
Acknowledgement

I feel pleasure to express my heartful gratitude to my

Guide Dr.P.C.Saxena for his uncompromising guidance constant

supervision and constructive criticism without which this

work would not have been ·completed successfully.

I extend my sincere thanks to Prof.R.G.Gupta Dean

School of Computer & System Sciences,Jawahar Lal Nehru

University For his encouragement and facilities for the

completion of this work.

I also take this opportunity to thank all faculty and

staff members and my friends who have been directly or

indirectly helpful in eliminating a variety of problems

encountered by me in the course of completion of this

dissertation.

~evesk ~
(Devesh Gupta)

Certificate

This is to certify that the Dissertation entitled

"Character Device Driver for Unix",being submitted by me to

Jawahar Lal Nehru University in the partial fulfillment of
~

the requirement for the award of degree of Master of

Technology,in Computer Science is a record of original work

done by me under the supervision of Dr. P.C.Saxena,

Associate Prof~ssor,School of ·Computers and Systems

Sciences, Jawahar Lal Nehru University during the Year 1992

Monsoon Semester.

The results reported in this dissertation have not been

submitted in part or £ull to any other university or

Institute for the award of any degree or diploma, etc.

(Proff~~
Dean, ~JV'fl--
School of Computer &
Systems Sciences.
JNU, New Delhi.

~_('~~
(Dr. P.C. Saxena)
Associate Professor,
School of Computer &
Systems Sciences.
JNU, New Delhi.

CHAPTER-I

CHAPTER-II

CHAPTER-III

CONTENTS

ACKNOWLEDGEMENTS
PREFACE

INTRODUCTION

INTRODUCTION TO PROBLEM
DESCRIPTION

OVER-VIEW OF STREAMS

WHAT IS STREAMS

STREAMS COMPONENTS

MESSAGES

MESSAGES TYPE

MESSAGE QUEUING PRIORITY

MODULES

STREAM CONSTRUCTION

OPENING A STREAM DEVICE FILE

ALGORITHM FOR SIMPLER MODULES &
MODULES INSERTION

ADDING AND REMOVING MODULES

CLOSING THE STREAM

INSERTING MODULES

MODULE AND DRIVER CONTROL

PAGE NO.

1-2

1
1

3-16

3

3

6

6

8

9

9

13

17-24

17

18

19

21

CHAPTER-IV

CHAPTER-V

!\PPENDIX-I

BIBLIOGRAPHY

DESCRIPTION & ALGORITHM FOR
SIMPLE DRIVERS

LOOP AROUND DRIVER
ALGORITHM LOOP AROUND
DRIVER

CONCLUSIONS & FINDINGS

DRIVER CONFIGURATION

WRITING A DRIVER

RULES OF DRIVER DEVELOPMENT

MAJOR & MINOR DEVICE NUMBERS

STREAMS DRIVERS

LISTING OF PROGRAM

25-37

25
26

38-48
3b'

39

40

41

43

46

4'1-12

PREFACE

In the present work I have tried to explain how to

write device drivers using streams facility of unix., and

implementation for character device driver for unix. Chapter

I Introduction deals with need for Device Drivers. Chapter

II •overview of Streams• tells about structure of

stream facilities provided in "stream' and about the compo~

nents of streams.

Chapter III Algorithm for •simpler Modules & modules

Insertion•. deals with Adding and Removing Modules. How to

close the stream Plus figure and algorithm for case convert

er module (this module changes lower case letters to upper

case i.e. a --> A b -->B etc). Chapter IV deals with

·~gorithm for simple Drivers•. Drivers described here is

the loop Around Driver. Loop around driver loops data from

one open stream to another open stream. Chapter describes

how to open another stream Chapter describes how two

streams are opened and how message is transferred from one

stream- to other. Chapter also gives algorithm for loop

around drivers with simultaneous description.

Chapter V Conclusions & Findings. Describes the steps

how to write device driver, and then the rules for

driver development, modification to be made in file system,

major & minor device no, etc.

Appendix - 1 deals with modules required in character device

driver implementations. Bibliography at the end has been

added for additional reference of the reader of this disser

at ion.

CHAPTER I

INTRODUCTION

The Fundamental work in adapting UNIX to new hardware

environment consists largely in providing, appropriate

device drivers, If the new h/w is similar to the old, then

existing driver can readily be adapted. The driver developer

must take into account manner in which dato. is communicated

with the h/w device and manner in which asynchronous signals

such as interrupts are communicated. Since drivers are

implementing system calls and often must respond to low

level interrupts, they must interface intimately with the

UNIX kernel.In the present work I'll be writing character

device driver using streams facility of Unix.

The streams I/0 system provides a background for de

veloping drivers allowing them to be structured in simple

and understandable (well, almost) modules and allowing these

; ..,, modules to be modified dynamically while the system is

operational. In particular it unifies the interface between

the kernel and the user specifying rather exactly the forms

of dialogue that can occur.

Description:-

Streams was created by Dennis Ritchie, the co-creator

of UNIX, and first described in an article "A stream Input

Output System" in the October llft.1 AT ~ I. Bell laboratories

technical Journal. It became an integral part of system V

1

UNIX Release 3.0 which was first made publicly available in

June 1986.

Ritchie described the S.TREAMS interface as "flexible

coroutine-based design which replaces the traditional rigid

connection between processes an-d terminals or networks".

(and describes it as running on "about 20 machines in the

Information Science Research Division of A T & T Bell

laboratories"). The currently distributed version of streams

provide essentially the interface described in the paper but

adds a provision for multiplexing several modules into one.

Ritchie discusses ~ problems ~ states

" a general multiplexing mechanism could help ... ,

but again I do not yet know how to design it".

A streams is a collect~on of units called modules",

Providing at one end the head, a user kernel interface

following a prescribed protocol, and at the other end, the

driver, providing what is usually very similar to a, tradi

tional device driver. The modules between the head and the

driver serve as filteDs, transforming data as required, as

servers, implementing particular data communica~ion proto

cols; or as routers, choosing lower streams.for routing data

in and out of various devices and choosing upper streams for

routing data to and from various processes. Any module may

send and receive message of its own, representing control

requests or response or error indications.Following work is

based on developing algorithm for device drivers.

2

Chapter - 2

OVer-view Qf. STREAMS

What ~ STREAMS!-

STREAMS is a general flexible facility and a set

of tools for development of UNIX system communication serv

ices. It supports implementation of services ranging from

complete network protocol suites to individual device driv

ers. STREAMS defines standard interfaces for character

Input/Output within the Kernel, and between the kernel and

the rest of the UNIX system.

A STREAM is a full-duplex processing and data

transfer path between a STREAM driver in Kernel space and a

process in user space. In the Kernel, a stream is construct

ed by linking a stream head and driver. The stream head is

the end of stream nearest to the user process. All system

calls made by a user level process on a stream are processed

by the stream head.STREAMS uses queue structures to keep

information about given instances of a pushed module or

opened STREAMS device. A queue is a data structure that

contains status information, a pointer to the routine

processing messages and pointers for administering the

stream. Queues are always allocated in pairs. One queue

for the read side and other for the write side. There is one

queue pair for each driver and module and the stream head.

The pair of queues is allocated whenever the stream is

3

opened or the module is pushed <added) on to the stream.

Figure Simple Stream

1--------------\
:User Process
\--------------1

User Space
--------------------:----------------------------

Kernel Space
Downstream v

v

1------------------\
: Stream Head
\--------------;---1

I I v I

1--------------------\
: Module <optional)
\---------------A----1

I
I

v 1----------------\
Driver

\----------------1
External Interface

" I
I
I

upstream

Data are passed between a driver and the stream

head and between modules in the form of messages. A mes-

sage is a set of data structure used to pass data,

status, and control information between user process,

modules and drivers. Messages that are passed from the

aevice are said to travel downstream <also cal led write

side l. Similarly, message passed in the other direction,

from the device to the process or from the driver to the

stream head, travel upstream <also called read-side).

A streams message is made up of one or more

message blocks. Each block is a 3-tuple consisting of a

header, a data block and a data buffer. The stream head

4

transfers data between the data space of a user process

and STREAMS Kernel data-space. Data to be sent to a driver

from a user process are packaged into STREAMS message and

passed downstream when a message consisting data arrives at

the stream head ~rom down stream, the message is processed

-
by the stream head, which copies the data into user

buffers.

STREAMS COMPONENTS L=

Queue I-

A queue is an interface between a STREAMS

driver or module and the rest of the stream. Queues are

always allocated as an adjacent pair. The queue, and the

lower address in the pair is a read queue, and the queue

with the higher address is used for the write queue.

A queue's service routine is invoked to

process messages on the queue. Eac~ queue also has a

pointer to an open ahd close routine. The open routine

of a driver is called when the driver is first opened and

on every successive open of the stream. The close routine

module is called when the module is first pushed on the

stream and on every successive open of the stream. The

close routine of the driver is called when the last

reference· to the stream is dismantled.

5

MESSAGES/-

All input and output under STREAMS is based

on messages. The object passed between STREAMS modules are

pointers to messages. All STREAMS messages use two data

structures (msgb and datab) to refer to the message data.

These data structures describes the type of the message

and contain pointers to the data of the message, as well

as other information. Messages are sent through a stream by

successive calls to the put procedure of each module or

driver in the stream.

MESSAGE TYPE 1=

All STREAMS messages assigned message types to

indicate their intended use by modules and drivers and to

'
determine their handling by the Stream head. A driver or

module can assign most types to a message it generates,

and a module· can modify a message type during process-

ing. ;he Streams head will convert certain system calls

to specified message types and send them downstream, and

it will respond to other calls by copying the contents of

certain message types that were sent upstream.

Most message types are internal to STREAMS and can

only be passed from one STREAMS component to another. A

few message types, for example M_DATA, M_PROTO, and

M_PCROPOTO, can also be passed between a Stream and user

processes. M DATA message carry data within a Stream and

6

between a Stream and a user process. M_PROTO or M PCROTO

message carry both data and control information.

As shown in the figure,_ a STREAMS message consists

of one or more linked message blocks that are attached to

the first message block of the same message.

Messages can exist stand-alone, as in the figure,

when the message is being processed by a procedure.

Alternately, a message can await processing on a

1 is t of messages, cal led a message queue. ln

Message 2 is 1 inked to message one.

Figure Messages on a Message Queue

Message
1-----------\ 1

Message
:1-----------\ 2

next :: Message next
:-----------------~ Block

Message
queue --------~: Block
header : ltypel

\----;..------1

: ----------->

1-----------\
Message

: Block

\-----------1
.....
'

1-----------\
Message
Block

\-----------1
~

aessage :: I typel
:\----;..------/
' ' I I

:1-----------\
:: Message
:: Block
:: I typel
!\-----------/

/\ .

7

aessage

next

linked

figure

When a message is on a queue, first block of

the message contains links to preceding and succeeding

!
messages on the same message queue, in addition to the

linked to the second block of the message (if present).

The message queue head and tail are contained in the

queue.

STREAMS utility routines enable developers

to manipulate queue.

Message Queuing Priority

In certain cases, messages containing

urgent information (such as a break or alarm condi-

tions) must pass through the Stream quickly. to accommo-

date these cases, STREAMS provides multiple classes of

message queuing priority. All messages have an asso-

ciated priority field. Normal (ordinary) messages have a

priority of zero. Priority messages have a priority

greater then zero. High priority messages are high

priority by virtue of their message type. The priority

field in high priority messages is unused and should

always be set to zero.

Non priority, ordinary messages are placed at

the end of the queue following all other messages in the

queue. Priority messages can be either high priority of

priority band messages. High priority messages are placed

at the head of the queue but after any other high prior-

ity messages already in the queue. Priority band messages

8

that enable support of urgent, expedited data are placed

in the queue after high priority messages but before

ordinary messages.

Message priority is defined by the message type;

once a message is created, its priority cannot be

changed. Certain message types come in equivalent high

priority/ordinary pairs (for example M PCPROTO and

M_PROTO), so that a module or device driver can choose

between the two priorities when sending information.

MODULES

A module performs intermediate transforma

tions on messages passing between a Stream head and a

driver. There may be zero or more modules in a stream

(zero when the driver performs all the required character

and device processing) .

each module is constructed from a pair of

queue structures. One queue performs functions on

messages passing upstream through the module. The other

set performs another set of functions on downstream mes

sages.Each queue can directly access the adjacent queue

in the direction of message flow.

module, a queue can readily locate

its message and data.

STREAM CONSTRUCTION

In addition, within a

its mate and access

STREAMS constructs a Streams as a linked list of

kernel resident data structures. The list is created as a

9

set of linked queue pairs. The first queue ·pair is the head

of the Stream and the second queue pair is the end of the

Stream. The end of the Stream presents a device driver,

pseudo device, driver, or the other end of a STREAMS-based

pipe. Kernel routines interface with the Stream head

Figure: A Stream in More Detail

1-----------\

User
Process

\-----------1
A,
'
~ User Space

to

----------------1-----------\---------------------------
Stream Kernel Space

1-~---: Head :~----\

downstream \-----------;
'
"' 1-----------\ 1-----------\

QUEUE Module
B

QUEUE
"Bd" :-----------\

\-----------1

' ..y
1-----------\

Module
A
/------:

QUEUE
• A •

: \-----------/
v 1-----------\
Message

"Ad"
\-----------1

\-----------1
/;'

1-----------\

QUEUE
• Au"

\-----------/ 1' .

Upstream

\--------~

1-----------\

QUEUE

' ' v
/-----------\

Message
• Bu •

\-----------1

pair :stream End
Drive

Drive
Routine

\-----------1

..,;,-
External Interface

10

perform operations on the Stream. Figure depicts the

upstream I read) and downstream (write> portions of the

stream. Queue H2 is the upstream half of the Stream head and

queue H1 is the downstream half of the Stream head. Queue E2

is the upstream half of the Stream end and queue E1 is the

downstream half of the Stream end.

Figure : Upstream and Downstream Stream Construction

Stream Head

1-----------------\ 1-------------------\
QUEUE H1 QUEUE H2

\-----------------1 \-------------------1
(write.> : 1'1 read)

' '1/
1-----------------\ 1-----------------\

QUEUE H1 QUEUE H1

\-----------------1 \-----------------1
Stream End

of the entry pint, a procedure to process any message

received by the queue. The procedures for queues H1 and H2,

process messages received by the other end of the Stream the

Stream end)tail). Messages move from one end to the other,

from one queue to the next linked queue, as the procedure

specified by that queue is executed.

Figure shows the data structure forming each queue:

queue, qinits, qband; module_info and module_ stat. The

q band structure have information for each p~iority band in

the queue. The queue data structure contains various

modifiable values for the queue. The structure

contains a pointer to the processing procedures, the module

11

•info structure contains initial 1 i mit values, and the

module_stat structure is used for statistics gathering. Each

queue in the queue pair contains a different set of these

data structures. There is a queue, qinit, module_info, and

module_stat data structure for the upstream portion of the

queue pair and a set of data structures ot the downstream

portion of the pair. ln some situations, a queue pair may

share some or al 1 of the data structures. For example, there

may separate qinit structure for each queue in the pair and

one module_stat structure that represents both queues in the

pair. Figure shows two neighboring queue pairs with links

(solid vertical arrows) in both directions. when a modules

pushed is pushed into a Stream, STREAMS creates a queue pair

and links each queue in the pair to its neighboring queue in

the upstream and downstream direction. The linkages allOWS

each queue to locate its next neighbor. This relations is

implemented between adjacent queue pairs by the q_ next

pointer. Within a queue pair, ea.ch queue locates its mate

by use of STREAMS macros, since there is no pointer between

Figure : Stream Queue Relationship

1------------\
: qband
' I

\------------1
~

I

1------------\
: qband
'
\-----};.------I

'

!--~!------------\

: aodule
Strea1 Head q 1------------\ ; stat

q info 1------------\ 1------------\into: qinit \------------1
•------: queue : queue --~: 1------------\

lwritel : lreadl \-----------~/ : aodule

dollnstrea
\
1
------------1 \----.4,-------1 \---)>1 into

upstrea1 \------------/
:q_next :q_info +

' q '
: . f ... lln 0 1------------\ 1------------\q info
T-----: queue :~---~: queue :------l"

: (w r i te I : (read l
\------------1 , _____ : ______ 1

~ Streaa End ~
1------------\ 1------------\
: qband : qband
' ' I o

\------------1 \------------1

12

figure shows two neighboring queue pairs with links (solid

vertical arrows) in both directions. when a modules pushed

is pushed into a Stream, STREAMS creates a queue pair and

links each queue in the pair to its neighboring queue in

the implemented between adjacent queue pairs by the q_next

pointer. Within a queue pair, each queue locates its mate

by use of STREAMS macros, ·since there is no pointer between

the two queue procedures only as destinations towards which

messages are sent.

Opening a STREAMS Device File

One way to construct a Stream is to open a STREAM-based

driver file. All entry points into the driver are defined by

the streamtab structure for that driver. The streamtab

structure has a format as follows.

Struct streamtab

Struct qinit * st rdinit

Struct qinit * st_wrinit;

Struct qinit * st_mazrinit;

Struct qinit * st_muxwinit;

The stre~mtab structure defines a module or driver. st

rdinit points to the read qinit structure for the driver and

st_wdinit points to the driver's write qinit structure. st_

muxwinit point to the lower read and write qinit structures

if the driver is a multiplexer driver.

If the open call is the initial file open, a Stream is

created .. (There is one Stream per major/minor device pair).

13

First, an entry is allocated in the user's file table and a

vnode is created to represent the opened file. The file

table entry is initialized to point to the allocated vnode

and the vnode is initialized to specify a file of type

character special.

Second, a Stream header is created is created from an stdata

data structure and a Stream head is created from a pair of

queue structures. The content of stdata and queue are ini

tialized with predetermined values, including the Stream

head processing procedures.

The snode contains the file system dependent information. It

is associated with the vnode representing the device. The s

commonvp field of the snode points to the common device

vnode. The vnode field, v_data, contains a pointer to the

snode. Instead of maintaining a pointer to the vnode, the

snode contains the vnode as an element. The sd_vnode field

of stdata is initialized to point to the allocated vnode.

The v_stream field of the vnode data structure is initial

ized to point to the Stream header, thus there is a forward

and backward pointer between the Stream header and the

vnode. There is one Stream header per Stream. The header is

used by STREAMS while performing operations on the Stream.

The header is used by STREAMS while performing operations

on the Stream. In the downstream portion of the Stream, the

Stream header points to the downstream half of the Stream

head queue pair. Similarly, the upstream portion of the

14

of the Stream terminates at the Stream header, since the

upstream half of the Stream head queue pair points to the

onward, a Stream is constructed of linked, queue pairs. Next,

a queue structure pair is allocated for the driver. The

queue limits are initialized to those values specified in

the corresponding module info structure. The queue

processing routines are initialized to those specified by

the corresponding qinit structure. Finally, the driver open

procedure !located via its read qinit structure! is cal led.

Figure: Opened STREAMS-based Driver

1-----------\
: file table:

entry
\-----------1

~-node
1-----------\
: vnode :-------------\

:v streaa
\-----------1

~v_data

1-----------\
snode

\-----------1 1-----------\
:st-rea...., to.b:

~S.COIIOnUp

1-----------\
y

1-----------\
\-----------1

-<'
'

: vnode : v_streaa : stdata
: ---------'7>:

:-----/

\-----------1----------\-----------1
v data ,.1- sd vnode

1-----------\
snode

\-----------1

!sd_wrq

' 'f Streaa Head
1-----------\ 1-----------\
: queue : queue
:!write) :-4---~: !readl
\-----------1 \-----------1

)!..
'

..;_ q_next
1-----------\

:q_next

: queue
!writel

1-----------\
: queue

:<----~: !read)
\-----------1 \-----------1

Streaa End

15

modules on the Stream. When a Stream is already open,

routines of all modules and the driver on the Stream being

called. Note that this is an reverse order from the way a

Stream is initially set up. That is, a driver is opened and

a module is pushed on a Stream. When a push occurs the

module open routine is called. If another open of the same

device is made, the open, routine of the module will be

called followed by the open routine of the driver. This is

opposite from the initial order of opens when the Stream is

created.

•

16

Chapter-3

Algorithm for Simpler Modules ~ Modules Insertion

Adding and Removing Modules

As part of constructing a Stream a module can be added

(pushed) with an ioctl I_PUSH system call. The push inserts

a module beneath the Stream head. Because of the similarity

of STREAMS components, the push operation is similar to the

driver open. First, the address of the qinit structure for

the module is obtained.

~ext, STREAMS allocates a pair of queue structures and

initializes their contents as in the driver open.

Then, q_next values are set and modified so that the

module is interposed between the Stream head and its

neighbor immediately downstream. Finally, the module open

procedure (located via qinit) is called.

Each push of module is independent, even in the same

Stream. If the same module is pushed more than once on a

Stream there will be multiple occurrences of that module in

the Stream. The total number of pushable modules that may

be contained on any one Stream is limited by the Kernel

parameter NSTRPUSH .

An ioctl I_POP system call revokes (pops) the module

immediately below the Stream head. The pop calls the module

close procedure On return from the module close, any

messages left on the module's message queues are freed

(deallocated) . Then, STREAMS connects and Stream head to the

17

component previously below the popped module and deallocates

the module's queue pair. I _PUSH and I _POP enable a user

process to dynamically alter the configuration of a Stream

by pushing and popping modules as required. For example, a

module maybe removed and a new one inserted below the Stream

head. Then the original module can be pushed back after the

new module has been pushed.

CLOSING THE STREAM

The last close to a STREAMS file dismantles the Stream.

Dismantling consists of popping any modules on the Stream

and closing the driver. Before a module is popped, the close

may delay to allow any messages on the write message queue

of the module to be drained by module processing. Similarly,

before the driver is closed, the close may delay to allow

any messages on the write message queue of the driver to be

drained by driver processing. If O_NDELAY (or O_NONBLOCK)

is clear, close will wait up to 15 seconds for each module

to drain and up to 15 seconds for the driver to drain. If 0_

NDELAY (or O_NONBLOCK) is set, the pop is performed

immediately and the driver is closed without delay messages

can remain queued, for example, if flow control is

inhibiting execution of the writer queue service procedure.

When all modules are popped and any wait for the driver to

drain is completed, the driver close routine is called. On

return from the driver close, any messages left on the

driver's queues are freed, and the queue and stdata

structures are deallocated.

18

Note:- STREAMS frees only the messages contained on a

message queue. Any message or data structures used

internally by the driver or module must be freed by the
•

driver or module close procedure.

Finally, the user's file tabl~ entry and the vnode are

deallocated and the file is closed.

Inserting Modules

An advantage of STREAMS over the traditional character

I/0 mechanism stems from the ability to insert various

modules into a Stream to process and manipulate data that

pass between a user process and the driver. In the example,

the character conversion module is passed a command and a

corresponding string of characters by the user. All data

passing through the module are inspected for instances of

characters in this string the operation identifi~d by the

command is performed on all matching character. The

necessary declarations for this programe are shown below:

*include <string.h>

*include <fentl.h>

*include <sttropts.h>

*define BUFLEN 1024

/*

* These defines would typically be

* found in a header file for the module

* I

*define XCASE 1. /*change alphabetic case of char*/

19

*define DELELETE

*define DUPLICATE

main ()

2. /* delete char */

3. /* duplicate char */

char buf (BUFLEN);

int fd, count;

struct strioctl stroctl;

The first step is to establish a Stream to be

communications driver and insert the character conversion

module. The following sequence of system calls accomplishes

this:

if ((fd =open(/ dev/comm/01", O_RDWR)) < 0)

peror ("open failed");

exit (1);

if (ioctl(fd, I_, "lchconv") < 0)

perror ("loctl I_PUSH failed"):

exit (2) ;

The I PUSH ioctl call directs the Stream head to insert

the character conversion module between the driver and the

Stream head, creating the Stream shown in Figure. As

with drivers, this module resides in the kernel and must

have been configured into the system before it was booted.

An important difference between STREAMS drivers and

modules is illustrated here. Drivers and accessed through

node or nodes in the file system and may be opened just like

any other device. Modules,on the other hand, do not occupy a

file system node. Instead, they are identified through a

20

separate naming convention, and are inserted into a Stream

using I PUSH. The name of a module is defined by the module

developer.

Figure: Case Converter Module

1-~------------\

User
Process

\--------------1
A
I

v User Space
----------1--------------\-----~------------

Stream·
Head

\ - - - - - - - - - ., - - - - I
' ~
' '

1-V------------\
Character

: Converter
\---- -· ----i,\---- I

1-V------------\
:Communications:

Driver
\--------------1

kernel Space

Modules are pushed onto a Stream and removed

Stream in Last-In-First-Out <LIFOl order. Therefore,

from a

if a

second module was pushed onto his Stream, it would be

inserted between the Stream head and the character

conversion module.

Module and Driver Control

The next step in this example is to pass the commands and

corresponding strings to the character conversion module.

This can be accomplished by issuing ioctl cal 1 s to the

character conversion module as follows:

21

/* change all uppercase vowels to lowercase */

stroctl.ic_cmd - XCASE;

strioctl.ic timmout - 0;

sec) /*

/* default timecut (15

strioctl.ic

strioctl.ic_len- stricn (strioctl.ic_dp);

if (ioctl (fd, I_STR, strioct < 0)

perror("ioctl I_STR failed").

exit (3);

"AEICU";

/* delete all instances of the chars 'x' and 'x' */

strioctl.ic_ amd - DELETE;

strrioctl.IC_dp- "xX";

strioctl .is len - strien (strioct .ic dp)

If (ioctl (fd, I_STR, strioctl) < 0)

perror ("ioctl I_STR failed:)

exit (4).

ioctl requests are issued to STREAMS drivers and modules

indirectly, using the I_STR ioctl call The argument to r_STR

must be a pointer to a strictl structure, which specifies

the request to eb made to a module or driver. This structure

is defined in <stroptsh> and has the following format:

Struct Strioct

int ic_cmd: /* ioctl request */

int ic_timout; /*ACK/NAK timeout */

int ic_len;

char *ic_dp;

/* length of data argument */

*/ ptr to data argument */

22

Where ic_cmd identifies the command intended for a

module or drivers ic_timoul specifies the number of seconds

an I_STR request should wait for an acknowledgement before

timing out, ic_len is the number of bytes to data to

accompany the request, and ic_dp points to that data.

In the example two separate commands are sent to the

character conversion module. The first sets ic_cmd to the

command XCASE and sends as data the string "AEIOU"; it will

convert all uppercase vowels in data passing through the

module to lowercase. The second sets ic_cmd to the command

DELETE and sends as data the string "xX"; it will delete all

occurrences of the characters 'x' and 'X' from data passing

through the module. For each command, the value of ic_tim'out

is set to zero, which specifies the system default timeout

value of 15 seconds. The ic_dp field points to the beginning

of the data for each command, the value of ic_timeout is set

zero, which specifies the system default timeout value of 15

seconds. The ic_dp field points to the beginning of the data

for each command. ic_len is set to the length of the data.

I_STR is intercepted by the Stream head, which packages

it into a message, using information contained in the

strioctl structure, and sends the message downstream. Any

module that does not understand the command in ic_cmd will

pass that message further downstream. The request will be

processed by the module or driver closest to the stream head

thatunderstands the command specified by ic_cmd. The ioctl

call will block up to ic_timout seconds, waiting for the

23

target module or driver to respond with either a positive or

negative acknowledgement message. If an acknowledgement is

not : received in ic_timeout seconds, the ioctl call will

fail.

Note:- Only one I_STR request,can retrieve the results,

the any, of an I_STR request. If data are returned by the

target module or driver, ic_len will be set on r turn to

indicate the amount of data returned.

24

CHAPTER IV

DESCRIPTION ~ ALGORITHM FOR SIMPLE DRIVERS

Loop-Around Driver

The loop-around driver is a pseudo driver that loops

data from one open Stream to another open Stream. The user

process see the associated files almost like a full-duplex

pipe. The Streams are not physically linked. The driver is a

simple multiplexer that passes messages from one Stream's

write queue to the other Stream's read queue.

To create a connections, a process opens two Streams

obtains the minor device number associated with one of the

returned file descriptions, and sends the device number in

an I_STR ioctl to the other Stream. For each open, the

driver open places the passed queue pointer in a driver

interconnection table, indexed by the device number. When

the driver later receives the I_IOCTL message, it used the

device number to locate the other Stream's interconnection

table entry, and stores the appropriate queue pointer in

both of the Streams' interconnection table entries.

Subsequently, when messages, other than M_IOCTL or M_

FLUSH are received by the driver on either Stream's write

side, the messages are switched to the read queue following

the drivers on the other Stream's read-side. The resultant

logical connection is shown in Figure (in the figure, the

abbreviation QP represents a queue pair). Flow control

between the two Streams must be handled by special code

25

since STREAMS will not automatically propagate flow con-

trol information between two streams tha.t are not physically

interconnected.

Figure Loop-Around Streams

1--------------\
CLONE/
loopldev.3

\------;-------!
' '
'
' . '

1------v-------\
Strea.m

Head
\ - - -·- - - - - -!"-- - - - I

1--v-----------,
Module<sl

\---------J-.----1

1--------------\
CLONE/
loop/dev7

\------1\-------1

1------v-------\
Stream

Head
\---------f..----1

1--v-----------,
Module<sl

\ - - - - - - - - - A- - - - /

1--v------' ----\ 1--v-----------\
QP QP

~-----1-------~===================r-------~---------~
Loop-Around Driver

\------------------------------------/
\---1

The next example shows the loop-around driver code. The loop

structure contains the interconnection information tor a.

pair of Streams. loop_ioop is indexed by the minor device

number. When a Stream is opened to the driver, the address

of the corresponding loop_ioop element is placed in q_ptr

(private, data structure pointer·) of the read-side and

write-side que u e s . S i n c e 5 T R E AM S .:; I e a r s q _ p i t l o o p _ I o o p is

used to verify that this Stream is connected to another open

Stream.

26

The declarations for the driver are:

/*Loop_around driver */

#include "sys/types.h"

#include "sys/pararn.h"

#include "sys/sysmacros.h"

#ifdef u3b2

#include "sys/psw.h"

#include "sys/pcb.h"

#endif

#include "sys/strearn.h"

#include "sys/stropts.h"

#include "sys/dir.h"

#include "sys/singnal.h"

#include "sys/user.h"

#include "sys/errno.h'

#include "sys/cred.h"·

#include "sys/ddi.h"

static struct module_info minfo ={

Cxee 12,, "loop", 0, INFPSZ, 512, 128);

Staitc int loopopen (), loopclose(), loopwput(), loopwsrv():

static struct qinmit rinit ={

NUIL, looporarv, loopopen, loopclose, NULL, minfo, NUL,}

Static struct qinit winit ={

loopwput, loopwsrv, NULL, NULL, NULL rninfo, NULL);

Struct atreamtab loopinfo = { &init, &winit, NULL, NULL)

Struct loop{

queue loop{

27

queue_t *qptr; /*back pointer to write queue*/

queue_t *cqptr; /* pointer to connected read queue*/

#define LOOP_SET (('i <<811) /*should be in a file*/

extern struct loop loop_loop():

extern int loop_cnt;

int loopdevflag - 0;

The open procedure includes canonical clone procesing

which enables a single file system node to yield a new minor

device/vnode each time the driver is opened:

Static int loopopen (q, devp, flag, sflag, credp)

queue_t *q;

dev_t *devp;

int flag;

int sflag;

erect t *credp:

struct loop *loop;

dev_t newminor;

/*

*If CLONEOPEN, pick a minor device number to use.

* Otherwise , check the min9r device range.

*I

If (sflag = CLONEOPEN)

for (newminor 0: newsminor < loop_cnt; newsminor ++) {

If (loop_loop [newsminor] qptr -- NUL) break:

}else

newminor = getminor (* devp);

28

If (newsminor >= loop_cnt)

return ENDCIO;

/* construct new device number and reset deep/*

/* getmajor gets the external major number, if (sflag =

CLONWOPEN) */

If (q->q_qt r) /*already open */

return 0;

*devp = makedev (get major (*devp), newminor);

loop&loop_loop (newminor);

WR (q) ->q_qtr = (char*)

Loop. ptr = wr(q);

loop_qptr -- NULL;

return 0;

loop;

In loopopen sflag can be CLONEOPEN, indicating that the

driver should picture unused minor device (i.e., the user

does not care which minor device is used In this case, the

driver scans its private loop_ data structure to find an

unused minor device number. If sflag has not been set to

CLONEOPEN, the passed-in minor device specified by getminor

> (*devp) is used. Since the messages are awitched to the

read queue following the other Stream's read-side, the

driver needs a put procedure only on its write-side:

Static Int loopput (q, mp)

queue_t *q;

mblk_t *mp;

29

register struct, loop *loop;

loop - (struct loop *) q->q_qtr'

Switch (mp->b_bd_type);

case M_IOCTL; {

Struct ioblk *iocp;

int error;

iocp - (struct iocblk *) mp->b_rptr;

switch (iocp->ioc_cmd)

case·LOOP_SET; {

int to; /* other minor device/*

/* Sanity check, ioc_count contains the amount of

* Sanity check, ioc count contains the amount of

* user supplied data which must equal the size of an

int.

*I

If (iocp->ioc_count ;- sizeof (int).

error EINVAL::

goto iocnak:

/* fetch other dev from @nd mesage block */

to * (int*)mp->b_rptr:

I* more sanity checks. The minor must be in range, open

already.

* Also, this device and the other one must be disconnected.

*I

30

If (to >-loop_loop (to) (to) qptr)

error - ENAIO;

goco locnak;

} -
If (loop_loop tr 11 loop_loop (to), oqptr)

enrnr - EBUSY;

goto iocnak;

/* Cross connect Streams via the loop structures*/

loop_>oqptr- RD(loop_loop(to) .qptr);

loop_loop [to], oqptr- RD (q);

/*

* Return successful ioctl, Set ioc_count

* to Zero, since no data are returned.

*I

rnp_>b_data->type - M IOCACK;

iocp-> ioc count - 0;

greply (q, rnp);

break;

}

default:

error = EINVAL;

iocnak;

/*

*Bed ioctl, Setting ioc_error causes the

*ioctl call to return that particular errno.

* By default, ioctl will return EINVAL on failure

31

*I

mp->d_data->cd type - M IOCNAK;

iocp->ioc_error - error; /*ser returned arrno*/

break:

Ioopwput shows another use of an I STR ioctl call

"Module and Driver ioctls"). The driver sports a LOOP SET

value of oic cmd in the iocblk of the M_ioctl message.

LOOP SET instructs the driver to connect the current open

Stream to the Stream indicated in the message. The second

block of the M_IOCTL message holds an integer that specifies

the minor device number of the Stream to connect to.

The driver performs several sanity checks: Does the

second block have the proper amount of data? Is the "to"

device in range? Is the "to" device open? Is the current

Stream disconnected? Is the "to'' Stream disconnected? If

everything checks out, the read queue pointers for the two

Streams are stored in the respective oqptr field. This

cross-connects the two Streams indirectly, via loop_loop.

Canonical flush handling is incorporated in the put

procedure:

case

If (*mp->b_rptr - FLUSHW) {

flushq (q, FLUSHALL); /* write */

Flushq (loop=>optr, FLUSHALL);

M FFLUSH:

/* read on other side equals write on.this

32

side*/

If (*mp->b_rptr : FLUSHR) {

flushq (RD (q), FLUSHALL);

flushq (WR (loop_oqptr), FLUSHALL);

switch (*mp->b_rptr);

case FLUSHW:

*mp->b_rptr - FLUSHW:

break;

case FLUSHR;

*MP->b_rptr - FLUSHW:

break;

putnext (loop->oqptr. mp);

break;

default: /*If this Stream ins't connected., send M ERROR

upstream. *I

If (loop_>cqptr = NULL)

FREEMSQ (MP) ;

PUTCTLL (RD) (q) ->next, M_ERROR;ENXIO);

break;

putq (q, mp);

33

Finally, loopwput enqeues all other messages e.g.,

M_DATA or M_PROTO) for processing by its service procedure. A

check is made to see if the Stream is connected. If not, an

M_ERROR is sent upstream to the Stream head.

Certain messages types can &e sent upstream by drivers

arid modules to the Stream head where they are translated

into actions detectable by user process(es). The messages

may also modify the state of the Stream head.

M ERROR Causes the Stream head to lock up. Message

transmission between Stream and user processes is terminated.

All subsequent system calls except close(2) and poll(2) will

fail. Also causes an M_FLUSH clearing all message queues to

be sent downstream by the stream head.

M_ HANG Q£ Terminates input from a user process to the

Stream. All subsequent system calls that would send messages

downstream will fail. Once that would head read message

queue is empty, EOF is returned on reads. Can also result

in the SIGHUP signal bring sent to the process group.

M SIG/M PCSIG Causes a specified signal to be sent to a

prqcess. putctll() and putct() are utilities that allocate a

non-data (i.e., not M_DATA, M_DELAY, M_PROTO, or M PCPROTO)

type message, place one byte in the message (for putctl(l)

and call the put procedure of the specified queues.

Service procedures are required in ~his example on both

the write-side and read-side for flow control:

static int loopwsrv (q)

register queue_t *p;

34

mblkt *mp;

register struct loop *loop;

loop = (struct loop *) q->q_ptr;

while (mp = getq (q) = NULL)

/* Check if we can put the message up the other Stream

read queue*/

If (mp->b_datap->dbtype <- OPCIT " Jcanput (loop->oqptr

>q_next)

break;

/* send message */

putnext (loop->oqptr, mp); /* To queue following other

Stream read queue*/

static int looprsry (q)

queue_t*q;

/* Enter only when "Back enabled" by flow control */

struct loop *loop:

loop-(struct loop*) q->q_ptr;

If (loop->oqptr = NULL)

return,

/* manually enable write service procedure */

qenable (WR (loop->cqptr));

The write, service procedure, loopwsrv takes on the

canonical form. The queue being written to is not downstream

but upstream (found via aqpir) on the other Stream.

35

In this case, there is no read-side put procedure so

the read service procedure, looprsrv, is not scheduled by

an associated put procedure, as has been done previously

looprsrv is scheduled only by being back-enabled when its

upstream becomes unstruck flow coptrol blockage. The purpose

of the procedure is to re-enable the write (loopwsrv) by

using oqpir to fine the related queue. loopwsrv can not be

directly back-enabled by STREAMS because there is no direct

queue linkage between the two Streams. Note the no message
over gets queued to the red service, procedure, Messages are

kept on the write-side so that flow control can pro~agate up

to the Stream head. The qenable () routine schedules the

write-side service procedure of the Streams.

static int loopclose (q, flag, credp)

queue_t *p)

int flag;

cred t *credp;

register struct loop *loop;

loop- (struct lo~p*) q->q_ptr:)

loop->qptr - NULL;

/* If we are corrected to another stream break the

* linkage and send a hangup message.

* The hangup message causes the stream head to fall writes.

* allow the queued data to be read completely, and then.

* return EOF on subsequent reads.

*I

36

If (loop->qptr);

(struct loop*) loop->q_ptr) ->qoptr = NULL;

putctl (loop->q_next, M-HANGUP);

loop->qptr NULL;

loopclose sends an M HANGUP message up the connected

Stream to the Stream head.

Note:- This drive can be implemented much more cleanly by

actually linking the q-next pointers of the queue

pairs of the two Streams.

37

CHAPTER-5

Conclusions ~ Findings

A Driver is a software that provides an interface

between the operating system and device. The driver

controls the device in response to kernel commands and

user-level programs access the device through system

calls. The system calls interface with the file system

and process control system, which in turn ~ccess the

drivers. The drivers provides and manages a path for the

data to and from the hardware device, and services inter

rupts issued by the device controller.

In general, drivers are grouped according to the type

of the device they control, the access method (they way data·

are transferred), and the interface between the driver and

the device. The type can be hardware or software. A hardware

driver controls a physical device such as a disk. A

software, driver, also called a pseudo device, controls

software, which in turn may interface with a hardware de

vice. The software driver may also support pseudo devices

that have no associated physical device.

Drivers can be character-type or block-type but many

support both access methods. In character-type transfer,

data are read a character at a time or as a variable length

stream of bytes, the size of which determined by the device.

In block-type access, data transfer is performed on fixed

length block of data. Devices that support both block-and

38

character-type access must have a separate special device

file for each access method. Character access devices can

also use "raw" (also called unbuffered) data transfer that

takes place directly between user address space and the

device. Unbuffered data transfer .J..s used mainly for adminis

trative functions where the speed of the specific C?eration

is more important than overall system performance.

The driver interface refers to the system stream----

and kernel interfaces used by the driver. For example,

STREAMS in an interface.

Driver Configuration

For a driver to be recognized as part of the system

information on driver type, where object code resides,

interrupts and seen must be stored in appropriate files.

The following summarizes information needed to include

a driver in the system.

/etc/mastered This directory contains the master· files. A

master file supplies information to the system

initialization software to describe different

attributes of a drivers. There is one master

file for each driver in the system.

/stand/system This file contains entry for each driver

and indicates to the system initialization

whether a driver is to be included or exclud

ed during configuration.

39

/dev

/boot

This directory contains

provide applications witl

drivers via file operators

This directory contains b<

that are used to ~reate a

UNIX operating system wh

booted.

Writing a Driver

All drivers are identified by a st:

character called the prefix. The prefix

master file for the driver and is added

driver routines. For example, the ope

driver with the "xyz'' prefix is xyzopen.

The location of the driver source co1

whether the driver is a part of the core 1

an add-on to the core operating system.

Writing a driver differs from writir

in the following ways:

1 A driver does not have a main C rout

entry points are given specific

through switch tables.

2 A driver functions as a part of the

ly, a poorly written driver can degr

ance or corrupt the system.

40

3 A driver cannot use system calls or the C library,

because the driver functions at a lower level.

4 A driver cannot use floating point arithmetic.

5 A driver cannot use archives or shared libraries, but

frequently, used subroutines can be put in separate

files in the source code directory for the driver.

6 Driver code, like other system software, uses the

advanced C language capability. These includes bit

manipulation capabilities, casting of data, types, and

use of header files for defining and declaring global

data structures.

7 Driver code includes a set of entry point routines:

initialization entry points that are accused through

bdevsw I (block-access) and bdevsw (character-access)

switch tables when the appropriate system call is

issued.

8 Interrupt entry points that are accessed through the

interrupt vector table when the hardware generates an

interrupt.

The following lists rules of driver development:

1 All drivers must have an associated file in the

master.d directory.

2 All driver should have #include system header files

that define data structures used in the driver.

3 Drivers may have an init and I or a start routine to

initialize the driver.

Software drivers will usually have little to initial-

41

Software drivers will usually have little to initial

ize, because there is no hardware involved. An init routine

is used when a driver needs to initialize but does not need

any system services. init routines are run before system

services are initialized (like t0e kernel memory allocator,

for example) . When a driver needs to do initialization that

requires system services, a start routine is used. The start

routines are run after system services have been initial

ized.

Drivers will have open and close routines.

Most drivers will have an interrupt handler routine.

The driver developer is responsible for supplying an

interrupt routine for the device's driver. The UNIX system

provides a few interrupt handling routines for hardware

interrupts, but the developer, has to supply the specifics

about the device.

In general, a prefixing interrupt routine should be

written for any device that does not send separate transmit

and receive interrupts. TTY devices that request separate

transmit and receive interrupts can have two separate inter

rupt routines associated with them; prefix in it to transmit

an interrupt, and prefix in it to receive an interrupt.

In addition, to hardware interrupts, many computers

also support software interrupts. For example, AT&T comput

ers support Programed Interrupt Request (PIRs) . A PIR is

42

generated by writing an integer into a logical register

address assigned to the interrupt vector table.

Most drivers will have static subordinate driver rou

tines to provide the functionality for the specific

device. The names of these routines should include the

driver prefix, although this is not absolutely required

since the.routine is declared as static.

A boatable object file and special device files are

also needed for a driver to be fully functional.Major

and Minor Device Numbers

The UNIX system V operating system identifies and

accuses peripheral devices by major and minor numbers. When

a driver is installed and a special device file is created,

a device then appears to the user application as a file. A

device is accessed by opening, reading , writing and clos

ing a special device file that has the proper major and

minor numbers.

The major number identifies a driver for a controller.

The minor number identifies a specific device. Major numbers

are assigned sequentially by either the system initializa

tion software at boot time for hardware devices, by a

program such as drvinstall, or by administrator direction.

The major number for a software device is assigned automati

cally by the drvinstall command. Minor numbers are designat

ed by the driver developer.

43

Major and Minor numbers can be external or internal.

External major numbers for software devices are static

and assigned sequentially to the appropriate field in the

master file by the drvinstall(M) command. External major

numbers for hardware devices correspond to the bo -, rd slot

and are dynamically aligned by the autoconfig process at

system boot time. The mknod(IM) command is then used to

create the files (or nodes) to be associated with the de

vice. External major numbers are those visible to the user.

Internal major numbers serve as an index into the

cdevsw and bdevsw switch tables. These are assigned by the

auto-configuration process when drivers are loaded and they

may change every time a full-configuration boot is done. The

system uses the MAJOR table to translate external major

numbers to the internal major numbers needed to access the

switch tables.

Minor numbers are determined differently for different

types of devices. Typically, minor numbers are an encoding

of information needed by the controller board.

External minor numbers are controlled by a driver

developed by a driver developer, although there ~re conven

tions enforced for some types of devices by some utilities.

For example, a tape driver may interface with a hardware

controller (device) to which several tape driver (subde

vices) are attached. All tape drives, attached to one

44

controller will have the same external major number, but

each drive will have a different external minor number.

Internal minor numbers are used hardware drivers to

identify the logical controller that is being addressed.

Since drivers that control multiple devices (controllers)

usually require a data structure for each configured device,

drivers address the per-controller data structure by the

internal minor number rather than the external major number.

The logical controller numbers are assigned sequential

ly by the central controller farmer at self-configuration

time. The internal minor devite number is calculated from

the MINOR array in the kernel by multiplying the logical

controller number by the value of the #DEV field (number of

devices of per controll~r) in the master file.

The internal minor number for all software drivers is 0.

The MAJOR and MINOR tables map external major and minor

numbers to the internal major number. The switch tables will

have only as many entries as required to support the drivers

installed on the system. Switch table entry points are

activated by system calls that references a special device

file that supplies the external major number and instruc

tions on whether to use bdevsw or cdevsw. By mapping the

external major number to the corresponding internal major

number in the MAJOR table, the system knows which driver

routine to activate. The routines getmajor() and getminor()

45

return an internal major and minor number of the device. The

routines getmajor () and getminor() return an external major

and minor number for the device.

STREAMS Drivers

At the interface to hardw~re devices, character I/0

drivers have interrupt entry points' at the system inter

face, those same drivers, generally have direct entry

points (routines) to process open, close, read, write, poll,

and ioctl system calls.

STREAM device drivers have interrupts entry points at

the hardware device interface and have direct entry point

only for the open and close system. calls. These entry

points are accessed vi,J STREAMS, and the call formats differ

from traditional character device drivers. (STREAMS drivers

are character drivers, too. We call the non-STREAMS charac

ter drivers traditional character drivers or non-STREAMS

character drivers). The put procedure is a driver's third

entry point, but it is a message (not system) interface. The

Stream head translates write and ioctl calls into messages

and sends them downstream to be processed by the driver's

write queue put procedure, read is seen directly only by the

Stream head, which contains the functions required to proc

ess system calls. A driver does not know about system inter

face other than open and close, but it can detect the ab

sence of a read indirectly if flow control propagates from

the Stream head to the driver and affects

ability to send messages upstream.

46

the driver's

For input processing when the driver is ready to send

data or other information to a user process, it does not

wake up the process. It prepares a message and sends it to

the read queue of the appropriate (minor device) Stream. The

driver's write routine generally stores the queue address

corresponding to this Stream.

For output processing, the driver receives messages in

place of a write call. If the message can not be sent imme

diately to the hardware, it may be stored on the driver's

write message queue. Subsequent output interrupts can remove

messages from this queue.

Figure shows multiple Streams (corresponding to minor

devices) to a common driver. There are two distinct Streams

opened from the same major device. Consequently, they have

the same streamtab and the same driver procedures.

The configuration mechanism distinguishes between

STREAMS devices and traditional character devices, because

system calls to STREAMS drivers are processed by STREAMS

routines, not by the UNIX system routines. In the cdevsw,

file, the field d_str provides this distinction.

Multiple installation (minor devices) of the same

driver are handled during the initial open for each device.

Typically, the queue address is stored in driver-private

structure array indexed by the minor device, number. This is

for use by the interrupt routine which needs to translate

47

from device number for a particular Stream. The q_pir of the

queue wi II point to the private data structure, entry. When

the messages are received by the queue, the calls to the

driver put and service procedures pass the address of the

queue, allowing the procedures to determine the associated

device.

A driver is at the field end of a Stream. As a result,

drivers must include standard processing for certain mes-

sage types that a module might simply be able to pass to the

next component.

During the open and close routine the kernel locks the

device anode. Thus, only one open or close can be active at

a time per major/minor device pair.

Figure: Device Driver Streams
1-------------\

major/devO
vnode

\-----~-------/

1-----v-------\
Stream

Head
\----------"--/

1--v------------\
Module(s)

\----------"----/

1--v-------------\

1-------------\
:major/devl

vnode
\------~------!

1------v------\
Stream
Head

\----------"--!

1--v------------\
Module(s)

\----------"----!

1--v-------------\
: Qeueue Pair : Queue Pair

1---\
Driver Procedures

and
Interrupt Code

\------------~--------------------------"-----------------1

v
Port

0

48

v
Port

1

/**
LISTING OF MODULES REQUIRED

***/

lopa.c page 1.

I include <sys/types.h>
include <sys/param.h>
I include <sys/stream.h>
include <sys/streamcros.h>
ifdef u3b2
include <sys/psw.h>
include <sys/pcb.h>
include <sys/stropts.h>
include <sys/dir.h>
I include <sys/signal.h>
include <sys/user.h>
include <sy~/open.h>
include <sys/file.h>
include <sys/cred.h>
include <sys/ddi.h>
include <sys/arrno.h>
include "def.h"

static struct module info minfo = {

OxOa, "lopa", 0, INFPSZ, 0, 0}

int loapopen (), lopaclose();
int lopawput();

static struct qinit rinit = {
NULL, NULL, lopaopen, lopaclose, NULL, &minfo,NULL};

static struct qinit winit = {
lopawput, NULL, lopaopen, lopaclose, NULL, &minfo, NULL};

struct streamtab lopainfo = {&-init, &winit, NULL, NULL};

it lopadevflag = 0;

int lopaopenvflag = 0;

int lopaopen (q, devp, flag, sflag, credp)
queue_t
dev t
int
erect t
{

*q;
*devp;
flag;

*credp;

return 0;

49

int lopawput (q, mp)
queue_t *q;

{
rnblk t *mp;

struct rst *ptr;
. rnblk t *bp;
int i;

ptr = (struct rst *) mp->b_rptr;
/*

if (ptr-> prim == CONNECT)

ptr->prim = 4;
else

ptr->prim = 5;
*I

if (mp->b_cont ! = NULL)
{

bp = mp->b_cont;
bcopy ("loops", bp->b_rptr, 7);

}

#if 0
printf ("putting message from loopa driver\n");

#endif
/*putnext(RD(q), mp);*/

qreply (q,mp);

int lopaclose (q, flag, credp)
queue_t *q;
int flag;
cred t *credp;

return 0;

mod.c page 1

include <sys/types.h>·
include <sys/param.h>
include <sys/stream.h>
include <sys/stropts.h>
include <sys/file.h>
1 include <sys/open.h>
include <sys/cred.h>

so

I include <sys/cmn_err.h>
f include <sys/ddi.h>
t include <sys/log.h>
t include <sys/strlog.h>

static struct module info rminfo =
{Ox07, "mod", 0, INFPSZ, 512, 128};

static struct module info wminfo =
{Ox07, "mod", 0, INFPSZ, 512, 128};

int modopen (), modwput (), modwsrv (), modrput ().
modrsrv(), modclose();

int timhello () ;

static struct qinit rinit = {
rnodrput, NULL, domopen, modclose, NULL, &rminfo, NULL};

static struct qinit winit = {
modwput, dodwsrv, NULL, NULL, NULL, &wminfo, NULL};

Ostruct streamtab modinfo = { &rinit, &winit, NULL, NULL};

int rnoddevflag = 0, mod_tim_id;

int modopen(q, devp, flag, sfalg, credp)

queue_t
dev t
int

*p;
*devp;
flag;
sflag;
*credp;

int
erect t
{

fif 0
STRLOG(Ox07,0,0,SL,_TRACE,"inside mod open");
mod tim im =timeout (timhello, 0, l*HZ);

#endif

return O;

int rnodrput(q, mp)
queue_t *q;
mblk t *mp;

{

#if 0
cmn_err(CE_CONT, "mod : put message, in modput\n");;
cmn err(CE CONT, "modrput queue addr = %x\n", q)"
STRLOG(Oxo7,o,O,SL_TRACE, "mod :put message, in modput\n");

51

#endif
switch(mp-> b_datap->db_type)

case M FLUSH
if(*mp->b_sptr & FLUSHW)

flushq ((q->q_flag & QREADR)? WR(q)
break;

w, FLUSHDATA);

default
putnext (q,mp);

}

#if 0
STRLOG (OX07,0,0,SL_TRACE, "mod : exiting modput\\n");
cmn_errCE_CONT, "modrupt queue addr after putnext = %x\n". q)

#endif
}

int modwput (q, mp)
queue_t *q;
mblk t *mp;

{

#if 0
cmn_err(CE_CONT, "mod: wput /n");
cmn_err(CE_CONT, "modqput queue addr = %x\", q);

#endif
strlog(Ox07,0,0,SL_ERROR, "mod : put message, in modput\n");
stwitch(mp-> b_datap->db_type)

case M FLUSH

default
I*

/*

}

#if 0

if(*mp->b_rptr & FLUSHW)
flushq ((q->q_flag & QREADR) ? WR(q)
break;

put.next (q.mp)·;

putq(q,mp);

a, FLUSHDATA)

strlog (Ox07,0,0,SL_ERROR, "mod :exiting modput\n");
cmn err(CE CONT, "modwput queue addr after putq = %x'\n", q);

#endif- -
}

int modwsrv(q)
queue_t *q;

52

mblk t *mp;
#if 0

cmn_err(CE_COUNT, "mod : wsrv\n");
cmn_err(CE_CONT, "modwsrv quque addr = %x\n:, a);

#endif ·
while ((mp = getq(q)) 1 -NULL

{

if (cnaput (q->q_next))

if 0
cmn_err(CE_CONT, "modwsrv: putnext\n");

#endif

#if 0

putnext (q, mp);
}.

else
{

cmn)err)CE_CONT, "modwrv: putbq\n");
#endif

putbq(q, mp);
return; /*qenable (q);*/

}

#if 0
cmn_err(CE_CONT, "modwsrv queue addr after while = %x\n",· q)

#endif
}

int modclose (q, flag, credp)
queue)t *q;
int flag;l
cred t *credp;
{

#if 0
strlog)Ox07,0,0,SL TRACE, "inside mod close");
untimeout (mod_tim_id);

#endif
return 0; •

int timhello ()
{

if 0

cmn err)CE_NOTE, "hello time o-- t\n");
#endif

53

rnoda.c page 1

include <sys/types.h>
include <sys/param.h>
include <sys/stream.h>
include <sys/stropts.h>
include <sys/file.h>
include <sys/open.h>
include <sys/cred.h>
include <sys/cmn err.h>
include <sys/ddi.h>
include <sys/fcntl.h>

static struct module info rminfo =
{Ox08, "moda", 0, INFPSZ, 0, 0};

static struct module info wminfo =
{Ox08, "MODA'', 0 INFPSZ, 0, 0};

int rnodaopen (), modaput (), modaclose ();

static struct qinit pin it = {

rnodaput, NULL, modaopen, rnodacloe,

static struct qinit winit = {

rnodaput, NULL, NULL, NULL, NULL, &

NULL, &

wrninfo, NULL, } ;

struct streamtab modainfo = { & init, & winit, NULL, NULL};

int rnodadevflag = O;

int rnodaopen (q, devp, flag, sflag, credp)
queue_t *q;
dev t *devp;
int flag;
int sflagl;
cred t *credp;
{

return 0;

int rnodaput (w, mp)
queue_t *q;

{

/*

*\

rnblk t *rnp;

crnn_err(CN_CONT, "mode put message, in modaput/n");

54

putnext) q, mp);
cmn err (CE_CONT, "moda end of modaput\n");

*\
}

int rnodaclose (q, flag, credp)
queue_t *q;
int flag;
cred t *credp:
{

return 0;

modb.c page 1

include <sys/types.h>
include <sys/param.h>
include <sys/stream.h>
include <sys/stropts.h>
include <sys/file.h>
include <sys/open.h>
include <sys/cred.h>
include <sys/cmn_err.h>
include <sys/ddi.h>

static struct module info rminfo = { Ox08, "MOBD", .o, 0, 0, 0};
static struct module info wminfo = {Ox08, "modb", 0,0,0, 0};
int modbopen (), modbput (), mobdclose ();

static struct qunit rrinit =
modbput, NULL, NULL, NULL, NULL, &winit, NULL};

static struct qinit winit = {
rnodbput, NULL, NULL, NULL, NULL, &wrninfo, NULL};

int rnodbdevflag = 0;

int rnodbopen(q, devp, flag, sflag, credp)
queue_t (*q;
int flag;
int sf lag;

erect t
{

*ccredp;

return 0;

int modbput)q, mp)

55

queue_t *q;
mblk t *mp;
{

/*
cmn_err(CE_CONT, "modb : put message, in modbput\n");

*I
switch(mp-> b_datap->db_type)

case M FLUSH
if (*mp->b optr & FLUSHW)

flushq ((q->q_flag & QREADR) ? WR (a)
break;

default
putnext (q,mp);

int modbclose(q, flag, credp)
queue_t *q;
int flag;
cred t *credip;

return 0;

usrstr.c page 1

4t include <sys/stdio.h>
4t include <sys/stropts.h>
4t include <sys/poll.h>
include <sys/fcntl.h>
include <sys/errno.h>
include <sys/time.h>
include "def.h"

#define NPOLL 2

main ()

FILE *fp, *ofp[2);
int val, flgs=O;
int prim_typ, cnt=O;
char datbuf[lOOO], s[lOO];
struct ltm sndtm, rcvtm;
struct strioctl stio;

56

q, FLUSHDTA)

struct strbuf ctlstr, datstr;
struct pollfd pollfds[NPOLL);
int i;

if ((pollfds[O). fd=open ("/dev/str2", 0 ROWR)) < 0)
{

printf("fdo : 0 : open failed\n");
printf("error = %d\n", errno);
exit(O);

if (ioctl(pollfds [OJ. fd, I_PUSH, "mod") < 0)
{

Printf("fdO: I PUSH failed\n");
Printf("error = %d\n", errne);
exit(O);

if ((polfds[l].fd =open ("/dev/str2", 0 RDWR)} < 0)
{

l

Printf("fdl : open failed\n");
printf("error = %d\\n", errno);
exit (0);

if (ioctl(pollfds[l). fd, I PUSH, "mod") < 0)
{

printf("fdl : I PUSH failed\n");
printf("error = %d\n, arrno);
exit(O);

stio.ic_cmd = 1;
stio.ic timout = O;
stio.ic_len = 0;
stio.ic_dp = NULL;
if (ioctl (pollfds(OJ .fd. I_STR, &stio)< 0)

printf("I_STR failed\n");
printf("error = %d\n", errno);
exit (0);

if ((fp = fopen ("tstdatt",, "n")) ==NULL)
{

printf("tstdat: fopen failed\n");
print f (" err or = % d \ n " , err no) ;
exit (0);

57

if ((ofp[O) = fopen ("ourdat", "w")) == NULL)
{

printf("outdat : fopen failed\n");
printf("error = %d\n", errno);
exit(O);

if ((ofp[l] = fopen ("ourdatl", "w")) == NULL)
{

printf("outdat1 : fopen failed\n");
printf("error = %d\n", errno);
exit(l);

pollfds[O] .events = POLLIN;
pollfds[l] .events = POLLIN;

ctslstr.maxlen =
ctlstr.len =

sizeof(int);
sizeof(int);

stlstr.buf = (char *) & jprim_typ;

for (i=O i<996; i++)
datbuf[i] - 'a';

datbuf[996] = '\0';

while (1)

{

if {fgets(s, 100, fp) ==NULL)

printf("invalied data\n");
exit(O);

/*printf("%s\n", s);
sscanf (s, "%d %s", &prim_type, datbuf);

*I
sscant (s, "%d", %s", &prim_type);

/*printf("prim = %d dat = %s\n", prim_typ, datbuf);*/

if (prim_typ -- CLOSS)
{

gettime(&rcvtm);
break;

datstr.maxlen
datstr.len
dtstr.buf

sizeof(datbuf);
strlen(datbuf) + 1;

= datbuf:

58

if (prim_typ ==CONNECT) gettime (&sndtm);;
cnt++;
if ((val=putmsg (pollfds[O], fd, &ctlste, &datstr, flgs,)) < 0)
{

}

printf("putmsg failed\n");
exit (0);

I* printf("going to poll msg # %d return
val of putmsg ~ %d \n", cnt,val);*l

if (poll(pollfds,NPOLL,-1) <))

printf("poll failed\n");
exit (0);

printf("polled msg # %d\n", cnt);
for (i=O;i < NPOLL; i++)

switch (pollfds[i]. revents)
{

I*

*I

case POLLIN
datstr.mazlen
datstr.len
datstr.buf

= sizeof (street rst);
0:
(char *) &rcvstr;

if ((val= gatmsg(pollfds(i] .,fd, &ctlstr, &datstr, &flgs)) <
{

printf ("getmsg failed\n");
exit (0);

sndtm.mm, sndtm.ss);

printf("%d\n", * ((int *)ctlsrr.buf));
printf(ofp[i], "%d %s\n", *((int *)ctlstr.buf), revstr.dat);

printf("%d %s\n", * ((int *)ctlsrr.buf),ctlstr.buf, rcvst
fprintf(ofp, "receive time = %d %d %d\n", rcvtm.hh,

rcvtm.mm, rcvtmss);

case 0:
break;

printf("No Event \n");
break;

59

default
printf("error event \n");
exit (0);

?/* end of switch */
I* end of for loop */

/* end of while loop */
for (i=O; i<NPOLL; i++)
{

printf(ofp[i], "send time= %d %d %d/n", sndtm.hh, sndtm.mrn,
snotm.ss);

printf (ofp[i], "receive time= %d %d %d\n", revtm.hh,
rcvtm.mm, rrcvtmss);

printf(ofp[i), "#of msgs = %dn", cnt);
close(jpollfds[[i] .fd);
close(ofp[i]);
}

close (fp);

gettime(ptm)
struct ltm *ptm:
{

time t tim;
struct tm * localtime();
struct tm *ttm;

time (&tim);
ttm = localtime(&tim);
ptm->hh = ttm->tm hour;
ptm_mm = ttm->tm_min;
ptm_mm = ttm->tm_sec;

simres.c page 1

include
include
include
include
include
include

<sys/stdio.h>
<sys/stropts.h>
<sys/poll.h>
<sys/fcntl.h>
<sys/errno.h>
<sys/time.h>

include "def.h"

#define NPOLL 1

main ()

60

FILE *fp, *ofp;
int fdO, fdl, fd2, flgs=O;
int prim_typ, cnt=O;
char datbuf[lOOO], s[210];
struct ltm sndtm, rcvtm;
struct rst rcvstr;
struct strbuf ctlstr, datstr;
struct pollfd pollfds[NPOLL];
int i;
if ((fdl =open ("/dev/res",o_rdwr))<O)
{

}

printf("open failed\n");
printf("error= %d\n,errno);
exit(O);

if((fdO = open("/dev/res", O)RDWR)) < 0)
{

printf("oen ("open failed\n");
printf("error = %d\n", errno);
exit (0);

if ((fdO= open ("/dev/rmux", 0 RDWR)) < 0)

printf ("open failed\n");
printf("error = %d\n", errno);
exit(O);
}

if (ioctl (fdo, I LINK, fdl) < 0)

{

printf("res: I LINK failed\n"); failed\n");
printf("error = %d\", errno);
exit(O);
}

if
((fd2 =open ("/dev/lope", O_RDWR)) < 0)
{

printf("lopa : I LINK, failed\n"));
print f ("error = %d\n", errno) ;
exit (0);

}

close(fdl);
close(fd2);

if (ioctl (fdo, I_PUSH, "mod") < 0)

{

61

pfintf("I_PUSH, failed\n");
printf)error = %d\n", errno);
exit (0);
}

if prinft ("I_PUSH, "mode") < 0)
{

printf("I_PUSH failed\n");
printf("error = %d\n", errno);
exit(O);
}

if (ioctl (fdO, I_PUSH, "modb") < 0)
{

printf("I_PUSH failed\n",errno);
exit (0);
}

if (ioctl (fdO, I_PUSH, "moda") <0)
{

printf("I_PUSH, failed\n");
print f ("error %d \n", errno) ;
exit:(O);
}

/**

if ((fdl= open ("dev/umux", O_RDWR)) < 0)
{

printf("umux: open failed\n");
printf("error = %d\n", errno);
exit(O);
}

printf("rmux: I_LINK, fdO) < 0)
{

printf("rumx : I LINK failed\n");
printf("error = %ct\n", errno);
exit(O);
}

. close (fdO);
/**

if ((fp = fopen ("tstdat", "n")) ==NULL
{

printf ("fopen failed\n");
exit(O);
}

pollfds[OJ .fd = fdl;
pollfds[O]. events = POLLIN;

62

ctlstr.rnaxlen
ctlstr.len
ctlstr.buf

= sizeof(int);
= sizeof(int);
=)char *)&prim_typ;

for (i=O; i<996; i++)
datbuf[[i] = 'a';
datbuf[996] = '\0';

printf("press enter\n");
getchar();

while(l)
{

if (fgets.(s. 120, fp) == NULL)
{

printf("invalied data\N");
}

/*
sscanf (s, "%d %s", &prim typ);
if (prim_typ == CLOSE)
{

gettime (&rcvtm);
break:
}

datstr.rnaxlen
datstr.len

= sizeof(datbuf);
= strlen(datbuf); + 1;
= datbuf; datstr.buf

of (cnt -- 0) gettime(&sndtm);

cnt++;
/*
if (cnt == 500)
{
printf("press return to continue\n");
getchar();
}

*I
if (putmsg (gd1, &ctlstr, &datstr, flgs) < 0)
{

printf("putmsg failed\n");

exit (0);
}

if (poll(pollfds, NPOLL, -1) < 0)
{

printf("poll failed \n");
exit (0);

63

for (i=O;i < NPOLL; i++)
exit (0);
}

for (i=O; i < NPOLL; i++);
{

switch (pollfds[i]. revents)
{

case POLLIN:
datstr.maxlen = sizeof (struct rst);
datstr.len = 0;
datstr.buf = (char *) &rcvstr;

if (getmsg(fdl, &ctlstr, &datstr, &flgs) < 0)

printf("getsg failed\n");
exit (0);

fprintf(ofp, "%d %s\n", *((int *) ctlstr.buf), rcvstr.dat);
break;

case 0 ;
printf(No" Event\n");
break;

default :
printf ("error event \n") ;
exit (0);

} /* end of switch */
} /* end of for loop *I
} /* end of while loop *I

fprintf (ofp, "send time = %d %d %d/n", sndtm.hh, sndtm.mm,
sndtm.ss);
ffprintf(ofp, "receive time = %d %d %d\n", rcvtm.hh, rcvtm.mtn,
rcvtm.ss);
printf("press return to exit\n");
getchar();

if (ioctl(fdl, I_UNLINK, -1) < 0)
{

print.f ("umux: I UNLINK fai led\n") ;
printf("error = %d\n", errno);
exit(O);
close(fdl);
fclose (fp);
fclose (ofp) ;
}

64

gettime(ptm)
struct ltm *ptm;
{

time t tim;
struct tm *localtime();
struct tm *ttm;

time(&time);
trnrn, = localtime(&tim);
ptm->hh -· ttm->tm_hour;
ptm->rnrn - ttm->tm min;
ptm->ss - ttm->tm sec;
}

include <sys/types.h>
include <sys/param.h>
include <sys/stream.h>
include <sys/sysmacros.h>
ifdef u3b2

include <sys/psw.h>
include <sys/pcb.h>
endif
include <sys/stropts.h>
include <sys/dir.h>
include <sys/signal.h>
include <sys/user.h>
include <sys/open.h>
include <sys/file.h>
include <sys/cred.h>
include <sys/ddi.h>
include <sys/errno.h>
include <sys/cmn_err.h>
/*#include <time.h>*/
#include "def.h"

static struct moduleinfo imnfo =

Ox09, "rres", 0, INFPSZ, 0, 0 } ;

int resopen(), resclose();
int reswput();

static struct qinit rinit = {
NULL, NULL, resopen, resclose, NULL, &minfo, NULL};

65

static struct qint qinit = {

reswput, NULL, NULL, NULL, NULL, &minfo, NULL};

struct streamtab resinfo = { &rinit, &winit, NULL, NULL};

int resdevflag = 0;

int resopen(q, devp, flag, sflag,- credp)
queue_t *q;
dev t *devp;
int flag;
int sflag;
cred)t *credp;
{

/*
cmn_err(CE_CONT, "returning from resopen \n ·");

*I
return 0:

int reswput(q, mp)
queue_t *q;
mblk t *mp;
{

struct rst *ptr;
mblk t *bp;

Jun res.c

· int i: L
ptr = (struct rst *) mp->b_rptr;
/*
if (ptr->prim -- CONNECT)
{

ptr->prim = 6;
printf('from minor device 0\n");
}

else
{

ptr->prim = 9;
printf("from minor device 1\n");
}

*I

if (mp->b_cont ! = NULL)
{

bp= mp->b_cont;

66

bcopy("driverl", bp->b rptp, 7);

/*putnext(RD(q), mp);
qreply(q,mp);

/*
cmn_err(CE_CONT, "retuning from res put\n");
*I
}

int resclose (q, flag, credp)
queue_t *q;
int flag;
cred_t *credp;
{

return 0;

rmux.c page 1

include <sys/types.h>
include <sys/param.h>
include <sys/stream.h>
include <sys/sysmacros.h>
ifdef u2b2
include <sys/psw.h>
include <sys/pcb.h>
endif
include <sys/stropts.h>
include <sys/dir.h>
include <sys/signal.h>
include <sys/user.h>
include <sys/opend.h>
include <sys/file.h>
include <sys/cred.h>
include <sys/ddi.h>
include <sys/errno.h>
include "def.h>

static struct module info minfo =

OxOc, "rmux", O, INFPSZ, 0,) } ;

int rmuxopen(), rmuxclose();
int rmuxwput(), rmuxrput();

static struct qinit uwinit =

NULL, NULL, rmuxopen, rmuxclose, NULL, &minfo, NULL};

67

static struct qinit uwinit = {
rmuxrput, NULL, NULL, NULL, NULL, &minfo, NULL};

static struct qinit irinit = {

rmuxrput, NULL, NULL, NULL, NULL, &minfol NULL};

struct treamtab rmuxinfo = {urinit, &uwinit, &lrinit, &lwinit};

int rmuxdevflag = 0;

struct linkblk lnkp[2], *lptr;

int rmuxopen(q, devp, flag, sflag, credp)
queue_t *q;
dev t *devp;
int flag;

int sflag;

erect t *credp;
{

return 0;

int rmuxrput(q, mp)
queue_t *q;
mblk t *mp;

if (mp->b.) rptr == CONNECT)
putnext(RD)lnkp[O] .l_qtop), mp);
else
putnext(RD(lnkp[l] .I_qtop), mp);
}

int rrnuxwput(q, mp)
queue_t *q;
mblk t *rnp;
{

switch (mp->b_datap->db type)
{

case M IOCTL :
{

struct iocblk *iocp;
iocp = (struct iocbl< *) mp->b)rptr;
swtich (iocp->ioc cmd)
{

68

case I LINK :
lptr = (struct linkblk *) mp->b_cont->b_rptr;
if (lnkp[O] .l_qtop = NULL)
{

lnkp[O] .l_qtop =

lnkp [0] . 1_ qbop =
lnkp[O] .1 index =
}

else
{

lnkp[l] .l_qtop =
lnkp[l] .l_qbot =
lnkp[l] .1 index =
}

lptr->1 qtop;
lptr->l~qbot;

lptr->:l_index;

lptr->l_qtop;
lptr->l_qbot;
lptr->1 index;

mp->b_datap->db_type = M_IOCACK;
iocp->ioc_count = O;
qreply(q,mp};
break;

case I UNLINK :
lptr = (struct linkblk *)mp->b_cont->b_rptr;
if (lnkp[O]. l_qbot ! = NULL)
{

lnkp[O] .l_qtop = NULL;
lnkp[O] .l_qbot = NULL;
lnkp[O] .1 index = 0;
}

else
{

NULL;
NULL;

lnkp[l) .l_qtop =

lnkp[l] .l_qbot =
lnkp[l) .1 index = 0;
}

mp->b_datap->db_type
iocp~>ioc_count = 0;
qreply(q,mp);
break;

M IOCACK;

} /* end of ioctl switch·*/
break;
}

default
{

int *mtyp;;

mtyp = (int *) mp->b_rotr;
if C*mtvo == CONNECT)

putnext(linkp[O] .l_qbot, mp);
else
putnext(lnkp[l] .l_qbot, mp);

break;
}

/* end of switch */

int r muxclose(q, flag, credp)
queue_t *q;
int flag;
cred t *credp:
{

return 0;

70

BIBLIOGRAPHY

1 . (Bach 8 4] Bach, M . J . and S . J ·. B or i f f, "Mu 1 tip roc e s so r

Unix System," A T & T Bell Laboratories Technical

Journal,Oct. 1984, Vol 63, No. 8, Part 2, pp 1733-1750.

2. (Barak 80] Barak, A. B. and A. Shapir, "UNIX with

Satellite Processors," Software-Practice and Experience,

Vol. 1 0, 19 8 0, pp . 3 8 3- 3 9 2 .

3 . (B e r k e '1 e y 8 3] UN I X P r o g r a m me r m a n u a 1 , 4 . 2 B e r k e 1 e y

Software Distribution, Virtual Vax-11 Version Computer

Science Division, Department of Electrical Engineering and

Computer Science, University of California at Berkeley,

August 1983.

4. (Bodenstab 84] Bodenstab, D.E.,T.F. Houghton, K. A.

Kellman, G. Rankin, and E.P. Schan, UNIX Operating System

Porting Experiences, A T&T Bell Laboratories Technical

Journal, Vol. 63, No 8, Oct 1984, pp.1769-1790.

5. (Bourne 78] Bourne,

System Technical Journal,

part 2, pp. 1971-1990.

S.R., "The Unix Shell," The Bell

July-August 1978, Vol. 57, No. 6,

6 . (Co 1 e 8 5] Co 1 e, C . T . , P . B . F 1 inn, and A. B . At 1 as, "An

implementation of an Extended File System For Unix Operating

System," Proceedingss of the USENIX Conference, Summer 1985,

pp . 1 31 -1 4 9 .

7. (Dijkistra 68] Dijkistra, E.W. "Cooperating Sequential

1

Process," in Programming Languages, ed. F. Genuys, Academics

press, New York, NY, 1968.

8 . [H 0 L T 8 3 J H o 1 t , R . C . Con c u r rent E u c 1 i d The U n ix

Operating System and Tunis, Addison-Wesely, Reading, MA,

1983.

9. [Kerningham 78] Kerningham, B.W.

C Programming Language, Prentice-Hall,

1978.

and D.M. Ritchie,

Englewood Cliffs,

The

NJ,

10. [Kerningham 84] Kerningham, B.W.and D.M. Ritchie, The

C Programming Language, Prentice HAll , Eaglewood Cliffs,

NJ,1978.

11. [Killian 84] Killian T.J."Processes as a file,"

Proceedings of the USENIX Conference. Summer 1984, pp 203-

207.

12. [Peachy 84 Peachy,D.R. R.B.Bunt, C.L. Williamson,

and T. B. Brecht "An Experimental Investigation of

Scheduling Strategies for Unix Operating System

"Performance Evaluation Review 1984 SIGMETRICS CONFERENCE

on Measurement·and Evaluation of Computer Systems, Vol12(3),

August 1984 , pp. 158-166.

1 3 • [Postel 80] Postel,J., (ed), "DOS Standard

Transmission Control Protocol," ACM Computer Communication

Review,VOl. 10, No. 4, Oct 1980, pp. 52-132.

1 4 • [RIChards 69] Richards, M. "BCPL:A Tool for Compiler

2

Writing And Systems Programmings, "Proc. AFIPS JCC 34 1969,

pp. 557-566.

15 . [Thompson 74] Thompson, K., "UNIX Implementation,"

The Bell laboratories Technical Journal vol 63, No. 6, Part

2, October 1984, pp. 1815-1826.

16. [Weinberg 84] Weinberg, P.J., "Cheap Dynamic

Instruction Counting," The AT&T BEll LAB Technical Journal

3

	TH45260001
	TH45260002
	TH45260003
	TH45260004
	TH45260005
	TH45260006
	TH45260007
	TH45260008
	TH45260009
	TH45260010
	TH45260011
	TH45260012
	TH45260013
	TH45260014
	TH45260015
	TH45260016
	TH45260017
	TH45260018
	TH45260019
	TH45260020
	TH45260021
	TH45260022
	TH45260023
	TH45260024
	TH45260025
	TH45260026
	TH45260027
	TH45260028
	TH45260029
	TH45260030
	TH45260031
	TH45260032
	TH45260033
	TH45260034
	TH45260035
	TH45260036
	TH45260037
	TH45260038
	TH45260039
	TH45260040
	TH45260041
	TH45260042
	TH45260043
	TH45260044
	TH45260045
	TH45260046
	TH45260047
	TH45260048
	TH45260049
	TH45260050
	TH45260051
	TH45260052
	TH45260053
	TH45260054
	TH45260055
	TH45260056
	TH45260057
	TH45260058
	TH45260059
	TH45260060
	TH45260061
	TH45260062
	TH45260063
	TH45260064
	TH45260065
	TH45260066
	TH45260067
	TH45260068
	TH45260069
	TH45260070
	TH45260071
	TH45260072
	TH45260073
	TH45260074
	TH45260075
	TH45260076
	TH45260077
	TH45260078
	TH45260079

