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ABSTRACT 

Developing a program that understands a input source 

program in 'C' language and then translate it into PROLOG 

rules by source-to-source translation is described here in 

this dissertation. We say a program understands a programming 

language if it behaves by taking a correct or acceptable 

action in response to the input. The behavior, or more 

explicitly the action taken in this program is only an 

internal response. Based on the syntax of the input program 

the action may simply be the creation of some internal data 

structures, or adding a missing token by simply comparing it 

with the grammar rule. The strategy followed is basically 

syntax directed translation scheme in top-down recursive 

parser. This translator is implemented using languages : 

PROLOG & 'C'. 

Also, we explore many of the important issues related 

to radically different control and data structures in these 

two languages and the problems associated with translation 

process are also discussed here. 
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INTRODUCTION 



INTRODUCTION 

This chapter will provide a brief overview on the language 

understanding (programming & natural) and translation 

schemes. In addition, scope of the project and motivation for 

selecting this project is also discussed. 

1.1 LANGUAGE UNDERSTANDING 

When in 1950, Allan Turing wrote a controversial 

articled entitled "Computing Machinery and Intelligence", he 

started with a question : "Can Computer Think Like A Man". 

The article, of course, created a flutter but it ultimately 

established Turing as "Father of Artificial Intelligence". In 

1950's, John Backus had given an excellent account of the 

drawbacks and limitations posed by the existing conventional 

computational model based on von Neumann concepts in a paper 

titled "Can Programming be liberated from von Neumann style" 

[ ]. The research resulted in the development of a 

computational model based upon logic programming. This class 

of applicative languages are called functional languages, are 

increasingly gaining importance in new generation computer 

models. LISP (List Processing) and PROLOG (Programming in 

Logic) are two of the functional languages which have found 

acceptance. 

To understand something is to transform it from one 

representation into another, where this second 
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INTRODUCTION 

representation has been chosen to correspond to a set of 

available actions that could be performed and where the 

mapping has been designed so that for each event, an 

appropriate action will be performed. There is a formal sense 

in which a language can be defined simply as a set of string 

without reference to any world being described or task to be 

performed. Although some of the ideas that have come out of 

this formal study of languages can be exploited in parts of 

the understanding process, they are only beginning. To get 

the overall picture, we need to think of language as a pair 

(source language, target representation), together with a 

mapping between elements of each to the other. The target 

representation will have chosen to be appropriate for the 

task at the hand. 

There are three major factors that contribute to the 

difficulty of an understanding problem : 

The complexity of the target representation into 

which the matching is being done. 

The type of mapping : one-one, many-one, one- many, 

or many-many. 

-- The level of interaction of the components of the 

source representation. 

Developing programs that understands a natural 

language is a difficult problem. There is much ambiguity in a 

natural language. Many words have several meaning and 

sentences can have different meaning in different context. 

It requires that a program transform sentences occurring as 

2 



INTRODUCTION 

part of a dialog into data structures which convey the 

intended meaning of the sentences to a reasoning program. 

Now, a programming is structured and ambiguity is shunned 

while designing a programming language. so, understanding and 

correcting some of the syntax errors in such languages is 

less complicated, if not less difficult. 

Though it can be safely stated, without any 

exaggeration, that this field is still in its infancy, and 

research is going on. We have made a small beginning on our 

part to do our share. 

1.2 Objective and scope of the project 

The objective can be phrased as : 

Translating "C" programs for execution on a PROLOG

based system. Because of radically different control and data 

structures in these two languages, the problems associaf._e_d -~ -

with translation process are to be discussed and its 

performance to be accessed. 

As we set about the task_ of building computer program 

that understands programming language, one of the first 

things we shall have to do is to define precisely what the 

underlying task is and what the target representation should 

look like. Having done-that, it will be much easier to 

define, at least for that environment, what a sentence 

(statement) means. In general, this means that the reasoning 

3 



INTRODUCTION 

program must know a lot about the beliefs and goals of the 

user, and a great deal of 'C' grammar knowledge. 

The proposed work is to develop a software which will 

be able to execute the programs written in procedural 

language, a subset of 'C' called subc, on the computer 

systems whose kernel language are based on logic programming. 

The efficiency of the output code in PROLOG is not our 

primary concern; our immediate goal is to demonstrate 

something that does the job. 

It is also proposed to develop an parser based on the 

input SubC programs as an attempt to include automatic 

removal of some of the syntax errors. The errors that can be 

removed are 

1) Spelling verification and correction. 

2) Replacement of missing delimiters. 

3) Non declaration of identifiers. 

1.3 Motivation for Project Selection 

Since its conception by Alian Colmerauer in early 

1970's PROLOG has been gaining in a variety of application 

areas (e.g.natural language processing, expert systems, 

database query languages, CAD modellers, etc.). One of the 

objectives of the Japanese Fifth Generation Computer Project 

is to develop computer systems whose kernel languages(PROLOG) 

are based on logic rather than on the conventional imperative 

languages which have been in general use until now. Since the 
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INTRODUCTION 

logic programming and its application has been intensified. 

At the same time concern has been voiced over the problem of 

the large base of existing software which is implemented in 

imperative languages, and what might happen to it if computer 

systems with these radically different architectures were to 

replace existing systems. In order to asses this problem a 

·study is conducted here to implement conventional language on 

a PROLOG machine. 

5 
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THEOR~TIC FOUNDATIONS OF TRANSLATOR 

This chapter covers basic material which we will use 

extensively throughout the rest of this dissertation. 

2.1 PROGRAMMING LANGUAGES 
.·• 

In computer programming, a programming language serves 

as a means of communication between the person with a problem 

and the·computer used to help solve it. An effective 

programming language enhances both the development and the 

expression of computer programs. It must bridge the gap 

between the often unstructured nature of human thought and 

the. precision required for computer execution. A high level 

language should contain constructs which reflect the 

terminology and elements used in describing the problem and 

are independent of the computer used. such a program solution 

to a given problem will be easier and more natural if the 

high level programming language is used. 

Advantages of high level languages are as follows 

1. Easier to learn and understand. 

2. Naturalness and ease with which an algorithm 

can be written. 

3. Portability or relative machine - independence 

of languages. 

4. Modular pnd hierarchical description of 

programming tasks, permitting delegation of tasks and 

division of labor resulting in greater security and 
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THEORlTIC FOUNDATIONS OF TRANSLATOR 

productivity with a minimum of and effort. 

5. Permits better documentation resulting in 

increased reliability and decreased maintenance. 

6. Programs can be easily debugged. 

7. Structuredness of a language results in a 

disciplined use of pointers, data structures, flow

of-control constructs etc, i.e. efficiency of use is 

increased. 

2.2 Notation for Grammars 

A programming language consists of a set of programs. 

A grammar is a formal vehicle for generating these programs. 

several relations can be defined on the rules of grammar, and 

these relations can lead to efficient compilation algorithms 

for the language associated with that grammar. Consequently, 

the concept of grammar in the formal language becomes a 

important one. 

The study of grammars constitutes an important subarea 

of computer science called formal language theory. This area 

emerged in the mid-1950's as a result of the effort of Noam 

Chomsky, who gave a mathematical model of a grammar in 

connection with his study of natural languages. In 1960, the 

concept of a grammar became important to programmers because 

the syntax of ALGOL 60 was described by a grammar. 

Any means for specifying an infinite language should 

be finite. One method of specification which satisfies this 

7 



THEORETIC FOUNDATIONS OF TRANSLATOR 

requirement uses a generative device called a grammar. A 

grammar consists of a finite nonempty set of rules or 

productions which specify the syntex of the languages. Many 

grammars may generate the same language but impose different 

.structures on the sentences of that language. 

Definition :-

A grammar is defined by a 4-tuple G = (T,N,S,P} where 

T, set of terminal symbols. 

N, set of non-terminal symbols. 

S, a distinguished element of N, called the 

start variable. 

P, a finite nonempty set of productions in which 

each production is of form 

A -> B where A € N. 

The set of all words generated by G is called the 

language generated by G. 

2.2.1. Classification of Grammars 

Chomsky classified grammars into four classes by 

imposing different set of restrictions on the productions: 

Type 'O' :- Grammar whose rules are unrestricted and is 

called unrestricted grammar. 

Type '1' (Context-Sensitive) :- The grammar contains only 

productions of the form A -> B, where IAI <= IBI 

IAI denotes the length of A. 

where 
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THEOR~TIC FOUNDATIONS OF TRANSLATOR 

Type '2' (Context-Free) :- The grammar contains only 

productions of the form A -> B, where IAI <= IBI and A e N. 

Type '3' (Regular Grammar) :-The grammar contains only 

productions of the form A -> B, where I A I <= ·I B I and A e 

N, and B has the form aS or a, where a e T and B e N. 

Here, we are concerned only with context-free-

grammars because they are the most powerful formalisms for 

which we have effective and efficient parsing algorithms. 

2.3 PARSERS 

A parser for grammar G is a program that takes as 

input a string 'w' and produces as output either a parse tree 

for 'w', if 'w' is a sentence of G, or an error indicating 

that 'w' is not a sentence of G. Often the parse tree is 

produced in only a figurative sense; in reality, the parse 

tree exists only as a sequence of actions made by stepping 

through the tree construction process. Given a sentence, the 

construction of a parse tree can be illustrated pictorially 

in figure below, where root and leaves of the tree are known 

and the rest of syntax tree must be found. 

·.(5/ 

[ SE.NTENC.E I 
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THEOR~TIC FOUNDATIONS OF TRANSLATOR 

There are two ways by which this construction can be 

accomplished. 

-- Top-Down Parsing : An attempt is made to 

construct the tree starting at the root (top) and 

proceeding downwards towards the leaves(bottom). 

-- Bottom-Up Parsing completion of the tree is 

made by attempting to start at the leaves and moving upwards 

towards the root. 

2.3.1 Top-Down Parsing 

Top-down parsing can be viewed as an attempt to find a 

leftmost derivation for an input string. Equivalently, it can 

be viewed as attempt to construct a parse tree for the input 

starting from the root and creating the nodes of the parse 

tree in preorder. For example, consider the grammar 

Identifier ==> Identifier Digit I Letter 

Letter ==> A .. z I a .. z 

Digit ==> 0. 0 9 

and the input x4. The construction of the parse tree is 

as follows 

1) Identifier 2) Identifier 
I \ I \ 

I \ I \ 
I \ I \ 

Identifier Digit Identifier Digit 

Letter 
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3) Identifier 4) Identifier 
I \ 

I 
Identifier 

I 
Letter 

I 
X 

\ 
Digit 

I \ 
I \ 

Identifier Digit 

I I I 
Letter 4 

X 

Since we have now produced a parse tree for 'w', we 

halt and announce successful completion of parsing. An easy 

way to implement such a parser is to create a procedure for 

each non termina~. If the grammar derive an infinite number 

of strings, recursive procedures are essential. 

Difficulties with top-down parsing 

1) Left-Recursion - A grammar G is said to be left-

reqursive if it has a non-terminal A such that there is a 

derivation A===> Aa for some 'a'. A left-recursive grammar 

can cause a top down parser to go into an infinite loop. That 

is, when we try to expand A, we may eventually find ourselves 

again trying to expand A without having consumed any input. 

Elimination of left-recursion :- If we have the left-

recursive pair of productions 

A ==> Aa I B 

where B does not begin with an A, then we can eliminate 

the left-recursion by replacing this pair of production with 

A ==> BA' 

A' ==> aA' I € 

11 
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2) Backtracking :- If we make a sequence of erroneous 

expansions and subsequently discover a mismatch, we may have 

to undo the semantic effects of making these erroneous 

expansions. For example, entries made in the symbol table 

might have to be removed. Since undoing semantic actions 

requires a substantial overhead, it is reasonable to consider 

top-down parsers that do no backtracking. 

Removal of backtracking :- In order that no 

backtracking is required, we must know, given the current 

input symbol 'a' and the non terminal A to be expanded, which 

one of the alternates of the production 

A==> alla2la31-----laN is the unique alternate that derives 

a string beginning with 'a'. That is, by using the next input 

symbol to guide parsing actions, a proper alternate is 

detectable. For example, 

Statement ==> if Condition then Statement 

while Condition do Statement 

do statement while Condition 

Then the keywords if, while, and do tell us the unique 

alternate. One nuance concerns the empty strings. If one 

alternate for A is €, and none of the alternates is suitable, 

then we may expand A by A==> €. 

3) Ambiguous order of alternates :- The order in which the 

alternates are tried can affect the language accepted. Only 

way to remove this is to assign the unique alternates at the 

next input symbol. 

12 



THEORITIC FOUNDATIONS OF TRANSLATOR 

4) Error reporting :- When failure is reported, we have very 

little idea where the error has actually occurred. A top-down 

parser with backtrack simply returns failure no matter what 

the error is. 

2.3.2 Recursive - Descent Parsing 

A parser that uses a set of recursive procedures to 

recognize its input with no left-recursion and with no 

backtracking is called a recursive-descent parsing. The 

recursive procedures can be easy to write and fairly 

efficient if written in a language that implements procedure 

calls efficiently. 

Left-factoring 

Often the grammar one writes down is not suitable for 

recursive descent parsing, even if there is no left

recursion. For example, if we have the two productions 

Statement ==> if Condition then statement 

if Condition then Statement else Statement 

we could not, on seeing input symbol if, tell which to choose 

to expand statement. A useful method for manipulating 

grammars into a form suitable for recursive descent parsing 

is left-factoring, the process of factoring out the common 

prefixes of alternates. 

Let there are two productions 

A ==> p Q p s 

13 



THEORITIC FOUNDATIONS OF TRANSLATOR 

After left factoring, the original productions become 

A ==> P A' 

A' ==> Q I s 

2.3.3 Transition Diagrams 

One way to design any program is to describe the 

behavior of the program by a flowchart. This approach is 

particularly useful when the action taken is highly dependent 

on what token have been seen recently. A special kind of 

flowchart, called transition diagram has evolved. 

Transition diagram for identifiers 

In a transition diagram, the boxes of the flow chart 

are drawn as circle and are called states. The states are 

connected by various edges leaving a state indicate the input 

characters that can appear after the state. 

14 



THEORITIC FOUNDATIONS OF TRANSLATOR 

2.4 Error Recovery 

There are many different general strategies that a 

parser can employ to recover from a syntactic error. Aho, 

Ullman, and Sethi [ introduced the following strategies : 

1) Panic Mode Recovery On discovering an error, the 

parser discards input symbol one at a time until one of a 

designated set of synchronizing tokens is found. The 

synchronizing tokens are usually delimiters, such as 

semicolon, whose role in the source program is clear. It 

skips a considerable amount of input without checking it for 

additional errors. 

2) Phase Level Recovery : On discovering an error, a parser 

may perform local correction on the remaining input; that is, 

it may replace a prefix of the remaining input by some string 

that allows the parser to continue. 

3) Error Productions : If we have a good idea of common 

errors that might be encountered, we can augment the grammar 

for the language at hand with productions that generate the 

erroneous constructs. If an error production is used by the 

parser, we can generate appropriate error diagnostics to 

indicate the erroneous construct that has recognized in the 

input. 

15 



THEORLTIC FOUNDATIONS OF TRANSLATOR 

4) Global Correction : Given an incorrect input string n and 

grammar G, this method will find a parse tree for a related 

string B, such that the number of insertions, deletions, and 

changes of tokens required to transform n into B is as small 

as possible. These methods are too costly, so these 

techniques are currently only of theoretical interest. 

2.5 Syntax Directed Translation Scheme (SDTS) 

This method is based on the idea that the type of 

semantic analysis performed and the nature of the code 

produced is specified (i.e. determined) for each production 

of the grammar. Hence, as the production rules for a language 

are applied, the parser can simply invoke the appropriate 

semantic analysi~ and code generation routine and the target 

code can be produced in a systematic fashion. This type of 

compiling is often called ''syntax directed" because the 

production rules of the grammar are used to direct the type 

of processing that is to be performed on the source language 

statements. 

A SDTS is more of a context-free grammar in which a 

program fragment called an output action (or semantic action 

or semantic rule) is associated with each production rule. 

The output action may involve the computation of values for 

variables belonging to the compiler, the generation of 

intermediate code, the printing of an error diagnostic, or 

the placement of some value in a table, for example. The 

values computed by action $ quite frequently are associated 

16 



THEOR~TIC FOUNDATIONS OF TRANSLATOR 

with a grammar symbol is called a translation of that symbol. 

The translation may be a structure consisting of fields of 

various types. If the value of the translation of the 

nonterminal on the left side of the production is defined as 

a function of the translations of the nonterminals on the 

right side. Such a translation is called a synthesized 

translation. 

If the translation of a nonterminal on the right hand 

side of production is defined in terms of a translation of 

the nonterminal on the left then it is called an inherited 

translation. 

17 
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IMPERATIVE AND FUNCTIONAL LANGUAGES 

The programming languages can be classified into two 

categories. We will try to understand these two classes which 

will help in implementing the translator. 

3.1 Imperative Languages 

Some of the characteristic features are :-

1) In an imperative programming language, the fundamental 

mode of operation is based on changing the state of variables 

through assignments or other similar language constructs. 

These variables are used to imitate the storage of the 

underlying machine. The basic dependence upon variables and 

the association of values with variables is characteristic of 

a von Neumann architecture. 

2) The execution of a program which realizes some algorithm 

may be regarded as a sequence of state transformations in 

which the state of the store or the current point of control 

or both may change. 

3) The programmer must specify step by step how a result is 

to be computed. 

4) The large syntax base and ever expanding size of the 

language definition. 

5) There is no uniform computational style; each programmer 

has its own. Style is more of an art than science. 

18 
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6) Declarations which define the attributes of storage 

location. 

7) Assignment statements which effect transformations from 

one state to another by updating storage locations. 

8) Control statements which determine the point of control at 

any instant and hence the order of state transformation. 

9) Structurdness of the language which effect the output on 

the state at which the procedure or program is called. This 

demands rigid ordering of procedures. 

The conventional languages such as PASCAL, FORTRAN, 

'C', etc. are Imperative programming languages. Though new 

advancements and developments in these languages greatly 

improved the original versions of the languages, the inherent 

limitations posed by the von Neumann computational model are 

not removed and hence the need for new type of programming 

languages. 

3.2 Functional Languages 

The second group of languages are called functional 

languages. LISP and PROLOG are good example in this category. 

These languages tries to eliminate some of the drawbacks that 

are existing in the previous class of languages. Some of the 

features of these languages are : 

' 
1) They are based on a sound mathematical model which defines 

semantics of the languages precisely. The semantics of LISP 

is based on the computational model called -calculus and 

19 



IMPERATIVE AND FUNCTIONAL LANGUAGES 

Prolog is based on a subset of first order predicate calculus 

formulae known as Horn Clauses. 

2) Functional languages emphasizes on what to do on static 

facts and rules and not on procedural details which involves 

emphasizes on what to do rather than how to do it exactly; 

using the specific instruction set provided by the machineo 

3) They usually employ some inference mechanism to reach the 

result like employing a pattern matching technique to access 

the needed record or the values of the variable. 

4) There do not exist variables in the sense of conventional 

languages. There exists symbols which can be bound or free 

but they do not represent storage locations. This means that 

all the values assigned to variables are temporary for 

instantiation purpose only. 

5) The order of evaluation of variables does not change the 

result and always leads to the same normal form. 

6) There is a uniform syntactical notation, which almost 

completely eliminates the syntax errors and hence the 

necessity of big manuals for language definition. 

7) A important feature of these languages is its 

typelessness. As far as the computer is concerned it does not 

distinguish program and data. It is the imperative language 

which creates an artificial dichotomy due to its 

structurdness and prevents the program from manipulating it. 

But in applicative functional languages, since there does not 

exists any difference between function and data, functions 

can be used as arguments just as any other data and can be 

20 
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manipulated accordingly. These meta-level features are very 

much useful in higher lave! programming like in the area of 

Artific~al Intelligence. 

8) Another distinguishing feature is its dynamic databases. 

Data can be added or deleted when deemed necessary by 

programmer. Since functional language do not differentiate 

between program and data, program parts (clauses) can be 

added or deleted dynamically. This leads to dynamic 

programming, which means program can be changed at run time. 

Learning is an important consequent of this feature. 

9) One more striking feature of functional language is its 

ability to support parallel computation. Most of the problems 

to be solved will have some parts which can be done 

concurrently. Conventional languages does not provide ways to 

express these parallelism. This is basically because the 

design for development of imperative languages was influenced 

by the underlying architecture, which is inherently 

sequential with one-word-at-a-time philosophy. 

3.3 PROLOG & 1 C 1 

In order to understand the problems of translation 

from a conventional imperative language like 'C' to a 

declarative language like Prolog, we will consider briefly 

the two languages and difference between them. 

21 
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3.3.1 The 11C11 Language 

'C' was originally designed for and implemented on the 

UNIX operating system for the DEC PDP - 11, by Dennis 

Ritchie. The operating system, the 1 C 1 compiler, and 

essentially all UNIX applications programs are written in 

I C I • 

1) •c• provides a variety of data type. 

The fundamental types are characters, and integers and 

floating point numbers of several sizes. In addition, there 

is a hierarchy of derived data types created with pointers, 

arrays, structures, and unions. Pointers provide for machine

independent address arithmetic. 

2) •c• provides the fundamental control-flow constructions. 

For a well-structured program 1 C1 provides : decision 

making (if- else), selecting one of a set of possible cases 

(switch), looping with termination test at the top (whiLe, 

for) or at the bottom (do), and early loop emit (break). 

3) •c• is a relatively "low level" language. 

It simply means 1 C 1 deals with the same sort of 

objects that most computers do, namely characters, numbers, 

and addresses. 1 C 1 provides no operations to deal directly 

with composite objects such as character strings, sets, 

lists, or arrays. There is no operations that manipulate an 

entire array or string, although structures may be copied as 

a unit. 

22 
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4) •c• is not a strongly typed language. 

5) .•c• provides no inputfoutput facilities. 

There is no READ or WRITE statements, and no built-in 

file access methods. All of these higher-level mechanisms 

must be provided by explicitly called functions. 

6) Any function may be call~d recursively. 

Function definitions may not be nested but variables 

may be declared in a block-structured fashion. Variables may 

be internal to a function, external but only known within a 

single file, or visible to the entire program. 

7) •c• is independent of any particular machine architecture. 

8) 'C' offers only straightforward, single-thread control 

flow but not multiprogramming, parallel operations, 

synchronization, or coroutines. 

3.3.2 The Language PROLOG 

PROLOG (Programming in Logic) was invented by Alain 

Colmerauer and his associates at the university of 

Marseilles during the early 1970's. Prolog is a rule-based 

language based on the first-order predicate calculus formulae 

known as Horn clauses. Prolog uses the syntax of predicate 

logic to perform symbolic, logical computations. Prolog is 

.favored in applications which involves heavy logical 

deductions throughout. 
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1) Prolog is descriptive. 

Instead of a series of steps specifying how the 

machine. must work to solve a problem, a Prolog program 

consists of description throughout. 

2) Prolog uses rules and facts. 

Facts and rules describe the relationships known to 

exist between the objects. Problems can be considered in the 

form of IF (condition) THEN (action) rules. This is nothing 

but the representation of the rule-based organization. There 

are three form of Horn clauses which forms the basic 

constructs in Prolog. 

a). Prolog Rule. 

In Horn clause the rule is of form 

Here the predicate on the left-hand side is defined to 

be conjunction of goals on the right-hand side, e.g. 

son(X,Y) :- father(Y,X). 

which may read as 'X is a son of Y if Y is a father of 

X I. 

b) Prolog Facts. 

In Horn clause the fact is of form P 

Example son(john,garry) 

which may be read as "john is the son of garry". 

c) Prolog Queries . 

Given a database of facts and rules, we may ask queries. 

24 



IMPERATIVE AND FUNCTIONAL LANGUAGES 

It reflects the question to be answered. In Horn clause 

the form is 

Q2 . Q . . Q 
3 ---- m 

Example ? son (john, X) 

which may be read as "of whom is john the son ?". 

The response to the queries are given by returning the 

value a variable can take to satisfy the query or simply 

with yes(true) or no(false). 

3) Proloq can make deductions. 

Prolog uses backward chaining to deduce facts and the 

forward chaining can be easily simulated using backward 

re~soning. The backward reasoning method works backwards from 

the goal state space. We start with the goal we want to 

prove, and we try to establish all the facts needed to reach 

the goal. This reasoning is backward and is called goal goal 

directed, top-down, or consequent reasoning. 

4) Proloq program execution is controlled automatically. 

When a program is executed, the system tries to find 

all possible sets of values that satisfy the given goal by 

using backtracking. 

5) Proloq uses unification to compute results. 

Prolog uses pattern matching mecpanism to achieve 

unification of variables. Thus, it makes easy to manipulate 

the dynamic database, which Prolog provides. A pattern can be 

viewed as kind of sketch of an element in the database. Each 
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pattern is a structure made of different variables. A pattern 

is said to match a structure if it can be made identical to 

that structure by replacing its variables by specific values. 

This process is called pattern matching by unification. 

7) Prolog uses backtracking to satisfy subgoals of a goalu 

To satisfy goal, the Prolog searches alternative to 

satisfy subgoals using backtracking. Backtracking is a unique 

feature of Prolog not found in any other programming 

language. 

8) Prolog is inefficient for numerical processing. 

3.3.3 Difference between PROLOG and "C" 

Prdlog is a relational language, that is a language 

for logic programming. In contrast, 'C' is a conventional 

procedural language. In a procedural language, one specifies 

step by step how a result is to be computed . In Prolog we 

describe what the relationships are among the entities, 

rather than how. 

The 'C' language have data and program structures such 

as arrays, records, if-else and loops. There is no such 

constructs in Prolog. Prolog extensively uses recursion and a 

unique backtracking mechanics. Prolog variables do not 
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represent storage locations. All values assigned to variables 

are temporary and kept only for the duration of a specific 

execution of the clause. The programmer cannot increment a 

variable value as, for example, N = N + 1 is done in 'C' 

language. A Prolog procedure is a collection of rules rather 

than a single closed module of a subroutine. 
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SYSTEM ANALYSIS & DESIGN 

After stating the objectives of the project in the 

simple terms, now we go onto the next stage of software 

development, that is, Analysis. 
• 

system Analysis is a 

critical step in developing software systems and programs 

because it affects all the development step that follows. 

Analysis is a process of defining the requirements for a 

solution to a problem. During analysis the needs of the user 

are examined, and the properties that the system should 

posses to meet those requirements are identified. The 

functions to be performed are precisely defined. 

System design is a process through which requirements 

are translated into a representation of software system. 

Design builds coherent, well planned representations of 

programs that concentrates on the interrelationships of parts 

at the higher level and the logical operations involved at 

the lower level. 

In this chapter , I will be describing the subset of 

language 'C' (SubC) this software can handle. How simple or 

complex problems can be addressed to, and in what manner. In 

order to asses the seriousness of a problem, how the study 

will .be conducted and it will be investigated whether that 

problem is to be translated into Prolog. Also, justification 

will be given for each of the problem addressed. Constraints 

and limitations of the software will also be mentioned in 

this chapter. 
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4.1 TRANSLATOR 

The three main parts of a translator is 

1. The source language :- Language which has to be translated 

into target representation. 

2. The target language :- It represents the goal of the 

problem. 

3. Implementation strategy :- Scheme for converting the 

source language to target language. 

4.2 The Source Language 

Each programming language has its own unique features. 

For a specific problem one should choose a language in which 

the problem can be stated in the most natural way and its 

solution is easy to assimilate. Since 'C' is most widely 

accepted programming language nowadays and it captures most 

of the features of procedural languages, it is chosen as our 

representative for the source language of the translator. For 

the sake of simplicity and understanding a subset of 'C', 

SubC, is considered instead of the full language 'C'. 

Subc (Subset of 'C') 

As the name implies, SubC is a subset of standard 'C' 

which includes basic features of 'C' language. SubC is 

described in detail by its grammar (See appendix A). The 
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grammar of SubC is a non-ambiguous and context-free. No 

backtracking is allowed when going from start symbol to 

terminals (see chapter 2). The grammar of subC is written 

after removing left recursions in the rules and also, after 

doing the left factoring to make it suitable for top-down 

parsers. For clarity and simplicity, SubC is also explained 

with the help of transition diagrams. For translation diagram 

of SubC see Appendix B. 

Here in short we will explain the features of SubC. 

1). SubC includes fundamental data type such as integer, 

floating point and character. In derived structured data 

types only arrays of simple types are included. 

2). Subc includes most of control-flow constructs. IF - ELSE, 

SWITCH, WHILE, FOR, DO - WHILE, and BREAK are all included. 

No GOTO statements are allowed in 'C'. Since structured 

programming do not permit goto statements, this omission is 

not important. 

3). A printf and scanf statement is included in SubC for 

inputjoutput. This feature is not there in standard •c•, as 

printf and scanf are library functions. 

As some of the features of 'C' language are not 

included here, we use the name SubC instead of 'C' throughout 

the rest of this report. 

4.3 The Target Language 

PROLOG is chosen as a representative of all functional 
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languages in our implementation. Prolog being a relational 

language is becoming more popular and is widely accepted as 

the language for artificial intelligence applications 

involving logical and symbolic manipulations. It has gained 

greater credibility since the effort to develop several 

different computer systems whose underlying kernel languages 

will be variants of logic programming, i.e. Prolog, 

programming in logic. The interpreter for Prolog are easily 

available and there exist different dialects of it, but all 

of them have the same basic constructs. We have chosen 

standard Prolog as written by Clocksin and Mellish as our 

target code. There is no need to declare data or clauses in 

this representation. 

4.4 The Translation Scheme 

The translation technique followed is syntax directed 

translation scheme. The actual translation process is 

described in detail under this topic. 

Conceptually, we have divided the whole process in 

following three phases : 

1. Analyzing the source program : This part breaks up the 

source program into constituent pieces and recognize the 

source language constructs. 

2. Semantic actions : This part executes semantic rules 

associated with each rule of source language. 

3. Getting target program : This deals with the ordering the 
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resultant segments of the target language into meaningful 

programs. 

since the efficiency of the output code is not our 

primary concern, we have ignored the code optimization phase 

of the translator. 

The translation process can be simply viewed in the 

following figure 

Source 
program in 
-->-------l 
SubC with 
possible 

SYNTAX 
ANALYZER 

1----E_r_r_o_r_f_r_e_e __ l. n>-l __ T_RAN __ s_LA_T_O_R _ ___. _P_rc_oo_dl_oe_g 
source prog. 

SubC 
errors 

t 

I ERROR RECOVER 
OR REMOVED 

4.4.1 Analysis of the source program 

The entire process of analysis is divided into two 

phases 

1) Linear Analysis :- In linear analysis, also known 

popularly as lexical analysis or scanning. The stream of 

characters making up the source code is read from the top-to-

bottom, left-to-right and are grouped into logical units 
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known as tokens. Token are sequence of characters having a 

collective meaning. 

Every character encountered is processed in this 

phase. 

White space characters (Blanks, tabs ) acts as token 

delimiters and are ignored by the scanner .. 

A line number counter is incremented whenever newline 

character is encountered. This facilitates in displaying 

error messages, giving the correct line number where the 

error has occurred. 

End - of - file character is used for keeping tab on 

file end and ending the program. 

Letters and digits invokes different conditions. They 

are grouped together into a token until a delimiter is 

encountered. These tokens are divided into two types, Numbers 

and Identifiers. Numbers can be either of integer type or of 

floating point type. 

All other characters are treated as delimiters and 

each is processed separately. For example, 

if '+' is followed by '=' , then "+=" is a single 

token and its attribute is ASSIGNMENT. 

else if '+'is followed by '+' , then "++" is a single 

token and its attribute is INCREMENT. 

else '+' is treated as a separate token. 

Lexical analyzer also maintains a symbol-table in 

which every identifier and number is entered along with its 
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attribute value. Lexical analyzer function returns a integer 

value, which can be used by the parser to identify the token 

which is then removed from the input so that processing of 

the next token can begin when demanded by the parser. 

2) Syntax Analysis :- It is also called hierarchical 

analysis. It involves grouping the tokens into grammatical 

phrases that are used by the program to synthesize output 

code. The grammatical phrases of the source program are 

represented by a parse tree. 

The hierarchical structure of the program is expressed 

by recursive rules. For example, we have the following rules 

as part of the definition of statements. 

if exp1 is an expression and stmt is a statement, then 

do { stmt } while exp1 , and 

if ( exp1 stmt 

are statements. 

Similarly, if exp1 and exp2 are expressions, then 

++ 

+ 

are expressions. 

We divide the analysis int two parts because it 

simplified the overall task. One factor which influenced the 

division was inherently recursive nature of SubC constructs. 

Fundamentally, lexical constructs do not require recursion, 

while syntactic constructs of SubC do. Context - free grammar 

was used as a formalization of recursive rules to guide 

syntactic analysis. CFG's was introduced in Chapter 2 and 
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grammar of SubC is given in Appendix A. 

In our program, the parser obtains a string of tokens 

one-by-one from the scanner and verifies whether the string 

can be generated by the grammar of CFG or not. If it cannot 

be generated then the parser reports the syntax error. It 

would also recover from commonly occurring errors so that it 

can continue processing for the remainder of its input 

without much hindrance. 

We have used predictive parser to recognize the SubC 

language constructs. By carefully writing the grammar, 

eliminating left recursion from it and left factoring the 

resultant grammar, we had obtain a grammar that is parsed by 

a top-down, recursive descent parser that needs no 

backtracking. That is, the proper sub-routine is invoked by 

looking at only the first token it derives. For example, flow 

of control constructs in SubC are detected in this way. 

statement =» if ( ,expression ) statement 

=» while ( expression ) statement 

=» for ( statement 2 ) 

Keywords if, while, and for tells us which alternative rule 

is the only one that could possibly succeed. 

We have taken the help of transition diagrams in 

implementing predictive parser. As shown in Appendix B, there 

is one diagram for each non-terminal. 

Our predictive parser algorithm based on the 

transition diagram attempts to match terminal symbol against 

the input, and makes a potentially recursive procedure call 
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whenever it has an edge labeled by a non-terminal. A 

transition on a non-terminal X is a call of the procedrire for 

X. The parser behaves as follows : 

a) It begins in the start state for the start symbol 

translator unit. 

b) After some actions it is in state a with an edge 

labeled by terminal w to state B. 

if ( the next input symbol is w ) then 

the input moves one position right and the parser 

goes to state B. 

if (edge is labeled by a nonterminal X) then 

parser invokes the procedure for X, without moving 

the input cursor. 

c) If it reaches the final state then the input program is 

accepted, else it is given to error handling routine. 

4.4.2 Error Handling Technique 

The syntax analysis phase handle a large fraction of 

the errors detectable by the translator. Th~ lexical phase 

can detect errors where the character remaining in the input 

do not form any token of the language. Those errors where the 

token stream violates the structure rules of the language 

Subc are detected by the parser. After detecting an error, 

parser passes the control to the error handling routine, 

which must somehow deal with that error, so that processing 

can go on. 
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Error can be lexical, syntactic, semantic or logical. 

our error handling routine can handle only lexical or 

syntactic type of errors. 

Lexical error such as misspelling an identifier or a 

keyword is handled in a simple way. 

a) Handling misspelled keywords 

-- All the keywords in SubC is inserted into symbol

table along with their respective attribute values. 

-- During the scanning, each identifier or number 

excluding the keywords are inserted in the symbol table 

with their respective attribute value. 

-- Now if a keyword is misspelled, translator will 

recognize it as a new identifier and will try to insert 

it into the table. But afterward the token was found to 

be disobeying the grammatical rule defining the 

statement of SubC. 

-- This misspelled token is withdrawn from the symbol 

table and compared with the list of all keywords. 

-- Using pattern matching technique, the translator will 

try to identify the actual keyword which is then 

replaced in its rightful place. 

b) Handling misspelled identifiers 

The strategy is same as above with slight 

modification. Here, all the variables written in the 

declaration parts are treated as correct one and are entered 

in symbol-table. Then all the identifiers in the statement 

part of the programs are treated as in (a). Since, 

identifiers can differ in single character place, error 
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handling outline will ask the user to verify the correction 

before it actually replace it. 

Since, incorrect numbers ( integer or floating point) 

are not lexical errors, the translator will treat each number 

as logically correct. 

Error handling routine can recover some of the simple 

errors and can detect the remaining errors. To, recover the 

errors, the routine uses the phrase - level recovery 

(introduced in chapter 2) strategy. On detecting an error, 

the parser performs local correction like replacing a comma 

by a semicolon, delete an extraneous semicolon, or insert a 

missing character. 

Example 1 : The correct sentence in SubC is 

#include < filename > 

where filename is a non terminal. 

a) Suppose, the input program has the following incorrect 

sentence instead of the above sentence 

include < filename > 

that is, '#' is missing. 

Now, as soon as parser find include, it detects an 

error. Since, according to the grammar rule, indlude should 

be preceded by'#', the error handing function replaces the 

missing '#' in the input stream. 

b) Input sentence is # < filename > 

The parser on encount~ring '<', will detect an error. 

It will use a lookahead pointer to go to'>', then it can be 

safely stated that the error is missing token include. 
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c) Input is ?include < filename > 

Same as in (a) but here the parser decide that '? 1 is 

wrongly placed and will replace it with 1 # 1
• 

Example 2 The correct sentence in SubC is 

int x,y,z; \n 

where int is a keyword and x,y, and z are identifiers. 

In Subc semicolon acts as a statement terminator. 

a) Input sentence is int x,y;z; \n 

According to the grammar rule, the parser will detect 

the error only after reaching the identifier z. on looking 

ahead it will see the second 1 ;
1 followed by a newline 

character. The condition that the whole sentence is written 

in a single line points to the probable error of first 

placed erroneously instead of I I 
I • 

b) Input is int x,y; \n 

z; \n 

I • I 
I 

In this case, the parser will decide that a 

type_specifier (int, float or char) is missing. 

Since, there is no logical difference in above two 

sentences, the parser will ask the user to verify the change 

before actually replacing it in the input stream of tokens. 

In any case, this strategy is used to successfully recover 

from such class of errors. 

The error handling function uses the strategies of 

panic mode and phrase level recovery to deal successfully 
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with lexical and syntax error in input Subc program. The 

method can be made more intelligent by increasing the range 

of the lookahead. Our function can lookahead until an newline 

character is encountered. 

4.5 Translation Actions 

We have followed a state transformation approach 

introduced by Williams and Chen [5] for translating SubC into 

Prolog. 

In state transformation approach a block in source 

language can be regarded as an action which transforms some 

initial state s 0 into some final state sn. Each statement Ti 

(1 <= i < n) of the block will transform state si_1 into 

state Si, so that the execution of the block as a whole may 

be represented by the sequenQe 

in which Ti is the ith statement of the block. If each 

statement Ti is thought of as being represented by a Prolog 

rule, a block consisting of statements T1 , T2 , ....... , Tn may 

be translated as 

where the subgoals t 1 , t 2 , .... , tn are the names of 

predicates defining the effects of statements T1 , T2 , ... ,Tn. 
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4.5.1 Declarations 

Handling declarations of Subc does not create much 

problem because in Prolog declaring variables are not 

required. As Prolog variables do not represent storage 

locations, hence there is no need to declare them explicitly. 

In our approach the declaration part and statement part are 

taken as two different parts and are treated separately. 

During the declaration part of input SubC program, the 

parser will take only the book-keeping actions. Information 

such as the name , type and scope (in case of an array) of 

each variable is stored in symbol table and the variable 

table, for use in subsequent parts. This information prevents 

the undisciplined use of variables. A variable declared under 

two different data types will be detected as an error by the 

parser. 

So the parser will go through the declaration part of 

Subc without translating any of it into target 

representation, Prolog. 

4.5.2 statements 

As mentioned before, the statements are parsed in top 

down fashion with information being retrieved and stored as 

required. 

A) control statements 

Control statements that are used in SubC are not 

available in Prolog. We have taken the case of various 
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control structures one by one. 

A.l) if - else statement : 

If - else statement is represented as 

if ( condition ) statement1 else statement2 

In Prolog, it is represented by replacing the if 

statement with the body of a separate clause. If-else 

statement of Subc is replaced with a procedure call and a 

clause is defined, with one rule corresponding to if and 

other rule for else. 

The Prolog rule generated for an if-else statement is 

if_else(IN,OUT) :- condition, 

statement1 . 

if_else(IN,OUT) :- statement2 . 

If the condition is satisfied and found to be true 

then the goals for the if clause will be executed. Otherwise 

the second rule will be att~mpted and the goals for the 

else clause executed. If the else clause is absent, the 

following rule will be generated. 

if_else(IN,OUT) :- condition, 

statement1 . 

if_else(IN,IN). 

The above rules state that if the condition fails, 

then the state vector will not change. 

IN and OUT are two state vectors which are empty for 

the main body of the program. For each procedure or statement 

body, the variables in set IN will be the variables accessed 

in the body. The variables in OUT set will be the variables 
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modified in the body. Set IN includes all variables used in 

the statement body together with any variable in OUT which 

return values if the variables are not updated. 

A.2) switch statement : 

The body of switch statement is 

switch ( expression 
{ 

case Ll stmt1 ; break; 

case L2 stmt2 ; break; 

case Ln stmtn; break; 

default : stmtn+l; break; 
where L1 , L2 , ..... , Ln are labels .. 

The switch statement is similar to if-else statement, 

with the number of alternatives more than two. 

The Prolog code generated for a switch statement is 

also similar, 

switch(L1 ,IN,OUT) :- stmt1 . 

switch(L2 ,IN,OUT) :- stmt2 • 

switch(Ln,IN,OUT) :- stmtn. 

switch(_,IN,OUT) :- stmtn+l" 

A.3) Iterative statements (for,while and do) 

The format of the code generated for a while or do or 

for statements will be similar. Hence, we are considering 

only the case of while statement. Since, do and for loops can 
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be proved to be equivalent to while, they are expressed in 

terms of while onlyo 

Prolog does not facilitate any loop in an explicit 

form. One way of simulating such a loop construct is to use 

recursion. Now, the statement is 

while ( condition ) statement 

The Prolog code generated for the while statement 

is 

while(IN,OUT) :- condition, 
statement, 
while(IN',OUT). 

while(IN,IN). 

where IN' is the modified bound conditions. 

The rules state that to execute a while statement, it 

is necessary to satisfy the bound condition first. If it 

holds, the goals for the body will be called one by one, the 

bound condition will be modified and the goals will be called 

to perform further iterations. If the condition fails, the 

current state will be returned as the final state by the 

second rule. 

B) Assignment statement 

Each time a variable is updated by an assignment, a 

new variable is created to substitute for the old one. This 

is done because there is no storage location concept in 

Prolog. Variables can be either bound or free. Once a 

variable is bonded by a value, it can not be changed unless 
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it is freed. To accomplish this, recursion is used (because 

every time the rule call itself, it means a new call for the 

rule). 

To create a substitute for an old variable the parser 

keeps a record of each SubC variable and.a counter to keep 

track of number of times that variable occurs in input 

program. The counter is incremented whenever the variable is 

updated by an assignment statement. Then, the name of the 

variables concatenated with the counter value to create the 

new variable. 

Assignment statements and input-output statement will 

not be defined as separate rules, instead they will be 

translated directly in the context of their parent rule. 

4.5.3 Common Data Structures 

a) Variables : Prolog variables are local; that is, 

their values remain only for the rule only. The 

variable value are passed from a rule to other rule. 

They are passed as procedure parameters, as, for 

example p(Al,A2, .... ) :- q(Al,A2, .... ), 

q(Al,A2 ..... ) :- t(Al,A2, .... ), .... lm5 

b) Arrays : There are no arrays in Prolog. 

We have chosen Prolog lists as the array. Though this 

method is inefficient, it was preferred because it is 

easy to implement. 
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In SubC, the access an element of an array 

is random while the Prolog lists are only sequential. 

All the operations which can be applied to an array 

are also possible for a list. 

Whenever an element at position i of an 

array is updated, the following operations are done on 

the corresponding list 

Go to the ith element of the list. 

Remove that element from the list. 

Insert the new value at the ith place in the list. 

The above technique was used for developing a 

prototype source-to-source translator ~hose test results are 

given in Appendix c. 
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CONCLUSION AND SUGGESTED ENHANCEMENTS 

5.1 CONCLUSION 

After finishing the system testing, which includes the 

last.review of the objectives, we look back to analyze the 

goal we had set at the start. What we were able to achieve 

and what we fail to cherish. 

Our primary objective was to develop a source-to

source translator which translates the program written in 'C' 

into Prolog rules. We have taken a subset of 'C' language, 

Subc, for the sake of simplicity and understanding the 

difficulties involved in translating radically different data 

structures of these two languages. One of the objectives of 

the project was to provide the overview of the central 

themes, ideas, and difficulties associated with error 

recoveries. The core idea for translating SubC into Prolog 

was to use syntax directed translation scheme. 

Of the above objectives stated, we were able to attain 

most part of it and developed a prototype translator that 

translates SubC into Prolog. The syntax errors where the 

token stream violates the structure rules of the language 

SubC were detected and was effectively dealt with by the 

predictive parser of the translator. 

In all it was a very useful and fruitful experience 

during which we gained insight into this fascinating field of 

source-to-source translation of programming languages which 

is so much related to language understanding and particularly 

to programming languages. 
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5.2 SUGGESTED ENHANCEMENTS 

Though we tried our best to make the software as broad 

as possible in limited time, there is stili a wide range of 

enhancements, which can be instituted into the system to make 

it more flexible and hence improve its quality. 

Following are the some of the enhancements suggested by us 

1) Range of SubC can be increased by including reco~d 

and file structure. 

2) Another omission which SubC makes is the function 

call. Since the standard library functions can be 

written in Prolog these function calls can be 

incorporated by writing, beforehand, the equivalent 

clauses in Prolog. 

3) Dynamic data types like pointers can be implemented. 

A pointer variable which points to a data object can be 

simulated by creating a symbol and binding this symbol 

to the object to which it is supposed to point. 

4) The array in SubC is equated to list in Prolog, which 

is inefficient. A better solution is binary tree 

representation. This can be implemented as the 

enhancement to origi~al representation. 
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APPENDIX C 

TEST EXAMPLE RESULTS 

/* Test Example 1. */ 
/*This program does nothing. It is used for demonstration 
purpose only */ 

main() 
{ 

} 

int a,b; 
a = 4; 

if (a>O} 
{ 

} 
else 
{ 

} 

a = 9; 
b = 6; 

a = 3; 
b = 6; 

I* End of Example *I 

I* The translated program for test 1 example *I 

mairi :-
A1 = 4, 
if_1(A1,B1,A2,B2}. 

if_l(A1,B1,A2,B2} :-
. A1 > 0, 

if_1(A1,B1,A2,B2} :-

A2 = 5, 
B2 6. 

A2 = 3, 
B2 = 2. 



/* Test Example 2 */ 

/* For If-then-else */ 

main () 
{ 

} 

int i,a,b; 
scanf(a,b); 
i = 0; 
if ((a==O} && (b!=10}} 
{ 

} 

a = a + 2; 
b = a - 4; 
i++; 

else .. 
{ 

} 

a = a + b + 2; 
b += 4; 

/* End Example 2 */ 

/* The translated program for test 2 example */ 

main :-
readint(A1,B1}, 
I1 = O, 
If_1(A1,B1,I1,A2,B2,I2}. 

If 1(A1,B1,I1,A2,B2,I2} :-
A1 = O, 
B1 <> 10, 
A2 = A1 + 2, 
B2 = A2 - 4, 
I2 = I1 + 1. 

If_1(A1,B1,I1,A2,B2,I1} :-
A2 = A1 + B1 + 2, 
B2 B1 + 4. 



/* Test 3 program.*/ 

!* This program finds the max, min and average values of a 
group of integer */ 

main() 
{ 

} 

int max,min,n,t,a; 
float ave; 
scanf(a); 
max = a; 
min = a; 
n = o; 
t = 0; 
while (a > 0} 
{ 

} 

if (a > max) 
max = a; 

else if (a < min) 
min = a; 

n = n + 1; 
t += a; 
scanf(a); 

ave = t % n; 
printf(max,min,ave); 

/* The translated program is as follows */ 

main :
readint(Al}, 
Maxl = Al, 
Minl = Al, 
Nl = 0, 
Tl = O, 
while l{Al,Maxl,Minl,Tl,Nl,Max3,Min3,T3,N3), 
Avel ;; T3 % N3, 
writeint(T3,N3}, 
writereal(Avel). 

while_l(Al,Maxl,Minl,Tl,Nl,Max3,Min3,T3,N3} :-
Al > 0, 
if_l(Al,Maxl,Minl,Max2,Min2}, 
N2 = Nl + 1, 
T2 = Tl + Al, 
readint (A2}, 
while_l(A2,Max2,Min2,T2,N2,Max3,Min3,T3,N3). 

while l(Al,Maxl,Minl,Tl,Nl,Maxl,Minl,Tl,Nl). 



If_l(Al,Maxl,Minl,Max2,Minl) :-
Al > Maxl, 
Max2 = Al. 

If l(Al,Maxl,Minl,Maxl,Min2) :-
- if_2(Al,Minl,Min2). 

if_2(Al,Minl,Min2) :-

if_2(Al,Minl,Minl). 

Al < Minl, 
Min2 = A. 
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