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ABSTRACT

A continuing question in artificial neural network, research is the size of network,
needed to solve a particular problem. If traiﬁing is started with too small a network for the
problem no learning can occur. If a network, that is larger than required is used then
processing is slowed, particularly on a conventional Von Neumann Computer. In this work
we start with a larger net, then the redundant connection are removed (pruned) to bring it
to the desired state. The approach followed in this work is to estimate the sensitivity of the
error function to the exclusion of each connection, then prune low sensitivity connections.
Neural networks applications, handuwritter character recognition and pattern classification
problem, were implemented using BacKpropagation algorithm in C and the experimental results

were studied with and without pruning.
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CHAPTER, 1
ARTIFICIAL NEURAL NETWORKS

"We already have intelligent machines - humans! But before we agree to add humans
to the set ofg machines we need to ask what 1s man and what 1s machine"

Marvin Minsky



11 Introduction

In the last decade, neural networks have received a great deal of attention
and are being touted as one. of the greatest computational tools ever developed.
Much of the excitement is due to the apparent ability of neural networks to
imitate the brain’s ability to make decisions and draw conclusions when
presented with complex, noisy, irrelevant and or partial information. Furthermore,
at some primitive level, neural networks appear able to imitate the brain’s

‘creative’ processes to new data or patterns.

One of the reasons humans and computers are so useful to each other is
that they are so different. Computers do well what we do not, and vice versa.
Computers are logical and precise; we are not. Computers can store and retrieve
vast amounts of detail without error; we cannot. But humans can handle guess,

ambiguity, and integrate information from many sources.

Artificial neural net models or simply neural nets go by many names such
as connectionist models, parallel distributed processing models, and
neuromorphic systems. All these models attempt to achieve good performance via
dense interconnection of simple cbmputaﬁonal elements. In this respect, artificial
neural net structure is based on our present understanding of biological nervous
systems. Neural net models have greatest potential in areas such as speech and
image recognition where many hypotheses are pursued in‘ parallel, high
computation rates are required, and the current best systems are far from equally
human performance. Instead of performing a program of instructions sequentially

as in a Von Neumann computer, neural net models explore many computing



hypotheses simultaneously using massive parallel nets composed of many
computational elements connected by links with variable weights. Simply, neural
networks are algorithms for optimization and learning based loosely on concepts

inspired by research into the nature of the brain.

1.2 Definition

A neural network is a computing system that imitates intelligent behavior;
it is made up of simple, highly connected processing elements and processes

information by its dynamic state response to external inputs.
They generally consist of five components:

1. A directed graph know as the network topology whose arcs we refer to as
links.

A state variable associated with each node.

A real-valued weight associated with each link.

A real-valued bias associated with each node.

gk wN

A transfer function for each node which determines the state of a node as

a function of

a) its biases

b) the weights, w; of its incoming links, and

C) the states, x; of the nodes connected to it by these links. This
transfer function usually takes the form f(Zv/;x; - Q) where f is either

a sigmoid or a step function.



Computational elements or nodes used in neural net models are nonlinear,
are typically analog, and may be slow compared to modern digital circuitry. The
simplest node sums n weighted inputs and passes the result through a
nonlinearity as shown in fig (1.1). The node is characterised by an internal
threshold or offset Q and by the type of nonlinearity. Fig (1.2) illustrates three
common types of nonlinearities; which limits, threshold logic elements, and
sigmoid nonlinearities. More complex nodes may include temporal integration or

other types of time dependencies and more complex mathematical operations

than summation [7].

Paradigms

The different paradigms that were developed till recently for the neural

networks were:
1.3  Associative memory

Associative memories are similar to human memory in that they recall
complete situations from partial information. Associate memory plays an

important role in pattern recognition and information-processing applications.

The two varieties of associate memory that are of interest in neural
networks are auto-and heteroassociate . Autoassociative memories map pieces
data to themselves, memorising specific information. The most common
autoassociative neural paradigms are the hopfield network, brain-state-in-a-box,

and adaptive resonance theory, although several researchers have explored similar
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paradigms. Autoassociative memories are often used to reconstruct partial or
error-prone patterns into their original forms or to optimize certain operations
research problems. Examples of autoassociative applications include character

recognition, picture conclusion for airport security, retina recognition, and signal

reconstruction.

Heteroassociative memories map one set of patterns to another. Patterns,
classifications, and real numbers are often stored as outputs to heteroassociative
networks. Neural paradigms that behave as heteroassociative memories include
the BAM, Kohonen feature map, and some of the statistical paradigms. Examples

include target classification, financial-trend analysis, and process monitoring.

14 Historical Perspective

Experiments have found the brain and nervous system to be difficult to
observe and perplexing in organization. In short, the powerful methods of
scientific inquiry that have changed the view of physical reality have been slow

in finding application to the understanding of humans themselves.

With the progress in neuroanotomy and neurophysiology, psychologists are
developing models of human learning. In 1943 McCulloch and Pitts, in their
attempts to simulate the nervous cells by artificial automata-the formal neurons-
that a- network of such formal neurons was capable of simulating a Turing
Machine. Another model, which has proved most fruitful, was that of D.O. Hebb,
who in 1949 proposed a learning law that became the starting point for artificial

neural networks training algorithms [5]. In the 1950s and 1960s, a group of
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researchers combined these biological and psychological insights to produce the
first artificial neural networks [10]. Initially implemented as electronic circuits,
they were later converted to the more flexible medium of computer simulation.
Marvin Minsky, Frank Rosenblatt, Bernard Windraw, and others developed
networks consisting of a single layer of artificial neurons. Often called
perceptrons, they were applied to such diverse problems as weather prediction,
electrocardiogram analysis, and artificial vision. It seemed for a time that the key
to intelligence had been found; reproducing the human brain was only a matter
of constructing a large‘ enough network. Marvin Minsky, carefully applying
mathematical technique developed rigorous theorems regarding network
operation. His research led to the publication of the book Perceptrons (Minsky
and Papert 1969), in which he and Seymore Papert proved that the single-layer
networks then in use where theoretically incapable of solving many simple
problems. Then a few scientists such as Teuvo Kohonen, Stephen Grossberg, and
James Anderson continued their efforts during 19705 and 1980s {7]. Gradually, a
theoretical foundation emerged, upon which the more powerful multilayer

networks of today are being constructed. Networks are now routinely solving

many of the problems that Minsky posed in his work.

Backpropagation, invented independently in three separate efforts Werbers
1974; Parker 1982; and Rumelhart, Hinton and Williams 1986, provided a

systematic means for training multilayer networks, overcoming Minsky’s

limitations.



1.5 Biological - Artificial Neural Nets Disanalogies

Neural nets’

1. Though the cycle time of 80286
or 80386 is generally 0.03 - 0.10
micro Sec, the time taken to
perform a task is more when
compared to BNNs because of
the lack of the parallelism.

2. The connections among
neurodes can have either
positive or negative weights.
These weights correspond to
excitatory and inhibitory neural
connections, so Eccles* law is

violated.

3. The information of activation
~ between connections is passed as
ad.c level.

4. The number of neurons involved
in the implementation are very
less (few dozen to several
hundred dozens).

5. They are programmed.

6. Addressable memory;

Biological nets

Though the cycle time of BNNs is
10-100 milli Sec, the brain is still able
to perform some tasks faster than the
fastest digital computer because of
the brain’s massive parallel

architecture.

The Eccles law is obeyed.

Since a train of pulses carry the
information between synapses, the
activity is passed as a.c. level.

The number of neurons in a BNNs
are of the order of billion.

They are not programmed.

Associate memory



1.6 Neural Networks Versus Expert Systems

An expert system is a software based system that describes the behavior

of an expert in some field by capturing the knowledge of one or more expefts in

the form of rules and symbols.

One of the major problems with expert systems is with the acquisition and
coding of the expert knowledge. A related problem is the evaluation of the
accﬁracy and completeness of the encoded knowledge thus acquired. The
different problems associated with acquiring expert knowledge are in language.
If all the rules needed to characterise the knowledge to be represented are not
present, sooner or later (probably sooner) the expert system will fail. If an

incorrect, fuzzy or noisy data is presented to an expert system it may give wrong

answer.

But these are precisely the areas in which neural networks shine. The
neural networks can be given, within limits, some fuzzy, noisy data and still get

the right answers. We can even, within limits, lie to them and come out all right

[11].

An expert system might be a better approach if you don’t have enough
information (patterns) to train a neural network. In some applications, because of

simplicity, using a rule-based system is better approach.



1.7 Biological Neuron

A neuron is a cell that is a part of the -nervous system and that conducts
messages to and from the brain. Classically, such a neuron consists of a cell body,
a number of finger like process of the cell called dendrites, and one very long thin
process the axon (fig 1.3). The axon may or may not be covered with a myelin
sheath, the cell body and dendrites are unmyelinated; the dendrites, which form
the input processes, have a graded electrical response; the axon, which forms the
output process transmits trains of electrical pulses [10]. An example of such a
neurone is the anterior horn cell, or motor cell of the spinal cord. Such ’classical’
cells are really rather exceptional, and properties that contradict one or more of

the above statements.

Neurones are not the sole class of cells making up nervous tissue. The
other great class of cells is the neuroglia. Although, neurones may be quite
densely packed, there is of course a good deal of space around them. This space
is not just filled with extracellular fluid, it is almost entirely occupied by the cell
bodies and processes of the neuroglia, which have been thought of as a sort of
framework or scaffolding on which the neurons are arranged. Intercellular

recordings from glia have not shown them to be electrically excitable.

Human brain has an estimated 10-500 billion neurons. According to Stubbs,
neurons are arranged into about 1000 main modules, each with about 500 neural
networks. Each network has on the order of 100,000 neurons. The axon of each

neuron connects to about 160 other neurons [10].




1.8 Applications

The recent studies reveal that due to the immense computational power

and the self learning capabilities of the neural networks, they were finding

applications in the following:

* analysis of medical tests

* circuit board problem diagnosis

* EEG waveform classification

* picking winners of horse races

* predicting performance of students

* analysis of loan applications

* stock market prediction

* military target tracking and recognition

* process control

* oil exploration

* psychiatric evaluations

* optimfzing scheduled maintenance of machines
* composing music

* spectral analysis

* optimizing raw material orders

* selection of employees

* speech recognition

* text-to-speech conversion

* selection of criminal investigation targets
* analysis of polygraph examination results

9



* optimization of antenna array patterns
* optical character recognition

o modeling the operation of the brain

Neural nets research is published in books and journals from such diverse
fields that even the most diligent researcher is hard pressed to remain aware of
all significant work. The above stated applications are catching one’s imagination

of yet another area of explore.
1.9 Drawbacks

(1)  Neural nets are particularly in appropriate for problems, requiring precise

calculations. It is probably, never successfully to balance a checkbook with

a neural network.

(2)  Itis almost always true that the neural network portion of the solution is

only a relatively small part of the overall system

(3)  Neural nets cannot be implemented if the available training data (patterns)

is less.

10
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- CHAPTER, 2
THE BACK-PROPAGATION

"Neural nets learn from the bottom up.
Symbolic systems learn from the top douwn"

Elaine Rich



2.1 Learning in Neural Networks

Artificial neural networks can modify their behavior in response to their
environment. This factor, more than any other, is responsible for the interest they
have received. Shown a set of inputs (perhaps with desired outputs), they

self-adjust to produce consistent responses.

A network is trained so that application of a set of inputs produces the
desired (or at least consistent) set of outputs. Each such input (or output) set is
referred to as a vector. Training is accomplished by sequentially applying input
vectors, while adjusting network weights according to a predetermined
procedure. During training, the network weights gradually converge to values

such that input vector produces the desired output vector.

Supervised Training

Training algorithms are categorized as supervised and unsupervised.
Supervised training requires the pairing of each input vector with a target vector
representing the desired output; altogether these are called a training pair.
Usually a network is trained over a number of such training pairs. An input
vector is applied, the output of the network is calculated and calculated and
compared to the corresponding target vector, and the difference (error) is fed back
through the network and weights are changed according to an algorithm that
tends to minimize the error. The vectors of the training set are applied
sequentially, and errors are calculated and weights adjusted for each vector, until

the error for the entire training set is at an acceptably low level.
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Unsupervised Training

Despite many application successes, supervised training has been criticised
as being biologiéally implausible. Unsupervised training is a far more plausible
model of learning in the biological system. Developed by Kohonen (1984) and
many others, it requires no target vector for the outputs, and hence, no
comparisons to predetermined ideal responses [5]. The training set consists solely
of input vectors. The training algorithm modifies network weights to produce
output vectors that are consistent; that is, both application of a vector that is
sufficiently simiiar to it will produce the same pattern of outputs. The training
process, therefore, extracts the statistical properties of the training set and graphs
similar vector into classes. Applying a vector from a given class to the input will
produce a specific output vector, but there is no way to determine prior to
training which specific output pattern will be produced by a given input vector
class. Hence, the outputs of such a network must generally be transformed into

a comprehensible form subsequent to training process.

Another type of learning rule that falls between unsupewised learning and
super\}i_sed iearning is reinforcement learning. In this kind of learning, an external
observer gives a response as to whether the network response is good or not. The
learning rule of Boltzmann machine is based on the Stochastic process, which
constructs distributed representations of the reference patterns with the simulated

annulling technique.
2.2  Feed Forward Networks

A feed forward network is one whose topology has no closed paths. Its

input nodes are the ones with no arcs to them, and its output nodes have no arcs

12



away from them. All other nodes are hidden nodes. The operation of feed
forward network consists of calculating outputs given a set of inputs. A layered
feed forward network is one such that any path from an input node to an output
node traverses the same number of arcs. The nth layer of such a network consists
of all nodes which are n traversals from an input node. A hidden layer is fully

connected if each node in layer j connected to all nodes in layer j+1 to j.

Layered feed forward networks have become very popular for a few

reasons:

1. They have been found in practice to generalize well, i.e.,, when trained on
a relatively sparse set of data points, they will often provide the right

output for an input not in the training set [4].

2. A training algorithm, backpropation, exists which can often find a gcod set

of weights (and biases) in a reasonable amount of time.

2.3 The Backpropagation Algorithm

Back propagation is a systematic method for training multilayer artificial
neural networks. Despite its limitations, backpropagation has dramatically
expanded the range of problems to which artificial neural networks can be

applied, and it has generated many successful demonstrations of its power.

Backpropagation has an interesting history. Rumelhart, Hinton and

Williams (1986) presented a clear and concise description of the backpropagation

13



algorithm [2]. No sooner was this work published than Parker (1982) was shown
to have anticipated Rumelhart’s work. Shortly after this, Werbos (1974) was found

to have described the method still earlier.

The backpropation algorithm described below is a generalisation of Least
Mean Squares algorithm. It uses a gradient search technique to minimize a cost
function equal to the mean square difference between the desired and the actual

net outputs (7). It requires contineous differentiable non-linearities. The following

algorithm assumes a sigmoid logistic nonlinearity.

The type of network that is referred to here is a layered, feed forward
network of units with a deterministic semi- linear output function described by
Rumelhart, Hinton and Williams. Each layer feeds only to the layer directly above
it. There are a number of internal layers, the first one receiving input from some

external source, and a layer of output units at the top, the numwber depending on

the type of output desired.
24 Feed Forward Calculations

The net input, net, to a unit j is a linear function of the outputs, X, of all

the units, i, that are connected to j
net-input = net = 3 w;x + b,

where w; is the weight of the connection from unit i to unit, and b, is a bias

wéight at unit j.

14



~ The biases always have an output of 1. They serve as threshold units for
the layers to which they are connected, and the weights from the bias neurodes
to each of the neurodes in the following layer are adjusted exactly like the other

weights.

The squashing function or the. output of a unit, x, is a real-valued,

non-linear function of its net input

The output is bounded by (0,1) and x, quickly approaches one or zero as net

approaches + « [3].

The sqashing function (fig 2.2) can be viewed as performing a function
similar to an analog electronic amplifier. The gain of the amplifier is analogous
to the slope of the squashing function, or the ratio of the change in output for a
given change in input. AS in the fig, the slope of the function (gain of the
amplifier) is greatest for total (net) inputs near zero. This serves to mitigate
problems caused by the possible dominating effects of large input signals [11].
Other functions can be used as long as they are continuous and possess a
derivative at all points. Functions such as Sin(x), Tanh(x) have been used, but the
sigmoid has the additional advantage of providing a form of automatic gain

control [5].

15



2.5 Backpropagation Training

During the training phase, the feed forward output state calculation is
combined with backward error propagation and weight adjustment calculations

that represent the network’s learning or training.

Central to the concept of training a network is the error. Rumelhart and
McClelland [2] defined an error term as the difference between the output value
an output neurode is supposed to have (target value t;), and the value it actually
has as a result of the feed forward calculations, X,;- The error term is defined for
a given pattern and summed over all output neurodes for that pattern. The error
is found on a neurode-by-neurode basis over the entire set (epoch) of patterns,
rather than on a pattern-by-pattern basis. We sum the error over all neurodes,

giving a grand total for all neurodes and all patterns.
Since the number of patterns in the training set can vary, and we want

some standardized error value that allows, us to compare we find the average

sun-squared error value by dividing the grand total by the number of patterns.
E=-052L(, - x)”
L
where the inner summation is over all neurons that are considered as output units

of the net, and the outer sum is over patterns of the training set. Because 0.5 is

a constant, we delete it from over calculations.

16



Step 1. Initialize weights and offsets.

Set all weights and node offsets to small random values. -

Step 2. Present Input and Desired Outputs

Present a continuous valued input vector Xy Xy,...., Xy, and specify
the desired targets tyt,,...., ty;. If the net is used as a classifier then all desired
outputs, are typically set to zero except for that corresponding to the class the
input is from. That desired output is 1. The input could be new on each trail or

samples from a training set could be presented cyclically until weights stabilize.
Step 3. Calculate Actual Outputs

Use the sigmoid nonlinearity from above and formulas to calculate

outputs Xy, Xy,..., Xpy4-
Step 4. Adapt Weights

Use a recursive algorithm starting at the output nodes and working

back to the first hidden layer. Adjust weights by
| wi(t+1) = Wi;(t) +n 6jxij I

In this equation wi(t) is the weight from hidden node i or from an input to node
j at time t,X is either the output of node i or is an input, 1 is a gain term, and &,

is an error term for node j. If node j is an output node, then

17



8 = x(1-x)(t; - x),
where t; is the desired output of node j and x; is the actual output.
If node j is an internal hidden node, then
5, = x (1—x})}k:6kwi

where k is over all nodes in the layers above node j. Internal node thresholds are
adapted in a similar manner by assuming they are connection weights on links
from auxiliary constant-valued inputs. Convergence is sometimes faster if a

momemtum term is added and weight changes are smoothed by

wi(t+1) = wit) + m 0x + a(wy(t) - wy(t-1)), 0<a <1

= wi(t) + 1 dx + aA(w(t)
Step 5. Repeat by Going to Step 2
The kind of weight updating,
wi(t+1) = wy(t) + n &
sometimes gets caught in what are called local energy minima. It is like a

bowl-shaped surface with a lot of little bumps and ridges in it in 3D as shown in

fig. 2.3.
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The above algorithm is repeated until the error approach the desired value.
The error minimization process is analogous to minimizing the energy of our
position in the bumpy ridge lined bowl. Ideally, we’d like to move our position
(perhaps) marked by a very small ball bearing) to the bottom of the bow] where
the energy is minimum; this position is called the ‘globally optimal solution”.
Depending on how much or how little we can move the ball bearing at one time,
however, we might get caught in some little depression or ridge that we can't get
out of. This situation is most likely with small limits on each individual
movement, which corresponds to small value of n [11]. Again 7 is the training

rate coefficient serving to adjust the size of the average weight change.

The situation can be helped by using the momentum of our ball bearing.
We take into account its momentum (previous movement) by a momentum factor
that we label a[11]. If o is 0, then smoothing is minimum; the entire weight
adjustment comes from the newly calculated change. If a is 1.0, the adjustment
is ignored and the previous one is repeated. Between 0 and 1 is a region where

the weight adjustment is smoothed by an amount proportional to a [5].

Another parameter to be experimented is the number of iterations of the
learning of the training set needed to give an accepted average mean-squared
error. First, we pick a reasonable average mean-square error 0.04 or 0.05. If it
won’t get trained in few thousands of iterations, we should probably adjust the

value of learning rate and momentum factor.

It is found that the number of hidden layer neurodes, to start with in many

cases, can be obtained by taking the square root of the number of input plus
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output neurodes, and adding a few. Hidden layers act as layers of abstraction,
pulling features from inputs. Increasing the number of sequential hidden layers
augments the processing power pf the neural network but significantly
complicates training and intensities black-box effects (errors are more difficult to
trace). Adding hidden layers will increase both the time and the number of
training examples necessary to train the network properly. As a rule of thumb,

start with one hidden layer and add more as required.

Another method of increasing a neural network’s processing power is to
add multiple slabs within a single hidden layer. This creation of sets of neurons
that act as feature detectors for perceptual input. D. Huble and T. Wiesel
discovered feature detectors for lines with different orientations within cats {14].
The multiple parallel slabs may use different types and numbers of nodes. This
architecture attempts to force the slabs to extract different features
simultaneously. Most applications do not require multiple slabs within a hidden

layer, but this architecture provides an alternative to single hidden-layer ones.

After selecting the number of layers for the network, the next step is to
determine the size (in number of nodes) of each layer. Because of the similar
reasoning involved in setting layer sizes for the different neural paradigms, they
are grouped together. The input layer presents data to the network. The number
of input nodes is calculated from the number of data sources and nodes required
to represent each source. Often the most difficult design decision is to aséertain
the correct data sources and nodes required to represent each source. Often the
most difficult design decision is to ascertain the correct data sources: volumes of

unprocessed or spurious data hinder training, but missing data may preclude it.
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2.6 Drawbacks

Despite its tremendous success, backpropagation algorithm is found to
have some drawbacks. For one, there is the ‘scaling problem’. Backpropagation
works well on simple training problems. However, as the problem complexity
increases (due to increased dimensionality and/ or greater complexity of the data),
the performance of backpropagation falls off rapidly. The performance
degradation appears to stem from the fact complex spaces have nearly global
minima which are sparse among the local minima. With a high enough gain (or
momentum), backpropagation can escape these local minima. However, it leaves
them without knowing whether the next one it finds will be better or worse.
When the nearly global minima are well hidden among the local minima,
backpropagation can end up bouncing between lécal minima without much

overall improvement, thus making for very slow training.

A second shortcoming of backpropagation is that a gradient requires
differentiability. Therefore, backpropagation cannot handle discontinuous
- optimality criteria or discontinue node transfer functions. This precludes its use

on some common node types and simple optimality criteria [13].
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3.1 Introduction

When constructing an artificial neural network the designer is often faced
with the problem of choosing a network of the right size for the task. In theory
atleast, if a problem is solvable with a network of a given size, it can also be
solved by a larger net which embeds the smaller one, with (hopefully) all the
redundant connections or synopses, having a zero strength. However, the learning
algorithm will typically produce a different structure, with nonvanishing synaptic
weights spreading all over the net, thus obscuring the existence of a smaller size

neural net solution[1].
The advantages of using a smaller neural network:

* Since the cost of computation grows (almost) linearly with the
number of the synaptic connections, a smaller net will be more

efficient in both forward computations and learning.

* A network which is too large will tend to memorize the training

patterns and thus have poor generalization ability.

* There is always the hope that a smaller net will exhibit a behavior

that can be described by a simple set of rules.

However, a network which is too small may never solve the problem (a
simple example being the XOR function which cannot be implemented with a
single neuron), while a larger net may even have the advantage of a faster

learning rate. Thus it makes sense to start with a large net and then reduce its
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size. Several researchers have proposed methods to accomplish this reduction,

and the same approach, i.e., net pruning is pursued in this work.

Definition

Pruning is the name given to the process of examining a solution network,
determining which connections or units are not necessary to the solution and

removing those connections or units.

Assuming that the network has learned, then an arbitrary setting of
weights to zero (which is equivalent to eliminating the synapse that goes from
neuron j to neuron i) or the arbitrary removal of units, will typically result in an
increase of the error E. Efficient Pruning means finding the subset of the weights
or units that, when set to zero, will lead to the smallest increase in E [1].
Theoreticaily, this can be done by training the net under all possible subsets of
the set of synapses. However, this exhaustive search is comp.utationally infeasible,

unless dealing with a very small net and few training patterns.

3.2 Background

Siestma and Dow [3] have analyzed pruning of the networks by examining
all units under the presentation of the entire training data. They removed each
unit that did not change state, or replicated another unit. Unfortunately, scaling
up of this technique to large nets and many patterns will result in a prohibitively
long learning process. Hanson and Pratt {1989] have studied the idea of weight

decay, in which the weights that do not have much influence on decreasing the
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error while learning will experience a exponential time delay which is equivalent
to adding a penalty term to the error function. They have extensively
experimented with various forms of weight decay, and concluded that these
penalty do not seem to minimize the number of units. Mozer and Somolensky
[1989] have introduced the idea of estimating the sensitivity of the error function

to the elimination of each unit [1].
3.3 Different Approaches for Pruning

The different approaches suggested by researchers for pruning neural

networks were:

(1) Noncontributing Units

These are units which either have approximately constant output across the
training set, or have outputs across the training set which mimic the outputs
another unit. These units can be pruned and the weights given to their outputs
redistributed in such a way as to make almost no change to the network’s

performance over the training set.

(2 Unnecessary Information Units:

i

In this approach, pruning is removing units whi;h are independent of the
other units in the layer but give information which is not required at the next
layer. Removing units which contribute unnecessary information to the next layer
may lead to the outputs of the pruned layer being linearly mseperable with

respect to the classes or outputs of the layer above.
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(3)  Another possible approach to identifying in-essential units would be one
form of sensitivity analysis. In this approach the activation of a unit is not to zero
for all training set inputs and the effect on network output expressed. This would
identity units which either had activation always near zero, or whose activation
was given little weight by units in the next layer. This approach would not
remove a unit which had activation parallel to another unit. The units removed
in this approach are likely to be the same as, or a subset of, those that are
removed by ‘Non contributing pruning approach’, and will definitely be a subset

of those removed by ‘Unnecessary information pruning’ approach.

(4)  Another form of pruning technique using sensitivity analysis is setting
weights to zero. This is equivalent to removing connections between units, rather
than removing entire units. The connection to the removed are found by

sensitivity analysis. This approach is followed in this dissertation work for

pruning.

(5)  Some form of pruning could be implemented as part of the ’training
process’. This could be done as a dynamic form of sensitivity analysis, with a
strictness parameter that increased as a network approach solution, or by adding
a cost, related to the size or number of connections, to the error cost function.
These are completely different approaches to the ones we have described above,

which apply solely to trained solution network.

3.4 Implemented Pruning Procedure

In this work the pruning procedure suggested by Ehud d. Karnin who is
in IBM Science and Technology, Haifa, is followed[1]. In this we pursed the idea
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of evaluating sensitivities for connections. The approach followed does not require
any change of the error function. Thus the two tasks of training the network and
evaluating the candidates for pruning are completely separated, which means this

has the advantage of learning process not interfering any extraneous process.

Our approach to pruning is to estimate sensitivity of the error function E
to the exclusion of each synapse(connection), then prune the low sensitivity

connections. The sensitivity S;, is defined as

s . E™)-EQ

w, -0
where w' is the (final) value of the connection upon the completion of the training
phase. And w = w;; E is expressed as a function of w, assuming that all other

weights are fixed (at their final states, upon completion of learning).

A typical learning process does not start with w=0, but with some small
(often randomly chosen) initial value w'. Fig 3.1 depicts an example of the

decrease in E, as a function of the weight w, during the training phase.

Since we do not know E(0), we will approximate the slope of E(w) (when

moving from 0 to w') by the average slope measured between w' and w', namely

S - E(wf) - E(w‘) Wi
wf__ w'i

The initial and final weights, w' and w', 1espectively, are quantities that are

readily available during the training phase. However, for the numerator, it was
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implicitly assumed that only one weight, namely w, had been changed, while
other weights remained fixed. This is not the case during normal learning. To
elaborate, consider the éxample of a network with only two weights, denoted u

and w (the extension to more weights will become obvious). For this case the

numerator of S is
E(uwf) - E(u\w')

i.e only the contribution due to the change in w is taken into account. Fig 3.2

clarifies the situation.

The error E(u,w) is illustrated by constant value contours. The initial point
in the weight space is designed by I in Fig 3.2, and the learning path is the
dashed line from I to F, the final point. For a precise evaluation of S, the
numerator of S in the first equation can be evaluated as

F f
Ew-w? - Ew=0) = / JEGW) 4y
) A ow
The integral is along the line from point A, which corresponds to w=0, to the final
weight state F. However, the training phase starts at point I(rather than A), so we

" have to compromise on an approximation to integral above, namely we will use
1

E(w=wf) - E(w=0) = / JEMUW) 4w
A oW

This expression will be further approximated by replacing the integral by

summation, taken over the discrete steps that the network passes while learning.
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Thus the estimated sensitivity to the removal of connection wy will be

evaluated as

n N-1 \Vf
§,- - L E (n) aw(n)———
0 awij Wi - W

where N is the number of training epochs.

The above estimate for sensitivity uses terms that are readily available
during the normal course of training. (Indeed, this was the main motivation for
deriving such an approximation). Obvioﬁsly the weight increments w;; are the
essence of every learning process, so they are always available. Also, virtually
every optimization search (e.g.steepest descent, conjugate gradient, Newton's
method)uses gradient to find the direction of change, so the partial derivative,
which are the components of the gradient, are available. Therefore, the only extra
computational demand for implementing our procedure is the summation. This
(negligible) overhead merely calls for maintaining a ‘shadow array’ (of the same

size as the number of connections in the network) that keeps track of the

accumulated terms that build up S;.

For the case of backpropagation algorithm, which implemented in this

work, the sensitivities are defined from the above equation as,

S - N); [aw, ] w;

ij "t i
n (Wijf - W)

Upon completion of training we are equipped with a list of sensitivity

numbers, one per each connection. They were created by a process that 1runs
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concurrently, but without interfering, with the learning process. At this point a
decision may be taken of the smallest sensitivity numbers in each layer. Usually
the sensitivities of all the connections at each layer are arranged in the descending

order in an array and the last values of the array are removed.
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CHAPTER, 4
IMPLEMENTATION AND RESULTS

"Neural nets made possible the transfer olf methodology from other unrelated areas
(physics, thermodynamics, systems control, signal processing etc.) in the Al arena"

Cris Kartrougeras



The major design decisions for key neural network levels were:
Node Level Network Level Training Level

1. Type of input 1. Number of layers 1. | Learning

accepted or slabs algorithm
2. Transfer 2. Number and type 2. Learning

function of nodes parameters
3. Means of 3. Size of hidden 3. Halting

combination layers conditions

4. Number and type
of output nodes

5. Connectivity
4.1 Handwritten Character Recognition

Character recognition techniqu:e associate symbelic identity with the image
of a character. This problem of replication of human functions by machines
involves the recognition of both machine printed and hand printed cursive-
written characters. Character recognition is better know as optical character
recognition (OCR) since it deals with recognition of optimally processed
characters rather than magnetically processed ones. The first successful attempt
was made by Russian scientist Tyurin in 1900 as an aid to the wisually
handicapped [2]. In the middle of the 1940s, the modern versions of the OCR for
business applications were found with the development of digital computers. The
state of the art reports on character recognition research have been presented by
Nagy, Harmon, Stallings, Stuer: et al., Mori et al,, Mantas, Davis and Chatterji.

The principle aim of the OCR system is the need to cope with the enormous flood

30



of paper such as bank cheques, commercial forms, government records, credit

card imprints and mail sorting generated by the expanding technology society.

4.2 Pattern Classification Problem

The pattern classification problem in the 2D feature space implemented is
shown in the fig 4.1. The feature vector (X,Y) is uniformally distributed in [-1,1]
X [-1,1], and the two non-classes are equally probable (i.e.b = 2/(a+1) - 1). The
implementation aim is to distinguish whether a given pattern (co-ordinate) is in

Class 1 or in Class 2. The output should be zero for patterns in Class 1 and one

for Class 2.

4.3 Implementation of Handwritten Character Recognition

The work involved in this dissertation is the development of a C program
on DEC VAX 11/780 computer to simulate a three layer (one hidden layer) neural
network and to implement the backpropagation training algorithm to train the

network to recognize handwritten letters.
Training by Noisy Data

The different letters used in teaching the network were A, B, G, R, S and
X. The input data for training the network were collected from 25 individuals.
Each of the persons were given graph papers containing squares of 8 X 8 boxes.
Then they were asked to write these six letters, in uppercase, large enough to fill

the boxes. After the letters were entered, the squares of the boxes which get
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intersected by any part of the letters were shaded. Since the pattern of letters
written by different persons will have large variations, the collection of the
patterns will certainly contain noisy input patterns. As it is described in the

results, the training of the network by noisy data will considerably improve the

performance of the network.

Out of 21 sets (126 patterns) collected, 20 sets (120 patterns) were used for
testing and 4 patterns were used for testing the performance of backpropagation
algorithm implemented. The data were entered into a file as a sequence of ones
and zeros, representing the filled (shaded) and unfilled squares of the boxes

respectively. The three bit identification codes used were:

A:001 B:010 G:011
R:100 5:101 S:110

The Network before Pruning |

Number of layers = 3 Momentum factor = 0.15
Number of input nodes = 64 (8X8) Learning rate = 0.075
Number of hidden nodes = 5 |

Number of output nodes = 3

Number of connections = 343

(including biases) |

The Network after Pruning

Number of layers =3 Momentum factor = 0.15
Number of input nodes = 64 Learni'ng rate = 0.075
Number of hidden nodes = 5

Number of output nodes = 3
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Number of connections left = 280
Number of connections pruned = 63

(including biases)

44 Implementation of Pattern Classification Problem

The network specified below for the backpropagation is trained by 24

different patterns both class 1 and class 2. The configuration of the network

designed is shown in the fig 4.2.

The network before Pruning

Number of layers =3 Momentum factor = 0.05
Number of input nodes =2 Training rate = 0.5 |
Number of hidden nodes = 2
Number of output nodes =1
- Number of connections =9
- (including biases)

The network after Pruning

Number of layers =3 Momentum factor = 0.05
Number of input nodes = 2 Training rate= 0.5
Number of hidden nodes = 1

Number of output nodes = 1

Number of connections left = 6

Number of connections pruned = 3

(including biases)
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4.5 Results

The results of the implementations of the two problems, handwritten
character recognition and pattern classification, were given in the four tables. The
results include the results of the performance of the pruned networks in both the
cases. The failures given in the table are calculated as the deviation of the output
for more than 25% (we say failure if the output deviates by more than 25%) and

the disasters as when the output deviates by more than 50% (we say disaster if

the output deviates by more than 50%).

As is it is evident from the results, the average sum- squared error
increases almost linearly with the number of training epochs. The graph 1.1,
graph 1.2 and graph 2.1, graph 2.2 reveals this fact. It is also -clear that the
performance of the networks increased with the number of iterations (see graphs
3~arnd-—4-) The pruning procedure adopted decreased the success rate of the
network to a little extent, but, by obtaining the most wanted reduction of the size
and the reduction of training time. It was also found that the training of the

network with noisy data improves the recognition capability of the network.
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Table 1

Results of Handwritten Character Recognition
(without Pruning)

Original Network (64-5-3):

Number of connections =343 Alphabets trained={A,B,GR,5 X} =015
Number of i/p nodes =64  Alphabets tested a = 0.075
Number of hidden nodes =5 A -001 R-100 No. of training
Number of o/p nodes = $-101 X-110 patterns = 120
Number of Ave sum- Output Desired Cru % of % of

~ Iterations  squared Error obtained Output Time  Failures Disasters

(Min:Sec)

50 0.105704  0.0381 0.8401 0.9421 011 01:56 75% 12.5%

0.4774 0.0867 0.9021 100
0.7028 0.0835 0.9369 101
0.8541 0.6010 0.0614 110

100 0.021061 0.0125 0.9566 0.9319 011 03:46 12.5% 6.25%
0.7927 0.2211 0.5886. 100
0.9532 0.0477 0.9628 101
09718 0.8434 0.0205 110

300 0.006825  0.0020 0.9748 0.9795 01 1 11:37  6.25% 0%
0.9577 0.4895 0.2283 100 '
0.9768 0.0217 0.9913 101
0.9922 0.8909 0.0115 110

400 0.000011  0.0020 0.9748 0.9796 011 1729  '6.25% 0%
0.9577 0.4898 0.2285 100
0.9768 0.0217 0.9913 101
0.9923 0.8909 0.0114 110
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Table 2

Results of Handwritten Character Recognition
(with Pruning)

Pruned Network (64-5-3):

Number of connections = 280 Alphabets trained = {A,B,GR,5X} n =015
Number of i/p nodes = 64 Alphabets tested a=0075
Number of hidden nodes =5 A -001 R-100 No. of training
Number of o/p nodes =3 §-101 X-110 patterns = 120
Number of Ave sum- Output Desired CPU % of % of
Iterations squared Error obtained Output Time  Failures Disasters
(Min:Sec)
50 0.066052  0.2052 0.8464 0.8780 011 01:56 75% 6.25%

0.7473 0.1471 0.6627 100
0.4001 0.1063 0.8855 101
0.9427 0.6138 0.0118 110

100 0.012451 - 0.14150.9364 09391 011 0340 18.75% 6.25%
0.6504 0.3001 04795 100
0.7603 0.0938 0.9189 101
0.9347 0.8665 0.0025 110

300 0.002326  0.06150.9748 09669 011 11:12  12.5% 6.25%
0.7011 0.2449 0.5600 100
0.9084 0.03850.9669 101
0.9964 0.5636 0.0002 110

400 0.001628  0.05150.9791 0.9717 011 14:33 125% < 6.25%
0.7241 0.2215 0.6088 100
0.9244 0.0323 09726 101
0.9979 0.5186 0.0001 110
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Table 3

Results of Pattern Classification Problem
(without pruning)

Original Network (2-2-1):

Number of connections =9 n =0.05
Number of i/p nodes =2 a=05
Number of hidden layer nodes =2 Number of training patterns = 24
Number of o/p nodes =1
Number of Ave sum- Output Desired Cru % of % of
Iterations  squared Error obtained Cutput Time  Failures Disasters
(Min:Sec)
0.247501 0.5137 0 00:01 100% 50%
0.5365 1
0.5344 1
0.5340 0
100 0.243222 0.5316 0 00:2 150% 0%
0.5557 1
0.5414 1
0.5264 0
1200 0.172491 03613 0 0126  25% 0%
0.9671 1
0.7381 1
0.2893 0
3000 0.144416 0.3419 0 02:21 25% 0%
0.9921 1
0.9668 1
0.3315 0
4000 0.135619 0.3510 0 02:52 25% 0%
0.9944 1
0.9405 1
0.3386 0
contd..
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5000

6000

10600

0.131583

0.123995

0.016687

0.3419
0.9923
0.9667
0.3315

0.3128
0.9894
0.9818
0.3069

0.0003
0.9995
0.9987
0.2271

03:23

03:05

0530

25%

< 25%

®0%

0%

0%

0%
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Table 4

Results of Pattern Classification Problem
(with Pruning)

Pruned to (Network 2-1-1):

Number of connections pruned =3 n = 0.05
Number of i/p nodes =2 a=05-
Number of hidden layer nodes =1 Number of training patterns = 24
Number of o/p nodes =1
Number of Ave sum- Output Desired CPU % of % of
Iterations  squared Error obtained Output Time  Failures Disasters
' (Min:Sec)
10 0.247601 0.5466 0 00:01 100% 50%
0.5462 1
0.5442 1
0.5432 0
100 0.241955 0.5299 0 00:02 100% 50%
0.5581 1
0.5415 1
0.5222 0
1200 0.172559 0.3610 0 00:31 75% 0%
0.9660 1
0.7378 1
0.2894 0
3000 ~ 0.160310 0.3143 0 01:28 25% 0%
0.9959 1
0.7975 1
0.2976 0
4000 0.156061 0.2943 0 02:02 < 25% 0%
0.9979 1
0.8266 1
0.2943 0
contd..

39



5000

6000

10000

0.130326

0.124805

0.0017451

0.0529
0.9989
0.8632
0.3560

0.0136
0.9989
0.8782
0.3665

0.0015
0.9993
0.9218
0.3548

(= e~

02:29

03:04

05:09

25%

25%

< 25%

0%

0%

0%
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CONCLUSION

A generic Backpropagation traiﬁing algorithm is implemented for neural
network applications and is tested with handwritten character recognition and
pattern classification problem. The pruning procedure for back propagation is
implemented in C on DEC VAX 11/780 and the experimental results of pattern
classification problem and handwritten character recognition were studied before
and after pruning. Unlike the other pruning procedures, the implémented

pruning procedure does not interfere with the training.

It is found that the learning time and forward calculation times are
reduced with the pruning without much affecting the performance of the
network. The noisy training improved the performance of the network to a
considerable extent. Though the average sum-squared error is increased a bit

with pruning, the reduced size of the network makes hardware implementation

of the neural networks easy.

The extension of the character recognition work would be to cover both
lower, upper case letters, digits and to a number of control characters, before
tackling well-formed cursive writing. One can imagine the possibility of
customising the network to a particular user through recognition of his own

writing by incremented learning.
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