
NON~ST A TIC LEARNING
FOR

NEURAL NETWORKS

Dissertation submitted to the Jawaharlal Nehru University

in partial fulfilment of the requirements

for the award of the Degree of

MASTER OF TECHNOLOGY

in

COMPUTER SCIENCE & TECHNOLOGY

by

DWARIKA NATH MISHRA

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES

JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI - 110 067

INDIA

JANUARY 1993

CERTIFICATE

This is to certify that the thesis entitled NON-STATIC LEARNING FOR NEURAL

NETWORKS, being submitted by me to Jawaharlal Nehru University in partial fulfilment of the
. .

requirements for the award of the degree of Master of Te~hnology, is a record of original work

done by me under the supervision of Prof. K.K. Bhardwaj, School of Computer Systems &

Sciences, J.N.U., during the Monsoon Semester, 1992.

The results reported in this thesis have not been submitted in part or full to any other University

or Institution for the award of any degree etc.

D~!l~
Professor & Dean S1 111 J.
SC & SS, JNU
New Delhi 110 067

(DW ARIKA NATII MISHRA)

5 t'11 j
~4'Yl I

Dr.K.K.Bharadwaj
Professor,
SC & SS, JNU
New Delhi 110 067

ACKNOWLEDGEMENTS

I wish to express my sincere and heartfelt gratitude to Prof. K. K

Bharadwaj, School of Computer and Systems Sciences, Jawaharlal Nehru
. .

University, for the unfailing support he has 'provided throughout. In all

respects, I am very grateful for the patience he has exibited and for the time

he has spent with me discussing the problem. It would have been impossible

for me to come out sucessfully without his constant guidance.

I extend my thanks to Prof. R. G. Gupta, Dean, School of Computer

and Systems Sciences, JNU for providing me the oppertunity to undertake

this project. I would also like to thank the authorities of the school for

providing the necessary facilities to complete my project.

I am also grateful to my colleagues for their encouragements,

suggestions and worthy discussions. I acknowledge and thank each and

evel)'One of those who directly or indirectly helped me in this work.

(Dwarika Nath Mishra)

Dedicated to
my parents

ABSTRACT

The size of the neural network depends on the

complexity of the learning task; more hidden units are

needed to approximate a complex function. Higher structured

learning is defined as not only modifying the strength of

the connections but also the overall topology of the network

to get the optimal size for a particualr class of problems.

An outline of the segretion algorithm which avoids the

principal inadequacies of static algorithms is presented. A

non-static learning paradigm based on segregation algorithm

that allows creation of units and their . interconnections

during learning is proposed and implemented. Also the

relationship between the network structure and the ability

of the network to generalise from the training sets has been

examined and computational results presented.

CONTENTS

1. INTRODUCTION

1.1 NEURAL NETWORKS - AN AI TOOL

1.2 HISTORICAL PERSPECTIVE

1.2.1 The early years

1.2.2 The dark ages

1.2.3 Rebirth of connectionism

1.3 THE NEURON MODEL

1.4 ARTIFICIAL NEURAL NETWORKS TODAY

1.5 APPLICATIONS

2. STATIC AND NON-STATIC NEURAL NETWORKS

2.1 GENERAL ARCHITECHTURE

2.2 MODELS OF NEURAL NETWORKS

2.2.1 The feedforward model

2.2.2 The recurrent model

2.2.3 Bidirectional associative memory

2.3 LEARNING STRATEGIES

2.3.1 supervised learning

2.3.2 Unsupervised learning

2.3.3 Reinforcement learning

2.4 INADEQUACIES OF STATIC LEARNING

2.5 NON-STATIC LEARNING AND SELFORGANISATION

2.6 PRUNING IN NEURAL NETWORKS

2.6.1 Removing noncontributing units

1

3

4

6

8

9

13

14

16

20

23

25

26

2.6.2 Removing the unnecessary information units

3. NON-STATIC LEARNING ALGORITHM 31

3.1 THE BACKPROPAGATION ALGORITHM 32

3.1.1 Network configurations

3.1.2 An overview of training

3.1.3 Forward pass

3.1.4 Reverse pass

3.1.5 Momentum

3.2 ENHANCEMENTS IN BACKPROPAGATION ALGORITHM 40

3.3 DEMERITS OF STATIC BACKPROPAGATION ALGORITHM 41

3.3.1 Convergence

3.3.2 Local minima

3.3.3 Network paralysis

3.4 ·THE PROPOSED NON-STATIC ALGORITHM 42

3.5 THE SEGREGATION ALGORITHM 45

4 • IMPLEMENTATION AND RESULTS 52

4.1 NEURAL NETWORKS AND HANDWRITTEN CHARACTER
RECOGNITION 53

4.1.1 Feature extraction

4.1.2 Classification

4.2 IMPLEMENTATION OF THE NON-STATIC ALGORITHM 55

4.2.1 The network

4.2.2 The learning process

4.2.3 The program

4.3 RESULTS AND DISCUSSION 58

CONCLUSIONS 63

CHAPTER 1

INTRODUCTION

The quest for efficient computational approaches

to artificial intelligence has undergone a significant

evolution in last few years. Leading laboratories around the

world are pushing towards brainlike computers-the sixth

generation. Engineered intelligent systems behave with

remarkably rigidity when compared with their biological

counterparts, to recognise objects or speech f to manipulate

and adapt in an unconstructed environment and to learn from

the past experience. They lack commonsense knowledge and

reasoning, knowledge structures for recognising complex

patterns and fails to point out their own limitations. A

major reason for this limited technical success in emulating

one of the fundamental aspects of human intelligence lies in

the difference between the organisation and structuring of

knowledge and dynamics of biological neuronal circuitry and

its simulation using the symbolic processing paradigm [14].

Rapid advances in computational and behavioral

theories have brought about a new and much more

sophisticated effort to model cognition and perception in

physiological plausible terms. In order to build intelligent

machines, one obvious idea for AI researchers is to simulate

the functioning of the brain directly on the computer. Over

the past three decades, AI researchers have been doing

extensive research in the areas of pattern recognition,

adaptive machine learnjng, perception and sensory motor

control [1, 11]. Subsequent development of intelligent

systems has pursued two different schools of thought ; one

2

symbolic and the other is neurobiological, subsymbolic or

connectionist. The past few years has witnessed a

significant reawakening of interest in massively parallel

computation, often portrayed as "neural networks" - a

biologically inspired, computational and information

paradigm [14] .

1.1 NEURAL NETWORKS - AN AI TOOL

Neural networks represent a means i.e. a tool for

understanding aspects of artificial intelligence. They can

be treated as a way of representing knowledge. In a

different perspective, neural networks are massively

parallel computational paradigm that offers a new way of

viewing problems in AI [4]. Because of their different

structure neural networks can benifit considerably from

customized archi techtures. Artificial neural networks

constitute an enhancing not a replacing technique of AI.

In neural networks we usualy start with a

computational structure which can be mathematically

formulated and studied. Neural networks employ distributed

parallel processing to perform computation. The storage,

processing and communication of information in neural

networks occurs throughout the whole network rather at

specific sites or memory locations. Thus memory and

processing in neural networks are global rather then being

local in nature. Computation by neural networks emerges

spontaneously from fundamental physical principles. A neural

3

network can be considered as a relaxation system which

settles into a solution. Neural networks can compute

steps after significant results in a small

learning which is a fundamental

number of

and essential aspect of

neural networks. The most striking and impressive

characterstic of neural networks is the ease and naturdlness

with which they can learn. Neural networks are trained on a

finite set of training example after which they become able

to extrapolate on them in order to provide outputs never

encountered before. They also remain quite robost in noisy

environments. The ability of current VLSI technology to

provide large number of simple processing elements(both

analog and digital) allows for a quantum improvement in the

cost performance of neural networks [4].

1.2 HISTORICAL PERSPECTIVE

For understanding the present state of development

of neural networks it is essential to have at least an

inlinking of the history of their development (10,14]. This

history is enormously fascinating .

1.2.2 The early years

The science of artificial neural network made its

first significant apperance in 1940s. Researchers desiring

to duplicate the funtions of human brain developed simple

hardware (and later softwdre) models of biological neurons

and its interconnection systems.In 1943, McCulloch an~ Pitts

4

published the first systematic study of artificial neural

network where they had shown that network of neurons with

binary response functions was capable of computation. In

1949, Donald Hebb proposed a model for learning in neural

networks through strengthening the connnections between

elements connecting the input stimulus neurons and output

patteren neurons • Later, Dean Edmonds and Marvin Minsky

built an electromechanical learning machine which

incorporated these ideas.

In the late 1950s Frank Rosenblatt of Cornell

University invented a type of neural network which he called

the perceptron. Minsky and Papert proved mathematically the

capabilities and limitations of single layered ,linear

perceptron of the type promoted by Rosenblatt. They found

that though they worked quite well on very simple problems

but their performance detoriated very rapidly as the tasks

assigned to them got harder.

1.2.2 The dark ages

The failure of perceptrons dampened the enthusiasm

for research in this type of device and brought research on

neural networlcs to a virtual halt during 1970s. While many

researchers abandoned neural networks to reorient their work

along traditional symbol processing approaches,a few workers

pursued the path suggested by the early perceptron work.

Dr. Benard Widrow first built Adeline, an adaptive

5

linear neuron computer [11]. Adeline used negative feedback

to overcome some of the problems of the perceptron.This work

was extended to multiple neuron Madeline which demonstrated

the capability of recognising spoken words and visual

patterns independent of translation. On the theoretical

side, Stephen Grossberg publised extensive mathematical

analysis which establised the foundation for asociative

learning in neural networks.

1.2.3 Rebirth of connectionism

In 1980s , several events occured which

reestablished neural network research as a credible

endeavor. Arnoung the most significant everits which revived

the study of neural networks was the publication of John

Hopfield on neural networks and physical systems with

emergent collective computational abilities in 1982. He

presented simple analog circuit of neural network and used

it to solve practical problems. Later the PDP (Parallel

Distributed Processing) study group was established ·and a

lot of research works were published.

1.3 THE NEURON MODEL

Artificial neural networks are patterned after

real neural networks (10,14]. The basic computatinal

element of real neural networks is a neuron which is shown

in figure 1.1 . The four basic parts of a real neurori such

as those found in the brain are (1) the synaptic buttons or

synapses which serves as output devices, (2) the cell body

6

which sums the membrane potentials provided by the synapses

and fires at a rate which is a nonlinear function of the

total voltag-es, (3) the axons which carries t;he electrical

signals from the cell boody to subsequent synapses, (4) the

dendrites ,branchlike structures which provide sensory input

to the cell body. The cell body sums the membrane potentials

between the synaptic buttons and fires voltage spikes down

its output axon at a rate which depends on the sum of the

input voltages. This dependence has been found to be sigmod

in shape. It has been found experimentally that synaptic

connections can produce ei thor exci tory or inhibitory

effects. Excitory neurons greatly outnumber inhibitory

neurons and tend to respond more rapidly to changes to

input. The model of a neural network is illustrated in fig

1.3 . Most general neural network models assume a complete

interconnection between all neurons and resolve the cases of

nonconnected neurons (i, j) by setting the connection

strength Ti,j = o. The output of the neuron n is generated

by multiplying the sum of the input voltages weighted by

synaptic weights or connection strengths Ti.j between neuron

i and neuron j by nonlinear transfer function. There are

however number of system design parameters [10] which must

be specified for any neural network model such as

* The structure of the system i.e. the number of

layers

* The synchrony of the system

7

* Symmetry of the interconnections

* Feedback structure employed

* The transfer or activation function

* The formulation of learning strategy

1.4 ARTIFICIAL NEURAL NETWORKS TODAY

There have been many impressive demonstrations of

artificial neural network capabilities [11]. A neural

network has been trained to convert text to phonetic

representations which were then converted to speech by other

means (Sejnowsky and Rosenburg 1987). Some other networks

have been developed which can recognise handwritten

characters. A neural network based image compression system

has been devised. Many of them use backpropagation algorithm

discussed later . Fig. 1. 3 shows the block diagram of an

advanced neural computing system. Real world signals are

converted into discrete form at the interface block. The

neural signal processing system handles the converted signal

and the outputs are transferred to digital computer for

further manipulations.

Neural netwqrk products are also commercially

available today [10]. In the first International Conference

on Neural Networks at San Diego, at least six commercial

neural network systems were demonstrated. The Hecht-Nielson

Neurocomputer Corporation has been established by Dr. Robert

Hecht-Nielson which markets a neural network system called

ANZA. The Nester Inc.has developed a product which

8

recognises handwritten characters on checks and documents.

1.5 APPLICATIONS

Artificial neural networks have been proposed for

tasks ranging from battle field management to minding t.he

baby. Potential applications are those where human

intelligence functions effortlessly and conventional

computation has been proven cumbersome and inadequate. The

conventional computers are extremely good at numerical

computations and executing sequences of instructions that

has been precisely formulated for them. On the other hand,

neural networks prove themselves exellent in the field of

perception. Successful neural network applications have

several common characteristics [5] incuding :

* Applications are data intensive and dependent on

multiple interacting parameters.

* Problem area is rich in historical data or examples

* Data set is incomplete, contains errors and

describes specific examples

* Discriminator or function to determine solutions is

unknown or expensive to discover

Several classes of applications are amenable to a

neural network approach; most involve ei thor pattern

recognition or statistical mapping. Common applications

include character recognition, forecasting, information

processing, process monitoring, signal processing and robot

control.Conversely, other applications do not lend

themselves to a neural · network approach~ For

9

example,mathematically accurate and precise

such as accounts receivable and inventry

applications,

are unlikely

candidates. In addition, applications that require temporary

data load, analysis and reporting including sales data

analysis and resource management are unsuitable. In general,

applications that require deduction and stepwise logic are

also not good choices for neural networks.

10

CELL

I BOlN

,--.... SYNA'PJ"IC
BUTTONS

DENDRITES

FIG-1-1 A TYPICAL BIOLOGICAL MODEL

HEUROH i

J OUTPUT

SYNAPTIC ~EIGHT TXH

FIG-1-2 MODEL OF NEURAL HETWOAH

11

DIGITAL
IHPUT SIGHALS

PARALLEL
cottPUTER

DIGITAL
OUTPUT SIGNALS

DIGITAL
ULSI

llHALOG

JHPUT SIGNALS

SENSORY
PREPROCESSING

IU~ED
HARDWARE

AHALOG/DJGITAL
ULSI

NEURAL
NETWORK

NEURAL
NETWORK

ACTUATORY I
POSTPROCESSING . I

AHJ LOG

OUTPUT SIGNALS

MJ)(ED

AHALOG/DIGJTAL
ULSJ

FIG-i-3 ADUANCED NEURAL COMPUTING

SYSTEM

12

CHAPTER 2

STATIC AND NON-STATIC
NEURAL NETWORKS

The human brain performs the formidable task of

sorting a continuous flood of sensory information received

from the environment and use them in an organised way. As

already stated artificial neural networks always lags behind

the human brain as far as dynamics and parallelism is

concerned. In the real world, a neural network will be

exposed to a constantly changing and noisy environments. So

structing and organising a neJ.Iral network is an emerging

problem today.

2.1 GENERAL ARCHITECHTURE

In neurocomputing the word arhitechture is

reserved for the formal mathematical description of a neural

network [13]. So the definition of neural network

architechture has nothing to do with that architechture' s

implementation(i.e. the way in which neural network is

implemented in software, neurosoftware and/ or hardware) . A

neural network can be described more precisely as a

parallel distributed information processing structure in the

form of a directed graph with the following sub­

definitions and restrictions [13] :

1 • The nodes of the graph are called processing elements.

2 The links of the graph is called connections. Each

connection functions as an instantaneous.

signal-conduction path.

14

unidirectional

3 Each processing element can receive any number of

incoming connections (also called input connections) .

4 Each processing element can have any number of

outgoing connections , but the signal in all of these must

be the same. In ·effect, each processing elemen that has a

single output connection that can branch or fan out into

copies to form multiple output connections(sometimes called

col laterals), each of which carries the same identical

signal.

5 • Processing elements can have local memory.

6 • Each processing element posseses a transfer function

which can use (and alter) local memory,can use input signals

and which produces the processing element's output signal.

In other words, the only inputs allowed to the transfer

function are the values stored in the processing element's

local memory and the current values of the.input signals in

the connections received by the processing element. The or.ly

outputs allowed from the transfer function are values to be

stored in the processing element's local memory and the

processing element's output signal.Transfer functions can

operate continuously or episodically.If they occur

episodically , there must be an input called activate that

causes the processing element's transfer function to

operate on the current input signals and local memory values

and to produce an updated output signal. Continuous

processing elements are always operating. The activate input

arrives via a connection from scheduling processing element

15

that is the part of the network.

7 • Input signals to a neural network from outsidt~ arrive

via connections that originate outside.Outputs from the

network to outside are connection that leave the network.

Internal details of a processing element in neural

networks is shown in Fig 2.1 In addition to the structure

presented above, almost all known neural networks have their

processing elements divided into disjoint subsets called

layers or slabs in whuch all of the processing elements

posses essentially the same transfer function.

Processing element transfer functions usually have

a subfunction called a learning law that is responsible for

adapting the input-output behavior of the processing element

transfer function over a period of time in response to the

input signal that impinge on the processing element. The

adaption is usually acomplished by modification of the

values of variables stored in the processing element's local

memory [2,3,11,14].

2.2 MODELS OF NEURAL NETWORKS

Artificial neural networks have been developed in

a wide variety of configurations [1,2,10,11]. Despite the

aparent diversity, network paradigms have a great deal in

common. There are two popular models of neural networks

the feedforward model and the feudback or recurrent model.

Depending on the number of layers a neural network may be

16

single layered or multilayered .

2.2.1 The feedforward model

Although a single neuron can perform certain

simple tasks the power of neural computation comes from

connecting the neurons into networks. In the feedforward

model, the neurons are arranged in layers~ There are only

directed synapses between each layer and the next. Thus the

connections are loop free. The inputs are applied in the

first layer and the outputs are collected from the last

layer. A feedforward network is a special case of

combinational circuits with the additional feature that the

intermediate variables in the network can assume non-binary

values. A two layer feedforward network is shown in Fig.2.2.

The circular nodes on the left serve only to distribute

the inputs . They perform no computation and hence will not

be considered to constitute a layer. The set of inputs X has

each of its elements connected to each neuron through a

separate weight. Actual artificial or biological network

may have many of the connections deleted but full

connectivity is shown for reasons of generality .

The output is calculated by multiplying the input

vector by the first weight matrix w1 and then multiplying

the resulting vector by the second weight matrix w2 . This

can be expressed as

17

Since matrix multiplication is associative these

terms can be rearranged and written as

0 = X (W1W2)

2.2.2 Recurrent networks

In the recurrent or feedb\lck model of neural

networks connections through the weights extends from the

outputs of a layer to the inputs of the same or the previous

layer. This special class of neural networks is of

considerable interest and widely used.

Nonrecurrent networks have no memory; their output

is solely determined by the current inputs and the values of

the weights. On the other side, in recurrent network the

output is determined by the current inputs and their

previous outputs. For this reason recurrent network can

exhibit properties very similar to short term memory in

human brain, because the state of the network outputs

depends in part upon the previous inputs. Fig. 2.3 shows a

recurrent network consisting of two layers. The first layer

as in previous illustration serves no computational

function; it simply distributes the network outputs back to

the inputs. Each neuron in the next layer computes the

weighted sum of the inputs producing a NET signal that is

often operated by a nonlinear function F to yeild the OUT

signal.

18

The important drawback oi such recurrent network

is that they are not unconditionally stable. Sometimes they

enter a mode in which the output wanders interminably from

state to state , never producing an usable output. Unstable

networks have interesting properties and have been studied

as examples of chaotic systems. Recurrent networks using

backpropagation and segregation algorithm

later in more details.

2.2.3 Bidirectional associative memory

is discussed

Human memory is always associative in nature. If

we allow our thought to wander they move from topic to

topic based on chain of mental association. Binary

Associative Memory(BAM) model (10,11] uses this aspect of

human brain. BAM accepts the input vector on one set of

neurons and produces a related but different output vector

on another set. The BAM is capable of generalisation,

producing correct output despite of corrupted inputs. These

characteristics are strongly reminisce:R.t of human mental

functions and bring neural networks one step closer to

emulation of brain.

Recent publications have presented several forms

of bidirectional associative memories . Fi.g. 2. 4 shows the

basic BAM cofiguration. Here an input vector A is applied to

the weight network W and produces a vector of neuron

outputs B. Vector B is then applied to the transpose of the

first weight network wt which produces new outputs for

19

vector A. This process is repeated until the network arrives

at a stable point where neither A nor B i.s changing. This

process can be expressed in symbols as follows :

bi = F(ajwij)

or in vector form

B = F(AW)

where

B = the vector of outputs of layer2

A = the vector of outputs from layerl

W = the weight matrix between layerl and layer2

F = the activation function

similarly,

where

wt = the transpose of matrix W

2.3 LEARNING STRATEGIES

Learning is the most important properties of

neural networks. Neural learning is defined as "the process

of adapti vely evolving the internal parameters (e.g.

connection weights, network topology, etc.) in response to

the stimuli being presented at the input and possibly the

output buffer" (14). A wide variety of training

algorithms have been developed, each with its strengths and

weaknesses. Table I summerizes different types of

computational learning

algorithms and systems.

paradigms

20

and corresponding

Neural network learning procedures can be divided

into three broad categories:

(1) Supervised procedures where the desired· response is from

a knowledgeable teacher and the retrieval involves one or

more of a set of stimuli pattern that has been repeatedly

shown to the system during training phase.

(2) The unsupervised procedures construct internal models

that capture regularities in their input vectors without

receiving any additional information.

(3) The reinforcement procedures which requires a single

scalar evaluation of the output.

2.3.1 Supervised Learning

Supervised learning requires the pairing of each

input vector with a target vector representing the desired

output. Such a pair is called training pair. Usually a

network is trained over a number of such training pairs. The

network observes the presented inputs, detects the

statistical regularities embedded within it and learn to

exploit these regularities to draw conclusions when

presented with a portion or distorted version of the

o~iginal pattern. When the portion of the original pattern

is used as a retrieval cue, the learned process is denoted

to be auto-associative. When the desired input is different

from the actual input, then the learning is reffered as

hetero-associative (13).

21

2.3.2 unsupervised learning

Despite many application successes supervised

learning has been critisized as being biologically

implausible. It is difficult to conceive of a traning

mechanism in the brain that compares d~sired and actual

outputs feeding processed corrections back through the

network. Unsupervised training is far more plausible model

of learning in the biological system. Such a learning scheme

was firstly introduced by Kohonen and later by others.

Unsupervised learning does not require target vector for the

outputs and hence, no comparisions to predetermined ideal

responses. The training set contains solely input vectors.

The traning algorithm modifies the network weights to

produce output vectors those are consistent. The traning

process therefore extracts the statistical properties of the

training set and groups similar vectors into classes.

Appliing a vector from a given class to the input will

produce specific output vector, but there is no way to

determine prior to training which specific output pattern

will be produced by given input vector class.Hence the

outputs of such a network must generally be transformed

into a comprehensible form subsequent to the training

process. This does not represent a serious problem . It is

usually simpler matter to identify the input-output

22

relationships established by the network.

2.3.3 Reinforcement learning procedures

The central idea in the· reinforcement learning

procedure is that, we can assign credit to a local decesion

by measuring how it correlates with the global reinforcement

signal. Various different values are tried for each local

variable(such as the state or a weight) and these variations

are correlated with variations in the global reinforcement

signal. Normally, the local variations are the result of

independent stochastic processes [12]. So if enough samples

are taken, each local varible can average away the noise

caused by the variations in other variables to reveal its

own effect on the global reinforcement signal. The network

can then perform gradient ascent in the expected

reinforcements by altering the probability distribution of

the value of each variable in the direction that increases

the expected reinforcement If the probabi 1 i ty

distributions are altered after each tr1al, the network

performs a stochastic version of gradient ascent.

2.4 INADEQUACIES OF STATIC LEARNING

One of the major strengths of neural network is

their ability to recognise or correctly classify patterns

which have never be presented to the network before . Neural

networks appears unique in their abi~ity to extract the

23

essential featurs from a training set and to use them to

identify new inputs. In any network the topology of the

network(i.e. the number of hidden layers and the number of

neurons in different layers) is crucial not only to the

ability of classifying training data, especially to the

network's ability to generalise. Generalisation means

selecting a curve that is a model of the properties of the

data. Since the curve can only be modelled on the training

data, the training set must be an all encompassing subset of

the entire data set. Any parameters of the model of the

entire data set those are not represented in the training

set cannot be accurately modelled. Since the entire data set

is usually unknown, the quality of the network's internal

model depends upon the accuracy of the designer's guesses.

So in a static learning procedure , to produce meaningful

results it requres an adequate network topology. The

essential problem in modelling is finding a topology that

already models the data [6].

The number

interconnection depends

of hidden layers and their

on the complexity of the learning

task;more hidden units are required to approximate a more

complex function. Over learning occurs when the number of

connections reaches the number of training patterns, that is

every connection is dedicated to one specific pattern. This

also reduces the network's ability to generalise, that is

the patterns of the test set per,form significantly worse

24

than patterns of the training set , because each patern is

trained separately and no common features are represented in

the network's internal model. Just by increasing the number

of hidden units and their interconnections does not

necessarily lead to ari adequate representation of the

features of the data set; rater the simulation time

increases. The order of magnitude of the increase of

simulation time is almost squre. Sometimes static learning

processes get trapped in a local minimum [7,11,16] and also

suffer from many other problems discussed in the following

chapter.

2.5 NON-STATIC LEARNING AND SELFORGANISATION

In the problem domain where the number of possible

patterns is unlimited and the number of classes are not

priori known, it may be impossible to estimate the number of

required hidden units in advance. Moreover, the distribution

of patterns over time may vary. To allow adapt ion to the

changing situation the number of hidden units must change.

Hence, the training algorithm should be designed such that

not only the weights are modified but also overall topology

of the network changes depending on the complexity of the

class of problem. Non-static learning is one such kind of

higher structured learning procedure.

aspects

Non-static neural networks follows the dynamic

of biological network. It has been shown that in

the human brain whenever a group of neurons is working on

25

a task which be cannot accomplished by them because they are

t00 few in number I then another bunch Of neuron cells get

devoted to this task in order to support the others. Taking

into the consideration the importance of network topology

and biological evident dynamic topology with respect to a

specific task, non-static neural networks are introduced.

A non-static paradigm is defined as changing the

topology of the network not only during the learning phase

but also at every time after its static definition which

precedes learning or even as allowing to define the ovrall

topology dynamically, while learning. In a dynamic paradigm

units can be created at every time, before,during or after

learning. They can be connected arbitarily·with other units

of the network [6,16].

2.6 PRUNING IN NEURAL NETWORKS

In the above discussed approach to neural

network design we start with a network having a hidden layer

with very small number of units and lead to a larger

network which is able to differentiate classes containing

many representatives. On the other hand, pruning is almost

the opposite approach of examining a solution network. Here

the process starts with a reasonably larger neural network

and the units which are not necessary to- the solution is

removed step by step. In this process the network is

analysed by examining the outputs of the hidden units across

all the training set inputs. There are two stages of pruning.

26

One is removing units that can be considered as not

contributing to the solution. Stage two is removing units

that give information not requried at the n~xt layer [7].

2.6.1 Removing noncotributing units :

These are units which ei thor have approximately

constant output across the training set or have outputs

across the training set which mimic the outputs of another

unit. These units can be removed and the weights given to

their outputs are redistributed in such a way that there

will be almost no change to the network performance over the

training set.

2.6.2 Removing unnecessary information units

This is the second stage of pruning where the

units which are independent of other units in the layer but

give information which is not required at the next layer is

removed. Removing units which contribute unnecessary

information to the next layer may lead to the outputs of the

pruned layer being linearly inseparable with respect to the

classes or outputs of the above layer.

27

FIG-2-~

X

X
2

X
H

JHPUT SJGHALS

x s xa: • • xH

' '.
TRANSFER FUNCTION

'

OUTPUT SIGHAL Y

n 1
COPIES OF OUTPUT SIGNAL

INTERNAL DETAILS OF A
PROCESSING ELEMENT

WEIGHT WEIGHT

y
2

y
1"

ARRAY y, ARRAY u~
FIG- 2-2 Fl£:EDFONWA RD NEURAL NETWO:R:K

28

~---.

t---....__- - OU1
1

~-----------__.OUT~
'

------------~~"--------~~---------------+~ OUTH

LAVER 8 LAVER 1

FIG-2-3 A MODEL OF RECURRENT
NEURAL NETWORH

w
111

G
B

FIG-2-4 BIDIRECTIONAL ASSOCIATIVE
MEMORY

29

Paradigm

Empirical learntn'-

c~se-bi.!ICd learning

Genetic: learning

Explanati0n-based
learning

ConnectJ<'nt>.
lncuro•ll ie:nnintt

Distnbution-fr~

lear1'1ing

Categori~

Rule-ba~

learning vaa Query

Concert k41rnantt
Adarting case ba~

Ha} l"'Jan tnh .•
dc..-:isiun trees

Population gmcti~

ReaS()ning about
operationality cmerit
of a learning result)

SuperYi!oed.
unsu~n iS<'\!.
remf,,r\.""C:mcnt

Formal con~pt
·learning

Algorithm description

R~al-lt'-m•'ldd "c.'rld mal"rinlt
< lrtkrin~t nf que-.tHm' tfirntl- kt~rnmj!

Sc.•;trl..'h an hyputh~is "~"'""\:
Sc:arl..'h through ca~ networks of anal0g~­

C"'r'l.tnatnr\'·t"nwlati•'n skills
I IIIII rrohahk number of di!'\SC\, prohahJhsiK
de~riptions. and probability of belongmgness

Trial soluti0ns (population~) operated in cycles
l)~cnerati,,ns) hy survivill-of-fith~'' o;eiN:tion
followed by ICCIIC'IIt: recombinalion Ccrosso..,er
and mutation upcratoTSI

Ontain general con~pt definition of some
pr•'r<rty that holds for a gi,·en traming in~tance

Capture the functional. spat1al. or temporal
•••nl."crt in the internal ~)nartu.: ,,,nncctu•n' lH

"'I'X'''l~) of the netwnrl
Construct a minimal set of maximally general

descriptions

TABLE 1

Nature

Oeductive
I ndtu:tive
Inductive
Deductive

Inductive

Inductive

Deductive

Relaution
in an energy
landscape

lnducti\·e.
Deductive

Systems

lAMP. PRODIGY
MARVIN
OTIS
TA

Auto<..1au

CFS

ROF~ MetallEX

EBP. CL, ART. SID

PAC

CHAPTER 3

NON-STATIC LEARNING ALGORITHM

In recent years major thrust has been given on

the study of nonlinear dynamic systems theory. As a result

many enhancements has been proposed on the conventional

static learning algorithms for neural networks. Some AI

researchers have shown tremendous interest in designing

dynamic neural networks which adapts to the environment. In

this chapter the basic backpropagation algorithm has been

discussed in detail. Also an efficient and adaptive learning

algorithm has been presented which trains the network to

decide its optimal size by itself for a particular class of

problem. Finally the segregation algorithm, a more advanced

version of non-static algorithm is also discussed.

3.1 THE BACKPROPAGATION ALGORITHM

The backpropagation algorithm is the most

suitable supervised learning algorithm for multilayer neural

networks. The invention of backpropagation has played a

large part in the resurgence of interest in artificial

neura 1 networks. A clear and concise definition of

backpropagation algorithm was first presented by Rumelhart,

Hinton and Williams in 1986. Later it was popularised by

Rumelhart in the Parallel Distributed Processing(PDP) edited

volume in 1980. The PDP researchers suggested that the

backpropagation algorithm or as they called it generalised

delta rule is the most sui table learning algorithm for

neural networks and overcome the limitations of the

32

perceptron algorithm [1,3,11,16].

3.1.1 Network cofigurations

Neurons are the fundamental building blocks of

backpropagation networks. A set of inputs is applied eithor

from the outside or from a previous layer. Each of these is

multiplied by a weight and the products are summed. This

summation of products are termed as NET and must be

calculated for each neuron in the network. After NET is

calculated, an activation function F is applied to modify

it, thereby producing a signal OUT. Fig 3. 1 shows the

artificial neuron with activation function. Fig 3.2 shows

the sigmoidal activation function which is usually used with

backpropagation. The OUT signal can be represented by

OUT= 1/(l+e-NET) (3. 1)

The sigmoid function, also called a logistic or a

squashing function is desirable because it has a simple

derivative The derivative of the OUT function can be

expressed as

dOUT = OUT(l-OUT) a .NET
(3.2)

The sigmoid function compresses the range of NET

so that OUT lies between zero and one. As discussed

previously, multilaer networks have greater representational

power than single layer network only if a nonlinearity is

introduced. The sigmoid function produces the required

33

nonlinearity. Any nonlinear function other than the sigmoid

function can be used, which sould be differentiable

everywhere. The sigmoid function has the additional

advantage of providing a form of automatic gain control. The

shape of the function is such that .large signals. can be

accomodated by the network without saturation, small signals

are allowed to pass through without excessive attenuation.

Fig. 3. 3 shows a multilayer network that is

suitable for training with backpropagation algorithm. The

first set of neurons serve only as distribution points; they

perform no summation. The input signal is simply passed

through to the weights on their outputs. Each neuron in the

subsequent layer produces NET and OUT signal as described

above.

3.1.2 An overview of training

Training is the process of adjusting the weight

so that application of a set of inputs produces the desired

set of outputs. The input-output sets can be reffered as

vectors. Training assumes that each input vector is paired

with target vector representing the desired output; together

they are called training pair. The network is trained over a

number of training pairs. For example, the input part of a

training pair might consist of patterns of ones and zeros

representing a binary image of an alphabet. The output may

also be a set of binary numbers which represents the letter.

34

Before starting the training process, all the

weights must be initialised to small random numbers. This

assures that the network is not saturated by large values of

the weights and prevent certain other training pathologies.

Training the backpropagation network requires the

following steps :

1. Select the next training pair from the training set and

apply the input vector to the network input.

2. Calculate the output of the network.

3. Calculate the errors between the network output and the

desired output.

4. Adjust the weights of the network in such a way that

the error is minimized.

5. Repeat step 1 through 4 for each vector in the training

set until the error for the entire set is acceptably low.

Calculations are performed layer by layer basis.

Referring to the Fig. 3.3 , first the outputs of the neurons

in the layer j is calculated and these are used as input to

the layer k. The output of the neurons in layer k is

calculated which constitute the network output vector.

It may be seen that in the steps 1 and 2 the

signal propagate from the network input to the network

output. So this is called as the forward pass. In steps 3

and 4 the error signal propagates from the output to the

input through the hidden layers where it is used to adjust

the weights. This is called as reverse pass. The two passes

35

are elaborated below .

3.1.3 Forward pass

The above said forward pass can be expressed in a

more mathematical form as follows: · The input vector pair X

and the target vector T comes from the training set. The

calculation is performed on X to produce the output vector

Y. Calculations in a multilayer network are done layer by

layer starting at the layer nearest to the inputs. The NET

value of each neuron in the first layer is calculated as the

weighted sum of its neurons' inputs. Then the activation

function F operates on the NET to produce the OUT value for

each neuron in that layer. Once the set of outputs for a

layer is found then it serves as an input to the next layer.

The process is repeated layer by layer until the final set

of network outputs is produced.

In vector notation,

N = (XW) (3.3)

where N = the NET vector

W = the weight matrix

Applying function F to the NET vector N, component

by component the outputvector 0 is produced.

0 = F(XW) (3.4)

The output vector for one layer is the input

vector for the next. So the equation 3.4 is applied to each

layer to calculate the outputs of the final iayer.

36

3.1.4 Reverse pass

In this pass, the error between the desired output

i.e. the target and the actual output is obtained from the

forward pass is calculated and subsequently used to adjust

weights of the output layer. Fig. 3. 4 shows the training

process for a single weight from neuron ·p in the hidden

layer j to the neuron q in the output layer k. The output of

a neuron in the layer k is subtracted from the target value

T to produce the ERROR signal. This is multiplied by the

derivative of the squashing function [OUT(l-OUT)] calculated

for the layer's neuron k, thereby producing the 8 value

which is expressed as

& = OUT (l-OUT) (T-OUT) (3. 5)

The s is multiplied by OUT from neuron j and a

training rate coefficient r and the result is added to the

initial weight to get the modified weight .

.6_w pq,k = r b q,k OUTpj

w pq,k(n+l) = wpq,k(n) + Llwpq,k

(3.6)

(3.7)

where wpq, k (n) = the value of a weight from

neuron p in the hidden layer

to the neuron q in the output

layer at step n before weight

adjustment

= value of the weight at step

37

(n+l) after adjustment

Sq,k = the value of s for neuron q in

the output layer k

OUTpj = the value of OUT in neuron

p in the hidden layer j

since the target value is available for each

neuron in the output layer, adjusting the associated weights

is easily accomplished. But the hidden layers have no target

vector. So the hidden layers are trained by backpropagating

the output error through the network layer by layer,

adjusting weights in each layer. Eq. 3.6 and 3.7 are used

for all layers, both output and the hidden layers. First,

S is calculated for each neuron in the output layer using

Eq.3.5. After using it to adjust the weights in the output

layer, it is propagated back through the same weights to

generate a vaue of s for each neuron in the hidden layer

adjacent to the output layer. These values of 8 are used to

adjust the weights of the hidden layer and in a similar way,

are propagated back to all preceding layers.

Consider a single neuron in the hidden layer just

before the output layer. In the forward pass, the neuron

propagates its output to neuron in the output layer through

the interconnecting weights. During the reverse pass,

these weights operates in reverse, passing the value of S

from the output layer back to the hidden layer.Each of these

weights are multiplied by the & value of the neuron to which

38

it connects in the output layer. The value of s needed for

the hidden layer neuron is . produced by summing all such

products and multiplying by the derivative of the squashing

function

(3.8)

For each neuron in a hidden layer, s must be

calculated and all weights associated with that layer must

be adjusted. This is repeated moving back towards the input,

layer by layer until all weights are adjusted. In a vector

form it can be expressed as

where,

D· = DkWkt $ (O·$(I-O·)] J J J
(3.9)

D = the set of ss(subscript denotes the layer)

$ represents the componentwise multiplication

I = Unit vector whose all elements are 1

Oj = Output vector of layer j

Wk = Wight matrix of layer k

In many cases, each neuron is presented with a

trainabla bias, so that the training process converges more

rapidly.

3.1.5 Momentum

Momentum is a method of improving the training

time of the backpropagation algorithm, while enhancing the

stability of the process. This involves adding a term to the

weight adjustment that is proportional to the amount of

39

previous weight change. So the weight adjustment equations

can be modified as

£iwpq,k(n+1) = r(q,k OUTpj) + OG [.Liwpq,k(n)]

wpq,k(n+1) = wpq,k(n) + Llwpq,kcn+1)

(3.10)

(3.11)

where ol is the momentum coefficient ~vhich is

taken around 0.9

3 • 2 ENHANCEMENTS IN BACKPROPAGATION ALGORITHM

Many promising developments and extentions has

been done to the basic backpropagation algorithm in the last

few years [11]. In 1987, Parker described a method for

increasing the speed of convergence of the backpropagation

algorithm called as second order backpropagation. It uses

second derivatives to produce a more accurate estimate of

the correct weight change. Later, Stornetta and Huberman

described a relatively simple method for improving the

training characteristics of backpropagation networks.They

suggested the change of the dynamic range of inputs and

hidden neuron outputs from (Oto1) to + 1/2. The new

squashing function is as follows

OUT= -1/2 + 1/(e-NET+1) (3. 13)

By this method the convergence time reduced by 30

to 50%. In 1988, Pineda and Almeida described methods for

applying backpropagation to recurrent networks. They showed

that learning can be occured very rapidly in such systems

and the stability criteria is easily satisfied.

40

3.3 DEMERITS OF STATIC BACKPROPAGATION ALGORITHM

Backpropagation has been applied to a wide variety

of research applications. Despite the demonstrated power of

backpropagation, several problems plague "its application.

Most troublesome is the long uncertain training process.

Sometimes the training suffers from total failure due

to different causes as described below

3.3.1 convergence

Rumelhart, Hinton and Wlliams has provided a

convergence proofcast in terms of partial differential

equation, making it valid only if network weights are

adjusted in infinitesimal steps. Because this implies

infinite convergence time, it proves nothing about the

training time in practical applications. In fact, there is

no proof that the backpropagation will ever converge with a

finite step size.

3.3.2 Local minima

Backpropagation employs gradient descent to adjust

the network weights following the local shape of the error

surface towards the minimum. This works well with convex

error surfaces, which have a unique minimum, but it often

leads to nonoptimal solutions with highly convoluted,

nonconvex surfaces encountered in practical problems. In

such cases the network is trapped in a local minimum. This

41

is shown in Fig. 3.5 . Even after the network is trained,

there is no way to tell if the backpropagation has found the

global minimum or not. If the solution is not satistactoryf

one is obliged to initialize the weights to new random

values and to retrain the network, with no guarantee that it

will train on the given trial and that a global minimum will

ever be found.

3.3.3 Network paralysis

Sometimes, as the network trains, the weights are

adjusted to very large values. This can force all or most of

the neurons to operate with large values of OUT in the

region where the derivative of the squashing function is

very small. Since the error sent back for training is

proportional to this derivative, the training process can

come to a virtual standstill. There is no theory that

predicts whether or not a network will be paralysed during

training.

3.4 THE PROPOSED NON-STATIC ALGORITHM

Backpropagation is often used as the learning

algorithm in layer structured neural networks because of its

efficiency. But the optimum number of hidden layers and the

number of neurons in each layer is not known in advance. It

has to be decided either randomly or by hit and trial. So

the network's performance depends on designer's guess. So an

algorithm has been proposed where we start with a relatively

42

small network and systematically lead to a network with

optimal number of hidden units.

The proposed algorithm can be summerized by the

following steps :

1. Initialise the network with small number of hidden

layer and each with a small number of neurons.

2. Train the network using conventional backpropagation

algorithm with first few training set~ and get a temporary

optimal weight matrix.

3. Apply the rest training sets and get the sum of

difference vectors i.e. the deviation of the output vector

from the target vector.

4. Calculate the average value of error per neuron in

the output layer. i.e.
i=q;

error= (~Di)/(q*no.of training set) (3 • 14)

5. Compare the current error with the minimum error.

(The minimum error is initialised to 1 which is the

maximum possible value)

6. If the current error is less than the minimum error,

then assign the current value of error to minimum error.

Increse the size of the network and go to step 1.

7. If the current error is not smaller than the

minimum error, then print the optimum size of the network

and stop.

An assumption has been taken that whenever the

performance of the network degrades, in comparision to the

43

smaller network in the previous step, the performance will

not improve by incresing the size of the network still

further. This has been observed during implementation.

There are two different approaches to increse the size of

the network as mentioned in the step 6 of the algorithm.

According to the first approach, for each fixed number of

neurons, the number of layers are incresed until the minimum

error termed as minerror(l) reaches its first minimum. Then

the number of neurons are fixed at the next higher level and

the number of layers is again incresed. This whole process

is repeated until we get the first overall minimum called as

minerror(opt). Finally, the optimum size of the network

corresponding to the overall minimum error is reported.

In the other approach, we increse.the size of the

network in a different manner. Here, the number of layers

is first fixed and the number of neurons in different

layers is increased to get the first minimum error termed

as minerror(n). Then .the number of layers is increased one

by one until we get the overall minimum error minerror(opt)

as in the first approach. Here also the optimum size of

the network is reported. These two approaches lead to the

same results but with different directions. These approaches

are described by flowcharts given in Flowchart 1 and the

Flowchart 2.

44

3.5 THE SEGREGATION ALGORITHM

The segregation algorithm is a higher structured

non-static algorithm proposed by F. Schonbaur and M. Kahle

in 1986 (6]. This algorithm overcomes almost all demerits of

the static backpropagation algorithm.

As mentioned previously, the ability to generalise

using backpropagation algorithm is very sensitive to the

number of hidden units. The separation into classes learned

by the network after a sufficient number of training steps

is describable by a simple rule since those few hidden units

involved in the classification task could only differentiate

between the majority of input patterns and the rest. If

learned patterns are removed from the training set, the

remaining patterns can be used as training set for another

network that will have to deal with the classes that are

left. This segregation of patterns and their assignment to

their own network can be repeated as often as necessary.

The algorithm can be formulated as follows :

1. Use backpropagation learning algorithm with small

number of units in the hidden layer until the mean squared

error of a certain percentage of patterns is significantly

less than the average mean squared error for all patterns.

2. Continue learning using these patterns until the

error approaches zero.

3. Remove these patterns from the training set.

4. Clamp all weights conected to or from the hidden

45

units.

5. Add a few units to the hidden layer and connect

them.

6. If there are still patt;erns left in the training

set, repeat all previous steps.

7. Unclamp all weights

8. The weights should now represent a good initial

position on the error surface, continue normal learning to
I

reunite all subnets.

With this algorithm classes that are difficult to

learn because there are so few patterns for these classes in

the training set can be learned separately. They can be

presented as often as desired to a specific subnetwork

without disturbing the knowledge of the rest of the network

that has already learned the other classes. The robostness

of the neural networks to noisy data or very infrequent

apperances of stray patterns can be explicitly weakened to

any desired degree without entirely removing this feature.

The algorithm is sensitive to its parameters,

namely the percentage of patterns that has to have a

different error rate to be recognised as a different entity

and learned separately, the number of hidden units the

network starts with , the number of hidden units that is

added at each segregation step.

46

01 I L J 2: 92 .. F OUT :: I I I I
r I

o.,

HET

FIG-3-~ AHTIFICIAL NEUHON WITH
ACTIUATION 'FUNCTION

OUT

9.8
HET

FIG-3-2 SIGMOIDAL ACTIVATION
FUNCTION

47

INPUT
LAYER

~ £RJIOR1

OUT

TARGET
1

TARGET 2

FIG.3.3 A TWO-LAYER BAC~PROPAGATION NET~ORM

HEUROH IH
HI DDHf LAVER

.. UP"Q
~ p-

...

.
r

OUT'Pv

• r

NEUROH IH
OUTPUT LA'iER

q

~ HETQX

F ..

~
-M- ...

~
-M-

~
-M- ... -

~
...

OUT_y
1..!- ... -r

TARGET-OUT

-

TRAINING RATE

UP"QK(n)

OBJECTJUE
FUHCTJOH

~
U'PQK(n+i)

MODIFYING
THE OUTPUT

A
WEIGHT

A WEIGHT
LA¥JCR

I

\
\ I
', __ /

B

I

IN

-... TARG

FIG-3-5 LOCAL MIHIMUM P:ROBI.EM

'1 ,,

I
+ I
J
!
j
J

=

I

I
I
i
i

I
I

t
I
!
l

1 t 1

!
I
I

I
i

Training set
no. =

Training set
t 1

1 = no. of 1 ~~ers

M :: r.o. of neui'Ons 1n
input la.yer

P = no. of neurons in
hidden layer

q = no: of neurons In
Olttl'Ut layer

P :: output vector -
target vector

y

q = ql

p :: p I

Mi RPI'I'O r(l) :: 1

Mi nerror(opt) =1

I
t~-

1 = 1

Train the net for
first few

train~a sets

get the teMporal'!!
optiMal weight

Mtrix

Training set no.
= 1

D=Q

----,.

I Calculate output. l

~ ~ ~

D = D + <T - 0)

Print the optiMal
nuMber of 1 ayers

and nuMbe :r <:'f
neurons in lil.~;ers

...

I

H

Error =
<~~r, > 1

(q*h'. set no>
I

t

i
! • i
i
i

p = p + 19

Minerror(opt) - Minerror< I) -
l<opt>
M(opt) M
p(opt> p
q(opt> q

t
I

I
I
I
i
I

I
I

FLOWCHART l.

I
I

I
I
I

j
I
I

q = q + 3

' = p + 19

I
!

I

I
I

t
I

Training set
no. =

Training Sl't
+ 1

l = no. of layers

" = no. of neurons In
input layer

p = no. of neurons 1n
hidden layl'r

q = no. of neurons in
output layer

D = output vt>ctor -
target vectoY'

I = 1

Mir.nror(n)::i
1"li n~nor(opt) =1

'
q = q
p :: PI

I

~~
Train the nl't for-

first ft>w
train!;:3 sl'ts

get the teMporary
optiMal wtght

Matrix

I

'
Training sl't no.

= 1

D = 9

Calculate output

0

D = D + <T - 0)

Print the optiMal
nUMber of byers

andnUMbero neurons in ayers

S1

i
I
I
I

t
I
I
I
i
!
i

- l + 1 -

l
i
I
' I

Mint>~ror(opt) = Minerror(n)

I< opt>
M(Opt) M
p(opt> P
q(opt) q

l
I

y

FLOWCHART 2

CHAPTER 4

IMPLEMENTATION AND RESULTS

In this chapter, the implementation of a

multilayer neural network, simulated to recognise

handwritten characters using the proposed non-static

algorithm has been discussed. Also the relationship between

network structure and the ability of the network to

generalise from the training set has been investigated. At

last, the obtained results, given in a tabular form has

been analysed.

4.1 NEURAL NETWORKS AND HANDWRITTEN CHARACTER RECOGNITION

The recent resurgence of interest in neural

networks, machine learning and parallel computation has led

to a renewed research in the area of pattern recognition

[8,9,12,15] Especially, the problem of handwritten

character recognition has

for a very long time.

invoked great research interest

There are many difficulties in

handwritten character recognition because of the presence of

large degree of variations of the data. Not only there

exists some changes and distortions of characters from one

individual to another, but also there are some variations

from the same individual at different times. Furthermore,

difficulties may result from problems such as complexity of

characters, similarity of different characters etc. The

traditional method for recognition of handwrtten characters

using statistical techniques require large amount of data to

5.3

be stored. A more recent and appealing approach is the

neural network technique.

Pattern recognition problems require mainly two

processes analyses or feature extraction and

classification.

4.1.1 Feature extraction

The analyser receives an input pattern which is a

very complex event such as optical signals, speech signals,

electrical signals etc.. The analyser extracts the main

features of the pattern. Its output is the pattern vector.

The process of analyses or feature extraction of a

pattern is generally done by complex hardware. But in this

case it has been done manually. The letters are written on a

graph paper containing squares with 8X8 and 8X6 boxes . If

any portion of the letter is passed through a box then that

particular input is taken as one ; otherwise zero. Likewise

we analyse the letter and get the corresponding input vector

X for each letter. Fig. 4 .1 and Fig. 4. 2 indicates how a

character is analysed using 8X6 and 8X8 grids respectively.

The data for all samples of handwritten characters is stored

in an input file.

4.1.2 Classification

Several neural networks has been proposed for

classification problem. Unlike traditional classifiers which

54

tend to test comparing hypothesis sequentially, neural

networks test it in parallel, thus providing high

computational rates. Here the size of the network is varied

to get a network that can classify most efficiently. The

minimum number of neurons in the output layer is taken as

three. So the network can distinguish eight characters.

4.2 IMPLEMENTATION OF THE NON-STATIC ALGORITHM

A multilayer neural network classifier has been

simulated by a program in C language which uses the non­

static algorithm. 'Here the fist approach (discussed in

chapter 3) is used where the number of layers is increased

for each fixed number of neurons in different layers and

finally we get the optimum size of the network.

4.2.1 The network

The process starts with a network having an input,

one hidden and the output layer. Two cases has been

considered; one with input layer having 48 binary inputs

where it classifies the letters written inside the rectangle

with 8X6 boxes and the other, where the input layer has 64

units to recognise the characters written in squares with

axa boxes. In each case, the initial number of neurons in

the output layer is 3. In the first step, the number of

neurons in the hidden layer is fixed at 48X3. The elements

of the weight matrix is initialised to any random number

between -1 to +1. Subsequently, the second and third layer

55

is introduced.

4.2.2 The learninq process

To train the network effi9iently, thirty training

samples are taken in each case. Using the conventional

backpropagation algorithm the neural network is trained with

the first twenty training sets to get the temporary optimal

weight matrix. Then the rest ten training sets are

used to calculate the average error per neuron in the

output layer. In this case,
i~

error = (E D·) fq* No. of training sets)
i=i 1

= (Poi) /3*10)
i=i

Then the number of layers in the network is

increased to two and the same process is repeated . Whenever

the error, termed as minerror (1) in these processes where

the number of neurons are fixed and the number of layers are

increased, reaches its first minimum, the overall minimum

error minerror(opt) is assigned the value of the current

minerror (1) and then the number of neurons is increased

further to next fixed level. Again the process of increasing

the number of layers is done and so on. Finally, when the

minerror (opt) reaches its first minimum, the training

process is terminated and the optimal number of hidden

layers and the number of neurons in different layers is

reported.

56

4.2.3 The program

The program is written in C language which has

mainly two sections. The first section of the program is

used to train the network using· the first twenty training

sets. The program reads the input data from the input file

inmat .dat where the input vectors corresponding to all of

the samples of characters are stored. The initial weight

matrix is read from the file wtmat.dat Using the

conventional backpropagation algorithm the weight matrix is

opdated and stored in the file optwtmat.dat_.

The second section of the program again reads the

rest ten training inputs from the same file inmat.dat . The

input vector is multiplied with the optimal weight matrix

obtained from the first section and after applying the

squashing function the output vector is obtained. The

program calculate the error for the network as discussed

earlier. According to the algorithm, if the error decreases,

then the size of the network is increased and again the

first section is executed. This process is repeated until

the error reaches its first minimum and finally it prints

the optimal number of layers and number of neurons in each

layer. To examine the relationship between the network size

and its ability to recognise complex patterns, the number of

characters correctly recognised during the second training

phase is also reported. For this purpose, the output vector

is digitized by taking 0. 5 as the threshold level. So any

57

element of the output vector is considered as zero if it is

less than or eqaual to 0. 5; otherwise it is considered as

one. The digitized output vector is compared with the

desired output vector. If it matches then it is decided that

the network. has correctly recognised that particular

character. For each network configuration, the number of

correctly recognised patterns are determined.

4.3 RESULS AND DISCUSSION

The performance of the network with different size

during the second phase of training is given in Table I and

Table II. The number of correctly recognised patterns out of

given ten input pattrens is shown. The corresponding

training times for getting the temporary optimal weight

matrix (termed as initial

required to calculate the

training time) and the

error (termed as testing

time

time

during which it tests whether the network is optimal or not)

for each case is also shown.

By analysing the results carefully it has been

observed that by simply increasing the size of a network

does not improve its performance; rather the training time

increases. In particular, let us consider the eighth

training pattern of the letter R given to the network which

is shown in Fig. 4.3 . The network with a single layer could

not recognise it. When the number of layers is increased

to two it became able to recogn~se the letter. But when the

58

number of layers is still increased to three it again

failed to recognise that particular character. Also, it has

been observed that by increasing the nu-mber of neurons

arbitarily large, does not help the situation. So it is

important to increase the number of layers and neurons step

by step and stop the process when the performance starts

degrading.

In the first case, the network with an input layer

having 48 (8X6) neurons is found to be optimal when the

number of layers is two and the number of neurons in the

hidden layers are 48X48 and 48X6 . This corresponds to the

obsevation number 5 of the Table I. In the second case, the

network having 64 (8x8) neurons in the input layer is found

to be optimal with two hidden layers having 64X64 and 64X6

number of hidden units. This corresponds to the observation

number 5 of the Table II.

59

ff

j!

-* r r
j

' '
. ~·--;--~-

v
/ v -

" " '-..
-......I'

.. ..
Oi11i1
010001
1 0 0 0 i i
j_ 0 0 i j 0
1 i 1 0 0 0
1 ! i 0 0 0

i 0! j oo
1 oooil

FIG-4-~ REPRESENTATION OF A LETTER
USING BX6 BOXES

~
0 0 0 10'JOO

I ~ 0 0 i 0 i 0 0 0

I I\
0 0 { 0 1 100

\

L ~ -~ \
.. • 0 1 1 001 f 0

0 1 i r 1 1 1 0

v \ 0 I 000010

I 1\ I 0 0 00001

I 1 0 0 0 0 00 0

FIG-4-2 REPRESENTATION OF A LETTER
USING BXB BOXES

'_J

(:)
j_ / I I /
IJ<

·-

l ~ ~~-
1-f :

--+- ----- -

I

FIG-4-3 THE LETTER FOR WHICH THE
NETWONM SHOWS TYPICAL
CHARACTEFIISTIC

GO

~·~ orl tto. Of ~-or ND.JR()HjiMO.OF MEUIOitS~.or IIEUJIOitSINO.or lllJIOttSM·ct-~ImtJAL ~IMIHGiTftTIHGI
DS ~~ IH 1ST 81.DIIl4 IM 2HD HID»nt IM 3D IIJD:DDf IM THE OITPUT CO SD> VI tl /G~~~ T U

lliYER IA'YlR IJIYER UIYIR UIYD < 18> (MIH : SIC > < SiC >

1. 1 48 4J X 3 - 3 7 - 8 : 25.1) 3.11

2. 2 48 48X18 tl X 3 - 3 18 1 : 28.34 22.%

3. 3 48 48X18 48X18 18 X 3 3 9 3 : 87.49 lL67

4. 1 48 48 X 6 - - 6 9 8 : 33.74 3.71

s. 2 48 48X48 48 X 6 - 6 18 2 : 16.43 29.45

6. 3 48 48X48 48X28 28 X 6 6 18 4 : 47.34 46.%

7. 1 48 -48 X 9 - - 9 8 8 : 11.47 5.89

8. z 48 48X48 48 X 9 - 9 9 3 : 24.46 32.39

9. 3 48 18X48 48Xlt lJ X 9 9 18 5 : 46.17 53.84

TABLE I

tiEUROtfS CORRl<:TLY TIMI)CHAf<AC YIMI loBS.~. orl MO. or lr.o.or II:UROttSIMO.Of II[UROttSIIfO.Of KEUROttSIHO.or IIEI!JIOIIS~or atAIIIICJ-~IHITIAL tRAIHIHGITESTIHGI
NO LA'tlRS IH IHPUT IH 1ST IHDJ)lN IH 2tm HIDDD4 IH 3RD HIDDDt IH THI OUTPUT RICOGHISID TER

uWER uWER IIIYIR IJIYIR UIYDt < OGT Of 19) < MI H : S!:C) < SEC >

1. 1 64 64 X 3 - 3 9 8 : 31.23 3.56 -
2. 2 &4 fAX64 64 X 3 - 3 18 2 : 87.~ 37.87

3. 3 64 64X64 64 X 18 18 X 3 3 7 4 : 17.44 5-t.49

4. 1 64 64 X 6 - - 6 9 8 : :Jl.S3 4.16

5. 2 64 &4X64 64 X 6 - 6 18 3 : 36.18 57.16

6. 3 b4 fr4X&4 64X28 28 X 6 6 9 6 : 89.17 64.15

7. 1 64 6-4 X 9 - - 9 B 8 : 49.82 5.73

8. 2 64 fAX64 64 X 9 - 9 18 4 : 83.67 61.23

9. 3 &4 64X64 64Xlt :ll X 9 9 9 6 : 43.29 72.84

TABLE II

CONCLUSIONS'

The work demonstrates that by just increasing the

size of the network arbitarily large, does not improve the

performance of the network; rather the training time

increases. A non-static algorithm has been proposed and

implemented which decides the optimal size of a network for

a particular class of problems. A systematic study of the

relationship between the size and structure of the network

and the performance has been done and computational results

presented. This learning paradigm could form an enabling

core for complex problems in nonlinear adaptive control,

object recognition and behavioural conditioning.

Furthermore, the combin~tion of the proposed non-static

algorithm and segregation algorithm will give a new

direction to the dynamic system theory of neural networks.

63

REFERENCES

1. Bart Kosko

Neural Networks and Fuzzy Systems

2. Branko Soucek & Marina Soucek

Neural and Massively Parallel Computers

Published by Weily Interscience Publications

3. D. Hammerstrom

Neural Network learning

IEEE Coference on Tools for AI , Nov~ 1991

4. Dan Hammerstron, Cris Koutsougeras & Gerald G. Pechanek

Are Neural Networks a tool for AI ?

Proc. of 1991 IEEE,

International Conference on Tools for AI, Nov. 1991

5. David Baily & Donna Thompson

How to develop neural network applications

AI Expert, Vol.5, No.6, June 1991

6. F. Schonbaur & M. Kohle

A non-satic learning paradigm for neural networks

Artificial Intelligence in Manufacturing

7. Jocelyn Sietsma & Robert J.F. Dow

Creating artificial ne11ral networks that generalise

Nerural Networks , Vol. 10,1990

64

8. Kenneth G. Schweller & Anneta L. Plagman

Neural Networks and alphabets : Introducing students

to neural networks

9.

SIGCSE Bulletin, Vol.21, No.3, Sept. 1989

Lalit Gupta, Mohammad R. Sayeh &

A neural network approach

classification

Ravi Tammana

to robost

Pattern Recognition, Vol.23, No.6, 1990

10. Morris w. Firebaugh

shape

Artificial Intelligence : A Knowledge Based Approach

11. Philip D. Wasserman

Neural Computing : Theory & Practice

Published by Van Nostrand Reinhold, New York.

12. Richard P. Lippman

Pattern classification using neural networks

IEEE Communication Magazine, Nov. 1989

13. Robert Hecht Neilson

Neurocomputing

14. S.Gulati, I. Barhen & s. s. Iyengar,

Neurocomputing formalism for computational learning

and machine intelligence

Advances in Computers, Vol.33, 1991

65

15. Yaser S. Abu-Mostafa

Information Theory,complexity and Neural Networks

IEEE Communication Magazine, Nov. 1989

16. Yoshio Hirose, Koichi Yamashita & Shimpei Hijiya

Backpropagation whjch varies the number of hidden units

Neural Networks, Vol.10, 1990

66

	TH68700001
	TH68700002
	TH68700003
	TH68700004
	TH68700005
	TH68700006
	TH68700007
	TH68700008
	TH68700009
	TH68700010
	TH68700011
	TH68700012
	TH68700013
	TH68700014
	TH68700015
	TH68700016
	TH68700017
	TH68700018
	TH68700019
	TH68700020
	TH68700021
	TH68700022
	TH68700023
	TH68700024
	TH68700025
	TH68700026
	TH68700027
	TH68700028
	TH68700029
	TH68700030
	TH68700031
	TH68700032
	TH68700033
	TH68700034
	TH68700035
	TH68700036
	TH68700037
	TH68700038
	TH68700039
	TH68700040
	TH68700041
	TH68700042
	TH68700043
	TH68700044
	TH68700045
	TH68700046
	TH68700047
	TH68700048
	TH68700049
	TH68700050
	TH68700051
	TH68700052
	TH68700053
	TH68700054
	TH68700055
	TH68700056
	TH68700057
	TH68700058
	TH68700059
	TH68700060
	TH68700061
	TH68700062
	TH68700063
	TH68700064
	TH68700065
	TH68700066
	TH68700067
	TH68700068
	TH68700069
	TH68700070
	TH68700071
	TH68700072
	TH68700073

