
CONNECTIONIST LEARNING PROCEDURES

Dissertation submitted to
Jawaharlal Nehru University

in partial fulfilment of the requirements
for the award of the Degree of

MASTER OF TECHNOLOGY

in

COMPUTER SCIENCE AND TECHNOLOGY

by

JYOTI PRAKASH HANDIQUE

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES

JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI-110 067,

JANUARY 1992

CERTIFICATE

This is to certify that the thesis entitled "CONNECTIONIST

LEARNING PROCEDURES", being submitted by me to Jawaharlal Nehru

University in partial fulfilment of the requirements for the award of the

degree of Master of Technology, is a record of original work done by me

under the supervision of Dr. K. K. Bhardwaj, Prof. School of Computer and

Systems Sciences, during the Monsoon semester, 1991.

The results reported in this thesis have not been submitted in part or

full to any other University or Institution for the award of any degree etc.

Lh
Dr. R. G. Gupta 37}11-J";
Professor & Dean,
SC&SS, J.N.U.,
New Delhi - 110 067.

(JYOTI ~ANDIQUE)

Dr. K. K. Bhardwaj
Professor,
SC&SS. J.N.U ..
New Delhi - 110 067.

ACKNOWLEDGEMENTS

I wish to express my sincere and heartfelt gratitude to Dr. K. K. Bharadwaj, Professor,

School of Computer and Systems Sciences, Jawaharlal Nehru University, for the

unfailing support he has provided through out. In all respects, I am very grateful for the

patience he has exibited and for the time he has spent with me discussing the problem. It ,

would have been impossible for me to come out successfully without his constant

guidance.

I extend my thanks to Prof. R. G. Gupta, Dean, School of Computer and System

Sciences, JNU for providing me the opportunity to undertake this project. I would also

like to thank the authorities of our school for providing me the necessary facilities to

complete my project.

I am grateful to all the friends, whom I had approached for their handwriting samples,

for their prompt response. I acknowledge and thank each and everyone of those who,

directly or indirectly, helped me in this work.

ABSTRACT

In this work, a study of various neural network learning procedures has been

done. In particular, the Recursive Least Squares (RLS) algorithm as applied to a

two layer linear combiner network is studied in detail. As an application of neural

networks in adaptive pattern recognition the RLS algorithm for linear combiner

networks is made use of in developing an algorithm for handwritten character

recognition. A prototype implementation of the algorithm developed is also given

using PAS CAL and experimental results discussed.

CONTENTS

Chapter 1 INTRODUCTION

Neural or connectionist networks 2

Different models of neural networks 4

Properties 6

Learning in connectionist models 8

Applications 9

Chapter 2 CONNECTIONIST LEARNING PROCEDURES 11

Linear associator 12

Nonlinear associative nets 12

Simple supervised learning procedures 13

Perceptron learning algorithm 14

Back propagation in multilayer networks 15

Boltzmann machine 16

Competitive learning 17

Reinforcement learning procedures 17

Speed of learning 18

Chapter 3 THE RECURSIVE LEAST SQUARES ALGORITHM 20

Adaptive combiner 20

Analytical derivation of

Least squares algorithm 21

Recursive least squares 26

Computational cost of the RLS algorithm 29

Chapter 4 NEURAL NETWORKS AND PATTERN RECOGNITION 30

Decision surface

Similarity, Distance and compactness

Neural networks and

Adaptive pattern recognition

Linear separability

Non linear separability

Layered neural nets

Handwritten letter classification

31

32

34

34

35
36

36

Chapter 5 IMPLEMENTATION OF THE RLS ALGORITHM

FOR HANDWRITTEN CHARACTER RECOGNITION 38

The network 39

Supervised learning 39

Implementation of the algorithm 40

Results 42

CONCLUSIONS 43

BIBLIOGRAPHY 44

CHAPTER 1

INTRODUCTION

CHAPTER 1

INTRODUCTION

Conventional digital computers are extremely good at

numerical computation and executing sequences of instructions,

that has been precisely formulated for them. On the other hand,

the human brain performs well at such tasks as vision, speech,

information retrieval, and complex pattern recognition in the

presence of noisy and distorted data, and common sense reasoning.

Somehow, the structure of the human brain is better suited for

such kind of tasks and not suited for tasks such as numerical

computations. The human brain is a naturally occuring example of

an intelligent machine. It follows that, one natural idea for

Artificial Intelligence is to simulate the functioning of the

human brain on a computer.

In the 1950s work in AI started with two goals: design

intelligent machines or programs and understand human

intelligence. The possible inter-twining of these two goals was

r3rticularly stressed by Von Neumann, who introduced the theory of

automata to study the logical differences and the similarities

between Natural and Artificial machines. McCulloch and Pitts, in.

their attempts to simulate the nervous cells by artificial

automata -the formal neurons - had shown in 1943 that a network of

such formal neurons was capable of simulating a Turing Machine.

Later on, Rosenblatt, Minsky and Pappert, in 'their work on

perceptrons, tried to push forward the model of formal neurons so

as to make them learn how to solve problems. However, research in

1

such kinds of networks came to a virtual halt in 1970s, when they

were found to be very weak computationally.

The popularity of such network models in AI has taken wide

swings, ranging from extreme enthusiasm in the 1960s to utter

anathema in the 70s, when they were found to be weak. But

currently, there has been an explosion of interest in these

approaches. Many reasons can be pointed out for this, includng the

emergence of fast digital computers, interest in building

massively parallel computers and most importantly, the discovery

of powerful learning algorithms. Moreover, it has shown promises

as a research tool in many disciplines, and engineers,

mathematicians, worldwide are turning towards such models as a

possible alternative to their conventional research techniques.

Neural or connectionist networks

Neural networks, als6 called Connectionist networks, are

based on neurological models. A biological neuron basically

consists of a cell body, dendrites axons, as shown in fig 1.1(a).

The cell body, which is called the 'soma', performs complicated

chemical processes, such as summation and firing with respect to a

threshold level. The inputs for a cell body are transmitted

through the dendrites, while the output signals are carried to

other cells through axons. The electrical signal of an axon

connects to a dendrite through a special contact, called a

synapse. In general, the neuron performs a simple threshold

function. When the potential inside the cell body is larger than

the threshold value, the neuron fires. The normal firing rate is

quite low, which is typically a few hundred occurences per second.

2

It is estimated that the human brain has approximately 10 11

neurons and 1ol4 synapses. In the artificial neural systems, the

neuron and the synapses are configured as the procesing elements

and the connection strength respectively. Various features of the

artificial neural systems are determined by the function of the

neuron and the interconnection pattern.

The artificial neural network can be characterized by the

following properties:

{1) network architecture,

{2) retrieving process,

{3) learning rule and

(4) training data.

The network architecture provides the most distinguished

feature. The grouped neurons, which are arranged into a disjointed

structure are called layer. Fig 1.2 shows several architectures

which include two-layer/ multi layer and feedforward j feedback

networks. The neuron transfer function and the threshold voltage

characterize the retrieving process of an artificial neural

network. Specific mathematical functions including sigmoid, step,

Gaussian, Boltzmann functions are widely used to model the neuron

transfer function. The nonlinear transfer function decides the

information propagation properties at the neural retrieving

process. The retrieving proces can operate in either synchronous

or asynchronous mode. In the synchronous mode, all the neuron

outputs are updated simultaneously. Conversely, the neuron

updating process in the asynchronous mode is random and

independent of the other neurons. Most artificial neural networks

in software computation operate synchronously, while the

3

_biological neural networks operate in the fully asynchronous mode.

The training procedures are divided into two categories:

supervised and unsupervised learning. In supervised learning, the

synapse weightings are tuned by the difference betwen th~

retrieving patterns and the expected patterns. In unsupervised

learning, the network classifies the inputs without references.

The neural networks using unsupervised learning can detect the

pattern regularities. The widely used learning rules include Hebb

rule, Delta rule, competitive learning rule and their derivatives,

which will be described in Chapter 2. In general, the input signal

for an artificial neural network can be discrete or continuous

values.

Different models of neural networks

After McCulloch and Pitts introduced the abstract neuron

model for performing a simple task, in 1943, the neural network

study began. F. Rosenblatt developed the perceptron, which sparked

a great amount of research interest in neurocomputing. The

Perceptron is a two layer network for pattern classification.

Initially, the perceptron demonstrated an optical pattern

recognition when inputs of the system were connected to a grid of

Photocells. The input signals are then transferred to the neural

layer with randomly weighted connections. The neural network

performed successfully with application of Hebb learning rule. The

major limitation, pointed out by Minsky and Pappert, is that the

perceptron cannot represent an XOR function, so that the percptron

cannot classify complex categories. Multi layer Perceptrons were

developed by Rosenblatt to overcome the limitation of the initial

4

Perceptron.

In the late 50s, the first neural element Adaptive Linear

Element (ADALINE) was developed by B. Widrow. The neurons were

realised with vacuum tube amplifiers, while synapse weights were

manually adjusted with variable resistors.The ADALINE was improved

to become the MADALINE, which consists of ADALINEs and a two layer

variant. These were adapted to a variety of applications, such as

speech recognition, character recognition, weather prediction,

adaptive control and echo cancellation in communication

Another major category in neural networks is associative

memory. J. Anderson proposed the 'Brain-state-in-a-box' model with

his linear associator and Hebb learning rule. The network consists

of a layer with feedback, and one postprocessing output layer. Due

to the positive feedback architecture and the learning rule, the

output is the best-matched pattern from the stored memory for a

given input.

In 1982, the presentation of J. Hopfield's paper to the

National Academy of Science ignited the neural network study once

again. The Hopfield network is basically a two-layer network with

feedback. The condition for the synapse weighting is very

restricted, while that for the neuron transfer function is very

relaxed. Using the energy of Lyapunov's function, Hop.field proved

that the network always moved towards a low energy level. Due to

the simple architecture and claerly proved dynamics of the

network, many hardware implementations and real world applications

have been accomplished. The network has been applied to

associative memories and many Engineering optimization problems.

5

The multi layer neural networks are vitalized by the back

propagation learning rule. Before the learning rule was developed,

the usefulness of the multilayer neural network had been well

known but the decision of the synapse weightings was the main

problem. The multilayer neural network can be used for various

applications including data encoding/decoding, data compression,

signal processing, noise filtering, pattern classification and

forecasting.

A Boltzmann machine has the network architecture as the

Hopfield network, but differs in the stochastic updates and

learning properties. The stochastic updates in retrieving and

learning processes is based on the simulated annealing technique

using the Boltzmann probability function. By decreasing the

temperature of the probability function from a high value, the

network always finds the global minimum in the energy surface.

The Bidirectional Associative Memory (BAM) designed for

optical computing is a generalized Hopfield model to

heteroassociative network. BAM has two fully connected central

layers and input output buffer layers. The synapses and the

neurons in .the central two layers are bidirectional. For a given

input, the BAM layers oscillate until a stable state is reached.

The final stable output is the closest association stored in BAM.

Properties

A neural network model can be described according to their

network, cell and dynamic properties as follows.

Network properties : A neural network model consists of network

of autonomous processing elements called neurons, that are joined

6

·-1·;-·

by connection paths as shown. in fig. 1.2. Each such connection has

a numerical wight wi,j that roughly corre~ponds to the influence

of cell ui on cell uj. Positive weight means reinforcement while a

negative weight means an inhibition. These weights determine the

behaviour of the network.

The neurons are generally arranged in several layers, with an

input layer and an output layer and intermediate or hidden layers

between them. The input layers have no entering weights. the

response of the output cells are taken as the output of the

network. The hidden layers add to the power of the network to

compute difficult functions, known as unseparable functions.

Cell properties : Each cell, or neuron, compute a single

numerical cell ouput or activaton. Typically, every cell uses the

same algorithm to compute its activation. The activation of a cell

is calculated from the activation of the cells directly connected

to it and the weights of these connections. Every cell (except for

the input cells) computes its new activation ui as a function of

the weighted sum of the inputs to the cell from directly connected

cell as follows:

n
si = L: w· . u .

. 0 1,] J
J=

(1. 1)

(1. 2)

Here w · · is the weight associated to the connection from cell j 1,]

to cell i, if j is not connected to i then wi,j=O. uj is the

activation of cell j. Here, f is a nonlinear function, which may

be a step function, a sigmoidal function, the Gaussian function or

the Boltzmann function. By convention there is a Oth cell, whose

7

input is always +1, which is cohnected to every other cell, except

the input cells. The corresponding weights wi 0 are called the ,
biases. The biases are merely a constant term added to the sum of

the activations in equation (1.1). They are a means to adjust the

threshold values of the neurons.

Dynamic properties : A connectionist model must specify when a

cell computes a new activation value and when the change to that

cell's output actually takes place. In some models cells are

visited in a fixed order, each cell reevaluating and changing its

activation before the next one is visited. In other models, all

cells compute their new activation simultaneously and then makes

changes to all outputs simultaneously. Still other models pick a

cell at random, compute is new activation, and then change the

output immediately before any other cell computes its new

activation.

Learning in connectionist models

Learning in a connectionist network is a process of adapting

the connection weightings in response to the external stimulii.

The learning rules were developed with the network architectures.

The first learning rule, called Hebb rule, which shows that the

network can learn for a certain function, was presented in 1957.

This rule requires that if an input and an output are activated at

the same time, the weighting between the input and the output are

increased. In competitive learning, each neuron competes with

others at a given input and the winner adapts to get more

strength. This kind of learning, called unsupervised learning,

does not need reference data. On the other hand, desired outputs

8

can be given in the supervised learning approaches. A famous

application of the supervised learning is the back propagation for

a multilayer network. Many derivatives of this Delta rule are used

for efficient learning results. These rules are applied to adjust

the connection weights, using the error between the desired output

and the actual network output. The goal of these learning rules is

to minimize the output error, or some function of it (usually, the

mean square error) .
.

Another type of learning rule that falls between

unsupervised learning and supervised learning is reinforcement

learning. In this kind of learning, an external observer gives a

response as to whether the network response is good or not. The

learning rule of Boltzmann nachine is based on the stochastic

process, which constructs distributed representations of the

reference patterns with the simulated annealing technique.

Applications

The secret of immense computational power in neural networks

is discovered as the parallel processing done by neurons and

connections. While each neuron performs simple analog processing

at low speed, the rich connectivity of the neurons through

synapses provides powerful computational capabilities for the

large quantity of data. The data are processed asynchronously in

the time domain and spread globally into all network elements. In

addition to the parallel processing nature, the network has a self

learning capability, which is done by changing the weights of the

synapses between the neurons. The self learning capability makes

such networks useful in a situation when the training data are

sufficient and fault tolerance of a system is necessary. The

9

immense computational power and the self learning capability give

neural networks excellent prospects in image processing, vision

understanding, inexact knowledge processing, forecasting, linear/

nonlinear programming, scientific optimization and many others.

Fig 1.4 shows a block diagram of an advariced neural computing

system. Real world signals are converted into discrete form

(mainly digital) at the interface block. The neural signal

processing system handles the converted signals, and the outputs

can be transfe~red to digital computers for further manipulations.

The interface block might function as a data converter and conduct

some signal processing. The signals inside a neural signal

processor are distributed throughout the whole network. Thus, a

small amount of damage in the system does not produce noticeable

degradation of the overall system performance. Through self

learning procedures, the interconnection weights can be modified,

so that the original system performance is retained.

10

v,

'~ v.,~..------==--.......

•

(a.J

(1.)

F,·g c.a e 1. 1 NetJ.rOfl rnofie/5

(4) b/oloCJ,'ca.f r]t: .. "' ron model

(b) A ,.l,'fic..io. I h c..u. I" On rn od el.

(a.)

IN PUr
t,Ayt:fl...

evrPIJ-r '-A.YER.

~11ST 1-iJ~[)f:N

L.t:-.y 6R.
S,Ec.oND 1-HDDfN

LAYER.

(h)

ourrvr
L.4VG~

OI.JTPIJT
f-AYE!{

fl9v.N: 1.2.. 5e ve.ral Jn()dils Of r}e_uf'o./ 77 e fc.) of'ks

(aJ S,.ngte. I Q._~r> feuJ {-tn'toard

(h) s.·YI8k {o..yer fe..e..4 b 0. c.Jt.

(c) he.Jwork c.Ji~ 'Aiddt..n {o.-yt)IJ

)(o=-t i

x,

x6-:. -rJ

x.
-6 Bti</AA.Y

)12. I1 0 lJTPUT
ANA~, or,
OVTf'IIT

XII
fOSI 7'/V£/

/'lf:4ATW£
Tt-tJ<E<; HCJL/)

l~)

Wu

ANAL-0~

0 U TPVT BtNf'tA.Y

+J OUTPUT

. -l

ADAPTnlt

(b)

ourrvr

J" t'cp-(fl e. f. 3
(a) A P!.Y'C.tplron

(bJ ADAt..tf\/E (ltdo.pJ.r'vc lt'ne(}.,. ek,..,cnJ)
(c) M A-fJ A 1- IN E

..Dt "tTAL
INPUT S/~/VAL

PARt\LLfL

D16,1 TAL
OUTPUT
$;1 €.PIJ A-LS

1\riALO~

INPUf S I ~NALS

1J141 TAL.
VL.-SC

S f-NSO/l..Y

PR.{: -
P/ZOC.€SSIN6

N~UR..AL

NE7NDI?.I<.,

Nt: UR..AL

NET~<VMI<.

MIXED

H/w

A/'JAL.-06, I Dl 6JIT/JL

Vi,.. 51

NIXED

A<-7UATOR.Y ltNIJLO~j])J 41 TAL
PO.$T-

PR.OCtSSJI\)G,

ANtH .. OI'l>

OUTPUT
St (.,NALS

VL- 51

CHAPTER 2

CONNECTIONIST LEARNING PROCEDURES

CHAPTER 2

CONNECTIONIST LEARNING PROCEDURES

Learning is the most important part of the neural or the

connectionist models. Learning is the process of modifying the

values of the weights of the connections and the threshold. Since

the weights associated with the connection path determine the

behaviour of the network, learning procedures try to adjust the

weights in such a way that, the network output approaches the

desired values. The learning procedures cannot generate or alter

the internal representa~ions, they are limited to forming simple

associations between the representations, that are specified

externally. Recent researches have led to a variety of powerful

learning procedures, that can discover good internal

representations.

In a network, that uses local representations, it may be

feasible to set all the weights by hand because, each weight

typically corresponds to a meaningful relationship between

entities in the domain. If however, the network uses distributed

representations, it may be very hard to program it by hand and so

a learning procedure may become essential. Some learning

procedure, such as the perceptron learning procedure, are only

applicable if the desired states of all the units in the network

are specified. Other, more recent learning procedures operate in

networks that contain hidden units, whose desired states are not

specified by the input or the desired output of the network.

Connectionist learning procedures can be divided into three

11

broad classes : supervised procedures, which ~equi~e a teacher to

specify the desired output vector, reinforcement procedures, which

only requires a single scalar evaluation of the output, and

unsupervised procedures, which construct internal models that

capture regularities in their input vectors without receiving any

additional information (5].

Linear associator

In a linear associator, the state of an output unit is a

linear function of the total input that it receives from the input

units. A simple Hebbian procedure for storing a new association is

to increment each weight wij' between the i th input unit and the

j th output unit by the product of the states of the units.

A wij = uiuj (2.1)

where ui and uj are the activations of an input and an output

unit. After a set of associations have been stored, the weights

encodes the cross correlation matrix between the input and the

output vectors. If the input vectors are orthogonal and have

length 1, the associative memory will exibit perfect recall. If

the input vectors are not orthogonal, the simple Hebbian procedure

is not optimal (5].

Nonlinear associative nets

Non-linear associators perform better than the linear

associators in the presence of non orthogonal input vectors. Here

the weights all start at 0 and associations are stored by setting

a weight to 1 if ever its input and output units are both on in

any association. To recall the association, each input unit must

have its threshold dynamically set to be just less than m , the

number of active input units.

12

Hopfield nets store vectors whose components are all +1 or

-1, using the simple rule of (2.1). To retrieve a stored vector

from a partial description, the network is started at the state

of partial description and updates the state of the units

repeatedly, one at a time. The iterative retrieval procedure can

be viewed as a form of gradient descent in an Energy function

(2.2)

where si and sj are the states of the two units. Each time an

update is done to a unit, it adopts a state that minimizes this

energy function. The increase in the change of the global energy

caused by changing the unit from state +1 to state -1 is :

AEj = - 2 ej + 2 ~siwij (2.3)

The energy decreases in each step of iteration until the

network settles into a local minimum of the global energy

function[5).

Simple supervised learning procedures

Let us consider a network that has only an input and an output

layer, with continuous neuron transfer function. A measure of how

poorly the network is performing with its current set of input

vector is

1
E = (2.4)

2
where Yjc is the.actual state of output for the c th input output

pair, and djc is the desired state.

The error measure E can be minimized starting with any set of

weights and repeatedly changing
oE

amount proportiional to
ow·· 1)

1.3

each weight by an

oE
... W•. = -€

1)
OW·.

1)

(2 • 5)

oE oE dyi OX·
J where, = L

OW·.
1) oyi dx·

J
OW·.

1)

dyi
= L y· - d· Yi J J dx·

noting that =LWjiYi
J

X·
J

(2. 6)

If the output units are linear, the term is a constant.
dx·

The batch version of this least square) procedure sweeps
oE

through all sets of inputs accumulating ---- before changing the
OW·.

weights, and so it is guaranteed to move fJ the direction of the

steepest descent. The online version, which requires less memory,

updates the weights after each input output cases. This may

sometimes increase total error E, but by making the weight changes

sufficiently small, the total change in the weights after a

complete sweep through all the cases can be made to approximate

the steepest descent very closely [5), [6).

Perceptron learning algorithm

The perceptron learning technique differ from the least mean

square error technique in that, here the derivative in (2.5) is

ignored, and only its sign is taken into consideration. So, the

weight changes are

[

0, if output unit behaves correctly,
• wji = +E, if output unit should be on

-E, if output unit should be off
Because it ignores the magnitude of the

(2. 6)

error, this

procedure changes the weights by at least E, even when the error

is very small.

The major deficiency of both the least squares and the

1~

perceptron learning procedures is that complex mappping between

input and output vectors cannot be catched by any combinations of

weights in such simple two layer networks [5), [6). Another

deficiency could be that, sometimes the gradient descent may be

very slow, because the gradient may be approximately perpendicular

to the direction towards the minimum. Another problem is that if

the constant € in (2.5) large, there may be divergent

oscillations, and on the other hand, if it is too small, then the

progress could be very slow. A standard method of speeding up in

such case3 is the Recursive Least Squares technique, which is

described in detail in chapter 3.

Backpropagation in multi-layer networks

The back propagation learning procedure is a generalization

of the least squares procedure that works for networks with layers

of hidden units between the input and the output units. These

multi layer networks can compute much more complicated functions

than networks not having hidden layers. But here the learning is

much slower because of the presence of the hidden units.

The central idea of backpropagation is that the derivative of

(2.5) for the hidden units can be computed efficiently by starting

with the output layer and working backwards through the layers.

For each input ouput set the activity levels of each of the units

are computed in the forward pass. Then in the backward pass

starting at the output layer, the derivative is computed for all

the hidden units. For a hidden unit j in the J th layer, the only

way it can affect the output error is via its effects on unit k in

the Kth l~:~yer. So we have,

1 5

oE

oy·
J

so,

= :E
k

oE

oyk

oE

oy·
J

= :E Wkj (2. 7)
k oyk dxk

if the derivative is already known for all units in

layer K, it is easy to compute the same quantity for all the units

in layer J.

In multi layer networks, the error surface may have many

local minima, so it is possible that steepest descent in the

weight space will get stuck in a poor local minimum. But if there

are sufficiently large number of units and connections then there

are typically very large numbers of qualitatively different

perfect soluions, and hence the possibility of getting stuck in a

poor minimum reduces. In practice, the most serious drawback is

the very slow speed of convergence [5].

Boltzmann machine

A Boltzmann machine is a generalization of a Hopfield net,

in which, the units update their states according to a stochastic

decision rule. The units have states 0 or 1, and the probability

that unit j adopts the state 1 is given by

1
p· = (2.8}

J 1 + e(--AE/T)
where .AE = xj is the total input received by the J th unit and T

is the -temperature'. It can be shown that if this rule is applied

repeatedly, to the units the network will reach a state of

'thermal equilibrium'. The fastest way to approach low temperature

equilibrium is generally, to start at a high temperature and

1 6

gradually reduce t,he temperature. This method is called 'simulated

annealing'. It allows the Boltzmann machine to find low energy

states with high probability [7].

Competitive learning

Competitive learning is an unsupervised procedure that

divides a set of input vectors into a number of disjoint clusters

in such a way tr.at, the inpu~ vectors within each cluster are all ·

similar to one another. It is called competitive learning because,

there is a set of hidden units, which compete with one another to

become active. When an input vector is presented to the network,

the hidden units which receives the greatest total input wins the

competition and turns on with an acivity leve of 1. All the other

hidden units are turned off. The winning unit then adds a small

fraction of the current input vector to its weight vector. So, in

future, it will receive even more total input from this input

vector. To prevent the same hidden unit from being the most active

in all cases, it is necessary to impose a constraint on each

weight vector that keeps the sum of the weights (or their squares)

constant. So, when a hidden unit becomes more sensitive to one

input vector, it becomes less sensitive to other input vectors.

Reinforcement learning procedures

A central idea in many reinforcement learning procedure is

that, we can assign credit to a local decision by measuring how it

correlates with the global reinforcement signal. Various different

values are tried for each local vriable(such as a state or a

weight), and these variations are correlated with variations in

the global reinforcement signal. Normally, the local variations

17

are the result of independent sochastic processes. So, if enough

samples are taken, each local variable can average awqy the noise

caused by the variations in the other variables to reveal its own

effect on the global reinforcement signal. The network can then

perform gradient ascent in the expected reinforcements by altering

the probability distribution of the value of each variable in the

direction that increases the expected reinforcement. If the

probability distributions are altered after each trial, the

network performs a stochastic version of gradient ascent [5].

Speed of learning

Most existing connectionist learning procedures are slow,

particularly procedures that construct complicated internal

representations. One way to speed them up is to use optimization

methods such as the Recursive Least Squares that converge faster.

If the second derivatives can be computed or estimated, they can

be used to pick a direction for the weight change vector, that

yields faster convergence than the direction of the steepest

descent.

A second method of speeding up learning is to use dedicated

hardware for each connection and to map the inter loop operations

into analog, instead of digital hardware. The speed of one

particular learnin~ procedure can be increased by a factor of

about a million if we combine these techniques. This significantly

increases the ability to explore the behaviour of relatively small

systems. By using the hardware in a different way, might yield a

large gain. By dedicating a processor to each of N connections, a

gain of at most a factor of N in time at a cost of at least a

factor of N in space can be achieved. For a procedure of

complexity 0{ NlogN), a speedup of N makes a very big difference.

For a procedure with time complexity of, say, 0{ N3) alternative

technologies and parallelism will help significantly for small

systems, but not for large systems (5].

CHAPTER 3

THE RECURSIVE LEAST SQUARES ALGORITHM

CHAPTER 3 •

THE RECURSIVE LEAST SQUARES ALGORITHM

In recent years, considerable attention has been focussed on

the development of learning algorithms for use in the Machine

Learning Systems (MLS). In this chapter, the Recursive Least

Squares algorithm as applied to an MLS consisting of a two layer

connectionist network has been described.

Fig 3.1 illustrates the general block representation of an

MLS. The model is presented with some training examples with known

desired responses and in the training mode, the learning algorithm

is used to estimate the model parameters to meet some predefined

cost criterion. The learning algorithms, in other words, is used

to facilitate robust representation of the training examples in a

form, which is usable in the user mode [9).

In the field of communication and signal processing,

adaptive algorithms have been used for many years in different

areas, such as, channel equalization and modelling, echo

cancellation, medical signal processing, and many others. The

Recursive Least Squares (RLS) algorithm has been extensively used

in these areas [2), [3), [8), [9). In what follows, the RLS algorithm

as applied to an Adaptive Linear Combiner network has been

described in detail.

Adaptive combine~

Fig. 3.2 illustrates a simple multi input/single output

combiner ~tructure. The input vector X= [x 1 ,x2 , ,xnJT, where

the superscript T denotes the matrix transpose, is a set of

20

~l
~

I'D
_j::

\-
"

features, extracted from the pattern and Y is the output of the

combiner. Given some Knowledge. about some problem in the form of

input variables and the outputs, it is desirable to estimate the

combiner weight vector W = [w 1 ,w2 , ,wn]T in such a way that,

when the system is presented with a new set of inputs, it can

predict the correct outcome. In other words, the knowledge

relating the features to the outcomes is represented as the weight

vector in the combiner.

The adaptive combiner structure can be thought of as a

multiple input/multiple output single layer connectionist network,

whose weights can be estimated using the RLS algorithm. In the

following section, the RLS algorithm is described in detail.

Analytical derivation of the least squares algorithm

The following notations are used in the derivation:

n

l

m

X(k)

Y(k)

the

the

the

the

the

number of elements in the input vector

number of elements in the output vector

number of trainig data sets,

k th trainig input vector,

combiner output vector for X (k) ,

D(k) the qesired output corresponding to X(k),

X,

Y,

E(k) the output error vector corresponding to X(k),

W n X l matrix of combiner's weights,

R n X n auto correlation matrix of X,

P n X l cross correlation matrix of X with D.

Since, Y(k) is the response of the combiner to X(k),

Y(k) = wT X(k) (3. 1)

Also, E(k) = D(k) - Y(k)

21

(3 . 2)

The RLS algorithm aims at minimizing the sum of the squares

of these errors over the m training sets. That is, we have to

minimize the quantity Ji, where,

m
Ji = L ei(k)2

k=1
1::5 i :51 (3. 3)

where ei(k) is the i th element of the vector E(k).

The quantities Ji , 1 ::5 i :51 are called performance

function. Obviously, it is a funcion of D(k), and also of X(k) and

W, since they determine Y(k). For a given sequence of vectors

{X(k)} and {Y(k)} , Ji is a function of W only. and hence, Ji are

a measure of how well W performs to produce an output Y(k) which

matches the desired response D(k). The choice of W that minimizes

J is that value, which has the best performance. This value of W

is called the optimal value and denoted W0 . The best J can attain

is zero, which is attained if W can be chosen so that

WTX(k) = Y(k) = D(k) , 1::5 k :::;m (3. 4)

If this happens, then each term of the sum (3.3) is zero,

and so is the sum itself. There is no worst value of J, since J

can be made arbitrarily postitve with a proper choice of W. Also,

J cannot be made negative by any choice of W.

Expanding (3.3) we get

m
Ji L [di(k) - Yi(k)]2

k=1
m

= L [di(k) 2 - 2di(k)Yi(k) + Yi(k) 2]
k=1

(3. 5)

Using the fact that, Yi(k) = wiTX(k) = X(k)Twi I where wi is the

i th column of matrix W, we can write,

J·
~

22

m
2LWiTX(k)di(k)
k=1

m
+ LWiTX(k)X(k)TWi

k=1

Let us denote
m

Qi = L:di(k)2
k=1

Also, we see that the auto correlation matrix of X is
m

R = L: X(k)X(k)T
k=1

and the cross correlation matrix of X with D is
m

P = L: X(k)D(k)T
k=1

Now, Ji can be written as

(3. 6)

(3. 7)

(3. 8)

Ji = Qi- 2WiTpi +.WiTRWi , 1 ~ k ~ 1 (3.9)
Where, Pi repersents the i th column of the matrix P.

The equations (3.9) can be minimized using results from

vector calculus, which states that, wi 0 is the value of Wi, which

minimizes Ji if and only if two conditions are satisfied:

.., J·l 1 W·=W·o
. 1 .1

and the Hess1an matr1x

= 0 (3.10)

Hwi is positive definite, where TJi is

the gradient of Ji with respect to the elements of Wi, and Hwi is

the Hessian matrix of Ji with respect to the elements of Wi.

Condition (3.10) means that the first derivative of J with

respect to each weight of the vector Wi must be zero, when

evaluated at the optimal weight vector Wi 0 . The Hessian matrix of

Ji is the matrix of the second derivatives. The (p,q) th element

of this matrix is :

(3.11)
OW· ow·

At the optimal po:f"Nt, l:~e h·essian matrix must be

positive definite, that is, for any nonzero matrix V, we must

have,

weights.

vT Hw. v > o
.&.

(3.12)

We can now employ the conditions to find the optimal

Evaluating the gradient of J i' we get,

23

T J· = T Q· - 2T(W·TP·) + (W·TRW·) l l l l l 1
(3.13}

Since Qi is a constant, its gradient is zero. The gradient

of wiTpi can be found by evaluating each partial derivative:

o o n
--(wiTPi) = --(.L· wjiPji) =Pji
ow.. ow ..]=1

where, ~ji is the (j,f) th element of the matrix P.

Thus, we get, T(WiTPi) =Pi (3.14}

Similarly, it can be shown that,

(3.15)

Combining (3.14} ~nd (3.~5) and substituting in (3.13}, and

noting that, TQi = O,we get,

(3.16)

For optimallity, this gradient must be zero, giving

-2P·+2RW· 0 = 0 l l

or, RW· 0 = P· l l (3.17}

where, Wi 0 means the i th column of the optimal weight

matrix W0 . The set of n linear simultaneous equations described by

the matrix equation are called the normal equations. Their

satisfaction is a requirement for W0 to be considered the optimal

solution.

The second condition for optimality requires that, the

hessian matrix be a positive definite matrix. The matrix can be

evaluated by evaluating each term:

24

The first term of the expression is obviously, zero. The

first derivative of the second term was found to be Pji in (3.14),

and it is constant. Hence, the second derivative of the second

term also vanishes. Differentiation of the third term yields:

=

n n
(L L wri rrs wsi)

owpiowqi r=l s=1

o n
- { L
ow · r=1 pl

0
(.

ow pi

n o
L (wrirrswsi)

s=1 owqi
}

or, hpq = 2rpq (3.19)

Thus, we see that, each element of the Hessian is twice the

corresponding element of the auto correlation matrix R.

That is, the Hessian matrix Hw = 2R (3.20)

Thus, the conditions for optimality become :

and R is positive definite. (3.21)

Thus, if the matrix R can be inverted, then the normal

equations can be used to find W0 , that is, if R- 1 exists, then ,

(3.22)

From linear algebra, it is known that R- 1 exists if R is

positive definite. Also, if R is positive definite, the condition

(3.21) is satisfied, meaning that, the solution W0 is unique and

can be used to evaluate w0 according to (3.22). From this

analysis, it is seen that, an optimal least squares weight matrix

w0 can be found by using the following steps:

m
(1) use xi(k) to form X(k) and hence R L X(k)X(k)T

k=1

25

m
(2) find P L X(k)D{k)T

k=l

{3) if R is positive definite, then find w0 = R-lp .

Recursive least squares

The motivation for developing 'recursive-in-time'

algorithms can be seen as follows: if some new training examples

are added to the training set, if the above formulas are used,

then it will require us to compute the new R and P and evaluate

the inverse of R once again. Inversion of a matrix may be a very

time wasting process. Henc~, we desire to find some procedure by

which, the k-th step optimal weight Wk 0 can be updated to produce

Wk+l0 , the new optimal weight matrix. Such a procedure will build

up the optimal weight matrix step by step until the final training

set is reached, conserving optimallity at each step. The Recursive

Least Squares algorithm solves this problem.

Update f o rmu 1 as :

The simplest approach to Wk0 is the following procedure :

(1) update Rk using Rk+l Rk + X(k)X(k)T (3.23)

(2) update pk using pk+l = pk + X(k)D(k)T (3.24)

(3) compute Rk+l
-1

(3.25)

The auto correlation matrix and the cross correlation

matrix are updated and then used to compute Wk+l· If used

directly, the method will be wasteful, because

approximately,n 3+2n 2+n multiplications are required at each step,

because of the matrix inversion involved. However, the special

26

form of the update formula (3.23) can be used to great advantage.

This can be done by using the well known matrix inversion lemma :

(3.26}

Substituti~g A = Rk, B = X(k) , C = 1, and D = X(k)T in

relation (3.26} and applying (3.23) yields·:

= { Rk + X(k}X(k}T}- 1

Rk-1X(k)X(k)TRk- 1

1 + X(k)TRk- 1X(k)
(3.27)

From (3.27) it is clear that, given the new input vector,

Rk+ 1 - 1 can be computed directly. There is no need to calculate

Rk+ 1 , nor its inversion is necessary. The k+1 th optimal weight

matrix is given by:

Rk+1- 1 pk+1

= { Rk-1 -
Rk- 1X(k)X(k)TRk- 1

} { Pk + X(k)D(k)T }
1 + X(k)TRk- 1X(k)

Rk-1X(k)X(k}TRk-1pk
Rk-1pk - + Rk-1X(k)D(k)T

1 + X(k)TRk- 1X(k)

(3.28)

To simplify the

Rk- 1X(k)X(k)TRk- 1PkX(k}D(k)T

1 + X(k)TRk- 1X(k)
expression, let us make the following

substitutions

The k th optimal vector, Wk0 Rk- 1Pk

zk = Rk- 1x(k)

Y(k) Wk0 TX(k)

We get, Wk+ 1°
ZkY(k)T

= Wko - + ZkD(k)T
1+X(k)TZ(k)

27

ZkX(k)TzkD(k)T

1+X(k)TZ(k)

(3.29)

(3.30}

substituting q = X(k}Tzk , we get,

or, wk+1
T =

=

=

ZkY(k}T
+ ZkD(k)T

1 + q

D(k)T ZkY(k}T zk
wko - +

1 + q 1 + q

zk [D(k}T - Y(k)T
w 0 + k

1 + q

w 0 +
ZkE(k}T

k
1 + q

1 + q

(3. 30}

where E(k} is the error vector for the k th input X (k) .

The update formula for becomes:

(3.31)
1 + q

This form of RLS has an infinite memory, that is, they can

remember all the training data which have been used to train the

network. In other words, the final weights are functions of all

the sample inputs. This form of RLS is most useful in the presence

of stationary input. But if the input data is of non stationary

character, that is if they change their character with time, then

it is useful to introduce a forgetting factor, thereby diminishing

the contribution of the older data. This kind of exponential

weighting emphasizes the most recently received data. With

exponential weighting, the update formula becomes :

and, -1
Rk+1 =

J1. + q

1

J1. J1. + q
where J1. is the forgetting factor, and

28

(3.32)

} (3.32)

0 < J1. < 1. But

-
usually, ~ is kept within the range of 0.9 < ~ < 1. If ~ = 1 then,

the update formula becomes same as (3.30) and (3.31)

Computational cost of the RLS algorithm :

The Recursive version of the Least squares algorithm is

computationally less costly then the brute-force evaluation

version of the algorithm. The recursive version of the algorithm

assumes that the inverse of R and the optimal weight W0 is already

available and then it updates these two matrices, when it recieves

new training inputs. On the other hand, the brute-force version,

whenever it receives new training inputs, contructs the new R and

P matrices and inverts R and thereby evaluates new optimal weights

W0. Since matrix inversion i? an O(N3) process, it may prove to be

extremely wasteful for large size matrices. The recursive version

of ·the algorithm is of O(N2) complexity.

29

UNKNOWN
SEQUeNce

r-- -

M 0Df:L

fo,.,amc.h.~
et cy lA sl mc.n ~

I
I_ - - - - - - - - - - - - - - - - - --'

)()...------~

Y.IV ------____J

((})

w-,(};.)

(h)

N

1---- t=- "[_ X; W;
I

R. L 5
LfAR.Ntf\/(l

d(K)

e.(K)= d(KJ-Y(K)

F,·guhe. .3. < Ado..pJ.,'ve., I inear Combinen SlhuctuJte.

CHAPTER 4

NEURAL NETWORKS AND PATTERN RECOGNITION

CHAPTER 4

NEURAL NETWORKS AND PATTERN RECOGNITION

Pattern recognition problems require mainly two processes

analysis or feature extraction and classification. The anlyzer

accepts an input called pattern, which is a very complex physical

event, such as optical signals, speech signals or electrical

signals etc. The analyzer extracts the main features of the

pattern. Its output is the pattern vector. It is a perfectly

ordinary vector with no complications. The essential features of

such a pattern vector are :

(a) it has a fixed number of elements called descriptors,

(b) values of these descriptors in a vector are always known,

and are always numeric and

(c) The order of the descriptors within a pattern vector is

always fixed.

The output of the classifier is a series of digital signals, which

are mutually exclusive and exhaustive [1).

Machine learning is an important part of pattern recognition.

Before the pattern recognition system can operate, the classifier

must be taught to behave correctly. The training of the pattern

ca·lssifier is carried out by Machine Learning Techniques. During

the design phase of the classifier, a teacher examines the same

pattern as the analyzer and produces a response (equivalent to

the output of the classifier). If the pattern recognition system

were perfect, it would produce the same response as the teacher,

for all the input paterns.

30

Decision surface

A pattern classifier is a device for partitioning of the

space defined by the pattern vector X. That is, it constructs a

decision surface in the X-space, which can be placed in such a way

that, it separates the calsses defined by the teacher. It should

divide the X-space in some regions, each region containing feature

vectors belonging to one and only one class. Supposing this is

possible; when this decision surface is placed at an optimal

position, both the classifier and the teacher would agree. In this

case, we may regard, the teacher as making decisions by use of a

decision surface in the X-space. But in the situation, when the

classes are not separable in the X-space, we cannot draw a

decision surface for the teacher. However, we can still draw a

decision surface for the classifier.

If the pattern vectors in the X-space can be separated by

using a hyperplane, then the sets are said to be linearly

seperable. But not all pairs of sets can be separated using such

simple surfaces. For example, quadratic surfaces would be required

in some situations. In some situations, it is not possible to

divide the classes by any finite curve, although any finite

samples from these classes can always be separated by a curve of

sufficient complexity. Fig 4.1, 4.2 and 4.3 shows the casses of

linear decision surface, quadratic decision surface and another

quadratic (circular) decision surfaces respecively, in the two

dimensional case. Fig 4.4 demonstrates a situation, where it is

possible to separate the samples using a complex surface: it is

apparent that a simpler (linear) classifier would be more

reasonable [1].

31

similarity, distance and compactness

Two patterns produce identical X vectors, if the patterns are

identical. If two patterns are similar, then we shall usually find

that, their corresponding X vectors are close together. The

distance between two points in a high dimensional space can be

defined in many variety of ways. The usual definition of distance

in two and three dimensional spaces can be extended to higher

dimensional spaces. If U=(u1 ,u2 , ,un) and V=(v1 ,v2 , yn) are

two points in the n dimensional space, the Euclidean Distance

between them is defined as

11
I I u, v 1 1 = "c 2: cu · -v ·) 2 J c 4. 1) . 1 1

1=1
Let U and V be two n dimensional vectors. Any quantity D(U,V)

qualifies being called a distance function if it satisfies the

three conditions

D(U,V) = o ,if and only if u V

D(U,V) > 0 if U f V (4. 2)

D(U,W) + D(W,V) ~ D(U,V)

On the basis of the above properties, the following are

distances:

D(U,V)

D(U,V)

n
= { :E (u·-v·)r }1/r

. 1 1
1=1

n
= :E I ui-vil

i=1

(4 • 3)

(4. 4)

D (U, V) = Max { I u · -v · I } (4. 5) . 1 l
1=1. .n

From the above definitions it is seen that the definition of

a distance is quite arbitrary. Similarly it is also an ill defined

quantity. We can assume that any two patterns within the same

class are similar and they are dissimilar if they belong to

32

different classes. Then we are likely to find that the distances

between the vectors corresponding to patterns from the same class

are sma 11. That is, they are 1 ikely to be small compared ·to the

distances between patterns from different classes [1].

Another important concept is that of clusters. A cluster

corresponds to a peak in probability density function. A class may

contain several well separated clusters. A good example of this is

that of ·type· written letters of different fonts. While it is

unreasonable to expect all the 'A's to be mapped into the same

small region of the X-space by the analyzer, we can expect

clusters of points corresponding to each font. In such cases, the

inter cluster distances are large compared to the intra cluster

distances. The Mahalanobis Distance ri between the point U to the

i-th cluster is given by:

ri 2 = {U-M)T Ci-1 (U-M) (4. 6)

where M is the centroid of the i-th cluster, the superscript T

denotes matrix transpose operation, and ci ihe covarience matrix

of the i-th cluster [8).

m· = 1

1

N

1

N

2: X (4. 7)

(4. 8)

Here N denotes the number of vectors in the i-th clusers. The

form of the covarrience matrix corresponds to an elipsoidal

cluster, where the correlation between the features is expressed

by the non-zero terms in the non-diagonal terms in the matrix.

33

Neural networks and adaptive pattern recognition

The adaptive threshold element can be used for pattern

recognition and as a trainable logic device. It can be trained to

classify input patterns into two categories. For these

applications the zeroth weight w0 has a constant input +1, which

does not change from input pattern to pattern. Varying this zeroth

weight ·varies the threshold of the quantizer.

Linear separability

With n binary inputs and one binary output, a single ADALINE

is capable of implemnting certain logic functions. There are 2n

possible input patterns. A general logic implementation would be

capable of classifying each pattern as either +1 or -1, in accord
n

with the desired response. Thus there are 2 2 possible logic

functions connecting n inputs to a single output. A single neuron

is capable of realizing only a small subset of these functions,

known as linearly separable logic functions. These are the set of

the logic functions that can be obtained with all possible

settings of the weight values.

Fig 4.6 shows a two input neuron, and fig 4.7 shows all of

its possible binary inputs in the pattern vector space. In this

space, the co ordinate axes are the components of the input

pattern vector. The neuron separates the input patterns into two

categories, depending on the values of the input signal weights

and the bias weight. A critical thresholding condition will occur

when the analog response y equals zero:

(4. 9)

or, (4.10)

34

Figure 4.7 graphs the linear relations, which comprises a

separating line having

(4.11)

The three weights determine the slope, intercept and the side

of the separating line that corresponds to a positive output. The

opposite side of the separating line corresponds to a negative

output, while the line itself is the locus of all the input

patterns resulting in a zero analog output.

With two inputs, a single neuron can realize almost all the

logic functions. ·With many inputs, however, only a small fraction

of all possible logic functions are linearly separable. The single

neuron can realize only linearly separable functions and generally

cannot realize most functions. However, combinations of neurons or

networks of neurons can be used to realize non linearly separable

functions [12].

Non-linear separability

The inputjoutput mapping obtained in fig (4.7) illustrates a

linearly separable function. An example of a nonlinearly separable

function with two inputs is the XOR function:

(+1, +1) -~ -1
(+1, -1) -~ +1 (4.12)
(-1, +1) -~ +1
(-1, -1) -~ -1

No single.st~aight line exists that can achieve this

separation of input patterns.

In the network shown in fig 4.8 two ADALINEs are connected to

an AND logic device to produce an output. Systems of such types

are called MADALINEs. With weights suitably choosen, they can

realize the non-linearly separable function (4.12). The separating

35

boundary in the pattern space is shown in fig 4.9.

MADALINEs are constructed with many more inputs, with many

more neurons in the first layer, and with fixed logic device such

as AND, OR and MAJority vote takers in the second layer. These

three functions are in themselvs threshold logic function, as

illustrated in fig 4.10. The weights shown will implement these

functions, but the weights are not unique [12).

Layered neural nets

The MADALINEs of 1960s had adaptive first layers and fixed

threshold functions for the output layers. The feed forward neural

networks of 1980s have many layers and all layers are adaptive.

These networks are more powerful than the MADALINEs. Because of

the non linear elements present in each neuron, they can pick up

the non linearities in the training patterns very efficiently.

Because of this, they are very efficient in classification of the

non linearly separable functions (12).

Handwritten character classification

The problem of handwritten character recognition has invoked

great tesearch interest for a very long time. There are many

difficulties in handwritten character recogition, because of the

presence of large degree of variations in the data. Not only are

there some changes and distortion of characters from one

individual to another, but also, there are some variations from

the same individual at different times. Furthermore, difficulties

may result from problems such as complexity of characters,

similarity of different characters etc (11).

A widely accepted approach is to perform a feature extraction,

followed by a classification. The feature classification is

36

usually predefined and problem dependent. It requires most of the

design effort and determines the performance of the whole system

to a great extent. The classifier usually incorporates a trainable

pattern clasifier.

The traditional methods for recognition of handwritten

characters have been various statistical techniques, which require

a large amount of data, and template matching and graph theoretic

approaches, which require quite detailed programming. A more

recent and appealing approach is the neural· network technique.

They can provide a very flexible tool, which allows integration of

the feature extractor and the classifier in a single trainable

system. As a consequence, the demands of a preprocessor is greatly

reduced. Such methods result in high recognition accuracy. Also,

neural networks involve only simple arithmetic operations, with a

very simple control structure. They can be easily implemented on a

digital computer (4).

37

(OJ

(b)

(cJ

(0.) F.'JU 11~ 4.t
(b) F/gu.re 4.2.

(C) f,[Ju"e 4.¢

,

X 'J. •

X ' 1- X 'f. • • •
...,... ...

1- -J.. • • •
'1- ••

"" ~.,. ..

X,

'J.)I. ----~--)1. '1- X
'1- 'f

)(y...
'I(

--L------1--------;?" XI

xl.
...,

'}..
)..

';

1 "' .,..
1

"' .,.,

)< 'f. I •
I

1- X)I

"i-)<.

y.. 'J.

)(y.

"

L.'ru .. o. ,.ly S e..pa ra. ble.. CltHres

x,

A ... ~~iif'la h'c (J-lyperbota) decisiort
A G/-y. tU /ay. deu's/on r: u,. fa.c r__

~u,..face

~

,.

...,.. ·-·
I •

t!om;/t'(
Ctpah#.L;n9
$""-fac-e /,

/

I

/

\~...-·
/

0 , •

i ••

I • "f. . • ,.
~ 0 •

"to./ ••
·"" . . .

~ ~. . .
1- '1-/ • • •

;
.' . .

I ..

~l;ne.af' ~IA.#tfac.e.. ,5
moll.'- hUUono.l./e.

ldte"- B
Font 1

C..L-'!S.S 4

e<-ASS 6
/dfe.~t. 5
Fonl: }_

)(I

An ide_al,-~t.d de..sch.{pffi9t. ~A~wi11J ctu.~((;tu7?J ,
due to c);-H<ttt¥1? fonts.·

~--------~]
-1

T Vc._ 0 u.J-p v.J-
5/of't...:. - <.:>,/Wz..

\
-ve. u!A.fpv..f

.
(-1,·d)

• (·d, -d)

x,

• (-d, -1)

\b)

A -kvo /npt.Al- n{ uron

(b) S<?..pa.ro~lr·ng lAne in pQo..H<tt.n spa.ce..

~r ll. -1-tvo inpW- h-t.uh..on .

A fv1ADALINE.

I
I

• (Ti -i)
'

An XOI\ /unci/of]

jMt f'.1 ADAL IN£

and ~~pa.hAZ·n,J bounda.~ies

Of ft'9· 4· lS

x. __ ~

x2-
~--~

)',,

X

;;,,

X)....

)(.>

w.::. -ri
I

h/2.::: T 1

w, =1-1

h./l. ::: -t-1

"-'a-=- -+i

1 6R.

-i

6:T!
We= 0

I
'1 MAJ

-1

~·9u n e 4 ·1 0 Neu.nona/ imple.menla.l,·on of AND, OR and

M A 0on_.:ty Lo:p·c fundiotls

CHAPTER 5

IMPLEMENTATION OF THE RLS ALGORITHM
FOR HANDWRITTEN CHARACTER RECOGNITION

CHAPTER 5

IMPLEMENTATION OF THE

RLS ALGORITHM FOR HANDWRITTEN CHARACTER RECOGNITION

In this chapter, the implementation of the Recursive Least

Squares algorithm for trainig a two layer connectionist network

has been described.

Problem specification

The network model : a two layer linear combiner.

The training algorithm used: the RLS algorithm.

The handwritten characters to be identified are 'A', 'B',

'G', 'R', 'S' and 'X', in uppercase.

The work involved developing a Pascal program to simulate a

two layer connectionist network (a linear combiner) and to

implement the Recursive Least Squres algorithm to train the

network to recognize handwritten letters. It was decided to teach

the network to differentiate the handwritten uppercase letters A,

B, G, R, S and X. The input data for training the network were

collected from 25 individual. Each of the subjects was given graph

papers containing squares of 8 X 8 boxes. Then they were asked to

write these six letters, in uppercase, large enough to fill the

boxes. After the leters were entered, the subjects were asked to

shade in any square of the boxes, which has been intersected by

any part of the letters they wrote (fig. 5.1). out of these 25

sets collected, 21 sets were used as training data to train the

network. The remaining 4 sets were used for testing purposes. The

38

data were entered into a file as a sequence of ones and zeros,

representing the filled and unfilled squares of the boxes

respectively. Only six letters were to be identified. So, an

additional three bit letter identification code was also stored in

the text file along with the data which would be used during

supervised training of the network.

The Network

The network chosen for this work was 3 linear combiner

network, having ·an input layer and an output layer. No hidden

layer was considered. The network was configured to have 65 input

elements 64 inputs representing the 8 X 8 squares of the

digitized letters and an additional biasing input, always set to

+1, was used as the 65 th input. Since a minimum of three bits are

required for identification of six letters, the network was

configured for three output elements.

supervised learning

The training of the network was done over the 21 sets (126

letters) of samples, which were stored in a file as a sequence of

ones and zeros, and along with each letter, an identification code

was also stored. The letter identification codes used are as

follows:

A

R

0 0 1,

1 0 0

B

s

0 1 o,

1 o 1, and

G

s

0 1 1

1 1 0.

After reading the inputs and the desired outputs (letter

identification codes), the auto correlation and the cross

correlation matrices were formed. The inversion ·of the auto

39

correlation matrix, which is a quite large matrix (65X65) , turned

out to be the most time consuming portion of the whole training

process. After calculation of the inverse of the auto correlation

matrix, it was stored in a text file. It was then used to

calculate the optimal weight matrix for the trainig sets.

Implementation of the algorithm

The program has been written in three parts : the first

program was meant to be run only once, to calculate the auto

correlation matrix R, its inverse and the cross correlation

matrix P for the initial training data. Then it calculates the

optimal weight matrix w0 for the training data. Once they are

calculated, the matrices are stored in files for later use by the

recursive.version of the algorith~. Keeping in view the large size

(65X65) of the auto correlation matrix, the inverse was calculated

using an iterative method, which calculates a least square

approximation of the matrix rather than using direct method such

as the Gaussian elimination method or the L-U decomposition

method, which are unlikely to provide satisfactory results, even

with double precision arithmatic.

The second program implements the recursive version of the

least squares algorithm. This program is meant to be used in case

new additions were made to teach the network with more training

data. The program reads in the R- 1 matrix and the optimal weight

matrix W0 from the files where they had been stored by the first

program and updates them step by step. After all the training data

are dealt with, it stores the new R- 1 and W0 in the same files

from where they head been read in. The algorithm can be described

40

in ten steps as follows :

(1) Read new input X(k) from file

(2) Read new desired outcomes D(k) from file

(3) Compute the output vector Y(k) = wkoTX(k)

(4) Comput the error vector E(k) = D(k) - Y(k)

(5) Com put the vector zk = Rk- 1x(k)

(6) Compute q = X(k)Tzk

(7) Compute v = 1/(1+q)

(8} Compute Zk' = vzk

(9} Update optimal weight vector Wk 0 to wk+ 1°
wk+lo = wko + Zk'E(k)T

(10) Update the inverse correlation matrix Rk- 1 to Rk+ 1 - 1

Rk+1-1 = Rk-1- Zk'zkT

The algorithm assumes that the matrix Rk- 1 and the initial

optimal weight matrix Wk0 are available initially. So, they are to

be read in from the files where they are stored from their earlier

calculations.

The third program is used for testing the network. It reads

the test data from a file, and reads the stored optimal weight

matrix of the network and calculates the output of the network :

Y = wTx

Since the output vector will contain real numbers, a simple

thresholding (the step function, shifted to the right by 0.5 unit)

is done to get a binary output. That is, if Yi I 1:=;i::;3, is an

analog output of the network then the i-th digitized output of the

network will be +1 if Y(~ 0.5, and 0 if Yi< 0.5.

The software was implemented on a DEC VAX 11/78-0 using

41

Pascal.

Results

The first program, used to calculate the inverse of the auto

correlati9n matrix, was found to be the most time consuming

portion of the training process. The inversion of the 65 X 65 auto

correlation matrix took around 8 hours of CPU time on VAX 11/780.

After running the testing program on the training data, it

was found that, the program identified 22 characters correctly· out

of the total 24 characters in the testing data sets.

The success rate= (22/24)*100 = 91.7 %

The letters of the test sets, that the network failed to

recognise are shown in fig. 5.2.

42

0 0 () 1 1 0 00
I 1\

0 0 () 1 1 00 0
/_ \

lj \
\

I '\

() .tj 1 1 1 1 .') 0
0 ·') 1 0 () 1 0() __ _,-·

0 1 1 1 1 1 1 ()
(\,)

0 1 (" 0 (_) () 1 0 ',J

1 1 (J 0 (_) :~ 1 1
1 0 0 C)·~ ::J 8 1

,:;<JLPte. 5·i (QJ Hondc.vh.if!en. 'A'

C.bJ 1A' o.f+e~t shad.,'nJ

0 0
(c.)

c e) Fife_ h~h(.$t"'#-o.L.aY) CJ f 1\ I CJi/J.. id~YJh'r'C£J.l;.·m Code...

(C4.) Ch)

F1gu.ff.e 5. 2. The hvo lellen.s !ftaf The ne-lvvo~k fa~'led 1-o 1t€Gognl;c
(aJ Q. I B I
(b) 0. I R'

CONCLUSIONS

Various Neural Network learning procedures have been studied, and in

particular, The Recursive Least Squares learning procedure has been studied

in detail.

An algorithm for handwritten character recogmtiOn based on the

Recursive Least Squares learning procedure is developed and an experimen

tal implementation using PASCAL is presented. The simulation results

shown by the combiner network were found to be fairly modest. The

network is a linear classifier, that can pick up only the linearities in the

training data. Since handwritings can vary widely from one individual to

another, it may not be possible to separate them using as simple a surface

as the hyperplane in the pattern space. A probable method to handle the non

linearities in the training data could be manipulation of the feature set, that

is, by using second or third order feature vectors, depending upon the degree

of non-linearity.

43

BIBLIOGRAPHY

1. Batchellor, Bruce G., Practical approach to pattern classification, Plenum publishing co.
ltd.,London (1974).

2. Cowan, C. F. N. et al., Adaptive filters, Prentice Hall, Englewood Cliffs, NJ (1985).

3. Crawford, T. M. et al., A machine learning approach to expert systems for fault
diagnosisin communication equipments, Computer Aided Engineering Journal, Feb.
1987, pp 31-38.

4. Guyon, I. et al., Design of a neural network character recognizer for a touch terminal,
Pattern Recognition, vol. 24, no. 2,1991, pp 105-119.

5. Hinton, G. E., Connectionist learning procedures, Artificial Intelligence, Vol. 40, 1989,
pp 185- 234.

6. Knight, K., Connectionist ideas and algorithms, CACM, Vol. 33, No. 11, 1990, pp 59-
74.

7. Lee, B. W. et al., Hardware annealing in analog VLSI neurocomputing, Kluwer
Academic Publisher, London, 1991.

8. Mirzai, A. R. at al., Application of recursive least squares algorithm for learning and
mathematical reasoning, Engineering Application of AI, Vol. 3, June, 1990, pp 118-126.

9. Mirzai, A. R. et al., Intelligent alignment of waveguide filters using a machine learning
approach, IEEE transactions on Microwave theory and techniques, Vol. 37, No. 1, Jan.
1989, pp.186-126.

10. Schweller, K. G. et al., Neural nets and alphabets: introducing students to neural
networks, SIGCSE Bulletin, Vol. 1, No.3, 1989, pp. 2-7.

11. Tappert, C. C. et al., The state of the art in on-line handwriting recognition,IEEE
transactions on pattern analysis and machine intelligence, Vol. 12, No.8, Aug. 1990. pp.
787- 808.

12. Widrow, B. et al., Neural nets for adaptive filtering and adaptive pattern recognition,
IEEE Computer, March, 1988,pp.25-39.

44 ...

	TH39210001
	TH39210002
	TH39210003
	TH39210004
	TH39210005
	TH39210006
	TH39210007
	TH39210008
	TH39210009
	TH39210010
	TH39210011
	TH39210012
	TH39210013
	TH39210014
	TH39210015
	TH39210016
	TH39210017
	TH39210018
	TH39210019
	TH39210020
	TH39210021
	TH39210022
	TH39210023
	TH39210024
	TH39210025
	TH39210026
	TH39210027
	TH39210028
	TH39210029
	TH39210030
	TH39210031
	TH39210032
	TH39210033
	TH39210034
	TH39210035
	TH39210036
	TH39210037
	TH39210038
	TH39210039
	TH39210040
	TH39210041
	TH39210042
	TH39210043
	TH39210044
	TH39210045
	TH39210046
	TH39210047
	TH39210048
	TH39210049
	TH39210050
	TH39210051
	TH39210052
	TH39210053
	TH39210054
	TH39210055
	TH39210056
	TH39210057
	TH39210058
	TH39210059
	TH39210060
	TH39210061
	TH39210062
	TH39210063
	TH39210064
	TH39210065
	TH39210066
	TH39210067

