
AN EXPEDIENT SCHEME FOR PERFORMANCE
EVALUATION ON PARALLEL COMPUTERS

DISSERTATION SUBMITTED BY

MANOJ KUMAR SARANGI

IN PARTIAL FULFILMENT OF THE
REQUIREMENTS FOR DEGREE OF

MASTE..R OF TECHNOLOGY
~- .

r If.,

IN

COMPUTER SCIENCE&TECHNOLOGY

SCHOOL OF COMPUTER AND SYSTEM-S SCIENCES
JAWAHARLAL NEHRU UNIVeRSITY

NEW DELHI-11 0 067

JANUARY 1994

CERTIFICATE

This is to certify that the dissertation titled "An

Expedient Scheme for Performance Evaluation on Parallel

Computers" being submitted by MANOJ KUMAR SARANGI to

Jawaharlal Nehru University, New Delhi in partial fulfilment

of the requirements for the award of the degree of Master of

Technology is a record of the original work done by him under

the supervision of Prof. P.c.saxena, Professor, School of

Computer and System Sciences, Jawaharlal Nehru University,

New Delhi during the year 1993,Monsoon Semester.

The results reported in this dissertation have not been

submitted in part or in full to any other university or

institution for the award of any degree or diploma.

'·

; . ~··
. ' ..•.

f"l\.1>\..

\/
v.../

Prof. K.K.Bharadwaj
Dean,
School of computer and
and System Sciences,
Jawaharlal Nehru University,
New Delhi.

((/w._p 1>00 evJ
Prof. P.c.saxena
Professor,
School of Computer
and system Sciences,
Jawaharlal Nehru University,
New Delhi.

To

my parents

ACKNOWLEDGEMENTS

I bestow my gratitude to my supervisor Prof. P.C.Saxe-'

na, Professor, School of Computer and System Sciences,

Jawal1arlal Nehru University, New Delhi for suggesting me this

topic. I very much indebted to him for his personal involve-

ment during the period of my work and his eloquent guidance

which has been indispensable in bringing about a successful

completion of the dissertation.

I extend my sincere gratitude to Prof. K.K.Bhar&dWaj,

Dean, School of Computer and System Sciences,Jawaharlal Nehru

. University for providing me with the environment and all the

facilities required for the completion of my dissertation.

My sincere thanks to my friends Rajesh for giving me

company in the long hours of nights during the period of this

project.

Last but not the least, I thank Jisnu and Abdaal for

helping me in all possible ways towards the completion of the

dissertation.·

It took five months to get the word back to the Queen Isa
bella about the voyage of Columbus; two weeks for Europe to
hear about the assassination of Lincoln and only 1.3 seconds
to get the word from Neil Armstrong that man can walk on
the moon.

Isaac Asimov's Book of Facts

CONTENTS

CHAPTER ONE

INTRODUCTION

1.1 Towards Parallelism

1.2 Role of Performance Evaluation

and Prediction

1.3 Measures of Performance

1.4 organisation of This Report

CHAPTER TWO

MODELLING METHODS

2.1 Models of Computation

2.1.1 SISD Computers

2.1.2 MISD Computers

2.1.3 SIMD Computers

2.1.3.1 Shared Memory Type

2.1.3.2 Interconnection Network Type

2.1.4 MIMD Computers

2.2 Programming MIMD Computers

2.3 Analysis of Parallel Algorithms

2.3.1 Running Time

2.3.2 Number of Processors

2.4 Parallel Software Design Issues

2.4.1 Portability

2.4.2 Design (Correctness)

2.4.3 Implementation

1

. . . . 12

CHAPTER THREE

PERFORMANCE ANALYSIS METHODOLOGIES

3.1 Importance of Performance Analysis

3.2 Task Partitioning and Task Coalescence

3.3 Discrete Event Simulation

3.4 Critical Path Analysis

• • • • 2 9

3.4.1 Selection of Event Execution Time and

Communication Cost

3;4.2 Number of Events to be Processed

3.4.3 Load Balanced Process Assignment

3.4.4 Interactions between the Number of

Processors and the Communication Cost

3.4.5 Increasing the Problem Size

3.4.6 Increasing the Problem Size with Fixed

Processes to Processors ratio

3.4.7 Increasing Message Density

CHAPTER FOUR

IMPLEMENTATION

4.1 Important Parameters

4.2 Computations

¢.3 Performance Measures

4.4 Assumptions

CHAPTER FIVE

CONCLUSION

BIBLIOGRAPHY

. . . . 52

. . . . 61

.•.. 63

CHAPTER ONE

CHAPTER O~"E

INTRODUCTION

1.1 Towards Parallelism

Several decades ago the era of parallel computation has

started when anal?g computers were applied to simulate con

tinuous dynamic systems. Analogue computation is based on

application of continuous physical.laws to realize mathemati

cal operation in parallel. The mathematical operations are

simulated as a physical analogy by means of electrical and

electronic circuitry. Analogue computation is parallel by

nature. System simulation by way of physical processes was

possible only for a few mathematical operations like inner

product and integration with respect to time. For this

reason parallel analog computation was mainly ·used for simu

lation of continuous systems. In particular the fact that

analogue computations are executed in the continuous time

domain made it easy to realize that analogue computing de

vices could efficiently operate and cooperate in parallel

without any synchronization. Analogue computing devices

produce and consume intermediate results in the continuous

time set. Consequently exchange of data can simply be done by

means of electrical interconnection consisting of electrical

wiring.

Later on stand alone analogue computers have been

replaced by hybrid computers (i. e; a computer systems having

analogue and digital components). The incorporation of a

1

digital computer made it possible to run the analogue comput

er under control of a digital program. In a sense the ana

logue computing part a9ted as a very powerful coprocessor for

the-- digital computer. From the mid SO's parallel digital

computation has become more and more important in comparison

to hybrid computation.

In sequential digital computation a processing task is

described and programmed as sequence of digital operations.

These operations are carried out one after another, where the

execution time of digital operation depends on it's complex

ity. In digital computation the production of intermediate

results and the consumption of intermediate results as well

take place in discrete time sets. There belongs discrete time

sets for different processing tasks. This is the main reason

why it is difficult to realize that simultaneously operating

digital computing devices can cooperate in an efficient way.

Supercomputers have made parallel digital computation

very popular. Supercomputers are conventional digital comput

ers ,but with a CPU architecture dedicated to execute numeri

cal linear algebra through pipelined processing. For this

reason these supercomputers are also called vector computers.

Pipelined processing is a special working out of parallel

processing, similar, to flow production by means of an assem

bly line. A processing task is not executed as a sequence of

subtasks in the normal way by means of one computing device,

but each subtask is executed by a separate processing device.

These processing devices are coupled in cascade,in case of

one processing task these devices are busy one by one.

2

Pipelined processing can be applied very successfully in case

a processing task has to be executed many times and if more

over this task can be sub divided in a sequence of subtasks

of equal execution time. Now supercomputers are on the way to

become parallel digital computers ,where the individual

processors are very powerful with regard to efficient paral

lel processing.

The near future need of much more powerful supercompu~

tation ask for parallei (digital) computers , containing a

large number of fast processors that can also co-operate fast

and efficiently. In parallel processing high performance data

processing and ditto data flow are of equal importance . In

practice so far loss of efficiency often happens for the

technical reason that the communication system of a parallel

computer has not enough capacity. Lack of communication

capacity will result in transfer bound processing instead of

compute bound processing. Loss of efficiency also often

happens for the technical reason that the communication

system of a parallel computer has not enough capacity. Lack

of communication capacity will result in transfer bound

processing instead of compute bound processing. Loss of

efficiency also often happens because of the fact that paral

lel algorithrnics is still in the early stage of development.

That makes it difficult to define the architecture and pro

gramming of a parallel computer such that efficient implemen

tation of parallel algorithms is possible in a wide range of

applications. Moreover the appricability of parallel computa-

3

tion is hampered by the fact that the programming in parallel

computers is still more difficult than programming in serial

computers. One can expect that this will change because most

of the problems in practice are parallel in nature.

1.2 Role of Performance Evaluation

& Prediction

The issue of performance evaluation and prediction has

concerned users throughout the history of computer evolution.

In fact, the issue is most acute when the technology is

young; the persistent pursuit of products with improved cost

performance characteristics then constantly leads to designs

with untried and uncertain features.

from

design

The need for computer performance evaluation exists

the initial conception of a system's architectural

to it's daily operation after installation. In the

early planning phase of a new computer system product, the

manufacturer usually_makes two types of prediction. The first

type is to forecast the nature of applications and the levels

of system workloads of these applications. Here the term

workload means, the amount of service requirements placed on

the system. The second type of prediction is concerned with

the, choice between architectural design alternatives,based on

hardware and software technologies that will be available in

the design period of the planed system. Here the criterion of

selection of selection is what we cdll cost performance

tradeoff. The accuracy of such prediction rests to a consid-

4

erable extent on our capability of mapping the performance

characteristics. Such translation procedures are by no mean

straightforward or well established. After the architectural

decisions have been made and the system design and implemen

tation started, the scope of performance evaluation becomes

more specific. The interactions among the operating systein

components- algorithms for job scheduling,processor schedul

ing,~nd storage management must be dealt with,and their

effects on the performance must be predicted. Comparing the

predicted performance with achieved performance often

revels major defects in the design or errors in the system

programming. Now it is universally accepted that the per-

formance evaluation and prediction process should be an

integr~l part of the development efforts throughout the

design and implementation activities.

Du~ing the 1980s,interest _in performance analysis

increased, partly because, as architectures became more

complicated it was recognised how important it would be to be

able to predict the performance of new systems before they

are built. At the same time it was more important to measure

and characterize performance on existing systems because the

ratio of pe~k to actual performance could now be several

orders of magnitude. However performance analysis was made

more difficult by the large number of variables that can

effect performance in a highly parallel system. There was

also an increased awareness of the difficulty of avoiding

biases in measuring in measuring performances and of consid

ering properly all the factors that affect performance. There

5

were and are many projects aimed at getting better understand

ing of performance measurement, carrying out performance

measurements on different systems,and even attempting to

characterize performance. There is a strong emphasis towards

vector oriented computers, but some of the work is al·so done

on parallel systems. The long range goals on which prime

importance is given include building up an understanding of

fundamental computations that are used in different applica

tion fields, for example, solving sparse linear systems in

fields such as chemical engineering and electronic circuit

design , and a large database of performance information both

at the entire application level and at the kernel level for

many different computers. A long- range goal is to characte

rise the variables and factors that affect performance on

different computer architectures for different application

classes. In the late 1980s, from approximately 1987 onwards,

there are several projects initiated aimed specifically in

measuring the performance of paraliel computers.

Finally, one indication of the level of interest in the

field of performance evaluation is that there are now several

prizes given for achieving certain level of performance. One

of the first was the Alan Karp prize, which was a one time

prize given for first program to achieve a speed up of 200 on

a real application on a real parallel computer. Gordon Bell

also established what is now a series of prizes for

achievements, such as best price performance, absolute top

speed, and parallelism.

6

1.3 Measures of performance

When we say the performance of the computer is great it

means perhaps that the quality of service delivered by the

system exceeds our expectation. But the .easure of service

quali~ and the e~en~ of expecta~ion vary depending on the

individual involved,e.g; system designers,installation manag

ers ,terminal users etc. If we attempt to measure the quality

of computer performance .in the broadest context, then we must

consider such issues as user response (as well as the system

response), ease of use, reliability, user's productivity, and

the like as the integral parts of the system's performance.

Such discussions,however, fall within the realm of quantita

tive sciences that involve social and behavioural sciences.

Despite our full awareness that performance analysis cannot

avoid what are ultimately behavioural questions,the scope of

this project work is quite limited: The performance analysis

is discussed only in terms of clearly meaSurable quantities.

This is done in the same way as we conventionally define, for

instance the signal-to- noise ratio probability of decoding

errors as measures, of performance of communication systems.

The performance measures ·can be classified into two

broad categories: user oriented .easu.res and syste• orien~ed

~- The user oriented measures include such quantities

as the turnaround time in a batch system environment and the

response time in a real time and/or interactive environment.

7

The turnaround time is the length of time that elapses

from the submission of the job until the availability of it's

processed resu_lt. In the similar way in an interactive envi

ronment the response time of a request represents the inter

val that elapses from the arrival of the request until it's

completion in the system.

In interactive systems, sometimes we use the term

system reaction time which is the interval of time that

elapses from the moment an input arrives in the system until

it receives it's first time slice of service. It measures how

effective a scheduler is in dispatching service to a newly

arrived input.Turnaround time,response time,and reaction time

are all considered random variables; hence their distribu

tion, expected values,variances are of importance to the

designer.

Usually jobs are categorised according to their priori

ty classes. Many factors may determine the assignment of

priority to a job : the job's urgency,it's importance,and

it's resource demand characteristics and utilization.

Throughput is defined as the average no of jobs proc

essed. per unit time. It provide the degree of productivity

that the system can provide. If·jobs arrive at a system

according to some mechanism that is independent of the state

of the system, throughput is equivalent to the average arriv

al rate, provided that the system can complete the jobs

without creating an ever increasing back-log. But in this

case throughput is not an adequate measure of performance;

rather it is a measure of system workload.

8

The term throughput has some meaning when either there

is always some work awaiting the system's service, or the job

arrival rate depends on the system's state. Considering the

first case in the light of queuing theory the obvious implic

at'ion is that the system is unstable in the sense that the

queue or the backl3g will grow without bound. So for the sake

of simplicity we can define throughput over a finite interval

in which the input queue is never empty. Hence the throughput

thus defined is a proper indicator of the syst;eJij•s capacit;y.

The second case assumes importance when we take a finite

number of generation sources. For example, if in an interac

tive system, there is a finite number N of terminal user

actually logged in. Let's assume that a terminal is blocked

while it's request is in the system, either waiting for or

receiving service. If there are n jobs in the system, only

the remaining N-n terminals are eligible for generating

requests. Thus, the effective arrival rate is a (linearly)

decreasing function of the system state, n. We can envision a

similar situation in a batch-system environment: There may be

a sufficiently large number of users to keep the system

continually busy. In reality, however, as the system conges

tion level increases, a user may be discouraged from submit

ting a new job. Again, the job arrival rate will be some

decreasing function of the number of outstanding jobs. This

negative feedback loop inherent in the jobgeneration mecha

nism makes the system always stable.

9

The utilization of a resource is the fraction of time

that the particular resource is busy. The CPU utilization

the most popular measure of system usage, although it is

necessarily the most important in complex systems. When

CPU is not idle, it may be in either of two busy states:

problem program state (or simply the problem state) and

supervisory program state (or the supervisor state).

former represents the portion of time when the CPU

actually executing the programs written or called by

users; the latter is the time consumed in executing

is

not

the

the

the

The

is

the

such

operating system components as the scheduler and various

interrupt-handling routines. The distinction is commonly

assumed to be synonymous with that of "useful· work" versus

"overhead". Yet it must be noted that much of the supervisor

state operation provides necessary.and useful service for the

user programs; hence the "overhead" categorization may be

misleading.

If we assume the system having single CPU, and if the

CPU utilization figure excludes the supervisor state, then we

find the following simple relationship between throughput Q.

(jobs per second) and the CPU utilization Pcpo

Where ~cpo(seconds per job) represents the average CPU ·

time required to process a job.

The mean response time, which we denote by A

to have the simple relation with throughput

P A= y

10

is found

in which y represents the average number of jobs (waiting or

being served) in the system.

1.4 Organization of the report

Chapter 2 contains different-classifications of paral

lel computers,programming in parallel computers, their mo

delling techniques, the parameters and their evaluation

methods.

Chapter

methodologies

3 deals with different performance

that are often used. The importance

analysis

of this

work is also discussed in the beginning of this·chapter.

Chapter 4 contains the details of implementation, the

limitations and also the assumptions.

Chapter 5 discusses the future scope of this work.

11

CHAPTER TWO

CHAPTER TWO

MODELLING METHODS

2.1 Models of Computation

Any system, whether serial or parallel,functions by

executing instruction on data. A stream of instructions (the

algorithm) prompts the computer what to do at each step. A

stream of data i.e;the input to the algorithm is affected by

these instructions. Depending on these streams the computers

can be classified into four broad categories (Flynn's classi-

fication).

1. Single Instruction stream Single Data Stream (SISD)

2. Multiple Instruction Stream single Data Stream (MISD)

3. Single Instruction Stream Multiple Data stream (SIMD)

4. Multiple Instruction Stream Multiple Data Stream (MIMD)

2.1.1 SISD computers

A computer in this class consists of a single process-

ing unit receiving a single set of instructions that operate

on a single stream of data.

instruction

stream

.--------. data
PROCESSOR I .

l...-------~- stream
MEMORY MEMORY

12

At each step during computation the control unit omits

one instruction that operate on a datum obtained from the

memory unit. Such type of instruction may conveys the system

to perform some arithmetical or logical operation on the

datum and then put that back in memory.

2.1.2 MISD Computers

In this case a number of processors each with it's own

control unit share a common memory unit where data reside.

(refer figure) . Here the number of instruction is same as the

number of processors and there is only one stream of data.

:PROCESSOR # 1
instruction

1 # 11 1! !CONTROL
stream 1

1
instruction

1 ~PROCESSOR # # 21 2l !CONTROL

I MEMORY I
data · stream 2

I str.

l
1
instruction

1
N/

~--41 PROCESSOR # Nl
1
coNTROL

stream N

In this configuration, at each step, one datum received

from memory is operated upon by all the processors simultane-

ously, each according to the instruction received from it's

13

control unit. Thus parallelism is achieved by letting the

processors do different things at the same time on the same

datum. This class of computers lend itself naturally to those

computations requiring an input to be subjected to several

operation, each receiving inputs in it's natural form.

2.1.3 SIMD Computers

In this case N identical processors wit~ their own

local memory where they can store both program and data. All

processors operate under the control of .a single instruction

stream issued by a central processing unit. Hence the N

processors may be assumed to hold identical copies of a

single program, each processor's copy being stored in it's

own local memory. So there are N data stream, one per each

processor.

d
str

ata
earn .1

PROCESSOR
1

SHARED MEMORY
OR

INTERCONNECTION NETWORK

data
stream 2

PROCESSOR
2

instructionj
stream

1

CONTROL

14

dat
strea

PROCESSOR
N

a
m N

The processors operate synchronously:at each step, all

'
processors execute the same instruction each on a different

datum. The instruction could be a simple one (such as adding

or comparing two numbers}or a complex one (such as merging

two lists of numbers). Sometimes it may be so necessary to

have only a subset of the processors execute an instruction.

-This information can be encoded in the instruction itself,

thereby telling the processor whether it should be active(and

execute the instruction} or inactive (and wait for the next

instruction). There is a mech~nism, such as a global clock,

that ensures lock-step operation.Thus processors that are

inactive during an instruction or those that complete execu-

tion of the instruction before others may remain idle until

the next instruction is issued. In this type of systems it is

always desirable to have good communication facilities

amongst the processors in order to exchange data or interme-

diate results.This gives rise to two subclasses of SIMD

computers they are: shared memory communication type and

interconnection network type.

2.1.3.1 Shared Memory Type

In this case during execution of a parallel algorithm,

the N processors gain access to the shared memory for the

reading of the input data, for reading or writing intermedi-

ate results,and for writing final results.The basic model

allows all processors to gain access to the shared memory

15

simultaneously if the memory locations they are trying to

read are different. However, the class of shared memory SIMD

computers can have many further classifications.

PROCESSOR
1

PROCESSOR
2

PROCESSOR
3

PROCESSOR
4

I MEM.BLK.1 1 I MEM.BLK.2 I I MEM.BLK.3 I

2.1.3.2 Interconnection Network type

Here the model is constructed such that each node can

communicate with each node through a direct link. Hence

several processors can communicate simultaneously amongst

themselves though there is some limitations involved in it.

16

Simple Networks for SIMD computers

i. Linear Array

The simplest way to interconnect N processors is in the

form of one dimensional array. Here each processor is con

. nected to it's neighbouring processor through a two way

communication link as shown below.

PRO #1 PRO #2 PRO #3 I

ii. Two dimensional array

Two dimensional network is obtained by arranging the N

processors into an m*m array, where N = m*m. This network is

also known as mesh.

iii. Tree connection

Here the processors form a complete binary tree. Such a

tree has d levels, numbered 0 to d-l,and N =2d-leach of which

is a processor. The root processor have no parents and the

leave processors have no children.

17

There are many other connection networks such as cube,

ring and shuffle etc. which are also used nowadays.

2.1.4 MIMD computers

This class of computers is the most general and most

powerful in our pa~adigm of parallel computation that clas-

sifies parallel computers according to whether the instruction

andjor data are duplicated. Here we have N processors, N

streams of instructions, and N streams of data. The proces-

sors used here are of the same type used in MISD computers in

the sense that each processor has it's own control unit in

addition to it's local memory and the arithmetic and logic

unit (ALU).This makes these processdrs more powerful than

their counterparts used in SIMD computers.

d
str

ata
earn 1

PROCESSOR
' # 1

SHARED MEMORY
OR

INTERCONNECTION NETWORK

data dat
stream 2 strea

PROCESSOR PROCESSOR
2 # N

instru
stre

ction instruction instruction
am 1 stream 2 stream N

CONTROL CONTROL CONTROL
1 # 2 # N

a
m N

Each processor operates under the control of an

instruction stream issued by it's control unit. Thus the

processors are potentially all executing different programs

18

on different data while solving different subproblems of a

single problem.This means the prdcessors typically operate

asynchronously. As in SIMD computers, communication between
/

processors is performed through shared memory or

interconnection network. MIMD computers sharing a common

memory are often referred to as multiprocessors {or tightly

coupled machines) while those with an interconnection ·network

are known as multicomputers (loosely coupled machines).

Multicomputers are sometimes referred to as distributed

systems. The distinction is usually based on physical dis-

tances separating the processors and is therefore subjective.

2.2 Programming MIMD Computers

MIMD model of parallel computation offers the most

general and powerful modeof computation possible. Computers

in · this class are used to solve in parallel those problems

that lack the regular structure required by the SIMD model.

Asynchronous algorithms are difficult to. design evaluate and

implement. In order to appreciate the complexity involved in

programming MIMD computers, it is important to distinguish

between the notion of a process and that of a processor. An

asynchronous algorithm is a collection of processes some or

all of which are executed simultaneously on a number of

available processors. Initially, all processors are free. The

parallel algorithm starts it's execution on an arbitrarily

chosen processor. Shortly after it creates a number of

computational tasks or processes, to be performed.A process

19

thus corresponds to a section of the algorithm. There may be

several processes associated with the same algorithm section,

each with a different parameter.

Once a process is created, it must be executed on a

processor.If a free processor is available, the process is

assigned to the processor that performs the computation spec

ified by the process, else the process is queued and waits

for a processor to be free.

When a processor completes the execution of a process,

it becomes free. If a process if is waiting to be exec~ted,

it can be assigned to any processor~ just freed, else if no ,

process is waiting, the processor is queued and waits for a

process to be created.

The order in which the process are executed by proces

sors can obey any policy. The availability of a processor is

sometimes not sufficient for the processor to be assigned a

waiting process. An additional condition may have to be

satisfied before the process starts. In the same way, if a

processor has already been assigned a process and an unsatis

fied condition is encountered during execution, then the

processor_ is freed. When the condition for resumption of that

process is later satisfied, a processor is a~signed to it.

The above mentioned are few of the scheduling problems that

characterize the programming of multiprocessors. Finding eff

icient solutions to these problems is of vast importance if

MIMD computers are considered to be useful in the long run.

The vital difference between this and the SIMD computers is

20 '

that none of these above said scheduling problems arise on

the less flexible but easier to program SIMD computers.

While programming a distributed-memory parallel comput-
_/

er not only the question of commu~ication between processes

but also the distribution of software processes over the

hardware processor~ is also of vital importance. Much of the

current research is devoted to combining these two tasks into

a single automated operation.In the absence of a universal,

efficient solution to this problem, there is a strong argu-

ment for separating the two activities completely so that the

logical structure of the program is unaffected by the physi-

cal topology of the processor network on which it is execut-

ed.

The version two of the Occam language is only partially

successful in maintaining this separation; the distribution

of logical channels over physical transputer links is kept in

the header of the program {along with the global constants

declarations and like), but the distribution of processes

over the processors must be done in the body of the program

proper.

In the Meiko's parallel programming environment,

CSTools, maintains this separation of activities for c pro-

grams. It puts all the distribution information into a sepa-

rate text file, called a PAR file. By changing this file one

can redistribute a compiled program. The CSTools employs the

distributed CSN (Computing Surface Network) to fool processes

into thinking that all communication is point to point.
AP>I!i!fii:J;::;;

21

A message may be physically be routed via several

intermediate processors, but CSTools hides it from the

program and makes the programming easier just like program-

ming in ordinary C under Unix.

The above can be illustrated through a simple example.

For compiling a program for displaying "Computer Science" we

may compile by giving command:

% mcc -o computer computer.c

and to execute it, we can give the command

% mrun computer

CSTools parallel loader program,mrun, performs the

distribution of processes over the parallel processors. For a

real parallel program, instead of giving mrun the name of the

executable file, the name of the PAR file is given,which

describes the placement of processes.The parallel c programs

themselves contain no distribution at all, but communicate

with each other via abstract entities called transports. The

idea is illustrated through the simple example that uses two

parallel processes: one to print "Computer," and the other to

print "Science".

Listings shows the source code for the two processes,

computer.c, and science.c. All the functions whose names

begin with csn_are communication primitives from a CSTools

library. Each process first initializes CSN with csn_init()
I

and then calls csn_open() to create a connection the process

and CSN. This connection is an object of type.

22

MESSAGE PASSING

P hy s i c a 1 L i n k

Processor # 1

Request for r CoMIIWlication

__ ,

--

- Receive

..----- Acknowl edge~~ent

CoiOOlllicate

TerMination

Request

Receipt

I '

I I
L TerMinate

Processor # 2

Receive
t-

Request

Process

Request

Send >----

AcknowledgeMent -

..

CoMMunicate

Receipt of
TerMination
Requested

I
Acknowledge I

I
TerMinate ~

1! Program computer.c !L
include <stdio.h>
include <csnjcsn.h>
include <csnjnames.h>
include <cs.h>

main (argc, argv)
int argc;
char* argv [1; ·
{
Transport transport;
netid t world id;
int flag= 1;-
int status;
csn_init (); /* Initialize the CSN */

status= csn open (CSN null ID, &transport);
if (status /~ csn ok) - -
cs_abort ("unable to open transport\n", -1);

status= csn lookupname(&world id, "Worldtransport\n");
if (status !~ csn ok) -

cs_abort ("unable to lookup WorldTransport\n", -1);

printf("Computer")i fflush (stdout);
csn tx (transport, 0, world id, &flag, sizeof(flag));

} -

L! Program science.c ~
include <stdio.h>
include <csnjcsn.h>
include <csnjnames.h>
include <cs.h>

main (argc, argv)
int argc;

- char* argv [1;
{

}

Transport transport;
int flag = 1;
int status;
csn_init(); /* Initialize the CSN */

status= csn open (CSN_null_ID, &transport);
if (status /~ csn ok)

cs_abort ("unable to open transport\n", -1);

status= csn register(&world id, "Worldtransport\n");
if (status /~ csn ok) -

cs_abort ("unable to register WorldTransport\n", -1);

csn rx (transport,NULL, &flag, sizeof(flag));
printf ("Science \n");

24

Transport, and each transport has an address called a Net ID.

The sender of the message (computer.c in this example) must

know the Net ID of the intended receiver's transport. To make

this possible, the receiver (science.c) registers it's trans

port with the CSN name service by calling csn_registername(),

and then the sender can look up 'this name by calling

csn_lookupname() and retrieve it's Net ID. It's rather like

getting one's name into the telephone directory so that

anyone can look into it and contact.

2.3 Analysis of Parallel Algorithms

Once an algorithm for a new problem has developed, it

is usually evaluated using the following criteria: running

time, number _ of processors used, and cost. . Besides these

standard matrices, a number of other technology related

measures are sometimes used when it is known that the

algorithm is destined to run on a computer based on that

particular technology.

2.3.1 Running Time

As the speed is emerging to be the main reason behind

the growing interest in the field of parallel computers, the

most important measure a parallel algorithm is therefore the

running time. According to one\of the pioneers in the field

of parallel processing Selim G. Akl the running time is

defined as the time taken by the algorithm to solve a problem

25

on a parallel computer, that is, the time elapsed from the

moment the algorithm starts to the moment it terminates. If

the various processors do not begin and end their computation

simultaneously, then the running time is equal to the time

elapsed between the moment the first processor to begin

computing starts and the moment the last processor to end

computing terminates.

In evaluating a parallel algorithm for a given prob

lem, it is quite natural to do it in terms of the best avail-

able sequential algorithm for that problem. Thus a good

indication of the quality of a parallel algorithm is the

speed up it produces. This is defined as

speedup=

worst-case running time of fastest known sequential
algorithm for the problem.

worst case running time for the parallel algorithm

2.3.2 Number of Processors

The second most important criterion in evaluating a

parallel algorithm is the number of processors it requires to

solve a problem. It costs money to purchase, maintain, and

run computers. When several processors are present, the

problem of maintenance, in particular, is compounded, and the

price paid to guarantee a high degree of reliability rises

sharply. Therefore, the larger the number of processors an

algorithm uses to solve a problem, the more expensive the

solution becomes to obtain. For a problem of size n, the

26

number of processors required by an algorithm, a function of

n, will be denoted by p(n). Sometimes the number of

processors is a constant independent of n.

2.4 Parallel Software Design Issues

2.4.1 Portability-

Parallel programs are designed to be made more easily

portable so that investment in their design and implementa

tion can be amortized across a wide range of machines.Current

trends in parallel processing hardware makes this goal of

architecture independence especially difficult to achieve,

since technological changes seem to oscillate between message

passing based architectures and shared memory architectures.

The programming methods used in these. parallel architecture

variants are typically quite different.

2.4.2 Design (Correctness)

Large projects require hierarchical designs. Unfortu

nately to understand the inte+action of communicating proc

esses require that their specification includes not only

their data behaviour, but also their control behaviour.

Reasoning about the interaction of much complex specifica

tions is tantamount to reasoning about the final code. To

design more effectively a technique must be found out to

raise the level of behavioural abstraction Functional models

have succeeded here through the use of functional composi-

27

tion. The traditional functional composition is deterministic

and require single assignment semantics to enforce referen-

tial transparency.

2.4.3 Implementation

In traditional implementation of parallel programs,

there is often no way of ensuring that the code implements
I

designer's intentions. For example, a simple typographical

mistake during coding can cause two processes to communicate

when they should not, leading to disastrous, unpredictable

consequences. If the design specifications could somehow be

fed directly to the language processor, this unintended

communication could be diagnosed syntactically. In order to

be viable, the design must be formally defined as a .comput-

er language.

28

CHAPTER THREE

CHAPTER THREE

PERFORMANCE ANALYSIS METHODOLOGIES

3.1 Importance of Performance Analysis

Suppose we have a weather forecasting system which

predicts tomorrow's weather latest by tomorrow evening then

it is better not to use that system at all, or in the today's

high tech warfare if a missile intercepting system detects

the missile after it hits the target then the system is also

useless. Here comes the word performance. Performance

analysis is applied in almost all fields in today's world to

determine the suitability of the systems in the fields in

which they are supposed to be used. While analysing

performance we generally prepare a model of the actual system

and monitor it's behaviour for different inputs. These inputs

are generally similar to the types that are actually in use.

In the computers, performan~e analysis is invariably

done in selecting a system. The first step involved is to

list and examine the important system device parameters: the
(

capacity .and cycle time of cache and main memory, the. speed

of the CPUs, the access time and data transfer rate (band

width) and the types and characteristics of terminals and

communication equipments. We also need to know software

components: the job scheduling algorithm, the disk and drum

scheduling algorithm, the sizes of page and block, and the

file organization~ Further, we may want to know the amount of

29

traffic (loads) anticipated for each of thes.e components: the

job arrival rate, the amount of CPU time (or instructions)

per job, the memory space requirements, the page fault rate,

the request rate on drums and the required rate of data

transfer rate between the auxiliary storage and main memory.

In multiprocessor systems this becomes more complicated. The

data transfer rate-between adjacent processors, blocking and

freeing of interprocessor communication links, use of limited

resources comes into picture.

3.2 Task Partitioning & Task Coalescence

Performance is one of the most important factors that

needs to be considered during the design, configuration and

development of a distributed real time computer system. To

obtain the optimal system performance, which includes veri-

,fiably correct functionality, minimal resource requirement

and high reliability, the process of task partitioning and

allocation play an important role in the design process. Task

partitioning is the decomposition of the total task into

subtasks

the task

according to a specific partitioning criterion.

allocation process, the partitioned subtasks

In

are

allocated to processors available in the system, such that an

objective cost function is minimized subject to certain

constraints imposed by the application or environment. Task

coalescence is the composition of all user predefined task

modules into a set of subtasks to achieve a specific perform

ance goal. The subtasks represents a' group of user defined

30

software modules. All modules in a subtask will be assigned

to the same processor during the allocation process. The

total task is represented by a set of disjoint subtasks. The

optimal set of such subtasks is then used for task alloca-

tion.

Many partitioning algorithms with constraints on both

task structure and system structure have been proposed.

However most approaches have ignored one or more important

link load and synchronization delay that are inherent in the

real time applications. The coalescence of a given set of

task modules to meet performance requirements has not been

thoroughly investigated.

The. evaluation and optimization are made in terms of

the minimal processing power(processing power is defined as

a fraction of the available processing time in a processor

which may be assigned to a task) required for the total

task, while guaranteeing the satisfaction of user require-

ments. A two queue network model is used for estimating the

queuing and communication delays of a task module. The

response time of a task module includes a synchronization

delay, job processing time and data communication time. The

synchronization delay which is caused by join operators is

estimated under certain assumptions. The job service time and

communication time are calculated by using queuing models.
\

An analytic model should be sought wherever possible,

since it can evaluate the performance with minimal efforts

and costs over a wide range of choices in the system param-

31

eters and configurations. Even with simplifying assump-
'

tions and decompositions, however, the resultant analytic

model is often not mathematically tractable. Then the only

alternative for predicting the performa'nce of a nonexisting

system is a simulation. The term simulation has a number of

connotations. In the discussion a simulation means a numeri-

cal technique for conducting an experiment (by a digital

computer) of a system evolving in time. Therefore, in a

simulation the concept of time is explicit. A simulation

model describes the dynamic behaviour of a system, even when

the system analyst may ultimately be interested in only the

mean value of some measure (e.g. CPU utilization, the

response time) in the steady state.

The structure and complexity of a simulator depends on

the scope of the simulation experiment. The hierarchical

structure should be adopted as much as poss'ible in the con-

struction of a simulation model also, though the motivation

here is different. There is at least two features that make

such a structure attractive. First, a hierarchical (or more

generally decomposable) structure allows modularization of a

simulation program into a set of subprograms. Modularization

leads to a flexible structure of the program, so that ·further

extensions and changes are easily handled. Second, an ingeni

ous use of the hierarchical structure may shorten a simula-

tion run time substantially. In general, the length of a

simulation run is determined by the required accuracy of

simulation estimates and the amount of correlation span (or,

32

equivalently, the magnitude of transient time) of the sto

chastic process observed in the ·simulation outputs. .In the

model structure (of figure 3.1 given below) the inter-event

time in the micro level model is in micro seconds.

Macro Level

Intermediate Level

MicroLevel

figure 3.1

The number of events observed over the simulated time

of say, one second will be of order 106 ; this subsystem

easily reaches its steady state within that period. During

the same period, the number of events that take place at the

intermediate model is in the order of 103 . The stochastic

process that characterizes the intermediate level model

possibly reach its steady state, but the sample size of 10

may

3

is perhaps not large enough to allow reasonably accurate

estimate of a chosen performance measure. But as the macro

level model, it is quite evident that one second of simulated

time is too short to understand the _system behaviour, since

the inter event time itself is in the order of seconds.

33

Perhaps a simulated time of 10 3 seconds or more will be

required atithis level to obtain an'accurate estimate of all

the overall performance measure. IF we were to run this

simulator in its entirely over the period say 103 seconds in

simulated time the total number of events observed at the

micro level would amount to the o~der, of 109 events. Note

that the actual -length of computer running time for the

simulation experiment is governed not by the length of simu-

lated time, but by the total number of events handled. What

the simulator performs is essentially to record all the'

I

system changes caused by the individual events. Therefore a

brute force simulation often leads to an extremely costly

experiment, but this is unfortunately the way in which most

simulators have been structured in the past.

A more efficient approach to the simulation effort is

to run different submodels separately, thereby avoiding the

waste of running the micro level model for such a long peri-

od. Interfacing a lower level model to a higher level model

should be achieved through summarized statistics, such as a

scaling constants and service time distributions. Since the

equitlibrium · state solution of a model of a given level de-

pends on its surroundings we must have separate runs of the.

model for different sets of parameters that determine its

surroundings. For example if the intermediate level mode~ of

the figure given represents a multiprogramming model we need

to run the simulator of that level for different values of

the degree of multiprogramming. These simulations will deter

mine the whole range of effective·processing rates that the

34

individual jobs receive under different congestion environ

ments. The values of the effective processing rates are then

used as parameters of the macro level model.

The above decomposition formulation naturally leads to

the notion of what is'sometimes called hybrid modelling :a

combination of analytical procedure and simulation. So long

as the interfaces between different levels or submodels are

clearly established the mixing of analytic and simulation

techniques should present no technical problems. In fact the

approach deserves special attention, since it allows us to

take the best of both worlds, the efficiency of analytic

.modelling and the realism of simulation modelling.

Simulation models for computer systems can be further

classified as either trace driven simulation or self driven

simulation. A trace is a stream if·major events observed in

an operational system, recorded with the time of their occur

rences. Like a benchmark program a trace should be selected

from a representative segment of the system workload. However

a benchmark is a program that is independent of the system in

question, whereas a trace is a result of both the chosen

program and the machine that executes the program.

In the self driven simulation the concept of a probabi

listic sequence o~ resource demands presented by jobs is

introduced. An advantage of the probabilistic model over the

trace driven model is that since the event stream is generat

ed artificially it may be completely understood by the ana

lyst, furthermore the workload parameters are adjustifiable.

35

1

~ ... ·-'~

36

...

t····· ••••

In this sense, a probabilistic input model is to trace driven

model as a synthetic job is to a benchmark. Self driven

simulation involves the use of random number sequences and in

this regard it is'similar to the Monte carlo method: a numer

ical technique for solving a nonprobabilistic mathematical

problem by introducing a random variable whose mean or dis

tribution corresponds to the solution of the original problem.

In fact these two numerical techniques have a great deal in

common: The objective of probabilistic simulation can usually

be formulated as a mapping from a randqm vector (a sequence

of random ·Variates) to a scalar value of some performance

measure as represented in the figure 3.2

For this reason many of the variance reducing tech

niques developed in the Monte Carlo method are applicable to

variance reductions in stochastic system simulations.

3.3 Discrete Event Simulation

A discrete event simulation is represented by some set

of data, called the system state, which contains all the

information required to characterize the system state at one

point in time. The state remains unchanged until some event

occurs that causes a discrete change in the state . In other

words state transitions are done via executions of series of

events with times when they occur. Execution of an event

modifies ,a subset of a system state, which moves the system

to a new state. Execution of any event can give rise to any

37

number of events with later timestamps. A simple discrete

event simulation algorithm is given below,

I* Let € be the'next event to be executed in the seqUential

simulation*/

l.execute €

I* Let e.E be the set of events scheduled due to the

execution of e *I

2.for all e'E e.E do

3.insert e' into the event list according to the timestamp

order;

end while

Since most discrete event simulation are time consum

ing, several approaches have been proposed to speed up the

simulation process. A popular approach is for_ multiple com

puters to cooperate to execute a simulation run. It is

important to analyze the inherent parallelism of the simula

tion application before this is applied.

Berry and Jefferson and Livny proposed a simple tech

nique called critical path analysis to study the inherent

parallelism of simulation applications. This technique can

also be used to evaluate the performance of existing parallel

simulation protocols. From the speed-up figures, it is

difficult to see whether the parallel simulation protocols

are efficient. Critical path analysis indicates that the

maximum speed up that can be achieved in this benchmark is

3.67. Thus, the speedups obtained by different scientists are

actually quite respectable. The algorithms are easy to imple-

38

ment although the correctness proofs are not trivial and can

be integrated with simulation languages. Another advantage of

these algorithms over previous attempts are that this can be

used to study load balancing under different event schedul-

ing polices.

3.4 CRITICALPATIIANALYSIS

The idea of parallel simulation is based on the follow-

ing observation: If two events are independent of each other,

they can be executed in parallel. Two events e and e' I are

independent if execution of e modifies the same subset of

state variables { and the modified variables have the same

values), no matter whether e' is executed before or after e,

and vice versa. In a parallel simulation, the simulated

system is partitioned into N subsystems. Subsystem i consists

of a subset of state variables s, such that

where S is the set of state variables. These subsystems are

concurrently simulated by a set of processes that communicate

by exchanging time stamped messages. The events scheduled for

process i can modify state variables in si. After the

simulated system is partitioned, execution of events follows

two sequential constraints.

Constraint 1. If two events are scheduled for the same

process, the event with smaller timestamp must be executed
'

before the one with larger timestamp.

39

Constraint 2. If an event executed at a process results in

the scheduling of another ~vent at a different process, then

the former must be executed before the latter.

Partitioning the simulated system into subsystems is

not a trivial task. If there are too many subsystems, the

communication overfiead due to Constraint 2 may outweigh the

benef.it provided by parallelism. On the other hand, if there

are too few subsystems, independent events may be executed

sequentially due to Constraint 1. several studies are devoted

to the partitioning problem.

Based on Constraints 1 and 2, an event precedence graph

is built for each parallel simulation. Each vertex of the

graph represents an event and each edge represents a communi

cation. An event execution time is associated with each

vertex.A communication delay is associated with each

edge.Since the graph is acyclic, a maximal weighted path can

be found. This path is called the critical path and its cost

is the minimal time required to finish the execution of the

parallel simulation.

Examples of an event precedence graph are given in the

figure(3.3). A dashed arrow represents the scheduling con

straint of Constraint 1 and a continuous arrow represents the

process communication due to Constraint 2. The event

dence graph for sequential simulation is given in

(3.3a) and the graph for 3 processes is in figure

prece

figure

(3.3b),

where events e1 and e7 are scheduled for process 1, e3, e4

and e5 are scheduled for process 2, and e2, e6 and e8 are

40

scheduled for process 3. The cost for critical path can be

derived quantitatively as follows. Let ge be an event such

that event e is scheduled due to execution of ge. In figure

(3.3b) ge7=e5. ~An event e is prescheduled if ge does not

exist. In figure (3.3) events e1 and e2 are prescheduled. Let

Pe be an event such that both events e and Pe are scheduled

for the same process, and the execution of Pe is followed by

the execution of e. In figure (3.3b) Pe? = e1. Let a(e) be
'

the earliest time when e's execution starts. Let r(e) be the

execution time for the event e. Let a' (e) be the earliest

time when e's execution completes. If every process is exe-

cuted by a dedicated processor then

a' (e) = a(e) + r(e)

Let a{e) be the time to schedule event e. IF ge and e

are schedUled at different processes_ then a{e) represents the

message sending delay. Otherwise a(e) is assumed to be o in

the study. From constraints 1 and 2

a (e) =

Let

o,

a' (e),

a'(e) + a{e),

if neither ge nor Pe exist.

if ge does not exist

if Pe does not exist

max(a'(Pe), a'(ge) + a(e)], otherwise

••••• (a)

be the cost for the critical path (i.e. the

execution time of the optimal parallel simulation). Let Ts

be the sequential execution time. Then Tp and Ts are ex-

pressed as

Tp =max a'(e), and Ts = L r(e)

41

The optimal parallel simulation time is computed based

on (a). However (a) is only adequate for the case when every

process is executed by a dedicated processor. If the number

of processors P is less than the number of processes N, then

Tp is also affected by process assignment and event schedul

ing. If more than two processes are assigned to a processor,

(3.3) only represents the time when an event is available for

execution. More than two events from two different processes

may be available for execution at a processor at the same

time. An event scheduling policy is required to determine the

next event to be executed. Let Pk be the set of indexes of

processes mapped into processor k {i.e. i € Pk if process i

is mapped to processor k) .Let e'j{t) be an event scheduled

for process j such that for all events scheduled for process

j e'j(t) is the next event to be executed after timet{ and

at time t, processor k is available to execute the next

event).

In the critical path analysis is performed as follows.

The first thing is sequential simulation and taking a trace

of the events executed. The trace is then transformed ·into a

event preqedence graph. Finally the cost of the critical path

in the graph is computed. The critical path analyzer proposed

by Livny is integrated with a specific simulation, DISS, and

the cost for the critical path is computed along with the

execution of the simulation. Thus no event trace is required

and no explicit construction of a precedence graph is neces

sary. Consider the example in figure (3.3b). If the event

42

Process 1

Fig. 3.3a

PROCESS 1 PROCESS 2

I

I

0

Fig. 3.3b

PROCESS 3

0
'!

/!
0

~:
0

execution time is 1 unit and the communication cost is O,

then the execution time for the optimal parallel simulation

for the first three events is 2 units. However, the value

computed from Livny's algorithm is 1 unit.

The above two approaches are primarily designed for

the case when P = N. Now a better critical path analyzer is

described which can be integrated with the sequential simula

tion program. The algorithm referred to as Algorithm 1 is

designed under the assumption that every process is executed

by a dedicated processor.The processes mapped into a proces

sor are considered a super process, and all events·are exe

cuted in the timestamp order at the processor.

/* initialization*/

Oa for all i do Ti = o

Ob for all e pre-scheduled in the event list do

Oc e.a = o

end for

/* the main loop*/

while not complete do

I * Let e be the next event to be executed in the

sequential simulation */

la execute e

/* Let e be scheduled for process i *I

lb Ti = max(T1 , e.a) + r(e)

/* Let e.E be the set of events scheduled due to the

execution of e *I

45

2 for all e' €e.E do

3a e'.a = Ti + a(e')

3b insert e' into the event list according to the timestamp

order,

end for

4 T s = Ts + T (e)

end while

Let event e be scheduled for process i. In this algo-

rithm, e.a represents the time when event e arrives at proc-

ess i. The value of Ti after the'execution of Line lb is the

completion time of e's execution in the optimal parallel

simulation.

The following issues should be taken care of when the

critical path analysis is applied to simulation application.

3.4.1 Selection of event execution time and communication
cost:

In many examples only a few types of events exist in

the simulation. For each type of event the execution times

are fixed and can be easily determined through measurement.

If the event execution time varies from one to another then

it is needed to sample the event execution times and deter-

mine an event execution time distribution to be used in

critical path analysis. Sometimes an event execution time is

too short to be measured. In such a case the execution of an

event can be repeated several times, then the average value

can be found.

46

ll .,
11
IS'

& rl ..
e ''
~ ' ...,.,
p

s

'
Q 14 \t 2.2. ~' !0 !A 4)1

P(A...-f,p-o~~~J
(~ 1--4)

4~--------------------------------~

'ciO
... - ·····-··- ___ __a.··---·-··· ... ---···--·---·-·· -······- ~ ...

... ---- ---- --- ---- -- ---- -~- ------
-------------------------~-

& \0 12 14 ,, ' & 2.0
Pl.'l~ ., ~~ .. ~.~)

(i<fJ I.S")

11-,

----- -·-; ... --~----- --- --- -,. .. - ... a.. ,.
,~ ----------------..... --------~-, __ , -- .. •20

;' ,, ...
~ ,"'
~, ,

... ,o ____ ...,. __ ---- ·-·--··--·--·--·,... ... --

at

'
tt

.. ,,
I 11
d
CL IO , -,

~ ,
--

I 4 IT 26 D 2G R
p~ of pwCtll.$trrt.)

(~ 1.t)
INC-.E~'N ~ P~0~\,€.'1 S\Z£ loiii"T .. F'I)(.E'l) P~OC£'S

TO ?-~OC.ESSO~ R~TtO

liT-----~~~~----------~--------
~--,--------~----------,,_ ,' -p;ii- --

1 ,, .. __ - ~ .

1,' --------------------------
14· ,' P=UJ

6
11 i ct 10 Pa tO "' . -- ... ·- --. -- -- -~ -- -- - - - - -- ---- -----. ,. ~-,_
4~~----,~.~,---8T~.----r-,--.r---,r--,,~~~~-,.----.-----~~ .,. • ~ 52 14 ,, ,. 100 112 •24

p.- {.~n&CS«t~$ J>C"~" ~-roc~ts)

(M a.s)
1 N CRE ~t~ ~ ME.~~ArC.E t>Et-1 S.\"TY

~8

As a first approximation of critical path analysis r

can be assumed as constant. The communication cost is usually

obtained from the targeted architecture.

3.4.2 Number of Events to be Processed:

A large number of events must be. processed in critical

path analysis before a reliable speed figure can be obtained.

For steady state simulation experiments indicate that the

reliable speed up figure can be obtained only after the

transient effect of the simulation disappears.

3.4.3 Load Balanced Process Assignment:

Figure 3.4 ·shows the effect of load balancing. The

circles represent the speed ups of the balanced points where

P divides N It is observed that for a small P, the distance

between two balanced points is short and the unbalanced

points in between are not significantly affected by the

unbalanced load. For large P it is most beneficial to add

extra processors _if it is close to the next balance point.

3.4.4 Interactions Between the Number of ~rocessors and the
Communication Cost:

The number of processors for parallel simulation must

be selected to balance the effects the constraints 1 and 2

in · order to yield the maximum speed up. It is clear that if

the communication cost a is high assigning extra processors /

to a parallel simulation may degrade speed up. Figure 3.5

49

shows how the interactions between P and a affect speed up.

The oo symbols mark the maximum speed ups. It is observed that

when the communication cost is 20 times of an event execution

time, the maximum speed up occurs when P = 2 and adding extra

processors to the parallel simulation only degrades the

performance.

3.4.~ Increasing the problem size:

For a fixed number of processors if the problem size

increase the inherent parallelism also increases. Figure 3.6

indicates that if N .. P speed up of P can be expected. This

observation supports Nicol'~ conclUsion that a simple paral-

lel simulation protocol can yield good speed up if the prob-

lem size is sufficiently large.It is noted that when P is

l~rge a much larger N is required to fully exploit processor

power.

3.4.6 Increasing the problem size with fixed processes to
processors ratio:

When both the problem size and the number of proces-

sors increase i.e. N/P is constant then the number of events

executed at a processor does not change statistically, but

the number of processors to be communicated increases. Figure

3.7 shows that the speed up increases linearly if the problem

size increases with fixed N/P ratio. The above observation

implies that the number of processors to be communicated with

a processor does not affect the inherent parallelism.

50

3.4.7 Increasing Message Density:

By increasing the number of message per process, the

work load to the simulated system is increased. In figure 3.8

it is observed that when o increases speed up increases and

then slowly decreases. Similar phenomena was observed for

conservative parallel simulation protocols.

51

CHAPTER FOUR ',

CHAPTER FOUR

IMPLEMENTATION

In the project simulation of an multiprocessor

environment is done to evaluate the performance of different

standard computations under various topologies. A totally new

topology z circle is found to be very much fault tolerant and

also easy to upgrade (upgrade here means adding of new

processors). All the standard topologies like Bus, Ring,

Torus, Hypercube, Mesh & Tree are considered. The simulation

of this project is done in c language on DEC VAX 11/780 under

VMS environment.

In the z circle network the processors are connected in

a z-ladder fashion. Here both the two processors at the ends

are connected in a circular fashion. A major advantage is

that in most of the transputers four links are available, and

all the four links are utilised here. Another advantage is

that the shortest path determination overhead is minimized by

only simple subtraction. It is also considerably fault toler

ant.

The input to this simulator is given after balancing

load with a suitable load balancing technique. Here at each

processor two queues are maintained: a ready queue, and a

communication queue. In the beginning the ready queue at each

processor contains all the processes assigned to that proces

sor and the communication queue is kept empty., The

round robin job scheduling technique is followed at each

52

processor,

slice for

i.e; each process at a processor is given a tim~

execution. An execution cycle is followed by a

communication cycle. In the communication cycle the processes

requiring communication among themselves communicate. Before

any of the two processes communicate first the links connect-

ing them through ~hortest path is examined. If the path is

found to be free then, it is made busy and the message is

routed. As the path is made up of links a flag associated

with each link enables efficient examining of the path, i.e;

if the flag is 1 then the link is busy else it is free. A

path is made busy by making the flags of all links 1 con

necting the two processes which are to communicate.If the

path is found to be busy i.e; any of the links connected

in the path is 1 then, the process is put in the communica

tion queue. A counter is maintained at each process to see

the number of cycles it is executed. If after a communication

cycle the process requires further execution then, it is put

in the rear of the ready queue and it waits to get a slice of

the CPU. When all the queue are exhausted then the program

terminates. It also calculates the time of execution of each

process

time of

in terms of processor time slice it also

completion of each queue. That is done

calculates

by adding

execution time of all the processes at each processor sepa

rately.

53

4.1 Important Parameters

sdl array : this is an array of records consisting of four

fields. They are

i) processor_id - this is defined as integer and

contains the identification of each processor.

ii) aqd_rq this contains the addresses of

different processes at the ready queue of each processor.

iii) add_cq - this contains the addresses of

different processes in the communication queue.

iv) flag- this stores.the state of the processor

in the running cycle (i.e; executed or not).

In C language the declaration for the above was

done as shown in the next page.·

54

struct schdl
{

int processor id;
int add rq; -
int add-cq;
int flag;

} ·sal array [NJ;

oplist : This contains the details of communication for each

process. A separate list is pr.epared for each process. This

is defined as array of records, consisting of two fields,

they are:

i) processor_id - this contains the processor

identification.

ii) process_id - this contains the addresses of

the processes with which the processes will need

communication.

In c this is declared as:

struct list
{

int processor_id;
int process id;

} oplist [K);
where K is defined as

K = N*lO;

ALGORITHM

step 1. Select the topology to be used.

step 2. Connect as selected above.

step 3. Input the number of nodes N to be connected.

step 4. Check whether th'e topology with N no of

nodes is permitted, if permitted then,

call procedure connect (topo,N)to connect the

nodes in the topology selected,

else go to step 2:~1

55

step 5. Take the values of the sdl_array and oplist as

input.

step 6. Call the procedures 1 reset_link() and

reset_flag(). Take the first non-zero element from

the sdl_array. If there is no non-zero element in the

sdl_array th~n go to 22.

step 7. Take the address of the ready queue for this

element.

step 8. Choose the first process from the ready queue.

step 9. Take the address of the oplist from the

process.

step 10. Take the first element from the oplist.

step 11. Take the processor name from the oplist and

the from the sdl_array find out the ready queue address

for this processor.

step 12.Mark the flag field of the sdl_array element

selected, i.e; 1.

step 13. Check whether the first element of this queue

is same as the process name of the oplist chosen,

if not go to step ~j.
'-'

step 14. If the above condition is satisfied, then

take the oplist address of the destination process

chosen.

step 15. If the first element of the destination

process oplist matches with the process name then call

test_link (start, dest).

Else go to step 11}i1
(,_...

56

step 16. If the test_link(start, dest) returns one

then,

i) increment the counter(i) for both the

processes,

ii) delete the first elements of both the

oplist chosen,

and iii)-mark the corresponding flag field of the

sdl_array of the destination process as selected (i.e;

1) •

Else go to step 1f1J.

step 17. Check the oplist of both the processes, if

there is any operation left in anyjboth the processfes,
)

then put the corresponding processfes in the rear of

the ready queue of the corresponding processor, else

remove the processfes from the ready queue.

step 18. Check the ready queue and the communication

queue of the processor if both are empty, then put zero

in the processor ID field of the sdl_array.

Go to step C@).

step 19. Put the process in the communication queue.

step 20. Choose the next non-zero element from the

sdl_array.

step 21. If there's no non-zero element left in the

processor_id field of the sdl_array then go to step 5,

else check whether the flag field of the chosen

processor is 1,

if it is 1 then goto step 20,

else goto 5.

57

step 22. Check the maximum of the counter(i) and the

minimum of the counter(i).

step 23. Add the counter(i) values of the processes at

each processor and put them in exe(j) array (Where 0 ~

j ~ N).

Go to step 2·1?\
·~

step 24. Terminate the program with the message

"Topology entered with the.given no of nodes is not

permitted".

step 25. Find out the processor utilisation for each

processor separately (i.e; calculated for nth processor

by dividing the time used by processor n divided by

total time taken for computation) .

step 26. Calculate the system utilisation.

step 27. Calculate the speedup (the speedup is

calculated by adding the execution time of all the

processors and then dividing it by maximum value of

exe (j)) .

step 28. Report end and terminate the program.

4.2 Computations

In this model, in a cycle, the processor execute a

computation step and after finishing they synchronise and

perform data exchange the next page. If during execution of

an algorithm, all the processors are performing computations

in all cycles then the system utilisation is 1. However it is

found that in some algorithms all the processors may not

58

participate in computation in all the cycles, as some proces

sors may be waiting for the for results generated by some

other processors.The value for such algorithms is less than

one.

4.3 Performanc~ Measures

System utilisation

In an execution cycle, all the processors may not

participate in execution and may be idle throughout an execu

tion cycle, waiting for results from other processors. The

utilisation of the system in terms of the number of proces

sors used in an execution cycle is quantified by the parame

ter su, which is referred to as system utilisation.

Consider an algorj,thm which is executed in r cycles on

P processors. Suppose that in an execution cycle of t 1 time

units, P1 processors are used, in the next execution cycle of.

t 2 time units P2 processors are used, and so on then,

SU = (P1•t1 + P2•t2 ••• + Pr*tr)/(P*(t1+t2+ •• +tr))

Pro.::13ssor utilisation

When the sub-domains assigned to different processors

are not equal, then some processors finish computation earli

er than others, and as synchronisation takes place at the end

of every cycle, these processors wait for others to finish.

This leads to idling and under-utilisation of some pro•ce!ssors

which is quantified by the parameter .Piu "":or· processor i.

It characterises the load balancing of th2 system. Perfect

59

load balancing occurs when the sizes of the sub-domains

assigned to all the processors are equal i.e, when Piu = 1,

fori= 1,2, .•. ,P (where Pis the number of processors in the

system).

Inter-Processor Communication Time

In a message_passing multiprocessor, if tstart-up repre

sents the message start-up overhead. or latency and tsend is

the transmission time (which is inverse of the link bandwidth)

k byte between two neighbouring processors, involves a time

tcomm equal to tstart-up +tsend * k.

When the communication is not between two near neigh-

bours, the communication time is estimated by assuming that
'

it takes place in hops, and each hop corresponds to a near

neighbour communication. The communication time between two

processors separated by n hops is then equal to n* tcomm·

4.4 Assumptions

The model proposed here for performance predication

assumes that all interprocessor communication times can be

estimated a priori and that there are no unpredictable queu

ing delays in the system. An input file having two fields

containing processor-ID name and process is available.

Load balanced system is available. Any process can complete

its message passing in one communication cycle if the route

is free and the receiving process is ready. Any single mes

sage passing will make the route busy for one communication

cycle.

60

CHAPTER FIVE

CHAPTER FIVE

CONCLUSION

The field of parallel computers is a growing one. It is

the ideal low cost_supercomputing facility for a country like

India. So in the future we will be seeing this field to grow

like anything to replace the costly fast processor based

supercomputers. Alongwith the growth of parallel computers,

the performance, it's prediction and evaluation is going to

be prime consideration in the selection of a system.

The level of details required in the validation of a

simulator should depend on how that simulator is to be used

in decision making. In other words, we must return to the

principal objective of the simulation study and choose some

perfo~mance measure that indicates whether the observation

data generated by the simulator agree sufficiently with those

of the real system. If the performance measure thus obtained

is some mean value (e.g~., CPU utilisation, the average

response time), then the notion of significance level and

confidence interval should be applied to quantify the

statistical significance of the difference between measured

and simulated effects. The analysis of variance technique can

be used to test the hypothesis that the mean of a series of

data gener~ted by the simulator is equal to the mean of the

corresponding observed data of the real system.

61

The model discussed here determines the performance

of a static system. With some modifications, it can be made

to work in dynamic environment also. The model discussed has

got some limitations. It has got context switching time,

which is a pure overhead. It's advantage is that it helps the

smaller processes- to complete execution by' providing them

time slices. In many cases the intermediate results provided

by such processes is used by other processes to continue

execution. Since in most cases, parallel computers are used

for similar kind of jobs repeatedly, by monitoring the

communication pattern, the execution cycle can be varied to

reduce the context switching overhead.

62

BffiLIOGRAPHY

l. Akl,S.J.,

The design and analysis of parallel algorithmso

Prentice Hall, Inc., New Jersey 1989.

2. Alt.H., Hagerup, T., Mehlhorn, K., & Preparata,F.Po,

Deterministic Simulation of Idealized Parallel

Computers on More Realistic Ones, SIAM journal on

Computing, Vol.16, No.5 October 1987, pp-808-835.

3. Howe,C.D., and Moxon,B.,

How to Program Parallel Processors.

Spectrum, Vol.24 No.9, Sept. 1987 pp-36-41.

4. Ferrari, D.,

Computer Systems Performance Evaluation,

Prentice Hall, 1978.

5. Hwang, Kai & Briggs, Faye A.,

Advanced Computer Architecture and Parallel Processing,

McGraw Hill, New York 1989.

6. Jamieson, L.H., Gannon, D.B., Douglas, R.J., (editors)

The Characteristics of Parallel Algorithms,

The MIT Press.

7. Quinn,M.J.,

Designing Efficient Algorithms for Parallel Computers,

McGraw Hill, New York 1987.

8 • Snow, c. R. ,

concurrent Programming

Cambridge University Press, 1988.

63

9. stuck, B. W., and Arthurs, E.,

A Computer and Communication Network Performance Analysis

Primer.

Prentice Hall, 1985.

10. Towsley, D.,

Approximate Models of Multiple Bus Multiprocessor

Systems. IEEE Trans.on computers, March 1984.

11. Svobodova, L.

Computer Performance Measurement

Methods: Analysis and application.

Elseivier, New York.

64

and evaluation

	TH51580001
	TH51580002
	TH51580003
	TH51580004
	TH51580005
	TH51580006
	TH51580007
	TH51580008
	TH51580009
	TH51580010
	TH51580011
	TH51580012
	TH51580013
	TH51580014
	TH51580015
	TH51580016
	TH51580017
	TH51580018
	TH51580019
	TH51580020
	TH51580021
	TH51580022
	TH51580023
	TH51580024
	TH51580025
	TH51580026
	TH51580027
	TH51580028
	TH51580029
	TH51580030
	TH51580031
	TH51580032
	TH51580033
	TH51580034
	TH51580035
	TH51580036
	TH51580037
	TH51580038
	TH51580039
	TH51580040
	TH51580041
	TH51580042
	TH51580043
	TH51580044
	TH51580045
	TH51580046
	TH51580047
	TH51580048
	TH51580049
	TH51580050
	TH51580051
	TH51580052
	TH51580053
	TH51580054
	TH51580055
	TH51580056
	TH51580057
	TH51580058
	TH51580059
	TH51580060
	TH51580061
	TH51580062
	TH51580063
	TH51580064
	TH51580065
	TH51580066
	TH51580067
	TH51580068
	TH51580069
	TH51580070
	TH51580071
	TH51580072
	TH51580073
	TH51580074
	TH51580075
	TH51580076

