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CHAPTER ONE 



CHAPTER O~"E 

INTRODUCTION 

1.1 Towards Parallelism 

Several decades ago the era of parallel computation has 

started when anal?g computers were applied to simulate con

tinuous dynamic systems. Analogue computation is based on 

application of continuous physical.laws to realize mathemati

cal operation in parallel. The mathematical operations are 

simulated as a physical analogy by means of electrical and 

electronic circuitry. Analogue computation is parallel by 

nature. System simulation by way of physical processes was 

possible only for a few mathematical operations like inner 

product and integration with respect to time. For this 

reason parallel analog computation was mainly ·used for simu

lation of continuous systems. In particular the fact that 

analogue computations are executed in the continuous time 

domain made it easy to realize that analogue computing de

vices could efficiently operate and cooperate in parallel 

without any synchronization. Analogue computing devices 

produce and consume intermediate results in the continuous 

time set. Consequently exchange of data can simply be done by 

means of electrical interconnection consisting of electrical 

wiring. 

Later on stand alone analogue computers have been 

replaced by hybrid computers (i. e; a computer systems having 

analogue and digital components). The incorporation of a 
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digital computer made it possible to run the analogue comput

er under control of a digital program. In a sense the ana

logue computing part a9ted as a very powerful coprocessor for 

the-- digital computer. From the mid SO's parallel digital 

computation has become more and more important in comparison 

to hybrid computation. 

In sequential digital computation a processing task is 

described and programmed as sequence of digital operations. 

These operations are carried out one after another, where the 

execution time of digital operation depends on it's complex

ity. In digital computation the production of intermediate 

results and the consumption of intermediate results as well 

take place in discrete time sets. There belongs discrete time 

sets for different processing tasks. This is the main reason 

why it is difficult to realize that simultaneously operating 

digital computing devices can cooperate in an efficient way. 

Supercomputers have made parallel digital computation 

very popular. Supercomputers are conventional digital comput

ers ,but with a CPU architecture dedicated to execute numeri

cal linear algebra through pipelined processing. For this 

reason these supercomputers are also called vector computers. 

Pipelined processing is a special working out of parallel 

processing, similar, to flow production by means of an assem

bly line. A processing task is not executed as a sequence of 

subtasks in the normal way by means of one computing device, 

but each subtask is executed by a separate processing device. 

These processing devices are coupled in cascade,in case of 

one processing task these devices are busy one by one. 
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Pipelined processing can be applied very successfully in case 

a processing task has to be executed many times and if more

over this task can be sub divided in a sequence of subtasks 

of equal execution time. Now supercomputers are on the way to 

become parallel digital computers ,where the individual 

processors are very powerful with regard to efficient paral

lel processing. 

The near future need of much more powerful supercompu~ 

tation ask for parallei (digital) computers , containing a 

large number of fast processors that can also co-operate fast 

and efficiently. In parallel processing high performance data 

processing and ditto data flow are of equal importance . In 

practice so far loss of efficiency often happens for the 

technical reason that the communication system of a parallel 

computer has not enough capacity. Lack of communication 

capacity will result in transfer bound processing instead of 

compute bound processing. Loss of efficiency also often 

happens for the technical reason that the communication 

system of a parallel computer has not enough capacity. Lack 

of communication capacity will result in transfer bound 

processing instead of compute bound processing. Loss of 

efficiency also often happens because of the fact that paral

lel algorithrnics is still in the early stage of development. 

That makes it difficult to define the architecture and pro

gramming of a parallel computer such that efficient implemen

tation of parallel algorithms is possible in a wide range of 

applications. Moreover the appricability of parallel computa-
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tion is hampered by the fact that the programming in parallel 

computers is still more difficult than programming in serial 

computers. One can expect that this will change because most 

of the problems in practice are parallel in nature. 

1.2 Role of Performance Evaluation 

& Prediction 

The issue of performance evaluation and prediction has 

concerned users throughout the history of computer evolution. 

In fact, the issue is most acute when the technology is 

young; the persistent pursuit of products with improved cost

performance characteristics then constantly leads to designs 

with untried and uncertain features. 

from 

design 

The need for computer performance evaluation exists 

the initial conception of a system's architectural 

to it's daily operation after installation. In the 

early planning phase of a new computer system product, the 

manufacturer usually_makes two types of prediction. The first 

type is to forecast the nature of applications and the levels 

of system workloads of these applications. Here the term 

workload means, the amount of service requirements placed on 

the system. The second type of prediction is concerned with 

the, choice between architectural design alternatives,based on 

hardware and software technologies that will be available in 

the design period of the planed system. Here the criterion of 

selection of selection is what we cdll cost performance 

tradeoff. The accuracy of such prediction rests to a consid-
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erable extent on our capability of mapping the performance 

characteristics. Such translation procedures are by no mean 

straightforward or well established. After the architectural 

decisions have been made and the system design and implemen

tation started, the scope of performance evaluation becomes 

more specific. The interactions among the operating systein 

components- algorithms for job scheduling,processor schedul

ing,~nd storage management must be dealt with,and their 

effects on the performance must be predicted. Comparing the 

predicted performance with achieved performance often 

revels major defects in the design or errors in the system 

programming. Now it is universally accepted that the per-

formance evaluation and prediction process should be an 

integr~l part of the development efforts throughout the 

design and implementation activities. 

Du~ing the 1980s,interest _in performance analysis 

increased, partly because, as architectures became more 

complicated it was recognised how important it would be to be 

able to predict the performance of new systems before they 

are built. At the same time it was more important to measure 

and characterize performance on existing systems because the 

ratio of pe~k to actual performance could now be several 

orders of magnitude. However performance analysis was made 

more difficult by the large number of variables that can 

effect performance in a highly parallel system. There was 

also an increased awareness of the difficulty of avoiding 

biases in measuring in measuring performances and of consid

ering properly all the factors that affect performance. There 
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were and are many projects aimed at getting better understand

ing of performance measurement, carrying out performance 

measurements on different systems,and even attempting to 

characterize performance. There is a strong emphasis towards 

vector oriented computers, but some of the work is al·so done 

on parallel systems. The long range goals on which prime 

importance is given include building up an understanding of 

fundamental computations that are used in different applica

tion fields, for example, solving sparse linear systems in 

fields such as chemical engineering and electronic circuit 

design , and a large database of performance information both 

at the entire application level and at the kernel level for 

many different computers. A long- range goal is to characte

rise the variables and factors that affect performance on 

different computer architectures for different application 

classes. In the late 1980s, from approximately 1987 onwards, 

there are several projects initiated aimed specifically in 

measuring the performance of paraliel computers. 

Finally, one indication of the level of interest in the 

field of performance evaluation is that there are now several 

prizes given for achieving certain level of performance. One 

of the first was the Alan Karp prize, which was a one time 

prize given for first program to achieve a speed up of 200 on 

a real application on a real parallel computer. Gordon Bell 

also established what is now a series of prizes for 

achievements, such as best price performance, absolute top 

speed, and parallelism. 
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1.3 Measures of performance 

When we say the performance of the computer is great it 

means perhaps that the quality of service delivered by the 

system exceeds our expectation. But the .easure of service 

quali~ and the e~en~ of expecta~ion vary depending on the 

individual involved,e.g; system designers,installation manag

ers ,terminal users etc. If we attempt to measure the quality 

of computer performance .in the broadest context, then we must 

consider such issues as user response (as well as the system 

response), ease of use, reliability, user's productivity, and 

the like as the integral parts of the system's performance. 

Such discussions,however, fall within the realm of quantita

tive sciences that involve social and behavioural sciences. 

Despite our full awareness that performance analysis cannot 

avoid what are ultimately behavioural questions,the scope of 

this project work is quite limited: The performance analysis 

is discussed only in terms of clearly meaSurable quantities. 

This is done in the same way as we conventionally define, for 

instance the signal-to- noise ratio probability of decoding 

errors as measures, of performance of communication systems. 

The performance measures ·can be classified into two 

broad categories: user oriented .easu.res and syste• orien~ed 

~- The user oriented measures include such quantities 

as the turnaround time in a batch system environment and the 

response time in a real time and/or interactive environment. 
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The turnaround time is the length of time that elapses 

from the submission of the job until the availability of it's 

processed resu_lt. In the similar way in an interactive envi

ronment the response time of a request represents the inter

val that elapses from the arrival of the request until it's 

completion in the system. 

In interactive systems, sometimes we use the term 

system reaction time which is the interval of time that 

elapses from the moment an input arrives in the system until 

it receives it's first time slice of service. It measures how 

effective a scheduler is in dispatching service to a newly 

arrived input.Turnaround time,response time,and reaction time 

are all considered random variables; hence their distribu

tion, expected values,variances are of importance to the 

designer. 

Usually jobs are categorised according to their priori

ty classes. Many factors may determine the assignment of 

priority to a job : the job's urgency,it's importance,and 

it's resource demand characteristics and utilization. 

Throughput is defined as the average no of jobs proc

essed. per unit time. It provide the degree of productivity 

that the system can provide. If·jobs arrive at a system 

according to some mechanism that is independent of the state 

of the system, throughput is equivalent to the average arriv

al rate, provided that the system can complete the jobs 

without creating an ever increasing back-log. But in this 

case throughput is not an adequate measure of performance; 

rather it is a measure of system workload. 
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The term throughput has some meaning when either there 

is always some work awaiting the system's service, or the job 

arrival rate depends on the system's state. Considering the 

first case in the light of queuing theory the obvious implic

at'ion is that the system is unstable in the sense that the 

queue or the backl3g will grow without bound. So for the sake 

of simplicity we can define throughput over a finite interval 

in which the input queue is never empty. Hence the throughput 

thus defined is a proper indicator of the syst;eJij•s capacit;y. 

The second case assumes importance when we take a finite 

number of generation sources. For example, if in an interac

tive system, there is a finite number N of terminal user 

actually logged in. Let's assume that a terminal is blocked 

while it's request is in the system, either waiting for or 

receiving service. If there are n jobs in the system, only 

the remaining N-n terminals are eligible for generating 

requests. Thus, the effective arrival rate is a (linearly) 

decreasing function of the system state, n. We can envision a 

similar situation in a batch-system environment: There may be 

a sufficiently large number of users to keep the system 

continually busy. In reality, however, as the system conges

tion level increases, a user may be discouraged from submit

ting a new job. Again, the job arrival rate will be some 

decreasing function of the number of outstanding jobs. This 

negative feedback loop inherent in the jobgeneration mecha

nism makes the system always stable. 
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The utilization of a resource is the fraction of time 

that the particular resource is busy. The CPU utilization 

the most popular measure of system usage, although it is 

necessarily the most important in complex systems. When 

CPU is not idle, it may be in either of two busy states: 

problem program state (or simply the problem state) and 

supervisory program state (or the supervisor state). 

former represents the portion of time when the CPU 

actually executing the programs written or called by 

users; the latter is the time consumed in executing 

is 

not 

the 

the 

the 

The 

is 

the 

such 

operating system components as the scheduler and various 

interrupt-handling routines. The distinction is commonly 

assumed to be synonymous with that of "useful· work" versus 

"overhead". Yet it must be noted that much of the supervisor

state operation provides necessary.and useful service for the 

user programs; hence the "overhead" categorization may be 

misleading. 

If we assume the system having single CPU, and if the 

CPU utilization figure excludes the supervisor state, then we 

find the following simple relationship between throughput Q. 

(jobs per second) and the CPU utilization Pcpo 

Where ~cpo(seconds per job) represents the average CPU · 

time required to process a job. 

The mean response time, which we denote by A 

to have the simple relation with throughput 

P A= y 

10 
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in which y represents the average number of jobs (waiting or 

being served) in the system. 

1.4 Organization of the report 

Chapter 2 contains different-classifications of paral

lel computers,programming in parallel computers, their mo

delling techniques, the parameters and their evaluation 

methods. 

Chapter 

methodologies 

3 deals with different performance 

that are often used. The importance 

analysis 

of this 

work is also discussed in the beginning of this·chapter. 

Chapter 4 contains the details of implementation, the 

limitations and also the assumptions. 

Chapter 5 discusses the future scope of this work. 

11 



CHAPTER TWO 



CHAPTER TWO 

MODELLING METHODS 

2.1 Models of Computation 

Any system, whether serial or parallel,functions by 

executing instruction on data. A stream of instructions (the 

algorithm) prompts the computer what to do at each step. A 

stream of data i.e;the input to the algorithm is affected by 

these instructions. Depending on these streams the computers 

can be classified into four broad categories (Flynn's classi-

fication). 

1. Single Instruction stream Single Data Stream (SISD) 

2. Multiple Instruction Stream single Data Stream (MISD) 

3. Single Instruction Stream Multiple Data stream (SIMD) 

4. Multiple Instruction Stream Multiple Data Stream (MIMD) 

2.1.1 SISD computers 

A computer in this class consists of a single process-

ing unit receiving a single set of instructions that operate 

on a single stream of data. 

instruction 

stream 

.--------. data 
PROCESSOR I . 

l...-------~- stream 
MEMORY MEMORY 
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At each step during computation the control unit omits 

one instruction that operate on a datum obtained from the 

memory unit. Such type of instruction may conveys the system 

to perform some arithmetical or logical operation on the 

datum and then put that back in memory. 

2.1.2 MISD Computers 

In this case a number of processors each with it's own 

control unit share a common memory unit where data reside. 

(refer figure) . Here the number of instruction is same as the 

number of processors and there is only one stream of data. 

:PROCESSOR # 1
instruction

1 # 11 1! !CONTROL 
stream 1 

1
instruction

1 ~PROCESSOR # # 21 2l !CONTROL 

I MEMORY I 
data · stream 2 

I str. 

l 
1
instruction

1 
# N/ 

~--41 PROCESSOR # Nl 
1
coNTROL 

stream N 

In this configuration, at each step, one datum received 

from memory is operated upon by all the processors simultane-

ously, each according to the instruction received from it's 
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control unit. Thus parallelism is achieved by letting the 

processors do different things at the same time on the same 

datum. This class of computers lend itself naturally to those 

computations requiring an input to be subjected to several 

operation, each receiving inputs in it's natural form. 

2.1.3 SIMD Computers 

In this case N identical processors wit~ their own 

local memory where they can store both program and data. All 

processors operate under the control of .a single instruction 

stream issued by a central processing unit. Hence the N 

processors may be assumed to hold identical copies of a 

single program, each processor's copy being stored in it's 

own local memory. So there are N data stream, one per each 

processor. 

d 
str 

ata 
earn .1 

PROCESSOR 
# 1 

SHARED MEMORY 
OR 

INTERCONNECTION NETWORK 

data 
stream 2 ...... 

PROCESSOR 
# 2 

instructionj 
stream 

1 

CONTROL 
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PROCESSOR 
# N 
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The processors operate synchronously:at each step, all 

' 
processors execute the same instruction each on a different 

datum. The instruction could be a simple one (such as adding 

or comparing two numbers}or a complex one (such as merging 

two lists of numbers). Sometimes it may be so necessary to 

have only a subset of the processors execute an instruction. 

-This information can be encoded in the instruction itself, 

thereby telling the processor whether it should be active(and 

execute the instruction} or inactive (and wait for the next 

instruction). There is a mech~nism, such as a global clock, 

that ensures lock-step operation.Thus processors that are 

inactive during an instruction or those that complete execu-

tion of the instruction before others may remain idle until 

the next instruction is issued. In this type of systems it is 

always desirable to have good communication facilities 

amongst the processors in order to exchange data or interme-

diate results.This gives rise to two subclasses of SIMD 

computers they are: shared memory communication type and 

interconnection network type. 

2.1.3.1 Shared Memory Type 

In this case during execution of a parallel algorithm, 

the N processors gain access to the shared memory for the 

reading of the input data, for reading or writing intermedi-

ate results,and for writing final results.The basic model 

allows all processors to gain access to the shared memory 
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simultaneously if the memory locations they are trying to 

read are different. However, the class of shared memory SIMD 

computers can have many further classifications. 

PROCESSOR 
# 1 

PROCESSOR 
# 2 

PROCESSOR 
# 3 

PROCESSOR 
# 4 

I MEM.BLK.1 1 I MEM.BLK.2 I I MEM.BLK.3 I 

2.1.3.2 Interconnection Network type 

Here the model is constructed such that each node can 

communicate with each node through a direct link. Hence 

several processors can communicate simultaneously amongst 

themselves though there is some limitations involved in it. 
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Simple Networks for SIMD computers 

i. Linear Array 

The simplest way to interconnect N processors is in the 

form of one dimensional array. Here each processor is con

. nected to it's neighbouring processor through a two way 

communication link as shown below. 

PRO #1 PRO #2 PRO #3 I 

ii. Two dimensional array 

Two dimensional network is obtained by arranging the N 

processors into an m*m array, where N = m*m. This network is 

also known as mesh. 

iii. Tree connection 

Here the processors form a complete binary tree. Such a 

tree has d levels, numbered 0 to d-l,and N =2d-leach of which 

is a processor. The root processor have no parents and the 

leave processors have no children. 
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There are many other connection networks such as cube, 

ring and shuffle etc. which are also used nowadays. 

2.1.4 MIMD computers 

This class of computers is the most general and most 

powerful in our pa~adigm of parallel computation that clas-

sifies parallel computers according to whether the instruction 

andjor data are duplicated. Here we have N processors, N 

streams of instructions, and N streams of data. The proces-

sors used here are of the same type used in MISD computers in 

the sense that each processor has it's own control unit in 

addition to it's local memory and the arithmetic and logic 

unit (ALU).This makes these processdrs more powerful than 

their counterparts used in SIMD computers. 

d 
str 

ata 
earn 1 

PROCESSOR 
' # 1 

SHARED MEMORY 
OR 

INTERCONNECTION NETWORK 

data dat 
stream 2 . . . . . . strea 

PROCESSOR PROCESSOR 
# 2 # N 

instru 
stre 

ction instruction instruction 
am 1 stream 2 stream N 

CONTROL CONTROL CONTROL 
# 1 # 2 # N 

a 
m N 

Each processor operates under the control of an 

instruction stream issued by it's control unit. Thus the 

processors are potentially all executing different programs 
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on different data while solving different subproblems of a 

single problem.This means the prdcessors typically operate 

asynchronously. As in SIMD computers, communication between 
/ 

processors is performed through shared memory or 

interconnection network. MIMD computers sharing a common 

memory are often referred to as multiprocessors {or tightly 

coupled machines) while those with an interconnection ·network 

are known as multicomputers (loosely coupled machines). 

Multicomputers are sometimes referred to as distributed 

systems. The distinction is usually based on physical dis-

tances separating the processors and is therefore subjective. 

2.2 Programming MIMD Computers 

MIMD model of parallel computation offers the most 

general and powerful modeof computation possible. Computers 

in · this class are used to solve in parallel those problems 

that lack the regular structure required by the SIMD model. 

Asynchronous algorithms are difficult to. design evaluate and 

implement. In order to appreciate the complexity involved in 

programming MIMD computers, it is important to distinguish 

between the notion of a process and that of a processor. An 

asynchronous algorithm is a collection of processes some or 

all of which are executed simultaneously on a number of 

available processors. Initially, all processors are free. The 

parallel algorithm starts it's execution on an arbitrarily 

chosen processor. Shortly after it creates a number of 

computational tasks or processes, to be performed.A process 
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thus corresponds to a section of the algorithm. There may be 

several processes associated with the same algorithm section, 

each with a different parameter. 

Once a process is created, it must be executed on a 

processor.If a free processor is available, the process is 

assigned to the processor that performs the computation spec

ified by the process, else the process is queued and waits 

for a processor to be free. 

When a processor completes the execution of a process, 

it becomes free. If a process if is waiting to be exec~ted, 

it can be assigned to any processor~ just freed, else if no , 

process is waiting, the processor is queued and waits for a 

process to be created. 

The order in which the process are executed by proces

sors can obey any policy. The availability of a processor is 

sometimes not sufficient for the processor to be assigned a 

waiting process. An additional condition may have to be 

satisfied before the process starts. In the same way, if a 

processor has already been assigned a process and an unsatis

fied condition is encountered during execution, then the 

processor_ is freed. When the condition for resumption of that 

process is later satisfied, a processor is a~signed to it. 

The above mentioned are few of the scheduling problems that 

characterize the programming of multiprocessors. Finding eff

icient solutions to these problems is of vast importance if 

MIMD computers are considered to be useful in the long run. 

The vital difference between this and the SIMD computers is 
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that none of these above said scheduling problems arise on 

the less flexible but easier to program SIMD computers. 

While programming a distributed-memory parallel comput-
_/ 

er not only the question of commu~ication between processes 

but also the distribution of software processes over the 

hardware processor~ is also of vital importance. Much of the 

current research is devoted to combining these two tasks into 

a single automated operation.In the absence of a universal, 

efficient solution to this problem, there is a strong argu-

ment for separating the two activities completely so that the 

logical structure of the program is unaffected by the physi-

cal topology of the processor network on which it is execut-

ed. 

The version two of the Occam language is only partially 

successful in maintaining this separation; the distribution 

of logical channels over physical transputer links is kept in 

the header of the program {along with the global constants 

declarations and like), but the distribution of processes 

over the processors must be done in the body of the program 

proper. 

In the Meiko's parallel programming environment, 

CSTools, maintains this separation of activities for c pro-

grams. It puts all the distribution information into a sepa-

rate text file, called a PAR file. By changing this file one 

can redistribute a compiled program. The CSTools employs the 

distributed CSN (Computing Surface Network) to fool processes 

into thinking that all communication is point to point. 
AP>I!i!fii:J;::;; 
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A message may be physically be routed via several 

intermediate processors, but CSTools hides it from the 

program and makes the programming easier just like program-

ming in ordinary C under Unix. 

The above can be illustrated through a simple example. 

For compiling a program for displaying "Computer Science" we 

may compile by giving command: 

% mcc -o computer computer.c 

and to execute it, we can give the command 

% mrun computer 

CSTools parallel loader program,mrun, performs the 

distribution of processes over the parallel processors. For a 

real parallel program, instead of giving mrun the name of the 

executable file, the name of the PAR file is given,which 

describes the placement of processes.The parallel c programs 

themselves contain no distribution at all, but communicate 

with each other via abstract entities called transports. The 

idea is illustrated through the simple example that uses two 

parallel processes: one to print "Computer," and the other to 

print "Science". 

Listings shows the source code for the two processes, 

computer.c, and science.c. All the functions whose names 

begin with csn_are communication primitives from a CSTools 

library. Each process first initializes CSN with csn_init() 
I 

and then calls csn_open() to create a connection the process 

and CSN. This connection is an object of type. 
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1! Program computer.c !L 
# include <stdio.h> 
# include <csnjcsn.h> 
# include <csnjnames.h> 
# include <cs.h> 

main (argc, argv) 
int argc; 
char* argv [ 1; · 
{ 
Transport transport; 
netid t world id; 
int flag= 1;-
int status; 
csn_init (); /* Initialize the CSN */ 

status= csn open (CSN null ID, &transport); 
if (status /~ csn ok) - -
cs_abort ("unable to open transport\n", -1); 

status= csn lookupname(&world id, "Worldtransport\n"); 
if (status !~ csn ok) -

cs_abort ("unable to lookup WorldTransport\n", -1); 

printf("Computer")i fflush (stdout); 
csn tx (transport, 0, world id, &flag, sizeof(flag)); 

} -

L! Program science.c ~ 
# include <stdio.h> 
# include <csnjcsn.h> 
# include <csnjnames.h> 
# include <cs.h> 

main (argc, argv) 
int argc; 

- char* argv [ 1; 
{ 

} 

Transport transport; 
int flag = 1; 
int status; 
csn_init(); /* Initialize the CSN */ 

status= csn open (CSN_null_ID, &transport); 
if (status /~ csn ok) 

cs_abort ("unable to open transport\n", -1); 

status= csn register(&world id, "Worldtransport\n"); 
if (status /~ csn ok) -

cs_abort ("unable to register WorldTransport\n", -1); 

csn rx (transport,NULL, &flag, sizeof(flag)); 
printf ("Science \n"); 
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Transport, and each transport has an address called a Net ID. 

The sender of the message (computer.c in this example) must 

know the Net ID of the intended receiver's transport. To make 

this possible, the receiver (science.c) registers it's trans

port with the CSN name service by calling csn_registername(), 

and then the sender can look up 'this name by calling 

csn_lookupname() and retrieve it's Net ID. It's rather like 

getting one's name into the telephone directory so that 

anyone can look into it and contact. 

2.3 Analysis of Parallel Algorithms 

Once an algorithm for a new problem has developed, it 

is usually evaluated using the following criteria: running 

time, number _ of processors used, and cost. . Besides these 

standard matrices, a number of other technology related 

measures are sometimes used when it is known that the 

algorithm is destined to run on a computer based on that 

particular technology. 

2.3.1 Running Time 

As the speed is emerging to be the main reason behind 

the growing interest in the field of parallel computers, the 

most important measure a parallel algorithm is therefore the 

running time. According to one\of the pioneers in the field 

of parallel processing Selim G. Akl the running time is 

defined as the time taken by the algorithm to solve a problem 
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on a parallel computer, that is, the time elapsed from the 

moment the algorithm starts to the moment it terminates. If 

the various processors do not begin and end their computation 

simultaneously, then the running time is equal to the time 

elapsed between the moment the first processor to begin 

computing starts and the moment the last processor to end 

computing terminates. 

In evaluating a parallel algorithm for a given prob

lem, it is quite natural to do it in terms of the best avail-

able sequential algorithm for that problem. Thus a good 

indication of the quality of a parallel algorithm is the 

speed up it produces. This is defined as 

speedup= 

worst-case running time of fastest known sequential 
algorithm for the problem. 

worst case running time for the parallel algorithm 

2.3.2 Number of Processors 

The second most important criterion in evaluating a 

parallel algorithm is the number of processors it requires to 

solve a problem. It costs money to purchase, maintain, and 

run computers. When several processors are present, the 

problem of maintenance, in particular, is compounded, and the 

price paid to guarantee a high degree of reliability rises 

sharply. Therefore, the larger the number of processors an 

algorithm uses to solve a problem, the more expensive the 

solution becomes to obtain. For a problem of size n, the 
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number of processors required by an algorithm, a function of 

n, will be denoted by p(n). Sometimes the number of 

processors is a constant independent of n. 

2.4 Parallel Software Design Issues 

2.4.1 Portability-

Parallel programs are designed to be made more easily 

portable so that investment in their design and implementa

tion can be amortized across a wide range of machines.Current 

trends in parallel processing hardware makes this goal of 

architecture independence especially difficult to achieve, 

since technological changes seem to oscillate between message 

passing based architectures and shared memory architectures. 

The programming methods used in these. parallel architecture 

variants are typically quite different. 

2.4.2 Design (Correctness) 

Large projects require hierarchical designs. Unfortu

nately to understand the inte+action of communicating proc

esses require that their specification includes not only 

their data behaviour, but also their control behaviour. 

Reasoning about the interaction of much complex specifica

tions is tantamount to reasoning about the final code. To 

design more effectively a technique must be found out to 

raise the level of behavioural abstraction Functional models 

have succeeded here through the use of functional composi-
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tion. The traditional functional composition is deterministic 

and require single assignment semantics to enforce referen-

tial transparency. 

2.4.3 Implementation 

In traditional implementation of parallel programs, 

there is often no way of ensuring that the code implements 
I 

designer's intentions. For example, a simple typographical 

mistake during coding can cause two processes to communicate 

when they should not, leading to disastrous, unpredictable 

consequences. If the design specifications could somehow be 

fed directly to the language processor, this unintended 

communication could be diagnosed syntactically. In order to 

be viable, the design must be formally defined as a .comput-

er language. 
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CHAPTER THREE 

PERFORMANCE ANALYSIS METHODOLOGIES 

3.1 Importance of Performance Analysis 

Suppose we have a weather forecasting system which 

predicts tomorrow's weather latest by tomorrow evening then 

it is better not to use that system at all, or in the today's 

high tech warfare if a missile intercepting system detects 

the missile after it hits the target then the system is also 

useless. Here comes the word performance. Performance 

analysis is applied in almost all fields in today's world to 

determine the suitability of the systems in the fields in 

which they are supposed to be used. While analysing 

performance we generally prepare a model of the actual system 

and monitor it's behaviour for different inputs. These inputs 

are generally similar to the types that are actually in use. 

In the computers, performan~e analysis is invariably 

done in selecting a system. The first step involved is to 

list and examine the important system device parameters: the 
( 

capacity .and cycle time of cache and main memory, the. speed 

of the CPUs, the access time and data transfer rate (band 

width) and the types and characteristics of terminals and 

communication equipments. We also need to know software 

components: the job scheduling algorithm, the disk and drum 

scheduling algorithm, the sizes of page and block, and the 

file organization~ Further, we may want to know the amount of 
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traffic (loads) anticipated for each of thes.e components: the 

job arrival rate, the amount of CPU time (or instructions) 

per job, the memory space requirements, the page fault rate, 

the request rate on drums and the required rate of data 

transfer rate between the auxiliary storage and main memory. 

In multiprocessor systems this becomes more complicated. The 

data transfer rate-between adjacent processors, blocking and 

freeing of interprocessor communication links, use of limited 

resources comes into picture. 

3.2 Task Partitioning & Task Coalescence 

Performance is one of the most important factors that 

needs to be considered during the design, configuration and 

development of a distributed real time computer system. To 

obtain the optimal system performance, which includes veri-

,fiably correct functionality, minimal resource requirement 

and high reliability, the process of task partitioning and 

allocation play an important role in the design process. Task 

partitioning is the decomposition of the total task into 

subtasks 

the task 

according to a specific partitioning criterion. 

allocation process, the partitioned subtasks 

In 

are 

allocated to processors available in the system, such that an 

objective cost function is minimized subject to certain 

constraints imposed by the application or environment. Task 

coalescence is the composition of all user predefined task 

modules into a set of subtasks to achieve a specific perform

ance goal. The subtasks represents a' group of user defined 
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software modules. All modules in a subtask will be assigned 

to the same processor during the allocation process. The 

total task is represented by a set of disjoint subtasks. The 

optimal set of such subtasks is then used for task alloca-

tion. 

Many partitioning algorithms with constraints on both 

task structure and system structure have been proposed. 

However most approaches have ignored one or more important 

link load and synchronization delay that are inherent in the 

real time applications. The coalescence of a given set of 

task modules to meet performance requirements has not been 

thoroughly investigated. 

The. evaluation and optimization are made in terms of 

the minimal processing power( processing power is defined as 

a fraction of the available processing time in a processor 

which may be assigned to a task ) required for the total 

task, while guaranteeing the satisfaction of user require-

ments. A two queue network model is used for estimating the 

queuing and communication delays of a task module. The 

response time of a task module includes a synchronization 

delay, job processing time and data communication time. The 

synchronization delay which is caused by join operators is 

estimated under certain assumptions. The job service time and 

communication time are calculated by using queuing models. 
\ 

An analytic model should be sought wherever possible, 

since it can evaluate the performance with minimal efforts 

and costs over a wide range of choices in the system param-
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eters and configurations. Even with simplifying assump-
' 

tions and decompositions, however, the resultant analytic 

model is often not mathematically tractable. Then the only 

alternative for predicting the performa'nce of a nonexisting 

system is a simulation. The term simulation has a number of 

connotations. In the discussion a simulation means a numeri-

cal technique for conducting an experiment (by a digital 

computer) of a system evolving in time. Therefore, in a 

simulation the concept of time is explicit. A simulation 

model describes the dynamic behaviour of a system, even when 

the system analyst may ultimately be interested in only the 

mean value of some measure (e.g. CPU utilization, the 

response time) in the steady state. 

The structure and complexity of a simulator depends on 

the scope of the simulation experiment. The hierarchical 

structure should be adopted as much as poss'ible in the con-

struction of a simulation model also, though the motivation 

here is different. There is at least two features that make 

such a structure attractive. First, a hierarchical ( or more 

generally decomposable) structure allows modularization of a 

simulation program into a set of subprograms. Modularization 

leads to a flexible structure of the program, so that ·further 

extensions and changes are easily handled. Second, an ingeni

ous use of the hierarchical structure may shorten a simula-

tion run time substantially. In general, the length of a 

simulation run is determined by the required accuracy of 

simulation estimates and the amount of correlation span ( or, 
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equivalently, the magnitude of transient time) of the sto

chastic process observed in the ·simulation outputs. .In the 

model structure (of figure 3.1 given below) the inter-event 

time in the micro level model is in micro seconds. 

Macro Level 

Intermediate Level 

MicroLevel 

figure 3.1 

The number of events observed over the simulated time 

of say, one second will be of order 106 ; this subsystem 

easily reaches its steady state within that period. During 

the same period, the number of events that take place at the 

intermediate model is in the order of 103 . The stochastic 

process that characterizes the intermediate level model 

possibly reach its steady state, but the sample size of 10 

may 

3 

is perhaps not large enough to allow reasonably accurate 

estimate of a chosen performance measure. But as the macro 

level model, it is quite evident that one second of simulated 

time is too short to understand the _system behaviour, since 

the inter event time itself is in the order of seconds. 
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Perhaps a simulated time of 10 3 seconds or more will be 

required atithis level to obtain an'accurate estimate of all 

the overall performance measure. IF we were to run this 

simulator in its entirely over the period say 103 seconds in 

simulated time the total number of events observed at the 

micro level would amount to the o~der, of 109 events. Note 

that the actual -length of computer running time for the 

simulation experiment is governed not by the length of simu-

lated time, but by the total number of events handled. What 

the simulator performs is essentially to record all the' 

I 

system changes caused by the individual events. Therefore a 

brute force simulation often leads to an extremely costly 

experiment, but this is unfortunately the way in which most 

simulators have been structured in the past. 

A more efficient approach to the simulation effort is 

to run different submodels separately, thereby avoiding the 

waste of running the micro level model for such a long peri-

od. Interfacing a lower level model to a higher level model 

should be achieved through summarized statistics, such as a 

scaling constants and service time distributions. Since the 

equitlibrium · state solution of a model of a given level de-

pends on its surroundings we must have separate runs of the. 

model for different sets of parameters that determine its 

surroundings. For example if the intermediate level mode~ of 

the figure given represents a multiprogramming model we need 

to run the simulator of that level for different values of 

the degree of multiprogramming. These simulations will deter

mine the whole range of effective·processing rates that the 
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individual jobs receive under different congestion environ

ments. The values of the effective processing rates are then 

used as parameters of the macro level model. 

The above decomposition formulation naturally leads to 

the notion of what is'sometimes called hybrid modelling :a 

combination of analytical procedure and simulation. So long 

as the interfaces between different levels or submodels are 

clearly established the mixing of analytic and simulation 

techniques should present no technical problems. In fact the 

approach deserves special attention, since it allows us to 

take the best of both worlds, the efficiency of analytic 

.modelling and the realism of simulation modelling. 

Simulation models for computer systems can be further 

classified as either trace driven simulation or self driven 

simulation. A trace is a stream if·major events observed in 

an operational system, recorded with the time of their occur

rences. Like a benchmark program a trace should be selected 

from a representative segment of the system workload. However 

a benchmark is a program that is independent of the system in 

question, whereas a trace is a result of both the chosen 

program and the machine that executes the program. 

In the self driven simulation the concept of a probabi

listic sequence o~ resource demands presented by jobs is 

introduced. An advantage of the probabilistic model over the 

trace driven model is that since the event stream is generat

ed artificially it may be completely understood by the ana

lyst, furthermore the workload parameters are adjustifiable. 
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In this sense, a probabilistic input model is to trace driven 

model as a synthetic job is to a benchmark. Self driven 

simulation involves the use of random number sequences and in 

this regard it is'similar to the Monte carlo method: a numer

ical technique for solving a nonprobabilistic mathematical 

problem by introducing a random variable whose mean or dis

tribution corresponds to the solution of the original problem. 

In fact these two numerical techniques have a great deal in 

common: The objective of probabilistic simulation can usually 

be formulated as a mapping from a randqm vector ( a sequence 

of random ·Variates) to a scalar value of some performance 

measure as represented in the figure 3.2 

For this reason many of the variance reducing tech

niques developed in the Monte Carlo method are applicable to 

variance reductions in stochastic system simulations. 

3.3 Discrete Event Simulation 

A discrete event simulation is represented by some set 

of data, called the system state, which contains all the 

information required to characterize the system state at one 

point in time. The state remains unchanged until some event 

occurs that causes a discrete change in the state . In other 

words state transitions are done via executions of series of 

events with times when they occur. Execution of an event 

modifies ,a subset of a system state, which moves the system 

to a new state. Execution of any event can give rise to any 
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number of events with later timestamps. A simple discrete 

event simulation algorithm is given below, 

I* Let € be the'next event to be executed in the seqUential 

simulation*/ 

l.execute € 

I* Let e.E be the set of events scheduled due to the 

execution of e *I 

2.for all e'E e.E do 

3.insert e' into the event list according to the timestamp 

order; 

end while 

Since most discrete event simulation are time consum

ing, several approaches have been proposed to speed up the 

simulation process. A popular approach is for_ multiple com

puters to cooperate to execute a simulation run. It is 

important to analyze the inherent parallelism of the simula

tion application before this is applied. 

Berry and Jefferson and Livny proposed a simple tech

nique called critical path analysis to study the inherent 

parallelism of simulation applications. This technique can 

also be used to evaluate the performance of existing parallel 

simulation protocols. From the speed-up figures, it is 

difficult to see whether the parallel simulation protocols 

are efficient. Critical path analysis indicates that the 

maximum speed up that can be achieved in this benchmark is 

3.67. Thus, the speedups obtained by different scientists are 

actually quite respectable. The algorithms are easy to imple-
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ment although the correctness proofs are not trivial and can 

be integrated with simulation languages. Another advantage of 

these algorithms over previous attempts are that this can be 

used to study load balancing under different event schedul-

ing polices. 

3.4 CRITICALPATIIANALYSIS 

The idea of parallel simulation is based on the follow-

ing observation: If two events are independent of each other, 

they can be executed in parallel. Two events e and e' I are 

independent if execution of e modifies the same subset of 

state variables { and the modified variables have the same 

values), no matter whether e' is executed before or after e, 

and vice versa. In a parallel simulation, the simulated 

system is partitioned into N subsystems. Subsystem i consists 

of a subset of state variables s, such that 

where S is the set of state variables. These subsystems are 

concurrently simulated by a set of processes that communicate 

by exchanging time stamped messages. The events scheduled for 

process i can modify state variables in si. After the 

simulated system is partitioned, execution of events follows 

two sequential constraints. 

Constraint 1. If two events are scheduled for the same 

process, the event with smaller timestamp must be executed 
' 

before the one with larger timestamp. 
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Constraint 2. If an event executed at a process results in 

the scheduling of another ~vent at a different process, then 

the former must be executed before the latter. 

Partitioning the simulated system into subsystems is 

not a trivial task. If there are too many subsystems, the 

communication overfiead due to Constraint 2 may outweigh the 

benef.it provided by parallelism. On the other hand, if there 

are too few subsystems, independent events may be executed 

sequentially due to Constraint 1. several studies are devoted 

to the partitioning problem. 

Based on Constraints 1 and 2, an event precedence graph 

is built for each parallel simulation. Each vertex of the 

graph represents an event and each edge represents a communi

cation. An event execution time is associated with each 

vertex.A communication delay is associated with each 

edge.Since the graph is acyclic, a maximal weighted path can 

be found. This path is called the critical path and its cost 

is the minimal time required to finish the execution of the 

parallel simulation. 

Examples of an event precedence graph are given in the 

figure(3.3). A dashed arrow represents the scheduling con

straint of Constraint 1 and a continuous arrow represents the 

process communication due to Constraint 2. The event 

dence graph for sequential simulation is given in 

(3.3a) and the graph for 3 processes is in figure 

prece

figure 

(3.3b), 

where events e1 and e7 are scheduled for process 1, e3, e4 

and e5 are scheduled for process 2, and e2, e6 and e8 are 
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scheduled for process 3. The cost for critical path can be 

derived quantitatively as follows. Let ge be an event such 

that event e is scheduled due to execution of ge. In figure 

(3.3b) ge7=e5. ~An event e is prescheduled if ge does not 

exist. In figure (3.3) events e1 and e2 are prescheduled. Let 

Pe be an event such that both events e and Pe are scheduled 

for the same process, and the execution of Pe is followed by 

the execution of e. In figure (3.3b) Pe? = e1. Let a(e) be 
' 

the earliest time when e's execution starts. Let r(e) be the 

execution time for the event e. Let a' (e) be the earliest 

time when e's execution completes. If every process is exe-

cuted by a dedicated processor then 

a' (e) = a(e) + r(e) 

Let a{e) be the time to schedule event e. IF ge and e 

are schedUled at different processes_ then a{e) represents the 

message sending delay. Otherwise a(e) is assumed to be o in 

the study. From constraints 1 and 2 

a (e) = 

Let 

o, 

a' (e), 

a'(e) + a{e), 

if neither ge nor Pe exist. 

if ge does not exist 

if Pe does not exist 

max(a'(Pe), a'(ge) + a(e)], otherwise 

••••• (a) 

be the cost for the critical path ( i.e. the 

execution time of the optimal parallel simulation). Let Ts 

be the sequential execution time. Then Tp and Ts are ex-

pressed as 

Tp =max a'(e), and Ts = L r(e) 
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The optimal parallel simulation time is computed based 

on (a). However (a) is only adequate for the case when every 

process is executed by a dedicated processor. If the number 

of processors P is less than the number of processes N, then 

Tp is also affected by process assignment and event schedul

ing. If more than two processes are assigned to a processor, 

(3.3) only represents the time when an event is available for 

execution. More than two events from two different processes 

may be available for execution at a processor at the same 

time. An event scheduling policy is required to determine the 

next event to be executed. Let Pk be the set of indexes of 

processes mapped into processor k {i.e. i € Pk if process i 

is mapped to processor k) .Let e'j{t) be an event scheduled 

for process j such that for all events scheduled for process 

j e'j(t) is the next event to be executed after timet{ and 

at time t, processor k is available to execute the next 

event). 

In the critical path analysis is performed as follows. 

The first thing is sequential simulation and taking a trace 

of the events executed. The trace is then transformed ·into a 

event preqedence graph. Finally the cost of the critical path 

in the graph is computed. The critical path analyzer proposed 

by Livny is integrated with a specific simulation, DISS, and 

the cost for the critical path is computed along with the 

execution of the simulation. Thus no event trace is required 

and no explicit construction of a precedence graph is neces

sary. Consider the example in figure (3.3b). If the event 
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execution time is 1 unit and the communication cost is O, 

then the execution time for the optimal parallel simulation 

for the first three events is 2 units. However, the value 

computed from Livny's algorithm is 1 unit. 

The above two approaches are primarily designed for 

the case when P = N. Now a better critical path analyzer is 

described which can be integrated with the sequential simula

tion program. The algorithm referred to as Algorithm 1 is 

designed under the assumption that every process is executed 

by a dedicated processor.The processes mapped into a proces

sor are considered a super process, and all events·are exe

cuted in the timestamp order at the processor. 

/* initialization*/ 

Oa for all i do Ti = o 

Ob for all e pre-scheduled in the event list do 

Oc e.a = o 

end for 

/* the main loop*/ 

while not complete do 

I * Let e be the next event to be executed in the 

sequential simulation */ 

la execute e 

/* Let e be scheduled for process i *I 

lb Ti = max(T1 , e.a) + r(e) 

/* Let e.E be the set of events scheduled due to the 

execution of e *I 
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2 for all e' €e.E do 

3a e'.a = Ti + a(e') 

3b insert e' into the event list according to the timestamp 

order, 

end for 

4 T s = Ts + T (e) 

end while 

Let event e be scheduled for process i. In this algo-

rithm, e.a represents the time when event e arrives at proc-

ess i. The value of Ti after the'execution of Line lb is the 

completion time of e's execution in the optimal parallel 

simulation. 

The following issues should be taken care of when the 

critical path analysis is applied to simulation application. 

3.4.1 Selection of event execution time and communication 
cost: 

In many examples only a few types of events exist in 

the simulation. For each type of event the execution times 

are fixed and can be easily determined through measurement. 

If the event execution time varies from one to another then 

it is needed to sample the event execution times and deter-

mine an event execution time distribution to be used in 

critical path analysis. Sometimes an event execution time is 

too short to be measured. In such a case the execution of an 

event can be repeated several times, then the average value 

can be found. 
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As a first approximation of critical path analysis r 

can be assumed as constant. The communication cost is usually 

obtained from the targeted architecture. 

3.4.2 Number of Events to be Processed: 

A large number of events must be. processed in critical 

path analysis before a reliable speed figure can be obtained. 

For steady state simulation experiments indicate that the 

reliable speed up figure can be obtained only after the 

transient effect of the simulation disappears. 

3.4.3 Load Balanced Process Assignment: 

Figure 3.4 ·shows the effect of load balancing. The 

circles represent the speed ups of the balanced points where 

P divides N It is observed that for a small P, the distance 

between two balanced points is short and the unbalanced 

points in between are not significantly affected by the 

unbalanced load. For large P it is most beneficial to add 

extra processors _if it is close to the next balance point. 

3.4.4 Interactions Between the Number of ~rocessors and the 
Communication Cost: 

The number of processors for parallel simulation must 

be selected to balance the effects the constraints 1 and 2 

in · order to yield the maximum speed up. It is clear that if 

the communication cost a is high assigning extra processors / 

to a parallel simulation may degrade speed up. Figure 3.5 
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shows how the interactions between P and a affect speed up. 

The oo symbols mark the maximum speed ups. It is observed that 

when the communication cost is 20 times of an event execution 

time, the maximum speed up occurs when P = 2 and adding extra 

processors to the parallel simulation only degrades the 

performance. 

3.4.~ Increasing the problem size: 

For a fixed number of processors if the problem size 

increase the inherent parallelism also increases. Figure 3.6 

indicates that if N .. P speed up of P can be expected. This 

observation supports Nicol'~ conclUsion that a simple paral-

lel simulation protocol can yield good speed up if the prob-

lem size is sufficiently large.It is noted that when P is 

l~rge a much larger N is required to fully exploit processor 

power. 

3.4.6 Increasing the problem size with fixed processes to 
processors ratio: 

When both the problem size and the number of proces-

sors increase i.e. N/P is constant then the number of events 

executed at a processor does not change statistically, but 

the number of processors to be communicated increases. Figure 

3.7 shows that the speed up increases linearly if the problem 

size increases with fixed N/P ratio. The above observation 

implies that the number of processors to be communicated with 

a processor does not affect the inherent parallelism. 
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3.4.7 Increasing Message Density: 

By increasing the number of message per process, the 

work load to the simulated system is increased. In figure 3.8 

it is observed that when o increases speed up increases and 

then slowly decreases. Similar phenomena was observed for 

conservative parallel simulation protocols. 
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CHAPTER FOUR 

IMPLEMENTATION 

In the project simulation of an multiprocessor 

environment is done to evaluate the performance of different 

standard computations under various topologies. A totally new 

topology z circle is found to be very much fault tolerant and 

also easy to upgrade (upgrade here means adding of new 

processors). All the standard topologies like Bus, Ring, 

Torus, Hypercube, Mesh & Tree are considered. The simulation 

of this project is done in c language on DEC VAX 11/780 under 

VMS environment. 

In the z circle network the processors are connected in 

a z-ladder fashion. Here both the two processors at the ends 

are connected in a circular fashion. A major advantage is 

that in most of the transputers four links are available, and 

all the four links are utilised here. Another advantage is 

that the shortest path determination overhead is minimized by 

only simple subtraction. It is also considerably fault toler

ant. 

The input to this simulator is given after balancing 

load with a suitable load balancing technique. Here at each 

processor two queues are maintained: a ready queue, and a 

communication queue. In the beginning the ready queue at each 

processor contains all the processes assigned to that proces

sor and the communication queue is kept empty., The 

round robin job scheduling technique is followed at each 
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processor, 

slice for 

i.e; each process at a processor is given a tim~ 

execution. An execution cycle is followed by a 

communication cycle. In the communication cycle the processes 

requiring communication among themselves communicate. Before 

any of the two processes communicate first the links connect-

ing them through ~hortest path is examined. If the path is 

found to be free then, it is made busy and the message is 

routed. As the path is made up of links a flag associated 

with each link enables efficient examining of the path, i.e; 

if the flag is 1 then the link is busy else it is free. A 

path is made busy by making the flags of all links 1 con

necting the two processes which are to communicate.If the 

path is found to be busy i.e; any of the links connected 

in the path is 1 then, the process is put in the communica

tion queue. A counter is maintained at each process to see 

the number of cycles it is executed. If after a communication 

cycle the process requires further execution then, it is put 

in the rear of the ready queue and it waits to get a slice of 

the CPU. When all the queue are exhausted then the program 

terminates. It also calculates the time of execution of each 

process 

time of 

in terms of processor time slice it also 

completion of each queue. That is done 

calculates 

by adding 

execution time of all the processes at each processor sepa

rately. 
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4.1 Important Parameters 

sdl array : this is an array of records consisting of four 

fields. They are 

i) processor_id - this is defined as integer and 

contains the identification of each processor. 

ii) aqd_rq this contains the addresses of 

different processes at the ready queue of each processor. 

iii) add_cq - this contains the addresses of 

different processes in the communication queue. 

iv) flag- this stores.the state of the processor 

in the running cycle (i.e; executed or not). 

In C language the declaration for the above was 

done as shown in the next page.· 
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struct schdl 
{ 

int processor id; 
int add rq; -
int add-cq; 
int flag; 

} ·sal array [NJ; 

oplist : This contains the details of communication for each 

process. A separate list is pr.epared for each process. This 

is defined as array of records, consisting of two fields, 

they are: 

i) processor_id - this contains the processor 

identification. 

ii) process_id - this contains the addresses of 

the processes with which the processes will need 

communication. 

In c this is declared as: 

struct list 
{ 

int processor_id; 
int process id; 

} oplist [K);
where K is defined as 

K = N*lO; 

ALGORITHM 

step 1. Select the topology to be used. 

step 2. Connect as selected above. 

step 3. Input the number of nodes N to be connected. 

step 4. Check whether th'e topology with N no of 

nodes is permitted, if permitted then, 

call procedure connect (topo,N)to connect the 

nodes in the topology selected, 

else go to step 2:~1 
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step 5. Take the values of the sdl_array and oplist as 

input. 

step 6. Call the procedures 1 reset_link() and 

reset_flag(). Take the first non-zero element from 

the sdl_array. If there is no non-zero element in the 

sdl_array th~n go to 22. 

step 7. Take the address of the ready queue for this 

element. 

step 8. Choose the first process from the ready queue. 

step 9. Take the address of the oplist from the 

process. 

step 10. Take the first element from the oplist. 

step 11. Take the processor name from the oplist and 

the from the sdl_array find out the ready queue address 

for this processor. 

step 12.Mark the flag field of the sdl_array element 

selected, i.e; 1. 

step 13. Check whether the first element of this queue 

is same as the process name of the oplist chosen, 

if not go to step ~j. 
'-' 

step 14. If the above condition is satisfied, then 

take the oplist address of the destination process 

chosen. 

step 15. If the first element of the destination 

process oplist matches with the process name then call 

test_link (start, dest). 

Else go to step 11}i1 
(,_... 
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step 16. If the test_link(start, dest) returns one 

then, 

i) increment the counter(i) for both the 

processes, 

ii) delete the first elements of both the 

oplist chosen, 

and iii)-mark the corresponding flag field of the 

sdl_array of the destination process as selected (i.e; 

1) • 

Else go to step 1f1J. 

step 17. Check the oplist of both the processes, if 

there is any operation left in anyjboth the processfes, 
) 

then put the corresponding processfes in the rear of 

the ready queue of the corresponding processor, else 

remove the processfes from the ready queue. 

step 18. Check the ready queue and the communication 

queue of the processor if both are empty, then put zero 

in the processor ID field of the sdl_array. 

Go to step C@). 

step 19. Put the process in the communication queue. 

step 20. Choose the next non-zero element from the 

sdl_array. 

step 21. If there's no non-zero element left in the 

processor_id field of the sdl_array then go to step 5, 

else check whether the flag field of the chosen 

processor is 1, 

if it is 1 then goto step 20, 

else goto 5. 
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step 22. Check the maximum of the counter(i) and the 

minimum of the counter(i). 

step 23. Add the counter(i) values of the processes at 

each processor and put them in exe(j) array (Where 0 ~ 

j ~ N). 

Go to step 2·1?\ 
·~ 

step 24. Terminate the program with the message 

"Topology entered with the.given no of nodes is not 

permitted". 

step 25. Find out the processor utilisation for each 

processor separately (i.e; calculated for nth processor 

by dividing the time used by processor n divided by 

total time taken for computation) . 

step 26. Calculate the system utilisation. 

step 27. Calculate the speedup (the speedup is 

calculated by adding the execution time of all the 

processors and then dividing it by maximum value of 

exe (j) ) . 

step 28. Report end and terminate the program. 

4.2 Computations 

In this model, in a cycle, the processor execute a 

computation step and after finishing they synchronise and 

perform data exchange the next page. If during execution of 

an algorithm, all the processors are performing computations 

in all cycles then the system utilisation is 1. However it is 

found that in some algorithms all the processors may not 
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participate in computation in all the cycles, as some proces

sors may be waiting for the for results generated by some 

other processors.The value for such algorithms is less than 

one. 

4.3 Performanc~ Measures 

System utilisation 

In an execution cycle, all the processors may not 

participate in execution and may be idle throughout an execu

tion cycle, waiting for results from other processors. The 

utilisation of the system in terms of the number of proces

sors used in an execution cycle is quantified by the parame

ter su, which is referred to as system utilisation. 

Consider an algorj,thm which is executed in r cycles on 

P processors. Suppose that in an execution cycle of t 1 time 

units, P1 processors are used, in the next execution cycle of. 

t 2 time units P2 processors are used, and so on then, 

SU = (P1•t1 + P2•t2 ••• + Pr*tr)/(P*(t1+t2+ •• +tr)) 

Pro.::13ssor utilisation 

When the sub-domains assigned to different processors 

are not equal, then some processors finish computation earli

er than others, and as synchronisation takes place at the end 

of every cycle, these processors wait for others to finish. 

This leads to idling and under-utilisation of some pro•ce!ssors 

which is quantified by the parameter .Piu "":or· processor i. 

It characterises the load balancing of th2 system. Perfect 
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load balancing occurs when the sizes of the sub-domains 

assigned to all the processors are equal i.e, when Piu = 1, 

fori= 1,2, .•. ,P (where Pis the number of processors in the 

system). 

Inter-Processor Communication Time 

In a message_passing multiprocessor, if tstart-up repre

sents the message start-up overhead. or latency and tsend is 

the transmission time (which is inverse of the link bandwidth) 

k byte between two neighbouring processors, involves a time 

tcomm equal to tstart-up +tsend * k. 

When the communication is not between two near neigh-

bours, the communication time is estimated by assuming that 
' 

it takes place in hops, and each hop corresponds to a near 

neighbour communication. The communication time between two 

processors separated by n hops is then equal to n* tcomm· 

4.4 Assumptions 

The model proposed here for performance predication 

assumes that all interprocessor communication times can be 

estimated a priori and that there are no unpredictable queu

ing delays in the system. An input file having two fields 

containing processor-ID name and process is available. 

Load balanced system is available. Any process can complete 

its message passing in one communication cycle if the route 

is free and the receiving process is ready. Any single mes 

sage passing will make the route busy for one communication 

cycle. 
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CHAPTER FIVE 

CONCLUSION 

The field of parallel computers is a growing one. It is 

the ideal low cost_supercomputing facility for a country like 

India. So in the future we will be seeing this field to grow 

like anything to replace the costly fast processor based 

supercomputers. Alongwith the growth of parallel computers, 

the performance, it's prediction and evaluation is going to 

be prime consideration in the selection of a system. 

The level of details required in the validation of a 

simulator should depend on how that simulator is to be used 

in decision making. In other words, we must return to the 

principal objective of the simulation study and choose some 

perfo~mance measure that indicates whether the observation 

data generated by the simulator agree sufficiently with those 

of the real system. If the performance measure thus obtained 

is some mean value ( e.g~., CPU utilisation, the average 

response time), then the notion of significance level and 

confidence interval should be applied to quantify the 

statistical significance of the difference between measured 

and simulated effects. The analysis of variance technique can 

be used to test the hypothesis that the mean of a series of 

data gener~ted by the simulator is equal to the mean of the 

corresponding observed data of the real system. 
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The model discussed here determines the performance 

of a static system. With some modifications, it can be made 

to work in dynamic environment also. The model discussed has 

got some limitations. It has got context switching time, 

which is a pure overhead. It's advantage is that it helps the 

smaller processes- to complete execution by' providing them 

time slices. In many cases the intermediate results provided 

by such processes is used by other processes to continue 

execution. Since in most cases, parallel computers are used 

for similar kind of jobs repeatedly, by monitoring the 

communication pattern, the execution cycle can be varied to 

reduce the context switching overhead. 
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