
TRANSLATING 'C' PROGRAMS FOR EXECUTION
ON PROLOG BASED SYSTEMS

Dissertation submitted to

Jawaharlal Nehru Un1versny

in partial fulfilment of the requirements

for the award of the Degree of

MASTER OF TECHNOLOGY

in

COMPUTER SCIENCE AND TECHNOLOGY

by

NEERAJ AGGARWAL

SCHQQL. OF COMPUTER AND SYSTEMS SCIENCES

J~WAHARLAL NEHRU UNIVERSITY

N~\N OELHI-110 067,

JANUARY 1992

@I
-1

CERTIFICATE

This dissertation titled,

TRANSLATING 1 C1 PROGRAMS FOR EXECUTION ON PROLOG

BASED MACHINES.

has been done by Mr. Neeraj Aggarwal, a bonafide

student of School of Computer and System Sciences, Jawaharlal

Nehru University, New Delhi.

This work is original and has not been submitted for

any degree or diploma in any other university or institute.

Dr~G~&
Professor & Dean, 'lo1J }'r).....
SC&SS, J. N. U. ,
New Delhi.

Neeraj Aggarwal

Dr. K.K.Bharadwaj
Professor,
SC&SS, J. N. U. ,
New Delhi.

ACKNOWLEDGEMENT

I am grateful to my supervisor Prof. K. K. Bharadwaj

who provided me the necessary insight into the subject and

was always there with his helping hand in case of

difficulties. But for his able guidance, it wouldn't have

been possible for me to complete the project. He had the

patience of listening to my problems and providing

constructive suggestions.

I am thankful to Prof. R. G. Gupta for his constant

inspiration and.help. I also thank all my teachers who shared

their valuable skills, expertise and time. They helped me

realize the difficulties involved in making a transgression

from the theoretical aspect to implementation aspect.

Beside this, I cannot forget to thank my colleagues

and friends for their encouragement, suggestions and worthy

discussions. They help in creating an atmosphere in which one

is able to keep up his spirits.

Thanks are also due to all the people who directly or

indirectly helped me in the due course of my work.

Neeraj Aggarwal

ABSTRACT

Developing a program that understands a input source

program in 'C' language and then translate it into PROLOG

rules by source-to-source translation is described here in

this dissertation. We say a program understands a programming

language if it behaves by taking a correct or acceptable

action in response to the input. The behavior, or more

explicitly the action taken in this program is only an

internal response. Based on the syntax of the input program

the action may simply be the creation of some internal data

structures, or adding a missing token by simply comparing it

with the grammar rule. The strategy followed is basically

syntax directed translation scheme in top-down recursive

parser. This translator is implemented using languages :

PROLOG & 'C'.

Also, we explore many of the important issues related

to radically different control and data structures in these

two languages and the problems associated with translation

process are also discussed here.

CONTENTS

ABSTRACT

ch 1 INTRODUCTION

1.1 Language Understanding

1.2 Objective and Scope of the Project

1.3 Motivation for Project Selection

ch 2 THEORETIC FOUNDATION OF TRANSLATOR

2.1 Programming Languages

2.2 Notations for Grammers

2.2.1 Classification of Grammers

2.3 Parsers

2.3.1 Top - Down Parser

2.3.2 Recusive - Decent Parsing

2.3.3 Transition Diagrams

2.4 Error Recovery

2.5 Syntax Directed Translation Scheme

ch 3 IMPERATIVE AND FUNCTIONAL LANGUAGES

3.1 Imperative Languages

3.2 Functional Languages

3.3 Prolog & 'C'

3.3.1 The 'C' Language

3.3.2 The language Prolog

3.3.3 Difference Between Prolog & 'C'

1

1

3

4

6

6

7

8

9

10

13

14

15

16

18

18

19

21

22

23

26

ch 4 SYSTEM ANALYSIS AND DESIGN

4.1 Translator

4.2 The Source Language

4.3 The Target Language

4.4 The Translation Scheme

4.4.1 Analysis of Source Program

4.4.2 Error Handling Technique

4.5 Translation Actions

4.5.1 Declarations

4.5.2 Statements

4.5.3 Common Data Structures

ch 5 CONCLUSION AND SUGGESTED ENHANCEMENTS

5.1 Conclusion

5.2 Suggested Enhancements

BIBLIOGRAPHY

APPENDICIES

A Grammer For SubC

B Transition Diagrams For SubC

C Test Results

28

29

29

30

31

'32

36

40

41

41

45

47

47

48

50

CHAPTER 1

INTRODUCTION

INTRODUCTION

This chapter will provide a brief overview on the language

understanding (programming & natural) and translation

schemes. In addition, scope of the project and motivation for

selecting this project is also discussed.

1.1 LANGUAGE UNDERSTANDING

When in 1950, Allan Turing wrote a controversial

articled entitled "Computing Machinery and Intelligence", he

started with a question : "Can Computer Think Like A Man".

The article, of course, created a flutter but it ultimately

established Turing as "Father of Artificial Intelligence". In

1950's, John Backus had given an excellent account of the

drawbacks and limitations posed by the existing conventional

computational model based on von Neumann concepts in a paper

titled "Can Programming be liberated from von Neumann style"

[]. The research resulted in the development of a

computational model based upon logic programming. This class

of applicative languages are called functional languages, are

increasingly gaining importance in new generation computer

models. LISP (List Processing) and PROLOG (Programming in

Logic) are two of the functional languages which have found

acceptance.

To understand something is to transform it from one

representation into another, where this second

1

INTRODUCTION

representation has been chosen to correspond to a set of

available actions that could be performed and where the

mapping has been designed so that for each event, an

appropriate action will be performed. There is a formal sense

in which a language can be defined simply as a set of string

without reference to any world being described or task to be

performed. Although some of the ideas that have come out of

this formal study of languages can be exploited in parts of

the understanding process, they are only beginning. To get

the overall picture, we need to think of language as a pair

(source language, target representation), together with a

mapping between elements of each to the other. The target

representation will have chosen to be appropriate for the

task at the hand.

There are three major factors that contribute to the

difficulty of an understanding problem :

The complexity of the target representation into

which the matching is being done.

The type of mapping : one-one, many-one, one- many,

or many-many.

-- The level of interaction of the components of the

source representation.

Developing programs that understands a natural

language is a difficult problem. There is much ambiguity in a

natural language. Many words have several meaning and

sentences can have different meaning in different context.

It requires that a program transform sentences occurring as

2

INTRODUCTION

part of a dialog into data structures which convey the

intended meaning of the sentences to a reasoning program.

Now, a programming is structured and ambiguity is shunned

while designing a programming language. so, understanding and

correcting some of the syntax errors in such languages is

less complicated, if not less difficult.

Though it can be safely stated, without any

exaggeration, that this field is still in its infancy, and

research is going on. We have made a small beginning on our

part to do our share.

1.2 Objective and scope of the project

The objective can be phrased as :

Translating "C" programs for execution on a PROLOG

based system. Because of radically different control and data

structures in these two languages, the problems associaf._e_d -~ -

with translation process are to be discussed and its

performance to be accessed.

As we set about the task_ of building computer program

that understands programming language, one of the first

things we shall have to do is to define precisely what the

underlying task is and what the target representation should

look like. Having done-that, it will be much easier to

define, at least for that environment, what a sentence

(statement) means. In general, this means that the reasoning

3

INTRODUCTION

program must know a lot about the beliefs and goals of the

user, and a great deal of 'C' grammar knowledge.

The proposed work is to develop a software which will

be able to execute the programs written in procedural

language, a subset of 'C' called subc, on the computer

systems whose kernel language are based on logic programming.

The efficiency of the output code in PROLOG is not our

primary concern; our immediate goal is to demonstrate

something that does the job.

It is also proposed to develop an parser based on the

input SubC programs as an attempt to include automatic

removal of some of the syntax errors. The errors that can be

removed are

1) Spelling verification and correction.

2) Replacement of missing delimiters.

3) Non declaration of identifiers.

1.3 Motivation for Project Selection

Since its conception by Alian Colmerauer in early

1970's PROLOG has been gaining in a variety of application

areas (e.g.natural language processing, expert systems,

database query languages, CAD modellers, etc.). One of the

objectives of the Japanese Fifth Generation Computer Project

is to develop computer systems whose kernel languages(PROLOG)

are based on logic rather than on the conventional imperative

languages which have been in general use until now. Since the

4

INTRODUCTION

logic programming and its application has been intensified.

At the same time concern has been voiced over the problem of

the large base of existing software which is implemented in

imperative languages, and what might happen to it if computer

systems with these radically different architectures were to

replace existing systems. In order to asses this problem a

·study is conducted here to implement conventional language on

a PROLOG machine.

5

CHAPTER 2

THEORETIC FOUNDATIONS OF TRANSLATOR

THEOR~TIC FOUNDATIONS OF TRANSLATOR

This chapter covers basic material which we will use

extensively throughout the rest of this dissertation.

2.1 PROGRAMMING LANGUAGES
.·•

In computer programming, a programming language serves

as a means of communication between the person with a problem

and the·computer used to help solve it. An effective

programming language enhances both the development and the

expression of computer programs. It must bridge the gap

between the often unstructured nature of human thought and

the. precision required for computer execution. A high level

language should contain constructs which reflect the

terminology and elements used in describing the problem and

are independent of the computer used. such a program solution

to a given problem will be easier and more natural if the

high level programming language is used.

Advantages of high level languages are as follows

1. Easier to learn and understand.

2. Naturalness and ease with which an algorithm

can be written.

3. Portability or relative machine - independence

of languages.

4. Modular pnd hierarchical description of

programming tasks, permitting delegation of tasks and

division of labor resulting in greater security and

6

THEORlTIC FOUNDATIONS OF TRANSLATOR

productivity with a minimum of and effort.

5. Permits better documentation resulting in

increased reliability and decreased maintenance.

6. Programs can be easily debugged.

7. Structuredness of a language results in a

disciplined use of pointers, data structures, flow

of-control constructs etc, i.e. efficiency of use is

increased.

2.2 Notation for Grammars

A programming language consists of a set of programs.

A grammar is a formal vehicle for generating these programs.

several relations can be defined on the rules of grammar, and

these relations can lead to efficient compilation algorithms

for the language associated with that grammar. Consequently,

the concept of grammar in the formal language becomes a

important one.

The study of grammars constitutes an important subarea

of computer science called formal language theory. This area

emerged in the mid-1950's as a result of the effort of Noam

Chomsky, who gave a mathematical model of a grammar in

connection with his study of natural languages. In 1960, the

concept of a grammar became important to programmers because

the syntax of ALGOL 60 was described by a grammar.

Any means for specifying an infinite language should

be finite. One method of specification which satisfies this

7

THEORETIC FOUNDATIONS OF TRANSLATOR

requirement uses a generative device called a grammar. A

grammar consists of a finite nonempty set of rules or

productions which specify the syntex of the languages. Many

grammars may generate the same language but impose different

.structures on the sentences of that language.

Definition :-

A grammar is defined by a 4-tuple G = (T,N,S,P} where

T, set of terminal symbols.

N, set of non-terminal symbols.

S, a distinguished element of N, called the

start variable.

P, a finite nonempty set of productions in which

each production is of form

A -> B where A € N.

The set of all words generated by G is called the

language generated by G.

2.2.1. Classification of Grammars

Chomsky classified grammars into four classes by

imposing different set of restrictions on the productions:

Type 'O' :- Grammar whose rules are unrestricted and is

called unrestricted grammar.

Type '1' (Context-Sensitive) :- The grammar contains only

productions of the form A -> B, where IAI <= IBI

IAI denotes the length of A.

where

8

THEOR~TIC FOUNDATIONS OF TRANSLATOR

Type '2' (Context-Free) :- The grammar contains only

productions of the form A -> B, where IAI <= IBI and A e N.

Type '3' (Regular Grammar) :-The grammar contains only

productions of the form A -> B, where I A I <= ·I B I and A e

N, and B has the form aS or a, where a e T and B e N.

Here, we are concerned only with context-free-

grammars because they are the most powerful formalisms for

which we have effective and efficient parsing algorithms.

2.3 PARSERS

A parser for grammar G is a program that takes as

input a string 'w' and produces as output either a parse tree

for 'w', if 'w' is a sentence of G, or an error indicating

that 'w' is not a sentence of G. Often the parse tree is

produced in only a figurative sense; in reality, the parse

tree exists only as a sequence of actions made by stepping

through the tree construction process. Given a sentence, the

construction of a parse tree can be illustrated pictorially

in figure below, where root and leaves of the tree are known

and the rest of syntax tree must be found.

·.(5/

[SE.NTENC.E I
9

THEOR~TIC FOUNDATIONS OF TRANSLATOR

There are two ways by which this construction can be

accomplished.

-- Top-Down Parsing : An attempt is made to

construct the tree starting at the root (top) and

proceeding downwards towards the leaves(bottom).

-- Bottom-Up Parsing completion of the tree is

made by attempting to start at the leaves and moving upwards

towards the root.

2.3.1 Top-Down Parsing

Top-down parsing can be viewed as an attempt to find a

leftmost derivation for an input string. Equivalently, it can

be viewed as attempt to construct a parse tree for the input

starting from the root and creating the nodes of the parse

tree in preorder. For example, consider the grammar

Identifier ==> Identifier Digit I Letter

Letter ==> A .. z I a .. z

Digit ==> 0. 0 9

and the input x4. The construction of the parse tree is

as follows

1) Identifier 2) Identifier
I \ I \

I \ I \
I \ I \

Identifier Digit Identifier Digit

Letter

10

THEOR]TIC FOUNDATIONS OF TRANSLATOR

3) Identifier 4) Identifier
I \

I
Identifier

I
Letter

I
X

\
Digit

I \
I \

Identifier Digit

I I I
Letter 4

X

Since we have now produced a parse tree for 'w', we

halt and announce successful completion of parsing. An easy

way to implement such a parser is to create a procedure for

each non termina~. If the grammar derive an infinite number

of strings, recursive procedures are essential.

Difficulties with top-down parsing

1) Left-Recursion - A grammar G is said to be left-

reqursive if it has a non-terminal A such that there is a

derivation A===> Aa for some 'a'. A left-recursive grammar

can cause a top down parser to go into an infinite loop. That

is, when we try to expand A, we may eventually find ourselves

again trying to expand A without having consumed any input.

Elimination of left-recursion :- If we have the left-

recursive pair of productions

A ==> Aa I B

where B does not begin with an A, then we can eliminate

the left-recursion by replacing this pair of production with

A ==> BA'

A' ==> aA' I €

11

THEORETIC FOUNDATIONS OF TRANSLATOR

2) Backtracking :- If we make a sequence of erroneous

expansions and subsequently discover a mismatch, we may have

to undo the semantic effects of making these erroneous

expansions. For example, entries made in the symbol table

might have to be removed. Since undoing semantic actions

requires a substantial overhead, it is reasonable to consider

top-down parsers that do no backtracking.

Removal of backtracking :- In order that no

backtracking is required, we must know, given the current

input symbol 'a' and the non terminal A to be expanded, which

one of the alternates of the production

A==> alla2la31-----laN is the unique alternate that derives

a string beginning with 'a'. That is, by using the next input

symbol to guide parsing actions, a proper alternate is

detectable. For example,

Statement ==> if Condition then Statement

while Condition do Statement

do statement while Condition

Then the keywords if, while, and do tell us the unique

alternate. One nuance concerns the empty strings. If one

alternate for A is €, and none of the alternates is suitable,

then we may expand A by A==> €.

3) Ambiguous order of alternates :- The order in which the

alternates are tried can affect the language accepted. Only

way to remove this is to assign the unique alternates at the

next input symbol.

12

THEORITIC FOUNDATIONS OF TRANSLATOR

4) Error reporting :- When failure is reported, we have very

little idea where the error has actually occurred. A top-down

parser with backtrack simply returns failure no matter what

the error is.

2.3.2 Recursive - Descent Parsing

A parser that uses a set of recursive procedures to

recognize its input with no left-recursion and with no

backtracking is called a recursive-descent parsing. The

recursive procedures can be easy to write and fairly

efficient if written in a language that implements procedure

calls efficiently.

Left-factoring

Often the grammar one writes down is not suitable for

recursive descent parsing, even if there is no left

recursion. For example, if we have the two productions

Statement ==> if Condition then statement

if Condition then Statement else Statement

we could not, on seeing input symbol if, tell which to choose

to expand statement. A useful method for manipulating

grammars into a form suitable for recursive descent parsing

is left-factoring, the process of factoring out the common

prefixes of alternates.

Let there are two productions

A ==> p Q p s

13

THEORITIC FOUNDATIONS OF TRANSLATOR

After left factoring, the original productions become

A ==> P A'

A' ==> Q I s

2.3.3 Transition Diagrams

One way to design any program is to describe the

behavior of the program by a flowchart. This approach is

particularly useful when the action taken is highly dependent

on what token have been seen recently. A special kind of

flowchart, called transition diagram has evolved.

Transition diagram for identifiers

In a transition diagram, the boxes of the flow chart

are drawn as circle and are called states. The states are

connected by various edges leaving a state indicate the input

characters that can appear after the state.

14

THEORITIC FOUNDATIONS OF TRANSLATOR

2.4 Error Recovery

There are many different general strategies that a

parser can employ to recover from a syntactic error. Aho,

Ullman, and Sethi [introduced the following strategies :

1) Panic Mode Recovery On discovering an error, the

parser discards input symbol one at a time until one of a

designated set of synchronizing tokens is found. The

synchronizing tokens are usually delimiters, such as

semicolon, whose role in the source program is clear. It

skips a considerable amount of input without checking it for

additional errors.

2) Phase Level Recovery : On discovering an error, a parser

may perform local correction on the remaining input; that is,

it may replace a prefix of the remaining input by some string

that allows the parser to continue.

3) Error Productions : If we have a good idea of common

errors that might be encountered, we can augment the grammar

for the language at hand with productions that generate the

erroneous constructs. If an error production is used by the

parser, we can generate appropriate error diagnostics to

indicate the erroneous construct that has recognized in the

input.

15

THEORLTIC FOUNDATIONS OF TRANSLATOR

4) Global Correction : Given an incorrect input string n and

grammar G, this method will find a parse tree for a related

string B, such that the number of insertions, deletions, and

changes of tokens required to transform n into B is as small

as possible. These methods are too costly, so these

techniques are currently only of theoretical interest.

2.5 Syntax Directed Translation Scheme (SDTS)

This method is based on the idea that the type of

semantic analysis performed and the nature of the code

produced is specified (i.e. determined) for each production

of the grammar. Hence, as the production rules for a language

are applied, the parser can simply invoke the appropriate

semantic analysi~ and code generation routine and the target

code can be produced in a systematic fashion. This type of

compiling is often called ''syntax directed" because the

production rules of the grammar are used to direct the type

of processing that is to be performed on the source language

statements.

A SDTS is more of a context-free grammar in which a

program fragment called an output action (or semantic action

or semantic rule) is associated with each production rule.

The output action may involve the computation of values for

variables belonging to the compiler, the generation of

intermediate code, the printing of an error diagnostic, or

the placement of some value in a table, for example. The

values computed by action $ quite frequently are associated

16

THEOR~TIC FOUNDATIONS OF TRANSLATOR

with a grammar symbol is called a translation of that symbol.

The translation may be a structure consisting of fields of

various types. If the value of the translation of the

nonterminal on the left side of the production is defined as

a function of the translations of the nonterminals on the

right side. Such a translation is called a synthesized

translation.

If the translation of a nonterminal on the right hand

side of production is defined in terms of a translation of

the nonterminal on the left then it is called an inherited

translation.

17

CHAPTER 3

IMPERATIVE AND FUNCTIONAL LANGUAGES

IMPERATIVE AND FUNCTIONAL LANGUAGES

The programming languages can be classified into two

categories. We will try to understand these two classes which

will help in implementing the translator.

3.1 Imperative Languages

Some of the characteristic features are :-

1) In an imperative programming language, the fundamental

mode of operation is based on changing the state of variables

through assignments or other similar language constructs.

These variables are used to imitate the storage of the

underlying machine. The basic dependence upon variables and

the association of values with variables is characteristic of

a von Neumann architecture.

2) The execution of a program which realizes some algorithm

may be regarded as a sequence of state transformations in

which the state of the store or the current point of control

or both may change.

3) The programmer must specify step by step how a result is

to be computed.

4) The large syntax base and ever expanding size of the

language definition.

5) There is no uniform computational style; each programmer

has its own. Style is more of an art than science.

18

IMPERATIVE AND FUNCTIONAL LANGUAGES

6) Declarations which define the attributes of storage

location.

7) Assignment statements which effect transformations from

one state to another by updating storage locations.

8) Control statements which determine the point of control at

any instant and hence the order of state transformation.

9) Structurdness of the language which effect the output on

the state at which the procedure or program is called. This

demands rigid ordering of procedures.

The conventional languages such as PASCAL, FORTRAN,

'C', etc. are Imperative programming languages. Though new

advancements and developments in these languages greatly

improved the original versions of the languages, the inherent

limitations posed by the von Neumann computational model are

not removed and hence the need for new type of programming

languages.

3.2 Functional Languages

The second group of languages are called functional

languages. LISP and PROLOG are good example in this category.

These languages tries to eliminate some of the drawbacks that

are existing in the previous class of languages. Some of the

features of these languages are :

'
1) They are based on a sound mathematical model which defines

semantics of the languages precisely. The semantics of LISP

is based on the computational model called -calculus and

19

IMPERATIVE AND FUNCTIONAL LANGUAGES

Prolog is based on a subset of first order predicate calculus

formulae known as Horn Clauses.

2) Functional languages emphasizes on what to do on static

facts and rules and not on procedural details which involves

emphasizes on what to do rather than how to do it exactly;

using the specific instruction set provided by the machineo

3) They usually employ some inference mechanism to reach the

result like employing a pattern matching technique to access

the needed record or the values of the variable.

4) There do not exist variables in the sense of conventional

languages. There exists symbols which can be bound or free

but they do not represent storage locations. This means that

all the values assigned to variables are temporary for

instantiation purpose only.

5) The order of evaluation of variables does not change the

result and always leads to the same normal form.

6) There is a uniform syntactical notation, which almost

completely eliminates the syntax errors and hence the

necessity of big manuals for language definition.

7) A important feature of these languages is its

typelessness. As far as the computer is concerned it does not

distinguish program and data. It is the imperative language

which creates an artificial dichotomy due to its

structurdness and prevents the program from manipulating it.

But in applicative functional languages, since there does not

exists any difference between function and data, functions

can be used as arguments just as any other data and can be

20

IMPERATIVE AND FUNCTIONAL LANGUAGES

manipulated accordingly. These meta-level features are very

much useful in higher lave! programming like in the area of

Artific~al Intelligence.

8) Another distinguishing feature is its dynamic databases.

Data can be added or deleted when deemed necessary by

programmer. Since functional language do not differentiate

between program and data, program parts (clauses) can be

added or deleted dynamically. This leads to dynamic

programming, which means program can be changed at run time.

Learning is an important consequent of this feature.

9) One more striking feature of functional language is its

ability to support parallel computation. Most of the problems

to be solved will have some parts which can be done

concurrently. Conventional languages does not provide ways to

express these parallelism. This is basically because the

design for development of imperative languages was influenced

by the underlying architecture, which is inherently

sequential with one-word-at-a-time philosophy.

3.3 PROLOG & 1 C 1

In order to understand the problems of translation

from a conventional imperative language like 'C' to a

declarative language like Prolog, we will consider briefly

the two languages and difference between them.

21

IMPERATIVE AND FUNCTIONAL LANGUAGES

3.3.1 The 11C11 Language

'C' was originally designed for and implemented on the

UNIX operating system for the DEC PDP - 11, by Dennis

Ritchie. The operating system, the 1 C 1 compiler, and

essentially all UNIX applications programs are written in

I C I •

1) •c• provides a variety of data type.

The fundamental types are characters, and integers and

floating point numbers of several sizes. In addition, there

is a hierarchy of derived data types created with pointers,

arrays, structures, and unions. Pointers provide for machine

independent address arithmetic.

2) •c• provides the fundamental control-flow constructions.

For a well-structured program 1 C1 provides : decision

making (if- else), selecting one of a set of possible cases

(switch), looping with termination test at the top (whiLe,

for) or at the bottom (do), and early loop emit (break).

3) •c• is a relatively "low level" language.

It simply means 1 C 1 deals with the same sort of

objects that most computers do, namely characters, numbers,

and addresses. 1 C 1 provides no operations to deal directly

with composite objects such as character strings, sets,

lists, or arrays. There is no operations that manipulate an

entire array or string, although structures may be copied as

a unit.

22

IMPERATIVE AND FUNCTIONAL LANGUAGES

4) •c• is not a strongly typed language.

5) .•c• provides no inputfoutput facilities.

There is no READ or WRITE statements, and no built-in

file access methods. All of these higher-level mechanisms

must be provided by explicitly called functions.

6) Any function may be call~d recursively.

Function definitions may not be nested but variables

may be declared in a block-structured fashion. Variables may

be internal to a function, external but only known within a

single file, or visible to the entire program.

7) •c• is independent of any particular machine architecture.

8) 'C' offers only straightforward, single-thread control

flow but not multiprogramming, parallel operations,

synchronization, or coroutines.

3.3.2 The Language PROLOG

PROLOG (Programming in Logic) was invented by Alain

Colmerauer and his associates at the university of

Marseilles during the early 1970's. Prolog is a rule-based

language based on the first-order predicate calculus formulae

known as Horn clauses. Prolog uses the syntax of predicate

logic to perform symbolic, logical computations. Prolog is

.favored in applications which involves heavy logical

deductions throughout.

23

IMPERATIVE AND FUNCTIONAL LANGUAGES

1) Prolog is descriptive.

Instead of a series of steps specifying how the

machine. must work to solve a problem, a Prolog program

consists of description throughout.

2) Prolog uses rules and facts.

Facts and rules describe the relationships known to

exist between the objects. Problems can be considered in the

form of IF (condition) THEN (action) rules. This is nothing

but the representation of the rule-based organization. There

are three form of Horn clauses which forms the basic

constructs in Prolog.

a). Prolog Rule.

In Horn clause the rule is of form

Here the predicate on the left-hand side is defined to

be conjunction of goals on the right-hand side, e.g.

son(X,Y) :- father(Y,X).

which may read as 'X is a son of Y if Y is a father of

X I.

b) Prolog Facts.

In Horn clause the fact is of form P

Example son(john,garry)

which may be read as "john is the son of garry".

c) Prolog Queries .

Given a database of facts and rules, we may ask queries.

24

IMPERATIVE AND FUNCTIONAL LANGUAGES

It reflects the question to be answered. In Horn clause

the form is

Q2 . Q . . Q
3 ---- m

Example ? son (john, X)

which may be read as "of whom is john the son ?".

The response to the queries are given by returning the

value a variable can take to satisfy the query or simply

with yes(true) or no(false).

3) Proloq can make deductions.

Prolog uses backward chaining to deduce facts and the

forward chaining can be easily simulated using backward

re~soning. The backward reasoning method works backwards from

the goal state space. We start with the goal we want to

prove, and we try to establish all the facts needed to reach

the goal. This reasoning is backward and is called goal goal

directed, top-down, or consequent reasoning.

4) Proloq program execution is controlled automatically.

When a program is executed, the system tries to find

all possible sets of values that satisfy the given goal by

using backtracking.

5) Proloq uses unification to compute results.

Prolog uses pattern matching mecpanism to achieve

unification of variables. Thus, it makes easy to manipulate

the dynamic database, which Prolog provides. A pattern can be

viewed as kind of sketch of an element in the database. Each

25

IMPERATIVE AND FUNCTIONAL LANGUAGES

pattern is a structure made of different variables. A pattern

is said to match a structure if it can be made identical to

that structure by replacing its variables by specific values.

This process is called pattern matching by unification.

7) Prolog uses backtracking to satisfy subgoals of a goalu

To satisfy goal, the Prolog searches alternative to

satisfy subgoals using backtracking. Backtracking is a unique

feature of Prolog not found in any other programming

language.

8) Prolog is inefficient for numerical processing.

3.3.3 Difference between PROLOG and "C"

Prdlog is a relational language, that is a language

for logic programming. In contrast, 'C' is a conventional

procedural language. In a procedural language, one specifies

step by step how a result is to be computed . In Prolog we

describe what the relationships are among the entities,

rather than how.

The 'C' language have data and program structures such

as arrays, records, if-else and loops. There is no such

constructs in Prolog. Prolog extensively uses recursion and a

unique backtracking mechanics. Prolog variables do not

26

IMPERATIVE AND FUNCTIONAL LANGUAGES

represent storage locations. All values assigned to variables

are temporary and kept only for the duration of a specific

execution of the clause. The programmer cannot increment a

variable value as, for example, N = N + 1 is done in 'C'

language. A Prolog procedure is a collection of rules rather

than a single closed module of a subroutine.

27

CHAPTER 4

SYSTEM ANALYSIS AND DESIGN

SYSTEM ANALYSIS & DESIGN

After stating the objectives of the project in the

simple terms, now we go onto the next stage of software

development, that is, Analysis.
•

system Analysis is a

critical step in developing software systems and programs

because it affects all the development step that follows.

Analysis is a process of defining the requirements for a

solution to a problem. During analysis the needs of the user

are examined, and the properties that the system should

posses to meet those requirements are identified. The

functions to be performed are precisely defined.

System design is a process through which requirements

are translated into a representation of software system.

Design builds coherent, well planned representations of

programs that concentrates on the interrelationships of parts

at the higher level and the logical operations involved at

the lower level.

In this chapter , I will be describing the subset of

language 'C' (SubC) this software can handle. How simple or

complex problems can be addressed to, and in what manner. In

order to asses the seriousness of a problem, how the study

will .be conducted and it will be investigated whether that

problem is to be translated into Prolog. Also, justification

will be given for each of the problem addressed. Constraints

and limitations of the software will also be mentioned in

this chapter.

28

SYSTEM ANALYSIS & DESIGN

4.1 TRANSLATOR

The three main parts of a translator is

1. The source language :- Language which has to be translated

into target representation.

2. The target language :- It represents the goal of the

problem.

3. Implementation strategy :- Scheme for converting the

source language to target language.

4.2 The Source Language

Each programming language has its own unique features.

For a specific problem one should choose a language in which

the problem can be stated in the most natural way and its

solution is easy to assimilate. Since 'C' is most widely

accepted programming language nowadays and it captures most

of the features of procedural languages, it is chosen as our

representative for the source language of the translator. For

the sake of simplicity and understanding a subset of 'C',

SubC, is considered instead of the full language 'C'.

Subc (Subset of 'C')

As the name implies, SubC is a subset of standard 'C'

which includes basic features of 'C' language. SubC is

described in detail by its grammar (See appendix A). The

29

SYSTEM ANALYSIS & DESIGN

grammar of SubC is a non-ambiguous and context-free. No

backtracking is allowed when going from start symbol to

terminals (see chapter 2). The grammar of subC is written

after removing left recursions in the rules and also, after

doing the left factoring to make it suitable for top-down

parsers. For clarity and simplicity, SubC is also explained

with the help of transition diagrams. For translation diagram

of SubC see Appendix B.

Here in short we will explain the features of SubC.

1). SubC includes fundamental data type such as integer,

floating point and character. In derived structured data

types only arrays of simple types are included.

2). Subc includes most of control-flow constructs. IF - ELSE,

SWITCH, WHILE, FOR, DO - WHILE, and BREAK are all included.

No GOTO statements are allowed in 'C'. Since structured

programming do not permit goto statements, this omission is

not important.

3). A printf and scanf statement is included in SubC for

inputjoutput. This feature is not there in standard •c•, as

printf and scanf are library functions.

As some of the features of 'C' language are not

included here, we use the name SubC instead of 'C' throughout

the rest of this report.

4.3 The Target Language

PROLOG is chosen as a representative of all functional

30

SYSTEM ANALYSIS & DESIGN

languages in our implementation. Prolog being a relational

language is becoming more popular and is widely accepted as

the language for artificial intelligence applications

involving logical and symbolic manipulations. It has gained

greater credibility since the effort to develop several

different computer systems whose underlying kernel languages

will be variants of logic programming, i.e. Prolog,

programming in logic. The interpreter for Prolog are easily

available and there exist different dialects of it, but all

of them have the same basic constructs. We have chosen

standard Prolog as written by Clocksin and Mellish as our

target code. There is no need to declare data or clauses in

this representation.

4.4 The Translation Scheme

The translation technique followed is syntax directed

translation scheme. The actual translation process is

described in detail under this topic.

Conceptually, we have divided the whole process in

following three phases :

1. Analyzing the source program : This part breaks up the

source program into constituent pieces and recognize the

source language constructs.

2. Semantic actions : This part executes semantic rules

associated with each rule of source language.

3. Getting target program : This deals with the ordering the

31

SYSTEM ANALYSIS & DESIGN

resultant segments of the target language into meaningful

programs.

since the efficiency of the output code is not our

primary concern, we have ignored the code optimization phase

of the translator.

The translation process can be simply viewed in the

following figure

Source
program in
-->-------l
SubC with
possible

SYNTAX
ANALYZER

1----E_r_r_o_r_f_r_e_e __ l. n>-l __ T_RAN __ s_LA_T_O_R _ ___. _P_rc_oo_dl_oe_g
source prog.

SubC
errors

t

I ERROR RECOVER
OR REMOVED

4.4.1 Analysis of the source program

The entire process of analysis is divided into two

phases

1) Linear Analysis :- In linear analysis, also known

popularly as lexical analysis or scanning. The stream of

characters making up the source code is read from the top-to-

bottom, left-to-right and are grouped into logical units

32

SYSTEM ANALYSIS & DESIGN

known as tokens. Token are sequence of characters having a

collective meaning.

Every character encountered is processed in this

phase.

White space characters (Blanks, tabs) acts as token

delimiters and are ignored by the scanner ..

A line number counter is incremented whenever newline

character is encountered. This facilitates in displaying

error messages, giving the correct line number where the

error has occurred.

End - of - file character is used for keeping tab on

file end and ending the program.

Letters and digits invokes different conditions. They

are grouped together into a token until a delimiter is

encountered. These tokens are divided into two types, Numbers

and Identifiers. Numbers can be either of integer type or of

floating point type.

All other characters are treated as delimiters and

each is processed separately. For example,

if '+' is followed by '=' , then "+=" is a single

token and its attribute is ASSIGNMENT.

else if '+'is followed by '+' , then "++" is a single

token and its attribute is INCREMENT.

else '+' is treated as a separate token.

Lexical analyzer also maintains a symbol-table in

which every identifier and number is entered along with its

33

SYSTEM ANALYSIS & DESIGN

attribute value. Lexical analyzer function returns a integer

value, which can be used by the parser to identify the token

which is then removed from the input so that processing of

the next token can begin when demanded by the parser.

2) Syntax Analysis :- It is also called hierarchical

analysis. It involves grouping the tokens into grammatical

phrases that are used by the program to synthesize output

code. The grammatical phrases of the source program are

represented by a parse tree.

The hierarchical structure of the program is expressed

by recursive rules. For example, we have the following rules

as part of the definition of statements.

if exp1 is an expression and stmt is a statement, then

do { stmt } while exp1 , and

if (exp1 stmt

are statements.

Similarly, if exp1 and exp2 are expressions, then

++

+

are expressions.

We divide the analysis int two parts because it

simplified the overall task. One factor which influenced the

division was inherently recursive nature of SubC constructs.

Fundamentally, lexical constructs do not require recursion,

while syntactic constructs of SubC do. Context - free grammar

was used as a formalization of recursive rules to guide

syntactic analysis. CFG's was introduced in Chapter 2 and

34

SYSTEM ANALYSIS & DESIGN

grammar of SubC is given in Appendix A.

In our program, the parser obtains a string of tokens

one-by-one from the scanner and verifies whether the string

can be generated by the grammar of CFG or not. If it cannot

be generated then the parser reports the syntax error. It

would also recover from commonly occurring errors so that it

can continue processing for the remainder of its input

without much hindrance.

We have used predictive parser to recognize the SubC

language constructs. By carefully writing the grammar,

eliminating left recursion from it and left factoring the

resultant grammar, we had obtain a grammar that is parsed by

a top-down, recursive descent parser that needs no

backtracking. That is, the proper sub-routine is invoked by

looking at only the first token it derives. For example, flow

of control constructs in SubC are detected in this way.

statement =» if (,expression) statement

=» while (expression) statement

=» for (statement 2)

Keywords if, while, and for tells us which alternative rule

is the only one that could possibly succeed.

We have taken the help of transition diagrams in

implementing predictive parser. As shown in Appendix B, there

is one diagram for each non-terminal.

Our predictive parser algorithm based on the

transition diagram attempts to match terminal symbol against

the input, and makes a potentially recursive procedure call

35

SYSTEM ANALYSIS & DESIGN

whenever it has an edge labeled by a non-terminal. A

transition on a non-terminal X is a call of the procedrire for

X. The parser behaves as follows :

a) It begins in the start state for the start symbol

translator unit.

b) After some actions it is in state a with an edge

labeled by terminal w to state B.

if (the next input symbol is w) then

the input moves one position right and the parser

goes to state B.

if (edge is labeled by a nonterminal X) then

parser invokes the procedure for X, without moving

the input cursor.

c) If it reaches the final state then the input program is

accepted, else it is given to error handling routine.

4.4.2 Error Handling Technique

The syntax analysis phase handle a large fraction of

the errors detectable by the translator. Th~ lexical phase

can detect errors where the character remaining in the input

do not form any token of the language. Those errors where the

token stream violates the structure rules of the language

Subc are detected by the parser. After detecting an error,

parser passes the control to the error handling routine,

which must somehow deal with that error, so that processing

can go on.

36

SYSTEM ANALYSIS & DESIGN

Error can be lexical, syntactic, semantic or logical.

our error handling routine can handle only lexical or

syntactic type of errors.

Lexical error such as misspelling an identifier or a

keyword is handled in a simple way.

a) Handling misspelled keywords

-- All the keywords in SubC is inserted into symbol

table along with their respective attribute values.

-- During the scanning, each identifier or number

excluding the keywords are inserted in the symbol table

with their respective attribute value.

-- Now if a keyword is misspelled, translator will

recognize it as a new identifier and will try to insert

it into the table. But afterward the token was found to

be disobeying the grammatical rule defining the

statement of SubC.

-- This misspelled token is withdrawn from the symbol

table and compared with the list of all keywords.

-- Using pattern matching technique, the translator will

try to identify the actual keyword which is then

replaced in its rightful place.

b) Handling misspelled identifiers

The strategy is same as above with slight

modification. Here, all the variables written in the

declaration parts are treated as correct one and are entered

in symbol-table. Then all the identifiers in the statement

part of the programs are treated as in (a). Since,

identifiers can differ in single character place, error

37

SYSTEM ANALYSIS & DESIGN

handling outline will ask the user to verify the correction

before it actually replace it.

Since, incorrect numbers (integer or floating point)

are not lexical errors, the translator will treat each number

as logically correct.

Error handling routine can recover some of the simple

errors and can detect the remaining errors. To, recover the

errors, the routine uses the phrase - level recovery

(introduced in chapter 2) strategy. On detecting an error,

the parser performs local correction like replacing a comma

by a semicolon, delete an extraneous semicolon, or insert a

missing character.

Example 1 : The correct sentence in SubC is

#include < filename >

where filename is a non terminal.

a) Suppose, the input program has the following incorrect

sentence instead of the above sentence

include < filename >

that is, '#' is missing.

Now, as soon as parser find include, it detects an

error. Since, according to the grammar rule, indlude should

be preceded by'#', the error handing function replaces the

missing '#' in the input stream.

b) Input sentence is # < filename >

The parser on encount~ring '<', will detect an error.

It will use a lookahead pointer to go to'>', then it can be

safely stated that the error is missing token include.

38

SYSTEM ANALYSIS & DESIGN

c) Input is ?include < filename >

Same as in (a) but here the parser decide that '? 1 is

wrongly placed and will replace it with 1 # 1
•

Example 2 The correct sentence in SubC is

int x,y,z; \n

where int is a keyword and x,y, and z are identifiers.

In Subc semicolon acts as a statement terminator.

a) Input sentence is int x,y;z; \n

According to the grammar rule, the parser will detect

the error only after reaching the identifier z. on looking

ahead it will see the second 1 ;
1 followed by a newline

character. The condition that the whole sentence is written

in a single line points to the probable error of first

placed erroneously instead of I I
I •

b) Input is int x,y; \n

z; \n

I • I
I

In this case, the parser will decide that a

type_specifier (int, float or char) is missing.

Since, there is no logical difference in above two

sentences, the parser will ask the user to verify the change

before actually replacing it in the input stream of tokens.

In any case, this strategy is used to successfully recover

from such class of errors.

The error handling function uses the strategies of

panic mode and phrase level recovery to deal successfully

39

SYSTEM ANALYSIS & DESIGN

with lexical and syntax error in input Subc program. The

method can be made more intelligent by increasing the range

of the lookahead. Our function can lookahead until an newline

character is encountered.

4.5 Translation Actions

We have followed a state transformation approach

introduced by Williams and Chen [5] for translating SubC into

Prolog.

In state transformation approach a block in source

language can be regarded as an action which transforms some

initial state s 0 into some final state sn. Each statement Ti

(1 <= i < n) of the block will transform state si_1 into

state Si, so that the execution of the block as a whole may

be represented by the sequenQe

in which Ti is the ith statement of the block. If each

statement Ti is thought of as being represented by a Prolog

rule, a block consisting of statements T1 , T2 , , Tn may

be translated as

where the subgoals t 1 , t 2 , , tn are the names of

predicates defining the effects of statements T1 , T2 , ... ,Tn.

40

SYSTEM ANALYSIS & DESIGN

4.5.1 Declarations

Handling declarations of Subc does not create much

problem because in Prolog declaring variables are not

required. As Prolog variables do not represent storage

locations, hence there is no need to declare them explicitly.

In our approach the declaration part and statement part are

taken as two different parts and are treated separately.

During the declaration part of input SubC program, the

parser will take only the book-keeping actions. Information

such as the name , type and scope (in case of an array) of

each variable is stored in symbol table and the variable

table, for use in subsequent parts. This information prevents

the undisciplined use of variables. A variable declared under

two different data types will be detected as an error by the

parser.

So the parser will go through the declaration part of

Subc without translating any of it into target

representation, Prolog.

4.5.2 statements

As mentioned before, the statements are parsed in top

down fashion with information being retrieved and stored as

required.

A) control statements

Control statements that are used in SubC are not

available in Prolog. We have taken the case of various

41

SYSTEM ANALYSIS & DESIGN

control structures one by one.

A.l) if - else statement :

If - else statement is represented as

if (condition) statement1 else statement2

In Prolog, it is represented by replacing the if

statement with the body of a separate clause. If-else

statement of Subc is replaced with a procedure call and a

clause is defined, with one rule corresponding to if and

other rule for else.

The Prolog rule generated for an if-else statement is

if_else(IN,OUT) :- condition,

statement1 .

if_else(IN,OUT) :- statement2 .

If the condition is satisfied and found to be true

then the goals for the if clause will be executed. Otherwise

the second rule will be att~mpted and the goals for the

else clause executed. If the else clause is absent, the

following rule will be generated.

if_else(IN,OUT) :- condition,

statement1 .

if_else(IN,IN).

The above rules state that if the condition fails,

then the state vector will not change.

IN and OUT are two state vectors which are empty for

the main body of the program. For each procedure or statement

body, the variables in set IN will be the variables accessed

in the body. The variables in OUT set will be the variables

42

SYSTEM ANALYSIS & DESIGN

modified in the body. Set IN includes all variables used in

the statement body together with any variable in OUT which

return values if the variables are not updated.

A.2) switch statement :

The body of switch statement is

switch (expression
{

case Ll stmt1 ; break;

case L2 stmt2 ; break;

case Ln stmtn; break;

default : stmtn+l; break;
where L1 , L2 , , Ln are labels ..

The switch statement is similar to if-else statement,

with the number of alternatives more than two.

The Prolog code generated for a switch statement is

also similar,

switch(L1 ,IN,OUT) :- stmt1 .

switch(L2 ,IN,OUT) :- stmt2 •

switch(Ln,IN,OUT) :- stmtn.

switch(_,IN,OUT) :- stmtn+l"

A.3) Iterative statements (for,while and do)

The format of the code generated for a while or do or

for statements will be similar. Hence, we are considering

only the case of while statement. Since, do and for loops can

43

SYSTEM ANALYSIS & DESIGN

be proved to be equivalent to while, they are expressed in

terms of while onlyo

Prolog does not facilitate any loop in an explicit

form. One way of simulating such a loop construct is to use

recursion. Now, the statement is

while (condition) statement

The Prolog code generated for the while statement

is

while(IN,OUT) :- condition,
statement,
while(IN',OUT).

while(IN,IN).

where IN' is the modified bound conditions.

The rules state that to execute a while statement, it

is necessary to satisfy the bound condition first. If it

holds, the goals for the body will be called one by one, the

bound condition will be modified and the goals will be called

to perform further iterations. If the condition fails, the

current state will be returned as the final state by the

second rule.

B) Assignment statement

Each time a variable is updated by an assignment, a

new variable is created to substitute for the old one. This

is done because there is no storage location concept in

Prolog. Variables can be either bound or free. Once a

variable is bonded by a value, it can not be changed unless

44

SYSTEM ANALYSIS & DESIGN

it is freed. To accomplish this, recursion is used (because

every time the rule call itself, it means a new call for the

rule).

To create a substitute for an old variable the parser

keeps a record of each SubC variable and.a counter to keep

track of number of times that variable occurs in input

program. The counter is incremented whenever the variable is

updated by an assignment statement. Then, the name of the

variables concatenated with the counter value to create the

new variable.

Assignment statements and input-output statement will

not be defined as separate rules, instead they will be

translated directly in the context of their parent rule.

4.5.3 Common Data Structures

a) Variables : Prolog variables are local; that is,

their values remain only for the rule only. The

variable value are passed from a rule to other rule.

They are passed as procedure parameters, as, for

example p(Al,A2,) :- q(Al,A2,),

q(Al,A2) :- t(Al,A2,), lm5

b) Arrays : There are no arrays in Prolog.

We have chosen Prolog lists as the array. Though this

method is inefficient, it was preferred because it is

easy to implement.

45

SYSTEM ANALYSIS & DESIGN

In SubC, the access an element of an array

is random while the Prolog lists are only sequential.

All the operations which can be applied to an array

are also possible for a list.

Whenever an element at position i of an

array is updated, the following operations are done on

the corresponding list

Go to the ith element of the list.

Remove that element from the list.

Insert the new value at the ith place in the list.

The above technique was used for developing a

prototype source-to-source translator ~hose test results are

given in Appendix c.

46

CHAPTER 5

CONCLUSION & SUGGESTED ENHANCEMENTS

CONCLUSION AND SUGGESTED ENHANCEMENTS

5.1 CONCLUSION

After finishing the system testing, which includes the

last.review of the objectives, we look back to analyze the

goal we had set at the start. What we were able to achieve

and what we fail to cherish.

Our primary objective was to develop a source-to

source translator which translates the program written in 'C'

into Prolog rules. We have taken a subset of 'C' language,

Subc, for the sake of simplicity and understanding the

difficulties involved in translating radically different data

structures of these two languages. One of the objectives of

the project was to provide the overview of the central

themes, ideas, and difficulties associated with error

recoveries. The core idea for translating SubC into Prolog

was to use syntax directed translation scheme.

Of the above objectives stated, we were able to attain

most part of it and developed a prototype translator that

translates SubC into Prolog. The syntax errors where the

token stream violates the structure rules of the language

SubC were detected and was effectively dealt with by the

predictive parser of the translator.

In all it was a very useful and fruitful experience

during which we gained insight into this fascinating field of

source-to-source translation of programming languages which

is so much related to language understanding and particularly

to programming languages.

47

CONCLUSION AND SUGGESTED ENHANCEMENTS

5.2 SUGGESTED ENHANCEMENTS

Though we tried our best to make the software as broad

as possible in limited time, there is stili a wide range of

enhancements, which can be instituted into the system to make

it more flexible and hence improve its quality.

Following are the some of the enhancements suggested by us

1) Range of SubC can be increased by including reco~d

and file structure.

2) Another omission which SubC makes is the function

call. Since the standard library functions can be

written in Prolog these function calls can be

incorporated by writing, beforehand, the equivalent

clauses in Prolog.

3) Dynamic data types like pointers can be implemented.

A pointer variable which points to a data object can be

simulated by creating a symbol and binding this symbol

to the object to which it is supposed to point.

4) The array in SubC is equated to list in Prolog, which

is inefficient. A better solution is binary tree

representation. This can be implemented as the

enhancement to origi~al representation.

48

BIBLIOGRAPHY

BIBLIOGRAPHY

1. Haynes, c.

Logic Continuations.

proc of third international conference on Logic

Programming. London, Lecture Notes in Comp. Science, 225,

p 671, 1980.

2. Henderson, P.

Functional Programming, Application and Implementation.

Prentice Hall, 1980.

3. Hughes, R. J. M.

The Design And Implementation Of Programming .languages.

Ph.D. Thesis programming research group, Oxford, Sept 1986

4. Backus, J.

Can programming be liberated from von Nueman style ?

Comm. of Assoc. of Computing Mach. 21, p 615.

5. Williams, M.H. and Chen, G.

Translating Pascal for execution on Prolog-based systems

The Computer Journal, 29, 3, p 246, 1986.

6. Munakata, T.
t

Procedurally Oriented Programming Technique in Prolog.

IEEE Expert, 1986.

49

7. Subramanian, V.S. & Bharadwaj, K.K. & Sharma, A.K.

Automatic Programming Transforming

Specifications into Logic Program.

Computer Science and Informatics, 15, 1.

8. Berghal and Traudt.

Spelling verification in Prolog.

ACM SIGPLAN NOTICES, Vol. 21, No. 1-5, 1986.

9. Aho, A.V. & Sethi, Ravi & Ullman, J.D.

Compilers. Principles, Techniques and Tools.

Addison - Wesley, 1986.

10. Leinius, R.P.

Error Detection and Recovery for Syntax

Compiler Systems.

Ph.D. Thesis, University of Wisconsin, Madison.

11. Kernighan, B.W. and Ritchie, D.M.

The 'C' Programming Language.

Prentice Hall, 1977.

12. Clocksin, W.F. and Mellish, c.s.

Programming in Prolog.

Norosa Publishing House.

Recursive

Directed

50

APPENDICES

translator unit

control unit

control unit 1

external declare

function def

APPENDIX A

GRAMMAR OF SUBC

=» control unit external declare

external declare

=» # control unit 1

=» include < identifier > control unit

I define identifier constant
control unit

=» declaration list
compound_statement

=» function_specifier

I main()

function def
external-declare

declarator

function_specifier =» void I char I int float

compound_statement =» { compound_stat_1

compound_stat_1

compound_stat_2

declarator

declarator 1

=» declaration list compound_stat_2

=» statement list }

=» identifier (declarator 1

=» type specifier id_expression
declarator 2

GRAMMAR OF SUBC

declarator 2

id_expression

id_exp_l

declaration list

dec list 1

dec list 2

statement list

statement

statement 1

=>> I declarator 1

=» identifier id_exp_l

=» [constant]

I €

=» type_specifier dec list 1

=» id_expression dec list 2

=>> I dec list 1

; declaration list

=» statement statement list

=>> .
I statement

{ statement }

case expression : statement

default

break .
I

statement

statement

expression ; statement

if (expression) statement
statement 1

switch (expression) statement

while (expression) statement

for statement 2)

scanf (expression) statement

printf (expression) statement

=>> else statement

GRAMMAR OF SUBC

statement 2

expression

conditional_exp

logical_and_exp

and_exp

I €

=» expression ; expression ;
expression ;

=» id expression assignment
conditional_exp

=» and_exp logical_and_exp

=» I I and_exp logical_and_exp

I €

=» equal_exp logical_equal_exp

logical_equal_exp =» && equal_exp logical_equal_exp

I €

equal_exp =» relate_exp logical_relate_exp

logical_relate_exp =» -- relate_exp logical_relate_exp

relate_exp

logical_add_exp

add_exp

I ·-.- relate_exp logical_relate_exp

I €

=» add_exp logical_add_exp

=» < add_exp logical_add_exp

<= add_exp logical_add_exp

> add_exp logical_add_exp

>= add_exp logical_add_exp

I €

=>> term moreterm

GRAMMAR OF SUBC

more term

term

more factor

factor

primary_exp

constant

identifier

=>> + term moreterm

I - term moreterm

I €

=» factor morefactor

=» * factor morefactor

1 factor morefactor

% factor morefactor

I €

=» ++ primary_exp

primary_exp

primary_exp ++

primary_exp

=» identifier I constant

(expression)

=» string I integer I floating-point

=» start with a character and then any
alphanumeric character

APPENDIX B

TRANSITION DIAGRAM FOR SUBC

Iranslation_Uni t

Control_Uni t

0

External_declaration

Function_defination

CoMpound_stateMent

»eel ara tor

,...------------4' ''

Declaration_List
,....-----~' '' W---------.

'---+-1 float

Statr..entj.ist

----~r-_, • ._._,(stateMent)t---.,....--.•

StateMent

stateMent t---~ '}' t----t-----~

t-------tl':' t----t--------j

expression 1---.....L------tl' j' t---J-----

t--------tl';' 1-----------~

Exprusion

Cond_Ixp

}--"-T'""---W : :

~nd_Ixp

1----.---~ aa

[quality_Ixp

Relational_exp

Ttl'll

1---tl 'I' I---t

Factor

unar_exp

------~ ') ' l----.J

Unar_exp

--r--H++

)----,r-T--Jt ' +' l---t-r----.

Pri~W~Y_txp

'----tl' (' ~----~

Afi9MtnU ist

Fih...nw

TokfnJequence

Identifier

Constant

APPENDIX C

TEST EXAMPLE RESULTS

/* Test Example 1. */
/*This program does nothing. It is used for demonstration
purpose only */

main()
{

}

int a,b;
a = 4;

if (a>O}
{

}
else
{

}

a = 9;
b = 6;

a = 3;
b = 6;

I* End of Example *I

I* The translated program for test 1 example *I

mairi :-
A1 = 4,
if_1(A1,B1,A2,B2}.

if_l(A1,B1,A2,B2} :-
. A1 > 0,

if_1(A1,B1,A2,B2} :-

A2 = 5,
B2 6.

A2 = 3,
B2 = 2.

/* Test Example 2 */

/* For If-then-else */

main ()
{

}

int i,a,b;
scanf(a,b);
i = 0;
if ((a==O} && (b!=10}}
{

}

a = a + 2;
b = a - 4;
i++;

else ..
{

}

a = a + b + 2;
b += 4;

/* End Example 2 */

/* The translated program for test 2 example */

main :-
readint(A1,B1},
I1 = O,
If_1(A1,B1,I1,A2,B2,I2}.

If 1(A1,B1,I1,A2,B2,I2} :-
A1 = O,
B1 <> 10,
A2 = A1 + 2,
B2 = A2 - 4,
I2 = I1 + 1.

If_1(A1,B1,I1,A2,B2,I1} :-
A2 = A1 + B1 + 2,
B2 B1 + 4.

/* Test 3 program.*/

!* This program finds the max, min and average values of a
group of integer */

main()
{

}

int max,min,n,t,a;
float ave;
scanf(a);
max = a;
min = a;
n = o;
t = 0;
while (a > 0}
{

}

if (a > max)
max = a;

else if (a < min)
min = a;

n = n + 1;
t += a;
scanf(a);

ave = t % n;
printf(max,min,ave);

/* The translated program is as follows */

main :
readint(Al},
Maxl = Al,
Minl = Al,
Nl = 0,
Tl = O,
while l{Al,Maxl,Minl,Tl,Nl,Max3,Min3,T3,N3),
Avel ;; T3 % N3,
writeint(T3,N3},
writereal(Avel).

while_l(Al,Maxl,Minl,Tl,Nl,Max3,Min3,T3,N3} :-
Al > 0,
if_l(Al,Maxl,Minl,Max2,Min2},
N2 = Nl + 1,
T2 = Tl + Al,
readint (A2},
while_l(A2,Max2,Min2,T2,N2,Max3,Min3,T3,N3).

while l(Al,Maxl,Minl,Tl,Nl,Maxl,Minl,Tl,Nl).

If_l(Al,Maxl,Minl,Max2,Minl) :-
Al > Maxl,
Max2 = Al.

If l(Al,Maxl,Minl,Maxl,Min2) :-
- if_2(Al,Minl,Min2).

if_2(Al,Minl,Min2) :-

if_2(Al,Minl,Minl).

Al < Minl,
Min2 = A.

	TH39280001
	TH39280002
	TH39280003
	TH39280004
	TH39280005
	TH39280006
	TH39280007
	TH39280008
	TH39280009
	TH39280010
	TH39280011
	TH39280012
	TH39280013
	TH39280014
	TH39280015
	TH39280016
	TH39280017
	TH39280018
	TH39280019
	TH39280020
	TH39280021
	TH39280022
	TH39280023
	TH39280024
	TH39280025
	TH39280026
	TH39280027
	TH39280028
	TH39280029
	TH39280030
	TH39280031
	TH39280032
	TH39280033
	TH39280034
	TH39280035
	TH39280036
	TH39280037
	TH39280038
	TH39280039
	TH39280040
	TH39280041
	TH39280042
	TH39280043
	TH39280044
	TH39280045
	TH39280046
	TH39280047
	TH39280048
	TH39280049
	TH39280050
	TH39280051
	TH39280052
	TH39280053
	TH39280054
	TH39280055
	TH39280056
	TH39280057
	TH39280058
	TH39280059
	TH39280060
	TH39280061
	TH39280062
	TH39280063
	TH39280064
	TH39280065
	TH39280066
	TH39280067
	TH39280068
	TH39280069
	TH39280070
	TH39280071
	TH39280072
	TH39280073
	TH39280074
	TH39280075
	TH39280076
	TH39280077
	TH39280078

