G2

FROM A SIMPLE SANSKRIT SENTENCE TO VERB &
KARAKA SPECIFICATIONS : An NLP Approach

Dissertation submi@ted to

Jawaharlal Nehru University
in partial fulfilment of the requirements
Sfor the award of the degree of
MASTER OF TECHNOLOGY

in

COMPUTER SCIENCE & TECHNOLOGY

qp+ Jigt Abpendr
by -

Sanjay Kumar Dhurandher

SCHOOL OF COMPUTER & SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY
NEW DELHI - 110067
INDIA
JANUARY, 1994

CERTIFICATE

_ ’fhis is to certify that the dissertation titled "From a Simple Sanskrit Sentence to Verb and
Karaka Specifications : An NLP Approach” being submitted by me to Jawaharlal Nehru
University, New Delhi, in partial fulfilment of the requirements for the award of the degree of
Master of Technology in Computer Science & Technology, is a record of the original work done
by me under the supervision of Prof. G. V. Singh, School of Computer and Systems Sciences,
during the Monsoon Semester, 1993.

The results reported in this dissertation have not been submitted in Apart or in full to any other

university or institution for the award of any degree.

Prof. K. K.

‘Dean, School of Computer &

School of Computer & R Systems Sciences,

Systems Sciences, . Jawaharlal Nehru University
 Jawaharlal Nehru University, ' New Delhi.

New Delhi.

ACKNOWLEDGEMENT

It is my pleasure to express my deep sense of gratitude to Prof. G. V. Singh, SC&SS, JNU,
for his gracious and valuable guidance. This dissertation would not have happened without his
timely and proper guidance. I feel privileged that 1 worked under his supervision.

My warmest thanks also to Prof. K. K. Bharadwaj, Dean, SC&SS,JNU, for providing the
excellent academic environment and facilities which enabled the successful con;pletion of my
project.

My sincerest thanks to my friend D.K. Lobiyal for reviewing, commenting and providing
valuable information. My heartfelt thanks to Amit, for revealing mysteries and tricks of Prolog.
Reeta Nath, Susmita, Ajay, Bhushan and my classmates were so friendly and ever so ready to
cooperate. My thanks to them. I thank my very own Roshan for his friendliness, cooperation and
being such a good company in those long hours in the Lab.

l.also express my thanks to DoE for'funding the machines on which the present work was carried
Ou.t.

My special thanks to Dr. K. Suryanarayan, who explained me the intricacies of Paninian
Grammar. At various stages of preparation of this work, I availed his ex-pertise and valuable

suggestions.

New Delhi , ' Sanjay Kumar Dhurandher
January, 1994.

To
My Parents

CONTENTS

CHAPTER 1
NLP : AN INTRODUCTION

1.1 Natural Language Processing -

1.1.1 Introduction

1.1.2 Natural Language Understanding

1.1.3 Problems in NL Understanding

1.1.4 General Approaches to NL Understanding

1.2 Parsing

1.3 Overview of The Problem

CHAPTER 2
PANINIAN GRAMMATICAL FRAMEWORK

2.1 Paninian Grammar

2.2 Sanskrit Syntax

2.3 Karaka Relations

2.4 Karaka to Vibhakti Mapping
2.5 Paninian Theory Based Parsing
2.6 Morphological Process

CHAPTER 3

SANSKRIT SENTENCE ANALYSIS 21-26
3.1 Sentence Analysis 21
3.2 Semantic Representation 23
3.3 Pada Aanlyzer , 23
3.4 Computational Lexicon 25

CHAPTER 4 ,

IMPLEMENTATION 27-46
4.1 Lexicon 27

4.1.1 Dhatukosh 27
©4.1.2 Pratipadikkosh 33
4.2 Analyzer 42

4.2.1 Reverse_Subant | - 42

- 4.2.2 Reverse_Tigant 42
4.3 Main Module 43

CHAPTER 5

CONCLUSION : 47

BIBLIOGRAPHY = 48

APPENDIX

CHAPTER I

NLP : AN INTRODUCTION

1.1 Natural Language Processing

1.1.1 'lntroduction

Understanding or prnducing sentences or texts in ‘natural language’ (i.e. the language we
use every day) have become crucial elements in human-machine communication [10]. They are
therefore front-line research areas in thé fields Qf Artificial Intelligence, Computational
Linguistics and Cognitive Psychology. The ’language industry’ is fast developing while research
work in recent years in various countries has shown that a considerable amount of v-vork is still
to be done.

The term ’natural language processing’ itself covers a variety of interpretations, while at the
same time the topic also goes under varic;us other names, including ’natural language analysis’,
’computational linguistics’, “linguistic processing’, *automatic language processing’ and so on.

The principal areas of research in Natural Language Processing (NLP) are :- H

* Developing and modelling linguistic systems.
* Conceiving and implementing models and systems of NLP.
* Evaluating such systems from the point of view of human- machine interfaces.

Natural language understanding and Natural language generation are, the two
components of Natural language processing - a tecﬁnology with the ambitious goal vof making
it easy to co;;lmunicatc with computers as it is with people [5].- The phrase natural language

processing generally refers to typed, printed, displayed, or spoken language rather than the

1

speech. Getting computers to understand speech is the focus of related Al technologies called

Speech recognition and Speech understanding.

1.1.2 Natural Language Understanding

Compared to people, computers require a great deal of precision, completeness, exactness
in-.communication. For example, if we want someone to bring something for us, to drink, we
might get the same result by saying any of the following sentences:-
* Please get me something to drink.
* Bring me a drink.

Got anything to drink ?

*

*

I’m thirsty - can you get me something ?
Unfortunat_ely, a computer does not have the same kind of linguistic flexibility.

The goal of natural language understanding research is to enable computers to understand
us well enough to perform an inter;ded appropriate action. .

Developing programs to understand natural language is important in Al because a natural
form of communication with systems is essential for user acceptance. Fuﬁhermore, one of the
most critical tests for inteili gent behaviour is the ability to communicate effectively. Al p'rograms
must be able to communicate with their human counterparts in a natural way, and natufal
language lS one of the most important mediums for that purpose.

We say a program understands a natural Ianguage if it behaves by taking a (predictably)
correct or acceptable action ix; response to the input. For example, we say a child demonstrates

understanding if it responds with the correct answer to a question. The action taken need not be

2

an external response. It may simply be the creation of some internal data structures as would
occur in learning some new facts. But in any case, the structures created should be meaningful

and correctly interact with the world model representation held by the program.

l.'l.j Problems in Natural Language Understanding
Developing programs that understand a natural language is a difficult problem. Natural
languages are large. They contain an infinity of different sentences. One of the problems is to
account for the infinite number of sentences by developing a finite number of rules. Natural
languages are ambiguous. A word as well as a sentenc.e may have several meanings. For
example, the word "bear" and the sentence such as "I saw a man on the hill with the téléscope"
can have different meanings in different contexts. This makes the creation of programs that
"*understand’’ a natural language, one of the most challenging tasks in AL It requires that a
program transform sentences 6ccuni ng as paﬁ of a dialogue into data structures which convey
the intended meaning of the sentences to a reasoning program. In general, this means that the
reasoning program must know a lot about the structure of the language, the possible semantics,
the beliefs and goals of the user, and a great deal of general world knowledge.
The four problems that cause difficulties in naturai language understanding are ambiguity,

imprecision, incompleteness, and inaccuracy.

Ambiguity

Natural language can be ambiguous due to multiple word meanings, syntactic ambiguity,

and unclear antecedents. For example,

John hit Bill because he sympathized with Mary.
Who sympathized with Mary ? As in this case of syntactic ambiguity, one cannot determine the

antecedent of "he" without establishing a context for the sentence.

Imprecision

Concepts often are not described with precision. One’s ability to understand what is being
said may rely on one’s familiarity with a situation. For example, consider the following
sentences:-

* [have been waiting in the doctor’s office for a long time.
* The crops died because it hadn’t rained in a long time.

* The dinosaurs ruled the earth a long time ago.

* If you read a story that included these sentences and then someone asked you about the
length of the wait in the doctor’s ()t"tigfc, you might respond that it was no longer than a tew
hours because you are familiar with the concepts discusscd in the sentences. Without the
conceptual familiarity, a computer would not be able to differentiate between the three different

lengths of time represented by the same phrase.

Incompleteness

Since we expect other people to "fill in the details" when we tell them something, we
often supply incomplete information. For example, Elaine Rich suggests the following story :

"John went out to a restaurant last night. He ordered steak. When he paid for it,

he noticed that he was running out of money."

4

Did John eat steak ? Although it is not stated explicitly in the story, you probably assumed that
he did; after all, why else would he have paid for it ? Y(;ur expectations of likely events in that
particular situation allowed you to understand information that was not included in the text. To
be able to comprehend incomplete information, a computer must possess the same kind of

situational expectations [7].

1.1.4 General Approaches to Natural Language Understanding

Essentially, there have been three ditferent approaches taken in the development of natural
language understanding programs, (1) the use of keyword and pattern matching, (2) combined
syntactic (structural) and semantic directed analysis, and (3) comparing and matching the input
to real world situations (scenario representations).

The keyword and pattern matching approach is the simplest.

The third approach is based oh the use of structures such as the tframes or scripts.

The second approach is one of the most popular approaches currently being used. With
this approach, knowledge structures are constructed during a syntactical and semantical analysis
of the input sentences. Parscrs are used to analyze individual sentences and to build structures
that can be used directly or transformed into the required knowledge formats. The advantage of
~ this approach is in the power and versatility it provides. The disadvantage is the largcamoun@
of computation required and the need for still further proécssing to understand the contextual
mt?anings of more than one sentence.

One way to ensure that none of the elements of a sentence is overlooked is to conduct

a thorough analysis of the sentence’s syntax. This syntactic analysis requires some kind of

parsing technique (a method of separating a sentence into its component parts), which is the

computer’s equivalent of diagramming a sentence.

1.2 PARSING

Before the meaning of a sentence can be determined, the meanings of its constituent parts
must be established. This requires a knowledge of the structure of the sentence, the meanings
of individual words and how the words modify each other. The process of determining the
syntactical structure of a sentence is known as parsing [6].

Parsing is the process of analyzing a sentence by taking it apart word-by-word and
determining its structure from its constituent parts and subparts. The structure of a sentence can
be represented with a syntactic tree or a list. The parsing process involves finding a
grammatical sentence structure from an input string. When given an input string, the lexical parts
or terms (root words) must first be identified by type, and then the role they play in a sentence
must be determined. These parts can then be combined successively into larger units until a
complete tree structure has been completed.

To determine the meaning of a word, a parser must have access to lexicon. When the
parser selects a word from the input stream it locates the word in the lexicon and obtains the
wordr’s possible function and other features, including semantic information. This information
is then used in building a tree or other representation structure. The general parsing process is

illustrated in the figure below :-

Input
String

PARSER -~

/

Lexicon

h 4

OQutput
Representation
Structure

A lexicon is a dictionary of words (usually morphemes or root words together with their
derivatives), where each word contains some syntactic, semantic, and possibly some pragmatic

information. The information in the lexicon is needed to help determine the function and

meanings of the words in a sentence.

Basic Parsing Techniques

Parsing takes advantage of inherent regularities in natural language to ensure that the
computer understands the precise function of each word in a sentence, as well as its relationship
to each of the other words. |

.Basic parsing techniques used for analysis include the following »:

Top-Down Parsing : A top-down parser begins by hypothesizing a sentence and successively
predicting lower levei constituents until individual preterminal symbols are written. These are
then rcplaced by the input seﬁtence words which matchv the terminal categories.

Bottom-Up Parsing : A bottom-up parser begins with the actual words appearing in the sentence

and is, therefore, data driven.

1.3 OVERVIEW OF THE PROBLEM

Sentence generation and analysis are the two main issues-in Natural Language Processing.
Compared to generation, parsing is a complex process. The structure of a language is also an
important point in this regard. Parsing languages like English, which are configurational

languages is simpler compared to non- configurational languages, like Sanskrit.

Syntax is one of the most important aspects of the grammar that needs to be considered

7

for sentence analysis.

Syn“téx may be described as the mode of arranging words in a sentence. Herein, questions
relating to concord, government and order are to be considered. Sanskrit is mainly concerned
wifh the first two. In our system we consider the concord of the verb with the subjectT
Government is considered by the karakas.

It is mentioned above that Sanskrit is a non-configurational language. For the same
reason, the mere order of words is not of material importance. There are, however, certain
constraints on this order.

The topic of the present dissertation is "From a simple Sanskrit sentence to verb and
karakalspeciﬁcations' : An NLP abpmach". Fér the purpose of this work, we consider séntcnces
comprising of one or more noun-forms and a finite verb-form. . To handle this problem, two
lexicons were designed, one for the verbal bases (i.e. dh:atukosh) and another for nouns (i.c.
pratipadikkosh). Further, detailed procedures for identifying A_\fvr_b-fonns (i.e. reverse_tigant) and
noun-forms (i.e. reverse_subant) are written.

The input to the system is a simple sentence. The system identiﬁeé, with the help of
above procedures, the verb with its attributes and noun with its att_ributes. Further, the verb also
displays all possible karakas that it takes. The sentence is considered to be conecf if the karakas
of thé verb and the case-suffixes of the nouns match. There is a straight mapping of rthe .
case-suffixes to the karakas.

The system assumes and is augmented by the related work ’Sentence generation based
on the verb ;md karaka specifications’. The system does not account f(;r sentences with

adjectives, adverbs, participle and passive voice.

8

CHAPTER II

PANINIAN GRAMMATICAL FRAMEWORK

2.1 Paninian Grammar

Panini formulated rules of Sanskrit grammar in his work called ASHTADHYAYI (Iiteral.ly
Eight Chapters) [3]. With a finite set of rules he attempts to account for infinite variety of
language forms. His work is equally well known for its style as- for its contents. This style called
Su?ra,-is a formal language which challenges to achieve utmost brevity in its .code. Some of the
techniques adopted to achieve this brevity are: (a) information chaining (anuvritti and particle
ca), (b) concept of iths as control characters and operators, (¢) arrangement of sounds in specific
ofder, (d) concept of hierarchies in several layers; (e) exception handling, ete. He also details
the procedures to derive the verb from verbal roots, noun. forms from nominal bases and the
treatment of syntax through karaka. These procedures have simiiarities to computer program.

The most impressive aspect o.f the system of Ashtadyayi is that the rules are logically
interrelated and cohesively organized on sound scientific principles. Panini’s system is algebraic
in"stylc and is very differen; from the classic Sanskrit and gives authoritative description of the

Sanskrit language. !

The technique of description and methodology adopted by Panini in his work, has
attracted wide attention and interest in recent times, by linguists as well as computer scientists.

The relevance of Sanskrit in the Indian linguistic context need hardly be emphasized.

2.2 Sanskrit Syntax

The goal of Paninian theory is to construct a theory of human natural language
communication. Grammar, a part of such a theory of communication, is a system of rules that
establish a relation between what the speaker decides to say and his utterance, and similarly, what
the hearer hears and what m?aning he extracts.

The main problem the Paninian approach addresses is how to extract karaka relations
(which are syntactico-semantic relations) from a sentence. As it is inspired by an inflectionally
rich language, it emphasizes the roles of case markers.

According to Sanskrit grammarians sentence is the minimal meaningful unit of a language.
The division of a sentence into words and, of a word into base and suftixes are merely tor the
sake of grammatical analysis , states Bhartrhari, the grammatical-philosopher of the 5th centuary
A.D [3]

The verb plays a key role and is the semantic focus of a Sanskrit sentence. A finite
verbal form contains information regarding tense/mood, pumber, person , voice and so on.
However, it may be mentioned here that Sanskrit allows purely nominal sentences.

The corner-stone of Sanskrit syntax is the notion of Karaka. Karaka is conceptual notion
that mediates mapping between grammatical relations and case-suffixes.

A syntaétic unit is called ‘pada’ and Panini defines it as:

sup-ting antam padam P.1.4.14.
‘that which ends with a sup sutfix (i.e. inflected noun) or with a ting suffix (i.e. inﬂg:ctcd verb)
is called pada’.

Therefore, a Sanskrit sentence may be conceived as made up of inflected nouns and

10

conjugated verbs.
There are si>; types of Karakas in Sanskrit. They are as follows :

1. KARTA : The most independent person /thing in the performance of an action.
2. KARMA : The object most desired (to be obtained) by the agent of action.
3. KARANA : The efficient means in the performance of an action.
4. SAMPRADANA : The recepient of the object of the verb da (to give).
5. APADANA : The static point in the action of separation.
6. ADHIKARANA : The substratum of the action performed.

_ Each karaka is expressed in terms of a case-ending. While a strict one-to-one
correspondence of a karaka and a case-suffix may not be established, in general, it may be stated
that, a particular case-suftix roughly corresponds to one karaka. Thus, e.g. to refer to the

instrument in bringing about an action (karana), the third case-suffix is employed.

2.3 Karaka Relations

There is no straight forward mapping trom vibhakti to semantic relation between noun
groups and verbs. The key to arriving at an answer is to identify intermediate relations.

The Paninian grammar specifies a mapping from the nominals and the verb(s) in a
sentence to karaka relations between theﬁ. Thus, the§e relations by themselves do not give the
semantics. They specify relations which mediate between vibhakti of nominals and the verb form
on one hand and semant_ic relations on the othef [4]- The various levels in the Paninian model

are as shown below :

11

Vibhakti

Semantics Karaka Labels
(case-markers)
dhruvam apaye apadana pancani
sadhakatanan karana tritya
karwana yam sampradana chaturthi
abhipriti
adhana adhikarana saptani
karturipsita karsa dvitiya
tana
svatantra karta prathama/tritiya

Fig. 2.1

13

----- - Semantic Level (What the speaker has in mind) |

----- Karaka Level

----- Vibhakti Level

----- Surface Level (uttered sentence)
The karaka relations may be shown in the following manner as shown in fig. 2.1.

In all there are about six types of karaka relations. What the karaka relations do specify
with respect to a verb, however, are six or so relations of nominals to that particular verb. These
are sufficient for providing a mapping from karaka relations to semantic relations. Thus the
.karakas provide the maximum necessary information relétive to a verb. For example, the karta
karakav may get mapped to agent for one verb, and experience for another, etc. Karaka theory
incorporates. two other insights. ' ~ A

1. Each and every verb refers to an activity or event that can be further sub-divided into a
compléx of activities. Each__of the sub-activities has its own semantic relations and karaka
relations. For example, inAthe action of cooking rice, a person kindles the ﬁrewoo;i,

places the vessel on the fire, puts water and rice in the vessel and so on. Each of these

14

sub_activities has its own semantic relations with associated objects. Thus, for each of
the sub- activities there will be appropriahtc karaka relations. For example,
(i) ramah sthalyam odanam pacati.
(Ram cooks rice in the pot)
(i) sthali pacati.
(The pot cooks(the rjce)) _
(iii) odanah pacyate.
(The rice cooks).

- In (i) the speaker decides to givc;, importance to the role of Ram, whereas in (ii) the
Aspeaker wishes to emphasize the role of pot. Even though the vérb 'representi.ng a main
activity may be used in a sentence, the karaka relations specilﬁed might correspond to a
particular sub- activity. This will have obvious consequences for semantic relations.

2. Karaka relations also depend on the concept of Vi&aksha. Vivaksha refers to the speaker’s
viewpoiﬁt or attitude towards the activity. A sentence is not a statement of an objective
activity. Rather it is the speaker’s viewpoint of the world realiiy. Usually vivaksha
affects tﬁe' choice of verb form, which in turn affects the karaka relations and vibhakti.
Karta karaka holds Between that nominal and a verb in a sentence, whose referent is
*swatantra’ or the most independent or autonomous out of all the karaka nominals that

| are expresséd by the speaker. However, it is with respect to the activity ir.nplied by the
verb. In (i), out of Ram and sthali, it is the former which is more independent. Hence,
Ram is the karta in (i). In (ii), in the absencé of 'any. mention of Ram, out of sthali and

odana it is the former which is more independent. Hence, sthali is the karta.

15

According to Kaundbhatta, who further elaborates on the concept of swatantra, every verb
in a sentence refers to an activity. S;wmctimes the verb can be ambiguous, in which case it may
refer to several activities. When used in a sentence, it may refer to any one of its possible
activities. Karta of a verb in a sentence is one which is the “ashraya™ or base of the activity.
In (i), the activity referred to is the act of cooking rice by Ram by placing the vessel on the fire,
putting the water in the vessel etc. Thus, Ram is the karta of this activity. In (ii), the activity
referred to is the cooking of the rice by the pot. The pot is the karta of this activity. In (iii),
the rice is conceived as the agent in the process of cooking. Different languages make different
lexical choices for the activitics. English, for example, retains the same verbal root for all the

three activities above.

2.4 Karaka to Vibhakti Mapping

The mapping from karaka level to vibhakti level will allow the mapping of a representation
of a sentence at the karaka level to a representation at the vibhaku level.

We now give the rules in the Astadhyayi that relate these karakas with the casc-sufﬁxesv
(vibhakt). Only the most general fules are mentioned.
1. pratipadikartha-linga-parimana-vacanamatre prathama

(P.2.3.46) .

Where the sense is that of the Crude form or where there is the additional sense of gender
only, or measure only, the first case-affix is employed.

2. karmanti dvitiya (P.2.3.2)

When the object is not denoted by the termination of the verb, &c. i.e. the verb does not

16

agree with it, the second case- aftix is added to the word.
3. kartrkaranayos tritiya (P.2.3.18)
In denoting the agent or the instrument the third case- afﬁx is employed.
4. Chaturthi sampradane (P.2.3.13)
In denoting the sampradana-karaka the fourth affix or Dative is employed after the noun.
5. abadane pancami (P.2.3.28)
When the Apadana-kéraka is denoted, the fifth case-affix is employed.
6. saptamyaadhikarane ca (P.2.3.36)

The seventh case-affix is employed when the sense is that of location.

2.5 Paninian Theory Based Parsing .

The Paninian theory discussed above can be used for building a parser. Parsing is the
reverse of generation, where given a sentence a suitable semantic structure ié to be assigned to
it. If we build a parsér based on the Paninian theory, we have to.obtain a representation of a
given sentence at the vibhakti level, using which we must obtain a representation the karaka
level, and finally, a representation at the semantic (or mental) level.

It turns out that the Paninian theory is extremely suitable from computational point of view.

It can be used in a natural r;mnner for structuring a parser which is éxtremely'efﬁcient.

It is fairly obvious that one part of the parser must take care of morphology. For each word

in the input semem;e,.a dictionary or a lexicon needs to be looked up, and associated grammatical

information needs to be retrieved. The words have to be groﬁped together yielding nominals,

verbals etc. Finally, the karaka relations among the elements have to be identified. The structure

17

Sentence ——————— Surface level

fctive Morphological

Lexicon analyzer

Words | with associated

grammatical | information

Yerb form Local word
Chart groupep

h 4

words | groups ————— Uibhakti lewvel

Karaka chart & Core
Lakshan charts parser

b 4

Parse | structure ——— Karaka level

Fig, 2.2 @ Structure of the Pérser

18

of the parser is as shown in Fig. 2.2.

2.6 Morphological Process

It was mentioned that syntactic units are generated by morphological process. The procedures
whereby a noun and verb are inflected are called subant and tigant respectively [9]. A briet
description of the same is given below :

SUBANT

A subant is made up of a nominal base and a nominal suffix. The nominal base is called
pratipadik. There are 21 nominal suftixes in Sanskrit. In all there are 7 vibhaktis and 3 vachans

in Sanskrit. The nominal suftixes are arranged in 7 x 3 paradigm. The suttixes are listed as :

ekvachan dvivachan bahuvachan
vibhakti
prathama su au ... jas
dvitiya am aut sas
tritiya taa bh yam bhis
chaturthi ne bhyam bhyas
panchami nasi bhyam bhyas
shashti | nas - os aam
saptami ni 0s sup

The nouns may be classified as sangya, sarvnam and sankhyavachak. The first varga sangya
includes nouns, proper or common. The second group is that of sarvnam (pronouns), and

sankhyavachak deals with numerals. The transformational rules for forming subant are different

19

for each varga.

TIGANT

Tigant deals with verb inflexion. Panini divides all the verb roots (dhatu) into ten ganas.
They are : bhavadi, adadi, juhotyadz:, divadi, svadi, tanadi, krayadi, churadi, tdadi, rudhadi.

There are about 2000 dhatus in Sanskrit. The bhavadi gana is by tar the largest one
comprising of almost 40% of all the dhatus. The transformation rules acting on verbal roots are
different for each gana and they are the same within a particular gana. The verbal root from a
specific gana can then be a parasmaipadi, atmanepadi or ubhaypadi. Knowledge of lakar (which
pertain to tense or mood of a verb) is required to specity a desired action. Sanskrit has ten lakars
viz. lot, Irit,lut. Like English, we have three numbers or purushas in Sanskrit namely, wuttam
purusha (first), madhyam purusha (sccbnd) and pratham purusha (third). And tinally we need

a purusha to form a tingant pada.

For purposes of analysis, we have to take these procedures into consideration. These
procedures have to be analyzed in a reverse manner for identification of word forms.

Details of the same are given in the following chapter.

20

CHAPTER III

SANSKRIT SENTENCE ANALYSIS

3.1 Sentence Analysis

Panini doesn’t formally define the term vakya (sentence), but the word is used in Astadhyayt.
A sentence is a series of connected words. To express the connection between the words, Panini
uses different non-technical terms such as joining (1.4.59 yoga), syntactically connected (2.1.1
Samaratha), wish or desire (3.2.114 sakanksha) and so on.

In Astadhyayi, derivation of words and their interrelation in a sentence starts from meaning.
But in analyzing it, one starts with the sentence and arrives at the meaning or intention.

Before discussing about sentence analysis, formation in the Paninian system is given by
example below :
ExamQA le: Let us say we want to generate the sentence "'Rama reads a book’. Here,the verb is
in present tense (varthamana kala) and hence gets Lat. Rama is the agent of the action and book
(pustaka) is the goal. T2~ & gé Q -

" By 3.4.69, Lat exéresses (D) agent-or (2) gqal or (3) the state (where the iverb lacks goal).
If we choose Lat to represent the agent, after transformations the final verb form is pathati. The
goal can be expressed by 2.3.2 accusétive case, since it is not expresséd yet (anabhihita), (by
2.3.2) we get pustakam (pustaka + am). Verb ending already expressed agent (by 3.1.68 karthari

shap), hence we cannot express it again. Now second or third case ending becomes applicable

21

(by 2.3.2 and 2.3.18). But since we have to only express gender and number (by 2.3.46), the
nominal stem gets the nominative case (su) and we form the word (rama + su) ramah.

agent

Rama + su patha + thiP

pustaka + am I

o | |

goal
Final form is : Rdma(h) pustak(am) patha(ti).

In order to analyze the above sentence, the process starts by identifying the constituent
words. By identification is meant identifying the base word as well as the case markers/verb-
suffixes. Once the words are identified, the relation among the different words is established.

. The Paninian grammar provides for generation of words and sentences. That is, the grammar
describes the process in the forward direction, which is known and hence predictable. However,
for sentence analysis and parsing, a reverse approach has to be adopted. It may be mentioned
here, that Panini, nor any of the grammarians that follow him, provide us any rules in this

direction. The most obvious reason being, there was no necessity, whatsoever, for such an

analysis.

In the above situation, the immediate task is to develop procedures and tools for such an
analysis. The advent of computers and the emergence of Artificial Intelligence, with enhanced
programming paradigms, mainly logic programming, help in the realization of this goal. The most

important aspects of Al, namely, inference and heuristics, and an approach based on it make such

22

an analysis possible.

Now, for analyzing the above sentence, initially we select the first word (i.e.ramah l;crc) and
send it to the reverse tigant procedure. It the word is identified as a tigant, the system returns
the base along with its attributes. If it is not identified, the same is then sent to the
reverse_subant procedure. If the word is identified as a subant the system returns its attributes.
If it is neither a tigant nor a subant we say that the word is wrong. Similar processing is done
for other words also.

A detailed description of the reverse_tigant and reverse_subant procedures are discussed in

chapter 4.

3.2 Semantic Representation

Once the constituent words are identified, the vibhaktis are established, which are checked
for syntactic compatibility. The verb lexicon contains a list of possible karakas it can take. It
these values match with the obtained vibhakuis the sentence is considered as valid.

It may be mentioned here that as the work in this direction (i.e. computer analysis of Sanskrit
) is in very preliminary stages, the present work may be looked as an initial step in the same
direction. Further the scope of the work is limited to simple sentences(e.g. this doesn’t consider
adjectives, passive structures etc.), as tools are to be developed for analyzing complex sentences

and so on.

3.3 Pada Analyzer

The process of determining the syntactical structure of the sentence is known as Parsing. It

23

is the process of analyzing a sentence by taking it apart word-by-word and determining its
structure from its constituent parts and sub-parts. When given an input string, the lexical parts,
i.e. the root words must first be identitied by type, and then the role they play in a sentence must
be determined.

The sentence Ramah Pustakam Pathati contains three syntactic units, namely, ramah,
pustakam and pathati. A program has been developed that identifies the word-forms along with
the grammatical attributes that go with them. Let us say we want to analyze the word-form
ramah. Any syntactic unit being essentially either an intlected noun or intlected verb, we need
consider only the nominal-suftixes (i.e. sup suffixes) or verbal- suffixes (i.c. ting suftixes). An
identification process based on the suftixal part is also an economical method, considering the
fact that there are only 21 nominal suffixes and 18 verbal suffixes. It may be noted that the end
part o.f any syntactic unit corresponds to the suttix part, either as it is, or in a moditied form.
In some cases, the suftix may also be totally dropped. To illustrate, consider the singular number
of nominal case, which is su. This suftix has three possible representations, as mentioned below:

1. su-->h
2. su-->am
3. sﬁ ->0
Thus, the final h in ramah, may be inferred as the modified form of su.

Similarly, in the word pathati, the end par, i.e. ti, may be traced to suffix tip, i.c. third
person singular.

l. #up-->u

The remaining pant of the word, i.c. patha, represents the base word. For the identification of

24

the base word the computational lexicon has to be consulted.
A major difficulty in the process of word-identification arises duc to case-clashes. For
example,
bhyas --> bhyah
may either be a plural sutfix of dative or ablative case.
The above are some important issues that one needs to consider while analyzing a

.

word-form. These ambiguities can be resolved to a great extent by the computational lexicon.

3.4 Computational Lexicon

Knowledge can be represented using an appropriate data structure, which is referred to as
lexicon. Lexicon is quite essential and necessary for Natural Language Processing (NLP)
systems, i.e. parser, generator, translator, etc. It is because almost all the components of NLP
systems refer to lexicon in order to accomplish their task. A simple lexicon for NLP systems
may contain syntactic, semantic and contextual knowledge.

The lexicon may be defined as a collection of lexemes along with their related attributes.
A lexeme is considered as one word taken along with its grammatical attributes, semantic
attributes, conjugate list, computational words (derived words), relations, possible surface
realization,'pronunciation and meaning of the word. . .

The system contains two lexicons, namely dhatukosh and pratipadikkosh.
Dhatukesh : There are two thousand verbs in Sanskrit. These are distributed over ten classes
called ganas. Further, a dhatu can be either of parasmaipadi or atmanepédi type. The lexicon

contains the list of verbs along with its attributes i.e. the gana and the pada. A list of karakas,

both mandatory as well as obligatory are also stored with each dhatu.

Pratipadikkosh : The pratipadikkosh contains the list of nouns. In any language, the nouns are
innumerable, and 1t i1s difticult to store them all. Hence, the lexicon contains a list of most
commonly used nouns, along with their attributes. The attributes in case of a noun are its class
(called varga) whether it is of noun, pronoun or numeral type, and gender (i.e. ling). Secondly,

a noun can either be of masculine, feminine or neuter gender type.

26

CHAPTER 1V

IMPLEMENTATION

In the previous chapters the theoretical framework of Paninian grammar and the issues
involved in language processing are discussed. The present chapter deals with the
implementation details of sentence analysis. In implementation, modular programming approach
has been adopted.

The system contai>ns three major modules. These are :

1. Lexicon
2. Analyzer

3. Main Module

The above modules contain sub-modules. The system organization for the same is as shown
in fig. 4.1. There are two lexicons, namely, Dhatukosh and Pratipadikkosh.r Similarly, the
Analyzer consists of two sub-modules, namely, Reverse_tigant and Reverse_subant. The
Analyzer is the Processing module while the lexicon is the. Maintainance module. The

maintainance module is accessed by the Processing module. We now describe each of these

modules.

4.1 Lexicon
This system operates on dhatu and nominal data. Therefore this module consists of

dhatukosh and pratipadikkosh. These are described below :

27

MAIN

MODULE
Y 1
LEXTCON Jeormeeemmommsmsnmmnaniiiiiiiecnieees HANALYZER
, 4 R, ¢
: PRATIEADIX REU_TIGANT REV_SUBANT
DHATUKOSH
Kosh PROCEDURE PROCEDURE
l
WRITE READ DELETE MODIFY
4 \] '
KRITE READ DELETE MODIFY

Fig., 4.4 : System Organization

28

4.1.1 Dhatukosh

This module consists of verb_lexicon and procedures to operate on this lexicon. In this
lexicon (i.e. dhatukosh) the dhatu (verb root) along with its attributes is stored. These attributes
are :

1. Anyarup

2. Gana

3. Pada

4. List of mandatory karakas

S. List of optional karakas

These attributes are stored in the lexicon through a functor mechanism of Prolog. The data
structure used for this is as :

dhatu_attrib = dhatu_attr(Dhatu,Otherform,Tensegroup,Gana,Pada,

List of Mandatory Karakas,List of Optional Karakas)

This module opens with a menu displaying the procedures to create, maintain and access the
dhatukosh. These procedures are WRITE, READ, DELETE and MODIFY. This menu (i.e.the
main menu) appears as shown in A-1. To select any one of these procedures the user presses
the <ENTER> Akey. These procedures are menu driven and are interactive in nature. They are

described in detail below :

4.1.1.1 WRITE
To add a new dhatu to the dhatukosh the user selects the WRITE procedure from the main

menu. By using this procedure one can store the various attributes of the dhatu in the dhatukosh.

29

START

EXIT

[

1 3 1
No
Yes
Enter
Gana
No
Yes
Enter -
esc
Pada
No
Yes
Enter \
Mandatory- Pesc” -
Xaraka
No
Yes
Enter
o;gonal Yesc”
aka _
No
Displaz Dhatu
it’s Attributes
Store Yes

3

to Datahase

-

in
Database

The flow chart for this procedure is shown in fig. 4.2.

6nce the user has selected the WRITE procedurc; a mcésagc asking the user to enter the
dhatu appears on the screen (as shown in A-2). After the dhatu has been entered.the user is
required to give the otherform (some special substitute form) of the verb, it any. In case,
otherform exists then a menu appears asking the user to select the tensegroup (i.e. lakar group).
For details see A-3.

Similarly the user is asked to select the gana and pada to which the dhatu belongs from their
respective submenus (as in A-4 and A-5).

Once the above information is given, the user is required to input the list of mandatory
karaka;v.f' There are six)carakas nam}:ly, Karta, Karma, Karana, Sampradz;na, .Apadana,

-

Adhikarana, out of which the selection is made. These are selected from the submenu (as shown

in A-6).

Once the user has selected the liét of mandatory karakas another menu consisting of optional
karakas is displayed on the monitor (as in A-7). This menu consists (;f the -karak'as remaining
after the .svc;:‘lection of the ma;dator:y karakas.

Once tf\is information is entered, this modules provides an option either for storing tﬁe

information or to abandon it. For storing, the key "F1”, and for abandoning,the key "F2" is used

(as shown in A-8).

4.1.1.2 READ
To know the attributes of a dhatu present in the dhatukosh,'the user selects the READ

procedure for the same from the main menu. The flow chart for this procedure is shown in

31

Search

Success

Y
Display " Dhatu not '
Attributes in Lexicon

h 4
L 3

Fig. 4.3 : Flow chart for READ procedure

32

g.4.3.

After selecting this procedure a message ap;;cars on the monitor asking the user to specify
the dhatu whose attributes he/she wishes to know (as in A-9). Having entered the dhatu the

attributes of the same are displayed on the screen.

4.1.1.3 DELETE

If a particular dhatu in the dhatukosh is not required one can remove or delete the same from
the dhatukosh by selecting the DELETE procedure from the main menu. The flow chart for this
procedure as shown.in fig. 4.4. |

On selecting this procedure a message appears on the screen asking to input the dhatu the

user wants to delete (as in A-10).

4.1.1.4 MODIFY

The changes or modifications in a dhatu present in thé‘dhatukosh can be done by selecting
the MODIFY procedure from the main menu. The flow chart for this procedure.is as shown in
fig. 4.5

On selecting this procedhre all the previous attributes of the dhatu along with a menu appears
~ on the monitor asking the user to select which of the previous a}'tri.bﬁtés;is requirgd t(; bc_: changed
(as shown in A-11). On selecting these attributes, one at a time, one can make the neccssary.
vmodiﬁcations. Once the modifications have been made the moditied form is displayed on the

monitor.

33

EXIT ’

Search

Success

Y

Dhatu not -
Dhatu B in Lexicon

v
L3

Fig. 4.4 : Flow chart for DELETE procedure

34

Search

No

Dhatu not in ;

Lexicon

Display
fittributes-|

Modify the
fttribute

- Rttributes

Fig. 4.5 ¢ Flow chart for MODIFY procedure

3%

4.1.2 Pratipadikkosh

This module consists of a nominal lexicon and procedures to operate on this nommal lexicon.
In nominal lexicon (i.e. Pratipadikkosh) a pratipadik along with its attributes is stored.. These
attributes are :
1. Varga
2. Gender
These attributes are stored in the lexicon through a functor mechanism of Prolog. The data
structure for this is as :
pratipadik_attrib = pratipadik_attr(Pratipadik,Gender,Varga)
This mociule opens wir;h a menu displaying the procedures to créate, maintain and access the
pratipadikkosh. These procedures are WRITE, READ, DELETE and MODIFY. This menu
(i.e.the main menu) appears as shown in A-12. These pfocedures are menu driven and ar'e

interactive in nature. They are described in detail below :

4.1.2.1 WRITE

If the user wants to add a new pratipadik to the pratipadikkosh, the WRITE procedure from
the main menu is selected. Using his procedure varioﬁs attributes of the pratipadik can be stored
in thc'prati;;adikkosb. “The flow chart for this procedure is as shown in fig. 4.6.

Once the use:r has gelected the WRITE procedure from the main menu, a message asking '
the user to enter the pratipadik appears on the screen (:;s shown in A-13). Aftef the pratipadik
has been entered the gender of the pratipadik is required. 'i‘he user selects this from the submenu

(as shown in A-14).

Display
Pratipadik &
it’s attributes

Hrite
to-Database

Store Yes
in
Database

4

Fig. 4.6 : Flgw Chart for WRITE procedure

Similarly the user is asked to select the varga to which the pratipadik belongs from the

submenu (as shown in A-15).

Once the above information is entered, this modules provides an option either for storing the
information or to abandon it. For storing, the key "F1", and for abandoning, the key "F2" is

used.

4.1.2.2 READ

If the user wishes to know the attributes of a pratipadik which is present in the
pratipédikkosh, the READ procedure from the main menu is selected. On selecting this
procedure the screen appears as shown in'A--16. The ﬂov;(chart for this procedure is as shown
in fig. 4.7. |

This procedure displays the attributes of the given pratipadik.

4.1.2.3 DELETE

If a particular pratipadik present in the préiipadikkosh is not required, the user can remove
or delete the same from the pratipadikkosh by selecting the DELETE procedure from the main
menu. On selecting this procedure the screen appears as shown in A-17. The flow ch-art for this
procedure is given in fig. 4.8.

This: procedure deletes the pratipadik and its attributes.

4.1.2.4 MODIFY

To make modifications in a pratipadik (i.e. its attributes) present in the pratipadikkosh the

38

EXIT '

Search

Success

. 1
- Display Pratipadik not
fAttributes in Lexicon

L 4
R S

Fig. 4.7 : Flow chart for READ procedure

39

Pratipadik

%_ EXIT ’

Search

Success

A
Delete Pratipadik not
Pratipadik in Lexicon

r 3

A 4

Fig. 4.8 : Flow chart for DELETE procedure

40

‘ START }

Pratipadik

v

Search

“Pratipadik not]

in Lexicon

Display
Attributes

Y
Modify the
Attribute

- Display
Prat;ga ik
& it's
modified
attributes

Fig. 4.9 : Fl.ow chart for MODIFY procedure

4

MODIFY procedure is selected from the main menu. The flow chari for this procedure is as
shown in fig. 4.9.

On selecting this procedure all the previous attributes of the pratipadik along with a menu
appears on the monitor asking the user to select which of the previous attributes is required to
be c‘havnged (given in A-18). On sclecting these attributes, one at a time, one can make the
necessary modifications. Once the modifications have been made the modified form is displayed

on the monitor.

4.2 Analyzer
The analyzer module consists of two submodules, namely, Reverse_subant procedure and

Reverse_tigant procedure. These are as described below :

4.2.1 Reverse_Subant
Here the subant pada is the input to.the procedure. This procedure tries to identify the

noun-base and the suffix. The approach is based on the heuristics of AIl. The output'of ‘this
proceaure is

1. Noun base

2. Varga

3. Nominal suffix. -
Sometimes there are more than one solution to the input word.

4.2.2 Reverse_Tigant

42

As in the case of reverse_subant procedure, here also the input to the procedure is the tigant
pada. This procedure tries to idcn&fy the base and suftix parts, based on the heuristic approach.
The output of this procedure is

1. Verbal basg
2. Gana

3. Pada

4. Lakar

5. Tigant suffix.

The above procedures are supported by databases wherein the bases and their related

information are stored.

4.3 Main Module

Now the details of Main Module are described. The flow chart for this module is as shown
in fig. 4.10.

The input to the main module is a sentence (as in A-léj. The constituent words of the input
sentence are first stored in a list. Each element of the list (i.e. the Word-form) is then sent to the
reverse_tiganf procedure for identification. lf the word is identified as a tigant pada, then the
modulé gives the corresponding attributes of the verb. 'I-'hese attributes are :

1. Dhatu
2. Tigant Pratyaya
- 3. Pada

4. Gana

43

' START

Y

Sentence

Y
Break into
List of words

__—’ :
b{ Identification of ’ Displa l
= refation betagen plad END
the elements I Output
Mo v

Get Word

|

Rev_tigant
Procedure

Rev_subant -
Procedure
No
Success
Dhatukosh
Yes
Pratipadikkosh
Y v
Display, Word is
Dhatu and its
- atteibutes Y. detected wrong -
- Display
Pratipadik and
’ its attributes
Store attributes Y
in Database Store attributes Store
- in Datahase in Database

Al d
L4 2

'

S. Lakar

Of these, the dhatu is selected and is sent to the dhatukosh. The dhatukosh (described above)
contains the list of karakas. The karakas are further categorized as mandatory karakas and
optional karakas. Every verb invariably takes its mandatory karaka, whereas the otherS are
optional. The dhatukosh provides this inﬁ»rmation based on which further processing can take
place.These attributes of the dhatu along with the list of karakas are then stored.

If the reverse_tigam procedure fails to identify the input word, it is then sent to the
reverse_subant procedure. If the reverse_subant procedure identifies thvc word, then its
corresponding attributes would be the output. These attributes are:

| 1. Pratipadik |
2. Sup Pratyaya
_ 3. Vibhakti
4, Vachan
These attributes are thenA stored by the system.
Of these, the pratipadik is sent to the pratipadikosh. The pratipadikkosh then gives the
attribuAtes of the same, which are : |
1. varga |
| 2. gen'der-
If the reverse subant procedure also fails to identify the word, a message is flashed on the

monitor stating that the input word is wrong.
A similar process is followed for remaining words of the input sentence. Once all the words

in the list are identified, the task of identifying the relation among these elements remains.

45

In Chapter I, we mentioned that the syntactic relation of the words and their relation to verb
are specified by karakas. At the grammatical level, these are represented by the case-suftixes.
It was also mentioned there, that there is no one-to-one correspondence between the vibhakiis and

karakas. In our system, we assume a straight mapping between these two. We now have
the attributes of the verb and the nouns of the input sentence. Tﬁe sentence is declared correct,
if and only the karakas determined by the case-suffixes of the pouns match with the list of
karakas taken by the verb. Thus, if a verb takes the karma karaka as mandatory, then a

corresponding noun with third case-suffix must be present in the sentence. Otherwise, the

sentence is declared wrong.

WORDS --> Tigant + Mandatory Subants + Optional Subants

1 n, n,

1+n,+n, < Total Words < 1+n, {WRONG SENTENCE }

The e%planati‘on of the formula follows as :

A sentence is declared to be wrong if the nuxﬁber of words it has is less than the sum of thc
tigant and the mandatory subants. Similarly,A the sentence is also wrong if the total words it h$
is more than the sum of the tigant, the méndatory_ subants and "the optional subants.

The abo_ve- describes the -implementational aspects of our system. The results of the system

are given in A-20.

46

CHAPTER V

CONCLUSION

The present work is a modest attempt to develop an analyzer to parse simple Sanskrit
sentences. The system developed is based on Paninian Grammatical Framework. The system
provides user friendly environment and it is completely menu driven.

Prolog has been chosen as the language for implementation because of its in-built
backtracking and pattern matching mechanism which are useful for a natural langqage processing
system.

Though a vibhakti can denote more than one karaka and vice versa but because of the time
limitation, only one-to-one mapping between karaka and vibhakti has been considered here. In
additi('m to this, the present system does not account for sentences with adjectives, adverbs,
participle and passive voice. No hieraréhy of nouns is considered. Further, issues relating 't:)
semantics and pragmatics are needed to be .considered.

Thus, there is enormous scope for future expansion. Once the system is completely
developed it can be used in various areas of Natural Language Processing, such- as
teaching/learning, text understanding machi_ne translatiqp_, .database interfaces, text generation,
etc. if it is complemented by the related work, namely, sentence generation based on verb and
karaka specifications.

The input specifications and the results of the system are given in appendix.

47

BIBLIOGRAPHY

BIBLIOGRAPHY

[1] Allen, James. Natural Language Understanding.

Menlo Park, CA : Benjamin/Cummings, 1987.

[2] Harris, Mary Dee. Introduction to NLP.

Reston : Reston Publishing Company, 1985.

[3] Katre, Sumitra M. Astadhyayi of Panini.

Delhi : Motilal Banarsidas, 1989.

[4] Kiparsky, P. Some Theoretical Problems in Panini’s Grammar.

Poona : Bhandarkar Oriental Research Institute, 1982.

[5] Mishkoft, Henry, C. Understanding Artificial Intelligence.

Dethi-: BPB Publications, 1986.

[6] Patterson, Dan W. Introduction to Attificial Intelligence and Expert Systems.

New Delhi : Prentice-Hall of India, 1992.

48

[7] Rich, Elaine. Artificial Intelligence.

New York : McGraw Hill, 1983.

[8] Sager, Naomi. Natural Language Information Processing.

Reading, Mass : Addison-Wesley, 1981.
[9] Singh, G.V,, et. al., The Word-Morphology of Sanskrit, Sinha, R.M.K. (ed.), Proceedings of
Computer Processing of Asian Language (CPAL-2).

New Delhi : Tata McGraw-Hill, 1992.

[10] Syseca, A G. Prolog for NLP.

~ John Wiley & Sons, 1985.

[11] Vasu, S C. The Siddhanta Kaumudi of Bhattoji Diksita.

Delhi : Motilal Banarsidas, 1982.

[12] - Winograd, T. Language as a Cognitive Process, Volume 1 : Syntax

Reading, Massachusetts : Addison-Wesley, 1983.

49

APPENDIX

—AIH HERU—
@
=

A-1

Siegoi)

>

T T Ty

g #

o I

g 2

i

I .

L
4

=z
L

aiig

%! 4

A-S

—AaT W IFE —

g9 2 0 T F

Fd E T L TEg F3 -
- _ THISH

IO T TR TEdgE T

RIEEzza

s S = 1 | e

gz | TG

::‘“§:1c‘.i~'f LI

a2
S —
mooaR

) T s L [UEa]

GIJ'JFU_ Io: e

ag d ™ L
agen B o 7 2@ & P12 et @

I T LT
™ TR

o= orsed

afed e ["'};“?f}

b

m
[¢]
(o)

o = T
=] Tz =y
T = T
biie RS 151

m o

{""_Y':-._ Y ‘J‘

o b e '
HES, i ’

= L

Mt B
[x SR

e LRI
L,

- -, - .
TN -
PR 3 U pzo Seff

A-9

al

=t

fem & 9 o ==y

A-l1o

Y . R
= - TRl
e == = ”'Er_j

<G .

[u 4 ATt
f

e, stw"s

I!—(——VP\"“
oy,

—

~

N

A-1]

AIN HMEN

A-12

5 YT

rall

A-13

P & 0 Esc =

A- 14

ofyafs Tm

£z T

RS & 7 [sr gEn

A-15

giyals S/

i

A-16

gtals s

afks . I0

A-17

T

g

A-18

A-19

E

gzl b’j 4!'-::‘.9.‘-4

WE WY T

x4l = .4;1

] "‘-.Tq'_‘v
W JAF

- T

= HEUEES
3

08 - OS5I
R & S ra b
PR e - [V

N -

:
it 2] $ - Al - 1 +
Od Fde = | A e, e, Yl

¥ oy 2

A-20o

	TH68690001
	TH68690002
	TH68690003
	TH68690004
	TH68690005
	TH68690006
	TH68690007
	TH68690008
	TH68690009
	TH68690010
	TH68690011
	TH68690012
	TH68690013
	TH68690014
	TH68690015
	TH68690016
	TH68690017
	TH68690018
	TH68690019
	TH68690020
	TH68690021
	TH68690022
	TH68690023
	TH68690024
	TH68690025
	TH68690026
	TH68690027
	TH68690028
	TH68690029
	TH68690030
	TH68690031
	TH68690032
	TH68690033
	TH68690034
	TH68690035
	TH68690036
	TH68690037
	TH68690038
	TH68690039
	TH68690040
	TH68690041
	TH68690042
	TH68690043
	TH68690044
	TH68690045
	TH68690046
	TH68690047
	TH68690048
	TH68690049
	TH68690050
	TH68690051
	TH68690052
	TH68690053
	TH68690054
	TH68690055
	TH68690056
	TH68690057
	TH68690058
	TH68690059
	TH68690060
	TH68690061
	TH68690062
	TH68690063
	TH68690064
	TH68690065
	TH68690066
	TH68690067
	TH68690068
	TH68690069
	TH68690070
	TH68690071
	TH68690072
	TH68690073
	TH68690074
	TH68690075
	TH68690076
	TH68690077
	TH68690078
	TH68690079
	TH68690080
	TH68690081
	TH68690082

