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ABSTRACT 

In this work, a study of various neural network learning procedures has been 

done. In particular, the Recursive Least Squares (RLS) algorithm as applied to a 

two layer linear combiner network is studied in detail. As an application of neural 

networks in adaptive pattern recognition the RLS algorithm for linear combiner 

networks is made use of in developing an algorithm for handwritten character 

recognition. A prototype implementation of the algorithm developed is also given 

using PAS CAL and experimental results discussed. 



CONTENTS 

Chapter 1 INTRODUCTION 

Neural or connectionist networks 2 

Different models of neural networks 4 

Properties 6 

Learning in connectionist models 8 

Applications 9 

Chapter 2 CONNECTIONIST LEARNING PROCEDURES 11 

Linear associator 12 

Nonlinear associative nets 12 

Simple supervised learning procedures 13 

Perceptron learning algorithm 14 

Back propagation in multilayer networks 15 

Boltzmann machine 16 

Competitive learning 17 

Reinforcement learning procedures 17 

Speed of learning 18 

Chapter 3 THE RECURSIVE LEAST SQUARES ALGORITHM 20 

Adaptive combiner 20 

Analytical derivation of 

Least squares algorithm 21 

Recursive least squares 26 

Computational cost of the RLS algorithm 29 

Chapter 4 NEURAL NETWORKS AND PATTERN RECOGNITION 30 

Decision surface 

Similarity, Distance and compactness 

Neural networks and 

Adaptive pattern recognition 

Linear separability 

Non linear separability 

Layered neural nets 

Handwritten letter classification 

31 

32 

34 

34 

35 
36 

36 



Chapter 5 IMPLEMENTATION OF THE RLS ALGORITHM 

FOR HANDWRITTEN CHARACTER RECOGNITION 38 

The network 39 

Supervised learning 39 

Implementation of the algorithm 40 

Results 42 

CONCLUSIONS 43 

BIBLIOGRAPHY 44 



CHAPTER 1 

INTRODUCTION 



CHAPTER 1 

INTRODUCTION 

Conventional digital computers are extremely good at 

numerical computation and executing sequences of instructions, 

that has been precisely formulated for them. On the other hand, 

the human brain performs well at such tasks as vision, speech, 

information retrieval, and complex pattern recognition in the 

presence of noisy and distorted data, and common sense reasoning. 

Somehow, the structure of the human brain is better suited for 

such kind of tasks and not suited for tasks such as numerical 

computations. The human brain is a naturally occuring example of 

an intelligent machine. It follows that, one natural idea for 

Artificial Intelligence is to simulate the functioning of the 

human brain on a computer. 

In the 1950s work in AI started with two goals: design 

intelligent machines or programs and understand human 

intelligence. The possible inter-twining of these two goals was 

r3rticularly stressed by Von Neumann, who introduced the theory of 

automata to study the logical differences and the similarities 

between Natural and Artificial machines. McCulloch and Pitts, in. 

their attempts to simulate the nervous cells by artificial 

automata -the formal neurons - had shown in 1943 that a network of 

such formal neurons was capable of simulating a Turing Machine. 

Later on, Rosenblatt, Minsky and Pappert, in 'their work on 

perceptrons, tried to push forward the model of formal neurons so 

as to make them learn how to solve problems. However, research in 
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such kinds of networks came to a virtual halt in 1970s, when they 

were found to be very weak computationally. 

The popularity of such network models in AI has taken wide 

swings, ranging from extreme enthusiasm in the 1960s to utter 

anathema in the 70s, when they were found to be weak. But 

currently, there has been an explosion of interest in these 

approaches. Many reasons can be pointed out for this, includng the 

emergence of fast digital computers, interest in building 

massively parallel computers and most importantly, the discovery 

of powerful learning algorithms. Moreover, it has shown promises 

as a research tool in many disciplines, and engineers, 

mathematicians, worldwide are turning towards such models as a 

possible alternative to their conventional research techniques. 

Neural or connectionist networks 

Neural networks, als6 called Connectionist networks, are 

based on neurological models. A biological neuron basically 

consists of a cell body, dendrites axons, as shown in fig 1.1(a). 

The cell body, which is called the 'soma', performs complicated 

chemical processes, such as summation and firing with respect to a 

threshold level. The inputs for a cell body are transmitted 

through the dendrites, while the output signals are carried to 

other cells through axons. The electrical signal of an axon 

connects to a dendrite through a special contact, called a 

synapse. In general, the neuron performs a simple threshold 

function. When the potential inside the cell body is larger than 

the threshold value, the neuron fires. The normal firing rate is 

quite low, which is typically a few hundred occurences per second. 
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It is estimated that the human brain has approximately 10 11 

neurons and 1ol4 synapses. In the artificial neural systems, the 

neuron and the synapses are configured as the procesing elements 

and the connection strength respectively. Various features of the 

artificial neural systems are determined by the function of the 

neuron and the interconnection pattern. 

The artificial neural network can be characterized by the 

following properties: 

{1) network architecture, 

{2) retrieving process, 

{3) learning rule and 

(4) training data. 

The network architecture provides the most distinguished 

feature. The grouped neurons, which are arranged into a disjointed 

structure are called layer. Fig 1.2 shows several architectures 

which include two-layer/ multi layer and feedforward j feedback 

networks. The neuron transfer function and the threshold voltage 

characterize the retrieving process of an artificial neural 

network. Specific mathematical functions including sigmoid, step, 

Gaussian, Boltzmann functions are widely used to model the neuron 

transfer function. The nonlinear transfer function decides the 

information propagation properties at the neural retrieving 

process. The retrieving proces can operate in either synchronous 

or asynchronous mode. In the synchronous mode, all the neuron 

outputs are updated simultaneously. Conversely, the neuron 

updating process in the asynchronous mode is random and 

independent of the other neurons. Most artificial neural networks 

in software computation operate synchronously, while the 
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_biological neural networks operate in the fully asynchronous mode. 

The training procedures are divided into two categories: 

supervised and unsupervised learning. In supervised learning, the 

synapse weightings are tuned by the difference betwen th~ 

retrieving patterns and the expected patterns. In unsupervised 

learning, the network classifies the inputs without references. 

The neural networks using unsupervised learning can detect the 

pattern regularities. The widely used learning rules include Hebb 

rule, Delta rule, competitive learning rule and their derivatives, 

which will be described in Chapter 2. In general, the input signal 

for an artificial neural network can be discrete or continuous 

values. 

Different models of neural networks 

After McCulloch and Pitts introduced the abstract neuron 

model for performing a simple task, in 1943, the neural network 

study began. F. Rosenblatt developed the perceptron, which sparked 

a great amount of research interest in neurocomputing. The 

Perceptron is a two layer network for pattern classification. 

Initially, the perceptron demonstrated an optical pattern 

recognition when inputs of the system were connected to a grid of 

Photocells. The input signals are then transferred to the neural 

layer with randomly weighted connections. The neural network 

performed successfully with application of Hebb learning rule. The 

major limitation, pointed out by Minsky and Pappert, is that the 

perceptron cannot represent an XOR function, so that the percptron 

cannot classify complex categories. Multi layer Perceptrons were 

developed by Rosenblatt to overcome the limitation of the initial 
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Perceptron. 

In the late 50s, the first neural element Adaptive Linear 

Element (ADALINE) was developed by B. Widrow. The neurons were 

realised with vacuum tube amplifiers, while synapse weights were 

manually adjusted with variable resistors.The ADALINE was improved 

to become the MADALINE, which consists of ADALINEs and a two layer 

variant. These were adapted to a variety of applications, such as 

speech recognition, character recognition, weather prediction, 

adaptive control and echo cancellation in communication 

Another major category in neural networks is associative 

memory. J. Anderson proposed the 'Brain-state-in-a-box' model with 

his linear associator and Hebb learning rule. The network consists 

of a layer with feedback, and one postprocessing output layer. Due 

to the positive feedback architecture and the learning rule, the 

output is the best-matched pattern from the stored memory for a 

given input. 

In 1982, the presentation of J. Hopfield's paper to the 

National Academy of Science ignited the neural network study once 

again. The Hopfield network is basically a two-layer network with 

feedback. The condition for the synapse weighting is very 

restricted, while that for the neuron transfer function is very 

relaxed. Using the energy of Lyapunov's function, Hop.field proved 

that the network always moved towards a low energy level. Due to 

the simple architecture and claerly proved dynamics of the 

network, many hardware implementations and real world applications 

have been accomplished. The network has been applied to 

associative memories and many Engineering optimization problems. 
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The multi layer neural networks are vitalized by the back 

propagation learning rule. Before the learning rule was developed, 

the usefulness of the multilayer neural network had been well 

known but the decision of the synapse weightings was the main 

problem. The multilayer neural network can be used for various 

applications including data encoding/decoding, data compression, 

signal processing, noise filtering, pattern classification and 

forecasting. 

A Boltzmann machine has the network architecture as the 

Hopfield network, but differs in the stochastic updates and 

learning properties. The stochastic updates in retrieving and 

learning processes is based on the simulated annealing technique 

using the Boltzmann probability function. By decreasing the 

temperature of the probability function from a high value, the 

network always finds the global minimum in the energy surface. 

The Bidirectional Associative Memory (BAM) designed for 

optical computing is a generalized Hopfield model to 

heteroassociative network. BAM has two fully connected central 

layers and input output buffer layers. The synapses and the 

neurons in .the central two layers are bidirectional. For a given 

input, the BAM layers oscillate until a stable state is reached. 

The final stable output is the closest association stored in BAM. 

Properties 

A neural network model can be described according to their 

network, cell and dynamic properties as follows. 

Network properties : A neural network model consists of network 

of autonomous processing elements called neurons, that are joined 
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by connection paths as shown. in fig. 1.2. Each such connection has 

a numerical wight wi,j that roughly corre~ponds to the influence 

of cell ui on cell uj. Positive weight means reinforcement while a 

negative weight means an inhibition. These weights determine the 

behaviour of the network. 

The neurons are generally arranged in several layers, with an 

input layer and an output layer and intermediate or hidden layers 

between them. The input layers have no entering weights. the 

response of the output cells are taken as the output of the 

network. The hidden layers add to the power of the network to 

compute difficult functions, known as unseparable functions. 

Cell properties : Each cell, or neuron, compute a single 

numerical cell ouput or activaton. Typically, every cell uses the 

same algorithm to compute its activation. The activation of a cell 

is calculated from the activation of the cells directly connected 

to it and the weights of these connections. Every cell (except for 

the input cells) computes its new activation ui as a function of 

the weighted sum of the inputs to the cell from directly connected 

cell as follows: 

n 
si = L: w· . u . 

. 0 1,] J 
J= 

( 1. 1) 

( 1. 2) 

Here w · · is the weight associated to the connection from cell j 1,] 

to cell i, if j is not connected to i then wi,j=O. uj is the 

activation of cell j. Here, f is a nonlinear function, which may 

be a step function, a sigmoidal function, the Gaussian function or 

the Boltzmann function. By convention there is a Oth cell, whose 
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input is always +1, which is cohnected to every other cell, except 

the input cells. The corresponding weights wi 0 are called the , 
biases. The biases are merely a constant term added to the sum of 

the activations in equation (1.1). They are a means to adjust the 

threshold values of the neurons. 

Dynamic properties : A connectionist model must specify when a 

cell computes a new activation value and when the change to that 

cell's output actually takes place. In some models cells are 

visited in a fixed order, each cell reevaluating and changing its 

activation before the next one is visited. In other models, all 

cells compute their new activation simultaneously and then makes 

changes to all outputs simultaneously. Still other models pick a 

cell at random, compute is new activation, and then change the 

output immediately before any other cell computes its new 

activation. 

Learning in connectionist models 

Learning in a connectionist network is a process of adapting 

the connection weightings in response to the external stimulii. 

The learning rules were developed with the network architectures. 

The first learning rule, called Hebb rule, which shows that the 

network can learn for a certain function, was presented in 1957. 

This rule requires that if an input and an output are activated at 

the same time, the weighting between the input and the output are 

increased. In competitive learning, each neuron competes with 

others at a given input and the winner adapts to get more 

strength. This kind of learning, called unsupervised learning, 

does not need reference data. On the other hand, desired outputs 
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can be given in the supervised learning approaches. A famous 

application of the supervised learning is the back propagation for 

a multilayer network. Many derivatives of this Delta rule are used 

for efficient learning results. These rules are applied to adjust 

the connection weights, using the error between the desired output 

and the actual network output. The goal of these learning rules is 

to minimize the output error, or some function of it (usually, the 

mean square error) . 
. 

Another type of learning rule that falls between 

unsupervised learning and supervised learning is reinforcement 

learning. In this kind of learning, an external observer gives a 

response as to whether the network response is good or not. The 

learning rule of Boltzmann nachine is based on the stochastic 

process, which constructs distributed representations of the 

reference patterns with the simulated annealing technique. 

Applications 

The secret of immense computational power in neural networks 

is discovered as the parallel processing done by neurons and 

connections. While each neuron performs simple analog processing 

at low speed, the rich connectivity of the neurons through 

synapses provides powerful computational capabilities for the 

large quantity of data. The data are processed asynchronously in 

the time domain and spread globally into all network elements. In 

addition to the parallel processing nature, the network has a self 

learning capability, which is done by changing the weights of the 

synapses between the neurons. The self learning capability makes 

such networks useful in a situation when the training data are 

sufficient and fault tolerance of a system is necessary. The 
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immense computational power and the self learning capability give 

neural networks excellent prospects in image processing, vision 

understanding, inexact knowledge processing, forecasting, linear/ 

nonlinear programming, scientific optimization and many others. 

Fig 1.4 shows a block diagram of an advariced neural computing 

system. Real world signals are converted into discrete form 

(mainly digital) at the interface block. The neural signal 

processing system handles the converted signals, and the outputs 

can be transfe~red to digital computers for further manipulations. 

The interface block might function as a data converter and conduct 

some signal processing. The signals inside a neural signal 

processor are distributed throughout the whole network. Thus, a 

small amount of damage in the system does not produce noticeable 

degradation of the overall system performance. Through self 

learning procedures, the interconnection weights can be modified, 

so that the original system performance is retained. 
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CHAPTER 2 

CONNECTIONIST LEARNING PROCEDURES 

Learning is the most important part of the neural or the 

connectionist models. Learning is the process of modifying the 

values of the weights of the connections and the threshold. Since 

the weights associated with the connection path determine the 

behaviour of the network, learning procedures try to adjust the 

weights in such a way that, the network output approaches the 

desired values. The learning procedures cannot generate or alter 

the internal representa~ions, they are limited to forming simple 

associations between the representations, that are specified 

externally. Recent researches have led to a variety of powerful 

learning procedures, that can discover good internal 

representations. 

In a network, that uses local representations, it may be 

feasible to set all the weights by hand because, each weight 

typically corresponds to a meaningful relationship between 

entities in the domain. If however, the network uses distributed 

representations, it may be very hard to program it by hand and so 

a learning procedure may become essential. Some learning 

procedure, such as the perceptron learning procedure, are only 

applicable if the desired states of all the units in the network 

are specified. Other, more recent learning procedures operate in 

networks that contain hidden units, whose desired states are not 

specified by the input or the desired output of the network. 

Connectionist learning procedures can be divided into three 
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broad classes : supervised procedures, which ~equi~e a teacher to 

specify the desired output vector, reinforcement procedures, which 

only requires a single scalar evaluation of the output, and 

unsupervised procedures, which construct internal models that 

capture regularities in their input vectors without receiving any 

additional information (5]. 

Linear associator 

In a linear associator, the state of an output unit is a 

linear function of the total input that it receives from the input 

units. A simple Hebbian procedure for storing a new association is 

to increment each weight wij' between the i th input unit and the 

j th output unit by the product of the states of the units. 

A wij = uiuj (2.1) 

where ui and uj are the activations of an input and an output 

unit. After a set of associations have been stored, the weights 

encodes the cross correlation matrix between the input and the 

output vectors. If the input vectors are orthogonal and have 

length 1, the associative memory will exibit perfect recall. If 

the input vectors are not orthogonal, the simple Hebbian procedure 

is not optimal (5]. 

Nonlinear associative nets 

Non-linear associators perform better than the linear 

associators in the presence of non orthogonal input vectors. Here 

the weights all start at 0 and associations are stored by setting 

a weight to 1 if ever its input and output units are both on in 

any association. To recall the association, each input unit must 

have its threshold dynamically set to be just less than m , the 

number of active input units. 
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Hopfield nets store vectors whose components are all +1 or 

-1, using the simple rule of (2.1). To retrieve a stored vector 

from a partial description, the network is started at the state 

of partial description and updates the state of the units 

repeatedly, one at a time. The iterative retrieval procedure can 

be viewed as a form of gradient descent in an Energy function 

(2.2) 

where si and sj are the states of the two units. Each time an 

update is done to a unit, it adopts a state that minimizes this 

energy function. The increase in the change of the global energy 

caused by changing the unit from state +1 to state -1 is : 

AEj = - 2 ej + 2 ~siwij (2.3) 

The energy decreases in each step of iteration until the 

network settles into a local minimum of the global energy 

function[5). 

Simple supervised learning procedures 

Let us consider a network that has only an input and an output 

layer, with continuous neuron transfer function. A measure of how 

poorly the network is performing with its current set of input 

vector is 

1 
E = (2.4) 

2 
where Yjc is the.actual state of output for the c th input output 

pair, and djc is the desired state. 

The error measure E can be minimized starting with any set of 

weights and repeatedly changing 
oE 

amount proportiional to 
ow·· 1) 

1.3 

each weight by an 



oE 
... W•. = -€ 

1) 
OW·. 

1) 

( 2 • 5) 

oE oE dyi OX· 
J where, = L 

OW·. 
1) oyi dx· 

J 
OW·. 

1) 

dyi 
= L y· - d· Yi J J dx· 

noting that =LWjiYi 
J 

X· 
J 

( 2. 6) 

If the output units are linear, the term is a constant. 
dx· 

The batch version of this least square) procedure sweeps 
oE 

through all sets of inputs accumulating ---- before changing the 
OW·. 

weights, and so it is guaranteed to move fJ the direction of the 

steepest descent. The online version, which requires less memory, 

updates the weights after each input output cases. This may 

sometimes increase total error E, but by making the weight changes 

sufficiently small, the total change in the weights after a 

complete sweep through all the cases can be made to approximate 

the steepest descent very closely [5), [6). 

Perceptron learning algorithm 

The perceptron learning technique differ from the least mean 

square error technique in that, here the derivative in (2.5) is 

ignored, and only its sign is taken into consideration. So, the 

weight changes are 

[ 

0, if output unit behaves correctly, 
• wji = +E, if output unit should be on 

-E, if output unit should be off 
Because it ignores the magnitude of the 

( 2. 6) 

error, this 

procedure changes the weights by at least E, even when the error 

is very small. 

The major deficiency of both the least squares and the 
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perceptron learning procedures is that complex mappping between 

input and output vectors cannot be catched by any combinations of 

weights in such simple two layer networks [5), [6). Another 

deficiency could be that, sometimes the gradient descent may be 

very slow, because the gradient may be approximately perpendicular 

to the direction towards the minimum. Another problem is that if 

the constant € in (2.5) large, there may be divergent 

oscillations, and on the other hand, if it is too small, then the 

progress could be very slow. A standard method of speeding up in 

such case3 is the Recursive Least Squares technique, which is 

described in detail in chapter 3. 

Backpropagation in multi-layer networks 

The back propagation learning procedure is a generalization 

of the least squares procedure that works for networks with layers 

of hidden units between the input and the output units. These 

multi layer networks can compute much more complicated functions 

than networks not having hidden layers. But here the learning is 

much slower because of the presence of the hidden units. 

The central idea of backpropagation is that the derivative of 

(2.5) for the hidden units can be computed efficiently by starting 

with the output layer and working backwards through the layers. 

For each input ouput set the activity levels of each of the units 

are computed in the forward pass. Then in the backward pass 

starting at the output layer, the derivative is computed for all 

the hidden units. For a hidden unit j in the J th layer, the only 

way it can affect the output error is via its effects on unit k in 

the Kth l~:~yer. So we have, 
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oE 

oy· 
J 

so, 

= :E 
k 

oE 

oyk 

oE 

oy· 
J 

= :E Wkj ( 2. 7) 
k oyk dxk 

if the derivative is already known for all units in 

layer K, it is easy to compute the same quantity for all the units 

in layer J. 

In multi layer networks, the error surface may have many 

local minima, so it is possible that steepest descent in the 

weight space will get stuck in a poor local minimum. But if there 

are sufficiently large number of units and connections then there 

are typically very large numbers of qualitatively different 

perfect soluions, and hence the possibility of getting stuck in a 

poor minimum reduces. In practice, the most serious drawback is 

the very slow speed of convergence [5]. 

Boltzmann machine 

A Boltzmann machine is a generalization of a Hopfield net, 

in which, the units update their states according to a stochastic 

decision rule. The units have states 0 or 1, and the probability 

that unit j adopts the state 1 is given by 

1 
p· = (2.8} 

J 1 + e(--AE/T) 
where .AE = xj is the total input received by the J th unit and T 

is the -temperature'. It can be shown that if this rule is applied 

repeatedly, to the units the network will reach a state of 

'thermal equilibrium'. The fastest way to approach low temperature 

equilibrium is generally, to start at a high temperature and 
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gradually reduce t,he temperature. This method is called 'simulated 

annealing'. It allows the Boltzmann machine to find low energy 

states with high probability [7]. 

Competitive learning 

Competitive learning is an unsupervised procedure that 

divides a set of input vectors into a number of disjoint clusters 

in such a way tr.at, the inpu~ vectors within each cluster are all · 

similar to one another. It is called competitive learning because, 

there is a set of hidden units, which compete with one another to 

become active. When an input vector is presented to the network, 

the hidden units which receives the greatest total input wins the 

competition and turns on with an acivity leve of 1. All the other 

hidden units are turned off. The winning unit then adds a small 

fraction of the current input vector to its weight vector. So, in 

future, it will receive even more total input from this input 

vector. To prevent the same hidden unit from being the most active 

in all cases, it is necessary to impose a constraint on each 

weight vector that keeps the sum of the weights (or their squares) 

constant. So, when a hidden unit becomes more sensitive to one 

input vector, it becomes less sensitive to other input vectors. 

Reinforcement learning procedures 

A central idea in many reinforcement learning procedure is 

that, we can assign credit to a local decision by measuring how it 

correlates with the global reinforcement signal. Various different 

values are tried for each local vriable( such as a state or a 

weight), and these variations are correlated with variations in 

the global reinforcement signal. Normally, the local variations 
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are the result of independent sochastic processes. So, if enough 

samples are taken, each local variable can average awqy the noise 

caused by the variations in the other variables to reveal its own 

effect on the global reinforcement signal. The network can then 

perform gradient ascent in the expected reinforcements by altering 

the probability distribution of the value of each variable in the 

direction that increases the expected reinforcement. If the 

probability distributions are altered after each trial, the 

network performs a stochastic version of gradient ascent [5]. 

Speed of learning 

Most existing connectionist learning procedures are slow, 

particularly procedures that construct complicated internal 

representations. One way to speed them up is to use optimization 

methods such as the Recursive Least Squares that converge faster. 

If the second derivatives can be computed or estimated, they can 

be used to pick a direction for the weight change vector, that 

yields faster convergence than the direction of the steepest 

descent. 

A second method of speeding up learning is to use dedicated 

hardware for each connection and to map the inter loop operations 

into analog, instead of digital hardware. The speed of one 

particular learnin~ procedure can be increased by a factor of 

about a million if we combine these techniques. This significantly 

increases the ability to explore the behaviour of relatively small 

systems. By using the hardware in a different way, might yield a 

large gain. By dedicating a processor to each of N connections, a 



gain of at most a factor of N in time at a cost of at least a 

factor of N in space can be achieved. For a procedure of 

complexity 0{ NlogN ), a speedup of N makes a very big difference. 

For a procedure with time complexity of, say, 0{ N3 ) alternative 

technologies and parallelism will help significantly for small 

systems, but not for large systems (5]. 
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CHAPTER 3 • 

THE RECURSIVE LEAST SQUARES ALGORITHM 

In recent years, considerable attention has been focussed on 

the development of learning algorithms for use in the Machine 

Learning Systems (MLS). In this chapter, the Recursive Least 

Squares algorithm as applied to an MLS consisting of a two layer 

connectionist network has been described. 

Fig 3.1 illustrates the general block representation of an 

MLS. The model is presented with some training examples with known 

desired responses and in the training mode, the learning algorithm 

is used to estimate the model parameters to meet some predefined 

cost criterion. The learning algorithms, in other words, is used 

to facilitate robust representation of the training examples in a 

form, which is usable in the user mode [9). 

In the field of communication and signal processing, 

adaptive algorithms have been used for many years in different 

areas, such as, channel equalization and modelling, echo 

cancellation, medical signal processing, and many others. The 

Recursive Least Squares (RLS) algorithm has been extensively used 

in these areas [2), [3), [8), [9). In what follows, the RLS algorithm 

as applied to an Adaptive Linear Combiner network has been 

described in detail. 

Adaptive combine~ 

Fig. 3.2 illustrates a simple multi input/single output 

combiner ~tructure. The input vector X= [x 1 ,x2 , .... ,xnJT, where 

the superscript T denotes the matrix transpose, is a set of 
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features, extracted from the pattern and Y is the output of the 

combiner. Given some Knowledge. about some problem in the form of 

input variables and the outputs, it is desirable to estimate the 

combiner weight vector W = [w 1 ,w2 , .... ,wn]T in such a way that, 

when the system is presented with a new set of inputs, it can 

predict the correct outcome. In other words, the knowledge 

relating the features to the outcomes is represented as the weight 

vector in the combiner. 

The adaptive combiner structure can be thought of as a 

multiple input/multiple output single layer connectionist network, 

whose weights can be estimated using the RLS algorithm. In the 

following section, the RLS algorithm is described in detail. 

Analytical derivation of the least squares algorithm 

The following notations are used in the derivation: 

n 

l 

m 

X(k) 

Y(k) 

the 

the 

the 

the 

the 

number of elements in the input vector 

number of elements in the output vector 

number of trainig data sets, 

k th trainig input vector, 

combiner output vector for X (k) , 

D(k) the qesired output corresponding to X(k), 

X, 

Y, 

E(k) the output error vector corresponding to X(k), 

W n X l matrix of combiner's weights, 

R n X n auto correlation matrix of X, 

P n X l cross correlation matrix of X with D. 

Since, Y(k) is the response of the combiner to X(k), 

Y(k) = wT X(k) ( 3. 1) 

Also, E(k) = D(k) - Y(k) 
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The RLS algorithm aims at minimizing the sum of the squares 

of these errors over the m training sets. That is, we have to 

minimize the quantity Ji, where, 

m 
Ji = L ei(k)2 

k=1 
1::5 i :51 ( 3. 3) 

where ei(k) is the i th element of the vector E(k). 

The quantities Ji , 1 ::5 i :51 are called performance 

function. Obviously, it is a funcion of D(k), and also of X(k) and 

W, since they determine Y(k). For a given sequence of vectors 

{X(k)} and {Y(k)} , Ji is a function of W only. and hence, Ji are 

a measure of how well W performs to produce an output Y(k) which 

matches the desired response D(k). The choice of W that minimizes 

J is that value, which has the best performance. This value of W 

is called the optimal value and denoted W0 . The best J can attain 

is zero, which is attained if W can be chosen so that 

WTX(k) = Y(k) = D(k) , 1::5 k :::;m ( 3. 4) 

If this happens, then each term of the sum (3.3) is zero, 

and so is the sum itself. There is no worst value of J, since J 

can be made arbitrarily postitve with a proper choice of W. Also, 

J cannot be made negative by any choice of W. 

Expanding (3.3) we get 

m 
Ji L [ di(k) - Yi(k) ]2 

k=1 
m 

= L [ di(k) 2 - 2di(k)Yi(k) + Yi(k) 2 ] 
k=1 

( 3. 5) 

Using the fact that, Yi(k) = wiTX(k) = X(k)Twi I where wi is the 

i th column of matrix W, we can write, 

J· 
~ 
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m 
2LWiTX(k)di(k) 
k=1 

m 
+ LWiTX(k)X(k)TWi 

k=1 



Let us denote 
m 

Qi = L:di(k)2 
k=1 

Also, we see that the auto correlation matrix of X is 
m 

R = L: X(k)X(k)T 
k=1 

and the cross correlation matrix of X with D is 
m 

P = L: X(k)D(k)T 
k=1 

Now, Ji can be written as 

( 3. 6) 

( 3. 7) 

( 3. 8) 

Ji = Qi- 2WiTpi +.WiTRWi , 1 ~ k ~ 1 (3.9) 
Where, Pi repersents the i th column of the matrix P. 

The equations (3.9) can be minimized using results from 

vector calculus, which states that, wi 0 is the value of Wi, which 

minimizes Ji if and only if two conditions are satisfied: 

.., J·l 1 W·=W·o 
. 1 .1 

and the Hess1an matr1x 

= 0 (3.10) 

Hwi is positive definite, where TJi is 

the gradient of Ji with respect to the elements of Wi, and Hwi is 

the Hessian matrix of Ji with respect to the elements of Wi. 

Condition (3.10) means that the first derivative of J with 

respect to each weight of the vector Wi must be zero, when 

evaluated at the optimal weight vector Wi 0 . The Hessian matrix of 

Ji is the matrix of the second derivatives. The (p,q) th element 

of this matrix is : 

(3.11) 
OW· ow· 

At the optimal po:f"Nt, l:~e h·essian matrix must be 

positive definite, that is, for any nonzero matrix V, we must 

have, 

weights. 

vT Hw. v > o 
.&. 

(3.12) 

We can now employ the conditions to find the optimal 

Evaluating the gradient of J i' we get, 
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T J· = T Q· - 2T(W·TP·) + (W·TRW·) l l l l l 1 
(3.13} 

Since Qi is a constant, its gradient is zero. The gradient 

of wiTpi can be found by evaluating each partial derivative: 

o o n 
--(wiTPi) = --( .L· wjiPji) =Pji 
ow.. ow .. ]=1 

where, ~ji is the (j,f) th element of the matrix P. 

Thus, we get, T(WiTPi) =Pi (3.14} 

Similarly, it can be shown that, 

(3.15) 

Combining (3.14} ~nd (3.~5) and substituting in (3.13}, and 

noting that, TQi = O,we get, 

(3.16) 

For optimallity, this gradient must be zero, giving 

-2P·+2RW· 0 = 0 l l 

or, RW· 0 = P· l l (3.17} 

where, Wi 0 means the i th column of the optimal weight 

matrix W0 . The set of n linear simultaneous equations described by 

the matrix equation are called the normal equations. Their 

satisfaction is a requirement for W0 to be considered the optimal 

solution. 

The second condition for optimality requires that, the 

hessian matrix be a positive definite matrix. The matrix can be 

evaluated by evaluating each term: 
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The first term of the expression is obviously, zero. The 

first derivative of the second term was found to be Pji in (3.14), 

and it is constant. Hence, the second derivative of the second 

term also vanishes. Differentiation of the third term yields: 

= 

n n 
( L L wri rrs wsi) 

owpiowqi r=l s=1 

o n 
- { L 
ow · r=1 pl 

0 
(. 

ow pi 

n o 
L (wrirrswsi) 

s=1 owqi 
} 

or, hpq = 2rpq (3.19) 

Thus, we see that, each element of the Hessian is twice the 

corresponding element of the auto correlation matrix R. 

That is, the Hessian matrix Hw = 2R (3.20) 

Thus, the conditions for optimality become : 

and R is positive definite. (3.21) 

Thus, if the matrix R can be inverted, then the normal 

equations can be used to find W0 , that is, if R- 1 exists, then , 

(3.22) 

From linear algebra, it is known that R- 1 exists if R is 

positive definite. Also, if R is positive definite, the condition 

(3.21) is satisfied, meaning that, the solution W0 is unique and 

can be used to evaluate w0 according to (3.22). From this 

analysis, it is seen that, an optimal least squares weight matrix 

w0 can be found by using the following steps: 

m 
(1) use xi(k) to form X(k) and hence R L X(k)X(k)T 

k=1 
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m 
(2) find P L X(k)D{k)T 

k=l 

{3) if R is positive definite, then find w0 = R-lp . 

Recursive least squares 

The motivation for developing 'recursive-in-time' 

algorithms can be seen as follows: if some new training examples 

are added to the training set, if the above formulas are used, 

then it will require us to compute the new R and P and evaluate 

the inverse of R once again. Inversion of a matrix may be a very 

time wasting process. Henc~, we desire to find some procedure by 

which, the k-th step optimal weight Wk 0 can be updated to produce 

Wk+l0 , the new optimal weight matrix. Such a procedure will build 

up the optimal weight matrix step by step until the final training 

set is reached, conserving optimallity at each step. The Recursive 

Least Squares algorithm solves this problem. 

Update f o rmu 1 as : 

The simplest approach to Wk0 is the following procedure : 

( 1) update Rk using Rk+l Rk + X(k)X(k)T (3.23) 

( 2) update pk using pk+l = pk + X(k)D(k)T (3.24) 

( 3 ) compute Rk+l 
-1 

(3.25) 

The auto correlation matrix and the cross correlation 

matrix are updated and then used to compute Wk+l· If used 

directly, the method will be wasteful, because 

approximately,n 3+2n 2+n multiplications are required at each step, 

because of the matrix inversion involved. However, the special 
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form of the update formula (3.23) can be used to great advantage. 

This can be done by using the well known matrix inversion lemma : 

(3.26} 

Substituti~g A = Rk, B = X(k) , C = 1, and D = X(k)T in 

relation (3.26} and applying (3.23) yields·: 

= { Rk + X(k}X(k}T}- 1 

Rk-1X(k)X(k)TRk- 1 

1 + X(k)TRk- 1X(k) 
(3.27) 

From (3.27) it is clear that, given the new input vector, 

Rk+ 1 - 1 can be computed directly. There is no need to calculate 

Rk+ 1 , nor its inversion is necessary. The k+1 th optimal weight 

matrix is given by: 

Rk+1- 1 pk+1 

= { Rk-1 -
Rk- 1X(k)X(k)TRk- 1 

} { Pk + X(k)D(k)T } 
1 + X(k)TRk- 1X(k) 

Rk-1X(k)X(k}TRk-1pk 
Rk-1pk - + Rk-1X(k)D(k)T 

1 + X(k)TRk- 1X(k) 

(3.28) 

To simplify the 

Rk- 1X(k)X(k)TRk- 1PkX(k}D(k)T 

1 + X(k)TRk- 1X(k) 
expression, let us make the following 

substitutions 

The k th optimal vector, Wk0 Rk- 1Pk 

zk = Rk- 1x(k) 

Y(k) Wk0 TX(k) 

We get, Wk+ 1° 
ZkY(k)T 

= Wko - + ZkD(k)T 
1+X(k)TZ(k) 
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ZkX(k)TzkD(k)T 

1+X(k)TZ(k) 

(3.29) 

(3.30} 



substituting q = X(k}Tzk , we get, 

or, wk+1 
T = 

= 

= 

ZkY(k}T 
+ ZkD(k)T 

1 + q 

D(k)T ZkY(k}T zk 
wko - + 

1 + q 1 + q 

zk [ D(k}T - Y(k)T 
w 0 + k 

1 + q 

w 0 + 
ZkE(k}T 

k 
1 + q 

1 + q 

(3. 30} 

where E(k} is the error vector for the k th input X (k) . 

The update formula for becomes: 

(3.31) 
1 + q 

This form of RLS has an infinite memory, that is, they can 

remember all the training data which have been used to train the 

network. In other words, the final weights are functions of all 

the sample inputs. This form of RLS is most useful in the presence 

of stationary input. But if the input data is of non stationary 

character, that is if they change their character with time, then 

it is useful to introduce a forgetting factor, thereby diminishing 

the contribution of the older data. This kind of exponential 

weighting emphasizes the most recently received data. With 

exponential weighting, the update formula becomes : 

and, -1 
Rk+1 = 

J1. + q 

1 

J1. J1. + q 
where J1. is the forgetting factor, and 
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(3.32) 

} (3.32) 

0 < J1. < 1. But 



-
usually, ~ is kept within the range of 0.9 < ~ < 1. If ~ = 1 then, 

the update formula becomes same as (3.30) and (3.31) 

Computational cost of the RLS algorithm : 

The Recursive version of the Least squares algorithm is 

computationally less costly then the brute-force evaluation 

version of the algorithm. The recursive version of the algorithm 

assumes that the inverse of R and the optimal weight W0 is already 

available and then it updates these two matrices, when it recieves 

new training inputs. On the other hand, the brute-force version, 

whenever it receives new training inputs, contructs the new R and 

P matrices and inverts R and thereby evaluates new optimal weights

W0. Since matrix inversion i? an O(N3 ) process, it may prove to be 

extremely wasteful for large size matrices. The recursive version 

of ·the algorithm is of O(N2 ) complexity. 
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CHAPTER 4 

NEURAL NETWORKS AND PATTERN RECOGNITION 

Pattern recognition problems require mainly two processes 

analysis or feature extraction and classification. The anlyzer 

accepts an input called pattern, which is a very complex physical 

event, such as optical signals, speech signals or electrical 

signals etc. The analyzer extracts the main features of the 

pattern. Its output is the pattern vector. It is a perfectly 

ordinary vector with no complications. The essential features of 

such a pattern vector are : 

(a) it has a fixed number of elements called descriptors, 

(b) values of these descriptors in a vector are always known, 

and are always numeric and 

(c) The order of the descriptors within a pattern vector is 

always fixed. 

The output of the classifier is a series of digital signals, which 

are mutually exclusive and exhaustive [1). 

Machine learning is an important part of pattern recognition. 

Before the pattern recognition system can operate, the classifier 

must be taught to behave correctly. The training of the pattern 

ca·lssifier is carried out by Machine Learning Techniques. During 

the design phase of the classifier, a teacher examines the same 

pattern as the analyzer and produces a response ( equivalent to 

the output of the classifier). If the pattern recognition system 

were perfect, it would produce the same response as the teacher, 

for all the input paterns. 
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Decision surface 

A pattern classifier is a device for partitioning of the 

space defined by the pattern vector X. That is, it constructs a 

decision surface in the X-space, which can be placed in such a way 

that, it separates the calsses defined by the teacher. It should 

divide the X-space in some regions, each region containing feature 

vectors belonging to one and only one class. Supposing this is 

possible; when this decision surface is placed at an optimal 

position, both the classifier and the teacher would agree. In this 

case, we may regard, the teacher as making decisions by use of a 

decision surface in the X-space. But in the situation, when the 

classes are not separable in the X-space, we cannot draw a 

decision surface for the teacher. However, we can still draw a 

decision surface for the classifier. 

If the pattern vectors in the X-space can be separated by 

using a hyperplane, then the sets are said to be linearly 

seperable. But not all pairs of sets can be separated using such 

simple surfaces. For example, quadratic surfaces would be required 

in some situations. In some situations, it is not possible to 

divide the classes by any finite curve, although any finite 

samples from these classes can always be separated by a curve of 

sufficient complexity. Fig 4.1, 4.2 and 4.3 shows the casses of 

linear decision surface, quadratic decision surface and another 

quadratic (circular) decision surfaces respecively, in the two 

dimensional case. Fig 4.4 demonstrates a situation, where it is 

possible to separate the samples using a complex surface: it is 

apparent that a simpler (linear) classifier would be more 

reasonable [1]. 
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similarity, distance and compactness 

Two patterns produce identical X vectors, if the patterns are 

identical. If two patterns are similar, then we shall usually find 

that, their corresponding X vectors are close together. The 

distance between two points in a high dimensional space can be 

defined in many variety of ways. The usual definition of distance 

in two and three dimensional spaces can be extended to higher 

dimensional spaces. If U=(u1 ,u2 , .... ,un) and V=(v1 ,v2 , .... yn) are 

two points in the n dimensional space, the Euclidean Distance 

between them is defined as 

11 
I I u, v 1 1 = "c 2: cu · -v · ) 2 J c 4. 1) . 1 1 

1=1 
Let U and V be two n dimensional vectors. Any quantity D(U,V) 

qualifies being called a distance function if it satisfies the 

three conditions 

D(U,V) = o ,if and only if u V 

D(U,V) > 0 if U f V ( 4. 2) 

D(U,W) + D(W,V) ~ D(U,V) 

On the basis of the above properties, the following are 

distances: 

D(U,V) 

D(U,V) 

n 
= { :E (u·-v·)r }1/r 

. 1 1 
1=1 

n 
= :E I ui-vil 

i=1 

( 4 • 3) 

( 4. 4) 

D ( U, V) = Max { I u · -v · I } ( 4. 5) . 1 l 
1=1. .n 

From the above definitions it is seen that the definition of 

a distance is quite arbitrary. Similarly it is also an ill defined 

quantity. We can assume that any two patterns within the same 

class are similar and they are dissimilar if they belong to 
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different classes. Then we are likely to find that the distances 

between the vectors corresponding to patterns from the same class 

are sma 11. That is, they are 1 ikely to be small compared ·to the 

distances between patterns from different classes [1]. 

Another important concept is that of clusters. A cluster 

corresponds to a peak in probability density function. A class may 

contain several well separated clusters. A good example of this is 

that of ·type· written letters of different fonts. While it is 

unreasonable to expect all the 'A's to be mapped into the same 

small region of the X-space by the analyzer, we can expect 

clusters of points corresponding to each font. In such cases, the 

inter cluster distances are large compared to the intra cluster 

distances. The Mahalanobis Distance ri between the point U to the 

i-th cluster is given by: 

ri 2 = {U-M)T Ci-1 (U-M) ( 4. 6) 

where M is the centroid of the i-th cluster, the superscript T 

denotes matrix transpose operation, and ci ihe covarience matrix 

of the i-th cluster [8). 

m· = 1 

1 

N 

1 

N 

2: X ( 4. 7) 

( 4. 8) 

Here N denotes the number of vectors in the i-th clusers. The 

form of the covarrience matrix corresponds to an elipsoidal 

cluster, where the correlation between the features is expressed 

by the non-zero terms in the non-diagonal terms in the matrix. 

33 



Neural networks and adaptive pattern recognition 

The adaptive threshold element can be used for pattern 

recognition and as a trainable logic device. It can be trained to 

classify input patterns into two categories. For these 

applications the zeroth weight w0 has a constant input +1, which 

does not change from input pattern to pattern. Varying this zeroth 

weight ·varies the threshold of the quantizer. 

Linear separability 

With n binary inputs and one binary output, a single ADALINE 

is capable of implemnting certain logic functions. There are 2n 

possible input patterns. A general logic implementation would be 

capable of classifying each pattern as either +1 or -1, in accord 
n 

with the desired response. Thus there are 2 2 possible logic 

functions connecting n inputs to a single output. A single neuron 

is capable of realizing only a small subset of these functions, 

known as linearly separable logic functions. These are the set of 

the logic functions that can be obtained with all possible 

settings of the weight values. 

Fig 4.6 shows a two input neuron, and fig 4.7 shows all of 

its possible binary inputs in the pattern vector space. In this 

space, the co ordinate axes are the components of the input 

pattern vector. The neuron separates the input patterns into two 

categories, depending on the values of the input signal weights 

and the bias weight. A critical thresholding condition will occur 

when the analog response y equals zero: 

( 4. 9) 

or, (4.10) 
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Figure 4.7 graphs the linear relations, which comprises a 

separating line having 

(4.11) 

The three weights determine the slope, intercept and the side 

of the separating line that corresponds to a positive output. The 

opposite side of the separating line corresponds to a negative 

output, while the line itself is the locus of all the input 

patterns resulting in a zero analog output. 

With two inputs, a single neuron can realize almost all the 

logic functions. ·With many inputs, however, only a small fraction 

of all possible logic functions are linearly separable. The single 

neuron can realize only linearly separable functions and generally 

cannot realize most functions. However, combinations of neurons or 

networks of neurons can be used to realize non linearly separable 

functions [12]. 

Non-linear separability 

The inputjoutput mapping obtained in fig (4.7) illustrates a 

linearly separable function. An example of a nonlinearly separable 

function with two inputs is the XOR function: 

( +1, +1 ) -~ -1 
( +1, -1 ) -~ +1 (4.12) 
( -1, +1 ) -~ +1 
( -1, -1 ) -~ -1 

No single.st~aight line exists that can achieve this 

separation of input patterns. 

In the network shown in fig 4.8 two ADALINEs are connected to 

an AND logic device to produce an output. Systems of such types 

are called MADALINEs. With weights suitably choosen, they can 

realize the non-linearly separable function (4.12). The separating 
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boundary in the pattern space is shown in fig 4.9. 

MADALINEs are constructed with many more inputs, with many 

more neurons in the first layer, and with fixed logic device such 

as AND, OR and MAJority vote takers in the second layer. These 

three functions are in themselvs threshold logic function, as 

illustrated in fig 4.10. The weights shown will implement these 

functions, but the weights are not unique [12). 

Layered neural nets 

The MADALINEs of 1960s had adaptive first layers and fixed 

threshold functions for the output layers. The feed forward neural 

networks of 1980s have many layers and all layers are adaptive. 

These networks are more powerful than the MADALINEs. Because of 

the non linear elements present in each neuron, they can pick up 

the non linearities in the training patterns very efficiently. 

Because of this, they are very efficient in classification of the 

non linearly separable functions (12). 

Handwritten character classification 

The problem of handwritten character recognition has invoked 

great tesearch interest for a very long time. There are many 

difficulties in handwritten character recogition, because of the 

presence of large degree of variations in the data. Not only are 

there some changes and distortion of characters from one 

individual to another, but also, there are some variations from 

the same individual at different times. Furthermore, difficulties 

may result from problems such as complexity of characters, 

similarity of different characters etc (11). 

A widely accepted approach is to perform a feature extraction, 

followed by a classification. The feature classification is 
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usually predefined and problem dependent. It requires most of the 

design effort and determines the performance of the whole system 

to a great extent. The classifier usually incorporates a trainable 

pattern clasifier. 

The traditional methods for recognition of handwritten 

characters have been various statistical techniques, which require 

a large amount of data, and template matching and graph theoretic 

approaches, which require quite detailed programming. A more 

recent and appealing approach is the neural· network technique. 

They can provide a very flexible tool, which allows integration of 

the feature extractor and the classifier in a single trainable 

system. As a consequence, the demands of a preprocessor is greatly 

reduced. Such methods result in high recognition accuracy. Also, 

neural networks involve only simple arithmetic operations, with a 

very simple control structure. They can be easily implemented on a 

digital computer (4). 
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CHAPTER 5 

IMPLEMENTATION OF THE 

RLS ALGORITHM FOR HANDWRITTEN CHARACTER RECOGNITION 

In this chapter, the implementation of the Recursive Least 

Squares algorithm for trainig a two layer connectionist network 

has been described. 

Problem specification 

The network model : a two layer linear combiner. 

The training algorithm used: the RLS algorithm. 

The handwritten characters to be identified are 'A', 'B', 

'G', 'R', 'S' and 'X', in uppercase. 

The work involved developing a Pascal program to simulate a 

two layer connectionist network ( a linear combiner ) and to 

implement the Recursive Least Squres algorithm to train the 

network to recognize handwritten letters. It was decided to teach 

the network to differentiate the handwritten uppercase letters A, 

B, G, R, S and X. The input data for training the network were 

collected from 25 individual. Each of the subjects was given graph 

papers containing squares of 8 X 8 boxes. Then they were asked to 

write these six letters, in uppercase, large enough to fill the 

boxes. After the leters were entered, the subjects were asked to 

shade in any square of the boxes, which has been intersected by 

any part of the letters they wrote (fig. 5.1). out of these 25 

sets collected, 21 sets were used as training data to train the 

network. The remaining 4 sets were used for testing purposes. The 
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data were entered into a file as a sequence of ones and zeros, 

representing the filled and unfilled squares of the boxes 

respectively. Only six letters were to be identified. So, an 

additional three bit letter identification code was also stored in 

the text file along with the data which would be used during 

supervised training of the network. 

The Network 

The network chosen for this work was 3 linear combiner 

network, having ·an input layer and an output layer. No hidden 

layer was considered. The network was configured to have 65 input 

elements 64 inputs representing the 8 X 8 squares of the 

digitized letters and an additional biasing input, always set to 

+1, was used as the 65 th input. Since a minimum of three bits are 

required for identification of six letters, the network was 

configured for three output elements. 

supervised learning 

The training of the network was done over the 21 sets (126 

letters) of samples, which were stored in a file as a sequence of 

ones and zeros, and along with each letter, an identification code 

was also stored. The letter identification codes used are as 

follows: 

A 

R 

0 0 1, 

1 0 0 

B 

s 

0 1 o, 

1 o 1, and 

G 

s 

0 1 1 

1 1 0. 

After reading the inputs and the desired outputs (letter 

identification codes), the auto correlation and the cross 

correlation matrices were formed. The inversion ·of the auto 
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correlation matrix, which is a quite large matrix (65X65) , turned 

out to be the most time consuming portion of the whole training 

process. After calculation of the inverse of the auto correlation 

matrix, it was stored in a text file. It was then used to 

calculate the optimal weight matrix for the trainig sets. 

Implementation of the algorithm 

The program has been written in three parts : the first 

program was meant to be run only once, to calculate the auto 

correlation matrix R, its inverse and the cross correlation 

matrix P for the initial training data. Then it calculates the 

optimal weight matrix w0 for the training data. Once they are 

calculated, the matrices are stored in files for later use by the 

recursive.version of the algorith~. Keeping in view the large size 

(65X65) of the auto correlation matrix, the inverse was calculated 

using an iterative method, which calculates a least square 

approximation of the matrix rather than using direct method such 

as the Gaussian elimination method or the L-U decomposition 

method, which are unlikely to provide satisfactory results, even 

with double precision arithmatic. 

The second program implements the recursive version of the 

least squares algorithm. This program is meant to be used in case 

new additions were made to teach the network with more training 

data. The program reads in the R- 1 matrix and the optimal weight 

matrix W0 from the files where they had been stored by the first 

program and updates them step by step. After all the training data 

are dealt with, it stores the new R- 1 and W0 in the same files 

from where they head been read in. The algorithm can be described 
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in ten steps as follows : 

(1) Read new input X(k) from file 

(2) Read new desired outcomes D(k) from file 

( 3) Compute the output vector Y(k) = wkoTX(k) 

(4) Comput the error vector E(k) = D(k) - Y(k) 

(5) Com put the vector zk = Rk- 1x(k) 

(6) Compute q = X(k)Tzk 

(7) Compute v = 1/(1+q) 

(8} Compute Zk' = vzk 

(9} Update optimal weight vector Wk 0 to wk+ 1° 
wk+lo = wko + Zk'E(k)T 

(10) Update the inverse correlation matrix Rk- 1 to Rk+ 1 - 1 

Rk+1-1 = Rk-1- Zk'zkT 

The algorithm assumes that the matrix Rk- 1 and the initial 

optimal weight matrix Wk0 are available initially. So, they are to 

be read in from the files where they are stored from their earlier 

calculations. 

The third program is used for testing the network. It reads 

the test data from a file, and reads the stored optimal weight 

matrix of the network and calculates the output of the network : 

Y = wTx 

Since the output vector will contain real numbers, a simple 

thresholding (the step function, shifted to the right by 0.5 unit) 

is done to get a binary output. That is, if Yi I 1:=;i::;3, is an 

analog output of the network then the i-th digitized output of the 

network will be +1 if Y(~ 0.5, and 0 if Yi< 0.5. 

The software was implemented on a DEC VAX 11/78-0 using 
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Pascal. 

Results 

The first program, used to calculate the inverse of the auto 

correlati9n matrix, was found to be the most time consuming 

portion of the training process. The inversion of the 65 X 65 auto 

correlation matrix took around 8 hours of CPU time on VAX 11/780. 

After running the testing program on the training data, it 

was found that, the program identified 22 characters correctly· out 

of the total 24 characters in the testing data sets. 

The success rate= (22/24)*100 = 91.7 % 

The letters of the test sets, that the network failed to 

recognise are shown in fig. 5.2. 
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CONCLUSIONS 

Various Neural Network learning procedures have been studied, and in 

particular, The Recursive Least Squares learning procedure has been studied 

in detail. 

An algorithm for handwritten character recogmtiOn based on the 

Recursive Least Squares learning procedure is developed and an experimen

tal implementation using PASCAL is presented. The simulation results 

shown by the combiner network were found to be fairly modest. The 

network is a linear classifier, that can pick up only the linearities in the 

training data. Since handwritings can vary widely from one individual to 

another, it may not be possible to separate them using as simple a surface 

as the hyperplane in the pattern space. A probable method to handle the non

linearities in the training data could be manipulation of the feature set, that 

is, by using second or third order feature vectors, depending upon the degree 

of non-linearity. 
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