
PARALLEL MATRIX INVERSION ON A
SUB CUBE-GRID

/

Dissertation subm;;-_zd by

Sudhir Kumar Gangwar

In partial fulfilment of the requirements
for the degrP.e of

Master of Technology
in

Computer Science And Technology

School of Computer and Systems Sciences

Jawaharlal Nehru University

New Delhi

December 1993

·",

CERTIFICATE

This is to certify that the dissertation entitled

"Parallel Matrix Inversion on a subcube grid", being submitted

by me to school of Computer and system sciences, Jawaharlal

Nehru University, New Delhi in the partial fulfilment of the

requirements for the award of the degree of Master of

Technology, is a record of original work done by me under the

supervision of Dr. C.P. Katti, Associate Professor, School of

Computer and systems sciences, Jawaharlal Nehru University

during the year 1993, Monsoon Semester.

The results reported in this dissertation have not

been submitted in part or fuLl to any qther Uni~ersity or

Institute for the award of any degree or diploma, etc.

•·

'/ ":l/

Prof.K.K.BHARADWAJ
Dean,

q~

School of Computer
and system sciences,
J.N.U., New Delhi.

~
Sudhi~;f4ap.a9r.3 Gangwar

~
DR:~

Associate Professor
School of Computer

and system Sciences,
J.N.U., New Delhi.

ACKNOWLEDGEMENT

I express my sincere thanks to Dr. C.P. Katti, Associate

Professor, School of computer and system sciences, Jawaharlal

Nehru University, New Delhi for suggesting such a brilliant

topic. I am indebted to him for his personal involvement with

my work and his immense and eloquent guidance and

encouragement which has been indispensable in bringing about

a successful completion of the dissertation.

I am also grateful to my friends especially to

Mr.Anil Kumar Tripathi for t~eir valuable suggestions, all

faculty and staff members who helped me in every way possible.

~01%-·_
- . ']o ./'2.. 'fJ

Sudhir Kumar Gangwar

93

/

CONTENTS
Page No.

CHAPTER I INTRODUCTION

1.1 Parallel Proceeding

1.2 Parallel Distributed Systems

1.2.1 Evolution & Area of Applications

1.2.2 Parallel & Distributed Systems Difference

1.2.3 Parameters of Classification

1.2.4 Shared Memory & Distributed Memory Systems

1.3 Matrix Computations

1.4 Problems & Computer Implementation

1.5 Characteristics of Parallel Algorithms

1.6 Relevance of Project

CHAPTER 2 ARCHITECTURE & NETWORK TOPOLOGIES

2.1 Architectures

2.2 Network topologies

2.3 Course gran & Fine Grain Systems

2.4 Choice of System·& Architecture

2.5 Communication Aspects

CHAPTER 3 DEVELOPMENT OF PARALLEL ALGORITHM FROM
SEQUETIAL ALGORITHM

3.1 How to Achieve Parallelism

3.2 Parallelization

CHAPTER 4 COMPLEXITY ANALYSIS

4.1 Complexity of Algorithms

4.2 Bounds on Complexity

4.3 Conditioning of the Problem

4.4 Speed up and efficiency

4.5.1 Numerical Accuracy

4.5.2 Efficiency
4.5.3 Run Time & Communication Overhead

4.6 Calculation of COmplexities.

CHAPTER 5 IMPLEMENTATION AND LOAD BALANCING

5.1 Implementation

5.2 Load Balancing

CHAPTER 6 CONCLUSION

CHAPTER 1

,.INTRODUCTION ,,
•l '·:"

INTRODUCTION

1.1 PARALLEL PROCESSING

Parallel Processing is so much a feature of the universe

that we are not normally concerned with it at all. However it

is worthwhile to reflect on the contrast between the

concurrent nature of the world. and the sequential nature of

the digital computer. Since the main purpose of the computer

is to model the world, there would

mismatch.

seem to be a serious

To adequantly model the concurrency of the real world,

it wciuld be preferable to have many processors all wor~ing at

the same time on the same program. There are also huge

potential performance benefits to be derived from such

parallel processing. For regardless of how far electronic

engineers can push the speed of an individual processor, 10

of each them running concurrently will still execute 10 times

as many instructions in a second.

The Classical computer is a single-processor system,

while the brain has a very large number of processing units

that operate at the same time. Modern semiconductor technology

has reached the level at which building a computer with

thousands of process is possible. These systems are- called

massively parallel computers.

1

The two major parts of the classical Von Neumann computer

are the central processing unit and the memory. Almost all of

the hardware if in the memory, and only a small percentage is

in the central processing unit. The central processing unit

either reads or writes into one memory location at one time.

This means that the central processing unit is busy all the

time, but that most of the memory is idle. a large percentage

of the co~puter hardware, say 95 percent, sits idle all the

time. an obvious way for better utilization of the hardware

is an architecture based on a large number of parallel

processing units.

1.1.1 HARDWARE AND ECONOMIC REASONS FOR PARALLEL

PROCESSING

Another example of the effect of changing technology oon

the desirability or feasibility of prallel organizations is

afforded by recent work on semiconductor memories. the use of

small distributed memories in now feasible since LSI memory

costs tend to be linear with size. Hence, it is no longer

economically necessary to design around a large central

memory. The total internal memory capacity can be distributed

over a number of smaller memory modules which can be accessed

in parallel.

1.2 PARALLEL AND DISTRIBUTED ARCIDTECTURES

Parallel and distributed computation is currently an area

2

of intense research activity, motivated by a variety of

factors. There has always been a need for the solution of very

large computational problems,but it is only recently that

technological advances have raised the possibility of

massively parallel computation and have made the solutiQn of

such. problems possible.Furthermore,the availability of

powerful parallel computers is generating interest in new

types of problems that were not addressed in the past.

Accordingly,the development of parallel and distributed

algorithms is guided by this interplay between old and new

computational needs on the one hand, and technological progress

on the other.

1.2.1 EVALUATION AND AREA OF APPLICATIONS

1. The original needs for fast computation have been in a

number of contexts involving partial differential

equations (PDEs), such as computational fluid dynamics and

weather prediction,as well as in image processing , etc.

In these applications, there is a large number of

numerical computations to be performed. The desire to

solve more and more complex problems has always been

running ahead of the capabilities of the time,and has

complex problems has always been running ahead of the

capabilities of the time ,and has provided a driving

force for the development of faster,and possibly

parallel,computing machines.The above mentioned types of

problems can be easily decomposed along a spatial

3

dimension, and have therefore has prime candidates for

parallelization ,with

(processor) assigned

a different computational unit

the task of manipulating the

variables associated with a small region in space.

Furthermore in such problems , interactions between

variables are local in nature,thus leading to the design

of parallel computers consisting of a number of

processors with nearest neighbour connections.

2. Recently, there has been increased interest in other

types of large scale computation. Some examples are the

analysis,simulation,and optimization of large seal

interconnected system queneing systems being a

noteworthy representative .Other examples relate to the

.solution of general systems of equations, mathematical

programming ,and optimization problems.A common property

of such problems,as they arise composition tend to be

fewer and more complex than those obtained in the context

of is lost. Accordingly , one is led to use fewer and

more powerful processors,coordinated through a more

complex control mechanism. In both of the above classes

of applications,the main concerns are cost and speed:the

hardware should not be prohibitively expensive,and the

computation should terminate within an amount of time

that is acceptable for the particular application.

3. A third area of application of parallel,or rather

distributed, computation is in information

4

acquisition, information exptaction , and control , within

geographically distributed systems.

1. 2. 2 PARALLEL AND DISTRIBUTED SYSTEMS: DIFFERENCE

An important distinction is between parallel and

distributed computing systems. Roughly speaking,parallel

computing systems consist of several processors that are

located within a small distance of each other. Their main

purpose is to execute jointly a computational task and they

have been designed with such a purpose in mind; communication

between processors is reliable and predictable. Distributing

systems are different in a number of ways. Processors may be

far apart, and interprocessor communication is more

problematic.

1.2.3 PARAMETERS.OF CLASSIFICATION

There are several parameters that can be used to describe

or classify a parallel computer and we refer to these briefly.

(a) Type and number of processors: There are parallel

computing systems with thousands of processors . Such

systems are called massively parallel,and hold the

greatest promise for significantly extending the range

of practically solvable computational problems. A

diametrically opposite option is coarse-grained

parallelism, in ·which there is a small number of

5

processors, say of the order of 10. In this case, each

processor is usually fairly powerful, and the processors

are loosely coupled, so that each processor may be

performing a differeet type of task at any given time.

(b) Presence or absence of a global control mechanism

Parallel computers almost always have some central locus

of control.A related popular classification along these

lines distinguishes between SIMD (Single Multiple Data)

and MIMD (Multiple Instruction Multiple Data) parallel

computers,referring to the ability of different

processors to execute different instructions at any given

point in time.

(c) synchronous vs. asynchronous operation : The distinction

(d)

here refers to the presence or absence of a common global

clock used to synchronize the operation of the different

processors Such synchronization is present is
0

SIMDmachines, by definitaion. Synchronous operation has

some desirable propertie~: the behavior of the processors

is much easier to control and algorithm design is

considerably simplified. On the other hand, it may require

some undesirable overhead and in some

contexts,synchronization may be just impossible.For

·example, It is quite hard to synchronize a data

communication network.

Processor interconnections A significant aspect of -

parallel computers is the mechanism by which processors

exchange information. Generally speaking, there are two

extreme alternatives known as shared memory and message-

6

passing architectures,and a variety of hybrid designs

lying in between . The first alternative uses a global

shared memory that can be accessed by all processors. A

processor can communicate to another bywriting into the

global memory , and then having then second processor

read that same location in the memory.

In the second major approach,there is no shared

memory,but rather each processor has it own local

memory.Processors communicate through an interconnection

network consisting of direct communication links joining

certain pairs of processors,as shown in Fig. 2.

1.2.4 SHARED MEMORY & DISTRIBUTED MEMORY SYSTEMS

The characteristics of parallel algorithms are intimately

interwined with the characteristics of the problem to be

solved and the computer architecture on which the algorithm

will be implemented. We use the term "architecture" to include

the programming environment and operating system support, as

well as machine hardware. Probably the most significant

characteristic of parallel architectures is the organization

of memory, specifically whether each processor has acess only

to its own private local memory, or memory is globally shared

among all processors (of course, hybrid systems may have both

types of memory) In a distributed-memory system, problem

data (matrices, Vectors, etc.) must be partitioned and

distributed across the individual processor memories, while

in a shared-memory system all problem data reside in a common

global memory where they are accessible by all processors.

This means that standard data structures used on traditional

serial machines for matrices and Vectors usually carry over

to shared-memory multiprocessors, whereas distributed-memory

systems often require new distributed data structures, which

can adversely affect the performance of parallel algorithms.

Distributed data structures for sparse matrices, for example,

tend to incur a penalty, both in storage overhead and

efficiency of access, relative · to their serial or

shared-memory counterparts due to the loss of context that

results from scattering the data across local processor

memories. o

8

In a distributed-memory multiprocessor, access to non

local data is provided by passing messages among the

processors through an interconnection network. common

topological structures for such networks include rings,

meshes, trees, and hypercubes. Analogously, the processors in

a shared-memory system are connected to the common global

memory by a bus or a switch, such as a crossbar switch or a

multistage switching network. Thus, 2interprocessor

communication bandwith is a key perofmance parameter for

distributed-memory systems. While memory bandwidth is a

correspondingly important parameter for shared-memory systems

for a discussion of multiprocessor networks and architectures.

LOAD BALANCING

Another critical difference between shared-memory and

local- memory systems is the manner in which the computational

work load is distributed across the processors. Good

efficiency requires that the work load be reasonably well

balanced among the processors. In a shared memory system, a

good load balance is fairly easily maintained by dynamically

assigning work from a common pool of tasks. Such a scheme

tends naturally and effectively to accommodate varying numbers

of processors and relatively heterogeneous tasks, since

processors are assigned new tasks as they become available.

Such a common pool of tasks is not easily implemented without

access to shared memory, however, so that distributed memory

algorithms usually depend on a static assignment of work to

9

processors that is determined in advance of the computation.

This places a significantly greater burden on the algorithm

designer to ensure a good load balance.

1.3 MATRIX COMPUTATIONS

The fundamental importance of linear algebra problems in

science and engineering has placed algorithms for matrix

computations in the forefront of research on parallel

algorithms.

Matrix computations are among · the cornerstones of

scientific computing. Linear algebra problems, including

systems of linear equations, linear least squares problems,

and algebraic eigenvalue problems, are fundamental to the

computational solution of differential equations, optimization

" problems, and the analysis of various discrete structures. The

effective use of parallel computer architectures in scientific

computations is therefore critically dependent on exploiting

parallelism in matrix computations. Matrix algorithms have

been in the vanguard of algorithm development on

multiprocessors not only because they are building blocks on

which many other scientific cOmputations are based but also

because they serve as realistic prototypes that present many

of the fundamental challenges of parallel computation in a

pure form. Thus, the development of parallel algorithms for

matrix computations has received strong emphasis from

reseaTchers in parallel computing, both as a tool and as a

10

paradigm for scientific computing in general on parallel

architectures.

1.4 PROBLEMS AND COMPUTER IMPLEMENTATIONS

The most common computational problems in linear algebra

are the solution of systems of linear algebraic equations and

algebraic eigenvalue problems for various types of matrices.

Significant problem characteristics that affect any computer

implementation include whether the matrix is square or

rectangular, symmetric

explicitly represented

or nonsymmetric, dense

by its entries or

or sparse,

implicitly

represented by its action on vectors. Such properties

determine what algorithm or family of algorithm is

appropriate for solving the problem in any computing

environment, whether serial or parallel, but may have more

dramatic impact in the latter case. For example, the necessity

of row or column interchanges for numerical stability can be

a much more serious complication in a parallel environment

than in a serial one. Another important problem

characteristic in any computing environment is the size of the

matrix, which determines the computational resources

(processor time, storage) that will be required, as well as

what classes of algorithms and data structures may be

appropriate.

11

1.5 CHARACTARISTICS OF PARALLEL ALGORITHMS

1.5.1 CONCURRENCY, COMMUNICATIONS & GRANULARITY

The salient characteristics of parallel algorithms for

matrix computations fall under the two main headings of

"concurrency" and "communication". By concurrency we mean the

overlapped or simultaneous execution of computations on

multiple processors. The degree of concurrency is determined

by the manner in which the overall computation is broken up

into subtasks or subunits of computation, specifically their

size distribution, scheduling, and mutual data dependence. In

most computations, parallelism can potentially be exploited

at any of a number of levels, depending on the characteristics

of the underlying hardware. The relative size of these

subtasks or subunits of computation that are scheduled for
.,

parallel execution is referred to as the granularity of the

algorithm. Of course, it may be possible to exploit

parallelism at more that one level, as in a vector

multiprocessor that supports both inner-loop (fine- grain)

parallelism in performing larger tasks. The optimal choice of

granularity depends on the number and type of processors

available and on the overhead associated with communication

among tasks, whether by message passing or through shared

memory.

We characterize the exchange of information among

processors in order to satisfy data dependencies among

12

subtasks as communication, whether this is accomplished

explicitly through message passing or implicitly through

shared memory. We have already remarked that many linear

algebra problems inherently require global communication,

meaning that results produced by a given processor must be

made available to all other processors. In a distributed

memory environment, such a communication pattern is typically

accomplished by propagating the information in stages through

local links in the interconnection network until all

processors eventually receive it.

The keys to developing efficient parallel algorithms for

a multiprocessor are to maximize concurrency and minimize

communication costs. Unfortunately, these two objectives often

conflict, and so a compromise must be sought between them. For

example, increasing the granularity of an algorithm tends to

reduce communication overhead, but it also tends to reduce

potential concurrency. The precise trade-off point depends on

both the problem and the architecture. The latter can be

roughly·characterized by the ration of computation speed to

communication speed. Both concurrency and communication

requirements are determined by the manner in which the

computation and the data are partitioned and distributed over

the processors. For matrix problems, the main questions are

how to organize the computation and partition the matrix how

to map the resulting communication requirements.

13

1.s.2 PARTIONING OF THE MATRIX AND MAPPING

The partitioning of the matrix and mapping of the

resulting pi~ces onto the processors is of critical importance

in distributed-memory algorithms because the load balance

among processors is determined by this static assignment.

Assigning the pieces of the matrix (rows, columns, etc>) to

the processors in the same manner that one would deal cards

(sometimes called interleaved or scattered storage or wrap

mapping) tends to yield better concurrency and load balance

in matrix factorization algorithms than assigning contiguous

pieces (blocks) to each processor. On the other hand, keeping

contiguous data together in each processor tends to reduce

necessary communication in these and many other algorithms.

This is another example of a trade-off between concurrency and

communication that is dependent on the particular problem,

algorithm, and machine characteristics.

14

1.6 RELEVANCE OF PROJECT

Consider the system of linear equations ·

AX = B

Where A be a~ n*n real matrix

B be a vector in R**n

X is an unknown vector to be determined.

In solving this system of linear equations matrix

inversion is often needed. For example in the above problem

be need inverse of matrix A.

There are variety of methods for computing the inverse

of matrix. They are classified as direct methods and iterative

methods.

Iterative methods :-

--Jacobi's Methods

--Gauss-Seidal Methods etc.

Direct Methods :-

--Gauss Method

--Gauss-Jordan Method etc.

Iterative methods give a sequence of approximate

solutions which converge when the number of steps tend to

infinity. Thus they do not find an exact solution infinite

time , but they converge to solution asymptotically. They are

preferred to direct methods when order of matrix n is very

15

large. Also when matrix A is sparse

storage space than direct methods.

they require less

Direct methods produce the exact solution with a finite

number of 'operations generally of the order of n**3

disregarding the round-off errors.

We will choose Gauss-Jordan algorithm to find the

inverse.

We will modify the algorithm to enhance the numerical

stability and to reduce the effect of round off or the

truncation errors. Then we will develop he parallel algorithm

for this sequential algorithm. While implementing parallel

algorithm we will apply load balancing to our algorithm to

achieve the efficient use of processors i.e. to increase the

efficiency or the speedup of the parallel algorithm. If the

operating system is not good then efficient application of

load balancing may produce the speedup of 60 percent.

Why we have chosen Gauss-Jordan algorithm. There are few

points to support it.

• It requires no back subsituion so this is useful

particularly in matrix computaions where multiple right

hand sides are present.

• It has better scope for loadbalancing and good

vectorization property.

16

• While parallelising vector matrix multiplication is more

communi~ation efficient than backward I forward

subsitution.

We are using modified Gauss-Jordan algorithm for two

reasons:-

1. To enhance the numerical stability which 1s explaind

below

In Gauss-Jordan elimination prpcess there is astep of

dividing pivot row by pivot element. In case pivot is zero,

then we can not divide the pivot row by it, and process

terminates even if the final solution (inverse of matrix)

exists. As a remedy we find the element of maximum magnitude

of the matrix and call it pivot element. Pivot locations are

locations of diagonal elements of matrix . pivot locations for
._::r

the first location is location of first diagonal element.

Pivot location for second iteration is location of second

diagonal element and so on. Now we exchange the rows (with

rows) and columns (with columns) to bring pivot element to

pivot location.

Since exchanging the columns changes the coefficients of

variables. Therefore we keep an account of all column
.

exchanges in some order and while writing final answer we

exchange the columns in reverse order to restore the order of

variables.

17

Now the proceed to the steps of Gauss-Jorthan

elimination. Since we are lising greatest element of matrix

as pivot element 1 it can never be zero except when every

element of matrix is zero. Therefore process will never

terminate in between and will produce the inverse of the

required matrix if it exists. After completion of all steps

of first iteration in elemination process we find new pivot

element for second iteration. For this we find the greatest

element of the matrix obtained after deleting pivot row &

pivot column from the matrix of the previous iteration. After

this same steps of elemination process follows.

In the first iteration of elemination process we get all

element except pivot element o£ pivot column eleminated. In

this way after in iterations (where m is the number of rows)

we get only diagonal elements and all other elements are
·>.

eleminated and we get the inverse directely without

substitution.

2. To reduce the effect of truncation/round off errors and

make them bounded.

Suppose pivot element is very near to zero 1 it may

contain a large relative error brought about by having to

retain a fixed number of digits in each number in the

computer. Then dividing by this element will increase the

amount of error in each following step and error will increase

unbounded. These situations can be remedied by searching at

18

each iteration of elemination forcess for the element of

greatest magnitude as explained in the previous case of

numerical stability.

In mathematical modeling of various physical problems we

often need matrix computations. In most of the cases elements

of matrix vary in magnitude with a large amount. Few elements

are very small and few very large. In these cases there is

good possibility of selection of very small pivot element.

This will introduce large amount of relative round-off errors

and a great deal of numerical instability some time it becomes

impossible to perform further computations after few since

round-off errors multiply very fast in each following ~tep.

For example in analysis electrical RLC networks some times we

have capacitance of the order of microfarad or picofarad,

resistance of the order of Kilohms and inductance of the order

of milihenry. In the modelling of these different magnitude

and order in the node equations matrix.

CD

• SA 2-t}Jn :1-/t.n

19

The node equations in matrix form can be written as

(2 +~ 3
1 .) -jwc 1

+ R + J we R

t:l ~J -jwc [2jwc+l+ jw~o-'] -jwc

1 (' 1 1)
R

-jwc JWC+-+--r-:-
R 1-]4

If the value of R = 2x102 ft

W = 100 radjsec.

c 3x1o-12 F

The order of magnitude of elements will be very much

different and we will not be able to find the inverse of

matrix with sufficient accuracy and reliability.

Consider another illustrative example which will show the

disaster occurred due to selection of small pivot :

Consider the simple system

0.000100 X + y 1 X 1.00010

Solution

X + y = 2 y = 0.99990

to be solved using three-digit arithmetic.That is, only the

three most significant decimal digits of any of any number are

retained as the result of an arithmetic operation. We assume

•the result is rounded. With Gauss J0rdan elimination we

multiply the first equation by - 10,000 and add to obtain

20

0.000100 X + y = 1 X = 0.000

Solution

-10,000 y -10,000 y 1.000

Thus a computational disaster has occurred.

If we switch the equations (that is, we pivot) to obtain

X + y = 2

0.000100 X + y 1

then Gauss Jordan elimination produces the system (again with

three-digit arithmetic)

X + y = 2 X = 1. 00

Solution

y = 1 y = 1. 00
.,

This solution is as good as one would hope for using

three- digit arithmetic.

The lesson of this example is : It is not enough just to

avoid zero pivots, you must also aviod relatively small ones.

21

CHAPTER 2

ARCHITECTURE AND NETWORK TOPOLOGIES

ARCHITECTURE AND NETWORK TOPOLOGIES :

2.1 ARCIDTECTURE

Computer architectures are divide into three groups

called SISD, SIMD, and MIMD. SISD (single instruction, single

data) architecture explains the operation of classical

machines. It uses hardware in a very inefficient way; however,

this architecture is simple and easy to program, and most of

the computer systems presently available follow this

architecture. This is especially true in small systems, and

in measurement and control systems. In these systems, memories

are relatively small and efficiency is not crucial.

SIMD (single instruction, multiple data) architecture

offers more efficient use of hardware but also provides a

substantia'ily higher speed of operation. SIMD architecture is

presented. an SIMD system typically consists of identitical

processing elements (PE) , each a processor with its own

memory, an interconection network, and a control unit (CU).

The control unit broadcasts instructions to all PEs. Each

active PE executes each intstruction on the data in its won

memory. The instruction is executed simultaneously in all

active PEs. The interconnection network enables the data to

be transferred among the PEs.

Because the same operation is performed simultaneously

on different data items, SIMD systems are particularly well-

22

suited for performing matrix and vector operations.

MIMD (multiple instruction stream, multiple data stream

architecture enables a number of independent but related

programs to be executed concurrently. Concurrent processing

is single-level or global form of parallelism, denoting

current machine thus uses loosely coupled multiple processors

to perform many operations at once. Figure shows MIMD

concurrent architecture.

CONTROL
UNIT

~
I

PEO PE 1 ... PE P-1

~ ·~ ~

! INTERCONNECTION NETWORK ;
Single instruction, multiple data (SIMO) configuration.

2.1.1 FURTHER CLASSIFICATION BASED ON

COMMUNICATION

Parallel architecture can be further divided into two

categories,
.

based on the way the processors communicate.

According to Bell, 1 all of the machines use either bus- based

or nonbus-based architectures. Within the bus-based groups are

23

two subcategories: tightly coupled and loosely coupled

systems. The tightly coupled systems, sometimes called

multiprocessors and common, or global, memory. The processor

and memory are connected by one or more high speed buses.

Loosely coupled systems, sometimes called multicomputers, have

local memories for each processor, although they sometimes

have global memory for shared data.

2.2 NETWORK TOPOLOGIES

We will represent a communication network of processors

as a graph G = (N,A), also referred to, somewhat loosely as

a topology. The nodes of the graph correspond to the

processors, and the presence of an (undirected) arc (i, j)

indicates that there is a direct communication link that

serves as an error free, asynchronous packet pipe between

processor i and processor j in both directions. We assume that

communication can take place sumulsaneously on all of the

incident links of a node and in both directions.

We now consider a number of specific topologies.

2. 2. 1 COMPLETE GRAPH

Here there is a direct link between every pair of

processors. Such a network can be implemented by means of a

bus which is shared by all processors, or by means of some

type of crossbar switch. Clearly this is an ideal network in

24

terms of flexibility. Unfortunately, when the number of

procssors is very large, a crossbar switch becomes very

costly, and a bys involves large queueing delays.

I I'E 0 PE 1 PE P-1 ...
. l8J. ~ ~

i INTERCONNECTION NETWORK Multiple instruction, multiple data (MIMD) configura
tton.

2 . 2 • 2 LINEAR PROCESSOR ARRAY

Here there are p processors/nodes numbered 1,2, ,p and

there is a link (i,i+l) for every pair of successive

processors . The diameter and connectivity properties of this

network are the worst possible.

----~0- .~\
.. ~\~'

25

2.2 .3 RING

This is a simple and common network that has the property

that there is path between any pair of processors even after

any one communication link has failed. However, the number of

links separating a pair of processors can be as large as

[(p-1}/2], where pis the number of processors. It can be seen

that all of the basic communication problems discussed earlier

(single node and multinode broadcast, single node scatter, and

total exchange) can be solved on a ring in a time that lies

between the corresponding time on a linear array with the same

number of nodes, and one-half that time.

2.2.4 TREE

A tree network with p processors provides communication

between every pair of processors with a minimal number of

links p-1). One disadvantage of a tree is its low

connectivity; the failure of any one of its links creates two

26

subsets of processors that cannot communicate with each other.

The star network has munimal diameter among tree topologies;

however the central node of the star handlkes all the network

traffic, and can become a bottleneck.

'l Root Level 0

Level 1

(a)

1\ 1\
Total number of nodes is between 2' and 2' • t -1

Level k

(b)

2.2.s MESH

Many large problems of interest are closely tied to the

geometry of physical space. Mesh connected processor arrays

are often well suited for such problems. In a d- dimensional

mesh the processors are arranged along the points of

d-dimensional space that have integer coordinates, and there

is a direct communication link between nearest neighbors.

2. 2. 6 HYPERCUBE

Consider the set of all points 1n d-dimensional space

with each coordinate equal to zero or one. These points may
.

be thought of as the corners of a d-dimensional cube. We let

these points correspong to processors, and we consider a

communication link for every two points differing in a single

27

coordinate. The resulting network is called a hypercube or

d-cube. shows a 3-cube and a 4-cube.

Formally, ad-cube is the d-dimensional mesh that has two

processors in each dimension, that os, ni= 2 for all i. To

visualize better a d-cube, we assume that each processor has

an identity number which is a binary string of length d

(corresponding to the coordinates of a node of the d-cube).

We can construct a hypercube of any dimension by connecting

lower-dimensional cubes, starting with a 1-cube. In

particular, we can start with two (d-1)-dimensional cubes and

introduce a link connecting each pair of nodes with the same

identity number. This constructs a d-cube with the identity

number of each node obtained by adding a leading 0 of leading

1 to its previous identity, depending on whether .. the node

belongs to the first (d-1)-dimensional cube or the second .

The Hamming distance between two processors is the number

of bits in which their identity numbers differ. Two processors

are directly connected with a communication link if and only

if their Hamming distance is unity, that is, if and only if

their identity numbers differ in exactly one bit.

28

Q,men~'ons Nodes Channels Topoloi;y

0 0 0

2 0---0

2 4 4 D
3 8 12 B
4 16 32

5 32 80

The main architecture in the nonbus-based category is the

hypercube. Instead of relying on buses, hypercubes rely on

direct memory-access channels between neighbouring processors

and their memories. Each processing unit, called a node, can

communicate directly with its nearest neighbours in the

n-dimensional space in which it was designed and built. The

hypercube is a binary n-cube, also referred to as a binary

hypercube or boolean hypercube.

Characteristics

A two-dimensional hypercube has four nodes, each at a

corner of a single square. Each node is able to communicate

directly with two other nodes. A three-dimensional hypercube

is the familiar cube. This hypercube has eight noes, each at

one corner of cube; each node communicates directly with three

other nodes. Higher-dimensioned cubes are built up from this

basic structure.

The cube "dimension" equals the power of two

corresponding to the number of nodes in the cube. Thus, a 32

nod~ cube is a five-dimensional system (205) . Each node 1s

connected to its five nearest neighbors. If the processor

needs to communicate with a node that is not one of its

nearest neighbors, the data must be routed via intervening

processors. If this occurs frequently, it could slow overall

processing rates in hypercubes. Each node is a powerful

processor operating independently of others. Hence, the

29

hypercube represents a loosely coupled, coarse-grain

architecture.

000 001
(a)

(b)

30

2. 3 COURSE GRAIN & FINE GRAIN SYSTEM

In any parallel computer architecture, there is a

trade-off between the numbers and the size of the processors.

Possible solutions are single-grain systems, coarsegrain

systems, and fine-grain systems. A single-grain system is a

classical Neumann machine with only one processor. A coarse

grain system couples a moderately large number (say hundreds)

of processors. for example, IBMs GFll machine contains 576

processing elements, interconnected by a three stage switching

network; the Connection Machine from Thinking Machines

Corporation contains 64,000 processing elements,

interconnected by a programmable switching network. Each

processor is a simple one-bit processing unit.

2. 4 CHOICE OF SYSTEM & ARCIDTECTURE

Parallel systems can be built in many different ways; the

choice of architecture depends on the application. Many

systems exist in each architecture category.

2. s COMMUNICATION ASPECTS OF PARALLEL AND

DISTRIBUTED SYSTEMS

In many. parallel and distributed algorithms and systems

the time spend for interprocessor communication is a sizable

fraction of the total time needed to solve a problem. In this

case we say that the ;algorithm experiences substantial

31

communication penalty or communication delays. We cal think

of the communication penalty as the ratio

Cp TTOTAL
TCOMP

Where TTOTAL is the time required by the algorithm to

solve the given problem, and rcoMP is the corresponding time

that can be attributed just to computation, that is time that

would be required if all communication were instantaneous.

To analyze communication issues, it is helpful to view

the distributed computing system as a network of pr90cessors

connected by communication links. Each processor uses its own

local memory for storing some problem data and intermediate

algorithmic results, amd exchanges informqtion with other

processors in groups of bits called packets using the

communication links of the network.

Communication delays can be divided inot four parts:

(a) Communication processing time: This is the time required

to prepare information for transmission.

(b) Queueing time: Once information is assembled into packets

for transmission om some communication link, it must wait

in a queue prior to the start of its transmission for a

number of reasons. for example, the link may be

temporarily unavailable because other information packets

or system control packets are using.

(c) Transmission time: This is the time required for

32

transmission of all the bits of the packet.

(d) Propagation time: This is the time between the end of

transmission of the last bit of the packet at the

transmitting processor, and the reception of the last bit

of the packet at the receiving processor.

Depending on the given system and algorithm, one or more

of the above times may be neglibible. For example, in some

cases the information is generated with sufficient regularity

and the transmision resources are sufficiently plentiful so

that there never is a need for queueing packets, whereas in

other cases the physical distance between transmitter and

receiver is so small that propagation delay is negligible.

For most systems, we can reasonbly assume that the

processing and propagation time on a given link is constant

for all. packets, and the transmission time is proportional to

the number of bits (or length) of the packets. We thus arrive

at the following formula for the delay of a packet in crossing

a link:

D = P+RL+Q

where P is the processing and propagation time, R is the

transmission time required for a single bit, L is the length

of the packet in bits, and Q is the queueing time. In the

great majority of presently existing systems, even when the

packet does not contain much more than overhead, the sum P+RL

33

is much larger than the time required to execute an elementary

numerical operation such as a floating point multiplication.

This means that if a prallel algorithm requires transmission

of a packet for every few numerical operations it performs,

the communication time is likely to dominate its execution

time.

Some of the most important factors that influence

communication delays are the following:

(a) The algorithms used to control the communication network,

mainly error control, routing, and flow control.

(b) The communication network topology, that is, the number,

nature, and location of the communication links.

(c) The structure of the problem solved and the design of the

algorithm to match this structure, including the degree

of synchronization required by the algorithm.

34

CHAPTER 3

DEVELOPMENT OF PARALLEL ALGORITHM FROM
SEQUENTIAL ALGORITHM

DEVELOPMENT OF PARALLEL ALGORITHM

FROM SEQUENTIAL ALGORITHM

3.1 HOW TO AClllEVE PARALLELISM

Parallelism is best used for programs that require a

significant number of cycles.

With some body of instructions being repeated a million

times or more, we have an opportunity for parallelism if we

can spread those million executions in some way across N

processors. this is a simple recipe to achieve parallelism:

1. Analyze the program for a loop or recursion structure;

2. Find the instructions that account for the most time,

usually the regions repeated the greatest number of

. i teratioins;

3. Split the instruction execution of these regions across

N processors, if this can be done correctly; and

4. Add sycnchronization and data-transmission statements as

r~quired to create a correct parallel implementation.

3. 1.1 LARGE PROBLEMS

In spite of the continual efforts and achievements in

increasing the speeds of logic circuits, memories, and

inputjoutput "equipment, requirements for processing and

computation capabilities have increased at a somewhat

comparable rate.

35

If the magnitude of these large processing and

computatioin problems results from a need for processing a

number of different sets of data within a given time, one

approach to a solution is to use different processing units

to work simultaneously on different data sets rather than

sequentially forcing different datasets through the same

processor in time sequence . Examples of such problems include

the global weather problem, nuclear physics problems, large

hydrodynamic problems, and others in which an array or mesh

of data points are processed.

3 . 1. 2 PROBLEMS WITH INHERENT PARALLELISM

Such inherent parallelism may result from the presence

of several data streams which can be processed in parallel,

and subsequently under the control of a single instruction

streams. Another type of inherent parallelism results from the

operations on different sets of data. If such parallel

computations are quite frequent in the program, the overall

program may be executed more efficiently (from an equipment

and economic standpoint) as well as in a shorter elapsed time

by the use of some type of parallel organization.

Parallel data streams are typically found in phased array

radar, sonar and radar signal processing, and pattern

recognition problems.

36

3.1.3 RELIABILITY AND GRACEFUL DEGRADATION

A parallel organizatioin can permit graceful degradation

of the system by dropping off less critical operations in the

event of the malfunction of a part of the system, while

permitting the more critical operations to continue in those

parallel units which are still operable. The failure of a

single unit would decrease the total system capability by a

very small percentage and would have an almost negligible

effect on the necessary functions in the overall system. This

is particularly true if the system is designed such that it

can automatically detect a malfunction 1n one unit and

reconfigure the problem to perform the critical functions on

the remaining units.

3.1.4 PREPARATION AND EVALUATION OF COMPUTER

PROGRAMS OF PARALLEL PROCESSING SYSTEMS

The modeling of computations for prallel processing can

be divided inot four general areas (1) those general models

concerned mostly with formal aspects of prallel processing

without regard to actual programming considerations, (2)

models that incorporate new programming languages designed to

enchance prallel processing, (3) models that incorporate

extensions of existing sequential programming languages, and

(4) models that attempt to detect and represent parallelism

in existing sequential languages.

37

Each approach has considerable merit. the general models

(1) allow us to gain deeper insight into the nature of

parallel processes and to prove the validity of such proceses.

At this point in time, new languages for parallel processing

are embryonic. We need additional information and experience

with parallel processing to be able to state just which

aspects of prallelism need to be explicityly stated and which

should be left to machine (compiler) recognition. Experience

with such languages will also teach us the most "natural"

means of expression of parallelism.

At present, extensions to existing languages are useful

in reformulating existing programs, however such extensions

usually require complete receding of existing programs.

Models which attempt to detect parallelism in existing

sequential languags can play an important role in this

transition period. Large existing programs can be made

operational on existing (or simulated) prallel processing

systems, and observatioins of system behaviour can be made

while reformulation of the program is in process. Nor have we

learnied all there is to know about progrms for sequential

processors. Some of the modeling for parallel processing has

given insight into optimization techniques for single

processors.

38

3. 2 P ARALLELIZATION

In this chapter firstly we will provide modified Gauss

Jordan algorithm to find the inverse of matrix. Then we will

find the steps of algorithm which are mutually independent.

We can do these steps in parallel saving a great amount of

time. We will find these steps which can be done

simultaneously if more than one processors are used. We will

group these steps into together which will form subsections

of algorithm. These subsections are mutually dependent and

can't be parallelised. We will develop the parallel algorithm

with each subsectionwise. Thus our algorithm is broken into

number of subsections.

Although we will use load balancing to adjust the load

when numbers of processors is changed, yet we will give

parallel algorithm for two cases:

a) number of processors p = m = number of rows of matrix.

b) number of processors p = m x 2m = number of elements in

augmented matrix.

In second case number of processors is not limited and

we get full parallelisation we will give a subsection of

sequential algorithm, then parallel algorithm for case (a) p

= m will be developed. After that for case (b) p = m x 2m

parallel algorithm will be developed. After that second

subsection of sequential algorithm will be parallelised and

so on.

39

We have to find the inverse of a (m x m) matrix A.

Consider the system of linear equations:

A X I

where

X is unknwon square matrix of order (m X m)

I is unity matrix of order (m x m)

In matrix form:

all· al2 aiM XII X12 xlm 1 0 0

a21 a22 a 2M X21 Xn X 2m 0 1 0

0 0 1

If we are able to find matrix X, it will be inverse of matrix

A. We will find matrix X by using elimination process.

Writing the right hand side coefficient matrix.

1 0

0 1

0 0

0

0

1

bll

b21
as

bml

bl2 blm

b22 b2m
B

bm2 bmm

Writing Augmented matrix using matrix A coefficients and right

handside coefficients:

Augmented matrix:

40

This is a (m x 2m) matrix having rows m, columns 2m

we can assume that, this matrix has two parts:

First half (m x m) square matrix has m rows and first m

column

Second half (m x m) square matrix has m rows and last m

columns

Subsection 1

Choose the first element as the grea"test element (in

magnitude) of the first half matrix and bring it to pivot

location. Keep an account of column interchanges.

While choosing pivot element we will search for element

of greatest magnitude from the first half of matrix. We will

not eliminate coefficients from the second half of matrix

because they are coefficients of right hand side variables.

We will apply the operations to whole matrix so that right

hands ide coefficients are also modified simultaneously as

elimination process proceeds.

41

Pivot location for 1st iteration location of 1st

diagonal element

Pivot location for 2nd iteration = location of 2nd diagonal

element

And so on.

Sequential

z : = 1

for z := 1 to m do

begin

begin

z := z + 1;

- var i := 1;

j := 1; i, j = pivot location;

all ai2 aiM

a2I an a2M

- search 1st row and find row max (1)

- search 2nd row and find row max (2)

- search mth row and find row max (m)

- search column made of rowmax (x) and find max (row max

(x)) .

-pivot .-max (row max (x)) a~

42

- if (i < > k)

row exchange (i, k);

- if (j < > 1) colexchange (j,l);

{suppose pivot location = i, j, location of greatest

element = k, 1. First exchange the row having greatest

element with the ith row, then exchange the column

containing the greatest element with the jth column}.

- c. [100]

{where C is an array of record type element. The elements

will consist of first and second element. Elements will

contain column numbers j & 1. We want to keep a record

of total column exchanges and do them in reverse order

while writing the final answer}

- C [y]. first= j;

c [y]. second= 1

end;

Parallelisation

Number of processors

case (a) p = m x 2m = 2m2

Assume initial each element of matrix is on separate

processor:

bll blm

b21 b2m

43

begin

par begin

Transfer half elements from one subhypercube to another

subhypercube.

parend;

par begin

Compare each pair and retain the greater element in that

node and reject the another one.

parend ;

parbegin

Transfer quarter elements (half of remaining) from one

subhypercube to anther subhypercube.

parend;

compare the last two elements and find greatest elements

i, j = pivot location

i .- 1. , j .- 1

if (i < > k) row exchange (i' k) ;

if (j < > 1) col exchange (j ' 1) ;

c [y J • first = j

c[y). second= 1

end,

44

Case (b)

Number of processors p = m

Assume initiality

begin

1st row of matrix on processor P0

2nd row of matrix on processor P1

mth row of matrix on processor P111 _1

par begin

- search 1st row on P0 for max (row 1)

- search 2nd row on P1 for max (row 2)

search row on P~1 for max (row m)

parend;

par begin

Transfer half of max (row x) from one subhypercube

to another subhypercube.

parend;

par begin

compare two elements of max (row x) on each node.

Retain the greater.

parend;

par begin

Transfer half of max (row x) elements from one

subhypercube to another subhypercube

parend;

45

compare the last two max (row x) and retain max

(max (row x)) =au

end,

i, j = pivot location

i := 1; j .- 1;

if (i < > k) row exchange (i, k);

if (j <> 1) colexchange (j, 1)

c [y]. first= j

C[y]. second= 1

Subsection 2

Divide each element of pivot row by pivot element.

Sequential

for j

begin

1 to 2 m do

aij div pivot element

j := j + 1

end;

Parallel

case (a)

begin

par begin

Send (transfer) pivot element to each 2

46

m

processors using single node broadcast

par end

par begin

Tranfer each element of 2 m pivot row elements on

each individual processors (already exist)

par end

par begin

divide a;, on Po by a.
II

(pivot element)

divide a;2 on P, by a ..
II

divide a;J on p2 by a;;

divide b; 1 on Pm by a;;

divide b;m on P2m-I by a;;

parend

end;

{after execution of this subsection pivot row 1s modified}

case (b)

p = m

begin

par begin

Transfer first m elements of pivot row on m

separate processors: m times single node broadcast.

parend;

par begin

Transfer pivot element to each m processor.

Wing single node broadcast.

47

end;

parend;

par begin

Divide each element on processors by pivot element.

parend;

par begin

Transfer last m elements of pivot rows on m

separate processor: m times single node broadcast.

parend;

par begin

divide each element on processor by pivot element.

parend;

{After this subsection each processor has two modified pivot

row elements

eg. P0 has a; 1 , b;1

P1 has a;2 , b;2 and so on}.

Subsection 3

Keep the m copies of modified pivot row and multiply each

of them by appropriate factors separately.

Sequential

begin

begin

Load modified pivot row on processor

multiply each element of this row by - a 21

store the results.

48

end;

end;

end;

begin

Load modified pivot row on processor

multiply each element of this row by - a 3 1

store the results

and so on for all (m-1) rows.

Parallel

Case (a)

begin

par begin

Transfer all 2m elements of modified (after

division) pivot row through columns using single

node broad cast for all 2m nodes.

parend;

{now modified pivot row has m copies}

par begin

Transfer - a 21 to each element of 2nd row

Transfer - a 31 to each element of Jrd row.

Trnasfer - a 1111 to each element of mth row

parend;

par begin

49

end;

Multiply 2nd row of processor by - a 21

Multiply Jrd row of processor by - a 31

Multiply mth row of processor by - am1

parend;

{After this subsection modified rows elements after

multiplication are on the same processors on which

original elements are present}

case 3(b) p = m

begin

{Keep the copies of modified pivot row after division on

m processors}

par begin

Transfer the each of two elements in each processor

to each processor using multinode broadcast two

times.

parend;

{Now - a2, is present in P1

a3, is present in p2 and so on}

parbegin

multiply each element on P, by - a2,

multiply each element on p2 by - a31

multiply each element on PJ by - a4,

50

end;

multiply each element on P~ 1 by - am 1

par end

Subsection 4

{After multiplication elements of rows on processors have

been modified and original row elements corresponding to

them are on same processors}

Sequential

begin

Add corresponding elements of modified & original

row ~

end

end;

Add corresponding elements of modified & original

row ~

Add corresponding elements of modified & original

for i := max down to 1 do

col exchange (c[y]. first, c(y]. second)

delete pivot column

{of for loop z .- 1 to m do}

51

Parallel Case (a) p 2m2

par begin

end;

parbegin

Add corresponding elements of modified and original

row R2

par end

par begin

Add corresponding elements of modified and original

row R3

.parend

par begin

Add corresponding elements of modified and original

row R.n

par end

parend;

for i := max down to 1 do

col exchange (c(y).first, c(y).second)

delete pivot column

.parend

Case (b) p = m

begin

parbegin

Add corresponding elements of modified row on P 1 and

2nd original row R2

52

Add corresponding elements of modified row on P2 and

3rd original row R3

Add corresponding elements of modified row on P3 and

4th original row R4

Add corresponding elements of modified row on P111 _1

and mth original row ~~

par end

end;

for i := max down to 1 do

col exchange (c(y). first c(y). second)

delete first column

end;

{After execution of above these 4 subsections of

algorithm our augmented matrix looks like -

I I
an ai2

0
I

an

...
0

I
am2

First column except pivot element of this augmented

matrix has been eliminated. In the second iteration of these

4 sections 2nd column wll be eliminated. For the second

iteration we will choose pivot element from the submatrix

obtained after deleting 1st column and 1st row that is pivot

column and pivot row from the first half sq. matrix.

53

After completion of final iteration we will get only

diagonal elements and all others will be eliminated from the

first half of sq. matrix. Thus from the direct substitution

we will get the required inverse of matrix of A from the

second half of the augmented matrix.

54

CHAPTER 4

COMPLEXITY ANALYSIS

COMPLEXITY ANALYSIS

4.1 COMPLEXITY OF ALGORITHMS

In order to measure the cost of executing a program,we

customarily define a complexity (or cost) function F, where

F(n) is a measure of the time required to execute the

algorithm on a problem of size n, or a measure of the memory

space required for such execution. Accordingly, we speak of

the time complexity and the space complexity functions of the

algorithm.

In practice, of importance is performance of the

algorithms for large values of n, that is performance of the

angorithms for large values of n, that is asymtotic behaviour

of the complexity function. Asymptotic complexity is the

growth in the limit of the complexity function with the size

parametern. So the asymptotic (time or space) function

ultimately determines the size of the problem that can be

solved by the algorithm. In terms of the terminology, we say

that the (time) complexity of the algorithm is O(log n), read

'order log n' if the processing by the algorithm of the

problem instance of size n takes the time proportional to log

n. In relation to, say the time compexity of an algorithm the

following terminology will be used in an equivalent sense:

(a) the time compexity of the algorithm is of order log n;

this can also be written as 'O(log n) ';

(b) the algorithm is executed is executed in O(log n) time;

55

(c) the amount of work require by the algborithm is

proportionalto log n, or is of O(log n).

Where appropriate the term 'unit of time' will be used

in the sense equivalent to the term 'one basic operation'

4. 2 BOUNDS ON COMPLEXITY

Complexity analysis among other things is concerned with

obtaining upper and lower bonds on the performance of

algorithms or classes of algorithms that solve various

problems. The existence of complexity bounds for the known

algorithms can serve as a basis for classifying the problems.

for other problems lower bounds on complexity have been

derived but none of the available algorithms is known to

attain the bounds. A notable example of this type is matrix

multiplication, where a minimum bound of 0 (n2
) is not

sharp enough.

Another group of problems is such that their lower bounds

on computational complexity are known, but these algorithms

are numerically unstable. Fast methods approach of

interpreting the operation of matrix multiplications belong

to this category.

Final, there are problems for which lower bounds on

complexity are known and the algorithms which attain these

bounds can be built and the algorithms are numerically stable.

56

4. 3 CONDITIONING OF THE PROBLEM

Consider the set

Ax = b (1)

Let x = A_ 1b be the exact solution of the set and x(cl be its

computed solution. We shall distinguish between the difference

Which is called the error and the difference

b - Ax<cl

Which is called the residual.

(2)

(3)

Studies on the conditioning of problem 1) show that if

both the error and the residaual vectors are small then the

problem is well-conditioned. If the residual is small while

the error is very large then the problem is called ill

conditioned. The matrix of an ill-conditioned is unsually

'riearly singular' or even exactly sing~lar.

If an instance of problem 1) is ill-conditioned then no

computational algorithm will solve it accurately. For a

well-conditioned problem one expects that a reasonable

approximation to the exact solution can be computed if a

stable computational algorithm is used. Numerical stability

of a particular algorithm is studied using the concept of the

error as defined by 2), of of the residual as defined by 3).

If the solution, x~, is computed using a particular algorithm

is numerically stable and vice versa.

57

In the forward error analysis (of pre-Wilkinsin era) one

attempts to bound the difference between the exact and

computed solutions at every step of the computation. As the

computation progresses this becomes more and more difficult,

the bounds on the difference between the solutions become

'loose'' and this leads to far too pessimistic conclusions on

the method's relaiability. The Wilkinson's backward error

analysis, on the other hand, studies the residual and not the

error. The approach is simpler and gives reasonably sharp

bound estimates on the residual and not the error. The

approach is simpler and gives reasonably sharp bound estimates

on the residual which in turn leads to more realistic

conclusions on the reliability of the method.

4. 4 SPEEDUP AND EFFICIENCY

.::;

We describe a few concepts that are sometimes useful in

comparing serial and parallel algorithms. Suppose that we have

a parallel algorithm that uses p processors (p may depend on

n) ,and that terminates in time Tr(n). Let T"(n) be the optimal

serial time to solve the same problem, that is, the time

required by the best possible serial (uniprocessor) algorithm

for this problem. The ratio

T • (n)

Tr (n)

is called the speedup of the algorithm,and describes the speed

advantage of the parallel algorithm, compared to the best

possible-serial algorithm. The ratio

58

T • (n)

pTP (n)

is called the efficiency of the algorithm and essentially

measures the fraction of time that a typical processor is

usefully employed.Ideally , Sp(n) = p and EP(n) = 1, in which

case, the availabity of p processors allows us to speed up the

computation by a factor of p. For this occur,the parallel

algorithm should be such that no processor ever remains idle

or does any unnecessary work. This ideal situation is

practically unattainable. A more realistic objective is to

aim at an efficiency that stays bounded aqay from zero,as n

and p increase.

There is difficulty with the above difinitions because

the optimal serial time T*(n) is unknown,even for seemingly

simple computational problems like matrix multiplication. For

this reason, T·(n) is sometimes defined differently.

We may let T* (n) be the time required by a single

processor to execute the particular parallel algorithm being

analyzed. (That is, we let a single processor simulatew the

operation of the p parallel processors,). With this choice

of T·(n), efficiency relates to how well a particular

algorithm has been parallelized.

4. s. 1 NUMERICAL ACCURACY

In the analysis of algorithms which solve numerical

59

problems the accuracy of the computed reesul ts is another

important criterion to distinguish between 'good' and 'bad'

algorithms. The need to examine the accuracy of mathematical

computations arises from the fact that a computer is a finite

machine; it is capable of repreaenting numbers only to a

finite number of digit positions. As a result, most numbers,

and even integers, if they are too long for the computer to

reprtesent exactly, are rounded, and so only a finite

approximation some numerical algorithms implemented on a

computer may produce approximations to the true results that

are wildly inaccurate.

4. s. 2 EFFICIENCY

Peak performance is very ~pecial state that is rarely

achievable. There are several factors ., that introduce

inefficiency. Among the factors are:

*

The delays introduced by interprocessor communications;

The overhead in synchronizing the work of one processor

with another;

Lost efficiency when one or more processors run out of

tasks;

Lost efficiency due to wasted effort by one or more

processors;

The processing costs for controlling

schedulingoperations.

60

the system and

A high-performance vector processor is suffer from lost

performance because it is unable to keep a~l of the processing

units busy. This latter problem arises particularly when a

computation is not easily implemented as a sequence of vector

operations performed on highly structured, densely stored

data.

The architect who designs and builds a multiprocessor

must pay close attention to the sources of inefficiency

exposed here. They can lead to serious degradation in

performance. For example, if the combined inefficiencies

produce an effective processing rate of only 10 percent of the

peak rate, then ten processors are required ln a

multiprocessor system ju3t to do the work of a single

processor.

Fortunately,

design can hold

for a small number of processors, careful

the inefficiency to a low figure, but

inefficiencies tend to climb as the number of processors

increase. There is a point where adding additional processors

can lengthen, not shorten, computation time.

The fact that inefficiency tends to grow with the number

of processors is the underlying reason why many commerical

offerings of multiprocessors have a small number of

processors, such as 4,8, or 16. The fastest machines are

built from the fastest devices available and have relatively

few processors.

61

Consider, for example, the Cray XMP, a four-processor

version of the Cray I. Another example is the IBM 309X family

for which systems with up to six processors are available.

4 o so 3 RUNTIME AND COMMUNICATION OVERHEAD

The point of this section is to analyze the performance

benefit of multiple processors in the ,face of overhead

incurred to create parallelism. This section. shows that

performance_ benefits strongly depend on the ration R/C, where

R is the length of a run-time quantum and C is the length of

communications overhead produced by that quantum. The ratio

expresses how much overhead is incurred per unit of

computa~ion. When the ratio l3 very low, it becomes

unprofitable to use parallellism. When the ratio is very

high, parallelism is potentially profitable. Note that a

large ratio can be obtained by partitioning a computing job

into relatively few large pieces, and that the amount of

parallelism for such a ratio might be much smaller than the

maximum available.

The ratio R/C is a measure of task granularity:

• In coarse-grain parallelism, R/C is relatively high, so

each unit of computation produces a relatively small

amount of communication : -and

• In fine-grain parallelism, R/C is very low, so there is

a relatively large amount of communication and other

overhead per unit of computation.

62

Coarse-grain parallelism arises when individual tasks are

large and over head can be amortized over many computational

cycles. fine-grain parallelism usually provides opportunities

to perform execution on many more processors than can

fruitfully support coarse-grained parallelism. The idea of

fine-grain parallelism is to partition a program into

increasingly smaller taks that can run in paralle. At the

ultimate limit, each individual task may be as small as a

single bperation. More commonly, however, a fine-grained task

contains a small number of instructions.

Small R/C ratios lead to poor performance because of high

overhead. Large ratios usually reflect poor exploitation of

para1le'lism. For maximum performance, it is necessary to

balance parallelism against overhead.

What are good parallel algorithms for solving varioius

important poblems? The key approach is the ability to

partition the problem intob modules that require relatively

little intermodule communication. If the partitioning can be

done successfully, then communication requirements are rather

small, and the dependency on the interconnection topology is

greatly diminished. on the other hand, if communication

requirements cannot be made small, then the interconnection

topology. becomes important_, __ and _the major parameter of

interest is the R/C ratio.

63

4, 6 CALCULATION OF COMPLEXITIES

In this chapter we will compare complexities of

sequential and parallel algorithms. Although communication

cost is negligible in comparism to computation cost, yet we

will take it into account. When number of processor increases

the communication cost and synchronisation cost come into the

picture.

There are two strategies mostly used for communication

between nodes. Spaning tree structure is used for these

strategies. Spanning tree of a d-cube that is rooted at node

(00 .. 0), and provides a path of d links or less from the root

node. to every other noae. The figure shows one possible

construction for d = 4. The tree lS constructed sequentially

star~ing from the roo~ by using the rule that the identities

of the children of each node are obtained by reversing one of

the zero bits of the identity of the parent that follows the

right most unity bit. The leaf nod~s are the ones that have

one as the final bit in their identity.

0000
Root
node

0001

0110 0111

1011

1101

1110 .1111

SPANNING TREE

64

Two strategies are:

1. SINGLE NODE BROADCAST/ACCUMULATION

To send the same packet from a given processor to every

other processor is called signle node broadcast. While in

single node accumulation, we want to send to a given node a

packet from every other node. Using spanning tree a single

node broadcast from the root to all nodes, and a single node

accumulation take O(d) = 0 (log p) communication time.

2. MULTINODE BORADCAST/ACCUMULATION

If we want to do a single node broadcast simultaneously
0

from all nodes, we call this a multinode broadcast and

simultaneous single node accumulation from all nodes is called

multinode accumulation. Both takes a time of

0 (p) = 0 (m) if p = m
log p log m

To calculate the complexities assume:

a time taken in 1 additonjsubtraction

{3 time taken in 1 multiplication

'Y time taken in 1 division

0 time taken in 1 comparison

t time taken in transfering unit load from one node

to nearest node in hypercube.

And in sequential processing proeessor takes

negligible time in loading and storing data to memory.

65

SINGLE NODE BROADCAST SINGLE NODE ACCUMULATION

a,

9
r a,
,. 7

(a) (b)

Also assume

O(a) = 0({3) = 0('}') = 0(5o) = O(lOt)

First we will calculate the complexity of sequentila

algorithm step by step. We will calculate separately for

subsection 1 and for rest of the algorithm because they yield

different recursive functions.

SEQUENTIAL COMPLEXITY

Subsection 1

(From the algorithm given in previous chapter)

Time taken in finding row max (i) = 0 (m)

Time taken in finding max (row max (i))

o (m) =0 (m2
)

0 (m) x

After completion of 1st iteration and for selection of

pivot element for 2nd iteration we delete one column and one

row from the (m x m) square matrix. Thus if initial size of

problem = f 1 (m, m)

then after one iteration size of problem = f 1 (m-1, m-1).

Thus,

f 1 (m, m) = f 1 (m-1, m-1) + m2

This is a recursive function on solving this function:

fdm, m) = f 1 (m-1, m-1) + m2

f 1 (m-2, m-2) + (m-1) 2

f 1 (m-2, m-2) f 1 (m-3, m-3) + (m-2)}

66

f 1 (2 , 2) = f (1 1 1) + 22

fl (1, 1) = 0

Adding up f 1 (m, m) m2 + (m -1) 2 + m- 2) 2 + . . • 2 2

m (m+1) (2m+1) _ 1
6

Subsections 2, 3, 4

(1)

Now we will calculate complexity due to subsections

2, 3 and 4.

· In first iteration time taken 1n subsection 2

= (2m-1) 'Y

Time taken in first iteration in subsecton 3

= (2m x {3) (m-1}

where '2m' due to 2m elements in one row (m-1} due to (m-1)

rows to be multiplied.

Time taken in first iteration in subsection 4

= (2m-1) a • (m-1)

{first element will be zero after addition and need not

to be added}

Total time = (2m-1) 'Y + 2m (m-1} {3 + (2m-1) (m-1) a

After completion of first iteration first column is zero

except pivotal element which is 1 in each iteration. Therefore

we can reduce one column from our problem. And our problem

67

size reduces to f 2 (m' 1 m-1} from f 2 (m' 1 m).

{here although m' = m, but to distinguish between rows

and columns we keep them like that}

that is:

f 2 (m', m) f 2 (m 1
1 m-1) + (2m-1)"' + (m1-1) ~m,B + (2m-1) O:]

on solving this recursive function we get:

f 2 (m', m) f 2 (m', m-1) + (2m-1)"' + (m'-1) ~m,B + (2m-1) a]

f 2 (m', m-1) f 2 (m', m-2) + 2 (m-3)"' + (m1-1) ~2m-1) ,B + [2 (m-1) -1] O:]

f 2 (m 1,m-2) f 2 (m 1,m-3) + 2(m-4)"' + (m1-1) ~2m-2) ,B + [2(m-2} -1Jo:]

f 2 (m1,2) f 2 (m1,1) + ?,(2 1)"1 + (m1-1) ~2.2,6+(2.2-1)a]

f 2 (m 1,1) = 0 + 2(1-1)"1 + (m'-1) [{2,6+(2-1)a]

Adding up we get

f 2m',m ,[(2m-1)+~(m-1)-1]+ ~(m-2)]+ .. (2-1)]

+ (m1-1) [2,B(m+m-1+ ... 1) + o:[(2m-1) + ~ (m-1) -1] + .. (2-1)]]

" 'Y f [m (~+1) - ~] + (m'-1) [2{l. m (~+1) j + 2a [m (~+1) - mJ]

"' [m 2 +m -1m] + (m1-1) [,B (m2 +m) +o: (m2 -m)]

since m = m'

f 2 (m, m) = (m2-m) "' + (m3-m) ,B + (m3
- 2m2 + m) a

68

(2)

From equations 1 and 2 we get over all complexity of

sequential algorithm:

f(m,m) f 1 (m,m) + f 2 (m,m)

o (m3
) + 0 (m3

)

f(m,m) = O(m3
) (A)

Parallel Algorithms

Now we will calculate the complexity of parallel

algorithm when number of processors p = m, when matrix is of

the order of (m x m) .

Case (a) p m

Subsection 1

Time required for searching all rows for max row (i)

2 m.o

Time in all transfers= t.log m

Time in all further comparisons= o.log m

Thus total time taken in first iterations

T = 2 m.o + log m o + log m.t.

After completion of one iteration problem of size f 1

(m,m) :reciuces to f 1 (m-1, m:-1) 1

i.e. fdm,m) = fdm-1, m-1) + o (2m + log m) + t.log m

on solving this recursive function we get:

69

f 1 (m,m) = f 1 (m-1, m-1) + 28.m + (t+8) log m

f
1

(m -1 , m -1) = f 1 (m- 2 , . m- 2) + 2 8 (m -1) + (t + 8) log (m -1)

f 1 (m-2,m-2) fdm-3, m-3) + 2 8 (m-2) + (t+8) log (m-2)

f 1 (2 , 2) = f 1 (1 , 1) + 2 8 • 2 + (t + 8) log 2

fl (1,1) = 0

Adding up we get

f 1 (m,m) = 28 (m + (m-1) + (m-2) + .. 2)

+ (t+o) [log m + log (m-1) + log (m-2) + ...

log 2)

= 28 [m(~+ 1) - 1] + (t+o) p..ogm + log(m-1) + ... log2]

(3)

Subsections 2, 3 & 4

Subsection 2

Time taken in 1st parbegin- parend statement= m.log (m)

Time in 2nd parbegin - parend statement = log (m)

Time in 3rd parbegin - parend

Time in 4th and 5th statement m log m + -y

Total time = 2m log m + log m + 2-y

Subsection 3

Time taken ln 1st parbegin - parend statment = 2.m
logm

Time taken in 2nd parbegin - parend statement = 2 m~~

Total time 2m (~+-1) logm

70

subsection 4

Time taken ln only parbegin - parend statement 2 m.a

Total time in steps 2, 3 & 4

2m log m + log m + 2-y +
2m

+ 2m ((3+a)
logm

(2m+1) log m + 2m ((3 +-y + -
1
-) + 2-y

logm

if m is large, ({3 + -y) >> ljlog m and (2m + 1) 2m

Hence {log m will remain constt. Slnce it depends on

number of nodes.

f 2 (m , m) = f 2 (m 1 m -1) + 2m (log m + (3 + 'Y)

f 2 (m , m -1) = f 2 (m 1 m- 2) + 2 (m -1) (log m + (3 + 'Y)

f 2 (m,2) f 2 (m,1) + 2.2 (log m + (3 + -y)

f 2 (m.1) = 2.1 (log m + (3 + -y)

Adding up we get

f 2 (m I m) = 2 (log m + (3 + 'Y) [m + m -1 + 1 J

(log m + (3 + -y) [m2 + m] = 0 (m2 log m)

Since f (m,m) = f 1 (m 1 m) + f 2 (m,m)

o (m2
) + o (m2 log m)

f(m,m) = O(m2 log m)

71

(4)

(B)

case (A)

When number of processor p 2m x m

subsection 1

Time ln transfer parbegin statements= t.log 2m1

Time in compare parbegin statements = t . log 2m2

Total time = (t + o) log 2m2

fl(m,m) = fl (m-1, m-1) + (t + o) log 2m2

This is a recursive function. On solving this function

we get.

f 1 (m, m)

f 1 (m,m)

subsection 2

2m log 2m (t + o)

0 (2m log 2m)

Time in 1st parbegin statement= 2 log 2(m)

There is no need of 2nd statement

Time in Jrd parb€gin statement = ~

Total time = 2 log 2{m) + ~

Subsection 3

Time in 1st parbegin statement = 2 log 2m

Time in 2nd parbegin statement = 2 log 2m .,,.

72

(5)

Time in 3rd parbegin statement ~

Total time = ~ + 2.2 l0g 2m

Subsection 4

Time = a

Total time in subsecti0ns 2, 3 and 4

= a + $ + 2.3 log 2m - r

f 2 (m,m) = f 2 (m,m-1) (a+~+~) + 6 log 2m

In this recurs1ve function log 2m will rema1n constant

since it depends on no. of ~odes.

Solving this recursive function we get:

f 2 (m,m) = f 2 (m,m-1) + (a+~+~) + 6 log 2m

f 2 (m,m-1) = f 2 (m, m-2) + (a+$+~) + 6 log 2m

f 2 (m, 1) = f 2 (m, 0) + (a+{J+-y) + 6 log 2m

On Adding up

f 7 (m,m) = m (a+$+~) + 6 m log 2m

f 2 (m , m) 0 (m log m) (6)

since f(m,m) = f 1 (m,m) + f- (m,m)

73

From eqns. (5) and (6) we get:

f(m,m) = O(m log m) + o (m log m)

f(m,m) 0 (m log m) (C)

In equations (B) and (C) the factor of log (m) comes

due to communication cost. From this it is clear that if

number of processor p = m or m2 is low then communication cost

can be ignored. Summarizing the results in a table:

Sequential Parallel
P=l p > 1

No. of processor p =Ill p = 2m2

p=l

with communication cost 0 (m3
) 0 (nr' log_ m) 0 (111 log 111)

without communication 0 0 (m3
) 0 (111:) 0 (m)

cost

74

CHAPT~R 5

IMPLEMENTATION AND LOAD BALANCING

I

IMPLEMENTATION AND LOAD BALANCING

5.1 IMPLEMENTATION

In this chapter we will describe how parallel algorithms

are implemented on the subcube grid.

We will give two illustrative models which will explain

the principles and rules. The operations described in the

model implementation will not necessarily match the actual

operations while impl"ementing on the parallel machine. We will

take an examples.

No. of processors p = m 16

Suppose we want to find the inverse of (16 x 16) square

matrix A: Augmented matrix will be:

16,1 al6.2

order of the augmented matrix = (16 x 32).

Assume number of processor p = m = 16.

We will take hypercube of dimension = 4 d.

configured as r 1 x r 2 subcube grid

= 4 x 4 subcube grid.

75

·•

dimension of each subcube column = dl = 2

dimension of each subcube row = d, = 2

dl log /'J 2

d2 log 1'2 = 2

Number of processor p 2d = 24 = 16

(b)

For implementaton of the algorithm given in previous

chapter we will use the same subsections of the algorithm.

Subsection 1

Matrix elements are loaded through host processor.

Assume initialy

1st row of matrix is on processor ~~

2nd row of matrix is on processor P 1

16th row of matrix is on proc~ssor P
1

,

76

Apply linear search to each processor to find row max

(i). After time 2mo each processor has row max (i).

Transfer data from (0, 2, 4; 6) subhypercube to (1, 3,

5, 7) and from (8, 10, 12, 14) to (9, 11, 13, 15)

subhypercube time = t (1 unit).

In next 6 time compare the two elements in nodes and

retain the greater.

Transfer data from subhypercube (1, 3, 5, 7) to

subhypercube (9, 13, 11, 15).

In next 6 time we have greater elements in 9, 13, 11,

15) .

Transfer data from (11, 15) to subhypercube (9, 13).

In next o time we have greater element in (9, 13).

Transfer data from 9 to node 13.

In next o time we have greatest element in node 13.

Total time 2 mo + (S + t) log m O(m)

Subsection 2

Now suppose pivot row comes out to be in processor P0

Load first m elements of pivot row on separate m

processors through single node broadcast m times.

time = m. log (m)

Now if 1st row is pivot row

then a 11 on P0

a, 2 on P 1

a 13 on P2

77

Send pivot element to each processor using single node

broadcast.

time = log m

Divide each element staying on separate processor by

pivot element

time = 'Y

Load remaining m elements of pivot row on m processors.

time = m (log m)

Divide each element by pivot element

time = 'Y

Total time = 2 (m log m + ')') + log m

= o (m log m)

After completion of this subsection pivot ~ow elements

are modified and lies on processors such that

a' 11 , b' 11 on P0

a' 12' b' 12 on PI

and so on.

Subsection 3

Keep the copies of modified pivot row on m processors

using 2 multinode borad ~ast.

time = 2 m
log m

78

Due to this step

+ a 21 comes in P1

and so on

Multiply each element on P1 by - a 21

Multiply each element on P2 by - a 31

Multiply each element on Pm-l by - am1

Time = 2m x {3

Total time = 2 m{3 + 2 m
log m

Subsection 4

We know that

original 2nd row R2 is on P 1

.;q,;
original 3rd row R3 is on P2

original roth row 1\,1 is on P
01

_1

Due to subsection 3 we have

Modified R' 2 on P1

Modified R' 3 on P2

Modified R'm on Pm-l

O(m)

.Add corresponding elements of R' 2 on P 1 and R2

79

Add corresponding elements of R' 3 on P2 and R3

Add corresponding elements R 1 111 on P111 _1 and ~". All these

steps can be done in parallel.

Total time = 2 m.a = 0 (m)

.since we have to subtract 2m elements of each row.

80

s. 2 LOAD BALANCING

Load balancing is the issue which comes after

implementation. It is required almost in every parallel

algorithm implementation. If operating ~ystem is not able to

manage the data distribution to different processors

efficiently, the basic aim of paralleJ processing will be

damaged. In the previous chapter on impl~mentation we assumed

good load balancing distributing the load manualy. While

implementing on the machine we will usb following algorithm

which will provide good speed up.

Load balancing used to achievE efficient use of

multiprocessor. In the worst case of op&rating system it can

improve the efficiency upto sixty percer,t.

Suppose we have a hypercube with p = 2d processors, and

each process PE(i) has Li units of load.

Load balancing problem means to red[stribute the load so

that if ~ is the load on processor i after redistribution then

: L'; - L'i : < 1 for every ·pair of proce;;sor i & j.

We are also intrested in minimisir,g the load transfer

time.

81

Example:

8
3

2 8 2

c~ -
I

I
i

6 4 6 4

(a) (b)

We permit several processors to overlap transmission

along the same dimension of the hypercube only.

If L· IJ load to be tranferred by processor i along

dimension j

0 < i < p, 0 < j < d

0

Then load transfer time T = [m.
. J

.I

where m- = max { 1·· } J IJ

Algorithm that minimizes the load transfer time T, when

p 4. When large p, we will use heuristics to minimize T:

a

)J I .. ~ ~
. ---l .. /-·-----.,

V(2 __l::
~ . I

X '·---.-/
c d

Figure 2: Load rcJisuibuthHl for p = 4

82

Assume a ~ max {b~ c, d} let w, x, y and z be such that

if thismuch load is transmit in the direction shown, the load

is balanced.

Let

d 0 = w + x total load transfer along dim o

d, = y + z total load transfer along dim 1

f = w + y = load transfer out of P0

Solving these equations for w, x & y

w = f - d, + z

X = d 0 + d 1 - f - z (1)

Theorem 1

The load in" P0 , Pu P2 and P3 is balanced if d0 , d 1 and f

are selected such that

a) do
a+c-b-d if a + c > b + d

2

b) d, a+b-c-d if a + b > c + d
2

c) f =a - a+b+c+d if [(a + c < b + d) (a + b < + or c
4

d)] and (a + b + c + d) mod4 1

By using this theorem load can be balanced with min.

amount of load enter or leave a processor. It is possible that

some w, x, y, z that satisfy theorem 1 do not result in

feasible load transfer schemes.

83

so to ensure feasibility another .theorem is required.

Theorem 2

a) if (-b s w s a) and (-e s x s c) then the required load

transfer can be done by transfering first on dim.O and

then on dim 1.

b) If (-c s y s a) and (d s z s b) then we can transfer

first on dimension 1 and then on dimension 0.

From eqn. 1

when w x

z

At this value of z, w = x = d0/2

Thus from theorems (1) and (2) it follows that T 1s

minimized by selecting z such that:

a) z is an integer that results in a feasible lead transfer

w, x, y, z (eqn. 2 and 3).

b) z is an integer in the range

~in { ~' + d 1 - f, ~~ }• max { ~0
+ ct, - f, ~~ }]

This contains an integer that satisfies (a) . Otherwise

z is the closest to this range that result in a feasible

load transfer.

84

c) d
0

, d
1

and f are as in Theorem 1. Writing the feasible

conditions 2 and 3 using (1):

(-b + d 1 - f S z S a + d 1 - f) and

(- c + d0 + d 1 - f < z S d + d 0 + d 1 - f)

or

(-a + d 1 < z s c + d 1) and (-d < z S b)

where

u = max [-b + dl - f, -c + do + dl

c = min (a + dl - f 1 d + do + dl -

or

u' < z < v'

where

u' = max [-a + dll -d]

v' = min (C + d; 1 b]

Algorithm :

Thus we found following alga to minimize T:

1. Compute d 0 , d 1 and f as in Theorem 1.

2. . Compute u, v, u' , v' as above.

u < z s v

- f]

f]

3. If there is an integer z in the range [u, v] or [u', v']

then pick this z and compute w, x, y using (1). If not,

then find the integer z nearest to the range (u, v] and

[u', v'] use this z to compute Wr x andy.

4. If the selected z is in the range [u, v] then route on

dim.O first oth~rwise on dim 1 first.

85

Example

Consider the case of a = 20, b 4, c 16, d = 10.

From theorem 1 we get

d 0 = 11 , d 1 = -1 , f = 7

Also u = -12, v = 12, u' = -10, v' 4.

For step 3 we have [min {d0 /2 + d 1 - f, d 1/2}, max {d0/2

+ d, - f, dd2}) = [-2.5, -0.5)

The selected value of z = -1.

From (1) we get w = 7, x = 4 andy= 0

The value ofT is 8 and we first route on dim.o and then

on dim.1.

when p > 4

Heuristics

Load can be balanced such that I L'; - L'i I ~ 1 for every

pair of process (i) by balancing across each of the d dim of

the hypercube in some order.

When balancing across the gth dim. in this order we

balance load in pairs of subhypercubes of size 2~, 1 ~ q ~ d.

Consider an 8 processor hypercube with in"i tial load

distributions.

86

(a) mni::l load

\ 1
l

~
)j

48

t1 ditlerence uf surra. .b .
- -> chrect.ton onoad d.J..stn nnon

(b J i w ration I

~ = 16

24

~\
Q ~

(cJ iteration 2

(d) iteration 3

Dimensions considered in the order 2, 1, 0 when

considering dim. 2 we ensure that total loa~ in each of

subhypercube of dim.2 (size 4) differs at most by one.

Algorithm

for r := d-1 downs to 0 d0

{balancing across dimensions r in pairs of subhypercube

Perform an upward pens computing sum of loads in the

subtree leaves; compute the load difference at each

route;

Perform a downward pass to compute load to be

transferred;

Transfer the required load;

end;

Time complexity

Since upward and downward pass take O(r) time, the total

time needed

where m; = max. load to be transfered between a pair of

processor.

Optimization of I:m;
I

We use a heuristic to determine the processing order for

87

.. -,:.;

the dimensions of the hypercube:

The next dimension to balance across is selected by first

having each processor i, compute r; and 8; such that

8; = max {

unselected dim. }

r; is such that 8; =

along dim. r;

j is a neighbour of i along an

where j is 8;' s neighbour

Next max of the si's is computed if this is sw, then dim

rw is selected.

The time needed to select the next dim. is O(d)

Example

For the loads of previous example

So = max { 110-201' 110-141' 110-151} = 10, ro = 0

st = max { :20-10:' 120-121' :20-17:} = 10, rt = 0

52 max { I 14-12 I ' I 14-10 I ' :14-8:} 6' r2 2

53 = max { 112-141, I 12-20 I ' 112-81} -. 8, r3 1

54 = max { : 15-17: ' : 15-8: ' :15-10:} 7, r4 1

55 = max { 117-15:, : 17-8: ' 117-20:} 9, rs 1

56 = max { :8-8:' 18-151, 18-141} 7' r6 1

57 = max { :8-8:' :8-171, 18-12:} 9' r7 1

88

·;

Since max {s;} = s 0 = 10, dim r 0 = 0 is selected as the

first dim. to balance across. After balancing across this dim.

we select from dimensions 1 and 2 the next dim. to balance

across. The remaining dim. is balanced across in the last

iteration.

The total time spent determining the order of dimensions

in o(d2
).

This does not affect the complexity o (d2 + LID; of the

load balancing algorithm.

For the example given above and using this heuristic we

get

m1 = 2 , m2 = 4 , m3 3

so s m; = 9

In this heuristic we may require more computations in

determining the load transmitted. However, our heuristic can

obtaih better load balancing and load transfer time.

89

CHAPTER 6

CONCLUSION

CONCLUSION

Throughout the work we have stressed on three points:

efficiency, accuracy & good numerical stability. The

conventional algorithms for matrix-inversion are available

from a very long time. With the advent of technology,

increasing the speeds of logic circuits, memories and

inputjoutput equipment and computational capabilities the

efficiency of these algorithms has been raised up to a good

level. Now the development & research in the field of parallel

and distributed completing made possible also to develop very

accurate & numerical stable besides efficient parallel

algorithms. We have focused on these points in finding the

inverse of matrix because this problem can become part of the

innerloop of a large calculation, and thus it is essential

that it be don efficiently and accurately. This same standard

'
tool can became "buried" in relation to the total problem

solution, and it is essential that this tool be reliable. It

could be buried so deep that the programmer is not really

aware that the tool is being used and an error in it would be

very difficult to diagnose.

Almost in every physical system modelling & solving,

solving differential equations, solving electrical networks

and in much more other problems which need not to be mentioned

matrix inverse computations are used. But inverse of matrix

has some physical interpretations: There are contain problems

in statistics & engineering whose the object of computations

90

is to see the inverse matrix and not just to use it to find

something else. In these problems the elements of A- 1 have

meaning such as being " influence coefficients" that show how

forcing terms affect the model.

In our algorithm we have shown two cases of

par~llelization. In one case we have used m processors and in

another case. 2m2 processors. If we increase tl'le number· _of

processors further more to m3 we would have got some better

results but not upto the expectation of increasing processors

by a factor of mj2. In this case our augmented matrix will be

of the order of mx(m+l) instead of (mx2m) and we will break

the problems into m parts each running simultaneously. Thus

if we neglect the communication cost the speed up will be two

compared to the previous case pf 2M2 processors.

Similarly if we half the number of processor to m2 and

negl~ct the communication cost the processing time will be

increased by a factor of two. In this case we have augmented

matrix of the order of (mx2m). We have 2m elements in each

row. We have m rows and total number of elements equal of 2m2 •

Thus we will have to do operations in two phases and we take

almost twice time as compared to the case of 2m2 processors.

From the table given in the chapter of complexity it is

clear that factor of "log m" is multiplied when we take

communication cost into account. This is due to single node

broadcast/Accumulation and multinode broad cost/accumulation

91

,, ... ,..

which take log p and p/ log p time respectively for one

transfer where p is the number of processors.

We have seen that after a limit when we increase number

of processors more and more we do not get sufficient speed

up as desired and some-times performance ie degraded due to

addition of more processors. This is due to synchronizing and

load distribution among processors. As·we increase the no of

processors the synchronizations as well as communications

cost increases and it overdominates computational cost. Also

the processing costs for controlling the system and scheduling

operations increases drastically after a limit and the basic

aim of parallel computing is destroyed.

92

BIBLIOGRAPHY

1.· K.Hwang, F.W, Briggs, "Advanced Computer Architecture

and Parallel Processing".

2. Chu,E., George, A.& Grusenel, D. "Parallel Matrix

Inversion" Research Report CS-90-48 December 1990.

3. Oscal H. I barra and Myung Hee Kim " Fast Parallel

Algorithms for Solv~ng Triangular systems of Linear

Equations on the Hypercube" The Fifth International

Parallel Proc~ssing Symposium 1991.

4. Khaled M. Elleithy and Magdy A. Bayoumi " from Alogrithms

To Parallel Architectures" The Fifth International

Parallel Processing Symposium. 1991.

5. Harold S. Stone, "High Performance Computer Architecture".

6. Leach H. Jamieson, Dennis Gangon and Robert J. Douglass.

"Characteristics of Parallel Algorithms". MIT Press 1987.

7. T.J. Dekker and W. Hoff mann. " Rehabilitation of the

8.

9.

Gauss-Jordan algorithm" Journal Numer. Mathematik

591-599, 1989.

Lydia Kronsjo,

Efficiency".

"Algorithms: Their Complexity and

Maries M.

Algorithm

Polycarpou and Petros A. Ioannou

for Fast. Matrix Inversion"

" Parallel

The Fifth

International Parallel Processing Symposium. 1991.

10. John R. Rice " Matrix Compulations And Mathematical

Software".

11. S. L. Johnson. " Communications effecient basic 1 inear

algebra computations on hypercube architectures" J.

Parallel Distrib. comput. 133-172, 1987.

12. W.D. Hillis and G.L Steel. "Data Parallel Algorithms".

Comm.ACM, December 1986, pages 1170-1183.

13. Thesis, D.J., Titus, Harold, " Parallel Processor

Systems, Technologies and Applications".

14. Jinwoon Woo and Sartaj Sahni " Load Balancing on a

Hypercube". The Fifth International Symposium on Parallel

Processing 1991 IEEE.

15. Branko Soucek and Mariana Soucek " Neural ahd Massively

Parallel Computers".

16. Dimitri P. Brestsekas and John N. Tsitskilis, " Parallel

And Distributed Computation: Numerical Methods".

	TH68680001
	TH68680002
	TH68680003
	TH68680004
	TH68680005
	TH68680006
	TH68680007
	TH68680008
	TH68680009
	TH68680010
	TH68680011
	TH68680012
	TH68680013
	TH68680014
	TH68680015
	TH68680016
	TH68680017
	TH68680018
	TH68680019
	TH68680020
	TH68680021
	TH68680022
	TH68680023
	TH68680024
	TH68680025
	TH68680026
	TH68680027
	TH68680028
	TH68680029
	TH68680030
	TH68680031
	TH68680032
	TH68680033
	TH68680034
	TH68680035
	TH68680036
	TH68680037
	TH68680038
	TH68680039
	TH68680040
	TH68680041
	TH68680042
	TH68680043
	TH68680044
	TH68680045
	TH68680046
	TH68680047
	TH68680048
	TH68680049
	TH68680050
	TH68680051
	TH68680052
	TH68680053
	TH68680054
	TH68680055
	TH68680056
	TH68680057
	TH68680058
	TH68680059
	TH68680060
	TH68680061
	TH68680062
	TH68680063
	TH68680064
	TH68680065
	TH68680066
	TH68680067
	TH68680068
	TH68680069
	TH68680070
	TH68680071
	TH68680072
	TH68680073
	TH68680074
	TH68680075
	TH68680076
	TH68680077
	TH68680078
	TH68680079
	TH68680080
	TH68680081
	TH68680082
	TH68680083
	TH68680084
	TH68680085
	TH68680086
	TH68680087
	TH68680088
	TH68680089
	TH68680090
	TH68680091
	TH68680092
	TH68680093
	TH68680094
	TH68680095
	TH68680096
	TH68680097
	TH68680098
	TH68680099
	TH68680100
	TH68680101
	TH68680102
	TH68680103
	TH68680104
	TH68680105
	TH68680106
	TH68680107
	TH68680108

