
THEORY OF WORD SPACES
AND

COMPUTER SCIENCE

Dissertation submitted to
J&waharlal Nehru Umversity

in partial fulfilment of the requirements
for the award of the Degree of

MASTER OF TECHNOLOGY

in

COMPUTER SCIENCE AND TECHNOLOGY

by

MANOJ JAIN

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES

JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI-110 067,

JANUARY 1992

CERTIFICATE

This is to certify that the thesis entitled

"THEORY OF WORD SPACES AND COMPUTER, SCIENCE", being submitted

by me to Jawaharlal Nehru University in partial fulfilment of

the requirements for the award of the degree of Master of

Technology is a record of original work done by me under the

supervision of Prof. K. K. Nambiar, School of Computer and

Systems Sciences during the Monsoon semester, 1991.

The results reported in this thesis have not

been submitted in part or f~ll to any other University or

Institution for the award of any degree etc ..

y
~--..?.:17:) ~

Dr. R. G. Gupt~\t1'1l-
Professor & Dean,
SCSS, J. N. U. ,
New Delhi - 110 067.

~
(MANOJ JAIN)

Dr. K. K. Nambiar
Professor, SCSS,
J.N.U. ,
New Delhi - 110 067.

To.mydear

Mother & Father

ACKNOWLEDGEMENTS

I e_xpress my sincere gratitude to my guide Prof. K.K. Nambiar who

provided me the necessary insight into the subject and was always ready with his helping

hand in case of difficulties. But tor his able guidance and constant support, it would not have

been possible for me to complete the project. He had the patience of listening to my problems

and providing constructive suggestions.

I am thankful to Prof. R. G. Gupta for his inspiration and help. I also thank

all my teachers who shared their valuable skills, expertise and time.

Besides this, I can not forget to thank my friends and colleagues for their

encouragement, suggestions and worthy discussions. They helped in creating an atmosphere

in which I was ab{e to keep up my spirits. Among them, I am very grateful to Vandana Saroch

and Pramod Varma for their cooperation and assistance which they rendered to me at the

time when I needed it most.

Thanks are also due to everyone who directly or indirectly helped me in

the due course of my work. Last but not the least I convey my gratitude to the nonteaching

staff of the school.

Finally I dedicate this thesis to my parents whose unbounded afflatus had

been a constant source of power, I owe every happy moment of my life to them.

MANOJ JAIN

CONTENTS I

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 RECURSIVE FUNCTIONS 3

CHAPTER 3 NU MACHINE 13

CHAPTER 4 NON LINEAR ALGEBRA 29

CHAPTER 5 FINITE AUTOMATA AND WORDSPACE 34

CHAPTER- 6 CAYLEY GRAPHS AND THEIR WORDSPACE 40

CHAPTER 7 GRAPHICAL EVALUATION OF DETERMINANTS 44

CHAPTER 8 CONCLUSION 51

BIBLIOGRAPHY 52

CHAPTER 1

INTRODUCTION

INTRODUCTION

Elegant and extensive theory is available for

matrices with elements from a field. Much of the study of

engineering and technology is either a direct or indirect

investigation·of the theory of vector spaces. In the early

stages of the development of computers, they were widely used

in these applications. However, the situation has

considerably changed over a period of time, and today

computers are mostly used for business applications.

The data that is used in the business is in the

form of tables. These tables may be considered as matrices

with elements from an arbitrary set. The study of matrices

have paid rich dividends in the last two decades and

researches are still going on.

In this thesis we are making an attempt to study

the·matrices with elements from a loose algebraic structure

not as strong as a field. The matrices with regular

expressions as their elements are taken up in our work ..

We are also introducing Nu Machine which can

compute all recursive functions in a mechanical manner. This

machine is as powerful as a Turing machine. The algebra for

Nu Machine, called non linear algebra, is studied in detail.

An algorithm to find the wordspace of a finite

automaton is given. This may be of use in the field of

formal languages and other related areas.

We have also investigated Cayley graphs which are

seen to be having properties which are closely related to

groups.

Finally, we have introduced a graphical method for

evaluation of determinants with an example.

2

CHAPTER 2

. RECURSIVE FUNCTIONS

RECURSIVE FUNCTIONS

In this chapter we study an important class of

functions and show that any such function can be evaluated in

a purely mechanical manner. This type of mechanical

procedures are needed if an end result is to be obtained by

using a machine.Functions that can be evaluated by mechanical

means are said to be "effectively computable" or "simply

computable".

This class of functions called recursive

functions is now taken up here.We restrict ourselves to

only those functions whose arguements and values are natural

numbers.Such functions are called number~theoretic.In general

the number-theoretic functions of n variables which are

denoted by f<x1 ,x2 , ,xn> shall be considered.Any function

f: Nn--> N is called total because it is defined for every

n-tuple in Nn.on the other hand if f:D-->N where D c Nn,then

f is called partial. Examples these functions are

1 f<x,y> = x + y,which is defined for all x,y € N and hence

is a total function.

2 g<x,y> = x - y,which is defined only for those x,y € N

which satisfy x ~ y.Hence g<x,y> is partial.

3

ELEMENTARY FUNCTIONS

We now give a set of three functions called the

eleaentary functions or sometimes initial functions,which are

used in defining other functions by induction.

Z:Z(x) = 0 zero function

S:S(x) = X + 1 successor function

projection function

The projetion function is also called the generalized

2 .
identity function.As examples,we have u 1 <x,y> = x

u2 3<2r4,6> = 4,etc ..

ELEMENTARY PROCEDURES

The following are the three elementary procedures.

(i) Composition :

The operation of composition is used to generate

other functions.

Given a set of m functions f 1 , f 2 , ... ,fm each of n

variables and let g be a function of m variables. Then the

composition of g with f 1 , f 2 , ... ,fm produces a composition

function h given by

As an example, let

f 1<x,y> = x + y , f 2<x,y> = xy + y2 , g<x,y> = xy

Then

h<x,y> = g< f 1<x,y>,f 2<x,y> >

= g< X + y, xy + y2 >

= (X + y) (xy + y2)

(ii) Recursion . .
The following operation which defines a function

f<x 1 ,x2 , ,xn,y> of n +1 variables by using two other

functions g<x1 ,x2 , ,xn> and h<x1 ,x2 , ,xn,y,z> of n

and n + 2 variables, respectively, is called recursion .

In this definition , the variable y is assumed to be the

inductive variable in the sense that the value of f at y + 1

is expressed in terms of the value of f .at y. The variables

x 1 ,x2 , ,xn are treated as parameters and are assumed to

remain fixed throughout the definition. Also it is assumed

that both the function g and h are known.

Primitive Recursive Function : A function is called

primitive recursive iff it can be obtained from the initial

or elementary functions by a finite number of operations of

composition and recursion. Of course all,primitive recursive

functions are total.

From this definition it follows that it is not always

necessary to use only the initial functions in the

construction of a particular primitive recursive function.For

5

example,if we already have a set of functions f 1 , f2 ~ •.• ,fk

which are primitive recursive, then we could use any of these

functions along with the initial functions to obtain another

primitive recursive function , provided we restrict ourselves

to.the operations of composition and recursion only.

Example 1 : Show that the function f<x,y> = x + y is primitive

recursive .

Solution : Notice that x + (y + 1) = (x +y) + l,so that

f <x, y + 1> = f <x, y> + 1 = S(f<x , y>)

also f<x, 0> = x

We can now formally define f <x , y > as

f <X , 0 >=X= U1
1 <X>

f < x, y + 1> = S(u3
3<x , y,f<x ,y> >)

Here the base function is g(x) = u 1
1 (x), and the inductive

-step function is h<x,y, z> = S(u 3
3 < x,y,z >) • In order

to see how we can actually compute the value of f<2,4> ,for

example we have

f <2,0> = 2

f <2,4> = S(f<2,3>) = S(Sf<2,2>)) = S(S(S(f <2,1>)))

=S(S(S(S(f<2,0>)))) = S(S(S(S(2)))) = S(S(S(3)))

= S(S(4)) = S(5) = 6 /Ill

·Example 2 . Using recursion, define the multiplication •

function II * II given by g<x,y> = X * y

Solution . Since g<x,O> = 0 and . g<x, y + 1> = g<x,y> + x,

6

we write g<x,O> = Z(x)

g<x,y +1> = 3 3 f< u3 <x,y,g<x,y>>, ul <x,y,g<x,y>> >

where f is the addition given in Example 1. Ill/

(iii) Minimalization :

Let g<x1 ,x2 , ••. xn,y> be a total function. If

there exists atleast one value of y € N, such that the

function g<x1 ,x2 , ••• xn,y> = 0 for all n-tuples <x1 ,x2 , ••• xn>

€ Nn, then g is called a regular function.

Not all functions are regular, as can be seen from g<x,y>

= I y 2 - x I· Obviously g<x,y> is total, but I y2 ~x I = 0

for only those values of x which are perfect squares and not

all values of x. This fact shows that there is no value

of y € N such that IY2 - xl = 0 for all x .On the other hand,

the function y - x is regular because for y = o, y-x is zero

for all x.

A function f<x1 ,x2 , ••••• ,xn> is said to be defined from a

total function

(minimalization) or ~ operation if

undefined

by minimization

0) if there
is such a y

otherwise

where ~y means the least y greater that or equal to zero.

From the definition it follows that

f<x1 ,x2 , ,xn> is well defined and total if g is regular.

7

If g is not regular , then the operation of minimalization

may produce a partial function.

TYPES OF RECURSIVE FUNCTIONS

A function is said to be recursive iff it can be

obtained from initial functions by a finite number of

applications of the operations of composition , recursion,

minimalization over regular functions.

It is clear from the definition that the set of

recursive functions properly includes the set of primitive

recursive functions.Also the set of recursive functions is

closed under the operations of composition , recursion,

minimalization over regular functions.If we remove the

restriction for the operation of minimalization, so that it

can be performed over any total function and not necessarily

over just regular ones, we get a still larger class of

functions defined as partial recursive functions.

A function is said to be partial recursive iff it can

be obtained from the initial functions by a finite number of

applications of the operations of composition, recursion, and

minimalization.

As was done in the case of primitive recursive

8

functions, it is not necessary to always start from the

initial functions in order to construct other functions in

the class. In fact, if a set of recursive functions is known,

they can be used along with the admissible operations to

generate other recursive functions.

EXAMPLES

In addition to previous examples we have some

more functions which are used frequently. The following are

some of them --

1 Sign function or nonzero test function , sg

sg(O) = 0

sg (o) = z (o)

2 Zero test function, sg

sg (y + 1 = 1

sg(y + 1) = S(Z(U2
2<y,sg(y)>))

sg(O) = 1 sg_ (y -+; 1)

3 Predecessor function, P:

P(O) = 0

Note that

P(y + 1) = y =U1
2 (y , P(y))

P(O) = 0 P(1) = 0 P(2) = 1 P(3) = 2

4 Odd and even parity function , Pr :

Pr(O) = o Pr(y + 1) = sg(u2
2 (y,Pr(y)))

Pr(O) = 0 Pr(1) = 1 Pr(2) = o Pr(3) = 1

· 5 Proper subtraction functior, .:. :

X ~ (y + 1) = P(x ~ y)

Note that x ~ y =0 for x < y and x -· y for x ~ y.

9

6 Absolute value function 1 I I

X - y = (x ~ y) + (y ~ x)

7 Minimum function 1 min<X 1 y> minimum of x and y

min<x 1y> = x ~ (x ~ y)

8 maximum function 1 max<x 1 y> maximum of x and y

max<x 1y> = y + (x ~ y)

9 The square function 1 f(y) = y 2

f(y) = y2 = u11 * u11

10 The exponentiation function 1 f<x 1 y> = xY

f<x 1 0> = sg(x)

f<x 1y + 1> = x * f<x 1 y> =U1
3<x 1 y 1 f<x 1 y>>*U3

3<x 1 y 1 f<x 1 y>>

11 Ackermann's function

In our discussion so far we considered only

one induction variable in the definition of recursion. It is

possible to consider two or more induction variables. Note

that in the definition of f<x 11 x 21 ••• Xn 1Y> using

recursion 1X11 x 21 ..• xn were treated as parameters and only y

was treated as the induction variable. Now we define a

£unction in which we have two induction variables and no

parameters.This function will be used in the following

section and is known

as Ackermann's function.The function A <x 1 y> is defined by

A<0 1 y> = y + 1

A<x + 1 1 Y + 1> = A<X 1 1>

A<x + 1 1 ~ + 1> = A<X 1 A<x + 1 1 y> >

1 n

dbserve that one can construct the value of A<x,y> for

fixed values of x and y by using the above definition.

Therefore, A<x,Y> is well defined and total.It is known that

A<x,y> is not primitive recursive, but recursive.We now

demonstrate how the above definitions can be used in finding

the value of A<2,2>.

A<2,2> = A <1,A <2,1>>

A<2,1> = A <1,A <2,0>>
= A <1,A <1,1>>:.

A<1,1> = A <O,A <1,0>>
= A <O,A <0,1>>
= A <0,2> = 3

A<2,1> = A <1,3>
A <O,A <1,2>>

A<1, 2> = A <O,A <1,1>>
= A <0, 3> = 4

A<2,1> = A <0,4> = 5

A<2,2> = A <1,5>
= A <O,A <1,4>>

A<1,4> = A <O,A <1,3>>

A<1,3> = A <O,A <1,2>>
= A <0,4> = 5

A<1,4> = A <0,5>= 6

A<2,2> = A <0,6> = 7 Ill/

There are a few more definitions which are related to

recursive functions ·and so should be understood.

11

Recursively enumerable set : A set is said to be

recursively -~numerable if it is the range of a total

recursive function . Given an element z which is in the set,

in a finite number of computations of the recursive function .
z will be generated.

Recursive set : A recursive set is a recursively

enumerable set whose complement also is a recursively

enumerable set.

The set of natural numbers, set of even numbers,set of

odd numbers etc. are recursive sets which are recursiveiy

eneumerable also.To give explicit examples of a recursively

enumerable set which is not recursive is difficult if not

impossible.

The above definitions and examples will be sufficient

to understand Nu Machine and Non-linear Algebra which are

taken up in the following chapters. The next chapter· deals

with the Nu Machine. Ill/

1 2

CHAPTER 3

NU MACHINE

NU MACHINE

In this chapter, an analysis of Nu

Machine is made. It is a mathematical model which assays to

compute all recursive functions (i.e Turing computable

functions). It is named as Nu Machine (pronounced as "New

machine") and is abbreviated as NM. From what follows, it can

be observed that this model is much simpler than TM mainly

because of its graphical representation. Note that this model

is an extended version of ABACUS machine mentioned by

SHEPHERDSON. Before going into further details, consider one

example of NM for recursive functions and see how it

functioris.

Every NM is a digraph with labelled nodes and

edges. Nodes are labelled 0,1,2, ... etc and edges are labelled

a, b or e. If there is an 'a' or a 'b' from node A to node B

then add an 'a' or a 'b' to the string in node A and move to

node B respectively. If the number of a's minus the number of

b's is zero in node A then move through the edge labelled 'e'

to node B without doing anything. The initial node is

represented by a triangle around that node and the final node

is represented by a circle around that node. (More precise

definition will be given later).

1 3

EXAMPLE

(i) NM for multiplication

2
3

a 1 4
a

b
/

a b
1

2 3

-
b 1 1

L_~

v1

• 0

Initially node 1, node 2, node 3 & node 4 have values

'x', 'y', 'O' & '0' respectively. (Value of a node means, the

number of a's minus the number of b's in that node.

Initially there will be a string of a's of length x, if the

value is x). At the end of the calculation, node 4 will have

the answer 'x.y•. The description of the states for the

computation of r2 * 3' is as follows.

value of state present
state

1 2 3 4

2 3 0 0 1
1 3 0 0 2
1 2 0 0 3

1 4

value of state present
state

1 2 3 4

1 2 1 0 4

1 2 1 1 2

1 1 1 1 3

1 1 2 1 4

1 1 2 2 2

1 0 2 2 3

1 0 3 2 4

1 0 3 3 2
1 0 3 3 3

1 0 2 3 2
1 1 2 3 3
1 1 1 3 2
1 2 1 3 3

1 2 0 3 2

1 3 0 3 3
1 3 0 3 1
0 3 0 3 2
0 2 0 3 3

0 2 1 3 4

0 2 1 4 2
0 1 1 4 3
0 1 2 4 4
0 1 2 5 2
0 0 2 5 3
0 0 3 5 4
0 0 3 6 2
0 0 3 6 3
0 0 2 6 2
0 1 2 6 3
0 1 1 6 2
0 2 1 6 3
0 2 0 6 2
0 3 0 6 3
0 3 0 6 1
0 3 0 6 0

Before proceeding a little further let us look at

one more example which will be useful for our

understanding the Nu Machine clearly,

1 5

Examples :

(i) NM for addition

b

• 2

a

node 1 has a value X (remember

that value of a node means, a string of a's of length X) and

node 2 has the value Y. At the end of the computation node 2

will have the answer X+Y. As mentioned earlier, the value of a

node is, the number of a's minus the number of b's in that

node. The following table illustrates the transitions of the

machine when, X = 7 & Y = 5. The answer 12 (string of a's of

length 12) appears in node 2 when the machine halts in node·

O, at the end of the calculation .

1 2 present
node

aaaaaaa aaaaa 1
aaaaaaab aaaaa 2
aaaaaaab aaaaaa 1
aaaaaaabb aaaaaa 2
aaaaaaabb aaaaaaa 1
aaaaaaabbb aaaaaaa - 2
aaaaaaabbb aaaaaaaa 1
aaaaaaabbbb aaaaaaaa 2
aaaaaaabbbb aaaaaaaaa 1
aaaaaaabbbbb aaaaaaaaa 2
aaaaaaabbbbb aaaaaaaaaa 1
aaaaaaabbbbbb aaaaaaaaaa 2
aaaaaaabbbbbb aaaaaaaaaaa 1
aaaaaaabbbbbbb aaaaaaaaaaa 2
aaaaaaabbbbbbb aaaaaaaaaaaa 1
aaaaaaabbbbbbb aaaaaaaaaaaa 0 (end)

1 6

(ii) NM for exponentiation

• 0

1 a e
[)>)'

2

b
b e a

1 40
e

b f, a b

c 5 =r a

• 4 a 5 b
Initially nodes 1 I 2 I J I 4 & 5 have values 0, Y, X,

0 & 0 respectively. At the end of the calculation the

answer xY will appear in node 1. The steps involved are

exactly as in the above example. Now, it is time to

define NM and all the basic machines more precisely.

DEFINITION OF NM

An NM is a labelled digraph with the following properties.

(i) There are two types of edges - dotted edges and line

edges (i.e. ------- &) .
(ii) Edges are labelled in the form a 1 a , where a € (L U

{e}) and a € L*. (Here L is the set of symbols in the

alphabet and a is the string with letters form the alphabet.)

(iii) Two different edges can have the same label.

(iv) Nodes are labelled 0,1,2

1 7

(v) Two different nodes can have the same label.

(vi) There is one initial and one final node.

(vii) Out degree of the final node is zero.

In any node of a machine which accepts a language,

there is a string of symbols taken from an .alphabet. There is

a point~r which reads the symbols according to the rules

specified. Initially the pointer will be at the left end of

the string. Meanings of the notations are as follows. The

symbol 'e' represents the zero length character i.e. a null

character .. If there is no symbol from the specified alphabet

on the right of the pointer it means the machine reads 'e'.

afa
If the symbol on the right of the pointer in the

node is 'a' then replace 'a' with the string 'a' and move the

pointer to the right of 'a'.

a fa
If the symbol on the right of the pointer in the

node is 'a' then replace 'a' with the string 'a' and move the

pointer to one position left of 'a'.

a
: If the symbol on the right of the pointer in

the node is 'a' then replace 'a' with 'a' and move the

pointer to one position right.

18

a
If the symbol on the right of the pointer in the

node is 'a' then replace 'a' with 'a' and move the pointer to

one position left.

We say NM is halted normally if the machine ends in its final

node which is normally Node o. Otherwise, NM is halted

abruptly.

NM FOR RECURSIVE FUNCTIONS

An NM is a labelled digraph with the following properties.

(i) Edges have labels 'a', 'b' or 'e'.

(ii) Two different edges can have the same label.

(iii) Nodes are labelled o, 1, 2,

(iv) Two different nodes can have the same label.

(v) There is one initial and one final node.

(vi) outdegree of the final node is zero.

(vii) outdegree of every node (other than final node) is

either one or two.

It can be observed that, the examples which have

been seen before completely agree with the definition.

Meanings of the symbols a, b and e were mentioned in this

chapter. Change in the value of a node will automatically

affect the other nodes with the same label. Final node is

usually numbered as o. There is no limit for the

number of nodes, each node taking values from the set of

natural numbers. Let the function to be calculated be

1 9

f(x 1 ,x2 , ... ,xn>· Initially the variable values are kept in

the first n nodes (except 0). Answer can be in any of the

nodes except input nodes which is specified before. If the

output node is one of the input nodes then transfer the

answer into-a node which is not an input node at the end of

computation. This makes it easier to reuse those nodes.

Answer is given by the absolute difference between the number

of a's and the number 6f b's in the output node.

Now the existence of NM's for each of the elementary

functions and procedures is shown .. The theory will be clear

if it can be demonstrated how these basic machines can be

interconnected to obtain a machine for a given function. And

then it will be obvious that there exists an NM for any

recursive function.

NM's FOR ELEMENTARY FUNCTIONS
(i) Zero function :

~. •

0
x 1 , x 2 ,•. , xri are stored in nodes

z
•

~ e

xl~ x2,

x 3 , ,xn respectively. (Recall that the value x 1 means a

string of a's of length x1). Answer appears in node z (Note

that all non-input nodes have values zero initially).

20

(ii) successor function

s (X) = X

T s

a
b

x a e
OD--~~-----,1•---~>--~~

X 0
The input value is put in node x. rhen an 'a' is

added to the string in node x and transferred to the output

node s. The new value will be x+l in node x itself.
Lo

1 (iii) Identity function :
C\.1

=

k b k b k b k b j
re--v-- • • • • • • • • • • • o • • e • •

e e, e e
a a a

• l i[
/

Ji j xl x2 xn

e ~·i e e
b b b

0

•
The value k is put in node k. In each step of the

computation the value gets decreased until the value of node

k becomes zero. When it happens the machine will be in node

xk where the value xk is kept. Then it transforms the value

xk into the output node i. (Note that all the nodes other

21

•

than input nodes have to be initialised i.e. value of those

nodes have to be made zero before the computation starts) .

NM 1 s FOR ELEMENTARY PROCEDURES

Before going into the details, make following

machines which will be useful in defining machines for the

elementary procedures. Call them S(x,x1 •,x2 •, ... ,xm'> and

I(x). Here, each of the variable in the above functions is a

set of n nodes. S stores the value of each node in x, in the

d . d . I I I Th h . correspon 1ng no e 1n x1 ,x2 ... xm. e mac 1ne,

s is given by;

a x21 I a x2n
I

X le • • xml I
xln

1
• • •xmn I llk .al b a

ti>
e e
> • > (!)

xl x2 xn 0

The machine I is used for initialisation. It

reduces the value of each node in x to zero. The machine,

I is given by,

b b b

~I ! 9 Q ~ @
x 1 x2 xn 0

The above three machines are needed to restore the

input values at the end of computation when the input nodes

22

are being used. Here onwards only the names of the above

machines will be used instead of the entire machine. This

will be clear when we study machines for elementary

procedures which are used in constructing a machine for a

given function. The method of construction will be

demonstrated later.

(i) composition

Given a set of functions Gk (x 1 , x 2 , ,xn),

k=1,2, ,m and H (y1 , y 2 , ,ym), define

F (x1 , x2 , ,xn) = H (G1 , G2 , ,Gm).

NM for composition is given below. Every G has

its own input nodes~ So the inputs of F i~e. x 1 to xn are

first transformed into the input nodes of Gi for all i,

l~i~n. Input nodes of Gi are denoted by x 1 i, x 2i, ... ,xni·

gi's are the output nodes of Gi's and Yi's are the input

nodes of H. The given machines are,

. .
I • • • I -~ &

The following is the machine for compositi_on.

First block initializes the input nodes of Gi's. Then in the

second block each Gi is calculated and the result is

transferred to Yi as the input of H. Final node of F will be

the final node of H and the value of the function F will be

23

in the output node of H.

-~L--G_l___,
b b b

a a a

(ii) Primitive recursion

Given two functions G(x 1 ,x2 , ,xn-l) and

H(x1 ,x2 , ... ,xn,y), define F (x1 ,x2 , ... ,xn) as in

chapter. The given functions are~

and

the second

NM for this procedure is given below.

24

~·i S(gly) ~·,-~e-•_x..:..:n~--~-e-------,---
0

•

!(all nodes of H other
· than input nodes)

•

b

•
s (h 1 y) •1 I (x 1 ,· .. , xn 1 Y) I
X '8-----------~--------~ n

b

a

S(x x " x '") n 1 n ' n

e

In the above machine~ node 'g' is the output node of

the machine G and node 'h' is the output node of H. Two

25

machines A and B are interconnected to get c in the following

fashion.

~·---i..__B _ __.~0

Initial node of c is the initial node of A and final

node of c is the final node of B. The connection is done by

replacing the final node of A by the initial node of B.

(iii) Minimalisation

Define F(x1 , .•.. ,xn) =Min { y I G(x1 , ... ,xn,y) }

where G is a given function. NM for this procedure is given

below.

~ rl sn ((xl' .. 'xn' y) ' (xl I' •• 'xn I 'y I) ' (xl II' •• 'xn II' Yll)) j

f

I(all nodes of G other
than input nodes)

~----~a~-------•1 y

b

The following example illustrates how to make machines

using above defined machines and how to combine them. The

machine given on next page is for the. proper subtraction

26

)... .•!

defined in Chapter 2. This function is used for 'calculating

J

see chapter 2) .

e k

b

\I
b

k

e b

xl~g
e

g·~-ctt
e a

y e

• b

e a

e a

y >
b I b

Y•-D I h
a

e

y

e cfl e

27

xllJJ-a b ~ xl

b e

xJ}J-• x2

e

a 1--1 x 2
a

X2 II I ;--~-....J

h
> e

For defining the function 'absolute difference' we need the

above machine. As explained in Sec.2.3, F(x1 , x 2) = I· x 1 - x2

= H(G1 , G2) where, G1 and G2 are proper subtractions and

H(x1 , x 2) = x 1+x 2 . Now, for getting the machine for F connect

the machines as follows.

Let G1 and G2 be the machine given above with a totally

different set of nodes. Let the input nodes of Gi be xil and

xi2" Let the output nodes be gl and g 2 . After changing the nodes

as above mentioned, design a machine as follows.

a a
xll 22 x12 21

a b a
e

xl x2

e 0

where, h 1 and h 2 are the input nodes of H

and the output lx1 - x 2 I will appear in node h 2 .

28

CHAPTER 4

NON LINEAR ALGEBRA

NON LINEAR ALGEBRA

This ch~pt-e~ deals with 'Non Lln'ea-r Algebra' which

is developed for Nu Machines. A given Nu Machine can be

represented in terms of a square matrix. For example, let us

consider the following Nu Machine which is used for addition.

b

Start

End node
[o]

The inputs to the nodes are strings containing a's only. If

two strings of lengths 'x' and 'y' are kept at nodes 1 and 2

respectively then, in the end node 2 shall have a string of

length 'x + y' and node 2 will have a null string at the end.

This Nu Machine can be represented in the form of a matrix as

follows.

0

A = a

0

b

0

0

1

0

0

NU MATRIX

FOR ADDITION

We shall call the above matrix by the name

'Nu Matrix' for addition.

Here, we first define the state of the Nu Machine by

a column matrix in which the element cj1 is the string

present at node 'j'.

29

respectively and a null string at node 0, then the state

vector is nothing but

1

In order to carry out operations we now introduce

'Non linear Algebra' for Nu Machine. The non linear algebra

makes use bf the above two matrices viz., Nu Martix and State

vector. In order to do computation using the non linear

algebra we proceed as follows.

1. Take the Nu Matrix.

2. Corresponding to initial inputs write the State vector.

3. Start with the first row of the Nu Matrix. Change the

first row of the state vector. For changing the row use the

following rules.

If the row contains an 'a' then add one 'a' to the

same row element of the vector and if it has a 'b', remove one

'a' from the element of the corresponding row (if possible).

Note the column number in the row where 'a' or 'b' (as the

case may be) i~ prese~t. Say the column number is I ' I
l. ' then

go to the ith row in the Nu Matrix. Again repeat the same

procedure of changing the state vector but thi~ time the ith

row of the vector is changed using the same rules.
'

Repeat this process until you reach the last row of the

30

Nu Matrix is reached at which time the execution ceases.

Note : If there is a 'b' in a row but the same row in the

vector has an empty string (i.e., 1) then we cannot remove 'a'

from this element. In that case we do nothing and go to that

column which has got 1 in that row. Next time we will go to

the row which corresponds to this column.

Now we shall use this for our example. The initial state

vector in our case is,

We start with the first row of the Nu Matrix. This row has got

a 'b', therefore the first row element of the vector is

positioned at 2nd colum~, so we will now move to 2nd row. The

state vector becomes,

Now we shall use the 2nd row of the Nu Matrix and change the

2nd row of the state vector. The 2nd row has an 'a' at column

I 1 I • Since 'a' is present in the second row so, we shall add

one 'a' to the string already present at the second row of the

31

state vector. This changes the 2nd element from a 2 to a 3 . Next

we have to go to 1st .row of the Nu Matrix. The present vector,

is

Proceeding in the same fashion we shall get,

and now we have to use first row of Nu Matrix. This row

contains a 'b', but the corresponding element is already a

.null string therefore we cannot delete one 'a' from this. So,

in this case we shall do nothing and shall look for column

containing '1' in the same row. In our case '1' is at 3rd

column, next we have to go to 3rd row which is the last row.

As we have now reached th~ last row, our execution is over.

It is clear from the final state vector that the 2nd

row is the addition of initial 1st row and initial 2nd row.

Thus we have seen how Non linear Algebra can be used

for addition of two strings. This is similar to adding two

32

') ,
numbers. Using this 'Nu Matrix for addition' we can find

thesum in the manner described above.

In additon to this, we can write a Nu Matrix for a

Nu Machine which performs multiplication. This Nu Matrix can

be used and by applying previous rules of Non linear Algebra

we can find product of two numbers. This Non linear Algebra

can perform the same task which a Nu Machine can accomplish.

It was shown in the last chapter that the Nu Machine can

compute all recursive functions so this Non linear Algebra

also can evaluate recursive functions.

33

CHAPTER 5

FINITE AUTOMATA AND WORDSPACE

FINITE AUTOMATA AND WORDSPACE

In this chapter we shall study an algorithm for

finding out wordspace for a given finite automaton. Given a

finite automaton its adjacency matrix can be found from which

its wordspace is obtained. At first the algorithm is given,

after that it is explained with a few examples~

ALGORITHM

1. For the given finite automaton of 'n' states. Find its

adjacency matrix which is a 'n x n' square matrix.

2. In the same matrix change its diagonal elements by their

respective Kleene closures. The resulting matrix is called A1 .

3 0 Now do the following.

A2 Al + cl * Rl = all

A3 == A2 + c2 * R2 a22

A4 A3 + c3 * R3 = a33

.

.
* . An+l = An + en ann Rn

In the above equations ci is the ith column, Ri is the ith row

of the matrix Ai calculated at the previous stage and aii is

its ith diagonal element.

The matrix An+l is nothing but A*, the wordspace for

the given finite automaton.

EXAMPLE (i)

Suppose we have the following automaton with two states and .

whose alphabet is {a,b}

34

a a

Its adjacency matrix is

[
a b l A =
0 a

The Kleene closure of diagonal element a 11 is * and the a
I

diagonal element a 22 is also * a . Therefore,

[
* b l a

Al = * 0 a

Now we have,

A2 = Al + cl * Rl all

i.e. ,

[
* b l [

* l a a

A2 (a*>* * b] = + a
* 0 a 0

i.e.,

[
* b l [

* l a a
* a*b] + a

* 0 a 0

[* b l [
* a*b] a a

= +
0 * 0 0 . a

[
* a*b l a

A2 =
* 0 a

35

Similarly,

A .3

A3 =

=

=

=

= A2 +

[

[

[

[

* a

0

* a

0

* a

0

* a

0

c2 a22 *

a*b

] * a

*b * a a

* a

R2

+ [

]

a*b

] [(a*).*] * [0 a
* a

0 . a*

0

0

The above matrix A3 is nothing but A* or wordspace

for the given finite automaton. In the same way, we can find A*

for other finite automata using this algorithm.

Now we shall consider another exam~le in which the

finite automaton has got three states and the alphabet of the

automaton is { a,b }.

[1]
EXAMPLE (ii)

[2.]
b

36

The adjacency matrix 6f this automaton is,

1 0 a

A a 1 0

0 b a

The Kleene closures of diagonal elements a 11 ,a22 and a 33 are

1*, 1* and a* i.e., 1, 1 and a* respectively.

Therefore,

1

= a

0

Now we have,

A2
So,

1

A2 = a

0

i.e.,

1

A2 = a

0

or

1

= a

0

=

0

1

b

Al

0

1

b

0

1

b

0

1

b

a

0

* a

+ cl

a

0

* a

a

0

* a

a

0

* a

* Rl all

1

+ a [1*] 1 0 a]

0

1

+ a [1*] 1 0 a]

0

1

+ a 1 0 a)

0

17

1

= a

0

i.e.,

A2 =

Similarly,

A3

i.e. ,

1

A3 = a

0

1

= a

0

1

= a

0

1

= a

0

=

0

1

b

1

a

0

0

1

b

0

1

b

0

1

b

0

1

b

A2

a

0

* a

0

1

b

+ c2

a

a2

* a

+

a

a2

* a

a22

+

+

+

+

38

* R2

1

a

0

0

1

b

0

1

b

0

1

b

0

a

ba

0

0

0

0

1

b

[1*

a

a2

0

]

a

a

a 1 a2]

1

1

or

1 0 a

= a 1

Now we have,

a

* 2 * [(a +ba)]

a

* 2 * [(a +ba) ba

Thus,

i.e. ,

* 2 * a(a +ba) ba

* 2 * (a +ba) ba

* 2 * a(a +ba) b

* 2 * (a +ba) b

[ba b

* 2 * (a +ba) b

* 2 * a(a +ba)
I

* 2 * (a +ba)]

a 2 (a*+ba2)*

(a*+ba2 j*

* 2 * 1+a(a +ba) ba * 2 * a(a +ba) b * i 2 * a(a +ba)

* 2 * (a +ba) ba

a 2 (a*+ba2)*

(a*+ba2)*

The matrix A4 evaluated above is the A* or wordspace

of the given finite automaton. Thus we have seen how this

method can be applied to a finite automaton to reach its A* or

in other words, its wordspace. /Ill

CHAPTER 6

CAYLEY GRAPHS AND THEIR WORDSPACE

CAYLEY GRAPHS AND THEIR WORDSPACE

The Cayley graph is a highly symmetrical graph. All

its nodes are exactly symmetric with respect to each other.

It has got the following properties.

1. The label of the edge is a symbol from an alphabet.

2. All the symbols of the alphabet are associated with each of

the nodes.

3. If the cardinality of the alphabet is "n" then indegree as

well as outdegree of every node is "n".

4. Each symbol of the alphabet comes exactly once to a node.

5. Each symbol goes out from a node exactly once.

Now, let us look into .some examples of Cayley graphs.

[1] [l]

[2]

[3l
GRAPH A GRAPH B

These can be represented in terms of squa.re matrices as

shown below,

0 a 0 0 a 0 b

A = 0 0 a a 0 b 0
B =

a 0 0 0 b 0 a

b 0 a 0

40

The graph A comes from alphabet { a } and graph B

from alphabet { a,b }. Graph B forms a quadratic dihedral

* * group. The A and B could be obtained for graph A and graph

B respectively.The A* gives the wordspace for graph A. Here

we shall first find A*, in a similar fashion s* could be

reached.

As we know for the following automaton,

the a* is

where 'e' is the null string.

Similarly for our graph we have,

A*= E +.A+ A2 + A3 +

where 'E' is a diagonal matix of same size as A with all the

diagonal elements having value 'e' (i.e. the null string). So,

e 0 0 o a 0

o e 0 + o o a + +

0 0 e a 0 0

Therefore,

(aJ)* (a 3) *a, (a3) *a2

A* = (a3)*a2
~

(~3>* (a 3)*a

(a 3)*a (a3)*a2 (a3)*

e a a2

= (a3)* a2 e ·a = (a3)* c

a a2 e

41

where C is called Cayley matrix and 'C is given by

e a, a2

c a2 e a

a a2 e

This Cayley graph forms a group. The elements of

the first row i.e. , e,a and a2 give rise to group with

generator relation a3 = e . The multiplication table for

this group is,

• e

a a

a

a

a2

a

e

Multiplication

Table

From above it can be seen that multiplication

table is same as the Cayley matrix c. Cayl~y matrix has got

another interesting properties.

1. For a Cayley matrix C the following property holds,

c . c = c

2. In addition to this the determinant of a Cayley

matrix is equal to 'e'.

3. Also for any cayley matrix the inverse is same as

the matrix itself, i.e. c-l = c.

For graph A we have found its A* and also its

Cayley matrix, similar to this for graph B we can find its s*

and the Cayley matrix. The s* and Cayley matrix C' for graph

B is

4Z

e a ab b

a e b ab
B* = (a2 + b2 + abab)*

ab b e a

b ab a e

and Cayley matrix is

e a ab b

a e b ab
c• =

ab b e a

b ab a e

= Cab) 2
The generator relations for this graph are a 2 = b 2

= e

In this chapter we have studied Cayley graphs in

details with two examples. The Cayley graphs have got

applications in group theory and formal language theory.

43

CHAPTER 7

GRAPHICAL EVALUATION OF DETERMINANTS

GRAPHICAL EVALUATION OF DETERMINANTS

We now investigate a new way of evaluating the

determinant of a square matrix .using graphical method. For a

given square matrix we can draw its corresponding digraph and

vice versa. There is ·one to one correspondence between a

square matrix and its digraph. we give below a method which

will be used for drawing a digraph for a given square matrix.
\

METHOD : If the size of the square matrix A is n x n, then

drawn points (or nodes), numbering them from 1 ton. Now for

each element aij of the matrix we draw a corresponding edge

on the graph by joining node 'i' and node 'j' with a directed

line segment from 'i' to 'j'. The directed edge from node 'i'

to node _'j' is assigned a value equal to ~lement aij of the

determinant.

EXAMPLE

Suppose we have the following square matrix :

8 4 5

A = 4 1 2

9 3 7

Then, using the above method its corresponding graph wil1 be
8

Graph of square

matrix A

7
2

The algorithm for evaluating the determinant by

graphical method follows with an example.

44

ALGORITHM :

STEP 1. Draw the graph of the square matrix whose determinant

is to be calculated.

STEP 2. Select one node in the graph.

STEP 3. List all the outgoing edges of this node. (or all

incoming edges of this node).

STEP 4. For each edge E·. in the above set of edges do the
1)

following

4.1 Every edge E·. is assigned a 11 weight" defined by
1)

the following equation

[
+a .. if i = j (i.e. for a self loop}

1)
Weight(Eij} =

- a·. if i + j otherwise }
1)

4.2 Remove all the outgoing edges of node IiI from the

graph and also all the incoming edges of node I • I J •

4.3 In the remaining graph thus obtained now, club_

node 'i 1 and 'j 1 by putting them into a single node.

4.4 The resulting graph after execution of STEP 4.3

differs from the original graph. This reduced graph can

be evaluated using the same algorithm. ,The determinant

of the resulting graph is given na~e Sub-determinant

corresponding to the edge Eij·

Note that when the graph after STEP 4.3 gets ~educed to a

graph of only one node then its determinant value is nothing

but the value of self-loop edge associated with it.

45

STEP 5. Corresponding to each edge Eij from the set of

edges of STEP 3, there is a contribution to the original

determin~nt which is given the name of "contribution••. This

contribution is given by the following equation.

* Sub-determinant(Eij)

STEP 6. The value of the original determinant is given by

Determinant = ~ Contribution(Eij)

The above algorithm is a recursive algorithm for

determinant evaluation. After STEP 4.3 of the .above algorithm

we are again using the same algorithm for evaluating Sub-

determinant(Eij) corresponding to edge Eij . Thus the control

goes barik to STEP 2 of the algorithm until the graph is

reduced to a single node graph at which time· Sub-determinant

gets the value of self-loop edge and then this process

terminates. Hence it is clear how this algorithm works

recursively.

To clarify this algorithm consider an example,

Suppose we have the following determinant :

'2 5

A = ,3 1 2

4 6 2

46

2

STEP 1. The graph corresponding to above matrix is

2

1
2.

STEP 2. We have chosen node 1.

GRAPH A

Graph of

square matrix A

STEP 3. The edges going out from this node are E11 ,E12 and

El3"

STEP 4.

STEP 4.1

Weight(E11)= +2

STEP 4.2

2.

STEP 4.3

1
2.

GRAPH B

1

Weight(E12) = -4 Weight(E13)= -5

[I J [I)

3

GRAPH C GRAPH D

47

STEP 4.4
Sub-determinants

These can be evaluated by using the same algorithm once

again i.e. we have to go back to STEP 2 and start the process

of evaluating the determinant of reduced graph corresponding

to edge Eij . The value of this determinant 'is nothing but

Sub-determinant(Eij) for the original deter~inant.Here in

this example we shall evaluate only one Sub-determinant say,

E12 . The other two can be calculated in a similar fashion.

The reduced graph corresponding to edge E12 is the

following

[a]

Graph c
4 2

[3)

STEP 2 Node "3" is chosen here.

STEP 3 The edges going out from this node are E33 ,E3a.

STEP 4.1
Weight(E33) - +2

STEP 4.2

• (3)
)t

[3]

STEP 4.3
~

0 [a]

2

Q [c)

48

STEP 4.4 Each of the above reduced graphs contains only

one node with a self loop associated with it. Thus we have,

Sub-determinant(E33) = 3

STEP 5

Sub-determinanant(E3a) = 2

Contribution(E33) Contribution(E3a)

= (-+2)*(3) = -+6 = (-4) * (2) = -8

STEP 6 Determinant(Graph C) 2: Contribution

= (-+6) + (-8) = -2

Sub-determinant(E12) = Determinant(Graph C) = -2

Similarly Sub-determinant(E11), Sub-determinant(E13)

could also be obtained by evaluating Determinant(Graph B) and

Determinant(Graph D) respectively . For our example it could
(.)

be seen that,

Sub-~eterminant(E11) = -10 and Sub-determinant(E13)= -14

Therefore from STEP 5 now we have,

Contribution(~11) = Weight(E11) * Sub-detsrminant(E11)

= 2) * -10

Contribution(E12) = (-4) * (-2)

Contribution(E13) = (-5) * (-14

On moving to STEP 6 we get,

= -20

= 8

= 10

Determinant(A) = 2: Contribution= (-20) + ,(8) + (70) =58

SOME USEFUL RESULTS

1. We need not draw an edge E· · in th. e digraph in case the 1J

value of element aij is zero, because such an edge has zero

weight making its contribution equal to zero.

49

2. In the graph if indegree (or outdegree) of one of the

nodes is zero, then the determinant corresponding to that

graph vanishes.

3. Take a n x n square matrix and draw its graph. Now from

this graph if we remove the node numbers, then we can

renumber the ''n" nodes of this graph in n! ways. There is one

particular square matrix corresponding to every numbering.

Each of these n! determinants has the same value. This is

because the algorithm evaluates the determinant without

taking node numbers into consideration.

4. The ''transpose" of a square matrix in terms of graphs

can be obtained merely by changing the directions of every

edge of the graph.

50

CHAPTER 8

CONCLUSION

CONCLUSION

An attempt has been made in this thesis to study

the matrices with the elements from a.loose algebraic

structure not as strong as a field. In particular, the

matrices w
1
i th regular expressions as their elements were seen

in detail. We have given an algorithm for finding out the

wordspace of a finite automaton. In this method the matrices

with regular expressions as elements were u~ed. Study of this

method may be of help to computer scientists who are working

in the area of formal languages, language development, and

compiier design.

The recursive functions were discussed in detail,

we have studied the Nu Machine which can compute any

recursive function in a mechanical manner~ In additon, the

non linear algebra was studied in the same ~ontext.

We have made a study of Cayley graph which has

applications in group theory. Some of the results are listed

in the chapter related to Cayley graph~. This graph is

intimately related to groups.

While we were studying matrices during our project

work, a useful result of finding determinant using graphical

method was discovered. The method has been discussed in

detail in the last chapter. We feel that:a lot more can be

done in this area.

51

BIBLIOGRAPHY

BIBLIOGRAPHY

1. Boolos George, Jeffery Richard

Cambridge University Press, 1974.

Computability and Logic.

2. Tremblay J.P., Manohar R. :Discrete Mathematical Structures

with Applications to Computer Science. McGraw-Hill Computer

Science Series, 1975.

3. Carroll John, Long Darrell : Theory of Finite Automata.

Prentice-Hall International Editions, 1989.

4. McEliece Robert J., Ash Robert B. : Introduction to Discrete

Mathematics. McGraw-Hill International Editions, Computer

Science Series, 1989.

5. Salomaa Arto : Jewels of Formal Language The6ry. Computer

Science Press, 1981.

6. Hopcroft John E., Ullman Jeffery D. : Introduction to

Automata Theory Languages and Computation. Narosa Publishing

House, 1989.

52

	TH39250001
	TH39250002
	TH39250003
	TH39250004
	TH39250005
	TH39250006
	TH39250007
	TH39250008
	TH39250009
	TH39250010
	TH39250011
	TH39250012
	TH39250013
	TH39250014
	TH39250015
	TH39250016
	TH39250017
	TH39250018
	TH39250019
	TH39250020
	TH39250021
	TH39250022
	TH39250023
	TH39250024
	TH39250025
	TH39250026
	TH39250027
	TH39250028
	TH39250029
	TH39250030
	TH39250031
	TH39250032
	TH39250033
	TH39250034
	TH39250035
	TH39250036
	TH39250037
	TH39250038
	TH39250039
	TH39250040
	TH39250041
	TH39250042
	TH39250043
	TH39250044
	TH39250045
	TH39250046
	TH39250047
	TH39250048
	TH39250049
	TH39250050
	TH39250051
	TH39250052
	TH39250053
	TH39250054
	TH39250055
	TH39250056
	TH39250057
	TH39250058
	TH39250059
	TH39250060
	TH39250061
	TH39250062
	TH39250063
	TH39250064
	TH39250065
	TH39250066

