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INTRODUCTION 

1.1 PARALLEL PROCESSING 

Parallel Processing is so much a feature of the universe 

that we are not normally concerned with it at all. However it 

is worthwhile to reflect on the contrast between the 

concurrent nature of the world. and the sequential nature of 

the digital computer. Since the main purpose of the computer 

is to model the world, there would 

mismatch. 

seem to be a serious 

To adequantly model the concurrency of the real world, 

it wciuld be preferable to have many processors all wor~ing at 

the same time on the same program. There are also huge 

potential performance benefits to be derived from such 

parallel processing. For regardless of how far electronic 

engineers can push the speed of an individual processor, 10 

of each them running concurrently will still execute 10 times 

as many instructions in a second. 

The Classical computer is a single-processor system, 

while the brain has a very large number of processing units 

that operate at the same time. Modern semiconductor technology 

has reached the level at which building a computer with 

thousands of process is possible. These systems are- called 

massively parallel computers. 
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The two major parts of the classical Von Neumann computer 

are the central processing unit and the memory. Almost all of 

the hardware if in the memory, and only a small percentage is 

in the central processing unit. The central processing unit 

either reads or writes into one memory location at one time. 

This means that the central processing unit is busy all the 

time, but that most of the memory is idle. a large percentage 

of the co~puter hardware, say 95 percent, sits idle all the 

time. an obvious way for better utilization of the hardware 

is an architecture based on a large number of parallel 

processing units. 

1.1.1 HARDWARE AND ECONOMIC REASONS FOR PARALLEL 

PROCESSING 

Another example of the effect of changing technology oon 

the desirability or feasibility of prallel organizations is 

afforded by recent work on semiconductor memories. the use of 

small distributed memories in now feasible since LSI memory 

costs tend to be linear with size. Hence, it is no longer 

economically necessary to design around a large central 

memory. The total internal memory capacity can be distributed 

over a number of smaller memory modules which can be accessed 

in parallel. 

1.2 PARALLEL AND DISTRIBUTED ARCIDTECTURES 

Parallel and distributed computation is currently an area 
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of intense research activity, motivated by a variety of 

factors. There has always been a need for the solution of very 

large computational problems,but it is only recently that 

technological advances have raised the possibility of 

massively parallel computation and have made the solutiQn of 

such. problems possible.Furthermore,the availability of 

powerful parallel computers is generating interest in new 

types of problems that were not addressed in the past. 

Accordingly,the development of parallel and distributed 

algorithms is guided by this interplay between old and new 

computational needs on the one hand, and technological progress 

on the other. 

1.2.1 EVALUATION AND AREA OF APPLICATIONS 

1. The original needs for fast computation have been in a 

number of contexts involving partial differential 

equations (PDEs), such as computational fluid dynamics and 

weather prediction,as well as in image processing , etc. 

In these applications, there is a large number of 

numerical computations to be performed. The desire to 

solve more and more complex problems has always been 

running ahead of the capabilities of the time,and has 

complex problems has always been running ahead of the 

capabilities of the time ,and has provided a driving 

force for the development of faster,and possibly 

parallel,computing machines.The above mentioned types of 

problems can be easily decomposed along a spatial 
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dimension, and have therefore has prime candidates for 

parallelization ,with 

(processor) assigned 

a different computational unit 

the task of manipulating the 

variables associated with a small region in space. 

Furthermore in such problems , interactions between 

variables are local in nature,thus leading to the design 

of parallel computers consisting of a number of 

processors with nearest neighbour connections. 

2. Recently, there has been increased interest in other 

types of large scale computation. Some examples are the 

analysis,simulation,and optimization of large seal 

interconnected system queneing systems being a 

noteworthy representative .Other examples relate to the 

.solution of general systems of equations, mathematical 

programming ,and optimization problems.A common property 

of such problems,as they arise composition tend to be 

fewer and more complex than those obtained in the context 

of is lost. Accordingly , one is led to use fewer and 

more powerful processors,coordinated through a more 

complex control mechanism. In both of the above classes 

of applications,the main concerns are cost and speed:the 

hardware should not be prohibitively expensive,and the 

computation should terminate within an amount of time 

that is acceptable for the particular application. 

3. A third area of application of parallel,or rather 

distributed, computation is in information 
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acquisition, information exptaction , and control , within 

geographically distributed systems. 

1. 2. 2 PARALLEL AND DISTRIBUTED SYSTEMS: DIFFERENCE 

An important distinction is between parallel and 

distributed computing systems. Roughly speaking,parallel 

computing systems consist of several processors that are 

located within a small distance of each other. Their main 

purpose is to execute jointly a computational task and they 

have been designed with such a purpose in mind; communication 

between processors is reliable and predictable. Distributing 

systems are different in a number of ways. Processors may be 

far apart, and interprocessor communication is more 

problematic. 

1.2.3 PARAMETERS.OF CLASSIFICATION 

There are several parameters that can be used to describe 

or classify a parallel computer and we refer to these briefly. 

(a) Type and number of processors: There are parallel 

computing systems with thousands of processors . Such 

systems are called massively parallel,and hold the 

greatest promise for significantly extending the range 

of practically solvable computational problems. A 

diametrically opposite option is coarse-grained 

parallelism, in ·which there is a small number of 
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processors, say of the order of 10. In this case, each 

processor is usually fairly powerful, and the processors 

are loosely coupled, so that each processor may be 

performing a differeet type of task at any given time. 

(b) Presence or absence of a global control mechanism 

Parallel computers almost always have some central locus 

of control.A related popular classification along these 

lines distinguishes between SIMD (Single Multiple Data) 

and MIMD (Multiple Instruction Multiple Data) parallel 

computers,referring to the ability of different 

processors to execute different instructions at any given 

point in time. 

(c) synchronous vs. asynchronous operation : The distinction 

(d) 

here refers to the presence or absence of a common global 

clock used to synchronize the operation of the different 

processors Such synchronization is present is 
0 

SIMDmachines, by definitaion. Synchronous operation has 

some desirable propertie~: the behavior of the processors 

is much easier to control and algorithm design is 

considerably simplified. On the other hand, it may require 

some undesirable overhead and in some 

contexts,synchronization may be just impossible.For 

·example, It is quite hard to synchronize a data 

communication network. 

Processor interconnections A significant aspect of -

parallel computers is the mechanism by which processors 

exchange information. Generally speaking, there are two 

extreme alternatives known as shared memory and message-
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passing architectures,and a variety of hybrid designs 

lying in between . The first alternative uses a global 

shared memory that can be accessed by all processors. A 

processor can communicate to another bywriting into the 

global memory , and then having then second processor 

read that same location in the memory. 

In the second major approach,there is no shared 

memory,but rather each processor has it own local 

memory.Processors communicate through an interconnection 

network consisting of direct communication links joining 

certain pairs of processors,as shown in Fig. 2. 



1.2.4 SHARED MEMORY & DISTRIBUTED MEMORY SYSTEMS 

The characteristics of parallel algorithms are intimately 

interwined with the characteristics of the problem to be 

solved and the computer architecture on which the algorithm 

will be implemented. We use the term "architecture" to include 

the programming environment and operating system support, as 

well as machine hardware. Probably the most significant 

characteristic of parallel architectures is the organization 

of memory, specifically whether each processor has acess only 

to its own private local memory, or memory is globally shared 

among all processors (of course, hybrid systems may have both 

types of memory) In a distributed-memory system, problem 

data (matrices, Vectors, etc.) must be partitioned and 

distributed across the individual processor memories, while 

in a shared-memory system all problem data reside in a common 

global memory where they are accessible by all processors. 

This means that standard data structures used on traditional 

serial machines for matrices and Vectors usually carry over 

to shared-memory multiprocessors, whereas distributed-memory 

systems often require new distributed data structures, which 

can adversely affect the performance of parallel algorithms. 

Distributed data structures for sparse matrices, for example, 

tend to incur a penalty, both in storage overhead and 

efficiency of access, relative · to their serial or 

shared-memory counterparts due to the loss of context that 

results from scattering the data across local processor 

memories. o 
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In a distributed-memory multiprocessor, access to non

local data is provided by passing messages among the 

processors through an interconnection network. common 

topological structures for such networks include rings, 

meshes, trees, and hypercubes. Analogously, the processors in 

a shared-memory system are connected to the common global 

memory by a bus or a switch, such as a crossbar switch or a 

multistage switching network. Thus, 2interprocessor 

communication bandwith is a key perofmance parameter for 

distributed-memory systems. While memory bandwidth is a 

correspondingly important parameter for shared-memory systems 

for a discussion of multiprocessor networks and architectures. 

LOAD BALANCING 

Another critical difference between shared-memory and 

local- memory systems is the manner in which the computational 

work load is distributed across the processors. Good 

efficiency requires that the work load be reasonably well 

balanced among the processors. In a shared memory system, a 

good load balance is fairly easily maintained by dynamically 

assigning work from a common pool of tasks. Such a scheme 

tends naturally and effectively to accommodate varying numbers 

of processors and relatively heterogeneous tasks, since 

processors are assigned new tasks as they become available. 

Such a common pool of tasks is not easily implemented without 

access to shared memory, however, so that distributed memory 

algorithms usually depend on a static assignment of work to 
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processors that is determined in advance of the computation. 

This places a significantly greater burden on the algorithm 

designer to ensure a good load balance. 

1.3 MATRIX COMPUTATIONS 

The fundamental importance of linear algebra problems in 

science and engineering has placed algorithms for matrix 

computations in the forefront of research on parallel 

algorithms. 

Matrix computations are among · the cornerstones of 

scientific computing. Linear algebra problems, including 

systems of linear equations, linear least squares problems, 

and algebraic eigenvalue problems, are fundamental to the 

computational solution of differential equations, optimization 

" problems, and the analysis of various discrete structures. The 

effective use of parallel computer architectures in scientific 

computations is therefore critically dependent on exploiting 

parallelism in matrix computations. Matrix algorithms have 

been in the vanguard of algorithm development on 

multiprocessors not only because they are building blocks on 

which many other scientific cOmputations are based but also 

because they serve as realistic prototypes that present many 

of the fundamental challenges of parallel computation in a 

pure form. Thus, the development of parallel algorithms for 

matrix computations has received strong emphasis from 

reseaTchers in parallel computing, both as a tool and as a 
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paradigm for scientific computing in general on parallel 

architectures. 

1.4 PROBLEMS AND COMPUTER IMPLEMENTATIONS 

The most common computational problems in linear algebra 

are the solution of systems of linear algebraic equations and 

algebraic eigenvalue problems for various types of matrices. 

Significant problem characteristics that affect any computer 

implementation include whether the matrix is square or 

rectangular, symmetric 

explicitly represented 

or nonsymmetric, dense 

by its entries or 

or sparse, 

implicitly 

represented by its action on vectors. Such properties 

determine what algorithm or family of algorithm is 

appropriate for solving the problem in any computing 

environment, whether serial or parallel, but may have more 

dramatic impact in the latter case. For example, the necessity 

of row or column interchanges for numerical stability can be 

a much more serious complication in a parallel environment 

than in a serial one. Another important problem 

characteristic in any computing environment is the size of the 

matrix, which determines the computational resources 

(processor time, storage) that will be required, as well as 

what classes of algorithms and data structures may be 

appropriate. 
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1.5 CHARACTARISTICS OF PARALLEL ALGORITHMS 

1.5.1 CONCURRENCY, COMMUNICATIONS & GRANULARITY 

The salient characteristics of parallel algorithms for 

matrix computations fall under the two main headings of 

"concurrency" and "communication". By concurrency we mean the 

overlapped or simultaneous execution of computations on 

multiple processors. The degree of concurrency is determined 

by the manner in which the overall computation is broken up 

into subtasks or subunits of computation, specifically their 

size distribution, scheduling, and mutual data dependence. In 

most computations, parallelism can potentially be exploited 

at any of a number of levels, depending on the characteristics 

of the underlying hardware. The relative size of these 

subtasks or subunits of computation that are scheduled for 
., 

parallel execution is referred to as the granularity of the 

algorithm. Of course, it may be possible to exploit 

parallelism at more that one level, as in a vector 

multiprocessor that supports both inner-loop (fine- grain) 

parallelism in performing larger tasks. The optimal choice of 

granularity depends on the number and type of processors 

available and on the overhead associated with communication 

among tasks, whether by message passing or through shared 

memory. 

We characterize the exchange of information among 

processors in order to satisfy data dependencies among 
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subtasks as communication, whether this is accomplished 

explicitly through message passing or implicitly through 

shared memory. We have already remarked that many linear 

algebra problems inherently require global communication, 

meaning that results produced by a given processor must be 

made available to all other processors. In a distributed

memory environment, such a communication pattern is typically 

accomplished by propagating the information in stages through 

local links in the interconnection network until all 

processors eventually receive it. 

The keys to developing efficient parallel algorithms for 

a multiprocessor are to maximize concurrency and minimize 

communication costs. Unfortunately, these two objectives often 

conflict, and so a compromise must be sought between them. For 

example, increasing the granularity of an algorithm tends to 

reduce communication overhead, but it also tends to reduce 

potential concurrency. The precise trade-off point depends on 

both the problem and the architecture. The latter can be 

roughly·characterized by the ration of computation speed to 

communication speed. Both concurrency and communication 

requirements are determined by the manner in which the 

computation and the data are partitioned and distributed over 

the processors. For matrix problems, the main questions are 

how to organize the computation and partition the matrix how 

to map the resulting communication requirements. 
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1.s.2 PARTIONING OF THE MATRIX AND MAPPING 

The partitioning of the matrix and mapping of the 

resulting pi~ces onto the processors is of critical importance 

in distributed-memory algorithms because the load balance 

among processors is determined by this static assignment. 

Assigning the pieces of the matrix ( rows, columns, etc>) to 

the processors in the same manner that one would deal cards 

(sometimes called interleaved or scattered storage or wrap 

mapping) tends to yield better concurrency and load balance 

in matrix factorization algorithms than assigning contiguous 

pieces (blocks) to each processor. On the other hand, keeping 

contiguous data together in each processor tends to reduce 

necessary communication in these and many other algorithms. 

This is another example of a trade-off between concurrency and 

communication that is dependent on the particular problem, 

algorithm, and machine characteristics. 
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1.6 RELEVANCE OF PROJECT 

Consider the system of linear equations ·

AX = B 

Where A be a~ n*n real matrix 

B be a vector in R**n 

X is an unknown vector to be determined. 

In solving this system of linear equations matrix 

inversion is often needed. For example in the above problem 

be need inverse of matrix A. 

There are variety of methods for computing the inverse 

of matrix. They are classified as direct methods and iterative 

methods. 

Iterative methods :-

--Jacobi's Methods 

--Gauss-Seidal Methods etc. 

Direct Methods :-

--Gauss Method 

--Gauss-Jordan Method etc. 

Iterative methods give a sequence of approximate 

solutions which converge when the number of steps tend to 

infinity. Thus they do not find an exact solution infinite 

time , but they converge to solution asymptotically. They are 

preferred to direct methods when order of matrix n is very 
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large. Also when matrix A is sparse 

storage space than direct methods. 

they require less 

Direct methods produce the exact solution with a finite 

number of 'operations generally of the order of n**3 

disregarding the round-off errors. 

We will choose Gauss-Jordan algorithm to find the 

inverse. 

We will modify the algorithm to enhance the numerical 

stability and to reduce the effect of round off or the 

truncation errors. Then we will develop he parallel algorithm 

for this sequential algorithm. While implementing parallel 

algorithm we will apply load balancing to our algorithm to 

achieve the efficient use of processors i.e. to increase the 

efficiency or the speedup of the parallel algorithm. If the 

operating system is not good then efficient application of 

load balancing may produce the speedup of 60 percent. 

Why we have chosen Gauss-Jordan algorithm. There are few 

points to support it. 

• It requires no back subsituion so this is useful 

particularly in matrix computaions where multiple right 

hand sides are present. 

• It has better scope for loadbalancing and good 

vectorization property. 
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• While parallelising vector matrix multiplication is more 

communi~ation efficient than backward I forward 

subsitution. 

We are using modified Gauss-Jordan algorithm for two 

reasons:-

1. To enhance the numerical stability which 1s explaind 

below 

In Gauss-Jordan elimination prpcess there is astep of 

dividing pivot row by pivot element. In case pivot is zero, 

then we can not divide the pivot row by it, and process 

terminates even if the final solution ( inverse of matrix ) 

exists. As a remedy we find the element of maximum magnitude 

of the matrix and call it pivot element. Pivot locations are 

locations of diagonal elements of matrix . pivot locations for 
._::r 

the first location is location of first diagonal element. 

Pivot location for second iteration is location of second 

diagonal element and so on. Now we exchange the rows (with 

rows ) and columns ( with columns ) to bring pivot element to 

pivot location. 

Since exchanging the columns changes the coefficients of 

variables. Therefore we keep an account of all column 
. 

exchanges in some order and while writing final answer we 

exchange the columns in reverse order to restore the order of 

variables. 
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Now the proceed to the steps of Gauss-Jorthan 

elimination. Since we are lising greatest element of matrix 

as pivot element 1 it can never be zero except when every 

element of matrix is zero. Therefore process will never 

terminate in between and will produce the inverse of the 

required matrix if it exists. After completion of all steps 

of first iteration in elemination process we find new pivot 

element for second iteration. For this we find the greatest 

element of the matrix obtained after deleting pivot row & 

pivot column from the matrix of the previous iteration. After 

this same steps of elemination process follows. 

In the first iteration of elemination process we get all 

element except pivot element o£ pivot column eleminated. In 

this way after in iterations (where m is the number of rows) 

we get only diagonal elements and all other elements are 
·>. 

eleminated and we get the inverse directely without 

substitution. 

2. To reduce the effect of truncation/round off errors and 

make them bounded. 

Suppose pivot element is very near to zero 1 it may 

contain a large relative error brought about by having to 

retain a fixed number of digits in each number in the 

computer. Then dividing by this element will increase the 

amount of error in each following step and error will increase 

unbounded. These situations can be remedied by searching at 
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each iteration of elemination forcess for the element of 

greatest magnitude as explained in the previous case of 

numerical stability. 

In mathematical modeling of various physical problems we 

often need matrix computations. In most of the cases elements 

of matrix vary in magnitude with a large amount. Few elements 

are very small and few very large. In these cases there is 

good possibility of selection of very small pivot element. 

This will introduce large amount of relative round-off errors 

and a great deal of numerical instability some time it becomes 

impossible to perform further computations after few since 

round-off errors multiply very fast in each following ~tep. 

For example in analysis electrical RLC networks some times we 

have capacitance of the order of microfarad or picofarad, 

resistance of the order of Kilohms and inductance of the order 

of milihenry. In the modelling of these different magnitude 

and order in the node equations matrix. 

CD 

• SA 2-t}Jn :1-/t.n 
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The node equations in matrix form can be written as 

( 2 +~ 3 
1 . ) -jwc 1 

+ R + J we R 

t:l ~J -jwc [2jwc+l+ jw~o-'] -jwc 

1 (' 1 1 ) 
R 

-jwc JWC+-+--r-:-
R 1-]4 

If the value of R = 2x102 ft 

W = 100 radjsec. 

c 3x1o-12 F 

The order of magnitude of elements will be very much 

different and we will not be able to find the inverse of 

matrix with sufficient accuracy and reliability. 

Consider another illustrative example which will show the 

disaster occurred due to selection of small pivot : 

Consider the simple system 

0.000100 X + y 1 X 1.00010 

Solution 

X + y = 2 y = 0.99990 

to be solved using three-digit arithmetic.That is, only the 

three most significant decimal digits of any of any number are 

retained as the result of an arithmetic operation. We assume 

•the result is rounded. With Gauss J0rdan elimination we 

multiply the first equation by - 10,000 and add to obtain 
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0.000100 X + y = 1 X = 0.000 

Solution 

-10,000 y -10,000 y 1.000 

Thus a computational disaster has occurred. 

If we switch the equations (that is, we pivot) to obtain 

X + y = 2 

0.000100 X + y 1 

then Gauss Jordan elimination produces the system (again with 

three-digit arithmetic) 

X + y = 2 X = 1. 00 

Solution 

y = 1 y = 1. 00 
., 

This solution is as good as one would hope for using 

three- digit arithmetic. 

The lesson of this example is : It is not enough just to 

avoid zero pivots, you must also aviod relatively small ones. 
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ARCHITECTURE AND NETWORK TOPOLOGIES 



ARCHITECTURE AND NETWORK TOPOLOGIES : 

2.1 ARCIDTECTURE 

Computer architectures are divide into three groups 

called SISD, SIMD, and MIMD. SISD (single instruction, single 

data) architecture explains the operation of classical 

machines. It uses hardware in a very inefficient way; however, 

this architecture is simple and easy to program, and most of 

the computer systems presently available follow this 

architecture. This is especially true in small systems, and 

in measurement and control systems. In these systems, memories 

are relatively small and efficiency is not crucial. 

SIMD (single instruction, multiple data) architecture 

offers more efficient use of hardware but also provides a 

substantia'ily higher speed of operation. SIMD architecture is 

presented. an SIMD system typically consists of identitical 

processing elements (PE) , each a processor with its own 

memory, an interconection network, and a control unit (CU). 

The control unit broadcasts instructions to all PEs. Each 

active PE executes each intstruction on the data in its won 

memory. The instruction is executed simultaneously in all 

active PEs. The interconnection network enables the data to 

be transferred among the PEs. 

Because the same operation is performed simultaneously 

on different data items, SIMD systems are particularly well-
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suited for performing matrix and vector operations. 

MIMD (multiple instruction stream, multiple data stream 

architecture enables a number of independent but related 

programs to be executed concurrently. Concurrent processing 

is single-level or global form of parallelism, denoting 

current machine thus uses loosely coupled multiple processors 

to perform many operations at once. Figure shows MIMD 

concurrent architecture. 

CONTROL 
UNIT 

~ 
I 

PEO PE 1 ... PE P-1 

~ ·~ ~ 

! INTERCONNECTION NETWORK ; 
Single instruction, multiple data (SIMO) configuration. 

2.1.1 FURTHER CLASSIFICATION BASED ON 

COMMUNICATION 

Parallel architecture can be further divided into two 

categories, 
. 

based on the way the processors communicate. 

According to Bell, 1 all of the machines use either bus- based 

or nonbus-based architectures. Within the bus-based groups are 
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two subcategories: tightly coupled and loosely coupled 

systems. The tightly coupled systems, sometimes called 

multiprocessors and common, or global, memory. The processor 

and memory are connected by one or more high speed buses. 

Loosely coupled systems, sometimes called multicomputers, have 

local memories for each processor, although they sometimes 

have global memory for shared data. 

2.2 NETWORK TOPOLOGIES 

We will represent a communication network of processors 

as a graph G = (N,A), also referred to, somewhat loosely as 

a topology. The nodes of the graph correspond to the 

processors, and the presence of an (undirected) arc ( i, j) 

indicates that there is a direct communication link that 

serves as an error free, asynchronous packet pipe between 

processor i and processor j in both directions. We assume that 

communication can take place sumulsaneously on all of the 

incident links of a node and in both directions. 

We now consider a number of specific topologies. 

2. 2. 1 COMPLETE GRAPH 

Here there is a direct link between every pair of 

processors. Such a network can be implemented by means of a 

bus which is shared by all processors, or by means of some 

type of crossbar switch. Clearly this is an ideal network in 
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terms of flexibility. Unfortunately, when the number of 

procssors is very large, a crossbar switch becomes very 

costly, and a bys involves large queueing delays. 

I I'E 0 PE 1 PE P-1 ... 
. l8J. ~ ~ 

i INTERCONNECTION NETWORK Multiple instruction, multiple data (MIMD) configura
tton. 

2 . 2 • 2 LINEAR PROCESSOR ARRAY 

Here there are p processors/nodes numbered 1,2, ....... ,p and 

there is a link (i,i+l) for every pair of successive 

processors . The diameter and connectivity properties of this 

network are the worst possible. 

----~0- .~\ 
.. ~\~' 
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2.2 .3 RING 

This is a simple and common network that has the property 

that there is path between any pair of processors even after 

any one communication link has failed. However, the number of 

links separating a pair of processors can be as large as 

[(p-1}/2], where pis the number of processors. It can be seen 

that all of the basic communication problems discussed earlier 

(single node and multinode broadcast, single node scatter, and 

total exchange) can be solved on a ring in a time that lies 

between the corresponding time on a linear array with the same 

number of nodes, and one-half that time. 

2.2.4 TREE 

A tree network with p processors provides communication 

between every pair of processors with a minimal number of 

links p-1). One disadvantage of a tree is its low 

connectivity; the failure of any one of its links creates two 
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subsets of processors that cannot communicate with each other. 

The star network has munimal diameter among tree topologies; 

however the central node of the star handlkes all the network 

traffic, and can become a bottleneck. 

'l Root Level 0 

Level 1 

(a) 

1\ 1\ 
Total number of nodes is between 2' and 2' • t -1 

Level k 

(b) 

2.2.s MESH 

Many large problems of interest are closely tied to the 

geometry of physical space. Mesh connected processor arrays 

are often well suited for such problems. In a d- dimensional 

mesh the processors are arranged along the points of 

d-dimensional space that have integer coordinates, and there 

is a direct communication link between nearest neighbors. 

2. 2. 6 HYPERCUBE 

Consider the set of all points 1n d-dimensional space 

with each coordinate equal to zero or one. These points may 
. 

be thought of as the corners of a d-dimensional cube. We let 

these points correspong to processors, and we consider a 

communication link for every two points differing in a single 
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coordinate. The resulting network is called a hypercube or 

d-cube. shows a 3-cube and a 4-cube. 

Formally, ad-cube is the d-dimensional mesh that has two 

processors in each dimension, that os, ni= 2 for all i. To 

visualize better a d-cube, we assume that each processor has 

an identity number which is a binary string of length d 

(corresponding to the coordinates of a node of the d-cube). 

We can construct a hypercube of any dimension by connecting 

lower-dimensional cubes, starting with a 1-cube. In 

particular, we can start with two (d-1)-dimensional cubes and 

introduce a link connecting each pair of nodes with the same 

identity number. This constructs a d-cube with the identity 

number of each node obtained by adding a leading 0 of leading 

1 to its previous identity, depending on whether .. the node 

belongs to the first (d-1)-dimensional cube or the second . 

The Hamming distance between two processors is the number 

of bits in which their identity numbers differ. Two processors 

are directly connected with a communication link if and only 

if their Hamming distance is unity, that is, if and only if 

their identity numbers differ in exactly one bit. 
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Q,men~'ons Nodes Channels Topoloi;y 

0 0 0 

2 0---0 

2 4 4 D 
3 8 12 B 
4 16 32 

5 32 80 



The main architecture in the nonbus-based category is the 

hypercube. Instead of relying on buses, hypercubes rely on 

direct memory-access channels between neighbouring processors 

and their memories. Each processing unit, called a node, can 

communicate directly with its nearest neighbours in the 

n-dimensional space in which it was designed and built. The 

hypercube is a binary n-cube, also referred to as a binary 

hypercube or boolean hypercube. 

Characteristics 

A two-dimensional hypercube has four nodes, each at a 

corner of a single square. Each node is able to communicate 

directly with two other nodes. A three-dimensional hypercube 

is the familiar cube. This hypercube has eight noes, each at 

one corner of cube; each node communicates directly with three 

other nodes. Higher-dimensioned cubes are built up from this 

basic structure. 

The cube "dimension" equals the power of two 

corresponding to the number of nodes in the cube. Thus, a 32 

nod~ cube is a five-dimensional system (205) . Each node 1s 

connected to its five nearest neighbors. If the processor 

needs to communicate with a node that is not one of its 

nearest neighbors, the data must be routed via intervening 

processors. If this occurs frequently, it could slow overall 

processing rates in hypercubes. Each node is a powerful 

processor operating independently of others. Hence, the 
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hypercube represents a loosely coupled, coarse-grain 

architecture. 

000 001 
(a) 

(b) 
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2. 3 COURSE GRAIN & FINE GRAIN SYSTEM 

In any parallel computer architecture, there is a 

trade-off between the numbers and the size of the processors. 

Possible solutions are single-grain systems, coarsegrain 

systems, and fine-grain systems. A single-grain system is a 

classical Neumann machine with only one processor. A coarse

grain system couples a moderately large number (say hundreds) 

of processors. for example, IBMs GFll machine contains 576 

processing elements, interconnected by a three stage switching 

network; the Connection Machine from Thinking Machines 

Corporation contains 64,000 processing elements, 

interconnected by a programmable switching network. Each 

processor is a simple one-bit processing unit. 

2. 4 CHOICE OF SYSTEM & ARCIDTECTURE 

Parallel systems can be built in many different ways; the 

choice of architecture depends on the application. Many 

systems exist in each architecture category. 

2. s COMMUNICATION ASPECTS OF PARALLEL AND 

DISTRIBUTED SYSTEMS 

In many. parallel and distributed algorithms and systems 

the time spend for interprocessor communication is a sizable 

fraction of the total time needed to solve a problem. In this 

case we say that the ;algorithm experiences substantial 
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communication penalty or communication delays. We cal think 

of the communication penalty as the ratio 

Cp TTOTAL 
TCOMP 

Where TTOTAL is the time required by the algorithm to 

solve the given problem, and rcoMP is the corresponding time 

that can be attributed just to computation, that is time that 

would be required if all communication were instantaneous. 

To analyze communication issues, it is helpful to view 

the distributed computing system as a network of pr90cessors 

connected by communication links. Each processor uses its own 

local memory for storing some problem data and intermediate 

algorithmic results, amd exchanges informqtion with other 

processors in groups of bits called packets using the 

communication links of the network. 

Communication delays can be divided inot four parts: 

(a) Communication processing time: This is the time required 

to prepare information for transmission. 

(b) Queueing time: Once information is assembled into packets 

for transmission om some communication link, it must wait 

in a queue prior to the start of its transmission for a 

number of reasons. for example, the link may be 

temporarily unavailable because other information packets 

or system control packets are using. 

(c) Transmission time: This is the time required for 
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transmission of all the bits of the packet. 

(d) Propagation time: This is the time between the end of 

transmission of the last bit of the packet at the 

transmitting processor, and the reception of the last bit 

of the packet at the receiving processor. 

Depending on the given system and algorithm, one or more 

of the above times may be neglibible. For example, in some 

cases the information is generated with sufficient regularity 

and the transmision resources are sufficiently plentiful so 

that there never is a need for queueing packets, whereas in 

other cases the physical distance between transmitter and 

receiver is so small that propagation delay is negligible. 

For most systems, we can reasonbly assume that the 

processing and propagation time on a given link is constant 

for all. packets, and the transmission time is proportional to 

the number of bits (or length) of the packets. We thus arrive 

at the following formula for the delay of a packet in crossing 

a link: 

D = P+RL+Q 

where P is the processing and propagation time, R is the 

transmission time required for a single bit, L is the length 

of the packet in bits, and Q is the queueing time. In the 

great majority of presently existing systems, even when the 

packet does not contain much more than overhead, the sum P+RL 
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is much larger than the time required to execute an elementary 

numerical operation such as a floating point multiplication. 

This means that if a prallel algorithm requires transmission 

of a packet for every few numerical operations it performs, 

the communication time is likely to dominate its execution 

time. 

Some of the most important factors that influence 

communication delays are the following: 

(a) The algorithms used to control the communication network, 

mainly error control, routing, and flow control. 

(b) The communication network topology, that is, the number, 

nature, and location of the communication links. 

(c) The structure of the problem solved and the design of the 

algorithm to match this structure, including the degree 

of synchronization required by the algorithm. 
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DEVELOPMENT OF PARALLEL ALGORITHM 

FROM SEQUENTIAL ALGORITHM 

3.1 HOW TO AClllEVE PARALLELISM 

Parallelism is best used for programs that require a 

significant number of cycles. 

With some body of instructions being repeated a million 

times or more, we have an opportunity for parallelism if we 

can spread those million executions in some way across N 

processors. this is a simple recipe to achieve parallelism: 

1. Analyze the program for a loop or recursion structure; 

2. Find the instructions that account for the most time, 

usually the regions repeated the greatest number of 

. i teratioins; 

3. Split the instruction execution of these regions across 

N processors, if this can be done correctly; and 

4. Add sycnchronization and data-transmission statements as 

r~quired to create a correct parallel implementation. 

3. 1.1 LARGE PROBLEMS 

In spite of the continual efforts and achievements in 

increasing the speeds of logic circuits, memories, and 

inputjoutput "equipment, requirements for processing and 

computation capabilities have increased at a somewhat 

comparable rate. 
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If the magnitude of these large processing and 

computatioin problems results from a need for processing a 

number of different sets of data within a given time, one 

approach to a solution is to use different processing units 

to work simultaneously on different data sets rather than 

sequentially forcing different datasets through the same 

processor in time sequence . Examples of such problems include 

the global weather problem, nuclear physics problems, large 

hydrodynamic problems, and others in which an array or mesh 

of data points are processed. 

3 . 1. 2 PROBLEMS WITH INHERENT PARALLELISM 

Such inherent parallelism may result from the presence 

of several data streams which can be processed in parallel, 

and subsequently under the control of a single instruction 

streams. Another type of inherent parallelism results from the 

operations on different sets of data. If such parallel 

computations are quite frequent in the program, the overall 

program may be executed more efficiently (from an equipment 

and economic standpoint) as well as in a shorter elapsed time 

by the use of some type of parallel organization. 

Parallel data streams are typically found in phased array 

radar, sonar and radar signal processing, and pattern 

recognition problems. 
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3.1.3 RELIABILITY AND GRACEFUL DEGRADATION 

A parallel organizatioin can permit graceful degradation 

of the system by dropping off less critical operations in the 

event of the malfunction of a part of the system, while 

permitting the more critical operations to continue in those 

parallel units which are still operable. The failure of a 

single unit would decrease the total system capability by a 

very small percentage and would have an almost negligible 

effect on the necessary functions in the overall system. This 

is particularly true if the system is designed such that it 

can automatically detect a malfunction 1n one unit and 

reconfigure the problem to perform the critical functions on 

the remaining units. 

3.1.4 PREPARATION AND EVALUATION OF COMPUTER 

PROGRAMS OF PARALLEL PROCESSING SYSTEMS 

The modeling of computations for prallel processing can 

be divided inot four general areas (1) those general models 

concerned mostly with formal aspects of prallel processing 

without regard to actual programming considerations, ( 2) 

models that incorporate new programming languages designed to 

enchance prallel processing, (3) models that incorporate 

extensions of existing sequential programming languages, and 

(4) models that attempt to detect and represent parallelism 

in existing sequential languages. 
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Each approach has considerable merit. the general models 

( 1) allow us to gain deeper insight into the nature of 

parallel processes and to prove the validity of such proceses. 

At this point in time, new languages for parallel processing 

are embryonic. We need additional information and experience 

with parallel processing to be able to state just which 

aspects of prallelism need to be explicityly stated and which 

should be left to machine (compiler) recognition. Experience 

with such languages will also teach us the most "natural" 

means of expression of parallelism. 

At present, extensions to existing languages are useful 

in reformulating existing programs, however such extensions 

usually require complete receding of existing programs. 

Models which attempt to detect parallelism in existing 

sequential languags can play an important role in this 

transition period. Large existing programs can be made 

operational on existing (or simulated) prallel processing 

systems, and observatioins of system behaviour can be made 

while reformulation of the program is in process. Nor have we 

learnied all there is to know about progrms for sequential 

processors. Some of the modeling for parallel processing has 

given insight into optimization techniques for single 

processors. 
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3. 2 P ARALLELIZATION 

In this chapter firstly we will provide modified Gauss 

Jordan algorithm to find the inverse of matrix. Then we will 

find the steps of algorithm which are mutually independent. 

We can do these steps in parallel saving a great amount of 

time. We will find these steps which can be done 

simultaneously if more than one processors are used. We will 

group these steps into together which will form subsections 

of algorithm. These subsections are mutually dependent and 

can't be parallelised. We will develop the parallel algorithm 

with each subsectionwise. Thus our algorithm is broken into 

number of subsections. 

Although we will use load balancing to adjust the load 

when numbers of processors is changed, yet we will give 

parallel algorithm for two cases: 

a) number of processors p = m = number of rows of matrix. 

b) number of processors p = m x 2m = number of elements in 

augmented matrix. 

In second case number of processors is not limited and 

we get full parallelisation we will give a subsection of 

sequential algorithm, then parallel algorithm for case (a) p 

= m will be developed. After that for case (b) p = m x 2m 

parallel algorithm will be developed. After that second 

subsection of sequential algorithm will be parallelised and 

so on. 
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We have to find the inverse of a (m x m) matrix A. 

Consider the system of linear equations: 

A X I 

where 

X is unknwon square matrix of order (m X m) 

I is unity matrix of order (m x m) 

In matrix form: 

all· al2 aiM XII X12 xlm 1 0 0 

a21 a22 a 2M X21 Xn X 2m 0 1 0 

0 0 1 

If we are able to find matrix X, it will be inverse of matrix 

A. We will find matrix X by using elimination process. 

Writing the right hand side coefficient matrix. 

1 0 

0 1 

0 0 

0 

0 

1 

bll 

b21 
as 

bml 

bl2 blm 

b22 b2m 
B 

bm2 bmm 

Writing Augmented matrix using matrix A coefficients and right 

handside coefficients: 

Augmented matrix: 
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This is a (m x 2m) matrix having rows m, columns 2m 

we can assume that, this matrix has two parts: 

First half (m x m) square matrix has m rows and first m 

column 

Second half (m x m) square matrix has m rows and last m 

columns 

Subsection 1 

Choose the first element as the grea"test element (in 

magnitude) of the first half matrix and bring it to pivot 

location. Keep an account of column interchanges. 

While choosing pivot element we will search for element 

of greatest magnitude from the first half of matrix. We will 

not eliminate coefficients from the second half of matrix 

because they are coefficients of right hand side variables. 

We will apply the operations to whole matrix so that right 

hands ide coefficients are also modified simultaneously as 

elimination process proceeds. 
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Pivot location for 1st iteration location of 1st 

diagonal element 

Pivot location for 2nd iteration = location of 2nd diagonal 

element 

And so on. 

Sequential 

z : = 1 

for z := 1 to m do 

begin 

begin 

z := z + 1; 

- var i := 1; 

j := 1; i, j = pivot location; 

all ai2 aiM 

a2I an a2M 

- search 1st row and find row max (1) 

- search 2nd row and find row max (2) 

- search mth row and find row max (m) 

- search column made of rowmax (x) and find max (row max 

( x) ) . 

-pivot .-max (row max (x)) a~ 
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- if (i < > k) 

row exchange (i, k); 

- if (j < > 1) colexchange (j,l); 

{suppose pivot location = i, j, location of greatest 

element = k, 1. First exchange the row having greatest 

element with the ith row, then exchange the column 

containing the greatest element with the jth column}. 

- c. [100] 

{where C is an array of record type element. The elements 

will consist of first and second element. Elements will 

contain column numbers j & 1. We want to keep a record 

of total column exchanges and do them in reverse order 

while writing the final answer} 

- C [y]. first= j; 

c [y]. second= 1 

end; 

Parallelisation 

Number of processors 

case (a) p = m x 2m = 2m2 

Assume initial each element of matrix is on separate 

processor: 

bll blm 

b21 b2m 
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begin 

par begin 

Transfer half elements from one subhypercube to another 

subhypercube. 

parend; 

par begin 

Compare each pair and retain the greater element in that 

node and reject the another one. 

parend ; 

parbegin 

Transfer quarter elements (half of remaining) from one 

subhypercube to anther subhypercube. 

parend; 

compare the last two elements and find greatest elements 

i, j = pivot location 

i .- 1. , j .- 1 

if (i < > k) row exchange ( i' k) ; 

if (j < > 1) col exchange ( j ' 1) ; 

c [ y J • first = j 

c[y). second= 1 

end, 
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Case (b) 

Number of processors p = m 

Assume initiality 

begin 

1st row of matrix on processor P0 

2nd row of matrix on processor P1 

mth row of matrix on processor P111 _1 

par begin 

- search 1st row on P0 for max (row 1) 

- search 2nd row on P1 for max (row 2) 

search row on P~1 for max (row m) 

parend; 

par begin 

Transfer half of max (row x) from one subhypercube 

to another subhypercube. 

parend; 

par begin 

compare two elements of max (row x) on each node. 

Retain the greater. 

parend; 

par begin 

Transfer half of max (row x) elements from one 

subhypercube to another subhypercube 

parend; 
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compare the last two max (row x) and retain max 

(max (row x)) =au 

end, 

i, j = pivot location 

i := 1; j .- 1; 

if (i < > k) row exchange (i, k); 

if (j <> 1) colexchange (j, 1) 

c [y]. first= j 

C[y]. second= 1 

Subsection 2 

Divide each element of pivot row by pivot element. 

Sequential 

for j 

begin 

1 to 2 m do 

aij div pivot element 

j := j + 1 

end; 

Parallel 

case (a) 

begin 

par begin 

Send (transfer) pivot element to each 2 
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processors using single node broadcast 

par end 

par begin 

Tranfer each element of 2 m pivot row elements on 

each individual processors (already exist) 

par end 

par begin 

divide a;, on Po by a. 
II 

(pivot element) 

divide a;2 on P, by a .. 
II 

divide a;J on p2 by a;; 

divide b; 1 on Pm by a;; 

divide b;m on P2m-I by a;; 

parend 

end; 

{after execution of this subsection pivot row 1s modified} 

case (b) 

p = m 

begin 

par begin 

Transfer first m elements of pivot row on m 

separate processors: m times single node broadcast. 

parend; 

par begin 

Transfer pivot element to each m processor. 

Wing single node broadcast. 
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end; 

parend; 

par begin 

Divide each element on processors by pivot element. 

parend; 

par begin 

Transfer last m elements of pivot rows on m 

separate processor: m times single node broadcast. 

parend; 

par begin 

divide each element on processor by pivot element. 

parend; 

{After this subsection each processor has two modified pivot 

row elements 

eg. P0 has a; 1 , b;1 

P1 has a;2 , b;2 and so on}. 

Subsection 3 

Keep the m copies of modified pivot row and multiply each 

of them by appropriate factors separately. 

Sequential 

begin 

begin 

Load modified pivot row on processor 

multiply each element of this row by - a 21 

store the results. 
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end; 

end; 

end; 

begin 

Load modified pivot row on processor 

multiply each element of this row by - a 3 1 

store the results 

and so on for all (m-1) rows. 

Parallel 

Case (a) 

begin 

par begin 

Transfer all 2m elements of modified (after 

division) pivot row through columns using single 

node broad cast for all 2m nodes. 

parend; 

{now modified pivot row has m copies} 

par begin 

Transfer - a 21 to each element of 2nd row 

Transfer - a 31 to each element of Jrd row. 

Trnasfer - a 1111 to each element of mth row 

parend; 

par begin 
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end; 

Multiply 2nd row of processor by - a 21 

Multiply Jrd row of processor by - a 31 

Multiply mth row of processor by - am1 

parend; 

{After this subsection modified rows elements after 

multiplication are on the same processors on which 

original elements are present} 

case 3(b) p = m 

begin 

{Keep the copies of modified pivot row after division on 

m processors} 

par begin 

Transfer the each of two elements in each processor 

to each processor using multinode broadcast two 

times. 

parend; 

{Now - a2, is present in P1 

a3, is present in p2 and so on} 

parbegin 

multiply each element on P, by - a2, 

multiply each element on p2 by - a31 

multiply each element on PJ by - a4, 
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end; 

multiply each element on P~ 1 by - am 1 

par end 

Subsection 4 

{After multiplication elements of rows on processors have 

been modified and original row elements corresponding to 

them are on same processors} 

Sequential 

begin 

Add corresponding elements of modified & original 

row ~ 

end 

end; 

Add corresponding elements of modified & original 

row ~ 

Add corresponding elements of modified & original 

for i := max down to 1 do 

col exchange (c[y]. first, c(y]. second) 

delete pivot column 

{of for loop z .- 1 to m do} 
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Parallel Case (a) p 2m2 

par begin 

end; 

parbegin 

Add corresponding elements of modified and original 

row R2 

par end 

par begin 

Add corresponding elements of modified and original 

row R3 

.parend 

par begin 

Add corresponding elements of modified and original 

row R.n 

par end 

parend; 

for i := max down to 1 do 

col exchange (c(y).first, c(y).second) 

delete pivot column 

.parend 

Case (b) p = m 

begin 

parbegin 

Add corresponding elements of modified row on P 1 and 

2nd original row R2 
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Add corresponding elements of modified row on P2 and 

3rd original row R3 

Add corresponding elements of modified row on P3 and 

4th original row R4 

Add corresponding elements of modified row on P111 _1 

and mth original row ~~ 

par end 

end; 

for i := max down to 1 do 

col exchange (c(y). first c(y). second) 

delete first column 

end; 

{After execution of above these 4 subsections of 

algorithm our augmented matrix looks like -

I I 
an ai2 

0 
I 

an 

... 
0 

I 
am2 

First column except pivot element of this augmented 

matrix has been eliminated. In the second iteration of these 

4 sections 2nd column wll be eliminated. For the second 

iteration we will choose pivot element from the submatrix 

obtained after deleting 1st column and 1st row that is pivot 

column and pivot row from the first half sq. matrix. 
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After completion of final iteration we will get only 

diagonal elements and all others will be eliminated from the 

first half of sq. matrix. Thus from the direct substitution 

we will get the required inverse of matrix of A from the 

second half of the augmented matrix. 

54 



CHAPTER 4 

COMPLEXITY ANALYSIS 



COMPLEXITY ANALYSIS 

4.1 COMPLEXITY OF ALGORITHMS 

In order to measure the cost of executing a program,we 

customarily define a complexity (or cost) function F, where 

F(n) is a measure of the time required to execute the 

algorithm on a problem of size n, or a measure of the memory 

space required for such execution. Accordingly, we speak of 

the time complexity and the space complexity functions of the 

algorithm. 

In practice, of importance is performance of the 

algorithms for large values of n, that is performance of the 

angorithms for large values of n, that is asymtotic behaviour 

of the complexity function. Asymptotic complexity is the 

growth in the limit of the complexity function with the size 

parametern. So the asymptotic (time or space) function 

ultimately determines the size of the problem that can be 

solved by the algorithm. In terms of the terminology, we say 

that the (time) complexity of the algorithm is O(log n), read 

'order log n' if the processing by the algorithm of the 

problem instance of size n takes the time proportional to log 

n. In relation to, say the time compexity of an algorithm the 

following terminology will be used in an equivalent sense: 

(a) the time compexity of the algorithm is of order log n; 

this can also be written as 'O(log n) '; 

(b) the algorithm is executed is executed in O(log n) time; 
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(c) the amount of work require by the algborithm is 

proportionalto log n, or is of O(log n). 

Where appropriate the term 'unit of time' will be used 

in the sense equivalent to the term 'one basic operation' 

4. 2 BOUNDS ON COMPLEXITY 

Complexity analysis among other things is concerned with 

obtaining upper and lower bonds on the performance of 

algorithms or classes of algorithms that solve various 

problems. The existence of complexity bounds for the known 

algorithms can serve as a basis for classifying the problems. 

for other problems lower bounds on complexity have been 

derived but none of the available algorithms is known to 

attain the bounds. A notable example of this type is matrix 

multiplication, where a minimum bound of 0 (n2
) is not 

sharp enough. 

Another group of problems is such that their lower bounds 

on computational complexity are known, but these algorithms 

are numerically unstable. Fast methods approach of 

interpreting the operation of matrix multiplications belong 

to this category. 

Final, there are problems for which lower bounds on 

complexity are known and the algorithms which attain these 

bounds can be built and the algorithms are numerically stable. 
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4. 3 CONDITIONING OF THE PROBLEM 

Consider the set 

Ax = b ( 1) 

Let x = A_ 1b be the exact solution of the set and x(cl be its 

computed solution. We shall distinguish between the difference 

Which is called the error and the difference 

b - Ax<cl 

Which is called the residual. 

( 2) 

( 3) 

Studies on the conditioning of problem 1) show that if 

both the error and the residaual vectors are small then the 

problem is well-conditioned. If the residual is small while 

the error is very large then the problem is called ill

conditioned. The matrix of an ill-conditioned is unsually 

'riearly singular' or even exactly sing~lar. 

If an instance of problem 1) is ill-conditioned then no 

computational algorithm will solve it accurately. For a 

well-conditioned problem one expects that a reasonable 

approximation to the exact solution can be computed if a 

stable computational algorithm is used. Numerical stability 

of a particular algorithm is studied using the concept of the 

error as defined by 2), of of the residual as defined by 3). 

If the solution, x~, is computed using a particular algorithm 

is numerically stable and vice versa. 
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In the forward error analysis (of pre-Wilkinsin era) one 

attempts to bound the difference between the exact and 

computed solutions at every step of the computation. As the 

computation progresses this becomes more and more difficult, 

the bounds on the difference between the solutions become 

'loose'' and this leads to far too pessimistic conclusions on 

the method's relaiability. The Wilkinson's backward error 

analysis, on the other hand, studies the residual and not the 

error. The approach is simpler and gives reasonably sharp 

bound estimates on the residual and not the error. The 

approach is simpler and gives reasonably sharp bound estimates 

on the residual which in turn leads to more realistic 

conclusions on the reliability of the method. 

4. 4 SPEEDUP AND EFFICIENCY 

.::; 

We describe a few concepts that are sometimes useful in 

comparing serial and parallel algorithms. Suppose that we have 

a parallel algorithm that uses p processors (p may depend on 

n) ,and that terminates in time Tr(n). Let T"(n) be the optimal 

serial time to solve the same problem, that is, the time 

required by the best possible serial (uniprocessor) algorithm 

for this problem. The ratio 

T • ( n) 

Tr (n) 

is called the speedup of the algorithm,and describes the speed 

advantage of the parallel algorithm, compared to the best 

possible-serial algorithm. The ratio 
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T • ( n) 

pTP ( n) 

is called the efficiency of the algorithm and essentially 

measures the fraction of time that a typical processor is 

usefully employed.Ideally , Sp(n) = p and EP(n) = 1, in which 

case, the availabity of p processors allows us to speed up the 

computation by a factor of p. For this occur,the parallel 

algorithm should be such that no processor ever remains idle 

or does any unnecessary work. This ideal situation is 

practically unattainable. A more realistic objective is to 

aim at an efficiency that stays bounded aqay from zero,as n 

and p increase. 

There is difficulty with the above difinitions because 

the optimal serial time T*(n) is unknown,even for seemingly 

simple computational problems like matrix multiplication. For 

this reason, T·(n) is sometimes defined differently. 

We may let T* (n) be the time required by a single 

processor to execute the particular parallel algorithm being 

analyzed. (That is, we let a single processor simulatew the 

operation of the p parallel processors,). With this choice 

of T·(n), efficiency relates to how well a particular 

algorithm has been parallelized. 

4. s. 1 NUMERICAL ACCURACY 

In the analysis of algorithms which solve numerical 
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problems the accuracy of the computed reesul ts is another 

important criterion to distinguish between 'good' and 'bad' 

algorithms. The need to examine the accuracy of mathematical 

computations arises from the fact that a computer is a finite 

machine; it is capable of repreaenting numbers only to a 

finite number of digit positions. As a result, most numbers, 

and even integers, if they are too long for the computer to 

reprtesent exactly, are rounded, and so only a finite 

approximation some numerical algorithms implemented on a 

computer may produce approximations to the true results that 

are wildly inaccurate. 

4. s. 2 EFFICIENCY 

Peak performance is very ~pecial state that is rarely 

achievable. There are several factors ., that introduce 

inefficiency. Among the factors are: 

* 

The delays introduced by interprocessor communications; 

The overhead in synchronizing the work of one processor 

with another; 

Lost efficiency when one or more processors run out of 

tasks; 

Lost efficiency due to wasted effort by one or more 

processors; 

The processing costs for controlling 

schedulingoperations. 
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A high-performance vector processor is suffer from lost 

performance because it is unable to keep a~l of the processing 

units busy. This latter problem arises particularly when a 

computation is not easily implemented as a sequence of vector 

operations performed on highly structured, densely stored 

data. 

The architect who designs and builds a multiprocessor 

must pay close attention to the sources of inefficiency 

exposed here. They can lead to serious degradation in 

performance. For example, if the combined inefficiencies 

produce an effective processing rate of only 10 percent of the 

peak rate, then ten processors are required ln a 

multiprocessor system ju3t to do the work of a single 

processor. 

Fortunately, 

design can hold 

for a small number of processors, careful 

the inefficiency to a low figure, but 

inefficiencies tend to climb as the number of processors 

increase. There is a point where adding additional processors 

can lengthen, not shorten, computation time. 

The fact that inefficiency tends to grow with the number 

of processors is the underlying reason why many commerical 

offerings of multiprocessors have a small number of 

processors, such as 4,8, or 16. The fastest machines are 

built from the fastest devices available and have relatively 

few processors. 
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Consider, for example, the Cray XMP, a four-processor 

version of the Cray I. Another example is the IBM 309X family 

for which systems with up to six processors are available. 

4 o so 3 RUNTIME AND COMMUNICATION OVERHEAD 

The point of this section is to analyze the performance 

benefit of multiple processors in the ,face of overhead 

incurred to create parallelism. This section. shows that 

performance_ benefits strongly depend on the ration R/C, where 

R is the length of a run-time quantum and C is the length of 

communications overhead produced by that quantum. The ratio 

expresses how much overhead is incurred per unit of 

computa~ion. When the ratio l3 very low, it becomes 

unprofitable to use parallellism. When the ratio is very 

high, parallelism is potentially profitable. Note that a 

large ratio can be obtained by partitioning a computing job 

into relatively few large pieces, and that the amount of 

parallelism for such a ratio might be much smaller than the 

maximum available. 

The ratio R/C is a measure of task granularity: 

• In coarse-grain parallelism, R/C is relatively high, so 

each unit of computation produces a relatively small 

amount of communication : -and 

• In fine-grain parallelism, R/C is very low, so there is 

a relatively large amount of communication and other 

overhead per unit of computation. 
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Coarse-grain parallelism arises when individual tasks are 

large and over head can be amortized over many computational 

cycles. fine-grain parallelism usually provides opportunities 

to perform execution on many more processors than can 

fruitfully support coarse-grained parallelism. The idea of 

fine-grain parallelism is to partition a program into 

increasingly smaller taks that can run in paralle. At the 

ultimate limit, each individual task may be as small as a 

single bperation. More commonly, however, a fine-grained task 

contains a small number of instructions. 

Small R/C ratios lead to poor performance because of high 

overhead. Large ratios usually reflect poor exploitation of 

para1le'lism. For maximum performance, it is necessary to 

balance parallelism against overhead. 

What are good parallel algorithms for solving varioius 

important poblems? The key approach is the ability to 

partition the problem intob modules that require relatively 

little intermodule communication. If the partitioning can be 

done successfully, then communication requirements are rather 

small, and the dependency on the interconnection topology is 

greatly diminished. on the other hand, if communication 

requirements cannot be made small, then the interconnection 

topology. becomes important_, __ and _the major parameter of 

interest is the R/C ratio. 
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4, 6 CALCULATION OF COMPLEXITIES 

In this chapter we will compare complexities of 

sequential and parallel algorithms. Although communication 

cost is negligible in comparism to computation cost, yet we 

will take it into account. When number of processor increases 

the communication cost and synchronisation cost come into the 

picture. 

There are two strategies mostly used for communication 

between nodes. Spaning tree structure is used for these 

strategies. Spanning tree of a d-cube that is rooted at node 

(00 .. 0), and provides a path of d links or less from the root 

node. to every other noae. The figure shows one possible 

construction for d = 4. The tree lS constructed sequentially 

star~ing from the roo~ by using the rule that the identities 

of the children of each node are obtained by reversing one of 

the zero bits of the identity of the parent that follows the 

right most unity bit. The leaf nod~s are the ones that have 

one as the final bit in their identity. 

0000 
Root 
node 

0001 

0110 0111 

1011 

1101 

1110 .1111 

SPANNING TREE 
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Two strategies are: 

1. SINGLE NODE BROADCAST/ACCUMULATION 

To send the same packet from a given processor to every 

other processor is called signle node broadcast. While in 

single node accumulation, we want to send to a given node a 

packet from every other node. Using spanning tree a single 

node broadcast from the root to all nodes, and a single node 

accumulation take O(d) = 0 (log p) communication time. 

2. MULTINODE BORADCAST/ACCUMULATION 

If we want to do a single node broadcast simultaneously 
0 

from all nodes, we call this a multinode broadcast and 

simultaneous single node accumulation from all nodes is called 

multinode accumulation. Both takes a time of 

0 ( p ) = 0 ( m ) if p = m 
log p log m 

To calculate the complexities assume: 

a time taken in 1 additonjsubtraction 

{3 time taken in 1 multiplication 

'Y time taken in 1 division 

0 time taken in 1 comparison 

t time taken in transfering unit load from one node 

to nearest node in hypercube. 

And in sequential processing proeessor takes 

negligible time in loading and storing data to memory. 
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SINGLE NODE BROADCAST SINGLE NODE ACCUMULATION 

a, 

9 
r a, 
,. 7 

(a) (b) 



Also assume 

O(a) = 0({3) = 0('}') = 0(5o) = O(lOt) 

First we will calculate the complexity of sequentila 

algorithm step by step. We will calculate separately for 

subsection 1 and for rest of the algorithm because they yield 

different recursive functions. 

SEQUENTIAL COMPLEXITY 

Subsection 1 

(From the algorithm given in previous chapter) 

Time taken in finding row max (i) = 0 (m) 

Time taken in finding max (row max (i)) 

o (m) =0 (m2
) 

0 (m) x 

After completion of 1st iteration and for selection of 

pivot element for 2nd iteration we delete one column and one 

row from the (m x m) square matrix. Thus if initial size of 

problem = f 1 (m, m) 

then after one iteration size of problem = f 1 (m-1, m-1). 

Thus, 

f 1 (m, m) = f 1 (m-1, m-1) + m2 

This is a recursive function on solving this function: 

fdm, m) = f 1 (m-1, m-1) + m2 

f 1 (m-2, m-2) + (m-1) 2 

f 1 (m-2, m-2) f 1 (m-3, m-3) + (m-2 )} 
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f 1 ( 2 , 2) = f ( 1 1 1) + 22 

fl (1, 1) = 0 

Adding up f 1 (m, m) m2 + ( m -1) 2 + m- 2 ) 2 + . . • 2 2 

m (m+1) (2m+1) _ 1 
6 

Subsections 2, 3, 4 

( 1) 

Now we will calculate complexity due to subsections 

2, 3 and 4. 

· In first iteration time taken 1n subsection 2 

= (2m-1) 'Y 

Time taken in first iteration in subsecton 3 

= (2m x {3) (m-1} 

where '2m' due to 2m elements in one row (m-1} due to (m-1) 

rows to be multiplied. 

Time taken in first iteration in subsection 4 

= (2m-1) a • (m-1) 

{first element will be zero after addition and need not 

to be added} 

Total time = (2m-1) 'Y + 2m (m-1} {3 + (2m-1) (m-1) a 

After completion of first iteration first column is zero 

except pivotal element which is 1 in each iteration. Therefore 

we can reduce one column from our problem. And our problem 
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size reduces to f 2 (m' 1 m-1} from f 2 (m' 1 m). 

{here although m' = m, but to distinguish between rows 

and columns we keep them like that} 

that is: 

f 2 (m', m) f 2 (m 1
1 m-1) + (2m-1)"' + (m1-1) ~m,B + (2m-1) O:] 

on solving this recursive function we get: 

f 2 (m', m) f 2 (m', m-1) + (2m-1)"' + (m'-1) ~m,B + (2m-1) a] 

f 2 (m', m-1) f 2 (m', m-2) + 2 (m-3)"' + (m1-1) ~2m-1) ,B + [2 (m-1) -1] O:] 

f 2 (m 1,m-2) f 2 (m 1,m-3) + 2(m-4)"' + (m1-1) ~2m-2) ,B + [2(m-2} -1Jo:] 

f 2 (m1,2) f 2 (m1,1) + ?,(2 .... 1)"1 + (m1-1) ~2.2,6+(2.2-1)a] 

f 2 (m 1,1) = 0 + 2(1-1)"1 + (m'-1) [{2,6+(2-1)a] 

Adding up we get 

f 2m',m ,[(2m-1)+~(m-1)-1]+ ~(m-2)]+ .. (2-1)] 

+ (m1-1) [2,B(m+m-1+ ... 1) + o:[(2m-1) + ~ (m-1) -1] + .. (2-1)]] 

" 'Y f [ m (~+1) - ~] + (m'-1) [ 2{l. m (~+1) j + 2a [ m (~+1) - mJ] 

"' [m 2 +m -1m] + (m1-1) [,B (m2 +m) +o: (m2 -m)] 

since m = m' 

f 2 (m, m) = (m2-m) "' + (m3-m) ,B + (m3 
- 2m2 + m) a 
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( 2) 

From equations 1 and 2 we get over all complexity of 

sequential algorithm: 

f(m,m) f 1 (m,m) + f 2 (m,m) 

o (m3
) + 0 (m3

) 

f(m,m) = O(m3
) (A) 

Parallel Algorithms 

Now we will calculate the complexity of parallel 

algorithm when number of processors p = m, when matrix is of 

the order of (m x m) . 

Case (a) p m 

Subsection 1 

Time required for searching all rows for max row (i) 

2 m.o 

Time in all transfers= t.log m 

Time in all further comparisons= o.log m 

Thus total time taken in first iterations 

T = 2 m.o + log m o + log m.t. 

After completion of one iteration problem of size f 1 

(m,m) :reciuces to f 1 (m-1, m:-1) 1 

i.e. fdm,m) = fdm-1, m-1) + o (2m + log m) + t.log m 

on solving this recursive function we get: 
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f 1 (m,m) = f 1 (m-1, m-1) + 28.m + (t+8) log m 

f 
1 

( m -1 , m -1) = f 1 ( m- 2 , . m- 2 ) + 2 8 ( m -1) + ( t + 8 ) log ( m -1 ) 

f 1 (m-2,m-2) fdm-3, m-3) + 2 8 (m-2) + (t+8) log (m-2) 

f 1 ( 2 , 2 ) = f 1 ( 1 , 1) + 2 8 • 2 + ( t + 8) log 2 

fl (1,1) = 0 

Adding up we get 

f 1 (m,m) = 28 (m + (m-1) + (m-2) + .. 2) 

+ (t+o) [log m + log (m-1) + log (m-2) + ... 

log 2) 

= 28 [m(~+ 1 ) - 1] + (t+o) p..ogm + log(m-1) + ... log2] 

( 3) 

Subsections 2, 3 & 4 

Subsection 2 

Time taken in 1st parbegin- parend statement= m.log (m) 

Time in 2nd parbegin - parend statement = log (m) 

Time in 3rd parbegin - parend 

Time in 4th and 5th statement m log m + -y 

Total time = 2m log m + log m + 2-y 

Subsection 3 

Time taken ln 1st parbegin - parend statment = 2.m 
logm 

Time taken in 2nd parbegin - parend statement = 2 m~~ 

Total time 2m (~+-1 ) logm 
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subsection 4 

Time taken ln only parbegin - parend statement 2 m.a 

Total time in steps 2, 3 & 4 

2m log m + log m + 2-y + 
2m 

+ 2m ( (3+a) 
logm 

(2m+1) log m + 2m ((3 +-y + -
1
-) + 2-y 

logm 

if m is large, ( {3 + -y) >> ljlog m and (2m + 1) 2m 

Hence {log m will remain constt. Slnce it depends on 

number of nodes. 

f 2 ( m , m) = f 2 ( m 1 m -1) + 2m ( log m + (3 + 'Y) 

f 2 ( m , m -1 ) = f 2 ( m 1 m- 2 ) + 2 ( m -1) ( log m + (3 + 'Y) 

f 2 (m,2) f 2 (m,1) + 2.2 (log m + (3 + -y) 

f 2 (m.1) = 2.1 (log m + (3 + -y) 

Adding up we get 

f 2 ( m I m) = 2 ( log m + (3 + 'Y) [ m + m -1 + 1 J 

(log m + (3 + -y) [m2 + m] = 0 (m2 log m) 

Since f (m,m) = f 1 (m 1 m) + f 2 (m,m) 

o (m2
) + o (m2 log m) 

f(m,m) = O(m2 log m) 
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case (A) 

When number of processor p 2m x m 

subsection 1 

Time ln transfer parbegin statements= t.log 2m1 

Time in compare parbegin statements = t . log 2m2 

Total time = (t + o) log 2m2 

fl(m,m) = fl (m-1, m-1) + (t + o) log 2m2 

This is a recursive function. On solving this function 

we get. 

f 1 (m, m) 

f 1 (m,m) 

subsection 2 

2m log 2m (t + o) 

0 (2m log 2m) 

Time in 1st parbegin statement= 2 log 2(m) 

There is no need of 2nd statement 

Time in Jrd parb€gin statement = ~ 

Total time = 2 log 2{m) + ~ 

Subsection 3 

Time in 1st parbegin statement = 2 log 2m 

Time in 2nd parbegin statement = 2 log 2m .,,. 
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Time in 3rd parbegin statement ~ 

Total time = ~ + 2.2 l0g 2m 

Subsection 4 

Time = a 

Total time in subsecti0ns 2, 3 and 4 

= a + $ + 2.3 log 2m - r 

f 2 (m,m) = f 2 (m,m-1) (a+~+~) + 6 log 2m 

In this recurs1ve function log 2m will rema1n constant 

since it depends on no. of ~odes. 

Solving this recursive function we get: 

f 2 (m,m) = f 2 (m,m-1) + (a+~+~) + 6 log 2m 

f 2 (m,m-1) = f 2 (m, m-2) + (a+$+~) + 6 log 2m 

f 2 (m, 1) = f 2 (m, 0) + (a+{J+-y) + 6 log 2m 

On Adding up 

f 7 (m,m) = m (a+$+~) + 6 m log 2m 

f 2 ( m , m) 0 ( m log m) ( 6) 

since f(m,m) = f 1 (m,m) + f- (m,m) 

73 



From eqns. (5) and (6) we get: 

f(m,m) = O(m log m) + o (m log m) 

f(m,m) 0 (m log m) (C) 

In equations (B) and (C) the factor of log (m) comes 

due to communication cost. From this it is clear that if 

number of processor p = m or m2 is low then communication cost 

can be ignored. Summarizing the results in a table: 

Sequential Parallel 
P=l p > 1 

No. of processor p =Ill p = 2m2 

p=l 

with communication cost 0 (m3
) 0 (nr' log_ m) 0 (111 log 111) 

without communication 0 0 (m3
) 0 (111:) 0 (m) 

cost 
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CHAPT~R 5 

IMPLEMENTATION AND LOAD BALANCING 



I 

IMPLEMENTATION AND LOAD BALANCING 

5.1 IMPLEMENTATION 

In this chapter we will describe how parallel algorithms 

are implemented on the subcube grid. 

We will give two illustrative models which will explain 

the principles and rules. The operations described in the 

model implementation will not necessarily match the actual 

operations while impl"ementing on the parallel machine. We will 

take an examples. 

No. of processors p = m 16 

Suppose we want to find the inverse of (16 x 16) square 

matrix A: Augmented matrix will be: 

16,1 al6.2 

order of the augmented matrix = (16 x 32). 

Assume number of processor p = m = 16. 

We will take hypercube of dimension = 4 d. 

configured as r 1 x r 2 subcube grid 

= 4 x 4 subcube grid. 
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dimension of each subcube column = dl = 2 

dimension of each subcube row = d, = 2 

dl log /'J 2 

d2 log 1'2 = 2 

Number of processor p 2d = 24 = 16 

(b) 

For implementaton of the algorithm given in previous 

chapter we will use the same subsections of the algorithm. 

Subsection 1 

Matrix elements are loaded through host processor. 

Assume initialy 

1st row of matrix is on processor ~~ 

2nd row of matrix is on processor P 1 

16th row of matrix is on proc~ssor P
1

, 
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Apply linear search to each processor to find row max 

(i). After time 2mo each processor has row max (i). 

Transfer data from (0, 2, 4; 6) subhypercube to (1, 3, 

5, 7) and from (8, 10, 12, 14) to (9, 11, 13, 15) 

subhypercube time = t (1 unit). 

In next 6 time compare the two elements in nodes and 

retain the greater. 

Transfer data from subhypercube (1, 3, 5, 7) to 

subhypercube (9, 13, 11, 15). 

In next 6 time we have greater elements in 9, 13, 11, 

15) . 

Transfer data from (11, 15) to subhypercube (9, 13). 

In next o time we have greater element in (9, 13). 

Transfer data from 9 to node 13. 

In next o time we have greatest element in node 13. 

Total time 2 mo + (S + t) log m O(m) 

Subsection 2 

Now suppose pivot row comes out to be in processor P0 

Load first m elements of pivot row on separate m 

processors through single node broadcast m times. 

time = m. log (m) 

Now if 1st row is pivot row 

then a 11 on P0 

a, 2 on P 1 

a 13 on P2 
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Send pivot element to each processor using single node 

broadcast. 

time = log m 

Divide each element staying on separate processor by 

pivot element 

time = 'Y 

Load remaining m elements of pivot row on m processors. 

time = m (log m) 

Divide each element by pivot element 

time = 'Y 

Total time = 2 (m log m + ')') + log m 

= o (m log m) 

After completion of this subsection pivot ~ow elements 

are modified and lies on processors such that 

a' 11 , b' 11 on P0 

a' 12' b' 12 on PI 

and so on. 

Subsection 3 

Keep the copies of modified pivot row on m processors 

using 2 multinode borad ~ast. 

time = 2 m 
log m 
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Due to this step 

+ a 21 comes in P1 

and so on 

Multiply each element on P1 by - a 21 

Multiply each element on P2 by - a 31 

Multiply each element on Pm-l by - am1 

Time = 2m x {3 

Total time = 2 m{3 + 2 m 
log m 

Subsection 4 

We know that 

original 2nd row R2 is on P 1 

.;q,; 
original 3rd row R3 is on P2 

original roth row 1\,1 is on P
01

_1 

Due to subsection 3 we have 

Modified R' 2 on P1 

Modified R' 3 on P2 

Modified R'm on Pm-l 

O(m) 

.Add corresponding elements of R' 2 on P 1 and R2 
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Add corresponding elements of R' 3 on P2 and R3 

Add corresponding elements R 1 111 on P111 _1 and ~". All these 

steps can be done in parallel. 

Total time = 2 m.a = 0 (m) 

.since we have to subtract 2m elements of each row. 

80 



s. 2 LOAD BALANCING 

Load balancing is the issue which comes after 

implementation. It is required almost in every parallel 

algorithm implementation. If operating ~ystem is not able to 

manage the data distribution to different processors 

efficiently, the basic aim of paralleJ processing will be 

damaged. In the previous chapter on impl~mentation we assumed 

good load balancing distributing the load manualy. While 

implementing on the machine we will usb following algorithm 

which will provide good speed up. 

Load balancing used to achievE efficient use of 

multiprocessor. In the worst case of op&rating system it can 

improve the efficiency upto sixty percer,t. 

Suppose we have a hypercube with p = 2d processors, and 

each process PE(i) has Li units of load. 

Load balancing problem means to red[stribute the load so 

that if ~ is the load on processor i after redistribution then 

: L'; - L'i : < 1 for every ·pair of proce;;sor i & j. 

We are also intrested in minimisir,g the load transfer 

time. 
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Example: 

8 
3 

2 8 2 

c~ -
I 

I 
i 

6 4 6 4 

(a) (b) 

We permit several processors to overlap transmission 

along the same dimension of the hypercube only. 

If L· IJ load to be tranferred by processor i along 

dimension j 

0 < i < p, 0 < j < d 

0 

Then load transfer time T = [m. 
. J 

.I 

where m- = max { 1·· } J IJ 

Algorithm that minimizes the load transfer time T, when 

p 4. When large p, we will use heuristics to minimize T: 

a 

)J I .. ~ ~ 
. ---l .. /-·-----., 

V( 2 \__l:: 
~ . I 

X '·---.-/ 
c d 

Figure 2: Load rcJisuibuthHl for p = 4 
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Assume a ~ max {b~ c, d} let w, x, y and z be such that 

if thismuch load is transmit in the direction shown, the load 

is balanced. 

Let 

d 0 = w + x total load transfer along dim o 

d, = y + z total load transfer along dim 1 

f = w + y = load transfer out of P0 

Solving these equations for w, x & y 

w = f - d, + z 

X = d 0 + d 1 - f - z ( 1) 

Theorem 1 

The load in" P0 , Pu P2 and P3 is balanced if d0 , d 1 and f 

are selected such that 

a) do 
a+c-b-d if a + c > b + d 

2 

b) d, a+b-c-d if a + b > c + d 
2 

c) f =a - a+b+c+d if [ (a + c < b + d) (a + b < + or c 
4 

d) ] and (a + b + c + d) mod4 1 

By using this theorem load can be balanced with min. 

amount of load enter or leave a processor. It is possible that 

some w, x, y, z that satisfy theorem 1 do not result in 

feasible load transfer schemes. 
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so to ensure feasibility another .theorem is required. 

Theorem 2 

a) if (-b s w s a) and (-e s x s c) then the required load 

transfer can be done by transfering first on dim.O and 

then on dim 1. 

b) If (-c s y s a) and (d s z s b) then we can transfer 

first on dimension 1 and then on dimension 0. 

From eqn. 1 

when w x 

z 

At this value of z, w = x = d0/2 

Thus from theorems ( 1) and ( 2) it follows that T 1s 

minimized by selecting z such that: 

a) z is an integer that results in a feasible lead transfer 

w, x, y, z (eqn. 2 and 3). 

b) z is an integer in the range 

~in { ~' + d 1 - f, ~~ }• max { ~0 
+ ct, - f, ~~ }] 

This contains an integer that satisfies (a) . Otherwise 

z is the closest to this range that result in a feasible 

load transfer. 
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c) d
0

, d
1 

and f are as in Theorem 1. Writing the feasible 

conditions 2 and 3 using (1): 

(-b + d 1 - f S z S a + d 1 - f) and 

( - c + d0 + d 1 - f < z S d + d 0 + d 1 - f ) 

or 

(-a + d 1 < z s c + d 1) and ( -d < z S b) 

where 

u = max [-b + dl - f, -c + do + dl 

c = min (a + dl - f 1 d + do + dl -

or 

u' < z < v' 

where 

u' = max [-a + dll -d] 

v' = min (C + d; 1 b] 

Algorithm : 

Thus we found following alga to minimize T: 

1. Compute d 0 , d 1 and f as in Theorem 1. 

2. . Compute u, v, u' , v' as above. 

u < z s v 

- f] 

f] 

3. If there is an integer z in the range [u, v] or [u', v'] 

then pick this z and compute w, x, y using (1). If not, 

then find the integer z nearest to the range (u, v] and 

[u', v'] use this z to compute Wr x andy. 

4. If the selected z is in the range [u, v] then route on 

dim.O first oth~rwise on dim 1 first. 
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Example 

Consider the case of a = 20, b 4, c 16, d = 10. 

From theorem 1 we get 

d 0 = 11 , d 1 = -1 , f = 7 

Also u = -12, v = 12, u' = -10, v' 4. 

For step 3 we have [min {d0 /2 + d 1 - f, d 1/2}, max {d0/2 

+ d, - f, dd2}) = [-2.5, -0.5) 

The selected value of z = -1. 

From (1) we get w = 7, x = 4 andy= 0 

The value ofT is 8 and we first route on dim.o and then 

on dim.1. 

when p > 4 

Heuristics 

Load can be balanced such that I L'; - L'i I ~ 1 for every 

pair of process (i) by balancing across each of the d dim of 

the hypercube in some order. 

When balancing across the gth dim. in this order we 

balance load in pairs of subhypercubes of size 2~, 1 ~ q ~ d. 

Consider an 8 processor hypercube with in"i tial load 

distributions. 
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Dimensions considered in the order 2, 1, 0 when 

considering dim. 2 we ensure that total loa~ in each of 

subhypercube of dim.2 (size 4) differs at most by one. 

Algorithm 

for r := d-1 downs to 0 d0 

{balancing across dimensions r in pairs of subhypercube 

Perform an upward pens computing sum of loads in the 

subtree leaves; compute the load difference at each 

route; 

Perform a downward pass to compute load to be 

transferred; 

Transfer the required load; 

end; 

Time complexity 

Since upward and downward pass take O(r) time, the total 

time needed 

where m; = max. load to be transfered between a pair of 

processor. 

Optimization of I:m; 
I 

We use a heuristic to determine the processing order for 
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.. -,:.; 

the dimensions of the hypercube: 

The next dimension to balance across is selected by first 

having each processor i, compute r; and 8; such that 

8; = max { 

unselected dim. } 

r; is such that 8; = 

along dim. r; 

j is a neighbour of i along an 

where j is 8;' s neighbour 

Next max of the si's is computed if this is sw, then dim 

rw is selected. 

The time needed to select the next dim. is O(d) 

Example 

For the loads of previous example 

So = max { 110-201' 110-141' 110-151} = 10, ro = 0 

st = max { :20-10:' 120-121' :20-17:} = 10, rt = 0 

52 max { I 14-12 I ' I 14-10 I ' :14-8:} 6' r2 2 

53 = max { 112-141, I 12-20 I ' 112-81} -. 8, r3 1 

54 = max { : 15-17: ' : 15-8: ' :15-10:} 7, r4 1 

55 = max { 117-15:, : 17-8: ' 117-20:} 9, rs 1 

56 = max { :8-8:' 18-151, 18-141} 7' r6 1 

57 = max { :8-8:' :8-171, 18-12:} 9' r7 1 
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·; 

Since max {s;} = s 0 = 10, dim r 0 = 0 is selected as the 

first dim. to balance across. After balancing across this dim. 

we select from dimensions 1 and 2 the next dim. to balance 

across. The remaining dim. is balanced across in the last 

iteration. 

The total time spent determining the order of dimensions 

in o(d2
). 

This does not affect the complexity o (d2 + LID; of the 

load balancing algorithm. 

For the example given above and using this heuristic we 

get 

m1 = 2 , m2 = 4 , m3 3 

so s m; = 9 

In this heuristic we may require more computations in 

determining the load transmitted. However, our heuristic can 

obtaih better load balancing and load transfer time. 
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CHAPTER 6 

CONCLUSION 



CONCLUSION 

Throughout the work we have stressed on three points: 

efficiency, accuracy & good numerical stability. The 

conventional algorithms for matrix-inversion are available 

from a very long time. With the advent of technology, 

increasing the speeds of logic circuits, memories and 

inputjoutput equipment and computational capabilities the 

efficiency of these algorithms has been raised up to a good 

level. Now the development & research in the field of parallel 

and distributed completing made possible also to develop very 

accurate & numerical stable besides efficient parallel 

algorithms. We have focused on these points in finding the 

inverse of matrix because this problem can become part of the 

innerloop of a large calculation, and thus it is essential 

that it be don efficiently and accurately. This same standard 

' 
tool can became "buried" in relation to the total problem 

solution, and it is essential that this tool be reliable. It 

could be buried so deep that the programmer is not really 

aware that the tool is being used and an error in it would be 

very difficult to diagnose. 

Almost in every physical system modelling & solving, 

solving differential equations, solving electrical networks 

and in much more other problems which need not to be mentioned 

matrix inverse computations are used. But inverse of matrix 

has some physical interpretations: There are contain problems 

in statistics & engineering whose the object of computations 
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is to see the inverse matrix and not just to use it to find 

something else. In these problems the elements of A- 1 have 

meaning such as being " influence coefficients" that show how 

forcing terms affect the model. 

In our algorithm we have shown two cases of 

par~llelization. In one case we have used m processors and in 

another case. 2m2 processors. If we increase tl'le number· _of 

processors further more to m3 we would have got some better 

results but not upto the expectation of increasing processors 

by a factor of mj2. In this case our augmented matrix will be 

of the order of mx(m+l) instead of (mx2m) and we will break 

the problems into m parts each running simultaneously. Thus 

if we neglect the communication cost the speed up will be two 

compared to the previous case pf 2M2 processors. 

Similarly if we half the number of processor to m2 and 

negl~ct the communication cost the processing time will be 

increased by a factor of two. In this case we have augmented 

matrix of the order of (mx2m). We have 2m elements in each 

row. We have m rows and total number of elements equal of 2m2 • 

Thus we will have to do operations in two phases and we take 

almost twice time as compared to the case of 2m2 processors. 

From the table given in the chapter of complexity it is 

clear that factor of "log m" is multiplied when we take 

communication cost into account. This is due to single node 

broadcast/Accumulation and multinode broad cost/accumulation 
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which take log p and p/ log p time respectively for one 

transfer where p is the number of processors. 

We have seen that after a limit when we increase number 

of processors more and more we do not get sufficient speed

up as desired and some-times performance ie degraded due to 

addition of more processors. This is due to synchronizing and 

load distribution among processors. As·we increase the no of 

processors the synchronizations as well as communications 

cost increases and it overdominates computational cost. Also 

the processing costs for controlling the system and scheduling 

operations increases drastically after a limit and the basic 

aim of parallel computing is destroyed. 
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