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CHAPTER ONE 



Il'IIRODUCTION 

There has been tremendous growth in interest in paral­

lel architecture and parallel processing in recent years, 

resulting in dozens of new machine designs, prototypes and 

programming languages for parallel and distributed computing. 

This basic research- in architecture has led to over a dozen 

commercially available parallel systems. However comparative­

ly little research has attacked the problem of how to charac­

terize the parallelism in programs and algorithms. To improve 

the performance of the computers it is necessary that the 

parallelism in the programs is explored and exploited. 

Developing more powerful computers can be done either 

by increasing the hardware speed or by searching for new 

computing techniques. In modern supercomputing design both 

ways have been followed. Most supercomputers are grownup 

derivatives of the well-known von Neumann processor architec­

ture, widely in use today. The speedup of this basic archi­

tecture is based on improving the memory organization, en­

hancing the processor speed and applying parallel processing 

techniques. 

The communication path between the processor and the 

memory for fetching instructions and reading or writing data 

limits the amount of work that can be done between two memory 

accesses. An instruction normally involves the following 

phases: 
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IF Instruction Fetch 

ID : Instuction Decode 

OF Operands Fetch 

EX Execute 

Memory Action 

Processor Action 

Memory Action 

Processor Action 

Clearly, the speed of execution depends to a large 

extent on the memory bandwidth. A first way to enhance the 

processing power is to increase the memory acces~ibility 

through a wider data bus. Whereas in conventional computers 

the databus is 16 to 32 bits wide, supercomputers use a 64, 

128 or even 512 bits wide datapath. 

In conjunction with the wider bus. a faster memory is 

used. Since most supercomputers obtain their maxfmum speed on 

processing large arrays of data, memory speed is of prime 

importance. The slow processor_memory interconnection is the 

bottleneck of the von Newmann architecture. In order to 

circumvent this bottleneck, which is largly due to the tech­

nological limitations of the memory, a technique known as 

interleaving allows to create a virtual access time of a few 

nanoseconds, when the proper conditions are met. The memory 

is organized in n banks in which the data at location with 

address i is stored in bank i mod n. This organization allows 

to access the consecutive array elements in shorter time. 

In a balanced system, the processor speed has to match 

the speed of the memory. Increasing the processing speed 

starts by using a faster technology e.g. by using ECL, higher 

integration, greater clock rate, smaller dimensions in order 

2 



to obtain a lower propagation time, and the like. Most of 

these measures have been taken in advance machines, thereby 

paying a high price for approaching the borders of todays 

physical possibilities. 

The only way to increase the processing power beyond 

the physical and economical limits of conventional architec­

ture, is to operat~differant processors in parallel on the 

same program. When the experimental dataflow architecture is 

excluded i.e. if only program driven instead of data driven 

execution is considered, then the well known Flynn _ topology 

is helpful in classifying the existing supercomputer archi­

tectures. Flynn discerns single (S} or multiple (M} instruc­

tion (I} and data (D) streams, and forms four theoratical 

architectures, of which the closest real architectures are : 

SISD 

SIMD 

MISD 

MIMD 

the conventional von Newmann architecture. 

the array processors. 

the pipelined processors. 

the shared memory multiprocessors. 

In array processors several independent identical 

arithmetic units (ALU} or processing elements (PE} operate in 

parallel under supervision of the control. unit (CU). 

Conversely, in pipeline computers, a single datum is 

operated upon by the different stages of one functional unit 

(FU}. Parallelism is achieved by the simultaneous execution 

of the different stages on a stream of sequential data. 

In the two preceding techniques, the execution time of an ele-
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mentry operation of a processing element or a pipeline stage 

is one time unit. This facilitates the synchronization be­

tween processing elements, since all PE's operate in lockstep 

under control of the same clock. 

Multiprocessors on the other hand allow different 

processors to execute parts of the program asynchronously. 

While this allows greater flexibility, such an architecture 

also requires a fast synchronization system. This is probably 

the rna~ reason why today's supercomputers don't use multi­

processing techniques in general. 

It is clear that there is no single answer to the need 

for faster processors. There are a number of techniques, and 

the computer architects have realized machines with a great 

peak performance only from the blend of the following tech­

niques : 

Fast processor and memory technology. 

Wide high speed data bus. 

Multiple pipelining 

Lockstep operation 

Array processing. 

supercomputers ars not the product of a nicely de­

veloped breakthrough in computer architecture, but incorpo­

rates a balanced mix of all known technologies to speed up 

the processing power, whose selection ultimately is based on 

economical tradeoffs. 
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There are two approaches in implementing parallel 

processing. The first and obvious approach is to develop 

completely new programs based on new algorithms that are 

suitable for parallel processing. This approach is guarunteed 

to result in very good programs in terms of both execution 

speed and efficiancy. However it is generally difficult to 

write a program for parllel computer. The reasons are : 

1. Difficulty in exploiting parallelism. It is not an easy 

task for a programmer to divide a program into a set of tasks 

that are executable in parallel. 

2. Difficulty in utilizing processors effectively. It is a: 

difficult task to perfectly balance the load equally in all 

the processors available so that no processor sit idle. 

Another approach is to let the compiler expose and 

exploite parallelism from an existing or ordinary program. 

Compilers for a vector computer have been developed and are 

being used extensively. These compilers are not powerful 

enough to apply to a parallel processing computer, however. 

In vector computers, parallel computation is done only in 

terms of vector data. Scalar operations cannot be computed in 

parallel even if they are independent of each other. Simi­

larily independant tasks cannnot be computed in parallel. A 

parallel processing computer on the other hand, has more 

freedom. Any independant operations may be computed simulta­

neously. Hence, although, it is sufficient for a vector 

computer compiler to check only whether operations on ele-
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ments of a vector can be performed simultaneously, a parallel 

processing computer compiler must do more. It must extract 

and expose more parallelism. 

In this project, an attempt has been made to discover 

operations that may be performed simultaneously by examining 

programs at the statement level and the ways to execute them 

in parallel have been explored. 
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CHAPTER TWO 



PARALLEL ALGORITHMS 

2.1 CHARACTERISTICS OF PARALLEL ALGORITHMS 

Parallel algorithms can be characterized in many ways, 

along a number of dimensions. Similarily, parallel architec­

tures can be described in terms of a number of atributes. 

Ideally, a set of orthogonal characteristics would describe 

parallel algorithm and a corresponding set of orthogonal 

characteristics would describe parallel architectures, w~th a 

unique bijection performing the mapping from one to the 

other. Experience shows that the relationship between paral­

lel algorithm and parallel architecture is clearly too com­

plex to conform to such a desirable model. In the absence of 

independence, completness therfore becomes relevent goal. 

The main characteristics of the parallel algorithms 

are: 

1. Nature of parallelism 

Data parallelism versus function parallelism: 

Parallelism can be achieved by dividing the data among ~he 

processors, by decomposing the algorithm into segments that 

can be assigned to different processors, or by pipelining. 

The type of parallelism will affect allocation of data , the 

assignment of processes to processors, and basic decision as 

to what mode of parallellism (SIMD 1 MIMD 1 pipeline) to 

use. Function parallelism will almost always imply MIMD 
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operation. Data parallelism will often be amenable to SIMD 

implementation; however, data parallelism alone is not 

sufficient to guarantee good performance in SIMD mode. At 

some level of decomposition, an algorithm must exhibit both 

data and function parallelism in order for pipelined opera­

tion to be applicable. Memory organisation can be tied to the 

type of parallelism in that data parallelism is often well 

imlemented using local memories. The type of parallelism will 

also act as a broad indicator of the number of processors. 

With data parallelism, the number of processors will typical~ 

ly be proportional to the data set size, and utilization of 

large numbers of processors will not be uncommon. Algorithms 

based on function parallelism will more typically use number 

of processors counted in tens rather than the thousands. 

Data granularity: Data granularity deals with the size 

of the data items processed as a fundament-al unit, and will 

have a bearing on the data allocation, communications reqire­

ments, processor capability, and memory requirements. 

Fine_grain algorithms will often be suitable for SIMD br 

pipelined operations using local memories. The data granu­

larity generally will not affect the overall memory reqire­

ments, but may bear on the amount of the memory that must be 

readly accessible to each processor. The data granularity 

will provide an indication of the bandwidth needed to commu- \_ 

nicate a single data item. 

Module granularity: Module granularity quantifies the 

amount of processing that can be done -independently, either 
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of other processes or of operations being performed in other 

processors. It is essentially a measure of the frequency of 

synchronisation, and will affect the choice of SIMD versus 

MIMD operation, the assignment of the processes to proces­

sors, the memory organisation, the comunication requirements, 

and the likelihood of equalizing the execution times of 

componant parts of the algorithm. Algorithms characterized by 

fine_grain module granularity will require frequent synchron·-

isation. If possible, SIMD or pipelined execution, in which 

communication can be performed with less overhead than in 

MIMD operation, willbe prefered, as will a local memory 

organization. Because of the frequent communications, a fast 

network capability is imperative. Large_grain algorithms 

typically have less of a' need for efficiant communications. 

The large amount of processing done between synchronization 

points often suggests MIMD execution. 

2. Degree of parallelsim: This will be related to both the 

data granularity and the module granularity. Its most direct 

impact will be on the choice of machine size and on the 

maximum speed attainable. In addition, degree of parallelsim 

will in practice often be related to the mode of operation 

and the memory organization (with massive parallelsim, 

global memory organization can leed to significant contention 

in accessing memory) . 

3. Uniformity of the operations: If the operations to be 

performed are uniform ( e.g., across the data or feature 

set), then SIMD or pipeline processing is feasible. 

Uniformity will generally be associated with data 

9 



parallelism. If the operation are not uniform, then MIMD 

processing will be choosen and strategies to equalize the 

computational load across the processors may come into play. 

These strategies may be applied statically at compile time or 

dynamically at execution time. 

4. Synchronization ~eguirements: In addition to the 

synchronization requirements implied by the module granulari-

ty, consideration of precedence constraints is implicit in 

characterizing the synchronization requirements. This will 

affect the assignment of processes to processors and the 

scheduling of various components of the algorithm. 

5. Static/ dynamic character of the algorithm: The pattern 

of process generation and termination will affect the proces-

sor utilization, the scheduling of sub processes, the mode of 

processing, the memory organization and the communication 

requirements. Identification of an algorithm as being dynam-

ic generally rules out SIMD or pipelined execution. A dynam-

ic algorithm will need to be supported by either a global 

memory organization or a communication network and an I/O 

system capeble of providing a fast means of loading the local 

memories with the data and code needed for a few process. 

6. Fundamental operations: The basic operation performed in 

the algorithm will dictate the processor capabilitie~ needed. 

To the extent that the operation identified as being the 

basic unit of processing also determines some communications 

requirements, this characteristic will also have a bearing on 

the network and memory organization. 
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7. Data ~and precision: The atomic data types and data 

precision will bear most directly on the individual processor 

capability and on the memory requirements, but may also imply 

requirements for communications bandwidth. 

8. Data structures: Many algorithms can be characterized as 

having a natural data structure on which operations are 

performed. The ability of an architecture to support the 

needed access patterns, to exploite possible regularity .in 

the structures, and to allow the needed interactions bet~een 

parts _of the structures wi11 affect algorithm performance. 

In using the algorithm characteristics, it is necessary to 

make a distinstion between an attribute that is required for 

a particular architecture implementation and one that is 

prefered. For example, uniformity is a requirement for SIMD 

processing; although it is possible to construct an SIMD 

implementation of a non_uniform algorithm, performance will 

be so bad that it is not reasonable implementation to consid­

er. In contrast, if an algorithm has a high degree of uni­

formity, then, depending on its other attributes, it may be 

that an SIMD implementation is preferable, but an MIMD imple­

mentation may run only slightly more slowly. 
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2.2 PERFORMANCE MEASURES 

The performence of any system can be measured by know­

ing the efficincy, speedup and execution time. In the case of 

parallel processing, we will define these terms here. Let a 

group of processes collaborate in an algorithm. Assume that 

the processes are residing in separate machines so that they 

all may execute at the same time. In this case~ if a process 

is idle,it is assumed that the processing power of that 

machine is wasted. 

One more assumption is made, that is, processes do not 

share memory; instead, they communicate by sending each other 

messages. It is assumed that the messages are relatively 

expensive, requiring times on the order of tens of milisec­

onds for delivery. 

Execution time T (p,n,A) : It is the time needed by 

algorithm A to compute a problem of size n on p processors. 

Execution time includes initialization and communication 

time, and is measured from the time the first process starts 

to the time the last one terminates. 

Speedup : Speedup of a parallel machina gives the 

comparision of the time required by that algorithm to the 

time needed in doing the same work by the best known serial 

algorithm. It is defined as: 

Time required by the best serial algorithm 
s (p,n,A) = 

Execution time T(p,n,A) 
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Values of speedup S range from zero to infinity. By 

definition, the value of S(1) will be in between 0 and 1. If 

a comparision is made of the distribution algorithm against 

T(1,n,A), we get a value which is called the rough speedup, 

RS. It is a less honest measure of performance than the true 

speedup. If RS (p) > p, we say that the algorithm exhibits a 

speedup anomaly. It shows that the distributed algorithm is 

poor when p = 1. If the distributed algorithm is the same as 

the serial algorithm for p = 1, a speedup anomaly implies 

that the serial algorithm is suboptimal. 

Efficiency : In case of parallel algorithms we get the 

speedup in comarision to the serial counterpart at the cost 

of more than one processors. The speedup s won't be able to 

tell whether the processors are working at there full 

capability or not. To measure this, we define the efficiancy 

as the speedup obtaind per processor. 

s (p,n,A) 
Efficiancy E (p,n,A) = 

p 

Values of E range from 0 to 1. The rough efficiancy is 

defined analogously to the rough speedup. 

The useful - process point n (p,A) : It is the size n 

of problem that makes it worthwhile to use as many as p 

processors. 

U (p,A) = smallest n such that T(p,n,A) <= T(p-1,n,A) 

In general as the problem size increases, the expances 

of distribution (which may be dependent on p) begin to be 

overweighed by its benefits. 
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Cost factor : This also is a major criterion in 

evaluating any system. The cost of a computer system to a 

user is the money that the user pays for the system, namely 

its price. To the designer the cost is the cost of 

manufacturing including the cost of_the development and 

capital tools for construction. With the developments in 

technologies, the hardware cost of the system is decreasing 

sharply whereas the cost of software is steadly rising with 

inflation and complexity and with apparently little re~ief 

from advances in software tools. 

Software and hardware costs each have two components, a 

one time development cost and a per unit manufacturing cost. 

Because of the production of hardware in bulk, the per unit 

manufacturing cost is very less. But the· one time development 

cost for hardware is much more than the software cost. As the 

user is to pay the per unit price, for him the hardware is 

very cheap. 

We can evaluate the architectures by there cost and 

performance. The effectiveness of an architecture must be 

measured on workloads for which the architecture is intended. 

An architecture that is inefficient because ~f wasted 

resources will compete poorly against the simpler but mor 

efficient architecture. 

There are a dozen more criteria for measuring the 

performance, sUch as maximum program and data size, weight, 
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power consumption, volume and ease of programming, that may 

have relatively high significance in particular cases. But, 

in general the performance will be measured using the 

criteria discussed above. 
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CHAPTER THREE 



DEPENDENCE ANALYSIS 

The first and foremost thing to be taken into consider­

ation whenevr a need to execute serially written program onto 

the parallel machines arises, is to check for the dependence 

relations among the various statements in the program. Any 

two statements may be executed in parallel (or concurrent­

ly) if we get the same result in executing them in any order. 

This is possible only when one is not dependent on the other. 

3.1 Types of Dependencies 

The statements may be dependent on one another in one 

of the following ways : 

1. Da~a dependen~. The second statement may be requir-

ing a few or all the values which are the resultant of the 

execution of the first statement i.e. the output variable of 

the first is the input variable of the second. We say that 

the second statement is data dependent on the first. This is 

called WRITE/ READ dependency as the values of the variables 

being modified (or written) after the execution of the first 

statement are read by the second. 

Examples. 

A = B + C 

D = A + E 

----- s 

----- T 

The above two statements can not be executed in paral­

lel because the variable 'A' to be used in statement 'T' is 

being written (modified) by the statement 'S'. 'T' is thus 
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data dependent on •s•. The statement 'T' must be executed 

after the execution of 'S'. 

For i := 1 to N do 

A[i] := A[i-1] I B[i]; 

end; {* of the loop *} 

In this example, in place of two separate statements, 

we have one statement which is to be executed 'N' times. It 

can be seen that the two iterations are not independent 

because a variable written in previous iteration is read in 

each iteration. 

2. Antidependent. It may be the case that the first 

statement is using some variables which are to be modified by 

the execution of the second statement. In this case also, we 

cannot execute them simultaneously. This is the case just 

opposite to the first one and we say that the second state­

ment is antidependent on the first statement. This is also 

called READ I WRITE dependency as a few varriabls are to read 

by the first statement before those are written by the other. 

Examples. 

D = A + E ---- p 

A = B + C ---- Q 

Here the first statement 'P' uses a variable 'A' which 

is to be modified after the execution of the second statement 

'Q'. Hence the two are not independent and cannot be executed 

in parallel. 
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For i := 1 to N do 

A[i] := A[C[i]]; 

end; 

In this case, if the value of C[i] is less than i then 

there will be READ 1 WRITE dependency among the statements of 

different iterations and if the value of C[i) is greater than 

the value of i then WRITE 1 READ dependency is observed. 

Moreover, if the values of C[i] are computed during execu­

tion, the compiler cannot determine ~hich dependency exists 

and therefore cannot optimize the code. Therfore~ the compil­

er can detect loop to loop dependencies only when all sub­

script expressions in an iteration and the loop increm~nt 

have values known to the compiler. Optimizing compilers are 

forced to assume that the dependencies are present if index 

variables depend on execution_time program behavior. Other­

wise, the optimizing process is likely to produce a translat­

ed program that runs incorrectly. 

3. Output dependent. If the two statements are writing 

in the same memory location allotted for a fixed variable 

then they won't be independent and hence cannot be executed 

simultaniously. Any memory location cannnot be written into 

by more than one processors at the same time and in that case 

any value would be stored, giving the incrrect result. This 

type of dependency is also called WRITE 1 WRITE dependency as 

both the statements are writing in the same variable. 
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Exan1ples. 

A = B + C 

A = C + E 

u 

v 

The above two statements are having the same output 

variable 'A' and thus are output dependent to. each other.They 

cannot be executed in parallel. 

For i := 1 to N do 

A[i] := B[i] * 5; 

A[i-1] .- B(i] + C[i]; 

end; 

Here exists WRITE 1 WRITE dependency as the second 

statement in current iteration is modifying the same variable 

as the first statement in the previous iteration leading to 

the dependency for variable A[i-1]. If the loop index is 

increased by 2 instead of 1, then there is no dependence 

caused by writing two successive values into 'A'. 

The data dependencies in an algorithm will play the 

largest role in dictating data allocation patterns and commu­

nications characteristics. They will also have a major part 

in the decision to use a globol versus local me~ory organiza­

tion. In the characteristics based approach, the handling of 

data dependencies is conceptually a graph isomorphism prob­

lem. The library contains known data dependency structures 

and (potentially multiple different) mappings of these 

structures onto architecture configurations. The purpose of 
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the stored information is to make available mappings which 

experiance has shown to be useful but which might be diffi-

cult or prohibitively time consuming to derive directly. 

Although this approach uses the intermediary of the stored 

database of patterns, the major steps involved in mappping 

the data dependency graph for 'the current algorithm onto one 

of the stored structures are similar to those employed for 

mapping an algorithm directly onto an architecture. 

Although the identification of the communicat~ons 

pattern can be formulated conceptually as a graph isomorphism 

problem, the complexity of graph isomorphism will in most 

cases make the direct and exhaustive test for isomorphism 

infeasible. So the organisation and representation of the 

stored structures is done such that the searching and the 

matching process can be performed efficiantly. The search 

process may be assisted by the inclusion of auxilary infor­

mation with each of the stored patterns. Characterizing the 

data dependencies lies in the heart of the algorithm to 

architecture mapping problem, and there are many approach~s 

to be explored. 

3.2 Detecting Dependencies 

A general procedure for detecting dependencies is to 

list the names of the variables read and written in a loop 

iteration. If a name appears on both lists, it potentially 

leads to a READ I WRITE or WRITE I READ dependence. All 

variables that are written are potentially WRITE 1 WRITE 
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dependences. The compiler has to examine each case further 

to determine if an actual dependence exists. 

Let the set of input and output vari~bles of a 

statement X be defined b~ in(X) and out(X) respectively. Then 

th~ two statements S and T will be said to be independent if 

and only if : 

in(S) int. out(T) 

in(T) int. out(S) 

out(S) int. out(T) 

= 
= 
= 

pbi 

pbi 

pbi 

(1) 

(2) 

(3) 

where 'int.• is the intersection between two sets and 

'phi' denotes the empty set. 

The first condition ensures that none of the variables 

which are being modified by statement T is required for the 

execution of the statement s. The s~cond condition checks 

whether the variables modified by statement s are used by 

statement T or not. The third condition is necessary for 

checking the output dependence, to assure that both 

statements are not writing into the same variable. 

If the above three conditions are satisfied, the two 

statements can be executed in parallel. 

Similarily, for n statements Ti, i = 1, 2 .... , n to be 

executed in parallel the following conditions must be 

satisfied 
~~-'71' ~· 

in(Ti) int. out(Tj) pbi for all i j ... ,.., 6~ = <> '1.0 (S . 

l)l ~ ~, 
out(Ti) int. out(Tj) = pbi for all i <> j ~ I 
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We will be able to execute a certain set of statements 

in parallel if the above dependence relation holds good. 

However, in general, one or other type of dependence will 

always be there. Some of them can be removed by using 

different methods as the case may be. In that case the 

program will be able to run in parallel. But we can not 

remove all the dependencies each time. Where ever it is not 

possible, the statements can not be executed simultaneously 

and that much part of the program is bound to be serial. 

3.3 Removing Dependencies 

Artificial data dependencies impose a constraint on the 

execution sequence of statements and instructions, which is 

not required by the algorithm and therefore limit the useful 

parallelism in the programs. These dependencies can be 

removed by the following methods : 

1.Renaming of variables : A variable is the symbolic 

reference to a memory location. Each reassignment of the 

variable therefore signifies a rewrite of that memory 

location. Consequently, the instructions reading a variable 

have to be sure to read the proper version of that variable. 

This is implicitly guaranteed by the programmer in a 

sequential execution, but creates unnecessary and 

undetectable constraints for a parallel execution. For 

example in the following program 

DO 10 I = 1, 100 

A(I) = I 

B(I) = -I 
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10 " CONTINUE 

DO 20 I = 1, 20 

X(I) = (Y(I - 1) + Y(I + 1)) I 2 

20 CONTINUE 

Although visibly unrelated, the two loops require 

sequntial execution, since they both use the loop variable I, 

which is stored in a unique memory location. 

Another example of the same type. is 

READ (5, 50) N, A 

CALL GAUSS (A, X, N) 

old N, X 

READ (5, 50) N, X new N, X 

CALL ORDER (X, N) 

The use of same memory locations for N and the array X 

prevents a parallel execution. Even an intelligent compiler 

which recognizes the life time of the variables I and X in · 

the previous examples, is incapable to see that programmers 

reuse some variables in different unrelated parts of the same 

program, merely to save memory space. 

) 

The common charecteristic is that variable has a global 

scope and any reassignment of the variable partitions the 

program into two consecutive parts : a first part, using the 

old value and a second part, using the new value of the 
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variable. Such a sequencing constraint is only permitted for 

effective data dependencies in the,algorithm. 

The renaming transformation assigns different names to 

different uses of the same variable. As a consequence some 

output dependence and antidependence relations may be 

removed. 

A = B + C S 

D = A + E T 

A = A + D U 

Here the three statements s, T and U are not 

independent as the variables A and D have been used at more 

than one places, in one statement, for reading and in other, 

for writing. Between statements s and T, there is WRITE/ READ 

dependency as the variable A ·which is to be used by T, is 

being modified by s. In statements T and u, we have READ 1 

WRITE dependency and WRITE 1 WRITE dependency is observed in 

statements S and U. If we rename the varible A as Al at one 

place where it is being written, then the WRITE 1 WRITE 

dependency in statements S and U can be removed. 

Al B + C S' 

D Al + E T' 

A = Al + D U' 
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However, by this method, we can not remove all the 

dependencies. For examle, it won't be possible to rename one­

of the two uses of variable D, as U has to use the value of D 

after the modification is made by the statement T. Thus, by 

this method only READ / WRITE and WRITE / WRITE dependencies 

can be removed and not the WRITE 1 READ dependency. 

2.Forward substitution The data dependencies i.e. 

WRITE/ READ dependencies can be removed by this method. It 

can be done by·substituting right hand side of one·assignment 

statement into the write hand sides of other assig~ment 

statements. 

Example Consider again the same example : 

A = B + C s 

D = A + E T 

A = A + D u 

If we substitute the assignment of variable A from 

statement S into T and U, we will be able to remove the data 

dependency of T and U on s. After the substitution we get 

D = B + C + E T' I 

A = B + C + D U' I 

Again, the assignment of D may be substituted from T'' 

into U' ', to remove the data dependency between them. 

D B + C + E T' I I 

A B + C + B + C + E U' I I 
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Now, the two ,statements T' '' and U''' are completely 

independent and can be executed in parallel. 

3. Scalar expansion : It changes a variable used inside a 

loop into an element of a higher dimensional array. Thus, in 

different iterations, the variable is not modified each time, 

rather, for each iteration, different array -elements of the 

array variable are assigned the respective values. 

Example 

10 

DO 10 I = 1, N 

X = C(I) 

D (I) = X + .1 

CONTINUE 

s 

T 

Here, the different iterations of the loop are not 

independent as the value of the variable X is changed each 

time the value of C(I) changes. If we expand X to make an 

array variable X(I), the different values of c, as I changes, 

will be assigned to coresponding element of the array X(I). 

Now the iterations are independent. 

10 

DO 10 I = 1, N 

X(I) = C(I) 

D(I) = X(I) + 1 

CONTINUE 
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The enforcement of the single assignment rule may 

require an exhaustive amount of memory, especially to store 

the different copies of arrays. However, a careful analysis 

of the data dependencies will allow a more efficient memory 
I 

allocation. Each variable has a limited life time in the 

course of the program, i.e. from its definition upto the 

point where all immediate successor tasks have consumed the 
' 

variable is dead and its memory space can be freed to contain 

the results of other tasks. In contrast to the artificial 

dependency constraints, this recovering of free memory space 

maintains the parallelism. 

y 
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CHAPTER FOUR 



PARALLELIZATION OF SEQUENTIAL PROGRAMS 

Any sequential program consists of the following four 

main parts : 

1. A block of assignment statements 

2. Arithmetic expressions 

3. Loops 

4. IF statements 
I 

To convert the given sequential program, it is neces-

sary to deal with all these parts separately, as each one of 

them will require different methods for parallelization., 

4.1 BLOCK OF ASSIGNMENT STATEMENTS 

In an assignment statement, we modify the value of a 

variable and write into it the value of the right hand side 

of the statement. The right hand side may be a constant, a 

variable, or an arithmetic expression. In the case of arith-

metic expression, the value of the right hand side is to be 

calculated first and then it is assigned to the left hand 

side variable. The calculation of arithmetic expression is a 

problem in itself and requires large attention. This part 

will be dealt in later on. Here we assume that the right hand 

side is very simple and involve~ hardly any mathematical 
I 

calculation. That may be a few additions and multiplications 

which will be performed sequentially and which has hardly any 

scope for reduction in time by paralle~ computation. 
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A block of assignment statements (BAS) is a sequence of 

one or more assignment statements with no intervening state­

ments of any other kind. Given a block of assignment state­

ments, we can rewrite the block after substituting from one 

statement into other and ca~ obtain a set of expressions 

which can be executed simultaneously.· 

Exa:mp~es: The method can be explained with the help of 

following examples: 

X = B + C 

Y = A * X 

Z = X + D 

If we execute this on a sequential machine, we will 

require four steps which will be performed in four time units 

(assuming one time step for each arithmetic operation), 

ignoring memory activity. But we can substitute the value of 

X from the first statement into second and third which then 

can be executed in parallel. It should be noted that before 

substitution, the statements are not independent. 

After statement substitution, we get 

X = B + C 

Y = A * B + A * C 

Z = B + C + D 

This can be evaluated in three steps on parallel ma­

chine. 
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Sometimes, after subtitution, we get the assignment 

statement which involves many calculations. For example: 

A = B * C + D 

E = F + G * H 

I = A + D 

K = A + I * E 

After backsubstitution, we get the value of K as 

K = (B * C + D) + (A + D) * (F + G * H) 

The right hand side can be executed on parallel machine 

by performing different independent operations in parallel. 

This can be done using the methods for parallelization of 

arithmetic expressions which has been described later on. In 

this particular example, the tree height reduction technique 

can be used for the faster execution. 

4.2 ARITHMETIC EXPRESSIONS 

Arithmetic expressions constitute a significant part of 

any program. In the sequential machine, therefore, a major 

part of the time will be spent in calculating the arithmetic 

expressions. Instead of serial computatoin, if we can devise 

a technique, by which more than one operations of an expres­

sion may be performed simultaneously by different processors, 

it would be possible to reduce the time taken in calcula­

tions. 
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In a single processor machine, where each operations 

are to be performed by only one processor, the time taken is 

obviously, proportional to the number of' operations. But, in 

parallel machine, the operations which are independent, are 

allocated to different processors at the same time. The 

results obtained from them are, then combined into one in 

other time slots. The time taken in this case will be, in 

between n and log n where n is the number of operations in 

that expression. Here log n, which gives the best time in 

which 'n' operations can be performed, is the height 'of a 

~anced binary tree of number of leaves equal to the number 

of operations n. The concept of the tree formed by the ex­

pression which is called the syntactic tree, gives one way to 

parallelize the arithmetic expressions. As we know, height of 

the balanced binary tree will be minimum of all the trees 

that can be formed with the same number of leaves. The idea 

here is to make a syntactic binary tree with the given ex­

pression and then try to reduce the height as much as possi­

ble, or in other words, the attempt is to be made in the 

direction to make the tree, a balanced binary tree. 

It won't be possible to reduse all the trees into 

balanced binary tree, because all the operations will not be 

independent and hence a few of them are to be executed only 

after certain operations are performed, even if some of the 

processors are sitting idle at that instant. In this case, 

then the attempt is made to keep the height as low as possi­

ble, not necessarily equal to log n. 
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Here, it is important to note that the amount of paral-

lelism will depend upon the number of processors used, be-

cauce, suppose we have 10 operations in an expression which 

are independent and can be performed in parallel, but if we 

have a machine having only 8 processors, only 8 operations 

can be performed simultaneously. The remaining two.will have 

to be performed in the next time slot. This now becomes the 

job scheduling problem and will not be dealt here. For the 

sake of simplicity, it has been concidered throughout'this 

project that the number of processors available in the ma-

chine is large enough to satisfy the requirements. It is 

assumed that at any instant at least one processor is sitting 

idle to ensure that number of processors is not a constraint. 

An arithmetic expression is any well formed string 

composed of at least one of the four arithmetic operations 

(+ - * ' ' %), left and right parentheses, as needed, and 

atoms, which are constants or variables. Let the arithmetic 

expression E of n distinct atoms be denoted by E<n>. 

In any expression many rules may be applied to change 

the form of that expression. These are: 

1. Associative laws 

2. Commutative laws 

3. Distributive laws 
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The transformation is needed because we are interested 

in making a balanced binary tree. If from the given 

expression the formed tree is not balanced, the different 

forms of the expression obtained using the above laws are 

checked and the tree with the least height is selected. · 

4.2.1 Tree Heiqht Reduction 

The height of the syntactic binary tree can be r~duced 

using different laws as stated above. The details of the 

methods are described below : 

Usinq associative laws : 

Let us illustrate this with the help of examples. Let 

an expression be 

X= [{(a+ b) + c} +d) 

If we calculate it as it is written, it will take three 

time units in obtaining the value of X, even if there are 

more than one processors available. It has become just like 

the sequential calculation on the parallel machine. The use 

of parantheses has imposed unnecessary constraints on the 

order of execution. The syntactic tree of this expression is 

the tree of height three as shown in fig [1.1]. If we use the 

associative law for addition, we can rearrange the 

parantheses and transform the expression into the following 

form: 

X= {(a+ b) + (c +d)} 
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Now the two operations (a + b) and (c + d) can be 

performed in one time slot using two processors. The results 

of the two will be added in the next time slot to give the 

final value of X. Thus it takes only two time units in compa­

rision to the three time units being taken by the single 

processor. The height of the tree has been reduced by one 

with the use of associative laws. The tree is shown in 

fig[1.2]. 

Speed up in the above case = 
3 

2 

This speedup is obtained by using 2 processors. Hence 

Speed up 
Efficiancy = 

number of processors used 

3 
= 

4 

The efficiancy is not hundred percent because in the 

second time unit only one addition is to be performed and 

thus one processor is sitting idle. 

The time taken in evaluating an arithmetic ~xpression 

E<n> is given as 

T[E<n>) >= log n 

where the base of the log is 2 and in case of log n not 

being integer, the ceiling of the value is taken. 
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Usinq commutative laws: 

Let an expression be given as: 

X = {a + (b * c) + d} 

If we calculate the expression as it is given, it will 

take three time units. In the first time slot, the operation 

(b * c) is performed, then 'a' is added into the result in 

the next time unit and finally, in the third time unit, 'd' 

is added in the resUlt of the second operation to giv~ the 

value of X. The height of the tree is three. However, by the 

use of commutative law for addition we can reduce the height 

to two as shown in fig(2]. The expression in the transformed 

form becomes: 

X= {(a+ d) + (b * c)} 

Here one addition and one multiplication operations are 

performed using two processors simultaneously in one time 

unit. The results are then added in the next slot to give the 

final result. 

In this example also the speed up is 3/2 and the effi­

ciancy is 3/4. Here again one processor is sitting idle in 

the second time unit as only one operation is to performed, 

leading to the efficiancy less than one. 

It should be noted that after the application of asso­

ciative and commutative laws, the total number of operations 

to be performed remains the same. This point is important 
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because it is certain that application of these rules will 

not lead to a tree of the height more than the original one. 

The height will either be reduced or in the worst case, will 

be the same. This ·is not the case with the distributive laws, 

as will be discovered shortly, where the height of the tree 

may increase also. Hence it is always safe to apply the 

associative and commutative laws, but care has to be taken in 

applying the distributive laws. 

Usinq distributive laws: 

When the tree height reduction is not possible using 

associative and commutative laws, then the attempt should be 

made to apply the distributive laws. Application of this law 

increases the number of operations in the expression and in 

some cases may lead to the increament in the tree height. 

Take, for example, the following expression: 

X = a * (b * c * d + e) 

The syntactic tree of this expression is of height four 

as can be seen from fig[3.1] and contains four operations. By 

use of associativity and commutativity, no lower height tree 

can be formed. But by using the arithmetic law for the dis­

tribution of multiplication over addition, we bbtain the 

expression 

X = a * b * c * d + a * e 
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which has the tree of minimum height three as shown in 

fig(3.2]. However, the number of operations is now five. 

Unlike the other two operations, the distribution has intro-. 

duced an extra operation. It looks rather surprising that 

inspite of increament in the number of operations, the time 

taken in evaluating the expression is reduc~d~ This is be­

cause more operations now can be performed simultaneously 

than the earliar case which also compensates the increament 

in the operations. 

In some cases the height of the tree will be increased 

after the application of the distribution. For example, the 

expression 

X = a * b * (c + d) 

can be computed in two steps in its undistributed form. 

But if we distribute the multiplication over addition, the 

following form is obtained: 

X = a * b * c + a * b * d 

which takes three steps. 

Hence, non discriminative distribution is not the 

solution of the problem, and some sort of guidelines are 

required, to see whether the application of distribution will 

lead to a better result or not. 

Before developing the algorithm for the effective 

distribution, it is important to know how much the tree can 
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be reduced by using associative, commutative and distributive 

laws. A lot of research has been done regarding this and the 

following theorems will provide the answer: 

Let E<n I d> be any arithmetic expression with depth d 

of paranthesis nesting. By use of associativity and commuta­

tivity only, E<n I d> can be transformed in such a way that 

T[E<n I d>] <= log n + 2d + 1. 

If the depth of paranthesis nesting d is small, . then 

this bound is quite close to the lower bound of log n. The 

more the depth of paranthesis nesting, the more will be the 

time required and will tend towards n, the linear time com­

plexity. 

Unfortunately, many expressions can not be transformed 

using only associativity and commutativity into such a form 

as to give the minimum tree height. Use of distribution is 

required almost every time. Given any expression E<n>, by the 

use of assosiativity, commutativity and distributivity, it 

can be transformed such that 

T[E<n>] <= 4 log n 

with number of processors P <= 3n. 

4.2.2 Distribution Algorithm: 

To guide about when to use the distribution for the 

minimization of tree height, an algorithm is required. This 
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will be called as distribution algorithm. As we know, the 

number of leaves in a balanced binary tree is the integer 

power of 2. So, if there are 2n operands which can be used 

simultaneously, they will form a part of the balanced tree. 

If this -is not the case, then a 'hole' will be there, which 

has the capacity to include some more operands in the same 

height. This point gives one possibility of getting a reduced 

height tree than the earlier one. This could be better illus­

trated with the help of examples. Let the expression be: 

X = a * {b * c * d + e) 

Here there are two multiplications in the term inside 

the paranthesis which has three operands b, c, and d. This is 

not the whole power of 2 and we say that there is a hole 

available in it. This hole can be filled by any extra operand 

without affecting the tree height. This operand can be ob­

tained, if we distribute the multiplication over addition to 

get the expression as: 

X = a * b * c * d + a * e 

Now the hole has been filled and the tree height which 

was four earliar, is reduced.to three. 

Now consider the expression 

X = a * {b * c + d) + e 

in which the paranthesized expression c9ntains no hole. 

This is because we won't get the reduction in tree height 
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after the distribution is applied. The expression 

a * (b * c + d) and its distributed form 

a * b * c + a * d have the same tree height. 

But the expression X requires four time units in evalu­

ating in its original form whereas the distributed form: 

X = a * b * c + a * d + e 

requires only three steps. This is because one ~pace 

which is empty, is filled by the operand •e•. This is called 

the space filling operation and it reduces the tree height 

for the above example because the lowest height trees for 

a*b*c + a*d and a*b*c + a*d + e are of equal height while the 

lowest tree for a*(b*c + d) + e is heigher than that for 

a*(b*c +d). What happens here is that a*(b*c +d) is opened 

by distributing a over b*c + d and the "space'' to place 'e' 

is created. 

Given an assignment statement A, the distribution 

algorithm derives the assignment statement Ad by distributing 

multiplications over additions properly so that the height of 

Ad, denoted by h[Ad] is minimized. The algorithm works form 

the innermost paranthesis level to the outermost paranthesis 

level of assignment statement and requires only one scan 

through the entire assignment statement. Let us assume that 

additions and multiplications require the same amount of 

time, i. e. one unit of time. 
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The minimum height of tree using only the associative 

and commutative laws can be built as follows. Let us assume 

that either A= sum of (ti) or A= product of (ti), where ti 

denotes arbitrary arithmetic expression, including single 

variables. Let for each i a tree of minimum height T(ti) has 

been built. Then first we choose two trees, say T(tp) and 

T(tq], each with a-height smaller than the height of any 

other tree. We combine these two trees and replace them by a 

new tree whose height is one higher than the maximum of 

{h[tq], h[tp)}. These procedure is repeated from innermost 

paranthesis level to the outermost paranthesis level, and at 

each level it is repeated until all trees are combined intQ 

one tree. 

To see the effect of distribution of multiplication 

over addition, let us examin all the ways, paranthesis can 

occur in an expression. There are only four possible ways: 

pl. • • • + (A) + 

where # denotes either addition or multiplication or no 

operation. 

From careful inspection we can conclude that distribu­

tion in case P3 and partial distributionin case P4 are the 
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only cases that should be considered for lowering tree 

height. In cases P1 and P2 , removal of p'renthesis leads to a 

better result or at least gives the same tree height. Full 

distribution in case P4 always increases the tree height and 

should not be done. Also, it should be clear that in any case 

the tree height of an arithmetic expression ~annot be lower 

than that of a componant term even after distribution is 

done. This assures that evaluation of distribution can be 

done locally. that is,· if the distribution increases the tree 

height for a term, then the distribution should not be 'done 

because once the tree height is increased, it can never be 

remedied by further distributions. 

At each level of paranthesis pair, for cases P3 and P4 , 

instances of holes and spaces are checked and proper distri­

bution is performed. 

In brief, the algorithm goes as follows. Start from the 

innermost parenthesis level and find the 'hole' and •space• 

available in that. See if it can be filled using the distri­

bution. Then go to the next parenthesis level and repeat the 

same. At each level, it is necessary to check the tree height 

to insure that it has not become more than the original tree 

height. In that case the remainig distributions will unneces­

sarily be done and it is beneficial to leave the attempt for 

the reduction of tree height. The same process is repeated 

until we come to the outermost parenthesi~ level. Before the 

use of distribution, the application of associative and 
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commutative laws should be applied where_ever possible. If 

this does not reduce the tree height, it is sure that it 

won't increase also. 

The algorithm reduces the tree height. But it should be 

noted that it does not give the minimum tree height arith­

metic expression, e.g., it does not factor the expression 

A = a * c + a * d + b * c + b * d into 

A'= (a + b) * (c + d) 
/ 

to reduce the tree height. 

Subtractions can be introduced into an arithmetic 

expression without affecting the distribution algorithm. The 

only modification necessary is to change operators as re­

quired, e.g., A= a+ b- (c +d) for A= a+ b- c -d. 

Divisions may require special attention since a numerator 

cannot be distrbuted over denominator, e.g., 

af(b + c +d) <> afb + afc + afd. 

Hence in general, tree height reduction is done for the 

numerator and denomenator independently, then distribution.of 

the denominator over the numerator is considered. 

4.2.3 Recurrence Relations: 

Linear recurrences share with arithmetic expressions a 

role of central importance in computer design and use, but 

they are somewhat more difficult to deal with. While an 
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expression specifies a static computational scheme for a 

scalar result, a recurrence specifies a dynamic procedure for 

computing a scalar or an array of results. Linear recurrences 

are found incomputer design, numerical analysis, and program 

analysis, so it is important to find fast and efficient ways 

to solve them. 

Recurrences arise in any logic design problem that is 

expressed as a sequential machine. Also, almost every practi-

cal program that has an iterative loop contains a recurrence. 

Not all the recurrences are linear but a vast mejority ,found 

in practice are. 

Consider the problem of computing an inner product of 

vectors a= (a1 , a 2 , ... , an) and b = (b1 , b 2 , , bn). 

In the recurrence form this can be written as 

X = X + a·b· 1 1 1 1 <= i <= n 

where x is initially set to zero and finally set to the 

value of the inner product of a and b. 

This equation can be exp~nded by substituting the right 

hand side into itself (statement substitution) as follows: 

x = a 1 b 1 

x = a 1b 1 + a 2b 2 

x = a 1b 1 + a 2b2 + a 3b 3 
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After n iterations we can have expression which can be 

mapped onto a balanced binary tree. 

As another example of a linear recurrence which pro­

duces a scalar result, the evaluation of degree n polynomial 

Pn(x) in Horner's rule form can be expressed as: 

p = ai + -xpi 2 <= i <= n 

where p is initially set to a 1 and finally set to the 

value of Pn(x). 

Evaluation of recurrence relations on parallel machines: 

As we saw earliar, how the recurrence relations can be 

expanded to give a set of equations by the substitution of 

right hand side into itself. If only the final value is 

required, the last equation can be treated as the arithmetic 

expression, which can be parallelize using the methods dealt 

for the same. The tree (syntactic tree) is formed which then 

is reduced in the height to form the balanced binary tree. If 

instead of only the last value, we require all the values 

from 1 to n, then another approach is to be applied. The 

method can be explained with the help of an example: 

Take the example of solving the set of n linear equa­

tions with the help of Gauss method. We will be able to 
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transform the given equations into the lower triangular 

matrix form as given below : 

x1 = c1 

x2 = a11x1 + c2 

X3 = a21x1 + a22x2 + c3 

The value of x1 which is known from the first equation 

to be equal to c 1 , is broadcasted to all the equationns and 

the first column is calculatated simultaneously and the 

values of constants are added in all by n processors in one 

step. Now we have the value of x2 which is again broadcasted 

to the remaining (n-1) equations and the second column is now 

evaluated and added to the previous result to give the value 

of x 3 . This procedure is repeated till the last value xn is 

evaluated. Thus each step consists of broadcasting the previ­

ous value, multiplication with the coefficients and ~ddition 

to the previous result. We require (n-1) processors in the 

first step, (n-2) in the second and fewer thereafter. Thus 

only (n-1) processors are sufficient fo~ this method. 

If we solve these equations with the single processor 

machine, we have to perform 2 operations (1 addition and 1 

multiplication) for evaluating x 2 , 4 operations for x 3 , 6 for 

x 3 and similarily, 2(n-1) for xn. Thus the total operations 

required by a single processor machine is given by 
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Ts = 2 + 4 + 6 + . . . + 2(n-1) 

= 2 (1 + 2 + 3 + . . . + (n-1)] 

= 2 (n(n-1)/2] 

= n(n-1) 

= O(n2 ) 

On the parallel machine, by the method described above, 

the time taken in solving the set of equations is given by: 

TP = 2(n-1) 

= O(n) 

Hence the speedup 'obtained by the above method is 

= 

n(n-1) 

2 (n-1) 

n/2 

The efficiancy of the system is given by 

= 
n/2 

(n-1) 

> 1/2 

The efficincy of the above described method is more 

than fifty percent and also this method is of order n in 

comparision with n 2 of the serial algorithm. Hence it can be 

said that this method is quite reasonable. 
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4.3 LOOPS 

A parallelizing compiler explores parallelism and 

generates parallel code to take advantage of the underlying 

parallel architecture. In order to be valid, any transferred 

parallel code of a given program must honour the dependence 

constraints in that program. It is true in general that the 

more precisely and completely dependence information is 

explored, the more efficient parallel code can be generated. 

Loops construct a major part of any program and are most 

difficult to parallelize. It seems, at first sight that loops 

can not be parallelized, as each iteration requires the value 

of the previous iteration. But it is not the case, as will be 

seen shortly. There will be some independent iterations which 

can be executed in parallel by different processors. The aim 

here is to explore the iterations which may be evaluated 

simultaneously and run them in parallel. 

In a loop, there will be two kinds of depndencies 

present. One is the dependence of one statement on the other 

of the loop body, and the other is the dependence of one 

iteration on the other. The first one is the same as dealt in 

earlier in the chapter 'Dependence Analysis' and is very 

simple in comparision to the second kind of dependency. Here 

we will see the dependence constraints among different 

iterations and will make an attempt to remove them to the 

extent possible. 
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A DO loop in which no cross· iteration dependence 

relation is present is called a DO all loop. All the 

iterations of such a loop can be executed in any order or 

even simultaneously without any extra synchronizat~on. 

Parallelizing a DO all loop is simply assigning iterations to 

different processors. 

On the other hand, a loop is termed DO serial loop if 

some cross iteration dependences exist. To obey dependence 

constraints, a DO serial loop can be simply executed in 

serial by a single processor. However, any nested loop can be 

executed in parallel as long as the cross iteration 

dependences are satisfied. 

There are some major difficulties in parallelizing 

nested loops which carry cross iteration dependences. First 

to correctly insert synchronizition primitives, compilers or 

programmers have to find out all cross iteration dependences. 

It is very difficult to find a dependence analysis technique 

which can effectively find out all cross iteration 

dependences unless the dependence pattern is uniform for all 

iterations. Second, even though all cross iteration 

dependences can be identified, it is difficult to 

systematically arrange synchronization primitives especially 

when the dependence pattern is irregular. Also, the 

synchronization overhead which will significantely degrade 

the performance should be minimized. 
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4.3.1 simple Loops 

There seems to be very less scope for parallelization 

in case of simple loops. But there are some cases where we 

will be in position to execute that in parallel. Take for 

example the execution of the following loop: 

DO 10 i- = 1 ,n 

x(i) = a(i-1) * x(i-1) 

10 CONTINUE 

We must usually repeat the computation sequentially for 

each index value, if the value of x(n) is to be calculated. 

In other words we have to calculate the following set'of -n 

statements sequentially: 

x(1) = a(O) * x(O) 

x(2) = a(1) * x(1) 

x(n) = a(n-1) * x(n-1) 

Instead of computing sequntially, we can get the value 

of x(n) in comparatively less time if we use the 

backsubstitution to get the value of x(n) and execute that in 

parallel using the tree height reduction technique. 

x(n) = a(n-1) * x(n-1) 

= a(n-1) * a(n-2) * x(n~2) 

= a(n-1) * a(n-2) * * a(1) * a(O) 
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This will be competed in time of the order of log n in 

comparision to the order n for the serial calculation. 

The different iterations of a loop will be executed in 

parallel if the body consists of vector elements, for 

example: 

DO 20 I ~ 1, 100 

A(I) = B(I) + C(I) 

20 CONTINUE 

.Here the 100 iterations of the loop will be computed in 

one time unit if we use 100 processors. Each variable is a 

vector array and stores all hundred values in hundred memory 

locations. Corresponding values are used by · different 

processors and the values of other locations are not of any 

use to that. 

Simultaneous execution of statements in a loop: 

The statements in the body of a loop can be executed in 

parallel with slight modifications which make them 

independent. Take, for example, the following loop: 

DO 10 I = 1, 40 

A(I) = A(I-1) * B(I-1) 

B(I) = A(I) I 4 

10 CONTINUE 
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In the above example, the two statements S1 and S2 

cannot be executed in parallel for all values of I. However, 

S1 and S2 can be·computed simultaneously when I varies 

'sequentially if the index expression in S2 is changed as 

follows: 

DO 10 I = 1, 40 

A(I) = A(I-1) * B(I-1) 

B(I-1) = A(I-1) I 4 

10 CONTINUE 

S1 

S2 

Now the two statements are independent and hence can be 

computed concurrently. 

Partial execution of loops: 

In some cases it is not possible to parallelize the 

whole loop as given. In that case we look for the partial 

parallelization. This will be clear from the example bellow: 

DO 20 I = 1, 100 

B(1) = A(2*I + 500) 

A(7*I + 35) = C(I) * C(I+1) 

20 CONTINUE 

S1 

S2 

Here, the two statements don't seem to be independet 

and infact they are not for all values of I. But for values 

of I < 95, the computation of S1 does not use a result of S2. 

So, for these values, S1 may be computed simultaneously. But 

for I > 94, the loop must be computed sequentially. 
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4.3.2 Nested Loops 

The case of nested loops is more promising and a 

challenging job and will be explored now. It has to be noted 

that we will not always be in a position to parallelize any 

kind of loop. Only a few very simple loops in which the cross 

iteration dependences can be easily found, can be made to run 

in parallel. 

wave Front Method: 

For loops with cyclic dependencies involving variables 

with more than one subscript, the wave front method may be 

used to parallelize the loop to some extent. It effectively 

extracts the array operations from the loop. In evaluating 

the value of a variable in a particular iteration we may 

require some values from the previous iterations. Thus it 

seems that the present iteration can not be executed until 

unless the previous iterations have been performed. But it is 

to be noted that not all the values of previous iterations 

will be required. The present value is dependent only upon a 

few of them. This basic point is exhausted in the wave front 

method. We can always calculate all those values in parallel 

which are not required by each other. 
\ 

As the same statements are executed in each iteration, 

there becomes a specific pattern of the values which can be 

calculated simultaneously in each iteration. This specific 

pattern is called the wave front and it may be a line, a 
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plane or 

statements 

any 

in 

other 

the 

pattern. This will 

loop i.e. the body 

depend 

of the 

upon 

loop. 

the 

The 

objective here is to find out that perticular pattern and 

execute all points on that in parallel. 

BxlDlpl.es: 

10 

DO 10 I = 1,10 

DO 10 J = 1,10 

A{I, J) = A{I, J-1) + B{J) 

CONTINUE 

To evaluate this on a single processor system would 

require 100 unit time steps for addition. However on a 

parallel machine the ten statements given below can be 

computed simultaneously in I while J takes on the values 1, 

2, 3, ... , 10, sequentially. 

A{1, J) = A{1, J-1) + B(J) 

A{2, J) = A{2, J-1} + B(J) 

A{10, J) = A{10, J-1) + B(J} 

Thus the the computation time is reduced to ten units. 

Here we calculated all the operations simultaneously 

along a line parallel to the J axis. Thus the wave front in 

this case is a line. Instead of calculating along J axis, we 

may also use the I axis and will end up with the same result. 
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We can further reduce the time by using back 

substitution and building a minimum height tree for each of 

these ten statements. Thus we have for each I, 

A(I, 10) = A(I, 0) + B{1) + ..• + B{10) 

This can be computed in four time units. 

Now consider the another example: 

DO 10 I = 1, L 

DO 20 J = 1, M 

DO 30 K = 1, N 

U(J, K) = [U(J+1,K) +. U(J,K+1) + U(J-1,K) 

+ U(J,K-1)] 

30 CONTINUE 

20 CONTINUE 

10 CONTINUE 

The above loop will take LMN time units on a sequential 

machine. We want to speed up the execution by performing some 

of the operations concurrently. First take the inner two 

loops only. At first instance it seems that the value of 

U(J,K) is dependent upon all previous values of current and 

next values of last iteration. But there is, however, a 

parallel 

of the 

structure that can be exploited here. If the cells 

matrix are laid out on a chess board, then the 

iteration of the program shows how to update the value of a 

black squire by adding the values of the neighbouring white 

squires and similarily, how to update a white squire by the 
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values of its neighbouring black squires. The black and white 

squires form two sets of variables, since no white squire 

depends directly on a white squire and no black squire 

depends upon the black squire. In fig(4], it is seen that in 

order to calculate U(l,l), only values of U on edge points 

are needed. To calculate U(1,2) and U(2,1) we require only a 

value on the edge point and U(l,l). More generally, to 

calculate values of U on a given diagonal, we require the 

values of U on the previous diagonal. Hence all the diagonal 

elements can be calculated simultaneously. 

Here the wave front is the line parallel to the digonal 

of the squire. So, if we calcculate the values of U along the 

transformed axis J' and K' such that 

J' = J + K 

K' = K 

we will be able to calculte the diagonal. values 

concurrently. 

After the transformation, the inner two loops become 

DO 20 J' = 2, M+N 

DO 30 CONC FOR ALL K' 

U(J'-K',K') = [U(J'-K'+l,K') + U(J'-K',K'+l) 

+ U(J'-K'-l,K') + U(J'-K',K'-1)] 

30 CONTINUE 

·20 CONTINUE 
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The execution of the above loop will require only M+N-1 

squential iterations instead of the MN iterations necessary 

for the computation of the original loop. 

Now we will consider all the three loops with the three 

indices I, J, K of the above considered example. It is seen 

that the values at planes parallel to 2x + y + z = constt. 

are independent and hence can be calculated in parallel. This 

is equivalant to the transformation 

I' = 2I + J + K 

J' = I 

K' = K 

After this transformation in the loop, we get the 

following program segment: 

DO 10 I' = 4, 2L + M + N 

DO 20 CONC FOR ALL (J', K') 

U(I'-2J'-K',K') 

20 CONTINUE 

10 CONTINUE 

(U(I'-2J'-K'+1, K') 

+U(I'-2J'-K', K'+1) 

+U(I'-2J'-K'-1, K') 

+U(I'-2J'-K', K'-1)] 

Here, the computation requires 2L+M+N-3 sequential 

iterations instead of the LMN iterations necessary for the 

computation of the original loop. 
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It should be noted that the wave 

applicable to the arrays of more than two 

front method is 

dimensions only. 

This method is of no use fo~ one dimensional arrays, since it 

degenerates to a serial computation in this case. In those 

cases we will consider, the cyclic dependence as a linear 

recurrence relation and can make them to execute in 

parallel. 

The diagonal scheme has one more serious disadvantage. 

Some diagonals will be very short while the others may be 

quite large. As all elements of a diagonal are to be executed 

in parallel, the no of processors in the case of a long 

diagonal will be greater than the case of shorter diagonal. 

Thus many processors will remain idle for a large portion of 

time which limits the efficiency. 

Distribution of loops: 

For acyclic graphs, it has been shown that the 

statement substitution can be performed between any pair of 

nodes which have a dependence relation. As in a block of 

assignment statements, we substitute for each LHS variable of 

one statement, the RHS of another 

cause of dependence relation, the 

expression properly shifted. 

statement, which is the 

corresponding arithmetic 

By applying statement 

substitution, the dependence relation is removed and a set of 

independent assignment statements results. Each of these 

represents a vector assignment. statement, all of which can be 

executed simultaneously. 
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In loops with acyclic graphs, it is possible to reduce 

the graph for the entire loop to a set of independent nodes 

representing simultaneously executable array statements. By 

distribution of loops we mean the distribution of the loop 

control statements over individual or collections of 

assignment statements contained in the loop. The purpose of 

distributing a given loop is to obtain a set of smaller size 

loops,which upon execution give results equivalent to the 

original loop. By this it will be possible to reduce the 

dependence among them and thus they can be made to run in 

parallel. The distribution of loops is similar to the 

distribution in arithmetic expressions and may introduce more 

parallelism into a program loop than that obtained from an 

undistributed one. 

The loop distribution algorithm goes as follows. By 

analyzing subscript expressions and indexing patterns, first 

a dependence graph G is constructed. On this graph G we get 

the partition of nodes and form a set in such a way that any 

two statements in the set are in same subset if there 
\ 

dependence relations constitute a cycle. Then a partial 

ordering on this block is established and the blocks should 

be sequenced such that the origin of an arrow is executed 

before its end. Now we can replace the original loop by 

loops for different blocks obtained so far. 

If the dependence graph is acyclic, then assignment 

statements are handled as expressions for array operations. 

If the dependence graph is cyclic, the blocks are handled by 
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the recurrence method. The condition for partial ordering 

relation insures that data are updated before being used. 

Hence, any execution order of the set of loops which replaces 

the original one ~ill be valid as long as this relation is 

not violated. In general, we can also use the statement 

substitution to remove this relation between. some or all of 

the distributed loops. 

EXamp~e: To understand the loop distibution, take the 

following program: 

10 

20 

30 

40 

50 

DO 

DO 

DO 

50 I = 

A(I) = 

30 J = 

D (J} = 

E(J) 

40 K = 

G(K} = 

H (I) = 

1, N 

B(I) * C(I) 

1, N 

A(I-3) + E(J-1) 

D(J-1) + F 

1, N 

H(I-5} + 1 

A(I-2} + 3 

S1 

S2 

S3 

S4 

S5 

The dependence graph of.this program is shown in the 

fig(5.1). Loop nesting has been denoted using brackets. 

Now we form the partition p = {p1, p2, p3, p4} where p1 

= {S1}, p2 - {S2, S3}, p3 = {S4} and p4 = {SS}. 

The partial orders are now obtained to be (p1, p2), 

(p1, p4}, and (p4, p3). This means that the output of pl is 

required to p2 and p4 and that of p4 to p3. Hence p1 must be 

executed before p2 and p4 and p4 must be executed before p3. 
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This much information is sufficient to form the distributed 

graph which is shown in the fig(5.2]. 

This graph could be used to compile the given array 

operations as follows. First Sl is executed, which is a 

vector multiplication. After this either p2 or p4 is 

executed. Execution of p2 can be done in parallel by the 

method discribed for the simple loops, Execution of p4 is 

again a vector operation and can be executed in parallel. 

Finally S4 may be executed for all I and. K simultaneo~sly. 

This requires the broadcasting of e~ements of the H array to 

all elements in the columns of G. 

The time required to execute pl, p3, and p4 using O(N) 

processors is a constant (independent of N). The overall 

execution time is dominated by p2 and is O(log N). The number 

of processors required to achive this time is O(N). 

In the above example, the statement substitution could 

have been used. By using statement substitution, we would 

have been able to obtain four p_blocks, all of which could be 

executed at once. This would require the execution of several 

different operations at one time, while the technique used 

above allows all operations at each step to be identical. 

Because, p2 dominates the time here, very little additional 

speedup would have been possible by the substitution. 
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4.4 IF STATEMENTS 

A program written in a conventional language tends to 

exhibit little parallelism because· of many control 

dependencies due to IF statements. To select an 

path that follows an IF statement, one must wait 

appropriate 

until the 

condition part of the IF statement is executed. A model IF 

statement is shown bellow: 

IF x(I) 

THEN S(I) 

ELSE T(I) 

Here x is a Boolean expression and s, T are assignment 

statements. If the value of x is TRUE then the expression S 

is evaluated and if the value of x is FALSE then T is to be 

calculated. 

To parallelize the IF statement, we can make a 

according to which we calculate the statements s 

simultaneously, before caluclating the condition part 

It means, before knowing exactly which path is 

scheme 

and T 

x(I). 

to be 

followed, we have to calculate the values of all branches. 

These values are kept stored with a pointer and one of them 

is used when the condition part is evaluated. The remaining 

are of no use. Though this scheme causes much overhead in 

calculating even the expressions which are not required, it 

is naturally an effective way to overcome the serious 

limitation on parallelism because of IF statements. 
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4.5 Towards Automatic Parallelization 

To convert an existing sequential program into the one 

executable on parallel machines is the requirement for fast 

and efficient execution of the program. Today, almost all 

machines used in any field are based on parallel processing 

techniques. More faster chips are available today and 

research is still going on in that direction. But the speed 

of a physical device cannot be increased beyond a certain 

limit. The science is continuously moving towards that limit. 

The day is not very far when it will be said that now it 

won't be possible to increase the speed of chips any more. 

But since, our need for faster execution will never end, it 

is an obvious approach to look for the improvement in 

software part. 

Most of the programs written today are sequential. If 

one has to use parallel machines, either a completely new 

program is to be developed or the existing program is to be 

converted in parallel form. The first approach is hardly 

scientific as the unnecessary work has to 'be done in 

developing the alredy developed program. So, it is almost 

always beneficial to use the second approach. 

It is very tedious work to convert the serial program 

in parallel form manually and more than that it requires a 

large amount of time. If something can be done to reduce this 

time, it will save much time and human power. The automatic 

parallelization is the right aproach in this direction. 
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By automatic parallelization, it is meant that the 

programmer is not to be worried about the conversion, rather 

this work is to be performed by the complier itself. The 

compiler should be designed such that it accept the 

sequential program, check for the portion which can be 

parallelized and convert that into the parallel form~ 

One thing should be noted here that not all the 

programs can be changed into parallel form and even in a 

program, only some portion can be converted. The compiler has 

to identify that portion first and then it should apply the 

methods on only those portions. 

ALGORITHM 

START: 

Read the statement S. Check the type of statement. 

If it is an assignment statement, GO TO ASSIGN(). 

If it is an arithmetic expression, GO TO ARITH(). 

If it is a loop, GO TO LOOP(). 

If it is 

Else goto 

ASSIGN () : 

i =1. 

an IF statement, 

OTHER(). 

10. Find IN(Si) and OUT(Si). 

i=i+l. 
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Read (Si). 

If it is assignment statement, GO TO 10. 

n = i. 

For all i = 1 to n 

For all j = 1 to n and i <> j 

A(k) = IN(Si} int. OUT(Sj}. 

B(k) = OUT(Si} int. OUT(Sj). 

end (* of loop) 

end (* of loop) 

If B(k) <> phi for all k then rename the common 

elements of corresponding statement S to some other. 

Note the statements for which A(k) = phi. These can be 

executed in parallel. 

GO TO START. 

ARITH() 

If the 

then use 

arithmetic expression is recurrence 

the back substitution to get 

arithmetic expression. 

relation, 

the simple 

20. Read the character of the right side of the expression. 

If it is operand, then write as it is. 

else 

If it is'+', then if the next character is '(', 

drop the '('keeping the '+'. 

If it is '-', then if next character is '(', drop 
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LOOP() 

1t changing all '+' into '-' and vice-versa till 

1
) 1 occurs which is then dropped. 

If it is 1 * 1 1
/ 1 , 

1
(

1 or 1
) 

1 then just keep it. 

GO TO 20. 

Apply associative and commutative laws such as to keep 

one type of operations at one place. 

If one or both the operands of 1 * 1 are a group of 

operands, then count the number of operands on_each 

side. If it is not the whole power of 2 then apply the 

distribution law. 

Use the distribution algorithm to get the minimum 

height tree. 

Find the body of the loop. Also see whether it is 

simple or nested. 

If the loop is simple, use the back substitution to 

form an arithmetic expression. 

If there are more than one assignment statements, use 

the method for assignments statements to parallelize 

them. 

If the loop is nested, and array variables have been 

used, then find the wave front along which all elements 

can be computed concurrently. 
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IF() 

If there are more than one loops, use loop 

distribution. 

Keep the condition part as it is. 

Find both the 'THEN' and 'ELSE' part of the IF 

statement. Both should be executed concurrently. 

Parallelize the body Of 'THEN' and 'ELSE part by using 

the relevent methods described above. 

OTHER() : 

Write the statement as it is. 

If it is the end of the program, mark the END else GO 

TO START. 

Illustrative Example 

The following program has been taken as an example to 

show how the algorithm will work. 

(* Sequential example program *) 

INTEGER A,B,C,D,E 

DIMENSION P(50) I Q(50} I R(50) 

DIMENSION S(50, 50) 

READ (5, *) A,B,C,D,E 

A = B * C 

D = B + C 

A = A + D + E 
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IF (A > 50) THEN 

A = C - B * (D + E) + E * (B*C*D + F) - (E - F) + D 

B = B + C * D - E 

ELSE 
( 

N = A 

DO 10 I = N-1, 1, -1 

A = A * I 

10. CONTINUE 

B = c I D 

E = A - B 

END IF 

READ (5, *) P,Q,R 

DO 20 I = 1, 50 

P(I) = Q(I) + R(I) 

20. CONTINUE 

READ (5, *) S 

DO 30 I = 1, 50 

DO 40 J = 1, 50 

S(I, J) = S(I, J-1) + Q(J) - R(I-1) 

40. CONTINUE 

30. CONTINUE 

WRITE (5, *) A,B,C,D,E 

WRITE (5, *) P,Q,R 

WRITE (5, *) S 

STOP 

END. 
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The program written above is capable of being executed 

on a sequential machine. Although it does not perform any 

sensible work, it is intensionally written such that all 

types of parts in an ordinary program are covered here. Now 

it will be seen how the algorithm described above works in 

this case. 

The algorithm starts by reading the statement. All the 

statements are kept as it is until we reach the first 

assignment statement A = B + c. Now it calculates IN{Sl) and 

OUT{Sl). 

IN{Sl) = {B, C} 

OUT( Sl) {A} 

Similarily for all other assignment statements 

IN{S2) = {B, C} 

OUT{S2) = {D} 

IN{S3) = {A, D, E} 

OUT{S3) {A} 

Now it calculates 

B(l) OUT(Sl) int. OUT(S2) 

= phi. 

B(2) = OUT{Sl) int. OUT (S3) 

= {A} 

B(3) = OUT{S2) int. OUT(S3) 

phi. 
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Now see which one of the above is not 'phi'. Only B(2) 

is so, which is equal to {A}. Hence we have to-rename 'A' in 

Sl to 'Al'. 

Now calculate A(l): 

A(l) = IN(Sl) int. OUT(S2) 

= phi. 

Similarily we find out all other values of. A(k) and 

note which of them are 'phi'. As OUT(Sl) and OUT(S2) are. the 

elements in IN(S3), we substitute the values of A and D from 

Sl and 82 into 83. 

Now, the three statements are independent and can be 

computed concurrently in one step. 

DO ALL CONCURRENTLY 

Al = B * C 

D = B + C 

A = B * C + B + C + E 

After this, the algorithm moves to the next statement 

which is IF statement. First the body of the 'THEN' and 

'ELSE' part is determined and both parts are executed in 

parallel. 

The first statement in the body of 'THEN' is the 

arithemetic expression. As per the algorithm, we first drop 
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the unnecessary paranthesis and apply associative and 

commutative laws. After this we get: 

A = C + F - (B + E) + B * (D + E) + E * (B * C * D + F) 

Now, the distributive law is applied only to the last 

term as the number of operands in that are not the whole 

power of 2. 

After this we get the expression of minimum tree height 

as given below: 

A = C + F - (B + E) + B * (D + E) + E * B * C * D + E * F 

The above expression can be calculated in three steps 

only: 

step 1. 

DO ALL CONCURRENTLY 

X = c + F 

y = B + E 

z = E * F 

w = E * B 

u = c * D 

v D + E 

step 2. 

DO ALL CONCURRENTLY 

r = X - y 

s = B * v 

t = w * u 
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Step 3. 

A = r + s + t + z 

Similarily the second expression can be executed in two 

steps only: 

step 1. 

DO ALL CONCURRENTLY 

X = B - E 

y = C * D 

Step 2. 

B = X + y 

The body of ELSE part consists of a DO loop and two 

assignment statements. The loop can be changed into 

arithmetic expression using substitution. We get: 

A= A* (A-1) * (A-2) * ... * 2 * 1 

This can be computed using tree height reduction. The 

other assignment statement can be computed simultaneously 

with the loop but the third has to be executed in the next 

step as the input variables of this are the output of the 

previous two. 

After this we come across another loop. This has the 

array variables and hence can be executed concurrently. 
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DO ALL CONCURRENTLY 

P(l) = Q(l) + R(l) 

P(2) = Q(2) + R(2) 

P(50) = Q(50) + R(50) 

The next statement is the nested loop and we have to 

apply the wavefront method here. The wave front here is the 

line parallel to the I axis. For one value of I, we can 

calculate the loop for all J in one step. SimilarilY. all 

values for different I can be calculated • The calculations 

for different values of I are to be done serially as the two 

iterations are not independent for I. 

After the loop, we come across the 'write' statements 

which as per the algorithm, are kept as they are. Finally, 

the end of the program is encountered. This marks the end of 

the algorithm. 

The example described above gives the general idea ho* 

the sequential program may be converted in the parallel form. 
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CHAPTER FIVE 



CONCLUSION 

' ' I In th1s proJect an attempt has been made to develop the 

methods to automatically convert the existing sequential 

program into parallel form. All basic parts of an ordinary 

program were considered and some ways to parallelize them 

were described. For the major portion of time, the 

involvement was in the dependence analysis among the 

assignment statements, the methods to remove these 

dependencies, the ways to parallelize a block of assig~ment 

statements, arithmetic expressions, the tree height reduction 

technique of parallelization, recurrence relations and use of 

back substitution for executing them in parallel. The w~ys 

discussed can be used to automatically parallelize the 

corresponding part of the program. 

Although very little time was available for the main 

part of the program, i.e. the loops and IF statements, yet 

some ways were described for certain special types of loops 

specially for simple loops. The nest~d loops with array 

variables were discussed and a method known as wave front 

method was explained for there
1
parallelization. Although by 

seeing we can know which wave front is to be used in the 

given case, no method could be described how the compiler 

would know the equation of the wave front. Until unless this 

is known, this method is hardly useful in automatic 

parallelization. Due to the less time availabe, this has been 

left. 
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The loops discussed were very basic in nature and had 

one or other constraints imposed. A large veriety of loops 

are still left untouched. Some method can be discovered which 

can be used for any general loop. Again due to short time the 

attempt in that direction could not be successful. 

Very little has been done for the parallelization of IF 

statements. One way to achive certain degree of parallelism 

was explained i.e. execute both the 'then' and 'else' parts 

concurrently even before the execution of the conditional 

part. Nothing has been described for a loop inside the IF 

statement or an IF statement inside the loop. These types of 

blocks are usually found and must be considered for effective 

parallelization. 

The algorithm written is very broad and very small 

things which are left in that should ve taken into account. 

For example, it was not explaind how the different parts will 

be differentiated and what is the demarkation line between an 

assignment statement and an arithmetic expression. Even the 

read and write statements can be executed in parallel in some 

cases but that was left untouched. 

The project will be of any use when the algorithm is 

converted into the program. This will be making a sort of pre 

compiler. This is rather a more difficult work and will take 

quite long time. One more thing which was assumed in the 

begining is the number of processors available to be more 
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than the 

limitation 

change in 

scheduling 

execution. 

requirement which is not practical and the 

on the processors will make the considerable 

the algorithm. Also, we then have to use the 

and load balancing techniques for the efficient 

The project, it can be concluded, is not just one 

project, rather it-is the combination of a large number of 

projects. .It is too big to expect the completion of even a 

considerable portion of it in such a short duration. The 

attept was made to develop the algorithm and a major portion 

of it has been done. The things which have been left and 

which require the attention, have been listed above. If this 

work is enhanced through the points explained, it will prove 

to be a major breakthrough in the direction of faster 

computing. 
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