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ABSTRACT 

The size of the neural network depends on the 

complexity of the learning task; more hidden units are 

needed to approximate a complex function. Higher structured 

learning is defined as not only modifying the strength of 

the connections but also the overall topology of the network 

to get the optimal size for a particualr class of problems. 

An outline of the segretion algorithm which avoids the 

principal inadequacies of static algorithms is presented. A 

non-static learning paradigm based on segregation algorithm 

that allows creation of units and their . interconnections 

during learning is proposed and implemented. Also the 

relationship between the network structure and the ability 

of the network to generalise from the training sets has been 

examined and computational results presented. 
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CHAPTER 1 

INTRODUCTION 



The quest for efficient computational approaches 

to artificial intelligence has undergone a significant 

evolution in last few years. Leading laboratories around the 

world are pushing towards brainlike computers-the sixth 

generation. Engineered intelligent systems behave with 

remarkably rigidity when compared with their biological 

counterparts, to recognise objects or speech f to manipulate 

and adapt in an unconstructed environment and to learn from 

the past experience. They lack commonsense knowledge and 

reasoning, knowledge structures for recognising complex 

patterns and fails to point out their own limitations. A 

major reason for this limited technical success in emulating 

one of the fundamental aspects of human intelligence lies in 

the difference between the organisation and structuring of 

knowledge and dynamics of biological neuronal circuitry and 

its simulation using the symbolic processing paradigm [14]. 

Rapid advances in computational and behavioral 

theories have brought about a new and much more 

sophisticated effort to model cognition and perception in 

physiological plausible terms. In order to build intelligent 

machines, one obvious idea for AI researchers is to simulate 

the functioning of the brain directly on the computer. Over 

the past three decades, AI researchers have been doing 

extensive research in the areas of pattern recognition, 

adaptive machine learnjng, perception and sensory motor 

control [ 1, 11]. Subsequent development of intelligent 

systems has pursued two different schools of thought ; one 
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symbolic and the other is neurobiological, subsymbolic or 

connectionist. The past few years has witnessed a 

significant reawakening of interest in massively parallel 

computation, often portrayed as "neural networks" - a 

biologically inspired, computational and information 

paradigm [ 14] . 

1.1 NEURAL NETWORKS - AN AI TOOL 

Neural networks represent a means i.e. a tool for 

understanding aspects of artificial intelligence. They can 

be treated as a way of representing knowledge. In a 

different perspective, neural networks are massively 

parallel computational paradigm that offers a new way of 

viewing problems in AI [4]. Because of their different 

structure neural networks can benifit considerably from 

customized archi techtures. Artificial neural networks 

constitute an enhancing not a replacing technique of AI. 

In neural networks we usualy start with a 

computational structure which can be mathematically 

formulated and studied. Neural networks employ distributed 

parallel processing to perform computation. The storage, 

processing and communication of information in neural 

networks occurs throughout the whole network rather at 

specific sites or memory locations. Thus memory and 

processing in neural networks are global rather then being 

local in nature. Computation by neural networks emerges 

spontaneously from fundamental physical principles. A neural 
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network can be considered as a relaxation system which 

settles into a solution. Neural networks can compute 

steps after significant results in a small 

learning which is a fundamental 

number of 

and essential aspect of 

neural networks. The most striking and impressive 

characterstic of neural networks is the ease and naturdlness 

with which they can learn. Neural networks are trained on a 

finite set of training example after which they become able 

to extrapolate on them in order to provide outputs never 

encountered before. They also remain quite robost in noisy 

environments. The ability of current VLSI technology to 

provide large number of simple processing elements(both 

analog and digital) allows for a quantum improvement in the 

cost performance of neural networks [4]. 

1.2 HISTORICAL PERSPECTIVE 

For understanding the present state of development 

of neural networks it is essential to have at least an 

inlinking of the history of their development (10,14]. This 

history is enormously fascinating . 

1.2.2 The early years 

The science of artificial neural network made its 

first significant apperance in 1940s. Researchers desiring 

to duplicate the funtions of human brain developed simple 

hardware (and later softwdre) models of biological neurons 

and its interconnection systems.In 1943, McCulloch an~ Pitts 
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published the first systematic study of artificial neural 

network where they had shown that network of neurons with 

binary response functions was capable of computation. In 

1949, Donald Hebb proposed a model for learning in neural 

networks through strengthening the connnections between 

elements connecting the input stimulus neurons and output 

patteren neurons • Later, Dean Edmonds and Marvin Minsky 

built an electromechanical learning machine which 

incorporated these ideas. 

In the late 1950s Frank Rosenblatt of Cornell 

University invented a type of neural network which he called 

the perceptron. Minsky and Papert proved mathematically the 

capabilities and limitations of single layered ,linear 

perceptron of the type promoted by Rosenblatt. They found 

that though they worked quite well on very simple problems 

but their performance detoriated very rapidly as the tasks 

assigned to them got harder. 

1.2.2 The dark ages 

The failure of perceptrons dampened the enthusiasm 

for research in this type of device and brought research on 

neural networlcs to a virtual halt during 1970s. While many 

researchers abandoned neural networks to reorient their work 

along traditional symbol processing approaches,a few workers 

pursued the path suggested by the early perceptron work. 

Dr. Benard Widrow first built Adeline, an adaptive 
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linear neuron computer [11]. Adeline used negative feedback 

to overcome some of the problems of the perceptron.This work 

was extended to multiple neuron Madeline which demonstrated 

the capability of recognising spoken words and visual 

patterns independent of translation. On the theoretical 

side, Stephen Grossberg publised extensive mathematical 

analysis which establised the foundation for asociative 

learning in neural networks. 

1.2.3 Rebirth of connectionism 

In 1980s , several events occured which 

reestablished neural network research as a credible 

endeavor. Arnoung the most significant everits which revived 

the study of neural networks was the publication of John 

Hopfield on neural networks and physical systems with 

emergent collective computational abilities in 1982. He 

presented simple analog circuit of neural network and used 

it to solve practical problems. Later the PDP (Parallel 

Distributed Processing) study group was established ·and a 

lot of research works were published. 

1.3 THE NEURON MODEL 

Artificial neural networks are patterned after 

real neural networks ( 10,14]. The basic computatinal 

element of real neural networks is a neuron which is shown 

in figure 1.1 . The four basic parts of a real neurori such 

as those found in the brain are (1) the synaptic buttons or 

synapses which serves as output devices, (2) the cell body 
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which sums the membrane potentials provided by the synapses 

and fires at a rate which is a nonlinear function of the 

total voltag-es, ( 3) the axons which carries t;he electrical 

signals from the cell boody to subsequent synapses, (4) the 

dendrites ,branchlike structures which provide sensory input 

to the cell body. The cell body sums the membrane potentials 

between the synaptic buttons and fires voltage spikes down 

its output axon at a rate which depends on the sum of the 

input voltages. This dependence has been found to be sigmod 

in shape. It has been found experimentally that synaptic 

connections can produce ei thor exci tory or inhibitory 

effects. Excitory neurons greatly outnumber inhibitory 

neurons and tend to respond more rapidly to changes to 

input. The model of a neural network is illustrated in fig 

1.3 . Most general neural network models assume a complete 

interconnection between all neurons and resolve the cases of 

nonconnected neurons ( i, j) by setting the connection 

strength Ti,j = o. The output of the neuron n is generated 

by multiplying the sum of the input voltages weighted by 

synaptic weights or connection strengths Ti.j between neuron 

i and neuron j by nonlinear transfer function. There are 

however number of system design parameters [10] which must 

be specified for any neural network model such as 

* The structure of the system i.e. the number of 

layers 

* The synchrony of the system 
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* Symmetry of the interconnections 

* Feedback structure employed 

* The transfer or activation function 

* The formulation of learning strategy 

1.4 ARTIFICIAL NEURAL NETWORKS TODAY 

There have been many impressive demonstrations of 

artificial neural network capabilities [11]. A neural 

network has been trained to convert text to phonetic 

representations which were then converted to speech by other 

means (Sejnowsky and Rosenburg 1987). Some other networks 

have been developed which can recognise handwritten 

characters. A neural network based image compression system 

has been devised. Many of them use backpropagation algorithm 

discussed later . Fig. 1. 3 shows the block diagram of an 

advanced neural computing system. Real world signals are 

converted into discrete form at the interface block. The 

neural signal processing system handles the converted signal 

and the outputs are transferred to digital computer for 

further manipulations. 

Neural netwqrk products are also commercially 

available today [10]. In the first International Conference 

on Neural Networks at San Diego, at least six commercial 

neural network systems were demonstrated. The Hecht-Nielson 

Neurocomputer Corporation has been established by Dr. Robert 

Hecht-Nielson which markets a neural network system called 

ANZA. The Nester Inc.has developed a product which 
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recognises handwritten characters on checks and documents. 

1.5 APPLICATIONS 

Artificial neural networks have been proposed for 

tasks ranging from battle field management to minding t.he 

baby. Potential applications are those where human 

intelligence functions effortlessly and conventional 

computation has been proven cumbersome and inadequate. The 

conventional computers are extremely good at numerical 

computations and executing sequences of instructions that 

has been precisely formulated for them. On the other hand, 

neural networks prove themselves exellent in the field of 

perception. Successful neural network applications have 

several common characteristics [5] incuding : 

* Applications are data intensive and dependent on 

multiple interacting parameters. 

* Problem area is rich in historical data or examples 

* Data set is incomplete, contains errors and 

describes specific examples 

* Discriminator or function to determine solutions is 

unknown or expensive to discover 

Several classes of applications are amenable to a 

neural network approach; most involve ei thor pattern 

recognition or statistical mapping. Common applications 

include character recognition, forecasting, information 

processing, process monitoring, signal processing and robot 

control.Conversely, other applications do not lend 

themselves to a neural · network approach~ For 
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example,mathematically accurate and precise 

such as accounts receivable and inventry 

applications, 

are unlikely 

candidates. In addition, applications that require temporary 

data load, analysis and reporting including sales data 

analysis and resource management are unsuitable. In general, 

applications that require deduction and stepwise logic are 

also not good choices for neural networks. 
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CHAPTER 2 

STATIC AND NON-STATIC 
NEURAL NETWORKS 



The human brain performs the formidable task of 

sorting a continuous flood of sensory information received 

from the environment and use them in an organised way. As 

already stated artificial neural networks always lags behind 

the human brain as far as dynamics and parallelism is 

concerned. In the real world, a neural network will be 

exposed to a constantly changing and noisy environments. So 

structing and organising a neJ.Iral network is an emerging 

problem today. 

2.1 GENERAL ARCHITECHTURE 

In neurocomputing the word arhitechture is 

reserved for the formal mathematical description of a neural 

network [13]. So the definition of neural network 

architechture has nothing to do with that architechture' s 

implementation(i.e. the way in which neural network is 

implemented in software, neurosoftware and/ or hardware) . A 

neural network can be described more precisely as a 

parallel distributed information processing structure in the 

form of a directed graph with the following sub­

definitions and restrictions [13] : 

1 • The nodes of the graph are called processing elements. 

2 The links of the graph is called connections. Each 

connection functions as an instantaneous. 

signal-conduction path. 
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3 Each processing element can receive any number of 

incoming connections (also called input connections) . 

4 Each processing element can have any number of 

outgoing connections , but the signal in all of these must 

be the same. In ·effect, each processing elemen that has a 

single output connection that can branch or fan out into 

copies to form multiple output connections(sometimes called 

col laterals), each of which carries the same identical 

signal. 

5 • Processing elements can have local memory. 

6 • Each processing element posseses a transfer function 

which can use (and alter) local memory,can use input signals 

and which produces the processing element's output signal. 

In other words, the only inputs allowed to the transfer 

function are the values stored in the processing element's 

local memory and the current values of the.input signals in 

the connections received by the processing element. The or.ly 

outputs allowed from the transfer function are values to be 

stored in the processing element's local memory and the 

processing element's output signal.Transfer functions can 

operate continuously or episodically.If they occur 

episodically , there must be an input called activate that 

causes the processing element's transfer function to 

operate on the current input signals and local memory values 

and to produce an updated output signal. Continuous 

processing elements are always operating. The activate input 

arrives via a connection from scheduling processing element 
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that is the part of the network. 

7 • Input signals to a neural network from outsidt~ arrive 

via connections that originate outside.Outputs from the 

network to outside are connection that leave the network. 

Internal details of a processing element in neural 

networks is shown in Fig 2.1 In addition to the structure 

presented above, almost all known neural networks have their 

processing elements divided into disjoint subsets called 

layers or slabs in whuch all of the processing elements 

posses essentially the same transfer function. 

Processing element transfer functions usually have 

a subfunction called a learning law that is responsible for 

adapting the input-output behavior of the processing element 

transfer function over a period of time in response to the 

input signal that impinge on the processing element. The 

adaption is usually acomplished by modification of the 

values of variables stored in the processing element's local 

memory [2,3,11,14]. 

2.2 MODELS OF NEURAL NETWORKS 

Artificial neural networks have been developed in 

a wide variety of configurations [1,2,10,11]. Despite the 

aparent diversity, network paradigms have a great deal in 

common. There are two popular models of neural networks 

the feedforward model and the feudback or recurrent model. 

Depending on the number of layers a neural network may be 
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single layered or multilayered . 

2.2.1 The feedforward model 

Although a single neuron can perform certain 

simple tasks the power of neural computation comes from 

connecting the neurons into networks. In the feedforward 

model, the neurons are arranged in layers~ There are only 

directed synapses between each layer and the next. Thus the 

connections are loop free. The inputs are applied in the 

first layer and the outputs are collected from the last 

layer. A feedforward network is a special case of 

combinational circuits with the additional feature that the 

intermediate variables in the network can assume non-binary 

values. A two layer feedforward network is shown in Fig.2.2. 

The circular nodes on the left serve only to distribute 

the inputs . They perform no computation and hence will not 

be considered to constitute a layer. The set of inputs X has 

each of its elements connected to each neuron through a 

separate weight. Actual artificial or biological network 

may have many of the connections deleted but full 

connectivity is shown for reasons of generality . 

The output is calculated by multiplying the input 

vector by the first weight matrix w1 and then multiplying 

the resulting vector by the second weight matrix w2 . This 

can be expressed as 
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Since matrix multiplication is associative these 

terms can be rearranged and written as 

0 = X (W1W2 ) 

2.2.2 Recurrent networks 

In the recurrent or feedb\lck model of neural 

networks connections through the weights extends from the 

outputs of a layer to the inputs of the same or the previous 

layer. This special class of neural networks is of 

considerable interest and widely used. 

Nonrecurrent networks have no memory; their output 

is solely determined by the current inputs and the values of 

the weights. On the other side, in recurrent network the 

output is determined by the current inputs and their 

previous outputs. For this reason recurrent network can 

exhibit properties very similar to short term memory in 

human brain, because the state of the network outputs 

depends in part upon the previous inputs. Fig. 2.3 shows a 

recurrent network consisting of two layers. The first layer 

as in previous illustration serves no computational 

function; it simply distributes the network outputs back to 

the inputs. Each neuron in the next layer computes the 

weighted sum of the inputs producing a NET signal that is 

often operated by a nonlinear function F to yeild the OUT 

signal. 
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The important drawback oi such recurrent network 

is that they are not unconditionally stable. Sometimes they 

enter a mode in which the output wanders interminably from 

state to state , never producing an usable output. Unstable 

networks have interesting properties and have been studied 

as examples of chaotic systems. Recurrent networks using 

backpropagation and segregation algorithm 

later in more details. 

2.2.3 Bidirectional associative memory 

is discussed 

Human memory is always associative in nature. If 

we allow our thought to wander they move from topic to 

topic based on chain of mental association. Binary 

Associative Memory(BAM) model (10,11] uses this aspect of 

human brain. BAM accepts the input vector on one set of 

neurons and produces a related but different output vector 

on another set. The BAM is capable of generalisation, 

producing correct output despite of corrupted inputs. These 

characteristics are strongly reminisce:R.t of human mental 

functions and bring neural networks one step closer to 

emulation of brain. 

Recent publications have presented several forms 

of bidirectional associative memories . Fi.g. 2. 4 shows the 

basic BAM cofiguration. Here an input vector A is applied to 

the weight network W and produces a vector of neuron 

outputs B. Vector B is then applied to the transpose of the 

first weight network wt which produces new outputs for 
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vector A. This process is repeated until the network arrives 

at a stable point where neither A nor B i.s changing. This 

process can be expressed in symbols as follows : 

bi = F( ajwij) 

or in vector form 

B = F(AW) 

where 

B = the vector of outputs of layer2 

A = the vector of outputs from layerl 

W = the weight matrix between layerl and layer2 

F = the activation function 

similarly, 

where 

wt = the transpose of matrix W 

2.3 LEARNING STRATEGIES 

Learning is the most important properties of 

neural networks. Neural learning is defined as "the process 

of adapti vely evolving the internal parameters (e.g. 

connection weights, network topology, etc.) in response to 

the stimuli being presented at the input and possibly the 

output buffer" ( 14). A wide variety of training 

algorithms have been developed, each with its strengths and 

weaknesses. Table I summerizes different types of 

computational learning 

algorithms and systems. 

paradigms 
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Neural network learning procedures can be divided 

into three broad categories: 

(1) Supervised procedures where the desired· response is from 

a knowledgeable teacher and the retrieval involves one or 

more of a set of stimuli pattern that has been repeatedly 

shown to the system during training phase. 

(2) The unsupervised procedures construct internal models 

that capture regularities in their input vectors without 

receiving any additional information. 

( 3) The reinforcement procedures which requires a single 

scalar evaluation of the output. 

2.3.1 Supervised Learning 

Supervised learning requires the pairing of each 

input vector with a target vector representing the desired 

output. Such a pair is called training pair. Usually a 

network is trained over a number of such training pairs. The 

network observes the presented inputs, detects the 

statistical regularities embedded within it and learn to 

exploit these regularities to draw conclusions when 

presented with a portion or distorted version of the 

o~iginal pattern. When the portion of the original pattern 

is used as a retrieval cue, the learned process is denoted 

to be auto-associative. When the desired input is different 

from the actual input, then the learning is reffered as 

hetero-associative (13). 
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2.3.2 unsupervised learning 

Despite many application successes supervised 

learning has been critisized as being biologically 

implausible. It is difficult to conceive of a traning 

mechanism in the brain that compares d~sired and actual 

outputs feeding processed corrections back through the 

network. Unsupervised training is far more plausible model 

of learning in the biological system. Such a learning scheme 

was firstly introduced by Kohonen and later by others. 

Unsupervised learning does not require target vector for the 

outputs and hence, no comparisions to predetermined ideal 

responses. The training set contains solely input vectors. 

The traning algorithm modifies the network weights to 

produce output vectors those are consistent. The traning 

process therefore extracts the statistical properties of the 

training set and groups similar vectors into classes. 

Appliing a vector from a given class to the input will 

produce specific output vector, but there is no way to 

determine prior to training which specific output pattern 

will be produced by given input vector class.Hence the 

outputs of such a network must generally be transformed 

into a comprehensible form subsequent to the training 

process. This does not represent a serious problem . It is 

usually simpler matter to identify the input-output 
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relationships established by the network. 

2.3.3 Reinforcement learning procedures 

The central idea in the· reinforcement learning 

procedure is that, we can assign credit to a local decesion 

by measuring how it correlates with the global reinforcement 

signal. Various different values are tried for each local 

variable(such as the state or a weight) and these variations 

are correlated with variations in the global reinforcement 

signal. Normally, the local variations are the result of 

independent stochastic processes [12]. So if enough samples 

are taken, each local varible can average away the noise 

caused by the variations in other variables to reveal its 

own effect on the global reinforcement signal. The network 

can then perform gradient ascent in the expected 

reinforcements by altering the probability distribution of 

the value of each variable in the direction that increases 

the expected reinforcement If the probabi 1 i ty 

distributions are altered after each tr1al, the network 

performs a stochastic version of gradient ascent. 

2.4 INADEQUACIES OF STATIC LEARNING 

One of the major strengths of neural network is 

their ability to recognise or correctly classify patterns 

which have never be presented to the network before . Neural 

networks appears unique in their abi~ity to extract the 
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essential featurs from a training set and to use them to 

identify new inputs. In any network the topology of the 

network(i.e. the number of hidden layers and the number of 

neurons in different layers) is crucial not only to the 

ability of classifying training data, especially to the 

network's ability to generalise. Generalisation means 

selecting a curve that is a model of the properties of the 

data. Since the curve can only be modelled on the training 

data, the training set must be an all encompassing subset of 

the entire data set. Any parameters of the model of the 

entire data set those are not represented in the training 

set cannot be accurately modelled. Since the entire data set 

is usually unknown, the quality of the network's internal 

model depends upon the accuracy of the designer's guesses. 

So in a static learning procedure , to produce meaningful 

results it requres an adequate network topology. The 

essential problem in modelling is finding a topology that 

already models the data [6]. 

The number 

interconnection depends 

of hidden layers and their 

on the complexity of the learning 

task;more hidden units are required to approximate a more 

complex function. Over learning occurs when the number of 

connections reaches the number of training patterns, that is 

every connection is dedicated to one specific pattern. This 

also reduces the network's ability to generalise, that is 

the patterns of the test set per,form significantly worse 
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than patterns of the training set , because each patern is 

trained separately and no common features are represented in 

the network's internal model. Just by increasing the number 

of hidden units and their interconnections does not 

necessarily lead to ari adequate representation of the 

features of the data set; rater the simulation time 

increases. The order of magnitude of the increase of 

simulation time is almost squre. Sometimes static learning 

processes get trapped in a local minimum [7,11,16] and also 

suffer from many other problems discussed in the following 

chapter. 

2.5 NON-STATIC LEARNING AND SELFORGANISATION 

In the problem domain where the number of possible 

patterns is unlimited and the number of classes are not 

priori known, it may be impossible to estimate the number of 

required hidden units in advance. Moreover, the distribution 

of patterns over time may vary. To allow adapt ion to the 

changing situation the number of hidden units must change. 

Hence, the training algorithm should be designed such that 

not only the weights are modified but also overall topology 

of the network changes depending on the complexity of the 

class of problem. Non-static learning is one such kind of 

higher structured learning procedure. 

aspects 

Non-static neural networks follows the dynamic 

of biological network. It has been shown that in 

the human brain whenever a group of neurons is working on 
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a task which be cannot accomplished by them because they are 

t00 few in number I then another bunch Of neuron cells get 

devoted to this task in order to support the others. Taking 

into the consideration the importance of network topology 

and biological evident dynamic topology with respect to a 

specific task, non-static neural networks are introduced. 

A non-static paradigm is defined as changing the 

topology of the network not only during the learning phase 

but also at every time after its static definition which 

precedes learning or even as allowing to define the ovrall 

topology dynamically, while learning. In a dynamic paradigm 

units can be created at every time, before,during or after 

learning. They can be connected arbitarily·with other units 

of the network [6,16]. 

2.6 PRUNING IN NEURAL NETWORKS 

In the above discussed approach to neural 

network design we start with a network having a hidden layer 

with very small number of units and lead to a larger 

network which is able to differentiate classes containing 

many representatives. On the other hand, pruning is almost 

the opposite approach of examining a solution network. Here 

the process starts with a reasonably larger neural network 

and the units which are not necessary to- the solution is 

removed step by step. In this process the network is 

analysed by examining the outputs of the hidden units across 

all the training set inputs. There are two stages of pruning. 
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One is removing units that can be considered as not 

contributing to the solution. Stage two is removing units 

that give information not requried at the n~xt layer [7]. 

2.6.1 Removing noncotributing units : 

These are units which ei thor have approximately 

constant output across the training set or have outputs 

across the training set which mimic the outputs of another 

unit. These units can be removed and the weights given to 

their outputs are redistributed in such a way that there 

will be almost no change to the network performance over the 

training set. 

2.6.2 Removing unnecessary information units 

This is the second stage of pruning where the 

units which are independent of other units in the layer but 

give information which is not required at the next layer is 

removed. Removing units which contribute unnecessary 

information to the next layer may lead to the outputs of the 

pruned layer being linearly inseparable with respect to the 

classes or outputs of the above layer. 

27 



FIG-2-~ 

X 

X 
2 

X 
H 

JHPUT SJGHALS 

x s xa: • • xH 

' '. 
TRANSFER FUNCTION 

' 

OUTPUT SIGHAL Y 

n 1 
COPIES OF OUTPUT SIGNAL 

INTERNAL DETAILS OF A 
PROCESSING ELEMENT 

WEIGHT WEIGHT 

y 
2 

y 
1" 

ARRAY y, ARRAY u~ 
FIG- 2-2 Fl£:EDFONWA RD NEURAL NETWO:R:K 

28 



~-----------------------------------------------------. 

t---....__- - .... OU1
1 

~-----------__.OUT~ 
' 

------------~~"--------~~---------------+~ OUTH 

LAVER 8 LAVER 1 

FIG-2-3 A MODEL OF RECURRENT 
NEURAL NETWORH 

w 
111 

G 
B 

FIG-2-4 BIDIRECTIONAL ASSOCIATIVE 
MEMORY 

29 



Paradigm 

Empirical learntn'-

c~se-bi.!ICd learning 

Genetic: learning 

Explanati0n-based 
learning 

ConnectJ<'nt>. 
lncuro•ll ie:nnintt 

Distnbution-fr~ 

lear1'1ing 

Categori~ 

Rule-ba~ 

learning vaa Query 

Concert k41rnantt 
Adarting case ba~ 

Ha} l"'Jan tnh .• 
dc..-:isiun trees 

Population gmcti~ 

ReaS()ning about 
operationality cmerit 
of a learning result) 

SuperYi!oed. 
unsu~n iS<'\!. 
remf,,r\.""C:mcnt 

Formal con~pt 
·learning 

Algorithm description 

R~al-lt'-m•'ldd "c.'rld mal"rinlt 
< lrtkrin~t nf que-.tHm' tfirntl- kt~rnmj! 

Sc.•;trl..'h an hyputh~is "~"'""\: 
Sc:arl..'h through ca~ networks of anal0g~­

C"'r'l.tnatnr\'·t"nwlati•'n skills 
I IIIII rrohahk number of di!'\SC\, prohahJhsiK 
de~riptions. and probability of belongmgness 

Trial soluti0ns (population~) operated in cycles 
l)~cnerati,,ns) hy survivill-of-fith~'' o;eiN:tion 
followed by ICCIIC'IIt: recombinalion Ccrosso..,er 
and mutation upcratoTSI 

Ontain general con~pt definition of some 
pr•'r<rty that holds for a gi,·en traming in~tance 

Capture the functional. spat1al. or temporal 
•••nl."crt in the internal ~)nartu.: ,,,nncctu•n' lH 

"'I'X'''l~) of the netwnrl 
Construct a minimal set of maximally general 

descriptions 

TABLE 1 

Nature 

Oeductive 
I ndtu:tive 
Inductive 
Deductive 

Inductive 

Inductive 

Deductive 

Relaution 
in an energy 
landscape 

lnducti\·e. 
Deductive 

Systems 

lAMP. PRODIGY 
MARVIN 
OTIS 
TA 

Auto<..1au 

CFS 

ROF~ MetallEX 

EBP. CL, ART. SID 

PAC 



CHAPTER 3 

NON-STATIC LEARNING ALGORITHM 



In recent years major thrust has been given on 

the study of nonlinear dynamic systems theory. As a result 

many enhancements has been proposed on the conventional 

static learning algorithms for neural networks. Some AI 

researchers have shown tremendous interest in designing 

dynamic neural networks which adapts to the environment. In 

this chapter the basic backpropagation algorithm has been 

discussed in detail. Also an efficient and adaptive learning 

algorithm has been presented which trains the network to 

decide its optimal size by itself for a particular class of 

problem. Finally the segregation algorithm, a more advanced 

version of non-static algorithm is also discussed. 

3.1 THE BACKPROPAGATION ALGORITHM 

The backpropagation algorithm is the most 

suitable supervised learning algorithm for multilayer neural 

networks. The invention of backpropagation has played a 

large part in the resurgence of interest in artificial 

neura 1 networks. A clear and concise definition of 

backpropagation algorithm was first presented by Rumelhart, 

Hinton and Williams in 1986. Later it was popularised by 

Rumelhart in the Parallel Distributed Processing(PDP) edited 

volume in 1980. The PDP researchers suggested that the 

backpropagation algorithm or as they called it generalised 

delta rule is the most sui table learning algorithm for 

neural networks and overcome the limitations of the 
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perceptron algorithm [1,3,11,16]. 

3.1.1 Network cofigurations 

Neurons are the fundamental building blocks of 

backpropagation networks. A set of inputs is applied eithor 

from the outside or from a previous layer. Each of these is 

multiplied by a weight and the products are summed. This 

summation of products are termed as NET and must be 

calculated for each neuron in the network. After NET is 

calculated, an activation function F is applied to modify 

it, thereby producing a signal OUT. Fig 3. 1 shows the 

artificial neuron with activation function. Fig 3.2 shows 

the sigmoidal activation function which is usually used with 

backpropagation. The OUT signal can be represented by 

OUT= 1/(l+e-NET) ( 3. 1) 

The sigmoid function, also called a logistic or a 

squashing function is desirable because it has a simple 

derivative The derivative of the OUT function can be 

expressed as 

dOUT = OUT(l-OUT) a .NET 
(3.2) 

The sigmoid function compresses the range of NET 

so that OUT lies between zero and one. As discussed 

previously, multilaer networks have greater representational 

power than single layer network only if a nonlinearity is 

introduced. The sigmoid function produces the required 
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nonlinearity. Any nonlinear function other than the sigmoid 

function can be used, which sould be differentiable 

everywhere. The sigmoid function has the additional 

advantage of providing a form of automatic gain control. The 

shape of the function is such that .large signals. can be 

accomodated by the network without saturation, small signals 

are allowed to pass through without excessive attenuation. 

Fig. 3. 3 shows a multilayer network that is 

suitable for training with backpropagation algorithm. The 

first set of neurons serve only as distribution points; they 

perform no summation. The input signal is simply passed 

through to the weights on their outputs. Each neuron in the 

subsequent layer produces NET and OUT signal as described 

above. 

3.1.2 An overview of training 

Training is the process of adjusting the weight 

so that application of a set of inputs produces the desired 

set of outputs. The input-output sets can be reffered as 

vectors. Training assumes that each input vector is paired 

with target vector representing the desired output; together 

they are called training pair. The network is trained over a 

number of training pairs. For example, the input part of a 

training pair might consist of patterns of ones and zeros 

representing a binary image of an alphabet. The output may 

also be a set of binary numbers which represents the letter. 
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Before starting the training process, all the 

weights must be initialised to small random numbers. This 

assures that the network is not saturated by large values of 

the weights and prevent certain other training pathologies. 

Training the backpropagation network requires the 

following steps : 

1. Select the next training pair from the training set and 

apply the input vector to the network input. 

2. Calculate the output of the network. 

3. Calculate the errors between the network output and the 

desired output. 

4. Adjust the weights of the network in such a way that 

the error is minimized. 

5. Repeat step 1 through 4 for each vector in the training 

set until the error for the entire set is acceptably low. 

Calculations are performed layer by layer basis. 

Referring to the Fig. 3.3 , first the outputs of the neurons 

in the layer j is calculated and these are used as input to 

the layer k. The output of the neurons in layer k is 

calculated which constitute the network output vector. 

It may be seen that in the steps 1 and 2 the 

signal propagate from the network input to the network 

output. So this is called as the forward pass. In steps 3 

and 4 the error signal propagates from the output to the 

input through the hidden layers where it is used to adjust 

the weights. This is called as reverse pass. The two passes 
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are elaborated below . 

3.1.3 Forward pass 

The above said forward pass can be expressed in a 

more mathematical form as follows: · The input vector pair X 

and the target vector T comes from the training set. The 

calculation is performed on X to produce the output vector 

Y. Calculations in a multilayer network are done layer by 

layer starting at the layer nearest to the inputs. The NET 

value of each neuron in the first layer is calculated as the 

weighted sum of its neurons' inputs. Then the activation 

function F operates on the NET to produce the OUT value for 

each neuron in that layer. Once the set of outputs for a 

layer is found then it serves as an input to the next layer. 

The process is repeated layer by layer until the final set 

of network outputs is produced. 

In vector notation, 

N = (XW) (3.3) 

where N = the NET vector 

W = the weight matrix 

Applying function F to the NET vector N, component 

by component the outputvector 0 is produced. 

0 = F(XW) (3.4) 

The output vector for one layer is the input 

vector for the next. So the equation 3.4 is applied to each 

layer to calculate the outputs of the final iayer. 
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3.1.4 Reverse pass 

In this pass, the error between the desired output 

i.e. the target and the actual output is obtained from the 

forward pass is calculated and subsequently used to adjust 

weights of the output layer. Fig. 3. 4 shows the training 

process for a single weight from neuron ·p in the hidden 

layer j to the neuron q in the output layer k. The output of 

a neuron in the layer k is subtracted from the target value 

T to produce the ERROR signal. This is multiplied by the 

derivative of the squashing function [OUT(l-OUT)] calculated 

for the layer's neuron k, thereby producing the 8 value 

which is expressed as 

& = OUT (l-OUT) (T-OUT) ( 3. 5) 

The s is multiplied by OUT from neuron j and a 

training rate coefficient r and the result is added to the 

initial weight to get the modified weight . 

.6_w pq,k = r b q,k OUTpj 

w pq,k(n+l) = wpq,k(n) + Llwpq,k 

(3.6) 

(3.7) 

where wpq, k (n) = the value of a weight from 

neuron p in the hidden layer 

to the neuron q in the output 

layer at step n before weight 

adjustment 

= value of the weight at step 
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(n+l) after adjustment 

Sq,k = the value of s for neuron q in 

the output layer k 

OUTpj = the value of OUT in neuron 

p in the hidden layer j 

since the target value is available for each 

neuron in the output layer, adjusting the associated weights 

is easily accomplished. But the hidden layers have no target 

vector. So the hidden layers are trained by backpropagating 

the output error through the network layer by layer, 

adjusting weights in each layer. Eq. 3.6 and 3.7 are used 

for all layers, both output and the hidden layers. First, 

S is calculated for each neuron in the output layer using 

Eq.3.5. After using it to adjust the weights in the output 

layer, it is propagated back through the same weights to 

generate a vaue of s for each neuron in the hidden layer 

adjacent to the output layer. These values of 8 are used to 

adjust the weights of the hidden layer and in a similar way, 

are propagated back to all preceding layers. 

Consider a single neuron in the hidden layer just 

before the output layer. In the forward pass, the neuron 

propagates its output to neuron in the output layer through 

the interconnecting weights. During the reverse pass, 

these weights operates in reverse, passing the value of S 

from the output layer back to the hidden layer.Each of these 

weights are multiplied by the & value of the neuron to which 
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it connects in the output layer. The value of s needed for 

the hidden layer neuron is . produced by summing all such 

products and multiplying by the derivative of the squashing 

function 

(3.8) 

For each neuron in a hidden layer, s must be 

calculated and all weights associated with that layer must 

be adjusted. This is repeated moving back towards the input, 

layer by layer until all weights are adjusted. In a vector 

form it can be expressed as 

where, 

D· = DkWkt $ (O·$(I-O·)] J J J 
(3.9) 

D = the set of ss(subscript denotes the layer) 

$ represents the componentwise multiplication 

I = Unit vector whose all elements are 1 

Oj = Output vector of layer j 

Wk = Wight matrix of layer k 

In many cases, each neuron is presented with a 

trainabla bias, so that the training process converges more 

rapidly. 

3.1.5 Momentum 

Momentum is a method of improving the training 

time of the backpropagation algorithm, while enhancing the 

stability of the process. This involves adding a term to the 

weight adjustment that is proportional to the amount of 
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previous weight change. So the weight adjustment equations 

can be modified as 

£iwpq,k(n+1) = r( q,k OUTpj) + OG [.Liwpq,k(n)] 

wpq,k(n+1) = wpq,k(n) + Llwpq,kcn+1) 

(3.10) 

(3.11) 

where ol is the momentum coefficient ~vhich is 

taken around 0.9 

3 • 2 ENHANCEMENTS IN BACKPROPAGATION ALGORITHM 

Many promising developments and extentions has 

been done to the basic backpropagation algorithm in the last 

few years [ 11]. In 1987, Parker described a method for 

increasing the speed of convergence of the backpropagation 

algorithm called as second order backpropagation. It uses 

second derivatives to produce a more accurate estimate of 

the correct weight change. Later, Stornetta and Huberman 

described a relatively simple method for improving the 

training characteristics of backpropagation networks.They 

suggested the change of the dynamic range of inputs and 

hidden neuron outputs from (Oto1) to + 1/2. The new 

squashing function is as follows 

OUT= -1/2 + 1/(e-NET+1) ( 3. 13) 

By this method the convergence time reduced by 30 

to 50%. In 1988, Pineda and Almeida described methods for 

applying backpropagation to recurrent networks. They showed 

that learning can be occured very rapidly in such systems 

and the stability criteria is easily satisfied. 
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3.3 DEMERITS OF STATIC BACKPROPAGATION ALGORITHM 

Backpropagation has been applied to a wide variety 

of research applications. Despite the demonstrated power of 

backpropagation, several problems plague "its application. 

Most troublesome is the long uncertain training process. 

Sometimes the training suffers from total failure due 

to different causes as described below 

3.3.1 convergence 

Rumelhart, Hinton and Wlliams has provided a 

convergence proofcast in terms of partial differential 

equation, making it valid only if network weights are 

adjusted in infinitesimal steps. Because this implies 

infinite convergence time, it proves nothing about the 

training time in practical applications. In fact, there is 

no proof that the backpropagation will ever converge with a 

finite step size. 

3.3.2 Local minima 

Backpropagation employs gradient descent to adjust 

the network weights following the local shape of the error 

surface towards the minimum. This works well with convex 

error surfaces, which have a unique minimum, but it often 

leads to nonoptimal solutions with highly convoluted, 

nonconvex surfaces encountered in practical problems. In 

such cases the network is trapped in a local minimum. This 
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is shown in Fig. 3.5 . Even after the network is trained, 

there is no way to tell if the backpropagation has found the 

global minimum or not. If the solution is not satistactoryf 

one is obliged to initialize the weights to new random 

values and to retrain the network, with no guarantee that it 

will train on the given trial and that a global minimum will 

ever be found. 

3.3.3 Network paralysis 

Sometimes, as the network trains, the weights are 

adjusted to very large values. This can force all or most of 

the neurons to operate with large values of OUT in the 

region where the derivative of the squashing function is 

very small. Since the error sent back for training is 

proportional to this derivative, the training process can 

come to a virtual standstill. There is no theory that 

predicts whether or not a network will be paralysed during 

training. 

3.4 THE PROPOSED NON-STATIC ALGORITHM 

Backpropagation is often used as the learning 

algorithm in layer structured neural networks because of its 

efficiency. But the optimum number of hidden layers and the 

number of neurons in each layer is not known in advance. It 

has to be decided either randomly or by hit and trial. So 

the network's performance depends on designer's guess. So an 

algorithm has been proposed where we start with a relatively 
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small network and systematically lead to a network with 

optimal number of hidden units. 

The proposed algorithm can be summerized by the 

following steps : 

1. Initialise the network with small number of hidden 

layer and each with a small number of neurons. 

2. Train the network using conventional backpropagation 

algorithm with first few training set~ and get a temporary 

optimal weight matrix. 

3. Apply the rest training sets and get the sum of 

difference vectors i.e. the deviation of the output vector 

from the target vector. 

4. Calculate the average value of error per neuron in 

the output layer. i.e. 
i=q; 

error= (~Di)/(q*no.of training set) ( 3 • 14) 

5. Compare the current error with the minimum error. 

(The minimum error is initialised to 1 which is the 

maximum possible value) 

6. If the current error is less than the minimum error, 

then assign the current value of error to minimum error. 

Increse the size of the network and go to step 1. 

7. If the current error is not smaller than the 

minimum error, then print the optimum size of the network 

and stop. 

An assumption has been taken that whenever the 

performance of the network degrades, in comparision to the 
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smaller network in the previous step, the performance will 

not improve by incresing the size of the network still 

further. This has been observed during implementation. 

There are two different approaches to increse the size of 

the network as mentioned in the step 6 of the algorithm. 

According to the first approach, for each fixed number of 

neurons, the number of layers are incresed until the minimum 

error termed as minerror(l) reaches its first minimum. Then 

the number of neurons are fixed at the next higher level and 

the number of layers is again incresed. This whole process 

is repeated until we get the first overall minimum called as 

minerror(opt). Finally, the optimum size of the network 

corresponding to the overall minimum error is reported. 

In the other approach, we increse.the size of the 

network in a different manner. Here, the number of layers 

is first fixed and the number of neurons in different 

layers is increased to get the first minimum error termed 

as minerror(n). Then .the number of layers is increased one 

by one until we get the overall minimum error minerror(opt) 

as in the first approach. Here also the optimum size of 

the network is reported. These two approaches lead to the 

same results but with different directions. These approaches 

are described by flowcharts given in Flowchart 1 and the 

Flowchart 2. 
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3.5 THE SEGREGATION ALGORITHM 

The segregation algorithm is a higher structured 

non-static algorithm proposed by F. Schonbaur and M. Kahle 

in 1986 (6]. This algorithm overcomes almost all demerits of 

the static backpropagation algorithm. 

As mentioned previously, the ability to generalise 

using backpropagation algorithm is very sensitive to the 

number of hidden units. The separation into classes learned 

by the network after a sufficient number of training steps 

is describable by a simple rule since those few hidden units 

involved in the classification task could only differentiate 

between the majority of input patterns and the rest. If 

learned patterns are removed from the training set, the 

remaining patterns can be used as training set for another 

network that will have to deal with the classes that are 

left. This segregation of patterns and their assignment to 

their own network can be repeated as often as necessary. 

The algorithm can be formulated as follows : 

1. Use backpropagation learning algorithm with small 

number of units in the hidden layer until the mean squared 

error of a certain percentage of patterns is significantly 

less than the average mean squared error for all patterns. 

2. Continue learning using these patterns until the 

error approaches zero. 

3. Remove these patterns from the training set. 

4. Clamp all weights conected to or from the hidden 
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units. 

5. Add a few units to the hidden layer and connect 

them. 

6. If there are still patt;erns left in the training 

set, repeat all previous steps. 

7. Unclamp all weights 

8. The weights should now represent a good initial 

position on the error surface, continue normal learning to 
I 

reunite all subnets. 

With this algorithm classes that are difficult to 

learn because there are so few patterns for these classes in 

the training set can be learned separately. They can be 

presented as often as desired to a specific subnetwork 

without disturbing the knowledge of the rest of the network 

that has already learned the other classes. The robostness 

of the neural networks to noisy data or very infrequent 

apperances of stray patterns can be explicitly weakened to 

any desired degree without entirely removing this feature. 

The algorithm is sensitive to its parameters, 

namely the percentage of patterns that has to have a 

different error rate to be recognised as a different entity 

and learned separately, the number of hidden units the 

network starts with , the number of hidden units that is 

added at each segregation step. 

46 



01 I L J 2: 92 .. F OUT :: I I I I 
r I 

o., 

HET 

FIG-3-~ AHTIFICIAL NEUHON WITH 
ACTIUATION 'FUNCTION 

OUT 

9.8 
HET 

FIG-3-2 SIGMOIDAL ACTIVATION 
FUNCTION 

47 



INPUT 
LAYER 

~ £RJIOR1 

OUT 

TARGET 
1 

TARGET 2 

FIG.3.3 A TWO-LAYER BAC~PROPAGATION NET~ORM 



HEUROH IH 
HI DDHf LAVER 

.. UP"Q 
~ p .. ..-

... 

. 
r 

OUT'Pv 

• r 

NEUROH IH 
OUTPUT LA'iER 

q 

~ HETQX 

F .. 

~ 
-M- ... 

~ 
-M-

~ 
-M- ... -

~ 
... 

OUT_y 
1..!- ... -r 

TARGET-OUT 

-

TRAINING RATE 

UP"QK(n) 

OBJECTJUE 
FUHCTJOH 

~ 
U'PQK(n+i) 

MODIFYING 
THE OUTPUT 

A 
WEIGHT 

A WEIGHT 
LA¥JCR 

I 

\ 
\ I 
', __ / 

B 

I 

IN 

-... TARG 

FIG-3-5 LOCAL MIHIMUM P:ROBI.EM 

'1 ,, 



I 
+ I 
J 
! 
j 
J 

= 

I 

I 
I 
i 
i 

I 
I 

t 
I 
! 
l 

1 t 1 

! 
I 
I 

I 
i 

Training set 
no. = 

Training set 
t 1 

1 = no. of 1 ~~ers 

M :: r.o. of neui'Ons 1n 
input la.yer 

P = no. of neurons in 
hidden layer 

q = no: of neurons In 
Olttl'Ut layer 

P :: output vector -
target vector 

y 

q = ql 

p :: p I 

Mi RPI'I'O r(l ) :: 1 

Mi nerror( opt) =1 

I 
t~-

1 = 1 

Train the net for 
first few 

train~a sets 

get the teMporal'!! 
optiMal weight 

Mtrix 

Training set no. 
= 1 

D=Q 

----,. 

I Calculate output. l 

~ ..... ~ ~ 

D = D + <T - 0) 

Print the optiMal 
nuMber of 1 ayers 

and nuMbe :r <:'f 
neurons in lil.~;ers 

... 

I 

H 

Error = 
<~~r, > 1 

(q*h'. set no> 
I 

t 

i 
! • i 
i 
i 

p = p + 19 

Minerror(opt) - Minerror< I) -
l<opt> 
M(opt) M 
p(opt> p 
q(opt> q 

t 
I 

I 
I 
I 
i 
I 

I 
I 

FLOWCHART l. 

I 
I 



I 
I 
I 

j 
I 
I 

q = q + 3 

' = p + 19 

I 
! 

I 

I 
I 

t 
I 

Training set 
no. = 

Training Sl't 
+ 1 

l = no. of layers 

" = no. of neurons In 
input layer 

p = no. of neurons 1n 
hidden layl'r 

q = no. of neurons in 
output layer 

D = output vt>ctor -
target vectoY' 

I = 1 

Mir.nror(n)::i 
1"li n~nor( opt) =1 

' 
q = q 
p :: PI 

I 

~~ 
Train the nl't for-

first ft>w 
train!;:3 sl'ts 

get the teMporary 
optiMal wtght 

Matrix 

I 

' 
Training sl't no. 

= 1 

D = 9 

Calculate output 

0 

D = D + <T - 0) 

Print the optiMal 
nUMber of byers 

andnUMbero neurons in ayers 

S1 

i 
I 
I 
I 

t 
I 
I 
I 
i 
! 
i 

- l + 1 -

l 
i 
I 
' I 

Mint>~ror(opt) = Minerror(n) 

I< opt> 
M(Opt) M 
p(opt> P 
q(opt) q 

l 
I 

y 

FLOWCHART 2 



CHAPTER 4 

IMPLEMENTATION AND RESULTS 



In this chapter, the implementation of a 

multilayer neural network, simulated to recognise 

handwritten characters using the proposed non-static 

algorithm has been discussed. Also the relationship between 

network structure and the ability of the network to 

generalise from the training set has been investigated. At 

last, the obtained results, given in a tabular form has 

been analysed. 

4.1 NEURAL NETWORKS AND HANDWRITTEN CHARACTER RECOGNITION 

The recent resurgence of interest in neural 

networks, machine learning and parallel computation has led 

to a renewed research in the area of pattern recognition 

[8,9,12,15] Especially, the problem of handwritten 

character recognition has 

for a very long time. 

invoked great research interest 

There are many difficulties in 

handwritten character recognition because of the presence of 

large degree of variations of the data. Not only there 

exists some changes and distortions of characters from one 

individual to another, but also there are some variations 

from the same individual at different times. Furthermore, 

difficulties may result from problems such as complexity of 

characters, similarity of different characters etc. The 

traditional method for recognition of handwrtten characters 

using statistical techniques require large amount of data to 
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be stored. A more recent and appealing approach is the 

neural network technique. 

Pattern recognition problems require mainly two 

processes analyses or feature extraction and 

classification. 

4.1.1 Feature extraction 

The analyser receives an input pattern which is a 

very complex event such as optical signals, speech signals, 

electrical signals etc.. The analyser extracts the main 

features of the pattern. Its output is the pattern vector. 

The process of analyses or feature extraction of a 

pattern is generally done by complex hardware. But in this 

case it has been done manually. The letters are written on a 

graph paper containing squares with 8X8 and 8X6 boxes . If 

any portion of the letter is passed through a box then that 

particular input is taken as one ; otherwise zero. Likewise 

we analyse the letter and get the corresponding input vector 

X for each letter. Fig. 4 .1 and Fig. 4. 2 indicates how a 

character is analysed using 8X6 and 8X8 grids respectively. 

The data for all samples of handwritten characters is stored 

in an input file. 

4.1.2 Classification 

Several neural networks has been proposed for 

classification problem. Unlike traditional classifiers which 
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tend to test comparing hypothesis sequentially, neural 

networks test it in parallel, thus providing high 

computational rates. Here the size of the network is varied 

to get a network that can classify most efficiently. The 

minimum number of neurons in the output layer is taken as 

three. So the network can distinguish eight characters. 

4.2 IMPLEMENTATION OF THE NON-STATIC ALGORITHM 

A multilayer neural network classifier has been 

simulated by a program in C language which uses the non­

static algorithm. 'Here the fist approach (discussed in 

chapter 3) is used where the number of layers is increased 

for each fixed number of neurons in different layers and 

finally we get the optimum size of the network. 

4.2.1 The network 

The process starts with a network having an input, 

one hidden and the output layer. Two cases has been 

considered; one with input layer having 48 binary inputs 

where it classifies the letters written inside the rectangle 

with 8X6 boxes and the other, where the input layer has 64 

units to recognise the characters written in squares with 

axa boxes. In each case, the initial number of neurons in 

the output layer is 3. In the first step, the number of 

neurons in the hidden layer is fixed at 48X3. The elements 

of the weight matrix is initialised to any random number 

between -1 to +1. Subsequently, the second and third layer 
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is introduced. 

4.2.2 The learninq process 

To train the network effi9iently, thirty training 

samples are taken in each case. Using the conventional 

backpropagation algorithm the neural network is trained with 

the first twenty training sets to get the temporary optimal 

weight matrix. Then the rest ten training sets are 

used to calculate the average error per neuron in the 

output layer. In this case, 
i~ 

error = ( E D·) fq* No. of training sets ) 
i=i 1 

= ( Poi) /3*10) 
i=i 

Then the number of layers in the network is 

increased to two and the same process is repeated . Whenever 

the error, termed as minerror ( 1) in these processes where 

the number of neurons are fixed and the number of layers are 

increased, reaches its first minimum, the overall minimum 

error minerror(opt) is assigned the value of the current 

minerror ( 1) and then the number of neurons is increased 

further to next fixed level. Again the process of increasing 

the number of layers is done and so on. Finally, when the 

minerror (opt) reaches its first minimum, the training 

process is terminated and the optimal number of hidden 

layers and the number of neurons in different layers is 

reported. 
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4.2.3 The program 

The program is written in C language which has 

mainly two sections. The first section of the program is 

used to train the network using· the first twenty training 

sets. The program reads the input data from the input file 

inmat .dat where the input vectors corresponding to all of 

the samples of characters are stored. The initial weight 

matrix is read from the file wtmat.dat Using the 

conventional backpropagation algorithm the weight matrix is 

opdated and stored in the file optwtmat.dat_. 

The second section of the program again reads the 

rest ten training inputs from the same file inmat.dat . The 

input vector is multiplied with the optimal weight matrix 

obtained from the first section and after applying the 

squashing function the output vector is obtained. The 

program calculate the error for the network as discussed 

earlier. According to the algorithm, if the error decreases, 

then the size of the network is increased and again the 

first section is executed. This process is repeated until 

the error reaches its first minimum and finally it prints 

the optimal number of layers and number of neurons in each 

layer. To examine the relationship between the network size 

and its ability to recognise complex patterns, the number of 

characters correctly recognised during the second training 

phase is also reported. For this purpose, the output vector 

is digitized by taking 0. 5 as the threshold level. So any 
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element of the output vector is considered as zero if it is 

less than or eqaual to 0. 5; otherwise it is considered as 

one. The digitized output vector is compared with the 

desired output vector. If it matches then it is decided that 

the network. has correctly recognised that particular 

character. For each network configuration, the number of 

correctly recognised patterns are determined. 

4.3 RESULS AND DISCUSSION 

The performance of the network with different size 

during the second phase of training is given in Table I and 

Table II. The number of correctly recognised patterns out of 

given ten input pattrens is shown. The corresponding 

training times for getting the temporary optimal weight 

matrix (termed as initial 

required to calculate the 

training time) and the 

error (termed as testing 

time 

time 

during which it tests whether the network is optimal or not) 

for each case is also shown. 

By analysing the results carefully it has been 

observed that by simply increasing the size of a network 

does not improve its performance; rather the training time 

increases. In particular, let us consider the eighth 

training pattern of the letter R given to the network which 

is shown in Fig. 4.3 . The network with a single layer could 

not recognise it. When the number of layers is increased 

to two it became able to recogn~se the letter. But when the 
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number of layers is still increased to three it again 

failed to recognise that particular character. Also, it has 

been observed that by increasing the nu-mber of neurons 

arbitarily large, does not help the situation. So it is 

important to increase the number of layers and neurons step 

by step and stop the process when the performance starts 

degrading. 

In the first case, the network with an input layer 

having 48 (8X6) neurons is found to be optimal when the 

number of layers is two and the number of neurons in the 

hidden layers are 48X48 and 48X6 . This corresponds to the 

obsevation number 5 of the Table I. In the second case, the 

network having 64 (8x8) neurons in the input layer is found 

to be optimal with two hidden layers having 64X64 and 64X6 

number of hidden units. This corresponds to the observation 

number 5 of the Table II. 
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~·~ orl tto. Of ~-or ND.JR()HjiMO.OF MEUIOitS~.or IIEUJIOitSINO.or lllJIOttSM·ct-~ImtJAL ~IMIHGiTftTIHGI 
DS ~~ IH 1ST 81.DIIl4 IM 2HD HID»nt IM 3D IIJD:DDf IM THE OITPUT CO SD> VI tl /G~~~ T U 

lliYER IA'YlR IJIYER UIYIR UIYD < 18> ( MIH : SIC > < SiC > 

1. 1 48 4J X 3 - 3 7 - 8 : 25.1) 3.11 

2. 2 48 48X18 tl X 3 - 3 18 1 : 28.34 22.% 

3. 3 48 48X18 48X18 18 X 3 3 9 3 : 87.49 lL67 

4. 1 48 48 X 6 - - 6 9 8 : 33.74 3.71 

s. 2 48 48X48 48 X 6 - 6 18 2 : 16.43 29.45 

6. 3 48 48X48 48X28 28 X 6 6 18 4 : 47.34 46.% 

7. 1 48 -48 X 9 - - 9 8 8 : 11.47 5.89 

8. z 48 48X48 48 X 9 - 9 9 3 : 24.46 32.39 

9. 3 48 18X48 48Xlt lJ X 9 9 18 5 : 46.17 53.84 

TABLE I 



tiEUROtfS CORRl<:TLY TIMI)CHAf<AC YIMI loBS.~. orl MO. or lr.o.or II:UROttSIMO.Of II[UROttSIIfO.Of KEUROttSIHO.or IIEI!JIOIIS~or atAIIIICJ-~IHITIAL tRAIHIHGITESTIHGI 
NO LA'tlRS IH IHPUT IH 1ST IHDJ)lN IH 2tm HIDDD4 IH 3RD HIDDDt IH THI OUTPUT RICOGHISID TER 

uWER uWER IIIYIR IJIYIR UIYDt < OGT Of 19) < MI H : S!:C ) < SEC > 

1. 1 64 64 X 3 - 3 9 8 : 31.23 3.56 -
2. 2 &4 fAX64 64 X 3 - 3 18 2 : 87.~ 37.87 

3. 3 64 64X64 64 X 18 18 X 3 3 7 4 : 17.44 5-t.49 

4. 1 64 64 X 6 - - 6 9 8 : :Jl.S3 4.16 

5. 2 64 &4X64 64 X 6 - 6 18 3 : 36.18 57.16 

6. 3 b4 fr4X&4 64X28 28 X 6 6 9 6 : 89.17 64.15 

7. 1 64 6-4 X 9 - - 9 B 8 : 49.82 5.73 

8. 2 64 fAX64 64 X 9 - 9 18 4 : 83.67 61.23 

9. 3 &4 64X64 64Xlt :ll X 9 9 9 6 : 43.29 72.84 

TABLE II 



CONCLUSIONS' 

The work demonstrates that by just increasing the 

size of the network arbitarily large, does not improve the 

performance of the network; rather the training time 

increases. A non-static algorithm has been proposed and 

implemented which decides the optimal size of a network for 

a particular class of problems. A systematic study of the 

relationship between the size and structure of the network 

and the performance has been done and computational results 

presented. This learning paradigm could form an enabling 

core for complex problems in nonlinear adaptive control, 

object recognition and behavioural conditioning. 

Furthermore, the combin~tion of the proposed non-static 

algorithm and segregation algorithm will give a new 

direction to the dynamic system theory of neural networks. 
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