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ABSTRACT 

J.t continuing question in artificial neural networ/( researcfi is t!i£. size of networ/( 

neufea to sofve a particular pro6fem. If training is startea witli too sm.a£[ a networl(for t!i£. 

pro6fem no !earning can occur. If a networt tliat is farger tlisn requirea is usea tfiLn 

processing is s{owetf, particufarf:J on a conventiona{ 'lion 9</!wnann Computer. In tliis wort 

we start witli a larger net, t!i£.n tfie reaunaant connection are removea (prunetf} to 6ring it 

to t!i£. tfesirea state. Tfie approacfi fo«owea in tliis wort is to estimate t!i£. sensitivit!J of t!i£. 

error function to t!i£. eJ(dusion of eacfi connection, t!i£.n prune {o·w sensitivit!J connections. 

9</!ura{ networf(§ appfications, liarufwritten cliaracter recognition ana pattern classification 

pro6fe""' were impfementea using '13acf;propagation afgoritlim in c ana t!i£. ezyerirnenta{ resufts 

were stutfiea witli ana witliout pruning. 
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~1 

ARTIFICIAL NEURAL NETWORKS 

"We already have intellitent machines - humans! But before we agree to add humans 
to the set of machines we need to ask what rs man and what is machine" 

Marvin Minsky 



1.1 Introduction 

In the last decade, neural networks have received a great deal of attention 

and are being touted as one of the greatest computational tools ever developed. 

Much of the excitement is due to the apparent ability of neural networks to 

imitate the brain's ability to make decisions and draw conclusions when 

presented with complex, noisy, irrelevant and or partial information. Furthermore, 

at some primitive level, neural networks appear able to imitate the brain's 

'creative' processes to new data or patterns. 

One of the reasons humans and computers are so useful to each other is 

that they are so different. Computers do well what we do not, and vice versa. 

Computers are logical and precise; we are not. Computers can store and retrieve 

vast amounts of detail without error; we cannot. But humans can handle guess, 

ambiguity, and integrate information from many sources. 

Artificial neural net models or simply neural nets go by many names such 

as connectionist models, parallel distributed processing models, and 

neuromorphic systems. All these models attempt to achieve good performance via 

dense interconnection of simple computational elements. Ill this respect, artificial 

neural net structure is based on our present understanding of biological nervous 

systems. Neural net models have greatest potential in areas such as speech and 

image recognition where many hypotheses are pursued in parallel, high 

computation rates are required, and the current best systems are f<u from equally 

human performance. Instead of performing a program of instructions sequentially 

as in a Von Neumann computer, neural net models explore many computing 
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hypotheses simultaneously using massive parallel nets composed of many 

computational elements connected by links with variable weights. Simply, neural 

networks are algorithms for optimization and learning based loosely on concepts 

inspired by research into the nature of the brain. 

1.2 Definition 

A neural network is a computing system that imitates intelligent behavior; 

it is made up of simple, highly connected processing elements and processes 

information by its dynamic state response to external inputs. 

They generally consist of five components: 

1. A directed graph know as the network topology whose arcs we refer to as 

links. 

2. A state variable associated with each node. 

3. A real-valued weight associated with each link. 

4. A real-valued bias associated with each node. 

5. A transfer function for each node which determines the state of a node as 

a function of 

a) its biases 

b) the weights, w; of its incoming links, and 

c) the states, ~ of the nodes connected to it by these links. This 

transfer function usually takes the form f(l:w;X; - Q) where f is either 

a sigmoid or a step function. 
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Computational elements or nodes used in neural net models are nonlinear, 

are typically analog, and may be slow compared to modern digital circuitry. The 

simplest node sums n weighted inputs and passes the result through a 

nonlinearity as shown in fig (1.1). The node is characterised by an internal 

threshold or offset Q and by the type of nonlinearity. Fig (1.2) illustrates three 

common types of nonlinearities; which limits, threshold logic elements, and 

sigmoid nonlinearities. More complex nodes may include temporal integration or 

other types of time dependencies and more complex matheri1atical operations 

than summation [7]. 

Paradigms 

The different paradigms that were developed till recently for the neural 

networks were: 

1.3 Associative memory 

Associative memories are similar to human memory in that they recall 

complete situations from partial information. Associate memory plays an 

important role in pattern recognition and information-processing applications. 

The two varieties of associate memory that are of interest in neural 

networks are auto-and heteroassociate . Autoassociative memories map pieces 

data to themselves, memorising specific information. The most common 

autoassociative neural paradigms are the hopfield network, brain-state-in-a-box, 

and adaptive resonance theory, although several researchers have explored similar 
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paradigms. Autoassociative memories are often used to reconstruct partial or 

error-prone patterns into their original forms or to optimize certain operations 

research problems. Examples of autoassociative applications include character 

recognition, picture conclusion for airport security, retina recognition, and signal 

reconstruction. 

Heteroassociative memories map one set of patterns to another. Patterns, 

classifications, and real numbers are often stored as outputs to heteroassociative 

networks. Neural paradigms that behave as heteroassociative memories include 

the BAM, Kohonen feature map, and some of the statistical paradigms. Examples 

include target classification, financial-trend analysis, and process monitoring. 

1.4 Historical Perspective 

Experiments have found the brain and nervous system to be difficult to 

observe and perplexing in organization. In short, the powerful methods of 

scientific inquiry that have changed the view of physical reality have been slow 

in finding application to the understanding of humans themselves. 

With the progress in neuroanotomy and neurophysiology, psychologists are 

developing models of human learning. In 1943 McCulloch and Pitts, in their 

attempts to simulate the nervous cells by artificial automata-the formal neurons

that a network of such formal neurons was capable of simulating a Turing 

Machine. Another model, which has proved most fruitful, was that of D.O. Hebb, 

who in 1949 proposed a learning law that became the starting point for artificial 

neural networks training algorithms [5]. In the 1950s and 1960s, a group of 
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researchers combined these biological and psychological insights to produce the 

first artificial neural networks [10]. Initially implemented as electronic circuits, 

they were later converted to the more flexible medium of computer simulation. 

Marvin Minsky, Frank Rosenblatt, Bernard Windraw, and others developed 

networks consisting of a single layer of artificial neurons. Often called 

perceptrons, they were applied to such diverse problems as weather prediction, 

electrocardiogram analysis, and artificial vision. It seemed for a time that the key 

to intelligence had been found; reproducing the human brain was only a matter 

of constructing a large enough network Marvin Minsky, carefully applying 

mathematical technique developed rigorous theorems regarding network 

operation. His research led to the publication of the book Perceptrons (Minsky 

and Papert 1969), in which he and Seymore Papert proved that the single-layer 

networks then in use where theoretically incapable of solving many simple 

problems. Then a few scientists such as Teuvo Kohonen, Stephen Grossberg, and 

James Anderson continued their efforts during 1970s and 1980s [7]. Gradually, a 

theoretical foundation emerged, upon which the more powerful multilayer 

networks of today are being constructed. Networks are now routinely solving 

many of the problems that Minsky posed in his work. 

Backpropagation, invented independently in three separate efforts Werbers 

'1974; Parker 1982; and Rumelhart, Hinton and Williams 1986, provided a 

systematic means for training multilayer networks, overcoming Minsky's 

limitations. 
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1.5 Biological -Artificial Neural Nets Disanalogies 

Neural nets 

1. Though the cycle time of 80286 

or 80386 is generally 0.03 - 0.10 

micro Sec, the time taken to 

perform a task is more when 

compared to BNNs because of 

the lack of the parallelism. 

2. The connections among 

neurodes can have either 

positive or negative weights. 

These weights correspond to 

excitatory and inhibitory neural 

connections, so Eccles* law is 

violated. 

3. The information of activation 

between connections is passed as 

a d.c. level. 

4. The number of neurons involved 

in the implementation are very 

less (few dozen to several 

hundred dozens). 

5. They are programmed. 

6. Addressable memory. 

6 

Biological nets 

Though the cycle time of BNNs is 

10-100 milli Sec, the brain is still able 

to perform some tasks faster than the 

fastest digital computer because of 

the brain's massive parallel 

architecture. 

The Eccles law is obeyed. 

Since a train of pulses carry the 

information between synapses, the 

activity is passed as a.c. level. 

The number of neurons in a BNNs 

are of the order of billion. 

They are not programmed. 

Associate memory 



1.6 Neural Networks Versus Expert Systems 

An expert system is a software based system that describes the behavior 

of an expert in some field by capturing the knowledge of one or more experts in 

the form of rules and symbols. 

One of the major problems with expert systems is with the acquisition and 

coding of the expert knowledge. A related problem is the evaluation of the 

accuracy and completeness of the encoded knowledge thus acquired. The 

different problems associated with acquiring expert knowledge are in language. 

If all the rules needed to characterise the knowledge to be represented are not 

present, sooner or later (probably sooner) the expert system will fail. If an 

incorrect, fuzzy or noisy data is presented to an expert system it may give wrong 

answer. 

But these are precisely the areas in which neural networks shine. The 

neural networks can be given, within limits, some fuzzy, noisy data and still get 

the right answers. We can even, within limits, lie to them and come out all right 

[11]. 

An expert system might be a better approach if you don't have enough 

information (patterns) to train a neural network In some applications, because of 

simplicity, using a rule-based system is better approach. 
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1.7 Biological Neuron 

A neuron is a cell that is a part of the nervous system and that conducts 

messages to and from the brain. Classically, such a neuron consists of a cell body, 

a number of finger like process of the cell called dendrites, and one very long thin 

process the axon (fig 1.3). The axon may or may not be covered with a myelin 

sheath, the cell body and dendrites are unmyelinated; the dendrites, which form 

the input processes, have a graded electrical response; the axon, which forms the 

output process transmits trains of electrical pulses [10]. An example of such a 

neurone is the anterior horn cell, or motor cell of the spinal cord. Such 'classical' 

cells are really rather exceptional, and properties that contradict one or more of 

the above statements. 

Neurones are not the sole class of cells making up nervous tissue. The 

other great class of cells xs the neuroglia. Although, neurones may be quite 

densely packed, there is of course a good deal of space around them. This space 

is not just filled with extracellular fluid, it is almost entirely occupied by the cell 

bodies and processes of the neuroglia, which have been thought of as a sort of 

framework or scaffolding on which the neurons are arranged. Intercellular 

recordings from glia have not shown them to be electrically excitable .. 

Human brain has an estimated 10-500 billion neurons. According to Stubbs, 

neurons are arranged into about 1000 main modules, each with about 500 neural 

networks. Each network has on the order of 100,000 neurons. The axon of each 

neuron connects to about 100 other neurons [10]. 
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1.8 Applications 

The recent studies reveal that due to the immense computational power 

and the self learning capabilities of the neural networks, they were finding 

applications in the following: 

... 

... 

... 

... 

* 

* 

* 
... 

* 

* 

... 

* 
... 

* 

... 

... 

... 

* 
... 

analysis of medical tests 

circuit board problem diagnosis 

EEG wavefom1 classification 

picking winners of horse races 

predicting performance of students 

analysis of loan applications 

stock market prediction 

military target tracking and recognition 

process control 

oil exploration 

psychiatric evaluations 

optimizing scheduled maintenance of machines 

composing music 

spectral analysis 

optimizing raw material orders 

selection of employees 

speech recognition 

text-to-speech conversion 

selection of criminal investigation targets 

analysis of polygraph examination results 
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.. 

.. 

.. 

optimization of antenna array patterns 

optical character recognition 

modeling the operation of the brain 

Neural nets research is published in books and journals from such diverse 

fields that even the most diligent researcher is hard pressed to remain aware of 

all significant work The above stated applications are catching one's imagination 

of yet another area of explore. 

1.9 Drawbacks 

(1) Neural nets are particularly in appropriate for problems, requiling precise 

calculations. It is probably, never successfully to balance a checkbook with 

a neural network 

(2) It is almost always true that the neural network portion of the solution is 

only a relatively small part of the overall system 

(3) Neural nets cannot be implemented if the available training data (patterns) 

is less. 
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THE BACK-PROPAGATION 

"Neural nets learn from the bottom up. 
Symbolic systems learn from the top down" 

Elaine Rich 



2.1 Learning in Neural Networks 

Artificial neural networks can modify their behavior in response to their 

environment. This factor, more than any other, is responsible for the interest they 

have received. Shown a set of inputs (perhaps with desired outputs}, they 

self-adjust to produce consistent responses. 

A network is trained so that application of a set of inputs produces the 

desired (or at least consistent) set of outputs. Each such input (or output) set is 

referred to as a vector. Training is accomplished by sequentially applying input 

vectors, while adjusting network weights according to a predetermined 

procedure. During training, the network weights gradually converge to values 

such that input vector produces the desired output vector. 

Supervised Training 

Training algorithms are categorized as supe1vised and unsupervised. 

Supervised training requires the pairing of each input vector with a target vector 

representing the desired output; altogether these are called a training pair. 

Usually a network is trained over a number of such training pairs. An input 

vector is applied, the output of the network is calculated and calculated and 

compared to the corresponding target vector, and the difference (error) is fed back 

through the network and weights are changed according to an algorithm that 

tends to minimize the error. The vectors of the training set are applied 

sequentially, and errors are calculated and weights adjusted for each vector, until 

the error for the entire training set is at an acceptably low level. 

11 



Unsupervised Training 

Despite many application successes, supervised training has been Ciiticised 

as being biologically implausible. Unsupervised training is a far more plausible 

model of learning in the biological system. Developed by Kohonen (1984) and 

many others, it requires no target vector for the outputs, and hence, no 

comparisons to predetermined ideal responses [5]. The training set consists solely 

of input vectors. The training algorithm modifies network weights to produce 

output vectors that are consistent; that is, both application of a vector that is 

sufficiently similar to it will produce the same pattern of outputs. The training 

process, therefore, extracts the statistical properties of the training set and graphs 

similar vector into classes. Applying a vector from a given class to the input will 

produce a specific output vector, but there is no way to detem1ine prior to 

training which specific output patte1n will be produced by a given input vector 

class. Hence, the outputs of such a network must generally be transformed into 

a comprehensible form subsequent to training process. 

Another type of learning rule that falls between unsupe1vised learning and 

supervised 'learning is reinforcement learning. In this kind of learning, an external 

observer gives a response as to whether the network response is good or not. The 

learning rule of Boltzmann machine is based on the Stochastic process, which 

constructs distributed representations of the reference patterns with the simulated 

annulling technique. 

2.2 Feed Forward Networks 

A feed forward network is one whose topology has no closed paths. Its 

input nodes are the ones with no arcs to them, and its output nodes have no arcs 
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away from them. All other nodes are hidden nodes. The operation of feed 

forward network consists of calculating outputs given a set of inputs. A layered 

feed forward network is one such that any path from an input node to an output 

node traverses the same number of arcs. The nth layer of such a network consists 

of all nodes which are n traversals from an input node. A hidden layer is fully 

connected if each node in layer j connected to all nodes in layer j+l to j. 

Layered feed forward networks have become very popular for a few 

reasons: 

1. They have been found in practice to generalize well, i.e., when trained on 

a relatively sparse set of data points, they will often provide the right 

output for an input not in the training _set [4]. 

2. A training algorithm, backpropation, exists which can often find a good set 

of weights (and biases) in a reasonable amount of time. 

2.3 The B.ackpropagation Algorithm 

Back propagation is a systematic method for training multilayer artificial 

neural networks. Despite its limitations, backpropagation has dramatically 

expanded the range of problems to which artificial neural networks can be 

applied, and it has generated many successful demonstrations of its power. 

Backpropagation has an interesting history. Rumelhart, Hinton and 

Williams (1986) presented a clear and concise description of the backpropagation 
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algorithm [2]. No sooner was this work published than Parker (1982) was shown 

to have anticipated Rumelhart's work Shortly after this, Werbos (1974) was found 

to have described the method still earlier. 

The backpropation algorithm described below is a generalisation of Least 

Mean Squares algolithm. It uses a gradient search technique to minimize a cost 

function equal to the mean square difference between the desired and the actual 

net outputs [7]. It requires contineous differentiable non-linearities. The following 

algorithm assumes a sigmoid logistic nonlinearity. 

The type of network that is referred to here is a layered, feed fotward 

network of units with a detem1inistic semi- linear output function described by 

Rumelhart, Hinton and Williams. Each layer feeds only to the layer directly above 

it. There are a number of internal layers, the first one receiving input from some 

external source, and a layer of output units at the top, the num.ber depending on 

the type of output desired. 

2.4 Feed Forward Calculations 

The net input, ne~, to a unit j is a linear function of the outputs, "i, of all 

the units, i, that are connected to j 

net-input = ne~ = 1:i wijX; + bi 

where wii is the weight of the connection from unit i to uni.~ and bi is a bias 

weight at unit j. 
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The biases always have an output of 1. They serve as threshold units for 

the layers to which they are connected, and the weights from the bias neurodes 

to each of the neurodes in the following layer are adjusted exactly like the other 

weights. 

The squashing function or the. output of a unit, ~, is a real-valued, 

non-linear function of its net input 

X. = 
J 

1 

1 + e -netj 

The output is bounded by (0,1) and "i quickly approaches one or zero as ne~ 

approaches ± oo [3]. 

The sqashing function (fig 2.2) can be viewed as performing a function 

similar to an analog electronic amplifier. The gain of the amplifier is analogous 

to the slope of the squashing function, or the ratio of the change in output for a 

given change in input. AS in the fig, the slope of the function (gain of the 

amplifier) is greatest for total (net) inputs near zero. This serves to mitigate 

problems caused by the possible dominating effects of large input signals [11]. 

Other functions can be used as long as they are continuous and possess a 

derivative at all points. Functions such as Sin(x), Tanh(x) have been used, but the 

sigmoid has the additional advantage of providing a form of automatic gain 

control [5]. 
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2.5 Backpropagation Training 

During the training phase, the feed forward output state calculation is 

combined with backward error propagation and weight adjustment calculations 

that represent the network's learning or training. 

Central to the concept of training a network is the error. Rumelhart and 

McClelland [2] defined an error term as the difference between the output value 

an output neurode is supposed to have (target value tPi), and the value it actually 

has as a result of the feed forward calculations, ~i· The error term is defined for 

a given pattern and summed over all output neurodes for that pattern. The enor 

is found on a neurode-by-neurode basis over the entire set (epoch) of patterns, 

rather than on a pattern-by-pattern basis. We sum the error over all neurodes, 

giving a grand total for all neurodes and all patterns. 

Since the number of patterns in the training set can vary, and we want 

some standardized error value that allows, us to compare we find the average 

sun-squared error value by dividing the grand total by the number of patterns. 

E - 0.5 L L (t . - X y 
. PJ PJ 

p J 

where the inner summation is over all neurons that are considered as output units 

of the net, and the outer sum is over patterns of the training set. Because 0.5 is 

a constant, we delete it from over calculations. 
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Step 1. Initialize weights and offsets. 

Set all weights and node offsets to small random values. 

Step 2. Present Input and Desired Outputs 

Present a continuous valued input vector :xo, x1, •••• , xM-t and specify 

the desired targets to,t1, •••• , tN-t· If the net is used as a classifier then all desired 

outputs, are typically set to zero except for that corresponding to the class the 

input is from. That desired output is 1. The input could be new on each trail or 

samples from a training set could be presE:-nted cyclically until weights stabilize. 

Step 3. 

Step 4. 

Calculate Actual Outputs 

Use the sigmoid nonlinearity from above and formulas to calculate· 

Adapt Weights 

Use a recursive algorithm starting at the output nodes and working 

back to the first hidden layer. Adjust weights by 

I wij(t+ 1) = wij(t) + l) b;~; I 

In this equation W;;(t) is the weight from hidden node i or from an input to node 

j at time t,"i is either the output of node i or is an input, l) is a gain term, and b; 

is an error tem1 for node j. If node j is an output node, then 
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where ~is the desired output of node j and "i is the actual output. 

If node j is an internal hidden node, then 

where k is over all nodes in the layers above node j. Internal node thresholds are 

adapted in a similar manner by assuming they are connection weights on links 

from auxiliary constant-valued inputs. Convergence is sometimes faster if a 

momemtum term is added and weight changes are smoothed by 

Step 5. 

W;;(t+1) = W;;(t) + 11 b;)<j + a(w;i(t)- wij(t-1)), 0 <a< 1 

= W;i(t) + 11 bi"i + al1(w;i(t) 

Repeat by Going to Step 2 

The kind of weight updating, 

sometimes gets caught in what are called local energy mmzma. It is like a 

bowl-shaped surface with a lot of little bumps and ridges in it in 3D as shown in 

fig. 2.3. 
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The above algorithm is repeated until the error approach the desired value. 

The error minimization process is analogous to minimizing the energy of our 

position in the bumpy ridge lined bowl. Ideally, we'd like to move our position 

(perhaps) marked by a very small ball bearing) to the bottom of the bowl where 

the energy is minimum; this position is called the 'globally optimal solution". 

Depending on how much or how little we can move the ball bearing at one time, 

however, we might get caught in some little depression or ridge that we can't get 

out of. This situation is most likely with small limits on each individual 

movement, which corresponds to small value of 11 [11]. Again 11 is tl1e training 

rate coefficient serving to adjust tl1e size of the average weight change. 

The situation can be helped by using the momentum of our ball bearing. 

We take into account its momentum (previous movement) by a momentum factor 

that we labe~ a[ll]. If a is 0, then smoothing is minimum; the entire weight 

adjustment comes from the newly calculated change. If a is 1.0, the adjustment 

is ignored and the previous one is repeated. Between 0 and 1 is a region where 

the weight adjustment is smoothed by an amount proportional to a [5]. 

Another parameter to be experimented is the number of iterations of the 

learning of the training set needed to give an accepted average mean-squared 

error. First, we pick a reasonable average mean-square error 0.04 or 0.05. If it 

won't get trained in few thousands of iterations, we should probably adjust the 

value of learning rate and momentum factor. 

It is found that tl1e number of hidden layer neurodes, to start with in many 

cases, can be obtained by taking the square root of the number of input plus 
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output neurodes, and adding a few. Hidden layers act as layers of abstraction, 

pulling features from inputs. Increasing the number of sequential hidden layers 

augments the processing power pf the neural network but significantly 

complicates training and intensities black-box effects (errors are more difficult to 

trace). Adding hidden layers will increase both the time and the number of 

training examples necessary to train the network properly. As a rule of thumb, 

start with one hidden layer and add more as required. 

Another method of increasing a neural network's processing power is to 

add multiple slabs within a single hidden layer. This creation of sets of neurons 

that act as feature detectors for perceptual input. D. Huble and T. Wiesel 

discovered feature detectors for lines with different orientations within cats [14]. 

The multiple parallel slabs may use different types and numbers of nodes. This 

architecture attempts to force the slabs to extract different features 

·simultaneously. Most applications do not require multiple slabs within a hidden 

layer, but this architecture provide~ an alternative to single hidden-layer ones. 

After selecting the number of layers for the network, the next step is to 

determine the size (in number of nodes) of each layer. Because of the similar 

reasoning involved in setting layer sizes for the different neural paradigms, they 

are grouped together. The input layer presents data to the network The number 

of input nodes is calculated from the number of data sources and nodes required 

to represent each source. Often the most difficult design decision is to ascertain 

the correct data sources and nodes required to represent each source. Often the 

most difficult design decision is to ascertain the correct data sources: volumes of 

unprocessed or spurious data hinder training, but missing data may preclude it. 
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2.6 Drawbacks 

Despite its tremendous success, backpropagation algorithm is found to 

have some drawbacks. For one, there is the 'scaling problem'. Backpropagation 

works well on simple training problems. However, as the problem complexity 

increases (due to increased dimensionality and/ or greater complexity of the data), 

the performance of backpropagation falls off rapidly. The performance 

degradation appears to stem from the fact complex spaces have nearly global 

minima which are sparse among the local minima. With a high enough gain (or 

momentum), backpropagation can escape these local minima. However, it leaves 

them without knowing whether the next one it finds will be better or worse. 

When the nearly global minima are well hidden among the local minima, 

backpropagation can end up bouncing between local minima without much 

ove.rall improvement, thus making for very slow training. 

A second shortcoming of backpropagation is that a gradient requires 

differentiability. Therefore, backpropagation cannot handle discontinuous 

optimality criteria or "Ciiscontinue node transfer functions. This precludes its use 

on 5ome common node types and simple optimality criteria [13]. 
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3.1 Introduction 

When constructing an artificial neural network the designer is often faced 

with the problem of choosing a network of the right size for the task In theory 

atleast, if a problem is solvable with a network of a given size, it can also be 

solved by a larger net which embeds the smaller one, with (hopefully) all the 

redundant connections or synopses, having a zero strength. However, the learning 

algorithm will typically produce a different structure, with nonvanishing synaptic 

weights spreading all over the net, thus obscuring the existence of a smaller size 

neural net solution[1]. 

The advantages of using a smaller neural network: 

* 

* 

Since the cost of computation grows (almost) linearly with the 

number of the synaptic connections, a smaller net will be more 

efficient in both forward computations and learning. 

A network which is too large will tend to memorize the training 

patterns and thus have poor generalization ability. 

There is always the hope that a smaller net will exhibit a behavior 

that can be described by a simple set of rule& 

However, a networkwhich is too small may never solve the problem (a 

simple example being the XOR function which cannot be implemented with a 

single neuron), while a larger net may even have the advantage of a faster 

learning rate. Thus it makes sense to start with a large net and then reduce its 
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size. Several researchers have proposed methods to accomplish this reduction, 

and the same approach, i.e., net pruning is pursued in this work. 

Definition 

Pruning is the name given to the process of examining a solution network, 

determining which connections or units are not necessary to the solution and 

removing those connections or units. 

Assuming that the network has learned, then an arbitrary setting of 

weights to zero (which is equivalent to eliminating the synapse that goes from 

neuron j to neuron i) or the arbitrary removal of units, will typically result in an 

increase of the error E. Efficient Pruning means finding the subset of the weights 

or units that, when set to zero, will lead to the smallest increase in E [1]. 

Theoretically, this can be done by training the net under all possible subsets of 

the set of synapses. However, this exhaustive search is computationally infeasible, 

unless dealing with a very small net and few training patterns. 

3.2 Background 

Siestma and Dow [3] have analyzed pruning o! the networks by examining 

all units under the presentation of the entire training data. They removed each 

unit that did not change state, or replicated another unit. Unfortunately, scaling 

up of this technique to large nets and many patterns will result in a prohibitively 

long learning process. Hanson and Pratt [1989] have studied the idea of weight 

decay, in which the weights that do not have much influence on decreasing the 
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error while learning will experience a exponential time delay which is equivalent 

to adding a penalty term to the error function. They have extensively 

experimented with various forms of weight decay, and concluded that these 

penalty do not seem to minimize the number of units. Mozer and Somolensky 

[1989] have introduced the idea of estimating the sensitivity of the error function 

to the elimination of each unit [1]. 

3.3 Different Approaches for Pruning 

The different approaches suggested by researchers for pruning neural 

networks were: 

(1) Noncontributing Units 

These are units which either have approximately constant output across the 

training set, or have outputs across the training se-t which mimic the outputs 

another unit. These units can be pruned and the weights given to their outputs 

redistributed in such a way as to make almost no change to the network's 

performance over the training set. 

(2) Unnecessary _Information Units: 

In this approach, pruning is removing units which are independent of the 

other units in the layer but give information which is not required at the next 

layer. Removing units which contribute unnecessary infom1ation to the next layer 

may lead to the outputs of the pruned layer being linearly inseperable with 

respect to the classes or outputs of the layer above. 

24 



(3) Another possible approach to identifying in-essential units would be one 

form of sensitivity analysis. In this approach the activation of a unit is not to zero 

for all training set inputs and the effect on network output expressed. This would 

identity units which either had activation always near zero, or whose activation 

was given little weight by units in the next layer. This approach would not 

remove a unit which had activation parallel to another unit. The units removed 

in this approach are likely to be the same as, or a subset of, those that are 

removed by 'Non contributing pruning approach', and will definitely be a subset 

of those removed by 'Unnecessary information pruning' approach. 

(4) Another fom1 of pruning technique using sensitivity analysis is setting 

weights to zero. This is equivalent to removing connections between units, rather 

than removing entire units. The connection to the removed are found by 

sensitivity analysis. This approach is followed in this dissertation work for 

pruning. 

(5) Some fom1 of pruning could be implemented as part of the 'training 

process'. This could be done as a dynamic form of sensitivity analysis, with a 

strictness parameter that increased as a network approach solution, or by adding 

a cost, related to the size or number of connections, to the error cost function. 

These are completely different approaches to the ones we have described above, 

which apply solely to trained solution network 

3.4 Implemented Pruning Procedure 

In this work the pruning procedure suggested by Ehud d. Kamin who is 

in IBM Science and Technology, Haifa, is followed[l]. In this we pursed the idea 
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of evaluating sensitivities for connections. The approach followed does not require 

any change of the error function. Thus the two tasks of training the network and 

evaluating the candidates for pruning are completely separated, which means this 

has the advantage of learning process not interfering any extraneous process. 

Our approach to pruning is to estimate sensitivity of the error function E 

to the exclusion of each synapse(connection), then prune the low sensitivity 

connections. The sensitivity Sii' is defined as 

S = E(w~- E(O) wr 
wr- 0 

where wf is the (final) value of the connection upon the completion of the training 

phase. And w = wii; E is expressed as a function of w, assuming that all other 

weights are fixed (at their final states, upon completion of learning). 

A typical leaming process does not start with w=O, but with some small 

(often randomly chosen) initial value wi. Fig 3.1 depicts an example of the 

decrease in E, as a function of the weight w, during the training phase. 

Since we do not know E(O), we will approximate the slope of E(w) (when 

moving from 0 to w~ by the average slope measured between wi and wf, namely 

S- E(w~- E(wi) wr 
wr- wi 

The initial and final weights, wi and wf, 1espectively, are quantities that are 

readily available during the training phase. However, for the numerator, it was 
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implicitly assumed that only one weight, namely w, had been changed, while 

other weights remained fixed. This is not the case during normal learning. To 

elaborate, consider the example of a network with only two weights, denoted u 

and w (the extension to more weights will become obvious). For this case the 

numerator of Sis 

i.e only the contribution due to the change in w is taken into account. Fig 3.2 

clarifies the situation. 

The error E(u,w) is illustrated by constant value contours. The initial point 

in the weight space .is designed by I in Fig 3.2, and the learning path is the 

dashed line from I to F, the final point. For a precise evaluation of S, the 

numerator of S in the first equation can be evaluated as 

The integral is along the line from point A, which corresponds to w=O, to the final 

weight state F. However, the training phase starts at point !(rather than A), so we 

' have to compromise on an approximation to integral above, namely we will use 

t\ !' oE(u w) E(w-w 1 - E(w-0)- ' dw 
A OW 

This expression will be further approximated by replacing the integral by 

summation, taken over the discrete steps that the network passes while learning. 
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Thus the estimated sensitivity to the removal of connection wij will be 

evaluated as 

f 
A N-l aE wij 
S .. = - L _ (n) /lw. (n)____,..-.....,. 

IJ cJw IJ f j 
0 ij W;j - W;j 

where N is the number of training epochs. 

The above estimate for sensitivity uses terms that are readily available 

during the normal course of training. (Indeed, this was the main motivation for 

deriving such an approximation). Obviously the weight increments wii are the 

essence of every learning process, so they are always available. Also, virtually 

every optimization search (e.g.,steepest descent, conjugate gradient, Newton's 

method)uses gradient to find the direction of change, so the partial derivative, 

which are the components of the gradient, are available. Therefore, the only extra 

computational demand for implementing our procedure is the summatio!l. This 

(negligible) overhead merely calls for maintaining a 'shadow array' (of the same 

size as the number of connections in the network) that keeps track of the 

accumulated terms that build up sij• 

For the case of backpropagation algorithm, which implemented in this 

work, the sensitivities are defined from the above equation as, 

N-l f 
A [ ]2 W;j 
sij - ~ /lwij (n) 

n (wr- w;) 
"I IJ IJ 

Upon completion of training we are equipped with a list of sensitivity 

numbers, one per each connection. They were created by a process that 1·uns 
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concurrently, but without interfering, with the learning process. At this point a 

decision may be taken of the smallest sensitivity numbers in each layer. Usually 

the sensitivities of all the connections at each layer are arranged in the descending 

order in an array and the last values of the array are removed. 
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~4 
IMPLEMENTATION AND RESULTS 

"Neural nets made possible the transfer of methodology from other unrelated areas 
(physics, thermodynamics, systems control, signal processing etc.) in the AI arena" 

Cris Kartrougeras 



The major design decisions for key neural network levels were: 

Node Level Network Level Training Level 

1. Type of input 1. Number of layers 1. Learning 
accepted or slabs algorithm 

2. Transfer 2. Number and type 2. Learning 
function of nodes parameters 

3. Means of 3. Size of hidden 3. Hal tin~ 
combination layers conditions 

4. Number and type 
of output nodes 

5. Connectivity 

4.1 Handwritten Character Recognition 

Character recognition technique associate symbolic identity with the image 

of a character. This problem of replication of human functions by machines 

involves the recognition of both machine printed and hand printed cursive

written characters. Character recognition is better know as optical character 

recognition (OCR) since it deals with recognition of optimally processed 

characters rather than magnetically processed ones. The first successful attempt 

was made by Russian scientist Tyurin in 1900 as an aid to the visually 

handicapped[£>]. In the middle of the 1940s, the modem versions of the OCR for 

business applications were found with the development of digital computers. The 

state of the art reports on character recognition research have been presented by 

Nagy, Harmon, Stallings, Stuen et al., Mori et al., Mantas, Davis and Chatterji. 

The principle aim of the OCR system is the need to cope with the enormous flood 
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of paper such as bank cheques, commercial forms, government records, credit 

card imprints and mail sorting generated by the expanding technology society. 

4.2 Pattern Classification Problem 

The pattern classification problem in the 2D feature space implemented is 

shown in the fig 4.1. The feature vector (X,Y) is unifom1ally distributed in [-1,1] 

X [-1,1], and the two non-classes are equally probable (i.e.,b = 2/(a+1)- 1). The 

implementation aim is to distinguish whether a given pattern (co-ordinate) is in 

Class 1 or in Class 2. The output should be zero for pattetns in Class 1 and one 

for Class 2. 

4.3 Implementation of Handwritten Character Recognition 

The work involved in this dissertation is the devel~pment of a C program 

on DEC VAX 11/780 computer to simulate a three layer (oPe hidden layer) neural 

network and to implement the backpropagation training algorithm to train the 

network to recognize handwritten letters. 

Training by Noisy Data 

The different letters used in teaching the network were A, B, G, R, S and 

X. The input data for training the network were collected from 25 individuals. 

Each of the persons were given graph papers containing squares of 8 X 8 boxes. 

Then they were asked to write these six letters, in uppercase, large enough to fill 

the boxes. After the letters were entered, the squares of the boxes which get 

31 



intersected by any part of the letters were shaded. Since the pattern of letters 

written by different persons will have large variations, the collection of the 

patterns will certainly contain noisy input patterns. As it is described in the 

results, the training of the network by noisy data will considerably improve the 

performance of the network. 

Out of 21 sets (126 patterns) collected, 20 sets (120 patterns) were used for 

testing and 4 patterns were used for testing the performance of backpropagation 

algorithm implemented. The data were entered into a file as a sequence of ones 

and zeros, representing the. filled (shaded) and unfilled squares of the boxes 

respectively. The three bit identification codes used were: 

A:001 

R: 10 0 

B: 01 0 

s: 1 01 

The Network before Pruning 

Number of layers = 3 

Number of input nodes= 64 (8X8) 

Number of hidden nodes = 5 

Number of output nodes= 3 

Number of connections = 343 

(including-biases) 

The Network after Pruning 

Number of layers = 3 

Number of input nodes = 64 

Number of hidden nodes = S 

Number of output nodes= 3 
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G: 011 

s: 11 0 

Momentum factor= 0.15 

Learning rate = 0.075 

Momentum factor= 0.15 

Learning rate = 0.075 



Number of connections left = 280 

Number of connections pruned = 63 

(including biases) 

4.4 Implementation of Pattern Classification Problem 

The network specified below for the backpropagation is trained by 24 

different patterns both class 1 and class 2. The configuration of the network 

designed is shown in the fig 4.2. 

The network before Pruning 

Number of layers = 3 

Number of input nodes = 2 

Number of hidden nodes = 2 

Number of output nodes = 1 

_Number of connections = 9 

(including biases) 

The network after Pruning 

Number of layers = 3 

Number of input nodes = 2 

Number of hidden nodes = 1 

Number of output nodes = 1 

Number of connections left = 6 

Number of connections pruned = 3 
(including biases) 
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Momentum factor= 0.05 

Training rate = 0.5 

Momentum factor = 0.05 

Training rate= 0.5 



4.5 Results 

The results of the implementations of the two problems, handwritten 

character recognition and pattern classification, were given in the four tables. The 

results include the results of the performance of the pruned networks in both the 

cases. The failures given in the table are calculated as the deviation of the output 

for more than 25% (we say failure if the output deviates by more than 25%) and 

the disasters as when the· output deviates by more than 50% (we say disaster if 

the output deviates by more than SO%). 

As is it is evident from the results, the average sum- squared error 

increases almost linearly with the number of training epochs. The graph 1.1, 

graph 1.2 and graph 2.1, graph 2.2 reveals this fact. It is also clear that the 

performance of the networks increased with the number of iterations (see graphs 

&-and 4). The pruning procedu:re adopted decreased the success rate of the 

network to a little extent, but, by obtaining the most wanted reduction of the size 

and the reduction of training time. It was also found that the training of the 

network with noisy data improves the recognition capability of- the network. 
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Table 1 

Results of Handwritten Character Recognition 
(without Pruning) 

Original Network (64-5-3): 

Number of connections = 343 Alphabets trained={A,B,G,R,S,X} 11 = 0.15 
Number of i I p nodes = 64 Alphabets tested a= 0.075 
Number of hidden nodes =5 A- 001 R- 100 No. of training 
Number of o/p nodes =3 S- 101 X- 110 patterns = 120 

Number of Ave sum- Output Desired CPU % of %of 
Iterations squared Error obtained Output Time Failures Disasters 

(Min:Sec) 

50 0.105704 0.0381 0.8401 0. 9421 0 1 1 01:56 75% 12.5% 

0.4774 0.0867 0.9021 1 0 0 

0.7028 0.0835 0.9369 1 0 1 

0.8541 0.6010 0.0614 1 1 0 

100 0.021061 0.0125 0.9566 0.9319 0 1 1 03:46 12.5% 6.25% 

0.7927 0.2211 0.5886 100 

0.9532 0.0477 0.9628 1 0 1 

0.9718 0.8434 0.0205 11 0 

300 0.006825 0.0020 0.9748 0.9795 0 1 1 11:37 6.25% 0%' 

0.9577 0.4895 0.2283 100 

0.9768 0.0217 0.9913 1 0 1 

0.9922 0.8909 0.0115 1 1 0 

400 0.000011 -0.0020 0.9748 0.9796 0 1 1 17:29 '6.25% 0% 

0. 9577 0.4898 0. 2285 1 0 0 

0.9768 0.0217 0.9913 1 0 1 

0.9923 0.8909 0.0114 1 1 0 
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Table 2 

Results of Handwritten Character Recognition 
(with Pruning) 

Pruned Network (64-5-3): 

Number of connections 
Number of i/ p nodes 
Number of hidden nodes 
Number of o/p nodes 

Number of Ave sum-

= 280 
=64 
=5 
=3 

Alphabets trained = {A,B,G,R,S)(} 
Alphabets tested 
A- 001 R- 100 
S- 101 X- 110 

Output Desired CPU % of 

l1 = 0.15 
a= 0.075 
No. of training 
patterns = 120 

% of 
Iteratic:;ms squared Error obtained Output Time Failures Disasters 

(Min: Sec) 

50 0.066052 0.2052 0.8464 0.8780 0 1 1 01:56 75% 6.25% 

0.7473 0.1471 0.6627 100 

0.4001 0.1063 0.8855 1 0 1 

0.9427 0.6138 0.0118 1 1 0 

100 0.012451 0.1415 0.9364 0.9391 0 1 1 03:40 18.75% 6.25% 

0.6504 0.3001 0.4795 100 

0.7603 0.0938 0.9189 1 0 1 

0.9347 0.8665 0.0025 1 1 0 

300 0.002326 0.0615 0.9748 0.9669 0 1 1 11:12 12.5% 6.25% 
0.7011 0.2449 0.5600 100 

0.9084 0.0385 0.9669 1 0 1 

0.9964 0.5636 0.0002 1 1 0 

400 0.001628 0.0515 0. 9791 0. 9717 0 1 I 14:33 12.5% < 6.25% 
0.7241 0.2215 0.6088 100 

0. 9244 0.0323 0. 9726 1 0 1 

0.9979 0.5186 0.0001 1 1 0 
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Table 3 

Results of Pattern Classification Problem 
(without pruning) 

Original Network (2-2-1): 
Number of connections =9 l1 = 0.05 
Number of i/p nodes =2 a= 0.5 
Number of hidden layer nodes =2 Number of training patterns = 24 
Number of o/p nodes = 1 

Number of Ave sum- Output Desired CPU % of %of 
Iterations squared Error obtained Output Time Failures Disasters 

(Min:Sec) 

10 0.247501 0.5137 0 00:01 100% 50% 

0.5365 1 

0.5344 1 

0.5340 0 

100 0.243222 0.5316 0 00:2 150% 0% 

0.5557 1 

0.5414 1 

0.5264 0 

1200 0.172491 0.3613 0 01:26 25% 0% 

0.9671 1 

0.7381 1 
0.2893 0 

3000 0.144416 0.3419 0 02:21 25% 0% 
0.9921 1 

0.9668 1 

0.3315 0 

4000 0.135619 0.3510 0 02:52 25% 0% 
0.9944 1 
0.9405 1 

0.3386 0 

contd .. 
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5000 0.131583 0.3419 0 03:23 25% 0% 

0.9923 1 

0.9667 1 

0.3315 0 

6000 0.123995 0.3128 0 03:05 < 25% 0% 

0.9894 1 

0.9818 1 

0.3069 0 

10000 0.016687 0.0003 0 0510 to% 0% 

0.9995 1 

0.9987 1 

0.2271 0 
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Table 4 

Results of Pattern Oassification Problem 
(with Pruning) 

Pruned to (Network 2-1-1): 
Number of connections pruned =3 l1 = 0.05 
Number of i/p nodes =2 a= 0.5 
Number of hidden layer nodes = 1 Number of training patterns= 24 
Number of o/p nodes = 1 

Number of Ave sum- Output Desired CPU %of % of 
Iterations squared Error obtained Output Time Failures Disasters 

(Min: Sec) 

10 0.247601 0.5466 0 00:01 100% 50% 

0.5462 1 

0.5442 1 
0.5432 0 

100 0.241955 0.5299 0 00:02 100% 50% 
0.5581 1 

0.5415 1 
(J5222 () _, 

1200 0.172559 0.3610 0 00:31 75% 0% 
0.9660 1 
0.7378 1 
0.2894 0 

3000 0.160310 0.3143 0 01:28 25% 0% 
0.9959 1 
0.7975 1 
0.2976 0 

4000 0.156061 0.2943 0 02:02 < 25% 0% 
0.9979 1 
0.8266 1 
0.2943 0 

contd .. 
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5000 0.130326 0.0529 0 02:29 25% 0% 

0.9989 1 

0.8632 1 

0.3560 0 

6000 0.124805 0.0136 0 03:04 25% 0% 

0.9989 1 

0.8782 1 

0.3665 0 

10000 0.0017451 0.0015 0 05:09 < 25% 0% 

0.9993 1 

0.9218 1 

0.3548 0 
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CONCLUSION 

A generic Backpropagation training algorithm is implemented for neural 

network applications and is tested with handwritten character recognition and 

pattern classification problem. The ptuning procedure for back propagation is 

implemented inC on DEC VAX 11/780 and the experimental results of pattern 

classification problem and handwritten character recognition were studied before 

and after pruning. Unlike the other pruning procedures, the implemented 

pruning procedure does not interfere with the training. 

It is found that the learning time and forward calculation times are 

reduced with the pruning without much affecting the performance of the 

network The noisy training improved the performance of the network to a 

considerable extent. Though the average sum-squared error is increased a bit 

with pruning, the reduced size of the network makes hardware implementation 

of the neural networks easy. 

The extension of the character recognition work would be to cover both 

lower, upper case letters, digits and to a number of control characters, before 

tackling well-formed cursive writing. One can imagine the possibility of 

customising the network to a particular user through recognition of his own 

writing by incremented learning. 
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