
AUTOMATIC PARALLELIZATION OF SEQUENTIAL PROGRAMS

Dissertation submitted to Jawahar/al Nehru University

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

IN

COMPUTER SCIENCE & TECHNOLOGY

By

RAJESH RAI

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES

JAWAHARLAL NEHRU UNIVERSITY
NEW DELHI-11 0 067

DECEMBER, 1993

CERTIFICATE

This is to certify that the dissertation titled

11Automatic Parallelization of sequential Programs" being

submitted by me to Jawaharlal Nehru University, New Delhi in

partial fulfilment of the requirements for the award of the

degree of Master of. Technology, is a record of the original

work done by me under the supervision of Dr. c. P. Katti

Associate Professor, School of· Computer and System Scienc~s,

Jawaharlal Nehru University, New Delhi during the year l993,

Monsoon Semester.

The results reported in this dissertation have not been

submitted in part or in full to any other university or

institution for the award of any degree or diploma.

fA..~
/

,-v
/

., '11

Prof. K. K. Bharadwaj
Dean
School of Computer and
System Sciences,
Jawaharlal Nehru University
New Delhi

~iYw_;
RAJESH R.AI

~(~
Dr. C. P. Katti

Associate Professor
School of computer and

System Sciences
Jawaharlal Nehru University

New Delhi

ACKNOWLEDGEMENTS

This dissertation would not have happened without the

help of many people. Of all these, I am particularly indebted

to Dr.C.P.Katti, Associate Professor, School of Computer and

System Sciences, Jawaharlal Nehru University, whose gracious

and valuable guidarice helped bring my endeavours to fruita

tion. I thank him for that and much else.

My warmest thanks to Prof.K.K Bharadwaj, Dean, SC&SS,

J.N.U., who provided me with the excellent academic environ

ment and facilties of the school, which enabled the success

ful completion of my project.

My greatest thanks are due to many of my fellowmates,

specially Mr. Sumitra Kumar Srivastava, and Mr.Manoj Kr.

Saranqi, who listened to my ideosyncriosies with attention,

gave their company in the long hours of night and advised me

in the times of disappointment. Many others who are too many

to acknowledge individually, gave moral and academic support

in cornmpleting this dissertation on deadline.

This dissertation ows a lot of thanks to Mr. Rajendra

who helped in the personal computers' lab.

My affectionate thanks to my parents and family members

who were always a great motivating force to me.

DATE: Dec 14, 1993 RAJESH RAI

CHAPTER 1

IN'l'RODUCT ION

CHAPTER 2

PARALLEL ALGORITHMS

CONTENTS

2.1 Characteristics of Parallel Algorithms

2.2 Performance Measures

CHAPTER 3

DEPENDENCE ANALYSIS

3.1 Types of Dependencies

3.2 Detecting Dependencies

3.2 Removing Dependencies

CHAP'fER 4

PARALLELIZATION OF SEQUENTIAL PROGRAMS

4.1 Block of Assignment Statements

4.2 Arithmetic Expressions

4.2.1 Tree Height Reduction

4.2.2 Distribution Algorithm

4.2.3 Recurrence Relations

4.3 Loops

4.3.1 Simple Loops

4.3.2 Nested Loops

4.4 IF Statements

4.5 Towards Automatic Parallelization

CHAPTER 5

CONCLUSION

REFERENCECES

1 - 5

7 - 15

7

12

16 - 27

16

21

22

28 - 73

28

30

33

38

43

48

50

53

62

63

74

77

CHAPTER ONE

Il'IIRODUCTION

There has been tremendous growth in interest in paral

lel architecture and parallel processing in recent years,

resulting in dozens of new machine designs, prototypes and

programming languages for parallel and distributed computing.

This basic research- in architecture has led to over a dozen

commercially available parallel systems. However comparative

ly little research has attacked the problem of how to charac

terize the parallelism in programs and algorithms. To improve

the performance of the computers it is necessary that the

parallelism in the programs is explored and exploited.

Developing more powerful computers can be done either

by increasing the hardware speed or by searching for new

computing techniques. In modern supercomputing design both

ways have been followed. Most supercomputers are grownup

derivatives of the well-known von Neumann processor architec

ture, widely in use today. The speedup of this basic archi

tecture is based on improving the memory organization, en

hancing the processor speed and applying parallel processing

techniques.

The communication path between the processor and the

memory for fetching instructions and reading or writing data

limits the amount of work that can be done between two memory

accesses. An instruction normally involves the following

phases:

1

IF Instruction Fetch

ID : Instuction Decode

OF Operands Fetch

EX Execute

Memory Action

Processor Action

Memory Action

Processor Action

Clearly, the speed of execution depends to a large

extent on the memory bandwidth. A first way to enhance the

processing power is to increase the memory acces~ibility

through a wider data bus. Whereas in conventional computers

the databus is 16 to 32 bits wide, supercomputers use a 64,

128 or even 512 bits wide datapath.

In conjunction with the wider bus. a faster memory is

used. Since most supercomputers obtain their maxfmum speed on

processing large arrays of data, memory speed is of prime

importance. The slow processor_memory interconnection is the

bottleneck of the von Newmann architecture. In order to

circumvent this bottleneck, which is largly due to the tech

nological limitations of the memory, a technique known as

interleaving allows to create a virtual access time of a few

nanoseconds, when the proper conditions are met. The memory

is organized in n banks in which the data at location with

address i is stored in bank i mod n. This organization allows

to access the consecutive array elements in shorter time.

In a balanced system, the processor speed has to match

the speed of the memory. Increasing the processing speed

starts by using a faster technology e.g. by using ECL, higher

integration, greater clock rate, smaller dimensions in order

2

to obtain a lower propagation time, and the like. Most of

these measures have been taken in advance machines, thereby

paying a high price for approaching the borders of todays

physical possibilities.

The only way to increase the processing power beyond

the physical and economical limits of conventional architec

ture, is to operat~differant processors in parallel on the

same program. When the experimental dataflow architecture is

excluded i.e. if only program driven instead of data driven

execution is considered, then the well known Flynn _ topology

is helpful in classifying the existing supercomputer archi

tectures. Flynn discerns single (S} or multiple (M} instruc

tion (I} and data (D) streams, and forms four theoratical

architectures, of which the closest real architectures are :

SISD

SIMD

MISD

MIMD

the conventional von Newmann architecture.

the array processors.

the pipelined processors.

the shared memory multiprocessors.

In array processors several independent identical

arithmetic units (ALU} or processing elements (PE} operate in

parallel under supervision of the control. unit (CU).

Conversely, in pipeline computers, a single datum is

operated upon by the different stages of one functional unit

(FU}. Parallelism is achieved by the simultaneous execution

of the different stages on a stream of sequential data.

In the two preceding techniques, the execution time of an ele-

3

mentry operation of a processing element or a pipeline stage

is one time unit. This facilitates the synchronization be

tween processing elements, since all PE's operate in lockstep

under control of the same clock.

Multiprocessors on the other hand allow different

processors to execute parts of the program asynchronously.

While this allows greater flexibility, such an architecture

also requires a fast synchronization system. This is probably

the rna~ reason why today's supercomputers don't use multi

processing techniques in general.

It is clear that there is no single answer to the need

for faster processors. There are a number of techniques, and

the computer architects have realized machines with a great

peak performance only from the blend of the following tech

niques :

Fast processor and memory technology.

Wide high speed data bus.

Multiple pipelining

Lockstep operation

Array processing.

supercomputers ars not the product of a nicely de

veloped breakthrough in computer architecture, but incorpo

rates a balanced mix of all known technologies to speed up

the processing power, whose selection ultimately is based on

economical tradeoffs.

4

There are two approaches in implementing parallel

processing. The first and obvious approach is to develop

completely new programs based on new algorithms that are

suitable for parallel processing. This approach is guarunteed

to result in very good programs in terms of both execution

speed and efficiancy. However it is generally difficult to

write a program for parllel computer. The reasons are :

1. Difficulty in exploiting parallelism. It is not an easy

task for a programmer to divide a program into a set of tasks

that are executable in parallel.

2. Difficulty in utilizing processors effectively. It is a:

difficult task to perfectly balance the load equally in all

the processors available so that no processor sit idle.

Another approach is to let the compiler expose and

exploite parallelism from an existing or ordinary program.

Compilers for a vector computer have been developed and are

being used extensively. These compilers are not powerful

enough to apply to a parallel processing computer, however.

In vector computers, parallel computation is done only in

terms of vector data. Scalar operations cannot be computed in

parallel even if they are independent of each other. Simi

larily independant tasks cannnot be computed in parallel. A

parallel processing computer on the other hand, has more

freedom. Any independant operations may be computed simulta

neously. Hence, although, it is sufficient for a vector

computer compiler to check only whether operations on ele-

5

ments of a vector can be performed simultaneously, a parallel

processing computer compiler must do more. It must extract

and expose more parallelism.

In this project, an attempt has been made to discover

operations that may be performed simultaneously by examining

programs at the statement level and the ways to execute them

in parallel have been explored.

6

CHAPTER TWO

PARALLEL ALGORITHMS

2.1 CHARACTERISTICS OF PARALLEL ALGORITHMS

Parallel algorithms can be characterized in many ways,

along a number of dimensions. Similarily, parallel architec

tures can be described in terms of a number of atributes.

Ideally, a set of orthogonal characteristics would describe

parallel algorithm and a corresponding set of orthogonal

characteristics would describe parallel architectures, w~th a

unique bijection performing the mapping from one to the

other. Experience shows that the relationship between paral

lel algorithm and parallel architecture is clearly too com

plex to conform to such a desirable model. In the absence of

independence, completness therfore becomes relevent goal.

The main characteristics of the parallel algorithms

are:

1. Nature of parallelism

Data parallelism versus function parallelism:

Parallelism can be achieved by dividing the data among ~he

processors, by decomposing the algorithm into segments that

can be assigned to different processors, or by pipelining.

The type of parallelism will affect allocation of data , the

assignment of processes to processors, and basic decision as

to what mode of parallellism (SIMD 1 MIMD 1 pipeline) to

use. Function parallelism will almost always imply MIMD

7

operation. Data parallelism will often be amenable to SIMD

implementation; however, data parallelism alone is not

sufficient to guarantee good performance in SIMD mode. At

some level of decomposition, an algorithm must exhibit both

data and function parallelism in order for pipelined opera

tion to be applicable. Memory organisation can be tied to the

type of parallelism in that data parallelism is often well

imlemented using local memories. The type of parallelism will

also act as a broad indicator of the number of processors.

With data parallelism, the number of processors will typical~

ly be proportional to the data set size, and utilization of

large numbers of processors will not be uncommon. Algorithms

based on function parallelism will more typically use number

of processors counted in tens rather than the thousands.

Data granularity: Data granularity deals with the size

of the data items processed as a fundament-al unit, and will

have a bearing on the data allocation, communications reqire

ments, processor capability, and memory requirements.

Fine_grain algorithms will often be suitable for SIMD br

pipelined operations using local memories. The data granu

larity generally will not affect the overall memory reqire

ments, but may bear on the amount of the memory that must be

readly accessible to each processor. The data granularity

will provide an indication of the bandwidth needed to commu- _

nicate a single data item.

Module granularity: Module granularity quantifies the

amount of processing that can be done -independently, either

8

of other processes or of operations being performed in other

processors. It is essentially a measure of the frequency of

synchronisation, and will affect the choice of SIMD versus

MIMD operation, the assignment of the processes to proces

sors, the memory organisation, the comunication requirements,

and the likelihood of equalizing the execution times of

componant parts of the algorithm. Algorithms characterized by

fine_grain module granularity will require frequent synchron·-

isation. If possible, SIMD or pipelined execution, in which

communication can be performed with less overhead than in

MIMD operation, willbe prefered, as will a local memory

organization. Because of the frequent communications, a fast

network capability is imperative. Large_grain algorithms

typically have less of a' need for efficiant communications.

The large amount of processing done between synchronization

points often suggests MIMD execution.

2. Degree of parallelsim: This will be related to both the

data granularity and the module granularity. Its most direct

impact will be on the choice of machine size and on the

maximum speed attainable. In addition, degree of parallelsim

will in practice often be related to the mode of operation

and the memory organization (with massive parallelsim,

global memory organization can leed to significant contention

in accessing memory) .

3. Uniformity of the operations: If the operations to be

performed are uniform (e.g., across the data or feature

set), then SIMD or pipeline processing is feasible.

Uniformity will generally be associated with data

9

parallelism. If the operation are not uniform, then MIMD

processing will be choosen and strategies to equalize the

computational load across the processors may come into play.

These strategies may be applied statically at compile time or

dynamically at execution time.

4. Synchronization ~eguirements: In addition to the

synchronization requirements implied by the module granulari-

ty, consideration of precedence constraints is implicit in

characterizing the synchronization requirements. This will

affect the assignment of processes to processors and the

scheduling of various components of the algorithm.

5. Static/ dynamic character of the algorithm: The pattern

of process generation and termination will affect the proces-

sor utilization, the scheduling of sub processes, the mode of

processing, the memory organization and the communication

requirements. Identification of an algorithm as being dynam-

ic generally rules out SIMD or pipelined execution. A dynam-

ic algorithm will need to be supported by either a global

memory organization or a communication network and an I/O

system capeble of providing a fast means of loading the local

memories with the data and code needed for a few process.

6. Fundamental operations: The basic operation performed in

the algorithm will dictate the processor capabilitie~ needed.

To the extent that the operation identified as being the

basic unit of processing also determines some communications

requirements, this characteristic will also have a bearing on

the network and memory organization.

10

7. Data ~and precision: The atomic data types and data

precision will bear most directly on the individual processor

capability and on the memory requirements, but may also imply

requirements for communications bandwidth.

8. Data structures: Many algorithms can be characterized as

having a natural data structure on which operations are

performed. The ability of an architecture to support the

needed access patterns, to exploite possible regularity .in

the structures, and to allow the needed interactions bet~een

parts _of the structures wi11 affect algorithm performance.

In using the algorithm characteristics, it is necessary to

make a distinstion between an attribute that is required for

a particular architecture implementation and one that is

prefered. For example, uniformity is a requirement for SIMD

processing; although it is possible to construct an SIMD

implementation of a non_uniform algorithm, performance will

be so bad that it is not reasonable implementation to consid

er. In contrast, if an algorithm has a high degree of uni

formity, then, depending on its other attributes, it may be

that an SIMD implementation is preferable, but an MIMD imple

mentation may run only slightly more slowly.

11

2.2 PERFORMANCE MEASURES

The performence of any system can be measured by know

ing the efficincy, speedup and execution time. In the case of

parallel processing, we will define these terms here. Let a

group of processes collaborate in an algorithm. Assume that

the processes are residing in separate machines so that they

all may execute at the same time. In this case~ if a process

is idle,it is assumed that the processing power of that

machine is wasted.

One more assumption is made, that is, processes do not

share memory; instead, they communicate by sending each other

messages. It is assumed that the messages are relatively

expensive, requiring times on the order of tens of milisec

onds for delivery.

Execution time T (p,n,A) : It is the time needed by

algorithm A to compute a problem of size n on p processors.

Execution time includes initialization and communication

time, and is measured from the time the first process starts

to the time the last one terminates.

Speedup : Speedup of a parallel machina gives the

comparision of the time required by that algorithm to the

time needed in doing the same work by the best known serial

algorithm. It is defined as:

Time required by the best serial algorithm
s (p,n,A) =

Execution time T(p,n,A)

12

Values of speedup S range from zero to infinity. By

definition, the value of S(1) will be in between 0 and 1. If

a comparision is made of the distribution algorithm against

T(1,n,A), we get a value which is called the rough speedup,

RS. It is a less honest measure of performance than the true

speedup. If RS (p) > p, we say that the algorithm exhibits a

speedup anomaly. It shows that the distributed algorithm is

poor when p = 1. If the distributed algorithm is the same as

the serial algorithm for p = 1, a speedup anomaly implies

that the serial algorithm is suboptimal.

Efficiency : In case of parallel algorithms we get the

speedup in comarision to the serial counterpart at the cost

of more than one processors. The speedup s won't be able to

tell whether the processors are working at there full

capability or not. To measure this, we define the efficiancy

as the speedup obtaind per processor.

s (p,n,A)
Efficiancy E (p,n,A) =

p

Values of E range from 0 to 1. The rough efficiancy is

defined analogously to the rough speedup.

The useful - process point n (p,A) : It is the size n

of problem that makes it worthwhile to use as many as p

processors.

U (p,A) = smallest n such that T(p,n,A) <= T(p-1,n,A)

In general as the problem size increases, the expances

of distribution (which may be dependent on p) begin to be

overweighed by its benefits.

13

Cost factor : This also is a major criterion in

evaluating any system. The cost of a computer system to a

user is the money that the user pays for the system, namely

its price. To the designer the cost is the cost of

manufacturing including the cost of_the development and

capital tools for construction. With the developments in

technologies, the hardware cost of the system is decreasing

sharply whereas the cost of software is steadly rising with

inflation and complexity and with apparently little re~ief

from advances in software tools.

Software and hardware costs each have two components, a

one time development cost and a per unit manufacturing cost.

Because of the production of hardware in bulk, the per unit

manufacturing cost is very less. But the· one time development

cost for hardware is much more than the software cost. As the

user is to pay the per unit price, for him the hardware is

very cheap.

We can evaluate the architectures by there cost and

performance. The effectiveness of an architecture must be

measured on workloads for which the architecture is intended.

An architecture that is inefficient because ~f wasted

resources will compete poorly against the simpler but mor

efficient architecture.

There are a dozen more criteria for measuring the

performance, sUch as maximum program and data size, weight,

14

power consumption, volume and ease of programming, that may

have relatively high significance in particular cases. But,

in general the performance will be measured using the

criteria discussed above.

15

CHAPTER THREE

DEPENDENCE ANALYSIS

The first and foremost thing to be taken into consider

ation whenevr a need to execute serially written program onto

the parallel machines arises, is to check for the dependence

relations among the various statements in the program. Any

two statements may be executed in parallel (or concurrent

ly) if we get the same result in executing them in any order.

This is possible only when one is not dependent on the other.

3.1 Types of Dependencies

The statements may be dependent on one another in one

of the following ways :

1. Da~a dependen~. The second statement may be requir-

ing a few or all the values which are the resultant of the

execution of the first statement i.e. the output variable of

the first is the input variable of the second. We say that

the second statement is data dependent on the first. This is

called WRITE/ READ dependency as the values of the variables

being modified (or written) after the execution of the first

statement are read by the second.

Examples.

A = B + C

D = A + E

----- s

----- T

The above two statements can not be executed in paral

lel because the variable 'A' to be used in statement 'T' is

being written (modified) by the statement 'S'. 'T' is thus

16

data dependent on •s•. The statement 'T' must be executed

after the execution of 'S'.

For i := 1 to N do

A[i] := A[i-1] I B[i];

end; {* of the loop *}

In this example, in place of two separate statements,

we have one statement which is to be executed 'N' times. It

can be seen that the two iterations are not independent

because a variable written in previous iteration is read in

each iteration.

2. Antidependent. It may be the case that the first

statement is using some variables which are to be modified by

the execution of the second statement. In this case also, we

cannot execute them simultaneously. This is the case just

opposite to the first one and we say that the second state

ment is antidependent on the first statement. This is also

called READ I WRITE dependency as a few varriabls are to read

by the first statement before those are written by the other.

Examples.

D = A + E ---- p

A = B + C ---- Q

Here the first statement 'P' uses a variable 'A' which

is to be modified after the execution of the second statement

'Q'. Hence the two are not independent and cannot be executed

in parallel.

17

For i := 1 to N do

A[i] := A[C[i]];

end;

In this case, if the value of C[i] is less than i then

there will be READ 1 WRITE dependency among the statements of

different iterations and if the value of C[i) is greater than

the value of i then WRITE 1 READ dependency is observed.

Moreover, if the values of C[i] are computed during execu

tion, the compiler cannot determine ~hich dependency exists

and therefore cannot optimize the code. Therfore~ the compil

er can detect loop to loop dependencies only when all sub

script expressions in an iteration and the loop increm~nt

have values known to the compiler. Optimizing compilers are

forced to assume that the dependencies are present if index

variables depend on execution_time program behavior. Other

wise, the optimizing process is likely to produce a translat

ed program that runs incorrectly.

3. Output dependent. If the two statements are writing

in the same memory location allotted for a fixed variable

then they won't be independent and hence cannot be executed

simultaniously. Any memory location cannnot be written into

by more than one processors at the same time and in that case

any value would be stored, giving the incrrect result. This

type of dependency is also called WRITE 1 WRITE dependency as

both the statements are writing in the same variable.

18

Exan1ples.

A = B + C

A = C + E

u

v

The above two statements are having the same output

variable 'A' and thus are output dependent to. each other.They

cannot be executed in parallel.

For i := 1 to N do

A[i] := B[i] * 5;

A[i-1] .- B(i] + C[i];

end;

Here exists WRITE 1 WRITE dependency as the second

statement in current iteration is modifying the same variable

as the first statement in the previous iteration leading to

the dependency for variable A[i-1]. If the loop index is

increased by 2 instead of 1, then there is no dependence

caused by writing two successive values into 'A'.

The data dependencies in an algorithm will play the

largest role in dictating data allocation patterns and commu

nications characteristics. They will also have a major part

in the decision to use a globol versus local me~ory organiza

tion. In the characteristics based approach, the handling of

data dependencies is conceptually a graph isomorphism prob

lem. The library contains known data dependency structures

and (potentially multiple different) mappings of these

structures onto architecture configurations. The purpose of

19

the stored information is to make available mappings which

experiance has shown to be useful but which might be diffi-

cult or prohibitively time consuming to derive directly.

Although this approach uses the intermediary of the stored

database of patterns, the major steps involved in mappping

the data dependency graph for 'the current algorithm onto one

of the stored structures are similar to those employed for

mapping an algorithm directly onto an architecture.

Although the identification of the communicat~ons

pattern can be formulated conceptually as a graph isomorphism

problem, the complexity of graph isomorphism will in most

cases make the direct and exhaustive test for isomorphism

infeasible. So the organisation and representation of the

stored structures is done such that the searching and the

matching process can be performed efficiantly. The search

process may be assisted by the inclusion of auxilary infor

mation with each of the stored patterns. Characterizing the

data dependencies lies in the heart of the algorithm to

architecture mapping problem, and there are many approach~s

to be explored.

3.2 Detecting Dependencies

A general procedure for detecting dependencies is to

list the names of the variables read and written in a loop

iteration. If a name appears on both lists, it potentially

leads to a READ I WRITE or WRITE I READ dependence. All

variables that are written are potentially WRITE 1 WRITE

20

dependences. The compiler has to examine each case further

to determine if an actual dependence exists.

Let the set of input and output vari~bles of a

statement X be defined b~ in(X) and out(X) respectively. Then

th~ two statements S and T will be said to be independent if

and only if :

in(S) int. out(T)

in(T) int. out(S)

out(S) int. out(T)

=
=
=

pbi

pbi

pbi

(1)

(2)

(3)

where 'int.• is the intersection between two sets and

'phi' denotes the empty set.

The first condition ensures that none of the variables

which are being modified by statement T is required for the

execution of the statement s. The s~cond condition checks

whether the variables modified by statement s are used by

statement T or not. The third condition is necessary for

checking the output dependence, to assure that both

statements are not writing into the same variable.

If the above three conditions are satisfied, the two

statements can be executed in parallel.

Similarily, for n statements Ti, i = 1, 2 , n to be

executed in parallel the following conditions must be

satisfied
~~-'71' ~·

in(Ti) int. out(Tj) pbi for all i j ... ,.., 6~ = <> '1.0 (S .

l)l ~ ~,
out(Ti) int. out(Tj) = pbi for all i <> j ~ I

21

We will be able to execute a certain set of statements

in parallel if the above dependence relation holds good.

However, in general, one or other type of dependence will

always be there. Some of them can be removed by using

different methods as the case may be. In that case the

program will be able to run in parallel. But we can not

remove all the dependencies each time. Where ever it is not

possible, the statements can not be executed simultaneously

and that much part of the program is bound to be serial.

3.3 Removing Dependencies

Artificial data dependencies impose a constraint on the

execution sequence of statements and instructions, which is

not required by the algorithm and therefore limit the useful

parallelism in the programs. These dependencies can be

removed by the following methods :

1.Renaming of variables : A variable is the symbolic

reference to a memory location. Each reassignment of the

variable therefore signifies a rewrite of that memory

location. Consequently, the instructions reading a variable

have to be sure to read the proper version of that variable.

This is implicitly guaranteed by the programmer in a

sequential execution, but creates unnecessary and

undetectable constraints for a parallel execution. For

example in the following program

DO 10 I = 1, 100

A(I) = I

B(I) = -I

22

10 " CONTINUE

DO 20 I = 1, 20

X(I) = (Y(I - 1) + Y(I + 1)) I 2

20 CONTINUE

Although visibly unrelated, the two loops require

sequntial execution, since they both use the loop variable I,

which is stored in a unique memory location.

Another example of the same type. is

READ (5, 50) N, A

CALL GAUSS (A, X, N)

old N, X

READ (5, 50) N, X new N, X

CALL ORDER (X, N)

The use of same memory locations for N and the array X

prevents a parallel execution. Even an intelligent compiler

which recognizes the life time of the variables I and X in ·

the previous examples, is incapable to see that programmers

reuse some variables in different unrelated parts of the same

program, merely to save memory space.

)

The common charecteristic is that variable has a global

scope and any reassignment of the variable partitions the

program into two consecutive parts : a first part, using the

old value and a second part, using the new value of the

' 23

variable. Such a sequencing constraint is only permitted for

effective data dependencies in the,algorithm.

The renaming transformation assigns different names to

different uses of the same variable. As a consequence some

output dependence and antidependence relations may be

removed.

A = B + C S

D = A + E T

A = A + D U

Here the three statements s, T and U are not

independent as the variables A and D have been used at more

than one places, in one statement, for reading and in other,

for writing. Between statements s and T, there is WRITE/ READ

dependency as the variable A ·which is to be used by T, is

being modified by s. In statements T and u, we have READ 1

WRITE dependency and WRITE 1 WRITE dependency is observed in

statements S and U. If we rename the varible A as Al at one

place where it is being written, then the WRITE 1 WRITE

dependency in statements S and U can be removed.

Al B + C S'

D Al + E T'

A = Al + D U'

24

However, by this method, we can not remove all the

dependencies. For examle, it won't be possible to rename one

of the two uses of variable D, as U has to use the value of D

after the modification is made by the statement T. Thus, by

this method only READ / WRITE and WRITE / WRITE dependencies

can be removed and not the WRITE 1 READ dependency.

2.Forward substitution The data dependencies i.e.

WRITE/ READ dependencies can be removed by this method. It

can be done by·substituting right hand side of one·assignment

statement into the write hand sides of other assig~ment

statements.

Example Consider again the same example :

A = B + C s

D = A + E T

A = A + D u

If we substitute the assignment of variable A from

statement S into T and U, we will be able to remove the data

dependency of T and U on s. After the substitution we get

D = B + C + E T' I

A = B + C + D U' I

Again, the assignment of D may be substituted from T''

into U' ', to remove the data dependency between them.

D B + C + E T' I I

A B + C + B + C + E U' I I

25

Now, the two ,statements T' '' and U''' are completely

independent and can be executed in parallel.

3. Scalar expansion : It changes a variable used inside a

loop into an element of a higher dimensional array. Thus, in

different iterations, the variable is not modified each time,

rather, for each iteration, different array -elements of the

array variable are assigned the respective values.

Example

10

DO 10 I = 1, N

X = C(I)

D (I) = X + .1

CONTINUE

s

T

Here, the different iterations of the loop are not

independent as the value of the variable X is changed each

time the value of C(I) changes. If we expand X to make an

array variable X(I), the different values of c, as I changes,

will be assigned to coresponding element of the array X(I).

Now the iterations are independent.

10

DO 10 I = 1, N

X(I) = C(I)

D(I) = X(I) + 1

CONTINUE

26

S'

T'

The enforcement of the single assignment rule may

require an exhaustive amount of memory, especially to store

the different copies of arrays. However, a careful analysis

of the data dependencies will allow a more efficient memory
I

allocation. Each variable has a limited life time in the

course of the program, i.e. from its definition upto the

point where all immediate successor tasks have consumed the
'

variable is dead and its memory space can be freed to contain

the results of other tasks. In contrast to the artificial

dependency constraints, this recovering of free memory space

maintains the parallelism.

y

27

CHAPTER FOUR

PARALLELIZATION OF SEQUENTIAL PROGRAMS

Any sequential program consists of the following four

main parts :

1. A block of assignment statements

2. Arithmetic expressions

3. Loops

4. IF statements
I

To convert the given sequential program, it is neces-

sary to deal with all these parts separately, as each one of

them will require different methods for parallelization.,

4.1 BLOCK OF ASSIGNMENT STATEMENTS

In an assignment statement, we modify the value of a

variable and write into it the value of the right hand side

of the statement. The right hand side may be a constant, a

variable, or an arithmetic expression. In the case of arith-

metic expression, the value of the right hand side is to be

calculated first and then it is assigned to the left hand

side variable. The calculation of arithmetic expression is a

problem in itself and requires large attention. This part

will be dealt in later on. Here we assume that the right hand

side is very simple and involve~ hardly any mathematical
I

calculation. That may be a few additions and multiplications

which will be performed sequentially and which has hardly any

scope for reduction in time by paralle~ computation.

28

A block of assignment statements (BAS) is a sequence of

one or more assignment statements with no intervening state

ments of any other kind. Given a block of assignment state

ments, we can rewrite the block after substituting from one

statement into other and ca~ obtain a set of expressions

which can be executed simultaneously.·

Exa:mp~es: The method can be explained with the help of

following examples:

X = B + C

Y = A * X

Z = X + D

If we execute this on a sequential machine, we will

require four steps which will be performed in four time units

(assuming one time step for each arithmetic operation),

ignoring memory activity. But we can substitute the value of

X from the first statement into second and third which then

can be executed in parallel. It should be noted that before

substitution, the statements are not independent.

After statement substitution, we get

X = B + C

Y = A * B + A * C

Z = B + C + D

This can be evaluated in three steps on parallel ma

chine.

29

Sometimes, after subtitution, we get the assignment

statement which involves many calculations. For example:

A = B * C + D

E = F + G * H

I = A + D

K = A + I * E

After backsubstitution, we get the value of K as

K = (B * C + D) + (A + D) * (F + G * H)

The right hand side can be executed on parallel machine

by performing different independent operations in parallel.

This can be done using the methods for parallelization of

arithmetic expressions which has been described later on. In

this particular example, the tree height reduction technique

can be used for the faster execution.

4.2 ARITHMETIC EXPRESSIONS

Arithmetic expressions constitute a significant part of

any program. In the sequential machine, therefore, a major

part of the time will be spent in calculating the arithmetic

expressions. Instead of serial computatoin, if we can devise

a technique, by which more than one operations of an expres

sion may be performed simultaneously by different processors,

it would be possible to reduce the time taken in calcula

tions.

30

In a single processor machine, where each operations

are to be performed by only one processor, the time taken is

obviously, proportional to the number of' operations. But, in

parallel machine, the operations which are independent, are

allocated to different processors at the same time. The

results obtained from them are, then combined into one in

other time slots. The time taken in this case will be, in

between n and log n where n is the number of operations in

that expression. Here log n, which gives the best time in

which 'n' operations can be performed, is the height 'of a

~anced binary tree of number of leaves equal to the number

of operations n. The concept of the tree formed by the ex

pression which is called the syntactic tree, gives one way to

parallelize the arithmetic expressions. As we know, height of

the balanced binary tree will be minimum of all the trees

that can be formed with the same number of leaves. The idea

here is to make a syntactic binary tree with the given ex

pression and then try to reduce the height as much as possi

ble, or in other words, the attempt is to be made in the

direction to make the tree, a balanced binary tree.

It won't be possible to reduse all the trees into

balanced binary tree, because all the operations will not be

independent and hence a few of them are to be executed only

after certain operations are performed, even if some of the

processors are sitting idle at that instant. In this case,

then the attempt is made to keep the height as low as possi

ble, not necessarily equal to log n.

31

Here, it is important to note that the amount of paral-

lelism will depend upon the number of processors used, be-

cauce, suppose we have 10 operations in an expression which

are independent and can be performed in parallel, but if we

have a machine having only 8 processors, only 8 operations

can be performed simultaneously. The remaining two.will have

to be performed in the next time slot. This now becomes the

job scheduling problem and will not be dealt here. For the

sake of simplicity, it has been concidered throughout'this

project that the number of processors available in the ma-

chine is large enough to satisfy the requirements. It is

assumed that at any instant at least one processor is sitting

idle to ensure that number of processors is not a constraint.

An arithmetic expression is any well formed string

composed of at least one of the four arithmetic operations

(+ - * ' ' %), left and right parentheses, as needed, and

atoms, which are constants or variables. Let the arithmetic

expression E of n distinct atoms be denoted by E<n>.

In any expression many rules may be applied to change

the form of that expression. These are:

1. Associative laws

2. Commutative laws

3. Distributive laws

- 32

The transformation is needed because we are interested

in making a balanced binary tree. If from the given

expression the formed tree is not balanced, the different

forms of the expression obtained using the above laws are

checked and the tree with the least height is selected. ·

4.2.1 Tree Heiqht Reduction

The height of the syntactic binary tree can be r~duced

using different laws as stated above. The details of the

methods are described below :

Usinq associative laws :

Let us illustrate this with the help of examples. Let

an expression be

X= [{(a+ b) + c} +d)

If we calculate it as it is written, it will take three

time units in obtaining the value of X, even if there are

more than one processors available. It has become just like

the sequential calculation on the parallel machine. The use

of parantheses has imposed unnecessary constraints on the

order of execution. The syntactic tree of this expression is

the tree of height three as shown in fig [1.1]. If we use the

associative law for addition, we can rearrange the

parantheses and transform the expression into the following

form:

X= {(a+ b) + (c +d)}

33

a b c d

Fig.[i.iJ

a. be d.

Fig·.[i.2J

Tree Height Reduction Using Associative La.ws

Now the two operations (a + b) and (c + d) can be

performed in one time slot using two processors. The results

of the two will be added in the next time slot to give the

final value of X. Thus it takes only two time units in compa

rision to the three time units being taken by the single

processor. The height of the tree has been reduced by one

with the use of associative laws. The tree is shown in

fig[1.2].

Speed up in the above case =
3

2

This speedup is obtained by using 2 processors. Hence

Speed up
Efficiancy =

number of processors used

3
=

4

The efficiancy is not hundred percent because in the

second time unit only one addition is to be performed and

thus one processor is sitting idle.

The time taken in evaluating an arithmetic ~xpression

E<n> is given as

T[E<n>) >= log n

where the base of the log is 2 and in case of log n not

being integer, the ceiling of the value is taken.

34

Usinq commutative laws:

Let an expression be given as:

X = {a + (b * c) + d}

If we calculate the expression as it is given, it will

take three time units. In the first time slot, the operation

(b * c) is performed, then 'a' is added into the result in

the next time unit and finally, in the third time unit, 'd'

is added in the resUlt of the second operation to giv~ the

value of X. The height of the tree is three. However, by the

use of commutative law for addition we can reduce the height

to two as shown in fig(2]. The expression in the transformed

form becomes:

X= {(a+ d) + (b * c)}

Here one addition and one multiplication operations are

performed using two processors simultaneously in one time

unit. The results are then added in the next slot to give the

final result.

In this example also the speed up is 3/2 and the effi

ciancy is 3/4. Here again one processor is sitting idle in

the second time unit as only one operation is to performed,

leading to the efficiancy less than one.

It should be noted that after the application of asso

ciative and commutative laws, the total number of operations

to be performed remains the same. This point is important

35

a- bi c d

Fig-.[2.:1]

a_ db c

Fi·~. [2.2J

Tree Height Reduction Using CoMMutative Laws

because it is certain that application of these rules will

not lead to a tree of the height more than the original one.

The height will either be reduced or in the worst case, will

be the same. This ·is not the case with the distributive laws,

as will be discovered shortly, where the height of the tree

may increase also. Hence it is always safe to apply the

associative and commutative laws, but care has to be taken in

applying the distributive laws.

Usinq distributive laws:

When the tree height reduction is not possible using

associative and commutative laws, then the attempt should be

made to apply the distributive laws. Application of this law

increases the number of operations in the expression and in

some cases may lead to the increament in the tree height.

Take, for example, the following expression:

X = a * (b * c * d + e)

The syntactic tree of this expression is of height four

as can be seen from fig[3.1] and contains four operations. By

use of associativity and commutativity, no lower height tree

can be formed. But by using the arithmetic law for the dis

tribution of multiplication over addition, we bbtain the

expression

X = a * b * c * d + a * e

36

which has the tree of minimum height three as shown in

fig(3.2]. However, the number of operations is now five.

Unlike the other two operations, the distribution has intro-.

duced an extra operation. It looks rather surprising that

inspite of increament in the number of operations, the time

taken in evaluating the expression is reduc~d~ This is be

cause more operations now can be performed simultaneously

than the earliar case which also compensates the increament

in the operations.

In some cases the height of the tree will be increased

after the application of the distribution. For example, the

expression

X = a * b * (c + d)

can be computed in two steps in its undistributed form.

But if we distribute the multiplication over addition, the

following form is obtained:

X = a * b * c + a * b * d

which takes three steps.

Hence, non discriminative distribution is not the

solution of the problem, and some sort of guidelines are

required, to see whether the application of distribution will

lead to a better result or not.

Before developing the algorithm for the effective

distribution, it is important to know how much the tree can

37

a. b c d e

Fig·.[3.1J

a. be d a e

Fig. [3.2J

Tree Height Reduction Using Distributive Laws

be reduced by using associative, commutative and distributive

laws. A lot of research has been done regarding this and the

following theorems will provide the answer:

Let E<n I d> be any arithmetic expression with depth d

of paranthesis nesting. By use of associativity and commuta

tivity only, E<n I d> can be transformed in such a way that

T[E<n I d>] <= log n + 2d + 1.

If the depth of paranthesis nesting d is small, . then

this bound is quite close to the lower bound of log n. The

more the depth of paranthesis nesting, the more will be the

time required and will tend towards n, the linear time com

plexity.

Unfortunately, many expressions can not be transformed

using only associativity and commutativity into such a form

as to give the minimum tree height. Use of distribution is

required almost every time. Given any expression E<n>, by the

use of assosiativity, commutativity and distributivity, it

can be transformed such that

T[E<n>] <= 4 log n

with number of processors P <= 3n.

4.2.2 Distribution Algorithm:

To guide about when to use the distribution for the

minimization of tree height, an algorithm is required. This

38

will be called as distribution algorithm. As we know, the

number of leaves in a balanced binary tree is the integer

power of 2. So, if there are 2n operands which can be used

simultaneously, they will form a part of the balanced tree.

If this -is not the case, then a 'hole' will be there, which

has the capacity to include some more operands in the same

height. This point gives one possibility of getting a reduced

height tree than the earlier one. This could be better illus

trated with the help of examples. Let the expression be:

X = a * {b * c * d + e)

Here there are two multiplications in the term inside

the paranthesis which has three operands b, c, and d. This is

not the whole power of 2 and we say that there is a hole

available in it. This hole can be filled by any extra operand

without affecting the tree height. This operand can be ob

tained, if we distribute the multiplication over addition to

get the expression as:

X = a * b * c * d + a * e

Now the hole has been filled and the tree height which

was four earliar, is reduced.to three.

Now consider the expression

X = a * {b * c + d) + e

in which the paranthesized expression c9ntains no hole.

This is because we won't get the reduction in tree height

39

after the distribution is applied. The expression

a * (b * c + d) and its distributed form

a * b * c + a * d have the same tree height.

But the expression X requires four time units in evalu

ating in its original form whereas the distributed form:

X = a * b * c + a * d + e

requires only three steps. This is because one ~pace

which is empty, is filled by the operand •e•. This is called

the space filling operation and it reduces the tree height

for the above example because the lowest height trees for

a*b*c + a*d and a*b*c + a*d + e are of equal height while the

lowest tree for a*(b*c + d) + e is heigher than that for

a*(b*c +d). What happens here is that a*(b*c +d) is opened

by distributing a over b*c + d and the "space'' to place 'e'

is created.

Given an assignment statement A, the distribution

algorithm derives the assignment statement Ad by distributing

multiplications over additions properly so that the height of

Ad, denoted by h[Ad] is minimized. The algorithm works form

the innermost paranthesis level to the outermost paranthesis

level of assignment statement and requires only one scan

through the entire assignment statement. Let us assume that

additions and multiplications require the same amount of

time, i. e. one unit of time.

40

The minimum height of tree using only the associative

and commutative laws can be built as follows. Let us assume

that either A= sum of (ti) or A= product of (ti), where ti

denotes arbitrary arithmetic expression, including single

variables. Let for each i a tree of minimum height T(ti) has

been built. Then first we choose two trees, say T(tp) and

T(tq], each with a-height smaller than the height of any

other tree. We combine these two trees and replace them by a

new tree whose height is one higher than the maximum of

{h[tq], h[tp)}. These procedure is repeated from innermost

paranthesis level to the outermost paranthesis level, and at

each level it is repeated until all trees are combined intQ

one tree.

To see the effect of distribution of multiplication

over addition, let us examin all the ways, paranthesis can

occur in an expression. There are only four possible ways:

pl. • • • + (A) +

where # denotes either addition or multiplication or no

operation.

From careful inspection we can conclude that distribu

tion in case P3 and partial distributionin case P4 are the

41

only cases that should be considered for lowering tree

height. In cases P1 and P2 , removal of p'renthesis leads to a

better result or at least gives the same tree height. Full

distribution in case P4 always increases the tree height and

should not be done. Also, it should be clear that in any case

the tree height of an arithmetic expression ~annot be lower

than that of a componant term even after distribution is

done. This assures that evaluation of distribution can be

done locally. that is,· if the distribution increases the tree

height for a term, then the distribution should not be 'done

because once the tree height is increased, it can never be

remedied by further distributions.

At each level of paranthesis pair, for cases P3 and P4 ,

instances of holes and spaces are checked and proper distri

bution is performed.

In brief, the algorithm goes as follows. Start from the

innermost parenthesis level and find the 'hole' and •space•

available in that. See if it can be filled using the distri

bution. Then go to the next parenthesis level and repeat the

same. At each level, it is necessary to check the tree height

to insure that it has not become more than the original tree

height. In that case the remainig distributions will unneces

sarily be done and it is beneficial to leave the attempt for

the reduction of tree height. The same process is repeated

until we come to the outermost parenthesi~ level. Before the

use of distribution, the application of associative and

42

commutative laws should be applied where_ever possible. If

this does not reduce the tree height, it is sure that it

won't increase also.

The algorithm reduces the tree height. But it should be

noted that it does not give the minimum tree height arith

metic expression, e.g., it does not factor the expression

A = a * c + a * d + b * c + b * d into

A'= (a + b) * (c + d)
/

to reduce the tree height.

Subtractions can be introduced into an arithmetic

expression without affecting the distribution algorithm. The

only modification necessary is to change operators as re

quired, e.g., A= a+ b- (c +d) for A= a+ b- c -d.

Divisions may require special attention since a numerator

cannot be distrbuted over denominator, e.g.,

af(b + c +d) <> afb + afc + afd.

Hence in general, tree height reduction is done for the

numerator and denomenator independently, then distribution.of

the denominator over the numerator is considered.

4.2.3 Recurrence Relations:

Linear recurrences share with arithmetic expressions a

role of central importance in computer design and use, but

they are somewhat more difficult to deal with. While an

43

expression specifies a static computational scheme for a

scalar result, a recurrence specifies a dynamic procedure for

computing a scalar or an array of results. Linear recurrences

are found incomputer design, numerical analysis, and program

analysis, so it is important to find fast and efficient ways

to solve them.

Recurrences arise in any logic design problem that is

expressed as a sequential machine. Also, almost every practi-

cal program that has an iterative loop contains a recurrence.

Not all the recurrences are linear but a vast mejority ,found

in practice are.

Consider the problem of computing an inner product of

vectors a= (a1 , a 2 , ... , an) and b = (b1 , b 2 , , bn).

In the recurrence form this can be written as

X = X + a·b· 1 1 1 1 <= i <= n

where x is initially set to zero and finally set to the

value of the inner product of a and b.

This equation can be exp~nded by substituting the right

hand side into itself (statement substitution) as follows:

x = a 1 b 1

x = a 1b 1 + a 2b 2

x = a 1b 1 + a 2b2 + a 3b 3

44

After n iterations we can have expression which can be

mapped onto a balanced binary tree.

As another example of a linear recurrence which pro

duces a scalar result, the evaluation of degree n polynomial

Pn(x) in Horner's rule form can be expressed as:

p = ai + -xpi 2 <= i <= n

where p is initially set to a 1 and finally set to the

value of Pn(x).

Evaluation of recurrence relations on parallel machines:

As we saw earliar, how the recurrence relations can be

expanded to give a set of equations by the substitution of

right hand side into itself. If only the final value is

required, the last equation can be treated as the arithmetic

expression, which can be parallelize using the methods dealt

for the same. The tree (syntactic tree) is formed which then

is reduced in the height to form the balanced binary tree. If

instead of only the last value, we require all the values

from 1 to n, then another approach is to be applied. The

method can be explained with the help of an example:

Take the example of solving the set of n linear equa

tions with the help of Gauss method. We will be able to

45

transform the given equations into the lower triangular

matrix form as given below :

x1 = c1

x2 = a11x1 + c2

X3 = a21x1 + a22x2 + c3

The value of x1 which is known from the first equation

to be equal to c 1 , is broadcasted to all the equationns and

the first column is calculatated simultaneously and the

values of constants are added in all by n processors in one

step. Now we have the value of x2 which is again broadcasted

to the remaining (n-1) equations and the second column is now

evaluated and added to the previous result to give the value

of x 3 . This procedure is repeated till the last value xn is

evaluated. Thus each step consists of broadcasting the previ

ous value, multiplication with the coefficients and ~ddition

to the previous result. We require (n-1) processors in the

first step, (n-2) in the second and fewer thereafter. Thus

only (n-1) processors are sufficient fo~ this method.

If we solve these equations with the single processor

machine, we have to perform 2 operations (1 addition and 1

multiplication) for evaluating x 2 , 4 operations for x 3 , 6 for

x 3 and similarily, 2(n-1) for xn. Thus the total operations

required by a single processor machine is given by

46

Ts = 2 + 4 + 6 + . . . + 2(n-1)

= 2 (1 + 2 + 3 + . . . + (n-1)]

= 2 (n(n-1)/2]

= n(n-1)

= O(n2)

On the parallel machine, by the method described above,

the time taken in solving the set of equations is given by:

TP = 2(n-1)

= O(n)

Hence the speedup 'obtained by the above method is

=

n(n-1)

2 (n-1)

n/2

The efficiancy of the system is given by

=
n/2

(n-1)

> 1/2

The efficincy of the above described method is more

than fifty percent and also this method is of order n in

comparision with n 2 of the serial algorithm. Hence it can be

said that this method is quite reasonable.

47

4.3 LOOPS

A parallelizing compiler explores parallelism and

generates parallel code to take advantage of the underlying

parallel architecture. In order to be valid, any transferred

parallel code of a given program must honour the dependence

constraints in that program. It is true in general that the

more precisely and completely dependence information is

explored, the more efficient parallel code can be generated.

Loops construct a major part of any program and are most

difficult to parallelize. It seems, at first sight that loops

can not be parallelized, as each iteration requires the value

of the previous iteration. But it is not the case, as will be

seen shortly. There will be some independent iterations which

can be executed in parallel by different processors. The aim

here is to explore the iterations which may be evaluated

simultaneously and run them in parallel.

In a loop, there will be two kinds of depndencies

present. One is the dependence of one statement on the other

of the loop body, and the other is the dependence of one

iteration on the other. The first one is the same as dealt in

earlier in the chapter 'Dependence Analysis' and is very

simple in comparision to the second kind of dependency. Here

we will see the dependence constraints among different

iterations and will make an attempt to remove them to the

extent possible.

48

A DO loop in which no cross· iteration dependence

relation is present is called a DO all loop. All the

iterations of such a loop can be executed in any order or

even simultaneously without any extra synchronizat~on.

Parallelizing a DO all loop is simply assigning iterations to

different processors.

On the other hand, a loop is termed DO serial loop if

some cross iteration dependences exist. To obey dependence

constraints, a DO serial loop can be simply executed in

serial by a single processor. However, any nested loop can be

executed in parallel as long as the cross iteration

dependences are satisfied.

There are some major difficulties in parallelizing

nested loops which carry cross iteration dependences. First

to correctly insert synchronizition primitives, compilers or

programmers have to find out all cross iteration dependences.

It is very difficult to find a dependence analysis technique

which can effectively find out all cross iteration

dependences unless the dependence pattern is uniform for all

iterations. Second, even though all cross iteration

dependences can be identified, it is difficult to

systematically arrange synchronization primitives especially

when the dependence pattern is irregular. Also, the

synchronization overhead which will significantely degrade

the performance should be minimized.

49

4.3.1 simple Loops

There seems to be very less scope for parallelization

in case of simple loops. But there are some cases where we

will be in position to execute that in parallel. Take for

example the execution of the following loop:

DO 10 i- = 1 ,n

x(i) = a(i-1) * x(i-1)

10 CONTINUE

We must usually repeat the computation sequentially for

each index value, if the value of x(n) is to be calculated.

In other words we have to calculate the following set'of -n

statements sequentially:

x(1) = a(O) * x(O)

x(2) = a(1) * x(1)

x(n) = a(n-1) * x(n-1)

Instead of computing sequntially, we can get the value

of x(n) in comparatively less time if we use the

backsubstitution to get the value of x(n) and execute that in

parallel using the tree height reduction technique.

x(n) = a(n-1) * x(n-1)

= a(n-1) * a(n-2) * x(n~2)

= a(n-1) * a(n-2) * * a(1) * a(O)

50

This will be competed in time of the order of log n in

comparision to the order n for the serial calculation.

The different iterations of a loop will be executed in

parallel if the body consists of vector elements, for

example:

DO 20 I ~ 1, 100

A(I) = B(I) + C(I)

20 CONTINUE

.Here the 100 iterations of the loop will be computed in

one time unit if we use 100 processors. Each variable is a

vector array and stores all hundred values in hundred memory

locations. Corresponding values are used by · different

processors and the values of other locations are not of any

use to that.

Simultaneous execution of statements in a loop:

The statements in the body of a loop can be executed in

parallel with slight modifications which make them

independent. Take, for example, the following loop:

DO 10 I = 1, 40

A(I) = A(I-1) * B(I-1)

B(I) = A(I) I 4

10 CONTINUE

51

Sl

S2

In the above example, the two statements S1 and S2

cannot be executed in parallel for all values of I. However,

S1 and S2 can be·computed simultaneously when I varies

'sequentially if the index expression in S2 is changed as

follows:

DO 10 I = 1, 40

A(I) = A(I-1) * B(I-1)

B(I-1) = A(I-1) I 4

10 CONTINUE

S1

S2

Now the two statements are independent and hence can be

computed concurrently.

Partial execution of loops:

In some cases it is not possible to parallelize the

whole loop as given. In that case we look for the partial

parallelization. This will be clear from the example bellow:

DO 20 I = 1, 100

B(1) = A(2*I + 500)

A(7*I + 35) = C(I) * C(I+1)

20 CONTINUE

S1

S2

Here, the two statements don't seem to be independet

and infact they are not for all values of I. But for values

of I < 95, the computation of S1 does not use a result of S2.

So, for these values, S1 may be computed simultaneously. But

for I > 94, the loop must be computed sequentially.

52

4.3.2 Nested Loops

The case of nested loops is more promising and a

challenging job and will be explored now. It has to be noted

that we will not always be in a position to parallelize any

kind of loop. Only a few very simple loops in which the cross

iteration dependences can be easily found, can be made to run

in parallel.

wave Front Method:

For loops with cyclic dependencies involving variables

with more than one subscript, the wave front method may be

used to parallelize the loop to some extent. It effectively

extracts the array operations from the loop. In evaluating

the value of a variable in a particular iteration we may

require some values from the previous iterations. Thus it

seems that the present iteration can not be executed until

unless the previous iterations have been performed. But it is

to be noted that not all the values of previous iterations

will be required. The present value is dependent only upon a

few of them. This basic point is exhausted in the wave front

method. We can always calculate all those values in parallel

which are not required by each other.
\

As the same statements are executed in each iteration,

there becomes a specific pattern of the values which can be

calculated simultaneously in each iteration. This specific

pattern is called the wave front and it may be a line, a

53

plane or

statements

any

in

other

the

pattern. This will

loop i.e. the body

depend

of the

upon

loop.

the

The

objective here is to find out that perticular pattern and

execute all points on that in parallel.

BxlDlpl.es:

10

DO 10 I = 1,10

DO 10 J = 1,10

A{I, J) = A{I, J-1) + B{J)

CONTINUE

To evaluate this on a single processor system would

require 100 unit time steps for addition. However on a

parallel machine the ten statements given below can be

computed simultaneously in I while J takes on the values 1,

2, 3, ... , 10, sequentially.

A{1, J) = A{1, J-1) + B(J)

A{2, J) = A{2, J-1} + B(J)

A{10, J) = A{10, J-1) + B(J}

Thus the the computation time is reduced to ten units.

Here we calculated all the operations simultaneously

along a line parallel to the J axis. Thus the wave front in

this case is a line. Instead of calculating along J axis, we

may also use the I axis and will end up with the same result.

54

We can further reduce the time by using back

substitution and building a minimum height tree for each of

these ten statements. Thus we have for each I,

A(I, 10) = A(I, 0) + B{1) + ..• + B{10)

This can be computed in four time units.

Now consider the another example:

DO 10 I = 1, L

DO 20 J = 1, M

DO 30 K = 1, N

U(J, K) = [U(J+1,K) +. U(J,K+1) + U(J-1,K)

+ U(J,K-1)]

30 CONTINUE

20 CONTINUE

10 CONTINUE

The above loop will take LMN time units on a sequential

machine. We want to speed up the execution by performing some

of the operations concurrently. First take the inner two

loops only. At first instance it seems that the value of

U(J,K) is dependent upon all previous values of current and

next values of last iteration. But there is, however, a

parallel

of the

structure that can be exploited here. If the cells

matrix are laid out on a chess board, then the

iteration of the program shows how to update the value of a

black squire by adding the values of the neighbouring white

squires and similarily, how to update a white squire by the

55

values of its neighbouring black squires. The black and white

squires form two sets of variables, since no white squire

depends directly on a white squire and no black squire

depends upon the black squire. In fig(4], it is seen that in

order to calculate U(l,l), only values of U on edge points

are needed. To calculate U(1,2) and U(2,1) we require only a

value on the edge point and U(l,l). More generally, to

calculate values of U on a given diagonal, we require the

values of U on the previous diagonal. Hence all the diagonal

elements can be calculated simultaneously.

Here the wave front is the line parallel to the digonal

of the squire. So, if we calcculate the values of U along the

transformed axis J' and K' such that

J' = J + K

K' = K

we will be able to calculte the diagonal. values

concurrently.

After the transformation, the inner two loops become

DO 20 J' = 2, M+N

DO 30 CONC FOR ALL K'

U(J'-K',K') = [U(J'-K'+l,K') + U(J'-K',K'+l)

+ U(J'-K'-l,K') + U(J'-K',K'-1)]

30 CONTINUE

·20 CONTINUE

56

K

5

4~~

3 ~--"!<--....:;.-..::...

2~---l~--+-~~

1~~~~4----~~

4 5

The execution of the above loop will require only M+N-1

squential iterations instead of the MN iterations necessary

for the computation of the original loop.

Now we will consider all the three loops with the three

indices I, J, K of the above considered example. It is seen

that the values at planes parallel to 2x + y + z = constt.

are independent and hence can be calculated in parallel. This

is equivalant to the transformation

I' = 2I + J + K

J' = I

K' = K

After this transformation in the loop, we get the

following program segment:

DO 10 I' = 4, 2L + M + N

DO 20 CONC FOR ALL (J', K')

U(I'-2J'-K',K')

20 CONTINUE

10 CONTINUE

(U(I'-2J'-K'+1, K')

+U(I'-2J'-K', K'+1)

+U(I'-2J'-K'-1, K')

+U(I'-2J'-K', K'-1)]

Here, the computation requires 2L+M+N-3 sequential

iterations instead of the LMN iterations necessary for the

computation of the original loop.

57

It should be noted that the wave

applicable to the arrays of more than two

front method is

dimensions only.

This method is of no use fo~ one dimensional arrays, since it

degenerates to a serial computation in this case. In those

cases we will consider, the cyclic dependence as a linear

recurrence relation and can make them to execute in

parallel.

The diagonal scheme has one more serious disadvantage.

Some diagonals will be very short while the others may be

quite large. As all elements of a diagonal are to be executed

in parallel, the no of processors in the case of a long

diagonal will be greater than the case of shorter diagonal.

Thus many processors will remain idle for a large portion of

time which limits the efficiency.

Distribution of loops:

For acyclic graphs, it has been shown that the

statement substitution can be performed between any pair of

nodes which have a dependence relation. As in a block of

assignment statements, we substitute for each LHS variable of

one statement, the RHS of another

cause of dependence relation, the

expression properly shifted.

statement, which is the

corresponding arithmetic

By applying statement

substitution, the dependence relation is removed and a set of

independent assignment statements results. Each of these

represents a vector assignment. statement, all of which can be

executed simultaneously.

58.

In loops with acyclic graphs, it is possible to reduce

the graph for the entire loop to a set of independent nodes

representing simultaneously executable array statements. By

distribution of loops we mean the distribution of the loop

control statements over individual or collections of

assignment statements contained in the loop. The purpose of

distributing a given loop is to obtain a set of smaller size

loops,which upon execution give results equivalent to the

original loop. By this it will be possible to reduce the

dependence among them and thus they can be made to run in

parallel. The distribution of loops is similar to the

distribution in arithmetic expressions and may introduce more

parallelism into a program loop than that obtained from an

undistributed one.

The loop distribution algorithm goes as follows. By

analyzing subscript expressions and indexing patterns, first

a dependence graph G is constructed. On this graph G we get

the partition of nodes and form a set in such a way that any

two statements in the set are in same subset if there
\

dependence relations constitute a cycle. Then a partial

ordering on this block is established and the blocks should

be sequenced such that the origin of an arrow is executed

before its end. Now we can replace the original loop by

loops for different blocks obtained so far.

If the dependence graph is acyclic, then assignment

statements are handled as expressions for array operations.

If the dependence graph is cyclic, the blocks are handled by

59

the recurrence method. The condition for partial ordering

relation insures that data are updated before being used.

Hence, any execution order of the set of loops which replaces

the original one ~ill be valid as long as this relation is

not violated. In general, we can also use the statement

substitution to remove this relation between. some or all of

the distributed loops.

EXamp~e: To understand the loop distibution, take the

following program:

10

20

30

40

50

DO

DO

DO

50 I =

A(I) =

30 J =

D (J} =

E(J)

40 K =

G(K} =

H (I) =

1, N

B(I) * C(I)

1, N

A(I-3) + E(J-1)

D(J-1) + F

1, N

H(I-5} + 1

A(I-2} + 3

S1

S2

S3

S4

S5

The dependence graph of.this program is shown in the

fig(5.1). Loop nesting has been denoted using brackets.

Now we form the partition p = {p1, p2, p3, p4} where p1

= {S1}, p2 - {S2, S3}, p3 = {S4} and p4 = {SS}.

The partial orders are now obtained to be (p1, p2),

(p1, p4}, and (p4, p3). This means that the output of pl is

required to p2 and p4 and that of p4 to p3. Hence p1 must be

executed before p2 and p4 and p4 must be executed before p3.

60

r-Eri·~ .:,,;;. I

I
! \ I .
i

I ! I

I ' I lt:._j
! v-
L__

'
'
+ :
(~
v~

Fi;. LJ.~J Distributed Graph

This much information is sufficient to form the distributed

graph which is shown in the fig(5.2].

This graph could be used to compile the given array

operations as follows. First Sl is executed, which is a

vector multiplication. After this either p2 or p4 is

executed. Execution of p2 can be done in parallel by the

method discribed for the simple loops, Execution of p4 is

again a vector operation and can be executed in parallel.

Finally S4 may be executed for all I and. K simultaneo~sly.

This requires the broadcasting of e~ements of the H array to

all elements in the columns of G.

The time required to execute pl, p3, and p4 using O(N)

processors is a constant (independent of N). The overall

execution time is dominated by p2 and is O(log N). The number

of processors required to achive this time is O(N).

In the above example, the statement substitution could

have been used. By using statement substitution, we would

have been able to obtain four p_blocks, all of which could be

executed at once. This would require the execution of several

different operations at one time, while the technique used

above allows all operations at each step to be identical.

Because, p2 dominates the time here, very little additional

speedup would have been possible by the substitution.

61

4.4 IF STATEMENTS

A program written in a conventional language tends to

exhibit little parallelism because· of many control

dependencies due to IF statements. To select an

path that follows an IF statement, one must wait

appropriate

until the

condition part of the IF statement is executed. A model IF

statement is shown bellow:

IF x(I)

THEN S(I)

ELSE T(I)

Here x is a Boolean expression and s, T are assignment

statements. If the value of x is TRUE then the expression S

is evaluated and if the value of x is FALSE then T is to be

calculated.

To parallelize the IF statement, we can make a

according to which we calculate the statements s

simultaneously, before caluclating the condition part

It means, before knowing exactly which path is

scheme

and T

x(I).

to be

followed, we have to calculate the values of all branches.

These values are kept stored with a pointer and one of them

is used when the condition part is evaluated. The remaining

are of no use. Though this scheme causes much overhead in

calculating even the expressions which are not required, it

is naturally an effective way to overcome the serious

limitation on parallelism because of IF statements.

62

4.5 Towards Automatic Parallelization

To convert an existing sequential program into the one

executable on parallel machines is the requirement for fast

and efficient execution of the program. Today, almost all

machines used in any field are based on parallel processing

techniques. More faster chips are available today and

research is still going on in that direction. But the speed

of a physical device cannot be increased beyond a certain

limit. The science is continuously moving towards that limit.

The day is not very far when it will be said that now it

won't be possible to increase the speed of chips any more.

But since, our need for faster execution will never end, it

is an obvious approach to look for the improvement in

software part.

Most of the programs written today are sequential. If

one has to use parallel machines, either a completely new

program is to be developed or the existing program is to be

converted in parallel form. The first approach is hardly

scientific as the unnecessary work has to 'be done in

developing the alredy developed program. So, it is almost

always beneficial to use the second approach.

It is very tedious work to convert the serial program

in parallel form manually and more than that it requires a

large amount of time. If something can be done to reduce this

time, it will save much time and human power. The automatic

parallelization is the right aproach in this direction.

63

By automatic parallelization, it is meant that the

programmer is not to be worried about the conversion, rather

this work is to be performed by the complier itself. The

compiler should be designed such that it accept the

sequential program, check for the portion which can be

parallelized and convert that into the parallel form~

One thing should be noted here that not all the

programs can be changed into parallel form and even in a

program, only some portion can be converted. The compiler has

to identify that portion first and then it should apply the

methods on only those portions.

ALGORITHM

START:

Read the statement S. Check the type of statement.

If it is an assignment statement, GO TO ASSIGN().

If it is an arithmetic expression, GO TO ARITH().

If it is a loop, GO TO LOOP().

If it is

Else goto

ASSIGN () :

i =1.

an IF statement,

OTHER().

10. Find IN(Si) and OUT(Si).

i=i+l.

64

GO TO IF () .

Read (Si).

If it is assignment statement, GO TO 10.

n = i.

For all i = 1 to n

For all j = 1 to n and i <> j

A(k) = IN(Si} int. OUT(Sj}.

B(k) = OUT(Si} int. OUT(Sj).

end (* of loop)

end (* of loop)

If B(k) <> phi for all k then rename the common

elements of corresponding statement S to some other.

Note the statements for which A(k) = phi. These can be

executed in parallel.

GO TO START.

ARITH()

If the

then use

arithmetic expression is recurrence

the back substitution to get

arithmetic expression.

relation,

the simple

20. Read the character of the right side of the expression.

If it is operand, then write as it is.

else

If it is'+', then if the next character is '(',

drop the '('keeping the '+'.

If it is '-', then if next character is '(', drop

65

LOOP()

1t changing all '+' into '-' and vice-versa till

1
) 1 occurs which is then dropped.

If it is 1 * 1 1
/ 1 ,

1
(

1 or 1
)

1 then just keep it.

GO TO 20.

Apply associative and commutative laws such as to keep

one type of operations at one place.

If one or both the operands of 1 * 1 are a group of

operands, then count the number of operands on_each

side. If it is not the whole power of 2 then apply the

distribution law.

Use the distribution algorithm to get the minimum

height tree.

Find the body of the loop. Also see whether it is

simple or nested.

If the loop is simple, use the back substitution to

form an arithmetic expression.

If there are more than one assignment statements, use

the method for assignments statements to parallelize

them.

If the loop is nested, and array variables have been

used, then find the wave front along which all elements

can be computed concurrently.

66

IF()

If there are more than one loops, use loop

distribution.

Keep the condition part as it is.

Find both the 'THEN' and 'ELSE' part of the IF

statement. Both should be executed concurrently.

Parallelize the body Of 'THEN' and 'ELSE part by using

the relevent methods described above.

OTHER() :

Write the statement as it is.

If it is the end of the program, mark the END else GO

TO START.

Illustrative Example

The following program has been taken as an example to

show how the algorithm will work.

(* Sequential example program *)

INTEGER A,B,C,D,E

DIMENSION P(50) I Q(50} I R(50)

DIMENSION S(50, 50)

READ (5, *) A,B,C,D,E

A = B * C

D = B + C

A = A + D + E

67

IF (A > 50) THEN

A = C - B * (D + E) + E * (B*C*D + F) - (E - F) + D

B = B + C * D - E

ELSE
(

N = A

DO 10 I = N-1, 1, -1

A = A * I

10. CONTINUE

B = c I D

E = A - B

END IF

READ (5, *) P,Q,R

DO 20 I = 1, 50

P(I) = Q(I) + R(I)

20. CONTINUE

READ (5, *) S

DO 30 I = 1, 50

DO 40 J = 1, 50

S(I, J) = S(I, J-1) + Q(J) - R(I-1)

40. CONTINUE

30. CONTINUE

WRITE (5, *) A,B,C,D,E

WRITE (5, *) P,Q,R

WRITE (5, *) S

STOP

END.

68

The program written above is capable of being executed

on a sequential machine. Although it does not perform any

sensible work, it is intensionally written such that all

types of parts in an ordinary program are covered here. Now

it will be seen how the algorithm described above works in

this case.

The algorithm starts by reading the statement. All the

statements are kept as it is until we reach the first

assignment statement A = B + c. Now it calculates IN{Sl) and

OUT{Sl).

IN{Sl) = {B, C}

OUT(Sl) {A}

Similarily for all other assignment statements

IN{S2) = {B, C}

OUT{S2) = {D}

IN{S3) = {A, D, E}

OUT{S3) {A}

Now it calculates

B(l) OUT(Sl) int. OUT(S2)

= phi.

B(2) = OUT{Sl) int. OUT (S3)

= {A}

B(3) = OUT{S2) int. OUT(S3)

phi.

69

Now see which one of the above is not 'phi'. Only B(2)

is so, which is equal to {A}. Hence we have to-rename 'A' in

Sl to 'Al'.

Now calculate A(l):

A(l) = IN(Sl) int. OUT(S2)

= phi.

Similarily we find out all other values of. A(k) and

note which of them are 'phi'. As OUT(Sl) and OUT(S2) are. the

elements in IN(S3), we substitute the values of A and D from

Sl and 82 into 83.

Now, the three statements are independent and can be

computed concurrently in one step.

DO ALL CONCURRENTLY

Al = B * C

D = B + C

A = B * C + B + C + E

After this, the algorithm moves to the next statement

which is IF statement. First the body of the 'THEN' and

'ELSE' part is determined and both parts are executed in

parallel.

The first statement in the body of 'THEN' is the

arithemetic expression. As per the algorithm, we first drop

70

the unnecessary paranthesis and apply associative and

commutative laws. After this we get:

A = C + F - (B + E) + B * (D + E) + E * (B * C * D + F)

Now, the distributive law is applied only to the last

term as the number of operands in that are not the whole

power of 2.

After this we get the expression of minimum tree height

as given below:

A = C + F - (B + E) + B * (D + E) + E * B * C * D + E * F

The above expression can be calculated in three steps

only:

step 1.

DO ALL CONCURRENTLY

X = c + F

y = B + E

z = E * F

w = E * B

u = c * D

v D + E

step 2.

DO ALL CONCURRENTLY

r = X - y

s = B * v

t = w * u

71

Step 3.

A = r + s + t + z

Similarily the second expression can be executed in two

steps only:

step 1.

DO ALL CONCURRENTLY

X = B - E

y = C * D

Step 2.

B = X + y

The body of ELSE part consists of a DO loop and two

assignment statements. The loop can be changed into

arithmetic expression using substitution. We get:

A= A* (A-1) * (A-2) * ... * 2 * 1

This can be computed using tree height reduction. The

other assignment statement can be computed simultaneously

with the loop but the third has to be executed in the next

step as the input variables of this are the output of the

previous two.

After this we come across another loop. This has the

array variables and hence can be executed concurrently.

72

DO ALL CONCURRENTLY

P(l) = Q(l) + R(l)

P(2) = Q(2) + R(2)

P(50) = Q(50) + R(50)

The next statement is the nested loop and we have to

apply the wavefront method here. The wave front here is the

line parallel to the I axis. For one value of I, we can

calculate the loop for all J in one step. SimilarilY. all

values for different I can be calculated • The calculations

for different values of I are to be done serially as the two

iterations are not independent for I.

After the loop, we come across the 'write' statements

which as per the algorithm, are kept as they are. Finally,

the end of the program is encountered. This marks the end of

the algorithm.

The example described above gives the general idea ho*

the sequential program may be converted in the parallel form.

73

CHAPTER FIVE

CONCLUSION

' ' I In th1s proJect an attempt has been made to develop the

methods to automatically convert the existing sequential

program into parallel form. All basic parts of an ordinary

program were considered and some ways to parallelize them

were described. For the major portion of time, the

involvement was in the dependence analysis among the

assignment statements, the methods to remove these

dependencies, the ways to parallelize a block of assig~ment

statements, arithmetic expressions, the tree height reduction

technique of parallelization, recurrence relations and use of

back substitution for executing them in parallel. The w~ys

discussed can be used to automatically parallelize the

corresponding part of the program.

Although very little time was available for the main

part of the program, i.e. the loops and IF statements, yet

some ways were described for certain special types of loops

specially for simple loops. The nest~d loops with array

variables were discussed and a method known as wave front

method was explained for there
1
parallelization. Although by

seeing we can know which wave front is to be used in the

given case, no method could be described how the compiler

would know the equation of the wave front. Until unless this

is known, this method is hardly useful in automatic

parallelization. Due to the less time availabe, this has been

left.

74

The loops discussed were very basic in nature and had

one or other constraints imposed. A large veriety of loops

are still left untouched. Some method can be discovered which

can be used for any general loop. Again due to short time the

attempt in that direction could not be successful.

Very little has been done for the parallelization of IF

statements. One way to achive certain degree of parallelism

was explained i.e. execute both the 'then' and 'else' parts

concurrently even before the execution of the conditional

part. Nothing has been described for a loop inside the IF

statement or an IF statement inside the loop. These types of

blocks are usually found and must be considered for effective

parallelization.

The algorithm written is very broad and very small

things which are left in that should ve taken into account.

For example, it was not explaind how the different parts will

be differentiated and what is the demarkation line between an

assignment statement and an arithmetic expression. Even the

read and write statements can be executed in parallel in some

cases but that was left untouched.

The project will be of any use when the algorithm is

converted into the program. This will be making a sort of pre

compiler. This is rather a more difficult work and will take

quite long time. One more thing which was assumed in the

begining is the number of processors available to be more

75

than the

limitation

change in

scheduling

execution.

requirement which is not practical and the

on the processors will make the considerable

the algorithm. Also, we then have to use the

and load balancing techniques for the efficient

The project, it can be concluded, is not just one

project, rather it-is the combination of a large number of

projects. .It is too big to expect the completion of even a

considerable portion of it in such a short duration. The

attept was made to develop the algorithm and a major portion

of it has been done. The things which have been left and

which require the attention, have been listed above. If this

work is enhanced through the points explained, it will prove

to be a major breakthrough in the direction of faster

computing.

76

REFERENCES

1. Banerjee U., Gajski D. D., "Fast execution of loops with

IF statements", IEEE Trans. Comp., C-33, 1984

2. Bernstien A. J., "Analysis of programs for parallel

processing", IEEE Trans. Comp. vol 15, 1966

3. Brent R., "Parallel evaluation of general arithmetic

expressions", .:f· ACM 21, 1974

4. Budnik P. and Kuck D., "The organization and use of

parallel memories", IEEE Trans. Comp., c-20, 1971

5. Chen s. C. and Kuck D., "Time and parallel processor

bounds for linear recurrence systems", IEEE Trans. Comp.

C-24, 1975

6. Chen S. c., Kuck D. and TowleR., "Control and data

dependence in ordinary programs"

7. Enslow P. H., "Multiprocessors and parallel processing"

8. Fang Z., Yew P. c., Tang P. and Zhu c. Q., "Dynamic

processors self scheduling for general parallel nested

loops", IEEE Trans. Comp. vol 39, 1990

9. Hellerman H., "Parallel processing of algebraic

expressions", IEEE Trans. Comp. vol 15, 1966

10. Jaminsion L. H., "Characteristics of parallel algorithms"

11. Karp R. M. , Miller R. E. and Winograd S. , "The

organization of computations for uniform recurrence

equations", J. ACM 14, 1967

12. Kuck D. J., Muroka Y. and Chen s. c., "On the number of

operations simultaneously executable in Fortran like

programs and their resulting speedup", IEEE Trans. on

Computer, C - 21, 1972

77

13. Kuck D. J., Lawie D. H. and Sameh A., "High speed

computers and algorithm organization"

14. Lamport L., "The parallel execution of DO loops", Comm.

ACM 14, 1974

15. Li Z., Yew P. c. and Zhu c. Q., "An efficient data

dependence analysis for parallelizing compilers", IEEE

Trans. Parallel and distributed systems, Jan. 1990

16. Manzo M. D., Frisiani A. L., Olimpo G., "Loop

optimization for parallel processing", The Comp. J. vol

22 no. 3.

17. Muller D. E. and Preparata F. P., "Restructuring of

arithmetic expressions for parallel execution", J. ACM

23, July 1976

18. Stone H. s., "An efficient parallel algorithm for the

solution of tridiagonal linear system of equations", J.

ACM 20, 1973

19. Stone, H. s. " High performance computer architecture"

20. Ten H. Tzen and Lion M. Ni, " Dependence uniformization

A loop parallelization technique", IEEE Trans. on

Parallel and distributed systems, May 1993

78

	TH51310001
	TH51310002
	TH51310003
	TH51310004
	TH51310005
	TH51310006
	TH51310007
	TH51310008
	TH51310009
	TH51310010
	TH51310011
	TH51310012
	TH51310013
	TH51310014
	TH51310015
	TH51310016
	TH51310017
	TH51310018
	TH51310019
	TH51310020
	TH51310021
	TH51310022
	TH51310023
	TH51310024
	TH51310025
	TH51310026
	TH51310027
	TH51310028
	TH51310029
	TH51310030
	TH51310031
	TH51310032
	TH51310033
	TH51310034
	TH51310035
	TH51310036
	TH51310037
	TH51310038
	TH51310039
	TH51310040
	TH51310041
	TH51310042
	TH51310043
	TH51310044
	TH51310045
	TH51310046
	TH51310047
	TH51310048
	TH51310049
	TH51310050
	TH51310051
	TH51310052
	TH51310053
	TH51310054
	TH51310055
	TH51310056
	TH51310057
	TH51310058
	TH51310059
	TH51310060
	TH51310061
	TH51310062
	TH51310063
	TH51310064
	TH51310065
	TH51310066
	TH51310067
	TH51310068
	TH51310069
	TH51310070
	TH51310071
	TH51310072
	TH51310073
	TH51310074
	TH51310075
	TH51310076
	TH51310077
	TH51310078
	TH51310079
	TH51310080
	TH51310081
	TH51310082
	TH51310083
	TH51310084
	TH51310085
	TH51310086
	TH51310087
	TH51310088
	TH51310089
	TH51310090
	TH51310091
	TH51310092

