according to the above, may be simple at"· composite.

Obviously, an OlD has to be system-wide unique, must not change during the

objects lifetime, and even after its deletion, it should be guaranteed forever

that any object may not have the same identity. Object identity (even when not

explicitly made visible in a system) is an underlying concepts for shared objects

(i.e. objects that are components of two ar ; more objects); it is also necessary

for easily and correctly reflecting updates of real world entities jn the

database, otherwise, if e.g. a person gets married and at this occasion changes
•

his/her name which has been used as a key for the respective database objects,

how could one tell whether the update object would still represent the same

real world entity as before? Obviously, the current practice is to have the user

introduced artificial attributes like employee numbers etc. and thus make it

his task to deal with identity. It is now recognized that the database system

can cope much better and more reliably with this problem.

Whether a user defines a new type, he has to choose, a representation

for the values of its instances, he specifies the operators instances, and he

programs their bodies (in terms of the representation). In this case, it usually

does not make sense that user of the type may look at the representation

details au , at the operators codes; all they need to know to use objects of the

type is its interface, i.e. the operator specifications.

Encapsulation: provides for information hiding in this abstract data type

flavor. Note, however, that this should not be madeen allerv nothing principle:

in some cases, one may well want to define a new type just on a

representational basis and adopt the (generic) operators of the representation

(e.g. direct access to the attributes of a tuple) for the type interface, maybe

31

augmented by one or two additional operations that are user- defined.

The requirement for types/classes as such is not that new for databases

systems, but it has an extended meaning for OODBS and the notion of a class

has been carried over from the programming language area. Whatever the

favorite definitions type/classes includes the following:

- the specification of the communalities of a set of objects with the

same properties e.e. their operators and representational

structures),

- a mechanism to create instances (objects) of the type/class

("object-factory").

- mechanisms to query and manipulate the set of instances

currently in existence for a type/class (the extension, "object

warehouse").

The real novelty with respect to types/classes in OODBS is that they

can be organized in hierarchies and thus allow to express that one type is

considered a subtype of another one i.e. that it is specified in more details

(with respect to representational structure and/or operations) than the

supertype. The standard example is a type person with attributes like name,

address, age etc. and subtypes employee with additional attributes for salary,

department, ... and student (semester, courses, grade points, ...). Along with type

hierarchies goes the concept of inheritance in that objects of subtype inherit

the properties (again, structure and/or operators) from the supertype, in

addition to those properties that have been specified with the subtype itself,

of course, inheritance propagates all the way to the top of the hierarchy of

these are none than just two levels. In summary with type hierarchies and

inheritance, more semantics can be expressed than without it introduces an

additional modeling discipline (refinement), and it may even save coding effort

32

because operators need not always be recorded.

Closely connected are the requirements for overriding, overloading, and

late binding. Overloading means that the same operator name (and interface)

may be used for different operations in different types. This allows to

reimplement ("override") an inherited operator for a subtype, taking into

account the additional semantics that may be known there. The advantage one

gain is that users that deal with objects of various subtype of a given

supertype don't have to program tedious case selections to find out the exact

type of any object and apply the appropriate operators; they may uniformly use

. the operator specified for the supertype, and the system will automatically

determine which implementation to execute. Obviously this mandate late

binding; the system cannot bind names to programs previous its runtime.

However, this is again not that much different from traditional approaches

(consider e.g. the "Find" operator in a network database system).

Finally, Computational Completeness relates to the language facilities

provided for programming the operators of user-defined types. We require that
-

arbitrary algorithms may be coded, and thus more query language facilities

will typically not be enough for this purpose.

The first two criteria, composite objects and user-definable types, are the

decisive ones, i.e. if a model does not considered enough progress to existing

approaches to justify a new name. On the other hand, once composite objects

and/or user-definable types are available, the data model is already a big step

forward compared to record oriented ones, even if some of the other goodies are

missing.

In this respect [10] introduced the following classification: A data model

is called

1. Structurally object-oriented if it supports composite objects.

33

2. Behaviorally object-oriented if it supports user-defined types.

3. Fully object-oriented if it supports both and has all the other

features as explained above.

Full object-orientation matches the comprehensive definition as

introdu~ed. Of course, the provision of the other six data model features (where

applicable; some of them do not make sense for structural object-orientation)

does not hurt for the first two classes either. In fact, at least most behaviorally

object- oriented database system etc., then, is again a database system with an

appropriate data model.

The criteria to be meet as given above - even of they are all adhered to

do not define the one and only object-oriented data model (in contrast to e.g.

the relational model which defines exactly one such thing). In consequently

various way of providing the individual concepts and mechanisms can be (and

- have been) investigated. The same holds true for the other database system

issues, and many of them do have to be reconsidered in the light of the data

model that is now different from classical ones. And finally, several additional

aspects resulting mainly from the applications areas object-oriented systems

are primarily aiming at should be (and already are investigated in this

context).

* Within the framework as introduced, concrete ways have to be

found to present all the necessary features to fall object­

orientation in a coherent and orthological fashion. Quality criteria

will composite, among others, expressive power and ease of

comprehension and use. To best integrate composite objects with

user-definable types (including encapsulation). Furthermore, most

present approaches offer just one uniform mechanism to express

object composition as well as object referencing (as a means to

model all kinds of other-typically rather "lose"- associations

34

*

*

*

*

*

*

between objects). Unfortunately, this conceals apparent

differences to real world facts and is thus counterproductive to

the goal of offering highly expressive data modelling facilities.

Beyond composite objects, applications are often concerned with

object versions (i.e. multiple representations of the same semantic

entity, to account for different states, different times of validity

tiJ,re creation, alternative or hypothetical information etc.).

Appropriate modelling mechanisms and operators should be

integrated into an object-oriented database systems.

How is query processing integrated into object-oriented database

systems (both, at the conceptual- how do ad hoc queries interact

with e.g. encapsulation?- and at implementation level)?

How do the notion of database views and consistency transfer to

object-oriented data models?

Protection issues have to be based on the notion of object which

is the natural unit of access control in this framework.

For databases containing large number of data, archiving may

become an important issue. Again, objects (and their, versions, if

any) form the natural unit for this activity.

Powerful implementation techniques are needed to provide object­

oriented database system that perform efficiently. These may

partly be carried over the wealth of approaches developed for

relational and other traditional systems, but undoubtedly further

concepts will need to be considered, e.g. specialized access paths

for composite objects, storage for versions).

35

*

*

*

*

- Object-oriented main memory buffering.

Also, how do the ideas of extensible database system

architectures relate to the special case of object-oriented database

systems?

How do the concepts of active [9] and deductive database systems

tie in with object-oriented database systems?

High quality database design is rather tedious job even for

record-oriented database systems. It appears that it is even more

difficult within the framework of object-oriented database systems
0

as the target application areas show a much higher degree of

complexity which may easily be exceed the gain in modelling

power. Appropriate design methodologies and tools that support

them have to be developed.

In contrast to the development of the relational data model,

formal foundations for object-oriented data became interested in

this area, there is justified hope that these deficiencies are going

to be remedied within the near future. However, care has to be

taken that theory addresses full-fledged object-oriented data

models and not just the easier issues.

Finally, what migration paths can be meaningfully, offered for the

users of today's relational database systems in order to enable

them to benefit from the advantages of object-oriented ones? How

can heterogeneous distributed DBMS., help?

Database concepts provide independence of storage and user data

formats. The schema describes the form of the databases contents, so that a

variety of users can satisfy their data requirements by querying the shared

36

database using nonprocedural declaration of the form:

SELECT what-1-want WHERE some-set-of-conditions-is-true.

A database administrators integrates the requirements of diverse users.

The shared database can be changed as long as the schema is changed to

reflect such changes. Concept of database normalization help avoid redundancy

of storage and anomalies that are associated with updates of redundantly

stored information.

The principle formal database mechanism to obtain selected dataer·- an

application is a view specification. A view on a database consist of an query

that defines a suitably limited amount of data. A database administrator is

expected to use predefined views as a management tool. Having predefined

views simplifies the users access and can also restrict the user from

information that is to be protected.

View have seen formal treatment in relational databases, although

subset definitions without structural transformations are common in other

commercial database systems.

A view IS defined in a relational model as a query over the base

relations, and perhaps also over other view. Current implementation do not

materialize views, but transform user operations on views into operations over

the base data. The final results is obtained by interpreting the combinations

ofview definition and user query, using the description of the database stored

in the database schema.

The view, like any relational query results, is a relation. However, even

when the base database is fully normalized, say to Boyce-Codd normal form,

the view relation, is in general only in first normal form. Views are in that

sense already closer to objects: related data has been brought together.

37

Object-oriented programming languages help to manage related data

having a complex structure by combining them into objects. An object instance

is a collection of data elements and operations that is considered an entity.

Object are typed, and the format and operations of an object instance are

inherited from the object prototype.

The prototype description for the object type is predefined and the object

instance are instantiated then provide a meta description, similar to a schema

provided for a database. That description is, however, fully accessible to the

programmer.

Internally an object can have an arbitrary structure, and no ouser-visible

join operations are required to bring data element of object instance together.

The object concept covers a range of approaches. One measure is the

extent to which messages to external operation interfaces are used to provide

access and manipulations functions. Object may be active, as in the Actors

paradigm, are passive, as in CLU, or somewhere in between, as in similar or

in Smalltalk in terms of initiating actions.

The use of objects permits the programmer to manipulate data at a

higher level of abstraction convincing arguments have been made for the use

of object-oriented languages and some impressive demonstrations exist.

Especially attractive is the display capability of objects. Object concepts can of

course be implemented using nonspecialized languages, for instance in Lisp or

Pro log.

OBJECT AND DATABASE

Let us assume a database used for persistent storage of shared objects.

A database query can obtain the information for an object instance, and an

object-oriented programming language can instantiated that object. An

38

interface is needed, since neither can perform the task independently. A view

can define the information required for a collection of objects. Linkage to the

object prototype and its operations is performed in the programming system.

The program queries the database nonprocedurally to remain unaffected by

database changes made to satisfy others users.

The query needed to instantiate an object may seem quite complex to a

programmer. A relation is .a set of tuples, from an idealized point of view, each

tuple provides the data for same object. However, normalization often requires

that information concerning one object be distributed over multiple relations,

arid brought together as needed by join operations. The base relation must

contain all the data required to construct the view tuples; the construct views.

An ideal composition of an object should allow its data to be managed as a

unit, but unless non-first-normal form relations.:supporting repeating

groups-are supported for views, multiple tuples are still required to represent

one object in a relational view.

Hence storage of object is not easy in database, as indicated by the

extensions proposed to Ingres for such tasks. A further complexity is that

objects themselves may be composed from none primitive objects. In

hierarchical databases records may be assembled from lower level tuples, but

in internal database the programmer has to provide join specifications

externally to assemble more comprehensive relations from basic relations.

39

Chapter III

THE PROBLEM

3.1 Introduction

Current object-oriented approaches to database modeling and design

emphasize data abstraction and operation encapsulation. In a conventional

object-oriented database (OODB), the conceptual structure (schema) is

embodied by a collection of abstract data type (called 'classes') which, when

defined, are organized into an inheritance (ISA) hierarchy. Objects are then

created within classes, instantiating and justifying these predefined data types.

In this way, a class prescribe both structural and behavioral properties

(attributes and methods) of its objects. Therefore the object in a class can be

stored efficiently through a shared representation, and the set-oriented access

of class member is made more efficient; this efficiency becomes increasingly

important as classes content larger numbers of objects [2].

Beneath such a classification-based approach is a salient assumption

that each object in database has exactly one (specific) class (if we do not count

the superclasses of the specific one), namely the one in which the object was

created. This has been the case with those OODB models and systems which

are based on 'statically-typed' (or strongly-typed) object- oriented programming

languages (OOPLs) such as C++ [3], Eiffel [4], Trellis/Owl [5], etc. Such an

assumption, however, imposes some serious restriction in modeling real world

which may be quite dynamic in nature. As a matter of fact, in the real world

which the database are set to model, object may 'migrate' from classes to

classes dynamically in many practical situations. Consider a person Rama, for

example, who was single but later on get married (hence Rama· migrate from

single to married), and who was recently promoted from a programmer to a

40

project manager (hence he migrates from programmer to manager). Object can

also be 'transmitted' to more than one classes at the same time. For example,

a student Shyam becomes an engineer and at the same time a lecturer (e.g. an

adjunct position) after he graduates. Yet as another possibility, object may be

'propagated' to several other classes while still maintaining their membership

in current classes. For example, a scholar Sita becomes an American

immigrant, while she still maintains her Indian citizenship (hence Sita is

propagated to be member of American, in addition to the current Indian

membership).

3.2 Statically-typed Object-oriented Languages

Programming languages in which the type of every expression can be

determined at compile time are said to be statically-typed languages. The

requirements that all variable and expressions be bound to a type at compile

time is sometimes too restrictive and may be replaced by the weaker

requirement that expressions are guaranteed to be type-consistent, if necessary

by some run-time type checking. Languages in which all expressions are type­

consistent are called statically-typed language [1].

The class of statically-typed object-oriented languages is the subclass of

object-oriented languages in which all object have abstract interface and

languages and the language is statically typed (see Fig. 1). Statically-typed

object-oriented languages are extreme in their choice of structure over

flexibility. Languages like C++ are statically-typed.

41

Classes , Inheritance

Data abstraction .
ADA Statically Typ~

C++, Owl

Fig. 1 Statically-typed object-oriented language

3.3 An Object Migration Model

In this section the general objectives of the migration modeling is

discussed. The notion of base and residential classes which are fundamental

to object migration modeling is then defined.

3.3.1 Objectives of Object Migration Modeling

Consistent with most current OODB models and systems which are

based on statically-typed OOPLs, the basic concepts of class, inheritance, and

object identifier (Oid) has been assumed. A class defines a set of instance

variables (or attributes) and a set of procedural methods for each of its objects

(members). The methods associated with a class, either explicitly defined or

42

implicitily inherited, are refered to as the behaviour of the object in the class.

An OODB conceptual schema is a singly-rooted tree, embodying the ISA

hierarchy structure among the classes, with root being OBJECT.

Updates in an OODB can be divided into two types: one is concerned

with change of attribute values (value part), and other is concerned change of
11.1i~ra~io~o~

of class memberships (part). The theme of this project is on the latter, that is,

object migration part. From a database management perspective, the following

are three specific goals for object migration modelling:

3.3.1.1 Identity Preservation Goal

This is to preserve the identity of migrating object during migration. As

the problem addressed here are object migration and not object deletions

followed by creations, it therefore is absolutely necessary to preserve the same

Oid of an object throughout its migration period (and its life time).

3.3.1.2 Behavior Transitional Goal

This is to give a migrating object the ability to abandon old behavior of

the source class and to acquire new behavior from the target class. In an object

oriented database, an object is accessible and operable from its 'external

interface' which consist of a set of methods (behaviour) defined by its class. The

migration of an object from one class to another should therefore reflect the

change of its behavior by switching to the new behavior defined in the target

class.

3.3.1.3 Information Conservation Goal

This is to preserve as much as possible applical>le information associated

with a migrating object. Mora specifically, if an object 0 is to migrate from a

source class to target class, than all the properties (attributes and their values)

43

of 0 as a member of the source class that are still applicable as a member of

the target class should be retained. Note that in our model, we assume

'applicable' properties to be those attributes which are common to O's source

class and target class, and O's value of these attribute in the context of sources

class are still up-to-date in the context of the target class. Thus this

information conservation goal does not apply to so-called overwritten and/or

homonymous attributes [18]; in this model, such 'variants' are simply treated

as different attributes for simplicity.

Of course, each migration instance may achieve a combination of the

above three goals.

3.3.2. Base and Residential Classes

There are many situations where object migration can occur.

Fundamental to object migration modelling is the ability of an object to

dynamically change its memberships and to be member of two ore more classes

simultaneously. Multiple memberships of objects correspond intuitively to the

notion of roles [6, 7] in particular, an object 0 has a role C if the search for

properties are methods associated with 0 can start with C, not with the

designed class in the traditional approach. And an object 0 is said to reside at

a class C if it is explicitly given role C.

A base class C of an object 0 is a distinguished class where 0 resides;

initially Cis the class where 0 is constructed (created); at any given time, each

exiting object has a unique base class.

A residential class of an object is a class in which the object currently

resides. There can be more than one residential class for an object. Residential

classes other than the base class of each objectcan only result from object

migrations.

44

Clearly a base class is a special residential class conceptually, each

object is existence dependent on its membership to its base class. That is, if an

object 0 ceases to have a base class then 0 ceases to exist in the database, and

thus loses membership to all its residential classes. The existence of the unique

base class for each object from the perspective of overall object management,

also facilitates efficient object access while providing the supports for multiple

perspectives (roles) of an object.

The notion of base class defined above corresponds to the term base role

and residential class corresponds to the term aspect · - roughly. Besides

t~ese two kinds of class, an object 0 can also be accessed from any superclass

of its base class or any superclass of the residential classes. For clarity, such

superclasses are called accessible classes of 0. That is, an accessible class of

0 is a superclass of O's base class or residential class. From role modelling

point of view [7], the base class and residential classes of 0 are the explicit

roles currently being played by 0. Due to the inheritance hierarchy, each

accessible class can also be assumed by 0 as an 'implied role'. Thus the total

set of role play-able by 0 is the union of all the explicit and implied roles. But

0 cannot change its implied roles explicitly.

In most current object database models and systems (e.g. based on C++)

each object has exactly one base class, and possibly a number of accessible

classes (which are the superclass of the base class). It is not allowed for an

object to have a residential class other than the base class (i.e. the only

residential class is the base class itself), nor is it possible for an object to

dynamically change its base class or acquire new residential classes. These are

exactly the problems that this object migration model (OMM) is targeting at,

as they embody ~significant type of restrictions that current OODB models

and systems are imposing upon active/dynamic applications.

45

3.3.3 Migration Varieties

From an individual object (0) point of view, there are two aspects

associated with O's migration. One is the manner of migration i.e. whether the

migration is in the form of one-to-one <3r ~one-to-many. In a one-to-one (1:1)

migration, the migrating object 0 is migrating from a current residential class

to a new residential class, whereas in a one-to-many (1 :M) migration, 0 is

migrating from a current residential class to several new residential classes

simultaneously.

Another associated aspect is the nature of migration i.e. whether
-

migration is a destructive one or a non-destructive (called constructive) one. In

destructive migrations, a migrating object ~ses to be a member of a current

residential class, after it becomes a member of new residential class(es). In

constructive migrations, however, a migrating object acquires new residential

classes while still keeping its current residential classes hence all accessible

classes. Constructive migration is more general than multiple inheritance in

the sense that shared subclasses can be modeled by constructive migrations,

but not vice versa.

As the two aspects (viz. the manner and the nature) associated with

object migration are orthogonal, therefore the following four possible object

migration cases are given below:

1. One-to-one constructive

2. One-to-one destructive

3. One-to-many constructive

4. One-to-many destructive

46

3.3.3.1 One-to-one Constructive

This type of migration refers to the situation where an object acquires

an additional residential class while it still keeps its current residential class.

As an example, a scholar Sita becomes a immigrant to American while keeping

her Indian citizenship. Pictorially, a dashed line with an arrow to denote such

a 1:1 constructive migration (see Fig. 2)

Indian American
>f-.

,~ _>;-_
,'

0 0 6

Fig. 2 A 1:1 Constructive Migration Case.

3.3.3.2 One-to-one Destructive

This correspond to the situation where an object stops being a member

of a residential class (residential class can be either a non-base class car, 'the

base class), and takes up membership of another residential class for example,

person Rama stops being Single, and becomes Married. Pictorially, a solid line

47

with an arrow to denote such 1:1 destructive migration occurrence (see Fig. 3)

Single Married
.>:-.

i)
----~~ ..

Ram a . -----
Ram a

Fig 3 A 1:1 Des1rudive Mi!]nltion Case

3.3.3.3 One-to-many Constructive

In this kind of migration, an object becomes a member of a number of

new classes while still keeping membership in its current classes. As an

example, a secretary Rita becomes a parent and wet-nurse while still keeping

her job. A 1:M constructive migration is a general case of 1:1 constructive

migration, as it is in effect equivalent to executing several 1:1 constructive

migrations. Pictorially, a dashed line with forked arrows to denote such 1:M

constructive migration (see Fig.4)

[Secretary J -'·· .· .· : ·, ..
~ ···

:···--o·
f Rita

0······················---!

[

.·

Parent
'' _,· :··

6

Rita
[\Vet-nurse

.·
L. ... C)·

Rita

.·'i.
I

6

·.

b
Fig. 4 A 1:M Constructive Migration Case.

48

3.3.3.4 One-to-many Destructive

This kind of migration corresponds to the case in which an object stops

being a member of a class, and becomes simultaneously members of two or

more other classes. For example, a M.Tech student finishes his/her study, and

becomes a lecturer and an engineer at the same time. Due to the destructive

nature, a l:M destructive migration is not equivalent to simple composition of

several 1:1 destructive migrations. Pictorially, a solid lini't with forked arrows

to denote such a 1 :M destructive migration (see Fig.5)

Lecturer

_ .. -······'l·-......... _

I M.Tech.-Student I /1·· ..
..... 6 ···a

Mohan

· ..

Mohan
Engineer

'
•• & ,• i -~ -..

-·· i ·._ .. ··.

Mohan

Fig. 5 A 1 :M destructive D;ligration instance

49

Chapter IV

THE SCHEME

The scheme involves to accommodate the kinds of migration cases

described in Chapter III, several migration operators have been defined

within·migration model (OMM). All the migration types has been covered.

4.1 Migration Operators

The following describes all the operators that have been incorporated in

prototype implementation.

4.1.1 RELOCATE (0,C1,C2): Boolean

The RELOCATE operation relocates an object 0 from its current- class

cl (which is either a residential class or its base class) to the specified target

class C2. The obsolete properties (attributes and methods) of 0 (those

associated with O's current class C 1 but not with C2) are deleted, and the new

properties (those associated with C2 but not C1) are added, with default values

being 'unknown'. For example, RELOCATE(Rama, Single, Married) will

relocate Rama from current base class (viz. single) to Married. If Rama was not

in the class single, this operation will just return false.

As a result of a successful RELOCATE operation for an object 0, O's Oid

is required to be 'moved' from the current class (the source class) C1 to the

target class c2 (thus this operation corresponds to a 1:1 destructive migration).

If the current class C1 is a residential class, then after this operation ·C1 cpses

to be O's residential class while C2 becomes O's residential class. Otherwise

50

(i.e., C1 is the base class ofO), 0 is removed from C 1 and added to the class C2

which becomes the new base class of 0. This operator corresponds to the 1:1

destructive migration case specified in the Chapter III.

4.1.2 PROPAGATE (O,C,Cl[,C2 ... ,Cn) Boolean

The PROPAGATE operation propagates an object 0 from the current

class C (which is either a residential class or the base class) to the target

classes C 1 through Cn. For each target class Cj (lsjsn), the obsolete attributes

of 0 (those associated with O's current class C but not with C) are deleted,

and the new ones (those associated with Cj but not with C) are added, with

defa~lt values being 'unknown'. For example, PROPAGATE (Sita, Indian,

American, Canadian) will propagate Sita to the target class American and

Canadian, while Sita still maintains the current Indian membership. If 0 was

not a member of C, this operation will have no effect and just return false.

As a result of such a PROPAGATE operation for object 0, O's (Jid is

perceived to be 'copied' to all the target classes, which causes new residential

classes being 'introduced' to 0, while O's current class (viz. the residential

classes or base class) are not effected. This operator covers both 1:1 and l:M

constructive cases.

4.1.3 TRANSMIT (O,C,Cl[, ... ,Cn) Boolean

The TRANSMIT operation migrate an object from its current class C

(which is residential class or the base class) to the target class cl through en

simultaneously. For each target class Cj (1 <= j <= n), the obsolete attributes

of 0 (those associated with O's current class C but not with Cj) are deleted,

and the new attributes (those associated with Cj but not C) are added, with

default values being 'unknown'. For example, TRANSMIT (Shyam,

PhD_Student, Engineer, Lecturer) will transmit Shyam from the current class

PhD Student to Engineer and Lecturer. If Shyam was not in the class

51

PhD Student, this operation will have no effect and simply return false.

The TRANSMIT operation resembles both the PROPAGATE and

RELOCATE operation. When the number of target classes is equal to 1 (i.e.
- .

n=l), this operator is obviously same as the RELOCATE. When n>=l, however,

the effect of this operator is different from that of executing several

RELOCATE operations simultaneously. In particular, when the current class

C is the base class, the operation exhibits a 'hybrid effect of executing

PROPAGATE and RELOCATE operations : it is equivalent to executing

PROPAGATE(O,C1,C2[, .•• ,Cn] followed by RELOCATE(O,C,C), where C is the

most direct common ancestor (superclass) of the target class C1,C2 through Cn.

Thus the new base class of 0 is changed to C in this case. So for tht; same

example above, if the class PhD_ Student was the base class of Shyam, the

operation TRANSMIT(Shyam, PhD_Student, Engineer, Lecturer) will transmit

Shyam to the target classes Engineer and Lecturer, and cause the base class

of Shy am to be changed from PhD_ Student to the most direct superclass (e.g.

Professionals) of the two target classes.

The RETRACT operation is essentially the 'inverse' of the above

migration functions. It allows an object to abandon dynamically some (or all)

of its current residential classes. For example, the operation RETRACT(Gopal,

Canadian, Australian) will cause Gopal to relinquish Canadian and Australian

as its residential classes. In this operation, we do no~~~especify O's source class

but only those (target) residential classes to be relinquished. This operation

will return false (and operation causes no change) if

(i) the class is the base class, or

(ii) any of the specified target classes is not residential class of

0.

52

4.2 Object Migration Control

A simple object migration mechanism has been provided in the above

section to support specific migration cases. Care must be taken in the

conducting various migration operations so that only meaningful and correct

migrations are conducted. There are situation where migration is meaningless

or incorrect. This motivates the need for devising a migration control

mechanism to be attached to the migrat'" ion mechanism in order to ensure

that only meaningful migrations are conducted.

4.2.1 Examples of meaningless migt"J\tion

Just as there are any situations where object migration is a natural

thing to occur, there also many situations where object migration is

meaningless, in particular, it does not always make sense to have migration

(i) from a subclass to superclass,

(ii) from a superclass to a subclass, or

(iii) from a subclass to another subclass (even when the application

justifies migration from the second subclass to the first subclass).

Example:

Consider the example where person is the (virtual) generalization of a

Male and Female. For (i) and (ii), there should be no migration from person

+o Male : · -' .. '- or vice versa, since person should have no explicit object which

are not member of Male 0r Female. Further more one case of (iii) there

should be no migration form Male to female or vice versa, since the member

of Male and Female are mutually exclusive.

53

To illustrate the other case of (iii), consider the situation where

Teenager and Adult are specializations of Person. Then, consistent with real

world semantics, object may migrate from Teenager to Adult, but not vice

versa (i.e. a person cannot change from an Adult back to Teenager).

Since object oriented database system are are set to model the real

world, object migration in the systems should only reflect real world object

migrations. That is, object migration in the system should be disallowed if the

do not correspond to meaningful migrations in reality. In order to prevent

meaningless object migrations from occuring, there should be a facility for

controlling object migrations in the system.

4.2.2 Migration Control Specification

The ingredient of migration control specification are migration which,

in a sense, are similar to semantics constraints in database by requiring that

object migration can and only can occur by following the specified migration

permissions.

The TRANSMIT operation can be defined by PROPAGATE and

RELOCATE. Each PROPAGATE operation require a single target class, since

each such operation with multiple target classes is equivalent to a sequence of

such operations with single target classes.

There are three kinds of migration permissions. For the first two kinds,

assume that the source class and target class are distinct.

(1) A relocation permission is a triple of the form (source_class, target_class,

relocation). It captures the semantics that each object with source_class

as its base/role class may be relocated to target_class.

54

As an example, the triple (Single, Married, relocation) is a relocation

permission. If Rama was previously single,and is getting married now,

then Rama can be relocated from Single to Married. Thus a relocation

permission prescribes one-to-one (1:1) destructive migration from

source_ class to target_ class.

Relocation permission may appear as dual as exemplified by (Single,

Married, Relocation) and (Married, Single, relocation). However, this is

not always the case. Take the Teenager and A-dult example: (Teenager,

Adult, relocation) is a meaningful migration permission, whereas (Adult,

Teenager, relocation) is not.

(2) A propagation pernusswn 1s a triple of the form (source class,

target_class, propagation). It captures the semantics that each object

with source class as its base/role class may be propagated to

target class.

As an example, the triple (Professor, Consultant, Propagation) is a

propagation permission. Thus if Bimal is a Professor, it is possible for

him to acquire additional role such as a consultant to company.

(3) A retract permission is pair of the form (class, retract). It captures the

semantics that the RETRACT operation can be applied to the object

having class as the role class.

Control mechanism can be defined as follows :

A migration control specification L over an object schema is a finite set

of relocation, retract and propagation permissions, where the participating

class are from the schema.

55

RETRACT should always be allowed. Thus in every migration control

specification, there is (implicitly) a retract permission for every class. Note that

some instance of RETRACT may cause no change to object base, as specified

in the semantics of RETRACT.

A migration control specification L is created when the database is

designed, and is updatable when the database schema is changed (e.g., when

new classes are added and/or existing ones deleted/updated).

4.2.3 Inference of Migration Permissions

A migration transaction is seqpence of zero or more migration operations

on one object, whose effect is achieved by executing the component operation

from left to right. A migration transaction is legal with respect to a migration

control specification if each component operation is permitted by the control

specification.

A migration control specification L implies a migration P if

(i) P is in L or

(ii) P has the form (C1, C2, mode), there is an object 0 having

C1 as role class, and there is legal migration transaction T

such that after executing T,

0 gains c2 but loses cl as role classes if mode is relocation;

0 gains cl and keeps c2 as role classes if mode is

propagation;

The closure set L+ of L is the set of migration permissions from a given

migration control specification.

56

Inference Rules

(1) MMM : If (C 1, C2, M) and (C2, C3, M) are in~. where C 1 ~ C3 and M

is either relocation or propagation, then ~ implies (C 1, C3, M).

(2)PRP : If (C1, C2, propagation) and (C2, C3, relocation) are in ~. where

C1~C3, then~ implies (C1, C3, propagation).

(3) P2R : If (C1, C2, propagation) is in ~. then ~ implies (C1, C2,

relocation).

An inference rule is redundant in a set of I of inference rules if, for all

migration control specification ~ and migration permission P, one can infer P

from~ using I-{i} whenever one can infer P from~ using I; and I is minimal

if no rule in I is redundant. I is sound if~ implies P whenever one can infer

P from ~ using I . I is complete if one can infer P from ~ using I whenever ~

implies P.

P2R has been used as a shorthand for 'propagation implies relocation',

and PRP used as a shorthand for 'propagation followed by relocation'. The

MMM rule actually stands for two rules : PPP and RRR. Of the eight potential

inference rules without 2: PPP, PPR, PRP, PRR, RPP, RPR, RRP and RRR,

it is easily seen that RPP and RRP are not used. Further more, RPR,PPR and

PRR are all redundant: form P2R and RRR we get RPR, from PPP and P2R we

get PPR, and from P2R and PRP we get PRR.

4.2.4 Path Sensitivity of Migration

To illustrate that migration an object along different migration paths

may lead to different final states, although the final role classes are the same.

This Phenomenon is called path sensitivity.

57

A migrating path is a sequence of zero or more migration permissions.

A migration transaction follows a migration path if ith operation in the

transaction corresponds to the ith migration permission in the path for each

1.

Example:

Suppose the attributes of C1 and C3 are A and B, an attributes of C2 are

A and D. Path sensitivity exhibits by considering the following two migration

paths:

(C1, C2, relocation) (C2,C3, relocation).

Suppose 0 is a member of C1 and O.A = a and O.B = b. Then,

RELOCATE (0, C 1, C2), RELOCATE (0, C2, C3) will result in 0 as a member

of of C3 with O.A = a and 0.8 = 'unknown', whereas RELOCATE (0, C 1, C3)

alone will result in 0 as a member of C3 with O.A = a and O.B = b. Hence

object migration from cl to c3 in both cases can be achieve with respect to

identity, but the resulting databases states differ since information is

preserved for the two cases.

Migrating objects follow different migrating paths lead to different

degrees of information preservation. When limited to a pair of initial and final

role classes, migration following direct migration permissions always preserve

maximal information, where as indirect steps may sometimes cause

'information loss'.

4.2.5 Information-preserving completeness

A role set is a non empty set of classes. A role states of an object is the

58

set of all of its role classes. A set of migrating operators is complete if, for each

pair of role sets 8 1 and 8 2 and for each object 0 with 8 1 as its initial role state,

there is a migration transaction T which _maps 0 to a state with role state 8 2 .

It can be shown that {RELOCATE, PROPAGATE} and {PROPAGATE,

RETRACT} are equivalent in expressive power, in the sense that each

role_state transition implementable by using the first set operators is also

implementable by using the second set of operators and vice versa. This is not

the case, however, if information preservation is taken into account.

The notion of completeness as gwen above is good in reflecting

reachability. However, its fails to capture reachability with information

preservation. The migration transaction RELOCATE (0, C 1, C 2), RELOCATE

(0, C2, C3) is not desirable as RELOCATE (0, C1, C3) from information

preservation point of view : though to achieve object O's migration from C1 to

C3 in both cases, the latter transaction allows us to retain more information

than the former (longer) transaction.

For a class hierarchy, a migration transaction T on object 0 is

information-preserving if, for each initial role class C1, final role class C2, each

attribute A common to C1 and C2, O.A is defined in C2 (resp. retaining its

values defined in C1).

A set of migration operator is information-preserving complete if, for

each pair of role sets 8 1 and 8 2 and each object 0 having 8 1 as its initial role

state, there is an information-preserving migration transaction T using the

given operators such that the T maps 0 to a final state with role state 8 2.

4.3 Specification Design and Implementation

Based on migration specification facility introduced in previous section,

and the analysis of its properties thereof, are taken care for migration

59

specification design. As part of schema design task which is more of art than

science, migration specification design is full of uncertainty and multiple

choices. For example, these may be many different paths to follow in

accomplishing seemingly identical migrations which are in reality different. In

particular the following specific questions are examined:

Given an object database, what is the most critical aspect to

consider in designing the migration specification ~ (knowing that

there are several aspect and ways to define it)

Given a specification ~. what are the most desirable migration

transaction to define (i.e., the 'optimal' transactions and most

desirable .order of executing the transaction)

To conduct object migration more effectively, a set of heuristic quidelines

based on the studied properties of migration paths have been given. An elegant

declaration facility for the user (designer) to directly use, which is an extension

to statically-typed object database system upon which experimental prototype

is implemented.

4.3.1 Design Constraints

Suppose that there exits a triple (source_class, target_class, mode) is a

migration control specification. Let class_z be a minimal common super_class

and target_ class.

to obtain nontrivial information preservation, class_z should not

be OBJECT.

the lower the level class_z is in the class hierarchy, the more

information preservation this triple entails, thus the more

desirable the triple is.

60

The smaller the vertical distance from source_class and

target_class to class_z, the more information preservation this

triple entails, thus the more desirable the triple is

using fewer operations usually preserves more information,

it must be ensured that only meaningful and desirable; this

should be the main factor to considered.

4.3.2 Implementation

An experimental prototype embodying the above migration facilities

have been implemented. The prototype system is based on a conventional

object-oriented model (C++) which support such conventional object mechanism

as classes, attributes (instant variables), methods subclass (ISA) relationship ...

and inheritance, etc. Major aspect of the prototype experiment include the

implementation of the aforementioned migration functions, and the declaration

facility for describing permissible migration paths (PMPs) of classes.

There is meta class called DynamicObject that serves as the superclass

of MigratingClass, which provides several primitive (base level) functions for

implementing the migration operators; it in turn is defined based on another

meta class called Role whose superClass is OBJECT (which provide for

persistency). The meta class structure in in Fig.6.

The declaration of PMPs for a migrating class has the following syntax:

PMP set_of_objects [relocatable _to list_ of_ classes]

[propagatable_ to list_ of_ class-sets]

[transmittable_to list_of_class_sets]

[unmigratable_to list_of_classes]

Square brackets indicate optional arguments. The 'set_of_object'

arguments can be one of the following forms : a set of enumerated object

identifiers (Oids), a set of attributes defined Oids (as result of selection

61

-Les~9:-

o built in meta class

~ super /subclass relationship

c:::::J class planned to be added

Fig 6. Structure

process based on the attributes from the class), the complete set of objects of

the class (the default one). Similarly,the 'list_of_classes' arguments also can

have several forms: a list of enumerated class names (or identifiers), the result

of selection process stored in given meta-class, the complete list of subclasses

of a _given class, the complete list of superclass of a given class. The

'list-of-class-sets' arguments has similar possibilities, except that it is list of

class sets.

An unspecified migration path is not necessarily illegal, but unknown.

When a role/migrating class is defined, associated PMPs can be specified in an

incremental manner. For convenience in practice, unmigratable paths can be

declared, which are known to be illegal, and even change a path from

migratable to unmigratable, and vice versa.

These features help in the situations where the nature of some

migrations are not clear ar -. uncertain, and allow to be able to highlight

(un)migratable paths to emphasize. For example, the following specification

embedded in the definition of the class Student prescribes the permissible

migration paths for those students who has SGPA <· 5.0.

PMP Student (SGPA s 5.0)

relocatable_to Expelled

propagatable _to [Probational]

transmitable_to [Expelled, Switched]

unmigratable_to Honor_Student

The implication of this specification is that a student with SGPA < 5.0

is regarded as in poor academic standing, and thus is possible to be asked to

quit the program (i.e. to be expelled), or quit the current program and switch

to less intensive one (reflected by transmittable path), and under no

circumstances he could become a member of honoured students. Clearly, such

PMP specifications can be certain uniformity along the ISA hierarchy, meaning

62

that a subclass may inherit from its superclass appropriate PMPs Uust as if

it can inherit attributes and methods from its superclass). It is implemented

in selective inheritance way in prototype. Hence a subclass can selectively veto

the inheritance of certain (or all) migration paths from the superclass, and for

the inherited one, the subclass can also modify, refine the migration list.

63

CONCLUSION

In this work dynamic object migrations have been accommodated in

statically-typed object databases. Although the work described here is for

statically-typed (strongly-typed) object-oriented databases (OODBS), many of

the principles and techniques are also applicable to other non-statically typed

OODBS. In particular, the criterion of information preservation being the main

concern for migration is clearly of equal importance to any type of OODB

systems. The idea of declaring migration paths in a migration specification can

be used as a means to control and to avoid abuse of migration functions in any

· OODB system.

However, as shown by example in section 4.2.4, the information

presero.ation goal is not always satisfiable due to path-sensitivity, as well as

the inherent properties of the class hierarchy.

64

BIBLIOGRAPHY

1. Cardelli, L. and Wegner, P., "On understanding Types, Data

Abstraction, and Polymorphism", Computing Surveys, December

1985.

2. Hughes, J.G., "Object-oriented database", (Prentice Hall,1991).

3. Stroustrup, B., "The C++ Programming Languages", (2nd ed.)

(Addison-Welsey).

4. Meyer, B., "Object-oriented Software Construction.", (Prentice-Hall,

1991.)

5. Shafferi, C., Copper, T., Bullis, B., Killian, M., and Willpolt, C., "An

Introduction to Trellis/Owl", in: Proc. conf. on object-oriented

programming Systems, Languages, and applications. (1986)

6. Sciore, E., "Object specialization", ACM trans. lnformat. Syst. 7

(2)(April 1989) 103-122.

7. Li, Q. and Mcleod, D., "Coceptual dadtabase evaluation through learnig

in object databases", IEEE Trans. Data and knowledge Eng. 6

(2) (April 1994).

8. Elmasri, R., Weldreyer and Hevner, A., "The category concept: an

extension to the entity-relationship model", Data and Knowledge

Eng. 1 (1) (1985).

65

9. McCarthy,D.R., Dayai,U., "The architecture of an active Database

Management system", Proc. ACM-SIGMOD,1989.

10. Dittrich,K.R., Preface, in: Dittrich,K.R.(ed.): "Advance in Object-Oriented

Database Systems", Lecture Notes in Computer Science, Vol. 334,

Springer, 1988.

11. Connors,T., Lyngback,P. "Providing Uniform Access to Hetrogenous

Information Bases", in: Advance in Object-Oriented Database Systems,

Dittrich,K.R.,(ed.), Lecture Notes in Computer Science, Vol. 334, Springer

Verlag,1988.

12. Cardelli,L., "A Semantics of Multiple Inheritance, In: Semantics of Data

Types", Lecture Notes in Computer Science, Vol. 173, Springal

Verlag, pp. 51-67,1984.

13. Goldberg, A. "Introducing the Smalltalk-80 System" BYTE Magazine,

August 1981.

14. RoweL., "A Shared Object Hierarchy", In: Topic in Information Systems,

Dittrich, K.R., Dayal, U., and Buchmann (Ed.)" Object-Oriented

Database Systems, Spring-Verlag, pp.171- 188.

15. Wiedershold, G., "Views,Objects, and Databases", In: Topic in

Information Systems, Dittrich, K.R., Dayal,U., and Buchmann

(Ed.)" Object-Oriented Database Systems, Spring-Verlag, pp.29-44.

16. Pernici,B., "Objects with Roles", In: Conferences on Office Information

Systems (ACM,1990) pp.205-215.

17. Su,J., "Object Migration Patterns" in: Proc. Int. Conf on Very Large

Databases, VLDB Endowment (1991).

66

18. Chorafas, Dimitris,N. and Steinmann, H., "Object-Oriented Datahases",

PTR Prentice Hall, Englewood Cliffs, New Jersy 07632.

19. Couplin, James,O., "Advance C++ Programming styles and idioms",

Addison-wesley, 1992.

20. Stevens.,AL.,"C++ Database Development" (seconded.), BPB publications,

New Delhi, 1995.

21. Partridge,C., "Modeling the real world: Are classes abstraction are

objects"? Journal of Object-Oriented Programming, Nov.Dec.1994, pp.

39-45.

67

	TH63700001
	TH63700002
	TH63700003
	TH63700004
	TH63700005
	TH63700006
	TH63700007
	TH63700008
	TH63700009
	TH63700010
	TH63700011
	TH63700012
	TH63700013
	TH63700014
	TH63700015
	TH63700016
	TH63700017
	TH63700018
	TH63700019
	TH63700020
	TH63700021
	TH63700022
	TH63700023
	TH63700024
	TH63700025
	TH63700026
	TH63700027
	TH63700028
	TH63700029
	TH63700030
	TH63700031
	TH63700032
	TH63700033
	TH63700034
	TH63700035
	TH63700036
	TH63700037
	TH63700038
	TH63700039
	TH63700040
	TH63700041
	TH63700042
	TH63700043
	TH63700044
	TH63700045
	TH63700046
	TH63700047
	TH63700048
	TH63700049
	TH63700050
	TH63700051
	TH63700052
	TH63700053
	TH63700054
	TH63700055
	TH63700056
	TH63700057
	TH63700058
	TH63700059
	TH63700060
	TH63700061
	TH63700062
	TH63700063
	TH63700064
	TH63700065
	TH63700066
	TH63700067
	TH63700068
	TH63700069
	TH63700070
	TH63700071
	TH63700072
	TH63700073

