
DESIGN OF AN OBJECT-ORIENTED MODEL FOR

INFORMATION SYSTEM

Dissertation submitted to the

Jawaharlal Nehru University
in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

in

COMPUTER SCIENCE & TECHNOLOGY

by

SUNIL KUMAR VERMA

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI -11 0 067
(I NOtA)

JANUARY 1995.

Dedicated to
my

Mother

CERTIFICATE

This is to certify that the dissertation entitled

nDESIGN OF AN OBJECT-ORIENTED MODEL FOR INFORMATION SYSTEMn ,

being submitted by SUNIL KUMAR VERMA to Jawaharlal Nehru

University, New Delhi in partial fulfilment of the

requirements for the award of the degree of MASTER OF

TECHNOLOGY in Computer Science & Technology is a record of

the original work done by him under the supervision of Dr.

C.P. Katti, Asso. Professor, School of Computer and Systems

Sciences, Jawaharlal Nehru University, New Delhi during the

year 1994, monsoon semester.

The results reported in this dissertation have not been

submitted in part or full to any other university or

Institution for the award of any degree or diploma.

Prof. K.K. Bharadwaj
Dean, SC & SS
Jawaharlal Nehru University
New Delhi - (INDIA)
Pin 110067.

Dr. C.P. Katti
Associate Professor,
sc & ss
J.N.U., New Delhi.

ACKNOWLEDGEMENT

I express my humble gratitude towards Dr. C.P

Katti,Associate Professor, School of Computer and Systems

Sciences, Jawaharlal Nehru University, New Delhi who was

always there to guide me to the safe exit in case o! my

crisis and was all the way with me to boost my morale and to

provide his valuable guidance.

I am also highly thankful to Prof. K.K. Bharadwaj, Dean,

School of Computer and Systems Sciences, who took great pains

to provide me with the environment and all the facilities

required for the successful completion of my dissertation.

I also take the pleasure of thanking Prof. P. C. Saxena

and other faculty and staff members as well as my friends and

well wishers who have been directly or indirectly helpful by

providing me the material and moral support during the

continuation of this dissertation.

SUNIL KUMAR VERMA

CONTENTS

1. INTRODUCTION

2. CONCEPTS IN OBJECT-ORIENTED DATABASES(OODB)

3.

2.1

'2 .2

2.3

2.4

2.5

Object

Class

Object-Oriented Properties

Definition of OODB Systems

Merits of Object-Oriented Approach

AN OBJECT-ORIENTED DEVELOPMENT PLATFORM

INFORMATION SYSTEM

3.1

3.2

3.3

3.4

Object-Oriented System Life Cycle

Object-Oriented Analysis (OOA)

Object-Oriented Design (OOD)

Object-Diagram Used in OOD Methodology

3.4.1 Object & Class Layer

3.4.2

3.4.3

3.4.4

3.4.5

Structure Layer

Subject Layer

Attribute Layer

Services Layer

4. CASE STUDY

4.1

4.2

Problem Definition

Object-Diagram for Designing Problem Schema

FOR

1- 5

6-19

7

7

8

16

11

20-36

20

21

2.4

26

26

29

30

31

34

37-46

37

4-0

5. CODING

5.1 Functions of Class Modules

5.2 Programming Environment Used

6. CONCLUSION

BIBLIOGRAPHY

PROGRAM

4-1- 5"4-

41

5"4

55-51

58

(i) -C!-V)

CHAPTER- 1

INTRODUCTION

For the last decade of this century, computers of vastly

greater capabilities have been evolved. The value of

structured design has not changed. Also the as structured

programming appears to £all apart when coding exceeds LOO,OOO

lines. More recently, many design methods have been

proposed, many of them invented to.deal with the perceived

shortcomings of structured design. These all methods are

largely variations upon a similar theme. So most methods can

be classified as one of following.

(i) Top ·down structured design

(ii) Data-driven design

(iii) Object-oriented design

Many software have been developed using Top-Down

structured design method. But this structured design method

does not say anything about the data abstraction and

information hiding. It also does not provide an adequate

manner of dealing with concurrency. Structured design method

is not well suited for designing extremely complex systems.

In the Data-driven method, the structure of a software

system is derived by mapping system inputs to outputs._ As

with structured design, Data-driven design method has been

applied to many complex problems but this method requires

little concern for time-critical events.

The method which I am introducing in my project is

object-oriented design method in which one can model software

systems as collection of cooperating objects. by treating
l

individual objects as instances of a class within a hierarchy

.of classes. Also this method directly reflects the topology

of more recent high order programming languages such as small

talk, Ada and C++.

Information system is not easy to model. The difficulty

involved in modeling is it's complex nature and it's

difficulty to be easily understood fully. The way to handle

this problem is to develop unified framework for the modeling

process such that models can be linked through that framework

in a consistent, coherent way. The object oriented paradigm

offers such a modeling framework. Object oriented design is

the method that leads us to an object-oriented decomposition.

2

By applying object-oriented design method, we create software

that is resilient to change and written with economy of

expressions. I can achieve a greater level of confidence in

the correctness of our software through an intelligent

s:epara-t j-on o£ its stat_e space. Hence fj nal l y, we reduce the

risks of deveioping complex Information systems.

The objective of my dissertation is to design and develop

an object-oriented model for Banking Information System

(BIS) . There are several steps involved in the process of

design and development.

The first step is to study about the basic definitions of

database management systems. This include studying about the

object-oriented methodology and it's properties. The

definitions of all related terms and characteristics are

discussed and elaborated in chapter-2.

The second step is the analysis of the case which is

explained in chapter -3. In the analysis of object-oriented

approach method, all the entities of information system is

taken separately for the purpose of building model. This

includes discussing about the layers, namely;

a) Object & Classlayer

b) Structure layer

c) Subject layer

d) Attribute J.::ayer

e) Services layer

In object & class layer the different objects and class

which exist in the problem domain of the BIS will be defined.

In structure layer, relationships among the objects will be

described. These relationships will be nothing but basic

properties of object-oriented approach. In subject layer,

the overview of the problem domain is represented. This layer

partition's the problem domain into problem subdomains and

also establishes workpackage. Attributes associated' with any

object is shown by attribute layer. In services layer,

function processing upon data will be described. Services

like create, connect, access and release are discussed here.

The idea of introducing message connection in services layer

is just to support this layer. All these layers when

combined, constructs a diagram called object-diagram.

4-

This object-diagram is main building block for the

designing of the problem domain. Object-diagram along with

the definition of my case (i.e. Banking Information System)

is neatly explained and sketched in chapter-4.

Next step is the algorithm for the problem domain. This

algorithm is explained in chapter-S in different modules.

Also brief introduction about the object-oriented programming

language (C++) used in my coding will be given in chapter-S.

I have ended my dissertation by summarizing about all

chapters discussed and have proposed further research and

development work in this area.

5

CHAPTER- 2

CONCEPTS IN OBJECT ORIENTED DATABASES (OODB)

The term object emerged almost independently in various

fields in computer science to refer to notions that were
\

different in their appearance, yet mutually related. All of

these notions were invented to manage the complexity of

software systems in such a way that objects represented

components of a modular units of knowledge representation.

The term object oriented means that we organize software as a

collection of discrete obj ~cts that incorporate both data

structure and behavior. This is in contrast to conventional

programming in which data structure and behavior are only

loosely connected. Object-oriented design methods have

evolved to help developers exploit the expressive power of

object-based. The term object model is a unifying concept in

computer science, applicable not only to programming

languages, but to design of user interfaces, databases,

knowledge bases and even computer architecture. Now I will

define object, class and characteristics which are required

by an object oriented approach.

6

2.1 OBJECT: It is defined as "entities that combine the

properties of procedure and data since they perform

computations. Objects have certain integrity that can not be

violated. An object can only change state, behavior or it can

stand in relation to other objec-ts_ So f j na 11 y we can say

that an object has state, behavior and identity. The

identity is that inherent property of an object which

distinguishes it from all other objects. The term behavior

means how an object acts and reacts, in terms of it's state

changes and message passing. The state of an object is all

the static properties of the object plus the current values

of each of these properties.

2.2 CLASS: A class is a set of objects that share a common

behavior and common structure. An object is an instance of a

class. Classes with no instances are called abstract classes.

The objects in a class share a common semantic purpose, above

and beyond the requirement of common attributes and behavior.

For example although a hut and horse both have a cost and

age, they may belong to different classes. If hut and horse

are regarded as purely financial assets, they may belong to

the same class. If I think that I can paint a hut and feed a

7

horse, they would be modeled as different classes. The

interpretation of semantics depends on the purpose of each

application and is a matter of judgment. Each object 'knows'

its class. Most object-oriented programming languages can

determine an opject's class at run time. An objects class is

an implicit property of the object. Now the question arises

that if objects are the focus of object modeling, why bother

with class? The answer is that by grouping objects into

classes, we abstract a problem.

2.3 OBJECT ORIENTED PROPERTIES :

There are several themes underlying object-oriented

technology. If some of them are not unique to object oriented

systems they are particularly well supported to object

oriented systems.

lil INHERITANCE • Inheritance, is a relation among classes

that allows the definition and implementation of one class to

be based on that of other existing classes. Inheritance is an

important conceptual tool that allows one to construct

software systems from scratch. It is, therefore, natural to

use objects to organize, abstract knowledge so that various

f)

concrete situations can be generated once the relevant

parameter values are supplied. Since 'string' is defined as a

subclass of 'array'-this means that strings will inherit all

the instance var-iables of variables of arrays. So a

relationship among classe-s wherein one class shares the

structure or behavior defined in one (single inheritance) or

more {multiple inheritance) other classes is defined as

inheritance relationship.

(ii) GENERALIZATION : It is a relationship between a class

and one or more refined versions of it. The class being

refined is called superclass and each refined version is

called subclass. Generalization is sometimes called the

'is-a' relationship because each instance of subclass is an

instance of superclass as well.

Generalization and inheritance

are transitive across a arbitrary number of levels . each

subclass not only inherits all the features of its ancesters

but adds its own specific attributes and operations. We use

generalization to refer to the relationship among

classes,while inheritance refers to the mechanism of sharing

9

attributes and operations using the generalization

relationship.

(iii) AGGREGATION ~ Here lower level concepts aggregate as

part of higher level concepts. Aggregation is 'a-part-of '

relation in which objects representing the components of

something are associated with an object representing the

entire assembly. The most important feature of aggregation is

transitivity i. e. if A is part of B and B is part of C, then

A is part of C. Aggregation is also antisymmetric i.e. if A

is part of B then B is not part of A.

Jiyl ASSOCIATION ~ In association lowel level concepts are

associated in a higher level concepts on the basis of some

meaningful connection. It is group of links with common

structure and common semantics. An association describes a .

set of potential links in the same way that a class describes

a set of potential objects.

jyl Polymorphism: It is a concept, according to which a name

may denote objects of many different classes that are related

by some common superclass. Thus the ability of different

to

objects to respond differently to the same message is known

as polymorphism.

(vi) ABSTRACTION: The word · abstraction arises from a

reco:gni t i o.n of similarities be·tween certain objects,

situation or processes in the real world, and the decision to

concentrate upon these similarities and to 'ignore for the

time being the differences. An abstraction denotes the

essential characteristics of an object that distinguishes it

from all other kinds of objects and thus provide crisply

defined conceptual boundaries, relative to the perspective of

the viewer.

An abstraction focuses on the outside view of an

object, and so serves to separate an object's essential

behavior from it's implementation. All abstractions have

static as well as dynamic properties. For example, a file

object takes up a certain amount of space on a particular

memory device; it has a name, and it has contents. These are

all static properties. The value of each of these properties

is dynamic, relative to the lifetime of the object i.e. a

file object may grow in size, it's name may change.

11

Abstraction must always be for some purpose, because the

purpose determines what is important and what is not

important. Many different abstraction of some thing are

possible, depending on the purpose for which they are made.

All abstractions are incomplete and inaccurate. All human

words and language are abstractions-incomplete description of

the real world. This does not destroy their usefulness. The

purpose of an abstraction is to limit the universe so we can

do things. So in building object oriented model we do not

search for absolute truth but for adequacy for some purpose.

There is no single correct model of a situation, only

adequate and inadequate ones.

(vii) ENCAPSULATION:: Abstraction and encapsulation are

complementary concepts. Abstraction focuses upon the outside

view of an object, and encapsulation which is also known as

information hiding, prevents clients from seeing it's inside

view, where the behavior of the abstraction is implemented.

For abstraction to work, implementations must be

encapsulated. It means that each class must have two parts

i.e. an interface and an implementation. The interface of a

12

class captures only it's outside view, encompassing our

·abstraction of the behavior common to all instances of the

class. The implementation of class comprises the

representation of the abstraction as well as the mechanisms

that achieve the desired behavior.

that

Intelligent

are likely

encapsulation

to change.

localizes design decisions

To summarize, we define

encapsulation as it is the process of hiding all of the

details of an object that do not contribute to it's essential

characteristics. Here hiding is a relative concept; what is

hidden at one level of abstraction may represent the outside

view at another level of abstraction.

(viii) MODULARITY ~ In object oriented languages class and

objects form the logical structure of a system. We place

these abstractions in modules to produce the systems physical

architecture. For large applications where classes are many/

the use of modules is essential to help complexity. The inner

workings of an module are expressed in terms of the module 1 S

interactions with other modules. System details that are

13

likely to change independently should be the secrets of

separate modules. Every data structure is private to one

module, . it may be directly accessed by one or more programs

within the module but not by programs outside the module.

Any other program that requires information stored in a

module's data structures must obtain it by calling module

programs. Thus modularity is the property of a system that

has been decomposed into a set of cohesive and loosely

coupled modules.

~ TYPING :- It has come from the theory of abstract data

types. It is defined as enforcement of the class of an

object, such that objects of different types may not be

interchanged or if they are interchanged, it must be in

restricted manner. An object oriented programming language

may be untyped, strongly typed or weak typed. A strongly

typed language is one in which all expressions are guaranteed

to be type-consistent. If we don't do type checking, program

may crash at runtime in unusual way. Also by declaring type,

it helps in program documentation and compiler can generate

most efficient object code. There is static typing which

14-

means that the types of .. all variables and expressions are

fixed at the time of compilation. Opposite to static typing

there is dynamic typing which means that the types of all

variables and expressions are not known until runtime.

.1lU. PERSISTENCE . . By defining persistence in object

model, it gives idea to the object oriented databases. In

object oriented databases, apart from the persistence of the

state of the object, class must also transcend any individual

program so that any program interprets this saved state in

same way. For any programming language to persist it must

include transient results in expression evaluation, local

variables in procedure activations, own global variables.

Apart from these, object oriented programming languages also

includes data that exists between execution of a program,

between various versions of a program for showing

persistence. To summarize all above we can define persistence

as the property of an object that continues to exist even

after it's creator stop existing.

J1QJ_ CONCURRENCY: This emphasizes upon process abstraction

15

and synchronization. Each object may represent a process

abstraction. Such objects may be called active. So we can

say that concurrency is the property that distinguishes an

active object from one that is not active. Once we apply

concurrency into a system, we must· see how a act.ive object..s,

synchronize their activities with one another and objects

which are sequential. For example, if two objects try to send

messages to a third object, we must be certain to use some

means of mutual exclusion, so that the state of the object

being acted upon is not corrupted when both active objects

update their state simultaneously. My example includes the

concepts of abstraction, encapsulation and concurrency also.

2.4 Definition of Object-Oriented Database Management System

(OODBMS) :

In OODBMS, the basic unit is object-class. For this

encapsulated combinations of data and procedures must be

taken together as an integrated unit. An object oriented

database system should satisfy two conditions. The first is

that it must be a database management system and the second

16

is that it must be an object-oriented system. The first

criteria i.e. database . management system is satisfied, with

the features of _cuncurrency, persistence, secondary storage,

data reliability transaction management and schema

modification Now .the second criteria i.e~ obj ec.t oriented

system (the work of my project) is satisfied by the

properties discussed so far

abstraction, type class, object

generalization, aggregation.

i.e. encapsulation, data

inheritance, polymorphism,

2.5 MERITS OF OBJECT-ORIENTED APPROACH

1. The main

allows systems

idea behind

life cycle

using this approach is

to use integrated and

that it

coherent

structure and behavior. Other modeling concepts do not permit

this in a natural way.

2. The object -oriented approach eliminates the

transformations that currently occur from analysis and

specification to design and construction. Say for example

from entity relationship modeling to design and construction

of a relational database where tables are complex

17

transformations of entities. In the object-oriented

development, the same objects are considered throughout the

complete system development cycle and no mapping is done from

the type of object to another, also, such objects will have

cl_ear relatjonshjp to real life entity.

3 . As described above that objects have relationship with

real world entity. So in general they are not static, hence

flexibility has to be provided. Object oriented approach

allows the same object to be viewed at different levels of

abstraction.

4. Normally the interface between programming and database

languages is crude since each language provides a different

type system. Moreover, interfaces are often designed as an

afterthought. This may create complexity. But in object

oriented method we can overcome such type of complexities.

Another merits of object-oriented approach include the

following :

a) It is a full life-cycle methodology from external design

to code generation.

18

b) It exploits the expressive power of all object-based and

object-oriented programming languages.

c) It reduces development risk.

d) This approa-ch encour_ag_es the reuse o£ software

components.

CHAPTER- 3

AN OBJECT ORIENTED DEVELOPMENT PLATFORM FOR

INFORMATION SYSTEM

(3.~) OBJECT-ORIENTED SYSTEM LIFE CYCLE:

The sy:s:t.em 1 if e cycle must be rep.res.e=n-t e.d in a

realistic way to provide intellectual and management control

of the system's development.

The system life cycle models has led to the description

of spiral models for system development. The spiral is

flexible arrangement of sequential and concurrent activities

with well defined point of progress review and approval. The

spiral model defines a set of limited, time phased activity

loops to manage a system development. Each activity loop is

initiated and managed dynamically on the basis of the outcome

of previous loops. The activity loop in the spiral can be

sequential or concurrent and can be one of three types;

investigation, specification or implementation.

Each loop, regardless of type has following steps:

Planning the activity objectives, statement of work

20

and schedules, performance of the work needed to achieve the

activity objective, evaluation to determine if the objectives

are met and to plan for next activities. Activity loops are

performed in the spiral until the system development is

completed.

This spiral model provides the flexibility to plan and

record system development activities in a controlled, user

defined patterns. The spiral system life cycle is a natural

one for object-oriented system development. The spiral model

supports flexible patterns of object oriented analysis (OOA},

object oriented design (OOD) and object oriented

implementation and testing (OOIT) activity loops during a

system development.

(3.2) OBJECT ORIENTED ANALYSIS: (OOA)

The goal of OOA is to achieve an adequate understanding

of the problem domain in order to describe the requirements

of the desired system. This is the most critical phase of

system development. Most system development projects fail

because of inadequate understanding of problem requirements.

21 ~~~'
~~ o\
Ill -·-
#! LibnuY ~ ...
·V.
'/

711-5516

Many times, even when a system is completely developed, it

does not solve the target problem. Thus, OOA explains about

close cooperation between the system developer and thesystem

customer.

The approach which is used here to develop OOA

method consists of five activities as listed here.

(a) Finding class and obiect: Information gathering

techniques is used here to get an in-depth understanding of

the problem domain. Thus understanding is used here to

specify the required objects and classes of the desired

system. Generic classes with no objects are just termed a

class.

(b) Identifying structures: Hierarchical structures are

defined here based on the relationships among classes. A

generalization-specialization structure and the whole part

structure shows the generalization and the aggregation

relationships. Inheritance is provided here through the

generalization specification structure.

(c) Identifying subject:- There should exist some sort of

22

real world description in order to derive objects. Objects

can be identified by looking the roles, locations,

organizational units and the like. The approach, I have

proposed here is based on generalized process modeling which

assumes that information sys.tem exists for the regulation of

resource.s of one or more types. Thus, information system

maintains the information about the state of such resources.

So I have started object identification with the assumption

that resource identities, which we call primary entities,

have been identified. Also I assume that, I know how to

regulate the entities and the state information required to

manage their behavior.

of real-world objects.

These entities are conceptual models

jgl Defining objects and attributes:

To define objects, we start with the idea that each

resource should correspond to an object. This guarantees that

each object which will be finally implemented in the computer

bears a direct relationship to a real-life entity i.e. a

resource. So I have found out the relevant attributes of

such objects that characterize their state.

23

(e) Defining Services: Here interaction between objects by

means of services is defined along with the message

connections that support the services. Object oriented

approach requires the approach thatclasses are encapsulated

here and we can access data only through class met..hods.

Thus 1 there are methods to process inputs to classes coming

from entities external to the computerized portion of the

system that will change some attributes in the class 1 some

will produce outputs defined by the requirements and others

will provide data needed by another class to execute a given

method. This concept introduces the idea of object (class)

collaboration whereby a class requires a specific service

from another class. Object collaboration implies the passing

of data and/or control i.e., messages, from one class to

another. Object collaboration is done here by object diagram.

(3. 3) OBJECT ORIENTED DESIGN (O.O.D.)

The goal of object-oriented design is to transform the

system models of OOA into system specifications in the

solution domain. Designing is a creative attempt in which

trade off must be made to take advantage of opportunities and

24

to deal with constraints of the implementation environment.

The following four steps are to be performed iteratively and

concurrently in a system development spiral.

(a) Identify the classes and objects at a given level of

abstraction:- This step emphasizes the discovery of

information from the application domain in order to identify

potential classes and objects. Candidate classes and objects

are proposed and analyzed.

(b) Identify the semantics of these classes and objects:

Considerable effort is spent here to understand the semantics

of each class and object in the system. The design templates

for classes and objects are started in this step.

(c) Identify the relationships among these classes and

objects:- The relationships (e.g. generalization, aggregation

and association) among classes and objects are discovered,

analyzed and represented in the design templates. This is a

highly creative exercise that determines the structure of the

system.

(d) Implement these classes and objects:- The final design

25

decisions are made to complete the specification of these

classes and objects. Additional design templates are defined

here. In the module template, classes and objects are

allocated to physical modules for implementation. Required

processes are defined in the process template and is assigned

to processors in the processor template.

(3.4) Ob1ect Diagram Used in~~ Design for Information System

Object diagram is the outcome of an object oriented

analysis. In problem domain of the information system,

object diagram contains five different layers of the objects,

similar to the five activities described in the object

oriented analysis

1. Object & Class Layer

2. Structure Layer

3. Subject Layer

4. Attribute Layer

5. Services Layer

Now I will describe each of these layers separately.

(3.4.1) Object~ Class Layer~

The object & class layer gives an abstraction in a

26

problem domaion, reflecting the capabilities of a system to

keep information about it, and interact with it or perform

the both. In a class, we do the description of one or more

objects with a uniform set of attributes and services. It

also includes description of how to create new objects in

the class.

The class & object layer is represented by the bold ro unded

rectangle, divided into horizontal section (see fig. (14)).

Certain object oriented analysis connections map an object to

another. Other OOA connections may map an class to another

class or there may be the case that some OOA connections may

map an object to a class. In object & class layer, it's name

should describe a single object within the class. We give

name of an object & class, a noun or adjective and noun which

are taken from the standard vocabulary. Fig. (lit) , Shows a

class and object symbol as a class with one or more objects

in the class. Now we consider upon the things which are

taken into consideration while taking objects. Firstly we

see that does an object need to provide some behavior. Next

we think about the classes with only one object. Also we see

that whether a class with just a single object really does

27

Class &Object

Class &Object

'---------------~

I--'
L/ Class & Object symbol

Fig. 1 (a)
Picturing some nUinber of o b jeds within a class

Generalization

)___
I

Specialization 1

Generalization- Specialization notation Fig. 2 (a)
(is- a. relation)

Whole

f ~1)

I
Specialization 2

Part: 2

Whole -part structure notation (1. -put-of relation)

Fi~.2(b)

Z8

Fig. 1 (b)

reflect the problem domain. Thus discussion about object &

class layer concludes with the investigation of problem

domain for an initial set of class and objects.

(3.4.2) Structure Layer :

This layer is defined in two ways. First one is that it

reflects problem domain and second is that it shows the

system's responsibility. Here we are using this layer to

describe about Generalization-specialization structure and

whole part structure both. Generalization- specialization is

nothing but distinguishing betwen the classes. The property

of inheritence comes in the generalization-specialization

structure. On the other hand the whole part structure

represents the aggregation property. Each class and object

of object & class layer examines for generalization

specialization structure and whole part structure in the

structure layer.

The notation for generalization-specialization structure

layer is shown in fig. (2a) . Here generalization class is

shown at the top and the specialization classes below, with

lines drawn between them. In the figure, a semicircle is

shown to distinguish structure with class. We place

2q

generalization at top and sepcialization at bottom only for

the easyness t,o understand. . The name of the specialization

is the name of generalization :followed by its qualifying

name. The criteria for making g~neralization-specialization
. .. -
-~· -·' --

structure layer is that, whE;ther l.t is reflecting the problem

domain or not. We do not tlse g~neralization-specializati~n

structure just for the sake of extracting out a common

attribute.

Whole part or aggregation is ',one of the basic methods of

organizing things. The notation ~or whole part structure is

shown in fig. {2b) . In this layer '.whole object { of an object

and class layer) is at the top arid then a part of object {of

an object & class layer) below, ·,with a line drawn between

them. A triangle shown in the figu;re distinguishes objects as

forming a whole part structure. when we take various
'

combinations of generalization_;specialization structure

layer, or whole part structure layer or both we get the

multiple structure layer.

(3.4.3) SUBJECT LAYER!

This layer gives an overview of a larger OOA model. The

term subject is a mechanism for supervising us through a

large and complex model.The main basis for the identification

of subject layer is problem domain complexity. This layer

presents the overall model from an even higher perspective.

Also the subject layer helps me in reviewing the object model

and system's responsibility. While selecting the subject,

what we do is to promote the uppermost class in each

structure upwards to a subject.Then promote the each class &
I

object which is not in a structure, upward to a subject. In

subject layer as shown in Fig. (3),we draw each subject as a

simple rectangular box, with a subject name and number

inside. A class & object may be in more than one subject.

Also one subject may contain other subjects. For small

information system model it is not at all necessary to

introduce this layer. But for larger information system (The

case which I have taken) this layer is necessary to partition

the problem domain into problem subdomains, and also

establishes workpackage. So for larger information system it

becomes useful to introduce subject layer.

(3.4.4) Attribute Laver~

We can define the term attribute as some data (or

31

1

1

1. subject 1 I
2.subjeot: 2 J

Fig. 3(a) subject notation, collapsed

1. subject1

class & object 1
class & object 2

2.subject:2

class &object3
class & object 4

Fig. 3 (b) sub jectnotaion ,pe.rlioally expanded

1 2

1 2

Fig . 3(c) subject notaion , expanded

Class & Object

Attribute 1
Attribute 2

Attribute Notation Fig .(4)

Class &Object

Service 1
Service 2

Service Notation Fis .(S)

32

2

Class

Attribute 1
Attribute 2

Class

Service 1
Service 2

2

information) for which each object in a class has it's own

value. As shown in the fig. (4) this layer is placed in the

centre section of the class & object and class symbol.

If some object has only one attribute then we are

confused that whether it is attribute or address of the

object. Because every object and class has one address. So

it will be better and simplified if one object has multiple

attributes. Also object must have value for each attribute.

While analyzing we avoid merely derived results. For

example, say that if 'client's age' in a system is given then

it is not necessary to derive client's date of birth.

Derived result when found directly complicate the picture.

So we capture attributes for which we can reach to useful

derived results.

For placing an attribute in the object diagram we apply

the rule that for classes within a Generalization-

specialization

uppermost point

structure,

in the

I put

structure

an attribute at the

in which it remains

applicable to each of it's specializations. If an attribute

is applicable in entire level of specializations, then I move

33

it up to the corresponding generalization. Again when I find

the situation where an attribute sometimes has a meaning but

sometimes it's value is not meaningful then I recheck about

the generalization-specialization structure and correct it in

accordance with that each attribute must have meaningful

value. Also while placing attributes in the object diagram I

check each attribute whether it has single value or repeating

values. If any attribute has repeating value, I revisit to

the object and class layer and get it corrected by making an

additional object & class. These were the various ways of

putting an attribute layer in the object diagram :

{3.4.5) Services Layer :

The term service is defined as a specific behavior that

an object is responsible for exhibiting. So this layer

provides a set of operations that can be requested by other

objects. The other issue while defining service layer is to

define the necessary communication between objects. Such

commands and requests will be the nature of human interaction

with a system. So this interacion phenomenon is used between

parts of the OOA model.

34

In information system, every data processing system must

have "data" and "processing". In attribute layer we disussed

about the data in the system. Here in this layer f'unction

processing upon data is described. Fig. 5 shows the

service layer in which services are placed in the bot tom
~

section of the object symbol. There are generally four

services called create, connect, access and release. Create

service creates and initializes a new object in a class. The

connect services, connects or disconnects an object with

another. The third service i.e. access services gets or sets

the attribute values of an object. The last service i.e.

release service, deletes an object. There may be also some

other complex services like calculate and monitor.

In designing by object oriented approach, the service

layer includes 'message connections' also. Message

connection is defined to reflect both the problem domain and

the system's responsibilities. In this connection is made

with two objects (or class), in which one is 'sender' who

sends a message to a 'receiver', who gets some processing

done. We give three rules to identify needed message

connections. The first one is that what other objects does it

need services from ? We put an arrow to each of · those

objects. The second rule is that what other objects need one

of it's services. We put an arrow from each of those objects

to the one under consideration. The last rule is that follow

each message connection to the next object and repeat the

previous two rules. The idea behind introducing message

connection is just to support the service layer.

In designing object oriented model for information

system we make object diagram with the help of these five

layers and then go for coding in object oriented programming

language.

36

CHAPTER- 4

CASE STUDY

4 .1 PROBLEM DEFINITION :- Some bank X wants to develop a

prototype system for processing and maintaining its

transactions. This constructed prototype considers all of

its customers to be of the same type. There are only four

types of transactions possible. These transactions are:-

(i) deposit

(ii) withdrawal

(iii) opening of account

(iv) Closing of account.

These above four transactions have to be logged

onto files, and their effect should reflect on the customer's

balance and on the Cash-on-hand of the bank. The most

important criteria of the prototype is that it should not

loose it's integrity if the power fails while it is rtinning.

Now I want to develop a banking information system (BIS)

which satisfies above requirements. The guidelines will be

as follows:-

(a) On running BIS it should open the customer's file

"CUSTOM.DAT". If the file does not exist, then it must

create one by initializing it.

(b) After opening of the customer's file, it should load the

names of all the customers into the memory, along with their

account numbers. Now the name of each customer acts as the

key field to access the account numbers. For easiness, I

have assumed that same name is not given to two customers.

(c) Once CUSTOM.DAT is loaded, BIS opens today's transaction

file. The name of the transaction file also contains today's

date.

(d) After starting all of the above processes BIS will

display a menu asking for the type of transaction the user

wants. These required actions on each transaction are given

here:-

(i) Deposit Firstly ask for customer name. If customer does n

exist, issue an error message and return. Else, ask for the

amount to be deposited. With the successful entry of both

(i.e. name and amount) , log the data onto the transaction

38

file, and update CUSTOM.DAT and the cash-on-hand.

(ii) Withdrawal:- We do same process in this as was done in

deposit. One more process is done here that customer cannot

withdraw more than what he has in his balance.

(iii) Opening of Account:- In this I open account of those

who have no any account already. Also opening balance is

given at the time of opening the account.

(iv) Closing of Account:- In this, I delete customer's

account number and name. Here his rest balance is returned to

him. This should be reflected on the cash--on-hand.

here:-

So the information contained in CUSTOM.DAT is as given

Cash On Hand

Number of customers

customer Records

Customer name

Account number

Balance

Information contained in the transaction file will be:-

39

Number of Transactions

Transaction records

Transaction number

Transaction type

Customer Name

Amount of Transaction (deposit, withdrawal etc.)

These were the all details regarding BIS and it's

workings. Now I have to develop above BIS definition in C++.

4.2 OBJECT DIAGRAM FOR DESIGNING PROBLEM SCHEMA

All mentioned guidelines in above problem definition is

now converted into the object diagram. Each layers (i.e.

Object and Class layer, Structure layer, Subject layer,

Attribute layer and Services layer) are drawn separately, in

figures (7 - 11) shown here.These are combined all together

to construct object diagram, which is also drawn in figure(~

shown here.

4-0

BANK Transaction

Deposit Withdraw! Opening -of- Ace. Closing -of- Ace.

Fig 1.7) Objectlayer for BIS

41

BANK

+ 'a-paM ~latio n

Transaction

Transaction

~ 'is:-e.' relation

I I J I
Deposit: Withdraw! Opening-of-Ace. Clos:ing-of-Aoc.

./

Fig .(8) Structure Layer for BIS

4-2.

1 1
BANK

+
Transaction

1 1

I
2 ~ 2

I I l l
Deposit: """ Wit:hdrawl Opening-of-Ace . Closing-of-Ace.

........
2 2

Fig .(9) Subject layer for BIS

43

Deposit:

Customer-Name
Accounhla.xne
Balance

BANK

Name-of-Bank
N a-of-customer
Cash-on-band

Withdmwl

Customer-Name
Accounhla.xne
Balance

Tmnsaction

Date-of--bansaction
Tmnsaction-no.
N a:me-of-Transaction File

Opening-of-Ace. Closing-of-Ace.

Customer-Name Customer-Name

Accounhla.:me Accounhla.me

Balance Balance

Fig .(10) At:tribui2layer for BIS

44

BANK Transaction
....,

Bank-Services Crea te-t:ransaction-file

Deposit Witbd.tawl Opening-of-Ace. Closing-of-Ace.

Deposit:-Money Withd.Iaw-money Open-Account Close-Account

Fig .(11) Services layer for BIS

BANK

Name -of- Bank
No-of-CustomeiS
Cash- on- Hand

Bank-services

+
Txansaction

Daile- of -Transaction
Txansaction-No.
N arne- of-Transaction File

Cree. ile-Transaction File

~
I I J I

Deposit W i t:hdra.wl Opennig-of-Acc. Closing-of-Ace.

Custome~ame Customer-Name Customer-Name Customer-Name
Account-No. Account-No. Account-No. Account-No.
Bale.DCe Balance Balance Balance

Deposit-Money wit:hdra.w-Money Open-Account Close-Account

F'~g (12) Object DiacJun for BIS

CHAPTER- 5

CODING

{5.1) FUNCTIONS OF CLASS MODULES

As I have defined my problem, so I have developed some of the

class modules accordingly. These modules have been used in my

program. These modules are capable of performing some or all

the functions mentioned here. Following are the modules used

(i) Module List:

1. Append a customer in the linked list

2. Delete a customer from the linked list

3. to search a customer in the linked list

List of node contains name of the customer and account

number. For that the structure I have used is :

struct node
{
char name[25];
int accnumber;
struct node *next;
} i

(ii) Module Customer:-

4-7

1. Read customer name

2. Set account no.=no where no is passed from outside of the

module.

(:iii) Module CustFile:

1. Checks if the customer.dat file exists or not if

file does not exists then create it.

2. Open customer.dat file for reading

3. Close customer.dat file

4. Read control record

5. Read record for account

accno supplied from outside.

6. Write the control record

number accno, where

7. Write the record at the end of customer. dat, for

that search for record whose account number is less than one to

the account number of records to be

written on the customer.dat file.

The customer record contains Name of the customer,

Account Number, Balance and one flag. For that the structure

4-8

used is

struct cust rec
{
char name[25]
int accno;
float balance;
int delflag;
} ;

The control record contains cash-on-hand, number of

customers and pointer to next customer record. For that the

structure used is:

struct cntl rec
{
float cash-on-hand;
int no-of-cust;
int next accno;
} ; -

liYl Module load list:

1. It uses, module llist and module custfile.

·2. It returns new node of customer record with

initialization of *lp.

___ N_a_m_e ___ laccnumber I __ ' 1--> NULL

So it loads data from file customer.dat to linked list

and returns to header as first.

lYl Module Txn file:-

1. Uses module customer

2. If transaction file does not exist (fnamet) open it,

if already opened, return the total no. of transactions.

3. Open the transaction file fnamet for reading

4. Close the transaction file

5. Read the transaction record for the supplied

account number and return the transaction record.

6. Read the control of transaction record and return

the transaction control record.

7. Go to the last of the transaction record and return

the last transaction record.

8. Write to transaction control record

9. Write the transaction record file

10. Get commit flag for crash recovery

11. Get type of transaction

The translation record contains transaction type,

50

customer name and amount. The transaction control records

contains number of transaction and commitflag for crash

recovery.

Following is the structure used for transaction record:

struct TxnRec
_{
int transtype;
char custname[20];
float amount;
};'

For the transaction control record, following structure is

used:

struct TxnCntl
{
int no of trans;
int commitflag;
} i

lYil Module Account:

1. It uses module loadlist and module TxnFile

2. Read amount in Transaction record.

3. Deposits the amount into the customer's account. It checks

that amount deposited is not negative and customer exists

in the file (Transaction type=l)

4. This function withdraws the amount from the customer's

account. It checks whether cus-tomer exits in the file and the

amount to be withdrawn is not more than customer's balance.

(transaction type =2)

5. It opens account (new account), if customer already does

not exists. (transaction type-3)

6. It closes the customer account, it checks whether customer

already exists in the file . It tells to customer his net

balance (Transaction type=4.)

(vii) Module Menu:-

1. Uses the public account

2. It display main menu on the screen and accepts options,

then according to the option, execute member function of

module account.

(viii) Main Module:-

It calls module menu. If the commitflag=O then

customer. Bak is correct copy, so copy customer. Bak to

52.

customer.dat, last transaction is automatically redone.

If commitflag=1 then transaction is done in

customer.dat but might not have been done in customer.bak. So

copy customer.dat to costomer.bak

RUNNING OF THB PROGRAM :

When I run the main program, following message will come:

BIS ••

1. Deposit

2. Withdraw

3. Open New Account

4. Close Account

5. Press any other key to quit

Enter options (1 .•• 5)

Now the system is waiting for the input. If '1' is

pressed the system will go into "Deposit". If '2' is pressed

the system will go to the "Withdraw",if '3' is pressed then

it goes to "Open Account", if '4' is pressed then "Close

Account" and lastly if any other key is pressed the system

will quit.

Depending on the input the internal functions will be

accomplished as already discussed in different modules.

{ 5 • 2) ., PROGRAMMING ENVIRONMENT USED .!.

The use of object-oriented design is not limited to any

one particular language. Here, we can not ignore the details

of coding becaue ultimately our software will be expressed in

some language. Some of the languages which satisfies the

properties of object-oriented design approach are Smalltalk,

Ada, Object Pascal and C++. The augmentation of pascal with

object-oriented concepts has resulted in the language object

pascal and Ada. The currently popular OOP language have

combined to advantages of structured programming with the

innovative concepts of object orientation. C++ and objective

C are enhanced versions of C with object oriented features.

Even the artificial intelligence language lisp has object

oriented versions in the languages LOOPS and CLOS.

Here in my coding I have used C++ as object -oriented

programming language.

.64-

CHAPTER- 6

CONCLUSION

The object-oriented database systems are getting a lot of

attention from various fields. Due to the large complexity-of

this field', it is no surprise that there will be continu.ous

discussion about the features of object-oriented database

systems. The work carried out in my dissertation work is just

a snapshot in object-oriented system development methods. As

discussed throughout the dissertation, we can say that

object-oriented programming, object-oriented database

systems, object oriented design and object-oriented analysis

have reached a level of some maturity. In may case real

object-oriented system has been analyzed, designed and coded.

While summarizing the discussion, the first question

arises whether object -oriented concepts are answer to the

many problems we face in developing system? I find that

object orientation is not solution to all problems but it is

new way of thinking about systems. Fresh insights are gained

by looking at old problems in new ways, So, object oriented

method has provided new solution approach for such problems

55

like reusability, concurrency .. Also one question arises that

the problem case (i.e. information system) which I have taken

is best analyzed by object oriented method or not. I find

that based on the requirements and taking into the

consideration of the merits of object-oriented method, it ;Ls

obvious that one should go for object-oriented approach.

However it remains a very interesting question that deserves

further research attention.

Now we conclude that the method presented in my work,

provides a procedure for identifying objects and classes. How

these classes and objects are related with each other is

structured. For simplifying our problem case I have divided

the whole problem in different sections which are termed as

subjects. Procedures are also given for identifying

attributes and operations. Specifically our method has used

object diagram to represent the model. Our model has also

captured the user's view of a system and

object.

reusability of

While doing the project what I found risky in design is

the risk of system performance and design start-up

56

.difficulty. Origin of system performance risk comes from·

object-oriented programming language and object-oriented

database system in relation to traditional programming

languages and database systems. Currently these

implementation a:teas may preclude the use of object

orientation in certain applications that demand high

performance. Secondly the start-up difficulty may be the

barrier for adopting this method. This start-up difficulty

includes time and human stress. Because usually if some

developer is using a particular object-oriented programming

language for the first time, he has no established base of

software. So he starts from scratch, how to interface his

object orientations with existing non-object oriented ones,

as I also felt through out the project work.

Last but not least I can say that our current object

oriented system development methods have revolutionary

potential. However, important deficiencies, theoretical and

practical, may hamper widespread use of object -oriented

system development methods until they are remedied. So much

additional research is needed to support the complete object

oriented system life cycle.

57

BIBLIOGRAPHY

1. B. Mayer, - Object-Oriented Software Construction, Prentice
Hall, New York, 1988.

2. Brehm, B. (1988) -A Siral Model of Software Development and
Enhancement, IEEE Computer 21(5).

3. Booch, Grady,- "Object-Oriented Development"~IEEE
Transactions on Software Engineering, February 1986.

4. Cardelli, L., and Wegner, P. (1985) .-On Understanding Types,
Data Abstraction, and Polymorphisom, : ACM Commuting Surveys
17(4).

5. Champeaux, Dennis De,-Toward an Object-Oriented Software
Development Process HP Lab report HPL-92-149, Nov.-92.

6. Davis, G.B. and Olsm, M.H.,- Management Information Systems :
Conceptual Foundations, Structure, and Development, (2nd ed),
McGraw-Hill, New York, 1985.

7. Dickson, G.W. and Wetherbe, J.C.,-The Management of
Information Systems, McGraw-Hill, New York, 1985.

8. Diebold, J., -"Information Resource Management
Challenge," Infosystems, Vol. 26, No. 6, June 1979.

The next

9. Jalote, Pankaj,-"Functional Refinement and Nested Objects for
Object-Oriented Design"-IEEE Transactions on Software
Engineering, March 1989.

10. Karl Lieberherr,-"Formal Foundations for Object-Oriented Data
Modelling,"-IEEE Transaction on Knowledge and Data
Engineering, Vol. 5{3), June 1993.

11. Micallef, J. -April/May 1988: Encapsulation, Reusability, and
Extensibility in Object-Oriented Programming Languages :
Journal of Object-Oriented Programming Vol. 1{1).

12. Rainer Unland Gunter Schlageter-Object-Oriented Database
Systems : Concepts & Perspectives.

13. Rambaugh, J., Blaha, M., Premerlani, W., Eddy, F., and
Loresen, W. {1991) .- "Object-Oriented Modeling and Design" -
Prentice-Hall, Englewood Cliffs, NJ.

14. Richard Baskervilie Information System Security Design
Methods Implementation for Information System Development -
ACM Computing Surveys, Vol. 25, No. 4, Dec. 93.

15. Robson, D. - August 1981
Byte Vol. 6(8).

Object-Oriented Software Systems-

16. Salvatore T. March and Young-Gul Kim : Information Resource
Management Intergrating the Process - DATABASE - Summer 92.

17. Saunders, J. - March/April 1989 : A Survey of Object-Oriented
Programming Languages Journal of Object-Oriented
Programming Vol. 1(6).

18. S.C. Bailin, - An Object-Oriented Requirements Specification
Method, Commun. ACM 608-623 (1989).

19. Shdaer, S., and Mellor, S. (1988). - "Object-Oriented Systems
Analysis" - Prentice-Hall, Englewood Cliffs, NJ.

59

20. Smith J., and Smith, D. -Database Abstractions :Aggregation
and Generalization. ACM Transactions on Database Systems
Vol. 2(2}.

21. Unland, R. and Schlageter, G. "An ·Object-Oriented
Programming Environment for Advanced Database Applications,"
Journal of Object-Oriened Programming, May/June 1989.

22. Ward, P. (1989) "How to Integrate Object-Orientation with
structured Analysis and Design," - IEEE Software 8(1).

23. Wirfs-Brock, R., and Johnson, R. (1990) - "Surveying Current
Research in Object-Oriented Design," Communications of the
ACM 33(9).

60

PROGRAM

include <dos.h>

include <string.h>
include <sys\stat.h>
include <iO.h>
include <stdio.h>
include <iostream.h>
include <process.h>
include <time.h>
include <Stdlib.h>

Struct node
{
char name[25];
int accnurnber;
struct node *next;
} ;

Class llist
{

protected:
struct node *first, *temp,*forw,*prev;

public:

'
void append (struct node*};

II TO APPEND A CUSTOMER IN THE LINKED LIST.

void delnode (char *};

II TO DELETE A CUSTOMER FROM THE LINKED LIST.

int search (Char *};

II TO SEARCH A CUSTOMER IN THE LINKED LIST

}

Void llist ::append (struct node *a)
{
temp = first;
while (temp-> next != NULL)

void

temp = temp-> next;
a-> next = NULL;
temp-> next = a;

} ;

llist: :delnode (char string[])
{
forw = first;
prev = first;
while (forw != NULL)
if (strcmp (forw -> name, string))

{

}
else

{

~ ~

prev = forw;
forw forw -> next;

prev -> next = forw -> next;
delete (forw) ;
return;

int llist:: search (char string [25])
{

temp = first;
do

{
if (strcmp (temp-> name, string))

temp = temp -> next;
else

}
return (temp-> accnumber);

while (temp
return (-1) ;

} ;

! = NULL);

class customer

{
protected:
char ccustname[25];
int accno;

public:
void getcustomer()

{ cin >> custname; };

void setaccno (int no)
{accno =no ; };

} ;

struct cust rec
{
char Name [25] ;
int AccNo;
Float Balance;
int delflag;

} ;

struct cntl rec
{
float cash on hand;
int no_of_cust;
int next_accno;

} i

Class CustFile

{
protected:
struct cust rec crec;

., struct cntl-rec ccntl;
FILE *fp ;
char fname [25] ;

public:
CustFile ();
void fileopen();
void fileclose () ;
cntl_rec readcntl(};

(iii)

} ;

cust rec readrec (int);
void-writecntl();
vied writerec (int) ;
-CustFile ()

// DESTRUCTOR FO~LOSING THE CUSTOMER FILE

{
fileclose();

}

CustFile:: CustFile()

//THIS CONSTRUCTOR CHECKS WHETHER
//CUSTOMER. DAT EXISTS OR NOT IF FILE DOES

//NOT EXIST THEN CREATE IT.

{
strcpy (fnarne,"custorner.dat");
if (access(fnarne, 00) != 0)

{

}

} ;

cout <<"\n Custfile not found creating new ... \n"
fp= fopen(fnarne,"w+") ;
ccntl.cash on hand = 1000 ;
ccntl.no of cust 0;
ccntl.next accno = 0;
writecntl (f;
fileclose();

void CustFile:: fileopen{)
{fp= fopen("custorner.dat", "r+") ; } ;

void CustFile:: fileclose{)

{ fclose (fp);};

cntl rec CustFile:: readcntl()

{

cntl rec cntl;
fseek (fp,O,O);

(i y)

}

fread (&cntl, sizeof (struct cntl_rec),1,fp);
return cntl;

cust rec CUstFile:: readrec (int accno)
{

cust_rec rec;

fseek (fp, sizeof (cntl_rec),O);
fseek (fp, (accno-1) * sizeof (cust ·rec) ,1);
fread (&rec, sizeof (cust_rec)_,l,fp);
return rec;

} i

void CUstFile:: writecntl()
{
fseak(fp,O,O);
fwrite(&ccntl, sizeof (cntl_rec),l,fp);

} i
void CustFile:: writerec (int accno)

{
fseek (fp, sizeof (cntl_rec) ,0);
fssek (fp, (accno-1)*sizeof (cust rec) ,1);
fwrite (&crec,sizeof (cust rec), i, fp);

} ; -

class loadlist: public llist, public CustFile
{
public:
node* load (cust rec *);
loadlist();

} ;
node* loadlist:: load (cust_rec *lp)

{
node* newnode;
newnode =new (node);
strcpy (newnode->name, lp->name);
newnode->accnumber = lp->AccNo;
newnode ->next = NULL;
return newnode;

} i

/* THIS CONSTRUCTOR LOADS DATA FROM FILE CUSTOMER.DAT TO THE
LINKED LIST AND RETURNS THE HEADER AS FIRST*/

loadlist:: loadlist()

(V)

{

} i

node *nodeptr;
int lastacc;
strcpy (crec.Name, " ");
crec.AccNo = 0;
first = load (&crec);
fileopen();
ccntl=readcntl();
if ({lastacc==ccntl.next accno) !=0)

}

{ -
for (int j=l;j<=lastacc;j++)

{

}

crec=readrec(j);

if (crec.delflag ==0)
{

}

crec=readrec (j);
nodeptr = new (node) ;
nodeptr = load (&crec);
append (nodeptr) ;

struct TxnRec
{

} i

int transtype;
char custname[25];
float amount;

struct TxnCntl
{
int no of trans;
int commitflag;

} ;

class TxnFile: public customer

{
FILE *fpt;
char fnamet[25];

(Vi)

protected:
struct TxnRec tree;
struct TxnCntl tcntl;

public:

TxnFile ()
{

strcpy (fnamet, "txnfile");
if (access(fnamet,OO) == -1)

{
cout <<"\n\n TXNFILE not found creating new. \n"

fpt = fopen (fnamet, "w+");
tcntl.no of trans=O;
tcntl.commitflag=l;
writecntlt();
cout <<"\n\n press any key to continue .. \n";
getch();

}
else
fileopent();

} ;
-TxnFile ()

{

/* fseek (fpt, 0,0);
fread (&tcntl,sizeof (struct TxnCntl) ,l,fpt);
cout<<"\n\n Total no of transactions :";
cout << tcntl.no_of_trans;

*/ closefilet ();
} i

void fileopent ()
{
fpt=fopen (fnamet,"r+");

} ;
void closefilet()

{
fclose (fpt);

} ;
TxnCntl readcntlt();
TxnRec readrect (int) ;
TxnRec readlast ();
void writecntlt ();

(vii>

void writerect ();
int getcommitflag ();
int gettxntype ();
char* getfilename();

} ;

TxnRec TxnFile:: readrect (int accno)
{
TxnRec rec;
fseek (fpt,
fseek (fpt,
fread (&rec,
return rec;

} ;

sizeof (TxnCntl),O);
(accno-1) * sizeof (TxnRec) ,1);
sizeof (TxnRec) ,1,fpt);

TxnCntl TxnFile: readcntlt()
{

TxnCntl cntl;
fseek (fpt,O,O)
fread (&cntl, sizeof (TxnCntl),1, fpt);
return cntl;

} ;
TxnRec TxnFile:: readlast()

{
TxnRec rec;
fseek (fpt,-i *sizeof (TxnRec), 2);
fread (&rec, sizeof (TxnRec), 1, fpt);
return rec;

} i

void TxnFile:: writecntlt()
{
fseek (fpt,O,O);
fwrite(&tcntl,sizeof(struct TxnCntl),1,fpt);

};
void TxnFile:: writerect()

{
fseek (fpt, 0,2);
fwrite (&trec,sizeof (TxnRec},l, fpt};

} i
int TxnFile:: getcommitflag()

II GET COMMIT FLAG FOR CRASH RECOVERY

{

fviiiJ

tcntl=readcntlt{};
return tcntl.cornrnitflag;

} i
int TxnFile:: gettxntype{}

{
trec=readlast{};
strcpy (ccustnarne, trec.custnarne);
return {trec.transtype};

} ;

class account: public loadlist, public TxnFile

{
float Balance;
public:
float getarnount(}

{ cin >> trec.arnount; return trec.arnount;};
void deposit {};
void wi tdraw (} ;
void openaccount (};
void closeacc ();

} i

/ * THIS FUNCTION DEPOSITS THE AMOUNT INTO THE CUSTOMER'S
ACCOUNT. IT CHECKS THAT AMOUNT DEPSITED IS NOT NEGATIVE AND
CUSTOMER EXISTS IN THE FILE*/

void account: :deposit {)
{
tcntl = readcntlt{);
tcntl.no of trans++;
tcntl.comrnitflag=O;
writcntlt {) ;
trec.transtype=l;
strcpy {trec.custname, ccustname);
writerect{);
ccntl=readcntl{);
ccntl.cash on hand +=trec.arnount;
writecntl(}; -
crec= readrec{accno);
crec.balance+=trec.amount;

(ixJ

writerec{accno);
tcntl.commitflag=l;
writecntlt {) ;
system ("copy customer.dat customer.bak>NUL");
} ;

* / THIS FUNCTION WITHDAWS THE AMOUNT FROM THE CUSTOMER' S
ACCOUNT. IF CHECKS WAETHER CUSTOMER EXISTS IN THE FILE AND
THE AMOUNT TO BE WITHDRAWN IS NOT MORE THAN CUSTOMER'S
BALANCE.*/

roid account : :withdraw ()
{
crec=readrec(accno);
if {crec.Balance>trec.amount)

{
tcntl=readcntlt{);
tcntl.no of trans++;
tcntl.commitflag=O;
writecntlt();
trec.transtype=2;
strcpy(trec.custname,ccustname);
writerect();
ccntl=readcntl();
ccntl.cash on hand-=trec.amount;
writecntl (f; -
crec.Balance-=trec.amount;
writerec(accno);
tcntl.commitflag=l;
writecntl{);
system("copy customer.dat customer.bak>NUL");
}
else

cout<<"\n\n\n you can not withdraw more than you have .. \n"
} i

/*THIS FUNCTION IS FOR OPENING NEW ACCOUNT.IT CHECKS IF CUSTOMER
EXISTS IN THE FILE*/
void account: :openaccount{)

{
tcntl=readcntlt();
tcntl.no of trans++;
tcntl.commitflag=O;
writecntlt();
trec.transtype=3;
strcpy(trec.custname,ccustname);
writerect();
ccntl=readcntl(};

(X)

ccntl.cash on hand+=trec.amount;
ccntl.no of cust++;
ccntl. next accno++"; . ..' -· c'

writecntl ();
strcpy(crec.Name,custname);
crec.Balance=trec.amount;
crec~delflag=O;
crec.AccNo=(cntl.next-accno);
writerec(crec.AccNo);-
node *newnode;
newnode=new(node);
strcpy(newnode->name,ccustname);
newnode->accnumber=crec.AccNo;
newnode->next=NULL;
append(newnode);
tcntl.cornrnitflag=l;
writecntlt();
systern("copy custorner.dat customer.bak>NUL");
} i

/*THIS FUNCTION IS FOR CLOSING THE CUSTOMER ACCOUNT . IT CHECKS,_
WHETHE:It THE CUSTOMER ALREADY EXISTS IN THE FILE. IT TELLS TO THE CUSWMER

HIS NET BALANCE*/
void account::closeacc() { .

delnode(ccustnarne);
erec=readrec(accno);
trec.arnount=crec.Balance;
cout<<"\n\n\n amount you will get back :Rs. "<<trec.arnount
cout<<"/-";
tcntl=readcntlt();
tcntl.no of trans++;
tcntl.comrnitflag=O;
writecntlt();
tree.transtype=4;
strcpy(trec.custnarne,ccustname);
writerect();
ccntl=readcntl();
ccntl.cash on hand-=trec.arnount;
ccntl.no of cust--;
wri tecnti ();
crec=readrec(accno);
crec.Balance-=trec.amount
crec.delflag=l;
writerec(accno);
tcntl.cornrnitflag=l;
writecntlt();

system("copy customer.dat customer.bak>NUL");
} ;

class menu:public account

/*THIS CLASS DISPLY MAIN MENU AND ACCEPTS OPTIONS THEN
ACCORDING TO THE OPTION EXECUTE MEMBER FUNCTION OF ACCOUNT ~

{
char choice;
public:
void displaymenu();
-menu ()

{
fileclose();
} ;
void setchoice(char cc)

{ choice=cc;
} i
void executechoice();
void Deposit() ;
void Withdraw();
void NewAcc();
void DelAcc();
} i
void menu:: displaymenu()
{
choice=' ';
while(choice <'5')
{
clrscr();
cout<< "\n\n\n\n\n\t";
cout <<"BIS";
cout <<"\n\n\t";
cout <<"1. Deposit";
COUt<<"\n\n\t";
cout<<"2. Withdraw";
COUt<<"\n\n\t";
cout<<"3. Open new Account";
COUt<<"\n\n\t";
cout <<"4. Close Account";
COUt<<"\n\n\t";
cout<<"5. Press any other key to quit";
COUt<<"\n\n\t";
cout<<"Enter option (1 ... 5) :";
cin>> choice;

(J.ii)

executechoice(};
if (choice<S}

{ ·.

cout<<"\n\n\n for main menu press any key";

' . i
~tch();

void menu : : executechoice (}
{
switch (choice}

{
case '1' :Deposit(};

break;
case '2' :Withdraw(};

break;

~ ~

case '3' :NewAcc(};
break;

case '4' :DelAcc(};
break;

void menu :: Deposit (}
{
clrscr (} :
cout <<"\n\n\n\n\t\t DEPOSIT\n";
cout << 11 \n\n\n\n\t\t ENTER NAME OF CUSTOMER\n";
getcustomer();
cout <<"\n\n\t\t ENTER AMOUNT TO DEPOSIT :Rs.";
if (getamount()>O)
{
accno=search(custname);
if(accno==-1)
cout << 11 \n\n\nCUSTOMER NOT FOUND IN DATA BASE";
else

{
deposit();

cout <<"\n\n\n AMOUNT DEPOSITED .. \n";
}
else
cout <<" \n \n \n NEGATIVE AMOUNT .. \n";
} ;

void menu : : Withdraw ()
{
clrscr():
cout <<"\n\n\n\n\t\t WITHDRAW\n ";
cout <<"\n\n\n\n\t\t ENTER NAME OF CUSTOMER\n";

(xiii)

void menu

void menu

getcustomer();
cout <<"\n\n\t\t ENTRER AMOUNT TO WITHDRAW ~Rs. " ;
if (getamount()>O)
{
accno=search(custname);
if(accno==-1)
cout <<"\n\n\nCUSTOMER NOT FOUND IN DATA BASE";
else

{

{
withdraw();

cout << "\n \n \n AMOUNT WITHDRAWAL COMPLETED .. \n"
}
else

cout <<"\n\n\n NEGATIVE AMOUNT .. \n";
} ;

NewAcc ()

clrscr():
cout <<"\n\n\n\n\t\t OPEN NEW ACCOUNT\n";
cout <<"\n\n\n\n\t\t ENTER NAME OF CUSTOMER\n";
getcustomer();
cout <<"\n\n\t\t ENTRER AMOUNT :Rs.";
if (getamount()>O)
{
if(search(custname) !=-1)
cout <<"\n\n\n CUSTOMER WITH.THIS NAME.";
else
openaccount();
cout<<"\n\n\n opened a new account:";
}

{

else
cout <<"\n\n\n NEGATIVE AMOUNT .. \n";
} ;

DelAcc ()

clrscr():
cout <<"\n\n\n\n\t\t CLOSE ACCOUNT\n";
cout <<"\n\n\n\n\t\t ENTER NAME OF CUSTOMER\n";
getcustomer();
accno=search(ccustname);
if(accno==-1)
cout <<"\n\n\nCUSTOMER NOT FOUND IN DATA BASE";.
else

{
closeacc();

L

void main()
> { .·-······

menu menuM; ".··'- .: -·~·
/* IF COMMITFLAG = 0 THEN CUSTOMER.BAK IS CORRECT.COPY
CUSTOMER.BAK TO CUSTOMER.DAT.LAST TRANSACTION. IS
AUTOMATICALLY REDONE. IF COMMITFLAG = 1 THEN TRANSACTION
IS DONE IN CUSTOMER.DAT'BUT'MIGHT.NOT HAVE BEEN DONE IN
CUSTOMER.BAK SO COPY CUSTOMER.DAT TO CUSTOMER.BAK */

if 'menuM.getcommitflag(}==O {
system("copy customer.bak customer.dat>NUL") ;
menuM.setchoice(menuM.gettxntype());
menuM.executechoice();
menum.displaymenu();
}
else
{
system("copy customer.dat customer.bak>NUL") ;
menum.displaymenu() ;

~

(~vJ

	TH55960001
	TH55960002
	TH55960003
	TH55960004
	TH55960005
	TH55960006
	TH55960007
	TH55960008
	TH55960009
	TH55960010
	TH55960011
	TH55960012
	TH55960013
	TH55960014
	TH55960015
	TH55960016
	TH55960017
	TH55960018
	TH55960019
	TH55960020
	TH55960021
	TH55960022
	TH55960023
	TH55960024
	TH55960025
	TH55960026
	TH55960027
	TH55960028
	TH55960029
	TH55960030
	TH55960031
	TH55960032
	TH55960033
	TH55960034
	TH55960035
	TH55960036
	TH55960037
	TH55960038
	TH55960039
	TH55960040
	TH55960041
	TH55960042
	TH55960043
	TH55960044
	TH55960045
	TH55960046
	TH55960047
	TH55960048
	TH55960049
	TH55960050
	TH55960051
	TH55960052
	TH55960053
	TH55960054
	TH55960055
	TH55960056
	TH55960057
	TH55960058
	TH55960059
	TH55960060
	TH55960061
	TH55960062
	TH55960063
	TH55960064
	TH55960065
	TH55960066
	TH55960067
	TH55960068
	TH55960069
	TH55960070
	TH55960071
	TH55960072
	TH55960073
	TH55960074
	TH55960075
	TH55960076
	TH55960077
	TH55960078
	TH55960079
	TH55960080
	TH55960081
	TH55960082
	TH55960083
	TH55960084
	TH55960085
	TH55960086
	TH55960087

