
AN INTEGRATED INTERFACE TO OBJECT
ORIENTED MODEL (OOM) AND RELATIONAL

MODEL (RM) FROM EXTENDED ENTITY
RELATIONSHIP
MODEL (EERM)

Dissertation submitted to the
Jawaharla/ Nehru University

in partial fulfilment of the requirements
for the award of the degree of

MASTER OF TECHNOLOGY

in

COMPUTER SCIENCE & TECHNOLOGY

by

DIWAN HAUYM KHAN

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI -110 067
(INDIA)

JANUARY 1995.

CERTIFICATE

This is to certify that the dissertation titled "An Integrated

Interface between Object Oriented Model (OOM) and Relational Model

from Extended Entity Relationship Model (EERM)" being submitted by

DIWAN HAUYM KHAN to Jawaharlal Nehru University, New Delhi in

partial fulfilment of the requirement for the award of the degree of Master

of Technology (M.Tech) in Computer Science and Technology is a

record of the original work done by him under the supervision of Dr. P.C.

Saxena, Professor, School of Computer and Systems Sciences, Jawaharlal

Nehru University, New Delhi, during the year 1994-95, Monsoon

Semester.

The results reported in this dissertation have not been submitted

in part or in full to any other university or institution for the award of any

degree or diploma.
t

!\('{)~ /,..'~ s
CYY=O~r)'

Prof. K.K. Bharadwaj

Dean,

School of Computer &

Systems Sciences,

Jawaharlal Nehru University,

New Delhi.

(2_ _() A-?<J~
Prof. P.C. Saxena

Professor,

School of Computer and

Systems Sciences,

Jawaharlal Nehru University,

New Delhi.

ACKNOWLEDGEMENTS

I bestow my gratitude to my supervisor Dr.P.C.Saxena, Professor,

School of Computer and Systems Sciences, Jawaharlal Nehru University,

New Delhi for suggesting me this topic. I very much indebted to him for

his personal involvement during the period of my work and his eloquent

guidance which has been indispensable in bringing about a successful

completion of this dissertation.

My thanks are due to Prof. G. V. Singh and Prof. K.K. Nambiar for

their kind support and constant help during the M. Tech programme.

I extend my sincere gratitude to Prof. K.K. Bharadwaj, Dean

School of Computer and Systems Sciences, Jawaharlal Nehru University

for providing me with the environment and all the facilities required for

the compleJion of my dissertation.

My sincere thanks to my friends Sanjeev Kumar Sinha,

D.K.Lobiyal and Manoj Kumar Sarangi for giving me company in the

long hours of nights during the period of this project.

Last but not the least, I thank Prabhat Kumar Pandey, Ravi

Gupta, Sunil ~umar Verma, Vineet Kumar Sharma and Punam Raju for

helping me in all possible ways towards the completion of the

dissertation.

~
DIWAN HAUYM KHAN

CONTENTS

CHAPTER-ONE : INTRODUCTION

1 REQUIREMENTS FOR AN INTERFACE

1.1 VIEW MODELLING

1.2 VIEW INTEGRATION

1.2.1 CONFLICT ANALYSIS

1.2.2 CONFLICT RESOLUTION

1.2.3 VIEW MERGING

1.3 VIEW TRANSLATION

CHAPTER-TWO: BASIC CONCEPTS IN EER MODEL,

RELATIONAL MODEL AND OBJECT

ORIENTED MODEL

2.1 EXTENDED ENTITY RELATIONSHIPS MODEL

2.1.1 ORIGINAL CLASSES OF OBJECTS (ER MODEL)

2.1.2 EXTENDED CLASSES OF OBJECTS (EER MODEL)

2.1.3 FUNDAMENTAL EER CONSTRUCTS

2.2 RELATIONAL MODEL

2.3 OBJECT ORIENTED DATA MODEL

2.3.1 WHAT IS OBJECT ORIENTED?

2.3.2 OBJECT ORIENTED DATABASE SYSTEM

2.3.3 FEATURES OF OBJECT ORIENTED MODEL

2.3.4 OBJECT ORIENTED PROGRAMMING

~ ~HAPTER-THREE : VIEW MODELLING, VIEW INTEGRATION

IN DATABASE DESIGN

3.1 VIEW MODELLING

3.2 VIEW INTEGRATION

3.3 RULES FOR VIEW INTEGRATION

3.4 VIEW INTEGRATION ALGORITHM

3.5 EXAMPLES ILLUSTRATING THE VIEW INTEGRATION

ALGORITHM

CHAPTER-FOUR: AN INTERFACE BETWEEN EER MODEL TO

RELATIONAL MODEL

4.1 VIEW TRANSLATION

4.2 ALGORITHM FOR VIEW TRANSLATION

4.2.1 TRANSFORMATION RULES FOR EER MODEL

4.3 EXAMPLE ILLUSTRATING THE VIEW TRANSLATION

ALGORITHM

CHAPTER-FIVE : AN INTERFACE FROM EER MODEL TO

OBJECT ORIENTED MODEL

5.1 DEVELOPMENT OF RULES FOR THE TRANSLATION

5.2 EXAMPLE ILLUSTRATING THE TRANSLATION FROM EER

MODEL TO OBJECT ORIENTED MODEL

5.3 THE OBJECT CLASS DECLARATION IN OBJECT ORIENTED

LANGUAGE C++

CHAPTER-SIX : CONCLUSION

REFERENCES

CHAPTER-ONE

INTRODUCTION

Object Oriented Technology is fast emerging as the favorite of

software designers. Most of the software designer are shifting from the

relational approach to object oriented approach due to its several

advantages over relational approach. Some of them are as follows:

(i) In OODB the complex structural objects can be artificially

represented.

(ii) In relational Database properties of object cannot be modeled.

(iii) In relational Database operational semantics of complex structured

object is not expressible.

(iv) OODB supports inheritance, modularity, easy upgrade and various

other features.

Extended entity relationship approache is one of the most popular

and fundamental approach which have been followed by designers

throughout the globe. "Although the OODB Technology is emerging but

the building of fundamental blocks are extended entity relationships with

modifications to support the OODB philosophy.

At the same time, logical database design research is at its zenith.

Logical database design is concerned with determining the structure of a

database independent of implementation consideration. Its purpose is to

1

transform real world requirements into a good logical database. There are

number of alternatives for accomplishing the transformations. The OODB

technology has get impetus in research and development from the same

logical database design.

1. Requirement for an interface

We require a database system that is efficient for operations on

individual data objects without losing functionality provided by a

relational DBMS. Typically our database operations cannot be expressed

as a single query in SQL or another high-level relational language and

must be decomposed into many simple "object-oriented" queries. The

queries are invoked by programs rather than directly by an end-user,

response time must be at least of order of the magnitude faster than

conventional DBMS. We might get the perlormance required from an

"object-oriented" database system but we would lose the powerlul

relational facilities. Instead of using either an object-oriented language or

the high-level SQL languages. If we make interlace which is the topic of

this dissertation, it will give the best characteristic of both kinds of

database in one system.

In the dissertation the adopted approach is towards developing a

common platform for the interlace to the extended entity relational model

with the object oriented model and relational model. This interlace will

convert EERM to RM and OOM. This is accomplished in following two

steps:

2

STEP 1 : Building an interface between extended entity relationship

model and relational model.

STEP 2 : Building an interface between extended entity relationship

model and object oriented model.

Accomplishment of first step reqmres View Modeling, View

Integration and View Translation.

1.1 View Modeling

In view modeling, the informations and processing requirement of

each of the group of users are analyzed and modeled using extended

entity relation data model.

1.2 View Integration

View Integeration is done for the EERM. This gives a global view

to user as a part of the view integration the following are studied.

1.2.1 Conflict Analysis

The main goal of this step is to detect and resolve all types of

inconveniences that exists in representing same classes of concepts in the

two view. During conflict analysis several types of conflicts are

discovered.

3

1.2.2 Conflict Resolution

In this step assertion specifying the precise relationship between the

domain of pair of entities and relationship froin different view are

generated. Then in order to resolve the conflicts, the integration of entity

types and integration of relationship type are made

1.2.3 View merging

Once the assertion specifying the correspondence between entities of

the two views are generated, similar entities and relationships are

integrated and unrelated entities and relationships are simply merged in

partial integrated view.

1.3 View Translation

In this step the view is transformed from EER model into relational

model. A relational schema is created that include all the attributes that

can have only atomic attribute values. By analyzing the functional

dependencies in valid relational schema, the set candidate key is chosen

as a primary key. Foreign key attribute on relationship attribute will be

added during subsequent steps so that the translation process is carried

out. .

The next step is to develop interface from EERM to OOM. Here all

properties of object oriented model are to be studied and the ternary

associations are converted into binary associations. Further, properties like

inheritance, aggregation and polymorphism will be incorporated.

4

An object oriented design is based on entity and class relationships.

This method concentrates on establishing relationships between entities,

and between classes and on representing and refining the relationship. It

also provides information and specific procedure in order to identify

classes, objects, attributes and operations.

The final phase involves developing interface for the proposed

system. This involves integrating the interfaces developed in earlier

stages.

5

CHAPTER-TWO

BASIC CONCEPTS IN EER MODEL,

·RELATIONAL MODE AND OBJECTED

ORIENTED MODEL

This chapter briefly discusses the basic concepts used in extended

entity relationship model, relational model and object oriented model.

2.1 EXTENDED ENTITY RELATIONSHIPS

MODEL

The entity-relationship approach initially proposed by Chen,

although modified and extended by others, still remains the premier model

for conceptual design. It is used to represent information in terms of

entities, their attributes, and associations among entity occurrences called

relationships.

2.1.1 Original Classes of objects (ER model)

Initially, Chen proposed three classes of objects: entities, attributes,

and relationships (Figure 2.1). Entity sets were the principal objects about

which information was to be collected and usually denoted a person place,

thing, or event or informational interest. Attributes were used to detail the

entities by giving them descriptive properties such as name, color, and

weight. Finally, relationship (formerly called relationship sets)

6

CONCEPT

ENTITY

RELATIONSHIP

ATTRIBUTE

REPRSENT ATION

II WEEK

DESCRIPTO::....:R:.__--<·

IDENTIFIER -~c -===~-'
Fig. 2.1

CONCEPT REPRESENTATION I
OBJECT CLASS

SUBSET HIERARCHY

GENERALIZATION
HIERARCHY

Fi.s'. 2.2

EXTENDED ER (EER) MODELREPRESENI'ATION

represented by real-world associations among one or more entities.

There are two types of attributes: identifiers and descriptors. The

former is used to uniquely distinguish among the occurrences of an entity,

whereas the latter is used to describe an entity occurrence. Entities can be

distinguished by the "strength" of their identifying attributes. Strong

entities have internal identifiers that uniquely determine the existence of

entity occurrence. Weak entities derive their existence from the

identifyirtg attributes (sometimes called external attributes) of one or more

"parent" entities. Relationships have semantic meaning which is indicated

by the connectivity between entity occurrences (one to one, one to many,

and many to many), and the participation in this connectivity by the

member entities may be either optional or mandatory. For example, the

entity "person" may or may not have a spouse. Finally, each of the

entities may have one or more synonyms associated with it. The diagrams

for representing entities, relationships, and attributes are shown in Figure

2.1.

2.1.2 Extended classes of objects (EER model)

The original ER model has long been effectively used for

communicating fundamental data and relationship definitions with the end

user. Using the ER model as a conceptual schema representation,

however, has proved difficult because of the inadequacy of the initial

modeling constructs. View integration, for example, requires the use of

abstraction concepts such as generalization [Navathe et al. 1986]. Data

integrity involving null attribute values requires defining relationships

7

such that a null set on either side of the relationship is either allowed or

disallowed. Also, certain relationship of degree higher than 2 (binary) may

be present and are awkward (or incorrect) when represented in binary

form. The extended ER model provides simple representations for these

commonly used concepts and is compatible with the simplicity of the

original ER model.

The introduction of the category abstraction into the ER model

resulted in two additional types of objects: subset hierarchies and

generalization hierarchies [Navathe and Cheng 1983; Elmasri et al. 1986].

The subset hierarchy specifies possibly overlapping subsets, while the

generalization hierarchy specifies strictly non overlapping subsets. Both

subset objects will transform equivalently to a relational data model

scheme, but they will differ significantly with regard to update (integrity)

rules.

(i) Subset Hierarchy Definition

An entity E1 is a subset of another entity E2 if every occurrence of

E1 is also an occurrence of E2•

A subset hierarchy is the case in which every occurrence of the

generic entity may also be an occurrence of other entities that are

potentially overlapping subsets (Figure 2.2). For example, the entity

EMPLOYEE may include "employees attending college," "employees who

hold political office," or "employees who are also shareholders" as

specialized classifications.

8

(ii) Generalization Hierarchy Definition

An entity E is generalization of the entities E1, E2, ... , En if each

occurrence of E is also an occurrence of one and only one of the entities

EI, E2, ... , En.

A generalization hierarchy occurs when an entity (which we call the

generic entity) is partitioned by different values of a common attribute

(Figure 2.2). For example, the entity EMPLOYEE is a generalization of

ENGINEER, SECRETARY and TECHNICIAN. The generalization

object (EMPLOYEE) is called an "IS-A" exclusive hierarchy because

each occurrence of the entity EMPLOYEE is an occurrence of one and

only one of the entities ENGINEER, SECRETARY and TECHNICIAN.

2.1.3 Fundamental EER Constructs

The following classification of EER constructs is defined to facilitate

development of a concise and easy to understand EER diagram.

(i) Degree of a Relationship

The degree of relationship is a number of entities associated with the

relationship. An n-ary relationship is of degree n. Unary, binary, and

ternary relationships are special cases in which the degree is 1 ,2, and 3

respectively. This is indicated in Figure 2.3.

9

CONCEPT

DEGREE UNARY

Bn.l'ARY I

TERNERY I

CONNECTIVITY
1 : 1

1: n

m:n

MEIVIBERSHIP CLASS
mandatory
optional

REPRESENTATION

I I <:>
I ~

~y·;

~
.............. -- "
-=£:::=

e ~ e

I

I

Fis- 2.~ FUNDAMENTAL
EER CONSTRUCYS
RELATIONSHIP T "1/PES.

(ii) Connectivity of a Relationship

The connectivity of a relationship specifies the mapping of the

associated entity occurrence in the relationship. Values for connectivity

are either "one" or "many". For a relationship among entities E1, E2, ••• ,

Ei, ... , Em a connectivity of "one" for entity Ei means that given all

entities except Ei, there is at most one related entity occurrence of Ei.

The actual number associated with the term "many" is called the

cardinality of the connectivity. Cardinality may be represented by upper

and lower bounds. Figure 2.3 shows the basic constructs for connectivity;

one to one (unary or binary relationship), one to many (unary to binary

relationship), and many to many (unary or binary relationship). The

shaded area in the unary or binary relationship diamond represents the

"many" side, while the unshaded area represents the "one" side [Reiner

et al. 1985].

We use ann-sided polygon to represent n-ary relationships for n >

2 in order to show explicitly each entity associated with the relationship

to be either "one" or "many" related to the other entities. Each comer of

then-sided polygon connects to an entity. A shaded area denotes "many"

and an unshaded comer denotes "one". The ternary relationship (see in

Figure 2.3) illustrates this type of association, which is much more

complex than either a unary or binary relationship.

10

(iii) Membership Class in a Relationship

Membership class specifies whether either the "one" or "many" side

in a relationship is mandatory or optional. If an occurrence of the "one"

side entity must always exist for the entity to be included in the system,

then it is mandatory. When an occurrence of that entity need not exist, it

is considered optional. The "many" side of a relationship is similarly

mandatory if at least one entity occurrence must exist, and optional

otherwise. The optional membership class, defined by a "0" on the

connectivity line between an entity and a relationship, is shown in Figure

2.3. Membership class is implied by existence dependency in the

real-world system; for example, an independent (strong) entity associated

with a dependent (weak) entity cannot be optional, but the weak entity

may be optional. Weak entities are sometimes depicted with a

double-bordered rectangle (Figure 2.1).

(iv) Object class of entities and relationships

The basic objects are the n-ary relationships with their associated

entities. Object resulting form abstraction are the generalization hierarchy

and the subset hierarchy (Fig. 2.1 and 2.2). The generalization hierarchy

implies that the subsets are a full partition, such that the subsets are

disjoint and their combination makes up the full set. The subset hierarchy

implies that the subsets are potentially overlapping.

11

2.2 RELATIONAL MODEL

The relational model of data was introduced by Codd [1970]. The

relational model represents the data in database as a collection of

relations. Informally, each relation resembles a table or to some extent, a

·simple file.

When a relation is thought of as a table of values, each row in the

table represents a collection of related data values. These values can be

interpreted as a fact describing an entity or a relation instance.

A relation (or relation instance) r of the relation schema R (A1,

A2, ••• , ~) also denoted by r(R), is set of n_tuples r = { t1, lz, ... , ~}.

Each n_tuple tis an ordered list of n values t = <V1, V2, ••• , V0>, where

each value Vi, 1 ::;; i ::;; n, is an element of dom(~) or is a special null

value. The terms relation intention for the schema R and relation

extension for a relation instance r(R) are also commonly used.

2.3 OBJECT ORIENTED DATA MODEL

Object-oriented modeling design is a technique for new way of

thinking about problems using model organized around real-world

.concepts. The fundamental construct is object, which combines both data

structure and behavior in a single entity. Object-oriented models are

useful for understanding problem, communication with application

experts, modeling enterprises, documentation, and designing programs and

database.

12

2.3.1 What is Object-Oriented ?

The term "Object-Oriented" mean that we organize software as a

collection of discrete objects that incorporate data structure and behavior.

The basic idea behind the object-oriented approach is very simple.

We perceive the world around us as a variety of objects. When we look

at plant, we see a plant, a mass of individual atoms. We can divide the

plant into leaves, flower, stems and root, but we still see those items as

units, as objects.

2.3.2 Object Oriented Database System

The unit of storage in OODB is the object-class. It requires that

encapsulated combination of data and methods (i.e. procedure) must be

managed as an integral unit. The goal of the OODBS is to provide logical

and physical independence of the objects from application object oriented

programs that form systems. Thus multiple systems can query, retrieve

and update objects concurrently and independently while the OODBS

manages, all details of object consistency, concurrency, security,

recovery, and integrity.

Definition of Object Oriented Database Systems

Any object oriented database system should satisfy two criteria, it

should be a database management system, and it should be an object

oriented system. The first criteria translates into six features, persistence,

secondary storage management, data sharing (concurrency), data reliability

transaction management and recovery, adhoc query facility, and schema

13

modification. The second translates into eight features. The type/class,

encapsulation/data abstraction, inheritance, polymorphism/late binding,

computational completeness, object identity, complex object, and .

extensibility.

2.3.3 Features of Object Oriented Model

Following are basic features of the Object Oriented Model:

(i) Methods and Messages

Only the methods of an object have access to its state, and a method

can only be invoked by sending the object a message. The distinction

between a message and a method is subtle but important. Since a method

is part of an object and not a global entity, there is no problem with two

deferent objects having a same method name.

(ii) Polymorphism

It is quite common in object oriented systems to code multiple

classes of an object that respond to the same messages. The ability of

different objects to respond differently to the same messages is known as

polymorphism.

(iii) Classification

Classification means that objects with the same data structure

(attributes) and behavior (operations) are grouped into a class.

14

(iv) Inheritance

Inheritance is the sharing of attributes and operations among classes

based on hierarchical relationship. A class can be define broadly and

refined into successively finer subclasses. Each subclass incorporates, or

inherits, all the properties of its superclass and adds its own unique

properties. The properties of the superclass need not be repeated in each

subclass. For example, if we are writing a banking application, we would

define a Saving Account object that is just like the existing banking

Banking Account object but with a few extras. Saving Account will

inherit all Bank Account's state and methods.

(v) Encapsulation

An object consists of an encapsulated representation (state) and set

of messages (operations or procedures) that can be applied to that object.

Encapsulation is technical name for information hiding. Instead of

organizing programs into procedures that share global data, the data is

packaged with the procedures that access that data. This concept is often

called data abstraction or modular design.

(vi) Class Versus Instance

In object oriented languages, the definition of type is often called a

class. A class definition defines both the instance variables (stage or

representation) and the methods (operation) for objects of that class.

15

(vii) Message Passing

The use of the word message versus procedure suggests a looser

connection between the object and its user. In most cases, the messages

are organized into public and private categories. Private messages,

however, can only be executed by the object itself. These are not

available (visible) to outside users.

(viii) Static and Dynamic Binding

Static binding means that all variable are bound to types at

compilation time. Dynamic binding waits until execution time before

binding variable to types. An advantage to dynamic binding is that a

variable may represent one of the many different objects from different

classes.

(ix) Object Identity

In object oriented database systems, the concept of object identity

play an important role among others. It is used as surrogate to distinguish

an object from all others. Whenever a new entity instance is created, the

system will automatically generate an internal identifier "oid" for it and

this identifier will not be reused for other entity instance. Although

objects in an OODB can uniquely identified by object identifiers, the

concept of key which is used in relational DBMS as a link of object

identifier still has its place OODBS.

16

2.3.4 Object Oriented Programming

Object oriented programming encourages code reuse rather than

reinvention. It encourages prototyping and code polishing. It rewards the

development of generic function. Object oriented programming enables

you to create software that can be readily comprehended .and shared with

others. Some of the popular OOP languages are SIMULA, Ada, C++ etc.

Among these C++ has received a tremendous attention.

17

CHAPTER-THREE

VIEW MODELING, VIEW INTEGRATION IN

DATABASE DESIGN·

3.1 VIEW MODELING

View modeling is the process of eliciting user view by analyzing the

user requirements and the information needs in an organization. The user

view can be defined as the perception of user about what a database

should contain [Navathe, 1980]. According to Navathe and Sehkolnick,

there are two major tasks in the view modeling.

(i) Extracting from user or from person incharge of application

development, the relevant part of the real world.

(ii) Abstracting this information in a form that completely represents

the user view so that it can be subsequently used in the design. The

view modeling methodology is described below in a step-by-step

manner:

STEP 1: Classification of Entities and Attributes

The first step in view modeling is to identify entities and their

corresponding attributes. It is not easy to define entities attributes and

relationship constructs, and also to distinguish them in the database. The

following are the guidelines for classifying entities and attributes.

(i) Entities have descriptive information but identifying attributes do

not have. If there is descriptive information about an object, the

object should classified as an entity. For example, STUDENT is an

entity in the STUDENT VIEW.

(ii) Attributes should be attached to entities that they describe most.

For example, the attribute Faculty-Name should be an attribute of

Faculty instead of the entity STUDENT.

(iii) Multivalued attribute should be classified as entities.

STEP 2: Identify The Key of Entities

STEP 3: Identify Missing Entities

STEP 4: Identify Generalization and Subset Hierarchies

If there is a generalization or subset hierarchy among entities, then

reattach attributes to the relevant entities. For example, suppose the

following entities were identified in the EER model:

EMPLOYEE (with identifier EMP-NO and descriptors, EMP-NAME,

HOME-ADDRESS, SALARY, DATE-OF-BIRTH

JOB-TITLE, SKILL).

ENGINEER (with identifier EMP-NO and descriptors, EMP-NAME,

HOME-ADDRESS, SPECIALTY).

19

SECRETARY (with identifier EMP-NO and descriptors,

EMP-NAME, DATE-OF-BIRTH,

SALARY,SPEED-OF-TYPING).

TECHNICIAN (with identifier EMP-NO and descriptors,

EMP-NAME, SKILL, YEARS).

Here EMPLOYEE is identified as a generalization of ENGINEER,

SECRETARY and TECHNICIAN.

STEP 5: Define Relationships

After identifying the entities and attributes, the next step is to define

relationship among these entities. For each relationship the following

should be specified.

Degree (Whether, Unary, Binary, or Ternary).

Cardinalates (the connectivity of each entity should be expressed as

either 'I' or 'n').

Attributes (If additional attribute are required then they should be

identified).

STEP 6: Identify Missing Relationship

To ensure that the view created by the designer completely represents

the user's information requirements, it is necessary to check that all the

required concepts are represented by the view. These view's must

eventually be consolidated into a single global view to eliminate

redundancy and inconsistency from the model.

20

3.2 VIEW INTEGRATION

View integration is a database design technique that offers to

synthesize an integrated conceptual schema by combining the previously

obtain individual requirements.

For the development of large database it is very difficult to design

the whole conceptual database schema at once. So if the database

requirement are stated on the basis of individual documents, there is a

need for integration.

The mam goal of vtew integration IS to find all parts in the

individual requirement documents that refer to the same concept in reality,

and unify their integration. The unification is very important because

often the same portion of reality may be represented in different ways in
---~ ~r~~~-......

each individual requirement documents. '. -~ ,_., ""' ,
7 L!ur '(

':'-
~

We assume the individual requirements are represented as EER ·~

schemas and show that the EER model serves as a very good basis for the

integration of individual requirement into a single conceptual schema.

View integration may be divided into three main phases: the conflict

analysis, the conflict resolution and the actual view-merging phase. In the

following we will refer to conflict analysis and conflict resolution as

preintegration because, if conflicts do not occur, then these two phase are

21 7li- 5593

STEP 1: Conflict Analysis

The main goal of this step is to detect and resolve all types of

incoherences that exist in representing same classes of concepts in the two

view. During conflict analysis, several types of conflict may be

discovered.

(i) Naming Conflicts

During this step names of concepts are analyzed and compared

in order to discover homonyms and synonyms. Synonyms occur when

representation in the individual EER schemas refer to different concepts

in the reality, and homonyms occours when the name are the same but

different concepts are represented.

(ii) Type Conflicts

This arises when the same concept IS represented by different

modeling constraints in the two view.

(iii) Domain Conflicts

It occurs, when m different schema the same attribute is

associated with different domain. For example, the attribute I-Card-No~

may be declared as an integer in one schema and as a character string in

another schema.

(iv) Conflicts Among Constraints

It occurs, when two schemas contain different constraints on the

same concept.

22

STEP 2: Assertion Generation

In this step assertions specifying the precise relationship between the

domain of pair of entities, and relationship from different view are

generated. These assertions form the basis for integration of similar

entities and relationship of the two view.

1. Identical domains : DOM(E1) = DOM(E2)

2. Subset domains : DOM(E1)G DOM(E2)

3. Superset domains : DOM(E1) ::>DOM(~)

4. Overlapping domains : DOM(E1) n DOM(~) = <!>

5. Disjoint domains : DOM(E1) n DOM~) = <j>

3.3 RULES FOR VIEW INTEGRATION

This section discusses the rules used for view integration.

RULES 1: Elements Integration Rule

Let XI, x2 be elements in two distinct views, XI£ VI, x2 £ v2
such that X1 = X2•

If we denote by X, the element in the integrated schema resulting

from the integration of X1 and X2, then:

• If X 1 and X 2 are not of the same type, X is an entity type;

• If X 1 and X 2 are of the same type but are not attributes, X is of

the same type as XI' x2.

This rule considers only equivalence assertions. Our approach

would be similar to Jardin's.

23

RULES 2: Links Integration Rule

Let A1, B 1 be two linked elements in view V 1, A2 and B2 be two

linked elements in V2 and the following correspondence assertions

AI =A2

Bl = B2

A 1-B 1 = A2-B2~

Let A be the integrated element in IS (Integrated Schema)

corresponding to A1 and A2, let B be the integrated element in IS

corresponding to B1 and B2 then the integration of A1-B 1 and A2-B2 links

are:

• A role links if A and B are an entity type and a relationship

type respectively.

• An attribute links if A and B are an element and an attribute

respectively.

• A links relationship type with its two roles (Standard name,

no attribute) if A and B are two entity types.

The cardinalities of the integrated link or path, are:

Cardmin(A) ' -- Cardmin(A1) = Cardmin(A2)

Cardmax(A) = Cardmax(A1) = Cardmax(A2)

Cardmin(B) = Cardmin(B 1) = Cardmin(B2)

Cardmax(B) = Cardmax(B 1) = Cardmax(B2)

RULE 3: Path Integration Rule

Let E1, E2, ... , En be elements m v1ew V1• Let F1, F2, ... , FP be

elements in view V 2, with the following correspondence assertion:

EI =Fl.

24

Let G1 be the integrated element in IS corresponding to E1 and F1•

Then:

• The correspondence assertion between a link and a path,

EI-E2 = FI-F2-... -Fp

with E2 = FP generating GP in IS, generates in IS a path G1-F' 2-...

-F' p-I GP where F' 2, ... , F' p-I are elements of IS corresponding to F2,

... , FP_ 1, and each link of the path is created according to the

concepts modeling the link elements as in Rule 2.

• The correspondence assertion between two composite paths

E1-E2-... -En = FcF2- ••• -FP n>2.p>2.

with En= FP generating GP in IS, generates in IS two paths and an

integrity constraint. The two path are:

G~-E' 2-... -E' n-1-Gp

G1-F' 2-... -F' p-1-GP

Where E' 2, ... , E' n-l are·elements of IS corresponding to~ •... ,En-I•

and F' 2, ••• , F' p-I are elements corresponding t{) F2, ••• , F p-I• and each

of the paths is created according to the modeling concepts of the

linked elements, as in Rule 2. The integrity constraint states that

the two paths link the same occurrences.

RULE 4: Integration of Attributes of Corresponding Elements

Let E1 be an element in view V 1, and E2, an element in view V2,

with the following correspondence assertion:

El = E2,

with corresponding attributes

All = A21• Al2 = A22· ... , Aln = A2n

25

then, the integrated element E in IS corresponding to E 1 and E2 will have:

• An attribute Ai for each attribute correspondence A1i = A2i.

Ai's domain and cardinalities are equal to those of A1i and A2i

Le.

Cardmin(AJ = Cardmin(A1i) = Cardmin(A2J

Cardmax(~) = Cardmax(Aii) = Cardmax(A2J

• An attribute B'j for each attribute Bi of E 1 (or of E2) has no

correspondent. B'rs domain and cardinalities are equal to Bj's

ones.

Cardmin(B'j) = Cardmin(Bj)

Cardmax(B'j) = Cardmax(Bj)

RULE 5: Attribute With Path Integration Rule

Let E 1, E2, ... , En be elements and A an attribute in view V 1; and let

F1, F2, ••• , FP be elements and Ban attribute in view V2 with the following

correspondence assertions:

El - Fl

A - B

Let G 1 be the integrated element in IS corresponding to E1 and F 1;

then:

• The correspondence assertions

EI-A = FI-F2-... -Fp-B

generates in IS an attribute B ', which is the attribute of F' p where F' p is

the element corresponding to FP. The domain and cardinalities of B' are

26

the same as those of B.

• The correspondence assertion

EI-E2-... -En-A = FI-F2-... -Fp-B n~2, p~2

generates in IS two attributes and an integrity constraint. The attributes

·are: A', which is an attribute of E' n' where En is the element

corresponding En; and B', which is an attribute of F' P' where F' P is the

element corresponding to F p·

Domain and cardinalities of A' and B' are, respectively, the same

as those of A and B.

The integrity constraint states that the two paths link the same

values.

RULE 6: Add Rule

Any element (entity type or relationship type) that exists in a view

and has no corresponding element in any other view is added to the

integrated schema with all its attributes without modification:

Let XI-Y I be a link (role or attribute link) that exist in view V 1 and

has no corresponding link nor path in view V2. Let X and Y be the

elements of IS corresponding to XI and YI. Then, a link or a link

relationship type X-Y is added to IS, according to the modeling concepts

of X andY.

27

Cardinalities of X-Y are define as follows:

If X 1 is equivalent to X(X1 = X), then

Cardmin(X) = Cardmin(X1)

Cardmax(X) = Cardmax(X1)

If not (X1 is only a subset of X), then

Cardmin(X) = 0

Cardmax(X)

Cardinalities of Y are define in the same way.

The following diagrams sketch how integration rules are applied to

usual cases. Cardinalities of links are not shown.

Case 1: Equivalence of Two Entity Types

An equivalence between two entity types generates an entity type

(Rule 1 plus Rule 4 for attributes) in Fig. 3.1.

In every case, each time Rule 1 is run, Rule 4 is also activated in

order to add attributes to integrated elements.

Case 2: Equivalence of an Entity Type and an Attribute

An equivalence between an entity type E and an attribute A, of some

element X, generates an entity type, say EA (Rule 1). Rule 6 generates for

the X-A attribute link a relationship type linking EA to the entity type

representing the element to which the original attribute is attached in the

view (X in our example). The name for the generated relationship type

may be automatically generated by the integrator, or be specified by the

DBA (Fig. 3.2).

28

Vl V2 IS
Fig. 3.1 E ~cor a.-1 E 1~1 E

Vl V2 IS

Fig. 3.2 E X ~~~ f cor I ... A

A EA

IS

Fig. 3.3
~ eor ~

Vl. V2 IS

Fig. 3.4 I E

Vl. V2 IS

Fig. 3.5

I i ~I ••• II> i~ E
A

Vl. V2

Book Au1hor

(

Fig. 3.'7

Case 3: Equivalence of Two Relationship Types

In this case, the correspondence assertions are

R = R, X = X, Z = Z

X-R = X-R, Z-R = Z-R (Fig. 3.3).

An equivalence between relationship types generates a relationship

type (rule 1). Link integration (Rule 2) generates one role link for the two

X-R links and one for the two Z-R links. Rule 6 adds role links without

correspondent: Y-R and W-R. The integrated relationship type will

therefore link all entity resulting from the integration of the participating

entity types in the views.

Case 4: Equivalence of an Entity Type and a Relationship Type

An equivalence between an entity Type E and a relationship type

R generates an entity type, say, ER (Rule 1). Rule 6 generates, for each

role of R, a relationship type linking ER with the entity types resulting

from the integration of the entity types participating in R (here, X andY,

Fig. 3.4).

Case 5: Equivalence of a Relationship Type and an Attribute

An equivalence between an attribute A and a relationship type R

generates an entity type, say, RA (Rule 1). Rule 6 generates the same

substitution for R as in the immediately previous case, plus a relationship

type linking E and RA. This last relationship type results from adding the

E-A attribute link of view VI to the integrated schema (Fig. 3.5).

29

3.4 VIEW INTEGRATION ALGORITHM

The algorithms are designed to perform view integration based on

the six rules. Certainly, algorithm will vary depending on which

integration processing strategy is chosen: N-ary versus binary N-ary

strategies integrate n view in one shot. In this case, the integrator will

have to sum up all correspondences involving the same object through all

views. With that global knowledge, it will be able to decide which

construct is to be build in the integrated schema, and to generate the

appropriate mappings between each view and the integrated schema.

Algorithm 1.

Integration of two views (Vl and V2):

Input: V 1, V2 and the correspondence assertions in between.

Output: An IS and the Vl-IS, V2-IS correspondences.

A. Deferring Attribute Correspondences

I* The corresponding attribute are included in a "with corresponding

attributes" clause of corresponding elements, must be processed after

integration of the other elements and the paths. The initial step by the

algorithm is intended to isolate correspondences whose integration is to

be deferred.* I

• Remove from the set of elements, correspondences assertions all

attributes correspondence, and put them aside.

• Remove these attributes from the views. (temporarily)

30

• Remove from the set of path correspondence assertions all

correspondences where the paths terminate on corresponding

attributes, and put them aside.

B. Element Integration

I* Phase 1 (Integrate Corresponding Elements)*/

For each element correspondence assertion X1<cor>X2

do:

• Execute Rule 1 (element Integration rule)

• Execute Rule 4 (Integration of attribute) for the integrated elements.

II Mark as already processed, in Vl and in V2, xl.x2, their attributes

and their attribute links.

• Generate the correspondence assertions x1<cor>X in VI-IS and

X2<cor> X in V2-IS

enddo.

I* Phase 2 (Add Noncorresponding Elements) */

For each V 1 element and for each V2 element that has not been marked

as processed in phase 1.

do:

• Execute Rule 6 (add rule)

• Mark this element as processed, and its attributes and its attribute

link (in Vl or in V2)

• Generate the correspondence assertion in VI-IS or in V2-IS

enddo.

31

C. Path Integration

/* Phase I (Add Path Correspondence Assertion for Roles of Equivalent

Relationship Types) */

For each pair of corresponding equivalent relationship types, R1 in VI,

R2 in V2 such that

do:

RI links E1, F1, ••• , G1 R2 links E2, F2, ... , H2

RI = R2, EI = E2, FI = F2····

• Add to the set of path correspondence assertions, the following

assertion.

EI-Rl = E2-R2, FI-Rl = F2-R2····

enddo.

/* Phase 2 (Integrate Corresponding Links and Paths)* I

For each path correspondence assertion X1, ... , Z1<cor>X2, ... , Z2

do:

• Execute the appropriate integration rule: Rule 2 if two link are

involved, Rule 3 if composite paths are involved.

• Mark as processed in VI and in V2, the corresponding links.

• Generate the path correspondence assertion in VI-IS and in V2-IS

enddo.

/* Phase 3 (Add Noncorresponding Links)*/

For each VI link and for each V2 link that has not been marked as

processed.

32

do:

• Execute Rule 6 (add rule)

• Mark this link as processed (in VI or in V2)

• Generate the path correspondence assertion in V 1-IS or in V2-IS

enddo.

D. Integration of Attribute correspondences

/* We now consider attribute and path correspondence assertions *I

For each attribute correspondence assertion, A1<cor>A2

do:

• If there is a path correspondences assertion involving A1 and

A2 then execute rule 5 (attribute with path integration rule)

else add both attributes, A1 and A2, to IS

endif.

• Generate the path correspondence assertions in VI-IS and/or m

V2-IS

enddo.

end. (end of algorithm 1)

Algorithm 2

Refinement of an Integrated Schema

Input : an integrated schema

Output: an equivalent integrated schema IS and the IS-IS'

correspondences.

I* Replace entity types, which are only bound to link relationship type by

EER relationship type */

33

For each entity type E in IS such that all its roles are bound to link

relationship types R1, R2, ••• , R" whose cardinalities are 1: 1.

do:

• Substitute a new relationship type (say, R) forE together with all

its roles and related relationship types. R links all entity types that

were bound by link relationship types to E. R's attribute are the

attribute of E.

• Generate the following correspondence assertion in IS-IS'

E = R, R1 = R, R2 = R, ... ,~ = R.

enddo. (end of Algorithm 2)

3.5 EXAMPLES ILLUSTRATING THE VIEW

INTEGRATION ALGORITHM

Here, we illustrated the main aspects of our algorithm. We take

library information system which shows how different modeling

constructs (entity types and attributes) are integrated and the importance

of links integration. The second one, about customers' orders, requires

integration of a composite path and of corresponding attributes of

noncorresponding elements. Last, we discuss a new example, taken from

(Larson [1989]), which involves integration of an entity type and

relationship type, and refinement of the integrated schema.

A. Example 1: Library Information System

Let us consider the views VI, V2 Fig. 3.6). The set of

correspondence assertions between V 1 and V2 consists of two assertions

about elements and one about paths:

34

Book = Author.books with corresponding attributes;

title = title, ISBN = ISBN

Book.authors = Author with corresponding attributes;

name = name, birthdate = birthdate

Book-authors= book-Author

Step I of the integration algorithm is not required: There is no

attribute correspondence assertion.

Step 2, phase I, will start building the integrated schema by

considering the first assertion: Book=Author.books. As the two elements

are not of the same type, an entity type, say Book, is generated in IS.

Book has title and ISBN as attributes. The following correspondences are

generated:

A) VI-IS: Book= Book with corresponding attributes:

title= title, ISBN= ISBN.

B) V2-IS: Author.Books =Book with corresponding attributes:

title= title, ISBN= ISBN.

Similarly, the next correspondence will be dealt with:

Book.authors =Author. An entity type, say Author, is generated in

IS, with name and birthdate as attributes. The following correspondences

are generated:

A) VI-IS: Book.aurthors =Author with corresponding attributes:

name = name, birthdate = birthdate.

B) V2-IS: Author= Author with corresponding attributes:

name = name, birthdate = birthdate.

Step 2, phase 2: This phase is not needed. There is no corresponding

element.

35

Step 3, Phase 1: This phase is not needed. There is no relationship

type.

Step 3, phase 2: Deals with unique path correspondence:

Book-authors= book-author

Book Book-authors (VI) and books-Author(V2) are direct links.·

According to Rule 2, their integration consists in inserting a link in IS

between Book and Author. As these are two entity types, the new link

will conform to the following pattern: role-relationship type-role.

Assuming the new relationship type is named BA, two more

correspondences are generated:

-V 1-Is :Book - authors = Book - BA - Author

-V2-IS : Author - Book = Author - BA - Book

Nothing else is left to be done. The integration has produced the

integrated schema shown in Fig. 3.7.

B. Example 2: Customers' Orders

Let us now consider the customers' orders example. The views to be

integrated are illustrated in Fig3.8.

The set of correspondence assertions between V 1 and V2 consist of

the following assertions:

Customer = ustomer with corresponding attributes:

name= name

ordered = Ordline with corresponding attributes: ·

quantity = qty

Product = Product with corresponding attributes:

P# = P#

36

Fig. 3.8

F:ag.3.9

V3

Person 1-----<(o-

.__Ck:__,..PSN-o __,

Fig. 3.11

V2

)>-------1 '---.1---'
CLic#J

Car

Ownership

V4

Ownership)>------1
L...-_--,--1-----' Car

Fig. 3.12 CLid=::>

ordered-date= Order-Odate

ordered-date = ordline-Order -Odate

Customer-ordered= Customer-places-Order-ordline

Step 1 puts aside the two correspondences involving attributes date

and Odate, and removes date and Odate from the views.

Phase I of step 2 then proceeds with the fust three assertions, inserting

into IS:

• an entity type Customer, with name and C# attributes,

• a relationship type, say oline, with an attribute quantity.

• an entity type Product, with the P# attribute, and generating

the appropriate correspondence, assertions VI-IS and V2-IS.

Phase 2 of step 2 adds to IS the places and Order elements from V2.

• a relationship type places, without attributes.

• an entity type Order, with the 0# attribute, and generates

additional correspondence assertions VI-IS and V2-IS.

Phase I of step 3 adds the following path correspondence assertion

between Vl and V2.

Product-ordered= Product-ordline

Phase 2 of step 3 integrates the following paths:

Customer-ordered= Customer-places-Order-ordline and generates Is three

lins for the composite path:

Customer-places, places-Order, Order-oline. Then, the paths

Product-ordered= Product-ordline

37

are integrated, generating in IS the Product-oline linlc

Adequate correspondences are generated for VI-Is and V2-IS.

The next step 4, deals with the correspondences involving the date

and Odate attributes (which·were put aside by step 1):

ordered.date = Order.Odate

ordered-ordered.date = ordline-Order- Order.Odate.

The path correspondence includes a direct link: ordered-date.

Therefore, the other link is chosen for integration in IS. The ordline-Order

link already is in Is. The algorithm has only to add the Order-Odate link,

which implies creating Odate in IS as attribute of Order. Some more

assertions go into VI-IS and V2-Is.

As no refinement is needed, the final integrated schema is as shown

in Fig. 3.9.

C. Example 3: Car's Ownerships

Our last example was proposed by (Larson [1989]) to show a case

of entity-type/relationship-type integration. It is based on the views

illustrated in Fig.3.10.

Correspondence assertions are:

• Person = Carownership.PSNO with corresponding attributes:

PSNO=PSNO.

• Car= Carownership.Lic# with corresponding attributes:

Lie#= Lie#.

• owns = Carownership.

• owner-Person= Carownership-PSNO.

38

• owner-Car= Carownership-Lic#.

Integration starts with step 2 which generates three entity types in

IS:

• Person (integration of Person and PSNO), with attribute

PSNO.

• Car (integration of Car and Lie#), with attribute Lie#.

• Ownership (integration on owns and Carownership).

Path integration, step 3 adds the Person-Ownership and

Car-Ownership links. This process implies that two new relationships are

added-one, say PO, between Car and Ownership. Cardinalities for the

PO-Ownership and CO-Ownership roles are 1: 1.

After this step, the integrated schema is as shown in Fig. 3 .11. In

this case, if the refinement algorithm is run, the rule applied and the

PO-Ownership-CO structure is replaced by a simpler Ownership

relationship type (Fig. 3.12), which is the final expected result.

STEP 3: MERGING

Once the assertion specifying the correspondence between entities of

the two views are generated, similar entities and relationships are

integrated and unrelated entities and relationships are simply merged in

the partial integrated view.

39

CHAPTER-FOUR

AN INTERFACE BETWEEN EER MODEL TO

RELATIONAL MODEL

4.1 VIEW TRANSLATION

In this step the view is transformed from EER Model into

Relational Model. For each entity type E of the EER schema, we create

a relational schema that includesall the attributes that can have only

atomic attribute values. By analyzing the FDs (Functional Dependencies)

valid in RS (Relational Schema), the set candidate key is chosen as a

primary key. Foreign key attribute or relationship attribute will be added

during subsequent steps so that the translation process is carried out in

the following steps.

STEP 1: Assume Globally Unique Key Attributes. In this step, to

distinguish the key of two entities, the labelof the entity E is

prefixed tothelabel ofits key attributes.

STEP 2: Determine the key and other attributes of the relationships.

STEP 3: Define relational schema and key dependencies.

STEP 4: Determine the key and total attribute of the entities.

STEP 5: For each weak entity create a relational schema and include

the attributes with atomic domain of WE in RS.

40

STEP 6: For each multivalued or composite attribute A we have to

create a new RS, that includes an entity set X corresponding

to A plus the primary key K of E. The primary key of RS

formed from the attribute set X.

STEP 7: Create a single relation RSi for each subclass Si and include

in RSi the set of attributes that are specific for the subclass.

STEP 8: If only a few specific attributes are defined for a subclass, it

is possible to represent a generalization or subset hierarchy

by creating only a single relational schema to represent the

superclass and all its subclasses.

4.2 ALGORITHM FOR VIEW TRANSLATION

The EER model includes all the modeling concept of the ER model

so that the algorithm for the ER model and then for the EER model can

be developed.

4.2.1 Transformation Rules for EER model

The rules for transformation are described as :

RULE h For each regular entity type E in the ER schema, we create

a relation R that includes all the attributes of E. For a

composite attribute we include only the simple component

attributes. We also choose one of the key attributes of E as

primary key for R. If the chosen key of E is composite, then

the set of simple attributes that form it will together form the

primary key of R.

41

RULE 2: For each weak entity type Win the ER schema with owner

entity type, we create a relation R and include all simple

attributes of W as attributes of R. We include as foreign key

attributes of R the primary key attribute(s) of the relation that

corresponds to the owner entity type E; this takes care of ·

identifying relationship type of W. The primary key of R is

the combination of the primary key of the owner and partial

key of the weak entity type W.

RULE 3: For each, binary 1: 1 relationship type R in the ER schema,

we identify the relations S and T that correspond to the

entity type participating in R. We choose one of the

relations, say S, and include as foreign key in S the primary

key of T. It is better to choose an entity type with total

participation in R in the role of S. We include all the

attribute of the 1: 1 relationship type R as attributes of S.

RULE 4: For each regular (non weak) binary 1 :N relationship type R,

we identify the relation S that represents the participating

entity type at theN-side of the relationship type. We include

as foreign key in S the primary key of the relation T that

represents the other entity type participating in R; this is

because each entity instance on the N-side is related to at

most one entity instance on the 1-side of the relation type.

RULE 5: For each binary M:N relationship type R, we create a new

relation S to represent R. We include as foreign key

attributes in S the primary keys of the relations that represent

the participating entity type; their combination will form the

42

primary key of S. We also include any simple attribute of the

M:N relationship type as attribute of S.

RULE 6: For each multivalued attribute A, we create a new relation

R that includes an attribute corresponding to A plus the

primary key attribute K of the relation that represents the

entity type or relationship type that has A as an attribute.

The primary key of R is then the combination of A and K.

If the multivalued attribute is co.mposite, we include its

simple components.

RULE 7: For each relationship type R, n>2, we create a new relation

S to represent R. We include as foreign key attributes in S

the primary keys of the relations that represent the

participating entity type. We also include any simple attribute

of the n_ary relationship type as attribute of S. The primary

key of S is usually a combination of all the foreign keys that

reference the relations representing the participating entity

types. However, if the participation constraint (min~ max) of

one of the entity type E ·participating in R has max = 1, then

the primary key of S can be the single foreign key attribute

that refers to the relation E' corresponding to E~ this is

because, in this case each entity e in E will participate in at

most one relationship of R and can hence uniquely identify

relationship instance.

RULE 8: Convert each specialization with m subclasses {s1, s2, ••• , sm}

and (generalized) superclass C, where the attributes of C are

{k, a1, ••• , ~} and k is the primary key, into relation schema

43

using one of the following options.

Option 8 A: Create a relation L for C with attributes Attrs(L) =

{k, a1, ••• , an} and PK(L) = k. Also create a relation Li

for each si, 1 $ i $ m, with the attributes Attrs(LJ =

{ k} U {attribute of Si} and PK(Li) = K.

Option 8B:

Option 8C:

Option 8D:

Create relation Li for each subclass si, 1 $ i $ m, with

the attributes Attrs(L) = {attribute of sJ U { K, ai, ... ,

an} and PK(LJ = K.

Create a single relation L with attributes Attrs(L) =

{ K, a1, ••• , ~} U {attributes of s1 } U ... U {attributes of

sm} U {t} and PK(L) = K. This option is for a

specialization whose subclasses are disjoint and t is the

attribute type that indicates the subclass to which each

type belongs, if any.

Create a single relation schema L with attributes

Attrs(L) = {K, a1, ••• ,an} U {attribute of s1} U ... U

{attributes of Sm} U {t1, t2, ••• ,tm} and PK(L)=K. This

option for a specialization whose subclasses are

overlapping (not disjoint), each ti, 1 $ i $ m, is

boolean attribute to include whether or not a tuple

belongs to subclass Si. This option has the potential

for generating a large number of null values.

44

4.3 EXAMPLE ILLUSTRATING THE VIEW

TRANSLATION ALGORITHM

We define a simple EER Model to illustrate the major steps in the

design of relational model.

Suppose that it is desirable to build a company-wide database for a

large engineering firm that keeps track of all personnel, their skills and

projects assigned, departments worked in, and personal computers

allocated. Each employee is given a job title (engineer, technician,

secretary, manager). Engineers and technicians work on an average of two

projects at one time, and each project would be headquartered at a

different location (city). We assume that analysis of the detailed

requirements for the data relationships in the company results in global

view in EER diagram fig 4.1.

Each relationship in the diagram is based on a verifiable assertion

about the actual data in the company.

As an example of view integration, the generalization of

EMPLOYEE over JOB_TITLE could represent the consolidation of two

views of the database, one based on EMPLOYEE as the basic unit of

personnel and the other based on the classification of the employees by

job titles and special relationships with those classification, such as the

allocation of personal computers (PCs) to engineers. Now we apply the

rules of algorithm for translation from EER model to relationship model:

45

SKILL

SKn.a....

USED

PROJECT

LOCATION

BELONGS

·TO

PRE-ASSOC

DEPARTMENT

CONTAINS

EMPLOYEE

BAS·
ALLOCATED

PC

PART

:MANAGED

·BY

OF

DIVISION

SECRETRAY

BEADED

·BY

MAR RID

·TO

FIG. 4..1 COMPANY PBRS:)NNEL AND PROJECI"
DATJI..EASB (EER DIAGRAM)

(i) As the Rule 1 is stating "For each regular entity type E in the ER

schema, we create a relation R that include all the attributes of E.

For a composite attribute we include only attributes of the simple

component.

So in the diagram we have entities "Department, Division,

Employee etc." for which we are interested in creating the relations.

We will also apply Rule 2, once we are done with set of entities.

(ii) After this we study the association of relationships, whichare

one-to-one, one-to-many and many-to-many. We proceed in the

following steps:

STEP 1: Now we first study the one-to-one relationship between

entities. There are two such relationships.

(a) One such instance is in Figure 4.2. where we have :

Every department must have a manager. An employee can be

manager of at most one department.

(b) In figure 4.3 we have another instance of one_to_one relations.

Some personal computers (PCs) are allocated to engineers, but not

necessary to all engineers.

So now we apply Rule 3, Rule 4 and Rule 2 to these two cases,

then the relation in figure 4.2 can be converted into followings :

46

Fjg. 4.2 Fis- 4.4

Fjg. 4.3

Fis- 4.6

DEPARTMENT IDEPT-NO, ,EMP-NO)

EMPLOYEE (EMP-NO, ...)

Where if EMP _NO IS null then it Is not allowed m

DEPARTMENT.

The relat_ion in Figure 4.3 becomes

ENGINEER (EMP-NO, ... PC-NO)

PC (PC-NO)

where If PC-NO is null even then it is allowed in ENGINEER.

Now we will study the diagram with perspective of Rule 4 and others

earlier Rules, i.e. rule 1, rule 2 and rule 3.

STEP 2: For one_to_many (1 :N) relationships in the EER diagram,

we have one case as shown in Figure 4.4. The figure

implies that the every employee works in exactly one

department. Every department could contain many

employees. So after applying rule 4 we get the relations:

DEPARTMENT (DEPT-NO, ...)

EMPLOYEE(EMP-NO, DEPT-NO)

Where, if DEPT _NO is null then it IS not allowed m

EMPLOYEE.

STEP 3: Now we study many_to_many (N:M) relationship of EER

diagram shown in figure 4.5. In applying Rule 5 here we get

the following relation:

47

PRF _ASSOC(PA-NO,)

ENGINEER(EMP-NO, ...)

BELONGS_ TO(PA-NO,EMP-NO)

Where every professional association could have many members who

are engineers, or nonengineers. Every engineer could belong many

professional associations, or none.

(iii) Now we study the various extended affairs in ER i.e one entity one

relation, n_entity, n_ary, generalization

STEP 1: Now we study one entity, one relation constructs. This is

represented by EER diagram in Fig 4.6. Where an employee

could have one of the other employee as his or her spouse.

After applying rules 6 and rule 8 we have the relation as:

EMPLOYEE (EMP-NO, .. SP-EMP-NO)

Where if SP _EMP _NO is null then it Is allowed m

EMPLOYEE.

STEP 2: We study n-entities, n-ary, relationships where n > 2. We

found such instance in Fig. 4.7.

Where employees are assigned one or more projects, but can only

be assigned at most one project at a given location.

After applying Rule 7 we get the following relations:

EMPLOYEE (EMP-NO, ...)

PROJECT (PROJ-NAME, ...)

LOCATION (LOC-NAME, ...)

ASSIGNED_TO (EMP-NO, LOC-NAME, PROJ-NAME)

48

EMPLOYEE

Fig. 4.'1

ASSIGNED
-TO

EMPLOYEE

TECHNICIAN

Fig. 4.8

SECRETRAY

Where functional dependencies are :

EMP-NO, LOC-NAME ... >PROJ-NAME

STEP 3: In the search for generalization and subset hierarchy the

instances for this are represented in Fig. 4.8. The

&eneralization hierarchy as described in figure 4.8 show that

different type of employees are partitioned by values of a

common attribute JOB-TITLE. By applying Rule 8, we have

the following relations:

EMPLOYEE(EMP-NO,JOB-TITLE, common attributes)

EMP _MANGER(EMP-NO, specific attributes)

EMP _SECRETARY(EMP-NO, specific attributes)

EMP _TECHNICIAN(EMP-NO, Specific attributes)

After this step since there is no instance of Multiple relationship

and Aggregation, thus the objective of the chapter is completed.

49

CHAPTER-FIVE

AN INTERFACE FROM EER MODEL TO

OBJECT ORIENTED MODEL

5.1 Development of Rules for the Translation

An extended entity diagram of the database can be viewed into two

different perspective, the first is relational and second is object oriented.

In relational database for each entity type record and for each

relationship type record, different tables are created which contains data

in ordered tuples. The rules used in the view translation in previous

chapter will apply here for the translation of EER into relational model.

In an object oriented database system, we may represent the same EER

diagram, in terms of object model. The translation process will work on

following rules.

RULE 1: Each entity m the EER diagram can be translated into

different object types.

RULE 2: Simple data and string fields of the entities can be

represented similarly as fields of the objects.

RULE 3: The one-to-many relationship between entities may be

represented as listed valued fields to the objects, on the one

side of the one_to_many relationship, or as a pointed or both.

50

RULE 4: A many-to-many relationship may be represented as listed

valued field on both ends.

RULE 5: It may be the situation that an each object at object

class uses a linked list valued field to the another

subset.

In object oriented database system in which references are

represented by pointers, we may require such a representation with

pointers in both directions for efficiency. However the same

information is represented in two or more different places. This

could lead to an update anomalies inthe object oriented

representation. We could store a relationship between entities in

only one object

RULE 6: A set of rules applicable in object oriented design are also

applied. In designing, the following points are considered:-

• Identify objects and classes

• Prepare data dictionary

• Identify association (including aggregation) between

objects

• Identify attributes of objects and links

• Organise and simplify object classes using inheritance

• Verify that access paths exist for likely queries

• Iterate and refine the model

• Group classes into modules

51

5.2 Example illustrating the translation from

EER Model to Object Oriented Model

Let us take following EER diagram in Figure 5.1 whose relations

translation is shown in figure 5.2.

Then object oriented perspective of the same EER diagram after

applying all the rules discussed above, are in figure 5.3. In the object

translation of the above EER diagram following observation have been

made.

By applying rule 1, we have found that there are three object type

one for each of the entity types, person, organization and document of

then after applying the rule 2 and rule 3 date and strings of fields of the

entities are represented as fields of the object these fields include:

name string type

birthdate : date type

pubs : list of document

phone : list of area and number the object persons and

name of string type

member : list of persons and role

pubis : list of documents

52

NAME

NUIVIBER

N
PERSON PHONE

M

ROLE

DOCUJw.IENT =>-__;;;_N;.._,.-t ORGANIZATION

TITLE

Fig. 5.1

P~ON ~'C_SN __ O_#~--N __ A_M __ ~B_D_A_T_E~

ORGANIZATION loRGNO #I NAME

oocUMENT~I_o_N_o_#~ __ T_I_T_LE __ ~IP_us __ o_A_T_E~I

PHONE I CSNO # I NUMBER I AREA

MEI'YIBERI CSNO# I ORGNO#I ROLE

AUTHOR I CSNO# I DNO#

.. ·

Fis. &.2

DOC'l.Jl'YIE.N' T
TITLE STRING

P'UBDATE DATE

PERSON

NAME
BDATE

STRING

DATE

PUBLlSHER
ORGANOZA TION

NAME STRING

For the object organization

title : string type

pubdate

author

: date type

: list of persons

publishers ·: organization type of object document

Soourfinal object classes are mentioned in figure 5.4.

5.3 The Object class declaration in Object Oriented

Language C++

Now the perspectives of object oriented are applicable to

programming languages like C++ (these languages are called Objected

Oriented Language) as follows:

class person

{

}

char name[];

char birth date[];

document *pubis;

listl *phone;

class organization

{

}

char name[];

list 2 *members;

pubis : document

53

PERSON

NAME STRIN'G
BDATE DATE

I

PUBS UST OF DOCUIVIENT

PHONE UST OF [AREA .NUl''t'IBERJ

DOCUIVIEN T l
TITLE STRING
PUBDATE DATE

ORGANIZATION I
NAME STRING
ME.r't'IBER US T OF [PERSON .ROLEJ
PUBLS UST OF DOCUIVIENT

AUTHORS UST OF PERSON
PUUSHER ORGANIZATION

Fi.s- .s'.4

class document

{

char title[];

char pubdate[];

person *authros

organization publsher

}

where listl is

structure listl

{

char area[];

struct listl *nextl;

}

where list 2 is

structure list 2

{

char person

struct list2 *next2;

}

54

CHAPTER-SIX

CONCLUSION

In the interface from EER model to relational model, it has been .

shown that a practical step-by-step methodology for relational database

design can be derived using a variety of extensions to the ER conceptual

model. The methodology has been illustrated with a simple database

design problem, showing each design steps in detail.

A powerful schema integration methodology is the key to successful.

database design. An integration methodology, designed to meet the

objective of support reuse of existing databases and existing application

programs, without contradicting the launching of new database services,

have been described. The approach employed is based on the following

features :

• Automatic resolution of structural conflict

• Conflict resolution performed without modification of initial views.

• Use of a format declarative approaches for user definition of

interview and correspondences.

• Applicable to a variety of data models.

• Automatic generation of structured and operational modification

between the views and the integrated schema.

55

The OODBS are getting a lot of attention from various fields. In

this work as a interface from EER model to object model, a set of rules

have been developed. The methods, discussed provides a procedure for

identifying object and classifies how these classes and object are related

with each data, and is structured in the EER diagram with the view of

OODBS.

Summarizing the discussion, the basic issue anses whether

object-oriented concepts are answer to many problems. It is found that

object orientation is a new way to tackling database systems but not

without use of the fundamental EER model. Coupling of C++ with

database functionally is reasonably easy and simple to implement. Since

the database interface is based on the EER model, hence it has to be

remodeled in terms of EER model. Therefore it is necessary to have

some kind of re-engineering, a "backward" mapping from the classical

platform data models to the EER model in order to be able to manipulate

data with the proposed interface.

Furthermore, some future improvements could be made m the

following directions:

(i) Integration of inclusions, intersection, andexclusion assertions.

(ii) Consideration of generalization links is correspondence assertions

and integration rules.

(iii) The data model should be enhanced with further modeling

concepts. Problems might arise due to their representation in C++.

56

(iv) Dynamic schema modifications can be added.

(v) Support the subdatabases/work spaces i.e. some protection

mechanism on type and in balance level. The implementation can

be modeled for large objects.

57

REFERENCES

ATZENI, P., BATINI, C., LENZERINI, M., AND VILLANELLI, F.

1981, IN COD: A system for conceptual design of data and transactions

in the entity-relationship model. In Entity- Relationship model. In

Entity-Relationship Approach to Information Modeling and Analysis. ER

lnsttitue, Saugus, Calif.

Ahmed. R. and Navathe, S.B. (1991). Version Management of Composite

Objects in CAD Databases, in "Proc. ACM SIGMOD Conf', pp. 209-108

Denver.

Breitender, C.J. and Muck, T. (1990) A Graph grammer Driven ER case

environment, in "Proc. lOth lnt'l, Conf. on Entity Relationship Approach",

pp. 363-380.

Carswell, J.L., Jr., and Navathe. S.B. (1986) SA-ER: A Methodology That

Links Structured Analaysis and ER Modeling for Database Design, in

"Proc. of the 5th Intl. Entity Relationship Conference", pp 19-35 Dijon,

France.

Chen. PP. (1976). The Entity Relationship Model: Towards a Unified

View of Data, ACM Trans. on Database System 1(1), 9- 36.

CHUNG, 1., NAKAMURA,-F., AND CHEN, P. 1981. A decomposition

of relations using the enitty-relationship approach. In Entity-Relationship

Approach to Information Modeling and Analysis, P. Chen. Ed

North-Holland, Amsterdam.

CODD, E. 1970. A relational model for large shared data banks,

Commun. ACM 13, 6 (June), 377-387.

C.Batini, M. Lenzerini, and S.B. Navathe, "A comparative analysis of

methodologies for database schema integration" ACM Computing

Surveys, Vo. 15, no.4 pp. 323-364 Dec. 1986.

Chen. J.Y., and Wang. J.J. Comparing object-oriented design methods

experimentally, in Proceedings, 3rd Int. Conf. on Technology of

Object-Oriental Languages and Systems-TOOLS '90. Sydney, Australia,

November 28-30. 1990.

Coad P., and Yourdan. E. Object Oriented Analysis, Prentice- Hall.

Englewood Cliffs. New Jersey., 1990.

Coad, P. Adding to OOA Results. J. Object-Oriented Programming May

64-69(199lb)

Dean H. Object-Oriented Design Using MEssage Flow Decomposition, J.

Object-Oriented Programming 21-31 (1991)

DeAntonellis, V., and Demo. B. (1983) Requirements Collection and

Analysis, in S.Ceri, ed., Methodology and Tools for Database Design", pp

9024,North-Holland Amsterdam.

Ehmasri, R., and Navathe, S.B. (1984) "Object Integration in Logical

Database Design, in "Proc. Int'! Conf. on Data Engineering", pp 426-433.

ELMASRI, r., HEVNER, A., AND WEELDREVER. 1. 1985 The

category concept: An extension to the entity-relationship mdoel. Data

Knowl. Eng. 1,1 75-116.

Fowler, M., Which 00 analysis and design method" in SCOOP Eurpoe,

October, 1991, pp 1-7.

Henderson-Seller B., ~ward. J.M. The Object Oreinted Systems Life

Cycle, Comm. ACM 33, 142-159 (1990)

Jalote, P., Functional Refinement and NEtsted Objects for Object-Oriented

Design. IEEE Trans. Software Engg. 15, 264- 270(1989)

J.A. Larson, S.B. Navathe, and R. Elmasri, "A theory of attribute

equivalence in databases with application to schema integration", IEEE

Trans. Software Eng., Vol. 15, no. 4 Apr. 1989.

NA VA THE. S. AND CHENG. A 1983. A methodology for database

schema mapping from extended entity relationship models in to the

hierarchical model. In the Entity Relationship Approach to software

engineering G.C. Dvis eta;., Eds. Elsevier North-Holland New York.

NATATHE S. AND GANDHI, S. 1982 A methodology for vtew

integration in logical database design. In Proceedings of the 8th

international coference in very large databases (Maxico City) VLDB

Endowmetn, Saratoga, Celif. pp. 142-152.

NAVATHE S. SASHIDHAR. T., AND ELMASRI R. 1984 Relationship

merging in schema integration. In Proceedings of the 1Oth Intemation

Conference Very Large Data Bases (Singapore) VLDB Endowment,

Saratoga. Clif., pp. 78-90.

NAVATHE. S. ELMASRI R., AND LARSON J. 1986 Integration user

view in databse design IEEE Computer 19, 50-62.

NAvathe S.B. and Balaraman, A. (1991) A Transaction Architecture for

a General Purpose Semantic Data Model Progressive Fragment Allocation,

in ":Proc. lOth Int'I Conf. on the Entity Relationship Approach" San

Mateo. CA.

Pemul. G., and Tjoa, A.M. (1991) A View Integration Approach for the

Design of Multilevel Secure Databases, in "Proc. lOth Int'I Conf. on the

Entity Relationship Approach" San MAteo, CA.

Smith J., and Smith (1977) Database Abstractions: AGgregation and

Generalization ACM Trans. on Database Systems 2(2)

S.B. Navathe. R. Elmasri, and J.A., Larson "Integration user views in

databse design " IEEE Comput., Vol. 19, no. 1 Jan. 1986. pp. 50-52.

WEBRE, N. 1981 An Extended E.R. Model and its use on a defense

project. In Proceedings of the 2nd International Conference on the Entity.

Relationship Approach, (Washington D.C.). North-Holland Amsterdam.

pp., 175-194.

Ward P.T. How to Integrate Object-Orientation with STructured Analysis

and Design, IEEE Software 6, 74-82 (1989)

Wasserman. A.l., An Object-Oriented Structure Design Method for Code

Generation, Software Engg. Not. 14, 32-55 (1989)

	TH55930001
	TH55930002
	TH55930003
	TH55930004
	TH55930005
	TH55930006
	TH55930007
	TH55930008
	TH55930009
	TH55930010
	TH55930011
	TH55930012
	TH55930013
	TH55930014
	TH55930015
	TH55930016
	TH55930017
	TH55930018
	TH55930019
	TH55930020
	TH55930021
	TH55930022
	TH55930023
	TH55930024
	TH55930025
	TH55930026
	TH55930027
	TH55930028
	TH55930029
	TH55930030
	TH55930031
	TH55930032
	TH55930033
	TH55930034
	TH55930035
	TH55930036
	TH55930037
	TH55930038
	TH55930039
	TH55930040
	TH55930041
	TH55930042
	TH55930043
	TH55930044
	TH55930045
	TH55930046
	TH55930047
	TH55930048
	TH55930049
	TH55930050
	TH55930051
	TH55930052
	TH55930053
	TH55930054
	TH55930055
	TH55930056
	TH55930057
	TH55930058
	TH55930059
	TH55930060
	TH55930061
	TH55930062
	TH55930063
	TH55930064
	TH55930065
	TH55930066
	TH55930067
	TH55930068
	TH55930069
	TH55930070
	TH55930071
	TH55930072
	TH55930073
	TH55930074
	TH55930075
	TH55930076
	TH55930077
	TH55930078

