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CHAPTER 1 

INTRODUCTION 



INTRODUCTION 

Elegant and extensive theory is available for 

matrices with elements from a field. Much of the study of 

engineering and technology is either a direct or indirect 

investigation·of the theory of vector spaces. In the early 

stages of the development of computers, they were widely used 

in these applications. However, the situation has 

considerably changed over a period of time, and today 

computers are mostly used for business applications. 

The data that is used in the business is in the 

form of tables. These tables may be considered as matrices 

with elements from an arbitrary set. The study of matrices 

have paid rich dividends in the last two decades and 

researches are still going on. 

In this thesis we are making an attempt to study 

the·matrices with elements from a loose algebraic structure 

not as strong as a field. The matrices with regular 

expressions as their elements are taken up in our work .. 

We are also introducing Nu Machine which can 

compute all recursive functions in a mechanical manner. This 

machine is as powerful as a Turing machine. The algebra for 

Nu Machine, called non linear algebra, is studied in detail. 

An algorithm to find the wordspace of a finite 

automaton is given. This may be of use in the field of 

formal languages and other related areas. 



We have also investigated Cayley graphs which are 

seen to be having properties which are closely related to 

groups. 

Finally, we have introduced a graphical method for 

evaluation of determinants with an example. 
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CHAPTER 2 

. RECURSIVE FUNCTIONS 



RECURSIVE FUNCTIONS 

In this chapter we study an important class of 

functions and show that any such function can be evaluated in 

a purely mechanical manner. This type of mechanical 

procedures are needed if an end result is to be obtained by 

using a machine.Functions that can be evaluated by mechanical 

means are said to be "effectively computable" or "simply 

computable". 

This class of functions called recursive 

functions is now taken up here.We restrict ourselves to 

only those functions whose arguements and values are natural 

numbers.Such functions are called number~theoretic.In general 

the number-theoretic functions of n variables which are 

denoted by f<x1 ,x2 , ..... ,xn> shall be considered.Any function 

f: Nn--> N is called total because it is defined for every 

n-tuple in Nn.on the other hand if f:D-->N where D c Nn,then 

f is called partial. Examples these functions are 

1 f<x,y> = x + y,which is defined for all x,y € N and hence 

is a total function. 

2 g<x,y> = x - y,which is defined only for those x,y € N 

which satisfy x ~ y.Hence g<x,y> is partial. 
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ELEMENTARY FUNCTIONS 

We now give a set of three functions called the 

eleaentary functions or sometimes initial functions,which are 

used in defining other functions by induction. 

Z:Z(x) = 0 zero function 

S:S(x) = X + 1 successor function 

projection function 

The projetion function is also called the generalized 

2 . 
identity function.As examples,we have u 1 <x,y> = x 

u2 3<2r4,6> = 4,etc .. 

ELEMENTARY PROCEDURES 

The following are the three elementary procedures. 

(i) Composition : 

The operation of composition is used to generate 

other functions. 

Given a set of m functions f 1 , f 2 , ... ,fm each of n 

variables and let g be a function of m variables. Then the 

composition of g with f 1 , f 2 , ... ,fm produces a composition 

function h given by 

As an example, let 

f 1<x,y> = x + y , f 2<x,y> = xy + y2 , g<x,y> = xy 

Then 



h<x,y> = g< f 1<x,y>,f 2<x,y> > 

= g< X + y, xy + y2 > 

= ( X + y ) (xy + y2 ) 

(ii) Recursion . . 
The following operation which defines a function 

f<x 1 ,x2 , ..... ,xn,y> of n +1 variables by using two other 

functions g<x1 ,x2 , ..... ,xn> and h<x1 ,x2 , ..... ,xn,y,z> of n 

and n + 2 variables, respectively, is called recursion . 

In this definition , the variable y is assumed to be the 

inductive variable in the sense that the value of f at y + 1 

is expressed in terms of the value of f .at y. The variables 

x 1 ,x2 , ..... ,xn are treated as parameters and are assumed to 

remain fixed throughout the definition. Also it is assumed 

that both the function g and h are known. 

Primitive Recursive Function : A function is called 

primitive recursive iff it can be obtained from the initial 

or elementary functions by a finite number of operations of 

composition and recursion. Of course all,primitive recursive 

functions are total. 

From this definition it follows that it is not always 

necessary to use only the initial functions in the 

construction of a particular primitive recursive function.For 
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example,if we already have a set of functions f 1 , f2 ~ •.• ,fk 

which are primitive recursive, then we could use any of these 

functions along with the initial functions to obtain another 

primitive recursive function , provided we restrict ourselves 

to.the operations of composition and recursion only. 

Example 1 : Show that the function f<x,y> = x + y is primitive 

recursive . 

Solution : Notice that x + (y + 1) = (x +y) + l,so that 

f <x, y + 1> = f <x, y> + 1 = S(f<x , y>) 

also f<x, 0> = x 

We can now formally define f <x , y > as 

f <X , 0 >=X= U1
1 <X> 

f < x, y + 1> = S(u3
3<x , y,f<x ,y> > ) 

Here the base function is g(x) = u 1
1 (x), and the inductive 

-step function is h<x,y, z> = S( u 3
3 < x,y,z > ) • In order 

to see how we can actually compute the value of f<2,4> ,for 

example we have 

f <2,0> = 2 

f <2,4> = S(f<2,3>) = S(Sf<2,2>)) = S(S(S(f <2,1>))) 

=S(S(S(S(f<2,0>)))) = S(S(S(S(2)))) = S(S(S(3))) 

= S(S(4)) = S(5) = 6 /Ill 

·Example 2 . Using recursion, define the multiplication • 

function II * II given by g<x,y> = X * y 

Solution . Since g<x,O> = 0 and . g<x, y + 1> = g<x,y> + x, 
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we write g<x,O> = Z(x) 

g<x,y +1> = 3 3 f< u3 <x,y,g<x,y>>, ul <x,y,g<x,y>> > 

where f is the addition given in Example 1. Ill/ 

(iii) Minimalization : 

Let g<x1 ,x2 , ••. xn,y> be a total function. If 

there exists atleast one value of y € N, such that the 

function g<x1 ,x2 , ••• xn,y> = 0 for all n-tuples <x1 ,x2 , ••• xn> 

€ Nn, then g is called a regular function. 

Not all functions are regular, as can be seen from g<x,y> 

= I y 2 - x I· Obviously g<x,y> is total, but I y2 ~x I = 0 

for only those values of x which are perfect squares and not 

all values of x. This fact shows that there is no value 

of y € N such that IY2 - xl = 0 for all x .On the other hand, 

the function y - x is regular because for y = o, y-x is zero 

for all x. 

A function f<x1 ,x2 , ••••• ,xn> is said to be defined from a 

total function 

(minimalization) or ~ operation if 

undefined 

by minimization 

0) if there 
is such a y 

otherwise 

where ~y means the least y greater that or equal to zero. 

From the definition it follows that 

f<x1 ,x2 , ..... ,xn> is well defined and total if g is regular. 
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If g is not regular , then the operation of minimalization 

may produce a partial function. 

TYPES OF RECURSIVE FUNCTIONS 

A function is said to be recursive iff it can be 

obtained from initial functions by a finite number of 

applications of the operations of composition , recursion, 

minimalization over regular functions. 

It is clear from the definition that the set of 

recursive functions properly includes the set of primitive 

recursive functions.Also the set of recursive functions is 

closed under the operations of composition , recursion, 

minimalization over regular functions.If we remove the 

restriction for the operation of minimalization, so that it 

can be performed over any total function and not necessarily 

over just regular ones, we get a still larger class of 

functions defined as partial recursive functions. 

A function is said to be partial recursive iff it can 

be obtained from the initial functions by a finite number of 

applications of the operations of composition, recursion, and 

minimalization. 

As was done in the case of primitive recursive 
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functions, it is not necessary to always start from the 

initial functions in order to construct other functions in 

the class. In fact, if a set of recursive functions is known, 

they can be used along with the admissible operations to 

generate other recursive functions. 

EXAMPLES 

In addition to previous examples we have some 

more functions which are used frequently. The following are 

some of them --

1 Sign function or nonzero test function , sg 

sg(O) = 0 

sg ( o) = z ( o) 

2 Zero test function, sg 

sg ( y + 1 = 1 

sg(y + 1) = S(Z(U2
2<y,sg(y)>)) 

sg(O) = 1 sg_ (y -+; 1) 

3 Predecessor function, P: 

P(O) = 0 

Note that 

P(y + 1) = y =U1
2 (y , P(y)) 

P(O) = 0 P(1) = 0 P(2) = 1 P(3) = 2 ..... . 

4 Odd and even parity function , Pr : 

Pr(O) = o Pr(y + 1) = sg(u2
2 (y,Pr(y))) 

Pr(O) = 0 Pr(1) = 1 Pr(2) = o Pr(3) = 1 

· 5 Proper subtraction functior, .:. : 

X ~ (y + 1) = P(x ~ y) 

Note that x ~ y =0 for x < y and x -· y for x ~ y. 
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6 Absolute value function 1 I I 

X - y = (x ~ y) + ( y ~ x) 

7 Minimum function 1 min<X 1 y> minimum of x and y 

min<x 1y> = x ~ (x ~ y) 

8 maximum function 1 max<x 1 y> maximum of x and y 

max<x 1y> = y + (x ~ y) 

9 The square function 1 f(y) = y 2 

f(y) = y2 = u11 * u11 

10 The exponentiation function 1 f<x 1 y> = xY 

f<x 1 0> = sg(x) 

f<x 1y + 1> = x * f<x 1 y> =U1
3<x 1 y 1 f<x 1 y>>*U3

3<x 1 y 1 f<x 1 y>> 

11 Ackermann's function 

In our discussion so far we considered only 

one induction variable in the definition of recursion. It is 

possible to consider two or more induction variables. Note 

that in the definition of f<x 11 x 21 ••• Xn 1Y> using 

recursion 1X11 x 21 ..• xn were treated as parameters and only y 

was treated as the induction variable. Now we define a 

£unction in which we have two induction variables and no 

parameters.This function will be used in the following 

section and is known 

as Ackermann's function.The function A <x 1 y> is defined by 

A<0 1 y> = y + 1 

A<x + 1 1 Y + 1> = A<X 1 1> 

A<x + 1 1 ~ + 1> = A<X 1 A<x + 1 1 y> > 
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dbserve that one can construct the value of A<x,y> for 

fixed values of x and y by using the above definition. 

Therefore, A<x,Y> is well defined and total.It is known that 

A<x,y> is not primitive recursive, but recursive.We now 

demonstrate how the above definitions can be used in finding 

the value of A<2,2>. 

A<2,2> = A <1,A <2,1>> 

A<2,1> = A <1,A <2,0>> 
= A <1,A <1,1>>:. 

A<1,1> = A <O,A <1,0>> 
= A <O,A <0,1>> 
= A <0,2> = 3 

A<2,1> = A <1,3> 
A <O,A <1,2>> 

A<1, 2> = A <O,A <1,1>> 
= A <0, 3> = 4 

A<2,1> = A <0,4> = 5 

A<2,2> = A <1,5> 
= A <O,A <1,4>> 

A<1,4> = A <O,A <1,3>> 

A<1,3> = A <O,A <1,2>> 
= A <0,4> = 5 

A<1,4> = A <0,5>= 6 

A<2,2> = A <0,6> = 7 Ill/ 

There are a few more definitions which are related to 

recursive functions ·and so should be understood. 
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Recursively enumerable set : A set is said to be 

recursively -~numerable if it is the range of a total 

recursive function . Given an element z which is in the set, 

in a finite number of computations of the recursive function . 
z will be generated. 

Recursive set : A recursive set is a recursively 

enumerable set whose complement also is a recursively 

enumerable set. 

The set of natural numbers, set of even numbers,set of 

odd numbers etc. are recursive sets which are recursiveiy 

eneumerable also.To give explicit examples of a recursively 

enumerable set which is not recursive is difficult if not 

impossible. 

The above definitions and examples will be sufficient 

to understand Nu Machine and Non-linear Algebra which are 

taken up in the following chapters. The next chapter· deals 

with the Nu Machine. Ill/ 

1 2 



CHAPTER 3 

NU MACHINE 



NU MACHINE 

In this chapter, an analysis of Nu 

Machine is made. It is a mathematical model which assays to 

compute all recursive functions (i.e Turing computable 

functions). It is named as Nu Machine (pronounced as "New 

machine") and is abbreviated as NM. From what follows, it can 

be observed that this model is much simpler than TM mainly 

because of its graphical representation. Note that this model 

is an extended version of ABACUS machine mentioned by 

SHEPHERDSON. Before going into further details, consider one 

example of NM for recursive functions and see how it 

functioris. 

Every NM is a digraph with labelled nodes and 

edges. Nodes are labelled 0,1,2, ... etc and edges are labelled 

a, b or e. If there is an 'a' or a 'b' from node A to node B 

then add an 'a' or a 'b' to the string in node A and move to 

node B respectively. If the number of a's minus the number of 

b's is zero in node A then move through the edge labelled 'e' 

to node B without doing anything. The initial node is 

represented by a triangle around that node and the final node 

is represented by a circle around that node. (More precise 

definition will be given later). 
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EXAMPLE 

(i) NM for multiplication 

2 
3 

a 1 4 
a 

b 
/ 

a b 
1 

2 3 

-
b 1 1 

L_~ 

v1 

• 0 

Initially node 1, node 2, node 3 & node 4 have values 

'x', 'y', 'O' & '0' respectively. (Value of a node means, the 

number of a's minus the number of b's in that node. 

Initially there will be a string of a's of length x, if the 

value is x). At the end of the calculation, node 4 will have 

the answer 'x.y•. The description of the states for the 

computation of r2 * 3' is as follows. 

value of state present 
state 

1 2 3 4 

2 3 0 0 1 
1 3 0 0 2 
1 2 0 0 3 
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value of state present 
state 

1 2 3 4 

1 2 1 0 4 

1 2 1 1 2 

1 1 1 1 3 

1 1 2 1 4 

1 1 2 2 2 

1 0 2 2 3 

1 0 3 2 4 

1 0 3 3 2 
1 0 3 3 3 

1 0 2 3 2 
1 1 2 3 3 
1 1 1 3 2 
1 2 1 3 3 

1 2 0 3 2 

1 3 0 3 3 
1 3 0 3 1 
0 3 0 3 2 
0 2 0 3 3 

0 2 1 3 4 

0 2 1 4 2 
0 1 1 4 3 
0 1 2 4 4 
0 1 2 5 2 
0 0 2 5 3 
0 0 3 5 4 
0 0 3 6 2 
0 0 3 6 3 
0 0 2 6 2 
0 1 2 6 3 
0 1 1 6 2 
0 2 1 6 3 
0 2 0 6 2 
0 3 0 6 3 
0 3 0 6 1 
0 3 0 6 0 

Before proceeding a little further let us look at 

one more example which will be useful for our 

understanding the Nu Machine clearly, 
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Examples : 

(i) NM for addition 

b 

• 2 

a 

node 1 has a value X ( remember 

that value of a node means, a string of a's of length X ) and 

node 2 has the value Y. At the end of the computation node 2 

will have the answer X+Y. As mentioned earlier, the value of a 

node is, the number of a's minus the number of b's in that 

node. The following table illustrates the transitions of the 

machine when, X = 7 & Y = 5. The answer 12 (string of a's of 

length 12) appears in node 2 when the machine halts in node· 

O, at the end of the calculation . 

1 2 present 
node 

aaaaaaa aaaaa 1 
aaaaaaab aaaaa 2 
aaaaaaab aaaaaa 1 
aaaaaaabb aaaaaa 2 
aaaaaaabb aaaaaaa 1 
aaaaaaabbb aaaaaaa - 2 
aaaaaaabbb aaaaaaaa 1 
aaaaaaabbbb aaaaaaaa 2 
aaaaaaabbbb aaaaaaaaa 1 
aaaaaaabbbbb aaaaaaaaa 2 
aaaaaaabbbbb aaaaaaaaaa 1 
aaaaaaabbbbbb aaaaaaaaaa 2 
aaaaaaabbbbbb aaaaaaaaaaa 1 
aaaaaaabbbbbbb aaaaaaaaaaa 2 
aaaaaaabbbbbbb aaaaaaaaaaaa 1 
aaaaaaabbbbbbb aaaaaaaaaaaa 0 (end) 
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( ii) NM for exponentiation 

• 0 

1 a e 
[)> )' 

2 

b 
b e a 

1 40 
e 

b f, a b 

c 5 =r a 

• 4 a 5 b 
Initially nodes 1 I 2 I J I 4 & 5 have values 0, Y, X, 

0 & 0 respectively. At the end of the calculation the 

answer xY will appear in node 1. The steps involved are 

exactly as in the above example. Now, it is time to 

define NM and all the basic machines more precisely. 

DEFINITION OF NM 

An NM is a labelled digraph with the following properties. 

(i) There are two types of edges - dotted edges and line 

edges (i.e. ------- & ) . 
(ii) Edges are labelled in the form a 1 a , where a € (L U 

{e}) and a € L*. (Here L is the set of symbols in the 

alphabet and a is the string with letters form the alphabet.) 

(iii) Two different edges can have the same label. 

(iv) Nodes are labelled 0,1,2 ..... 
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(v) Two different nodes can have the same label. 

(vi) There is one initial and one final node. 

(vii) Out degree of the final node is zero. 

In any node of a machine which accepts a language, 

there is a string of symbols taken from an .alphabet. There is 

a point~r which reads the symbols according to the rules 

specified. Initially the pointer will be at the left end of 

the string. Meanings of the notations are as follows. The 

symbol 'e' represents the zero length character i.e. a null 

character .. If there is no symbol from the specified alphabet 

on the right of the pointer it means the machine reads 'e'. 

afa 
If the symbol on the right of the pointer in the 

node is 'a' then replace 'a' with the string 'a' and move the 

pointer to the right of 'a'. 

a fa 
If the symbol on the right of the pointer in the 

node is 'a' then replace 'a' with the string 'a' and move the 

pointer to one position left of 'a'. 

a 
: If the symbol on the right of the pointer in 

the node is 'a' then replace 'a' with 'a' and move the 

pointer to one position right. 

18 



a 
If the symbol on the right of the pointer in the 

node is 'a' then replace 'a' with 'a' and move the pointer to 

one position left. 

We say NM is halted normally if the machine ends in its final 

node which is normally Node o. Otherwise, NM is halted 

abruptly. 

NM FOR RECURSIVE FUNCTIONS 

An NM is a labelled digraph with the following properties. 

(i) Edges have labels 'a', 'b' or 'e'. 

(ii) Two different edges can have the same label. 

(iii) Nodes are labelled o, 1, 2, .... 

(iv) Two different nodes can have the same label. 

(v) There is one initial and one final node. 

(vi) outdegree of the final node is zero. 

(vii) outdegree of every node ( other than final node) is 

either one or two. 

It can be observed that, the examples which have 

been seen before completely agree with the definition. 

Meanings of the symbols a, b and e were mentioned in this 

chapter. Change in the value of a node will automatically 

affect the other nodes with the same label. Final node is 

usually numbered as o. There is no limit for the 

number of nodes, each node taking values from the set of 

natural numbers. Let the function to be calculated be 
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f(x 1 ,x2 , ... ,xn>· Initially the variable values are kept in 

the first n nodes (except 0). Answer can be in any of the 

nodes except input nodes which is specified before. If the 

output node is one of the input nodes then transfer the 

answer into-a node which is not an input node at the end of 

computation. This makes it easier to reuse those nodes. 

Answer is given by the absolute difference between the number 

of a's and the number 6f b's in the output node. 

Now the existence of NM's for each of the elementary 

functions and procedures is shown .. The theory will be clear 

if it can be demonstrated how these basic machines can be 

interconnected to obtain a machine for a given function. And 

then it will be obvious that there exists an NM for any 

recursive function. 

NM's FOR ELEMENTARY FUNCTIONS 
(i) Zero function : 

~. • 

0 
x 1 , x 2 , .....•. , xri are stored in nodes 

z 
• 

~ e 

xl~ x2, 

x 3 , .... ,xn respectively. (Recall that the value x 1 means a 

string of a's of length x1 ). Answer appears in node z (Note 

that all non-input nodes have values zero initially). 
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(ii) successor function 

s (X) = X 

T s 

a 
b 

x a e 
OD--~~-----,1•---~>--~~ 

X 0 
The input value is put in node x. rhen an 'a' is 

added to the string in node x and transferred to the output 

node s. The new value will be x+l in node x itself. 
Lo 

1 (iii) Identity function : 
C\.1 

= 

k b k b k b k b j 
re--v-- • • • • • • • • • • • o • • e • • 

e e, e e 
a a a 

• l i[ 
/ 

Ji j xl x2 xn 

e ~·i e e 
b b b 

0 

• 
The value k is put in node k. In each step of the 

computation the value gets decreased until the value of node 

k becomes zero. When it happens the machine will be in node 

xk where the value xk is kept. Then it transforms the value 

xk into the output node i. ( Note that all the nodes other 

21 
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than input nodes have to be initialised i.e. value of those 

nodes have to be made zero before the computation starts) . 

NM 1 s FOR ELEMENTARY PROCEDURES 

Before going into the details, make following 

machines which will be useful in defining machines for the 

elementary procedures. Call them S(x,x1 •,x2 •, ... ,xm'> and 

I(x). Here, each of the variable in the above functions is a 

set of n nodes. S stores the value of each node in x, in the 

d . d . I I I Th h . correspon 1ng no e 1n x1 ,x2 ... xm. e mac 1ne, 

s is given by; 

a x21 I a x2n 
I 

X le • • xml I 
xln

1
• • •xmn I llk .al b a 

ti> 
e e 
> • > (!) 

xl x2 xn 0 

The machine I is used for initialisation. It 

reduces the value of each node in x to zero. The machine, 

I is given by, 

b b b 

~I ! 9 .......... Q ~ @ 
x 1 x2 xn 0 

The above three machines are needed to restore the 

input values at the end of computation when the input nodes 
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are being used. Here onwards only the names of the above 

machines will be used instead of the entire machine. This 

will be clear when we study machines for elementary 

procedures which are used in constructing a machine for a 

given function. The method of construction will be 

demonstrated later. 

(i) composition 

Given a set of functions Gk ( x 1 , x 2 , .... ,xn ), 

k=1,2, .... ,m and H (y1 , y 2 , .... ,ym), define 

F (x1 , x2 , .... ,xn) = H (G1 , G2 , .... ,Gm). 

NM for composition is given below. Every G has 

its own input nodes~ So the inputs of F i~e. x 1 to xn are 

first transformed into the input nodes of Gi for all i, 

l~i~n. Input nodes of Gi are denoted by x 1 i, x 2i, ... ,xni· 

gi's are the output nodes of Gi's and Yi's are the input 

nodes of H. The given machines are, 

. . 
I • • • I -~ & 

The following is the machine for compositi_on. 

First block initializes the input nodes of Gi's. Then in the 

second block each Gi is calculated and the result is 

transferred to Yi as the input of H. Final node of F will be 

the final node of H and the value of the function F will be 
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in the output node of H. 

-~L--G_l___, 
b b b 

a a a 

(ii) Primitive recursion 

Given two functions G( x 1 ,x2 , ...... ,xn-l) and 

H(x1 ,x2 , ... ,xn,y), define F (x1 ,x2 , ... ,xn) as in 

chapter. The given functions are~ 

and 

the second 

NM for this procedure is given below. 
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~·i S(gly) ~·,-~e-•_x..:..:n~--~-e-------,---
0 

• 

!(all nodes of H other 
· than input nodes) 

• 

b 

• 
s ( h 1 y) •1 I ( x 1 ,· .. , xn 1 Y) I 
X '8-----------~--------~ n 

b 

a 

S(x x " x '") n 1 n ' n 

e 

In the above machine~ node 'g' is the output node of 

the machine G and node 'h' is the output node of H. Two 
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machines A and B are interconnected to get c in the following 

fashion. 

~·---i..__B _ __.~0 

Initial node of c is the initial node of A and final 

node of c is the final node of B. The connection is done by 

replacing the final node of A by the initial node of B. 

(iii) Minimalisation 

Define F(x1 , .•.. ,xn) =Min { y I G(x1 , ... ,xn,y) } 

where G is a given function. NM for this procedure is given 

below. 

~ rl sn ( (xl' .. 'xn' y) ' (xl I' •• 'xn I 'y I) ' (xl II' •• 'xn II' Yll)) j 

f 

I( all nodes of G other 
than input nodes) 

~----~a~-------•1 y 

b 

The following example illustrates how to make machines 

using above defined machines and how to combine them. The 

machine given on next page is for the. proper subtraction 
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)... .•! 

defined in Chapter 2. This function is used for 'calculating 

J 

see chapter 2 ) . 

e k 

b 

\I 
b 

k 

e b 

xl~g 
e 

g·~-ctt 
e a 

y e 

• b 

e a 

e a 

y > 
b I b 

Y•-D I h 
a 

e 

y 

e cfl e 
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xJ}J-• x2 
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X2 II I ;--~-....J 
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For defining the function 'absolute difference' we need the 

above machine. As explained in Sec.2.3, F(x1 , x 2 ) = I· x 1 - x2 

= H( G1 , G2 ) where, G1 and G2 are proper subtractions and 

H(x1 , x 2 ) = x 1+x 2 . Now, for getting the machine for F connect 

the machines as follows. 

Let G1 and G2 be the machine given above with a totally 

different set of nodes. Let the input nodes of Gi be xil and 

xi2" Let the output nodes be gl and g 2 . After changing the nodes 

as above mentioned, design a machine as follows. 

a a 
xll 22 x12 21 

a b a 
e 

xl x2 

e 0 

where, h 1 and h 2 are the input nodes of H 

and the output lx1 - x 2 I will appear in node h 2 . 
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NON LINEAR ALGEBRA 

This ch~pt-e~ deals with 'Non Lln'ea-r Algebra' which 

is developed for Nu Machines. A given Nu Machine can be 

represented in terms of a square matrix. For example, let us 

consider the following Nu Machine which is used for addition. 

b 

Start 

End node 
[o] 

The inputs to the nodes are strings containing a's only. If 

two strings of lengths 'x' and 'y' are kept at nodes 1 and 2 

respectively then, in the end node 2 shall have a string of 

length 'x + y' and node 2 will have a null string at the end. 

This Nu Machine can be represented in the form of a matrix as 

follows. 

0 

A = a 

0 

b 

0 

0 

1 

0 

0 

NU MATRIX 

FOR ADDITION 

We shall call the above matrix by the name 

'Nu Matrix' for addition. 

Here, we first define the state of the Nu Machine by 

a column matrix in which the element cj1 is the string 

present at node 'j'. 
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respectively and a null string at node 0, then the state 

vector is nothing but 

1 

In order to carry out operations we now introduce 

'Non linear Algebra' for Nu Machine. The non linear algebra 

makes use bf the above two matrices viz., Nu Martix and State 

vector. In order to do computation using the non linear 

algebra we proceed as follows. 

1. Take the Nu Matrix. 

2. Corresponding to initial inputs write the State vector. 

3. Start with the first row of the Nu Matrix. Change the 

first row of the state vector. For changing the row use the 

following rules. 

If the row contains an 'a' then add one 'a' to the 

same row element of the vector and if it has a 'b', remove one 

'a' from the element of the corresponding row (if possible). 

Note the column number in the row where 'a' or 'b' ( as the 

case may be ) i~ prese~t. Say the column number is I ' I 
l. ' then 

go to the ith row in the Nu Matrix. Again repeat the same 

procedure of changing the state vector but thi~ time the ith 

row of the vector is changed using the same rules. 
' 

Repeat this process until you reach the last row of the 
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Nu Matrix is reached at which time the execution ceases. 

Note : If there is a 'b' in a row but the same row in the 

vector has an empty string (i.e., 1) then we cannot remove 'a' 

from this element. In that case we do nothing and go to that 

column which has got 1 in that row. Next time we will go to 

the row which corresponds to this column. 

Now we shall use this for our example. The initial state 

vector in our case is, 

We start with the first row of the Nu Matrix. This row has got 

a 'b', therefore the first row element of the vector is 

positioned at 2nd colum~, so we will now move to 2nd row. The 

state vector becomes, 

Now we shall use the 2nd row of the Nu Matrix and change the 

2nd row of the state vector. The 2nd row has an 'a' at column 

I 1 I • Since 'a' is present in the second row so, we shall add 

one 'a' to the string already present at the second row of the 
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state vector. This changes the 2nd element from a 2 to a 3 . Next 

we have to go to 1st .row of the Nu Matrix. The present vector, 

is 

Proceeding in the same fashion we shall get, 

and now we have to use first row of Nu Matrix. This row 

contains a 'b', but the corresponding element is already a 

.null string therefore we cannot delete one 'a' from this. So, 

in this case we shall do nothing and shall look for column 

containing '1' in the same row. In our case '1' is at 3rd 

column, next we have to go to 3rd row which is the last row. 

As we have now reached th~ last row, our execution is over. 

It is clear from the final state vector that the 2nd 

row is the addition of initial 1st row and initial 2nd row. 

Thus we have seen how Non linear Algebra can be used 

for addition of two strings. This is similar to adding two 
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' ) , 
numbers. Using this 'Nu Matrix for addition' we can find 

thesum in the manner described above. 

In additon to this, we can write a Nu Matrix for a 

Nu Machine which performs multiplication. This Nu Matrix can 

be used and by applying previous rules of Non linear Algebra 

we can find product of two numbers. This Non linear Algebra 

can perform the same task which a Nu Machine can accomplish. 

It was shown in the last chapter that the Nu Machine can 

compute all recursive functions so this Non linear Algebra 

also can evaluate recursive functions. 
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FINITE AUTOMATA AND WORDSPACE 

In this chapter we shall study an algorithm for 

finding out wordspace for a given finite automaton. Given a 

finite automaton its adjacency matrix can be found from which 

its wordspace is obtained. At first the algorithm is given, 

after that it is explained with a few examples~ 

ALGORITHM 

1. For the given finite automaton of 'n' states. Find its 

adjacency matrix which is a 'n x n' square matrix. 

2. In the same matrix change its diagonal elements by their 

respective Kleene closures. The resulting matrix is called A1 . 

3 0 Now do the following. 

A2 Al + cl * Rl = all 

A3 == A2 + c2 * R2 a22 

A4 A3 + c3 * R3 = a33 

. . . . . . . . . . . . . 

. . . . . . . . . . . . . 
* . An+l = An + en ann Rn 

In the above equations ci is the ith column, Ri is the ith row 

of the matrix Ai calculated at the previous stage and aii is 

its ith diagonal element. 

The matrix An+l is nothing but A*, the wordspace for 

the given finite automaton. 

EXAMPLE (i) 

Suppose we have the following automaton with two states and . 

whose alphabet is {a,b} 
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a a 

Its adjacency matrix is 

[ 
a b l A = 
0 a 

The Kleene closure of diagonal element a 11 is * and the a 
I 

diagonal element a 22 is also * a . Therefore, 

[ 
* b l a 

Al = * 0 a 

Now we have, 

A2 = Al + cl * Rl all 

i.e. , 

[ 
* b l [ 

* l a a 

A2 (a*>* * b ] = + a 
* 0 a 0 

i.e., 

[ 
* b l [ 

* l a a 
* a*b ] + a 

* 0 a 0 

[ * b l [ 
* a*b] a a 

= + 
0 * 0 0 . a 

[ 
* a*b l a 

A2 = 
* 0 a 
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Similarly, 

A .3 

A3 = 

= 

= 

= 

= A2 + 

[ 

[ 

[ 

[ 

* a 

0 

* a 

0 

* a 

0 

* a 

0 

c2 a22 * 

a*b 

] * a 

*b * a a 

* a 

R2 

+ [ 

] 

a*b 

] [ (a*).* ] * [ 0 a 
* a 

0 . a* 

0 

0 

The above matrix A3 is nothing but A* or wordspace 

for the given finite automaton. In the same way, we can find A* 

for other finite automata using this algorithm. 

Now we shall consider another exam~le in which the 

finite automaton has got three states and the alphabet of the 

automaton is { a,b }. 

[ 1] 
EXAMPLE (ii) 

[2.] 
b 
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The adjacency matrix 6f this automaton is, 

1 0 a 

A a 1 0 

0 b a 

The Kleene closures of diagonal elements a 11 ,a22 and a 33 are 

1*, 1* and a* i.e., 1, 1 and a* respectively. 

Therefore, 

1 

= a 

0 

Now we have, 

A2 
So, 

1 

A2 = a 

0 

i.e., 

1 

A2 = a 

0 

or 

1 

= a 

0 

= 

0 

1 

b 

Al 

0 

1 

b 

0 

1 

b 

0 

1 

b 

a 

0 

* a 

+ cl 

a 

0 

* a 

a 

0 

* a 

a 

0 

* a 

* Rl all 

1 

+ a [ 1* ] 1 0 a ] 

0 

1 

+ a [ 1* ] 1 0 a ] 

0 

1 

+ a 1 0 a ) 

0 
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1 

= a 

0 

i.e., 

A2 = 

Similarly, 

A3 

i.e. , 

1 

A3 = a 

0 

1 

= a 

0 

1 

= a 

0 

1 

= a 

0 

= 

0 

1 

b 

1 

a 

0 

0 

1 

b 

0 

1 

b 

0 

1 

b 

0 

1 

b 

A2 

a 

0 

* a 

0 

1 

b 

+ c2 

a 

a2 

* a 

+ 

a 

a2 

* a 

a22 

+ 

+ 

+ 

+ 
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1 

a 

0 

0 

1 

b 

0 

1 

b 

0 

1 

b 

0 

a 

ba 

0 

0 

0 

0 

1 

b 

[ 1* 

a 

a2 

0 

] 

a 

a 

a 1 a2 ] 

1 

1 



or 

1 0 a 

= a 1 

Now we have, 

a 

* 2 * [ (a +ba ) ] 

a 

* 2 * [ (a +ba ) ba 

Thus, 

i.e. , 

* 2 * a(a +ba ) ba 

* 2 * (a +ba ) ba 

* 2 * a(a +ba ) b 

* 2 * (a +ba ) b 

[ ba b 

* 2 * (a +ba ) b 

* 2 * a(a +ba ) 
I 

* 2 * (a +ba ) ] 

a 2 (a*+ba2 )* 

(a*+ba2 j* 

* 2 * 1+a(a +ba ) ba * 2 * a(a +ba ) b * i 2 * a(a +ba ) 

* 2 * (a +ba ) ba 

a 2 (a*+ba2 )* 

(a*+ba2 )* 

The matrix A4 evaluated above is the A* or wordspace 

of the given finite automaton. Thus we have seen how this 

method can be applied to a finite automaton to reach its A* or 

in other words, its wordspace. /Ill 
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CAYLEY GRAPHS AND THEIR WORDSPACE 

The Cayley graph is a highly symmetrical graph. All 

its nodes are exactly symmetric with respect to each other. 

It has got the following properties. 

1. The label of the edge is a symbol from an alphabet. 

2. All the symbols of the alphabet are associated with each of 

the nodes. 

3. If the cardinality of the alphabet is "n" then indegree as 

well as outdegree of every node is "n". 

4. Each symbol of the alphabet comes exactly once to a node. 

5. Each symbol goes out from a node exactly once. 

Now, let us look into .some examples of Cayley graphs. 

[1] [l] 

[2] 

[3l 
GRAPH A GRAPH B 

These can be represented in terms of squa.re matrices as 

shown below, 

0 a 0 0 a 0 b 

A = 0 0 a a 0 b 0 
B = 

a 0 0 0 b 0 a 

b 0 a 0 
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The graph A comes from alphabet { a } and graph B 

from alphabet { a,b }. Graph B forms a quadratic dihedral 

* * group. The A and B could be obtained for graph A and graph 

B respectively.The A* gives the wordspace for graph A. Here 

we shall first find A*, in a similar fashion s* could be 

reached. 

As we know for the following automaton, 

the a* is 

where 'e' is the null string. 

Similarly for our graph we have, 

A*= E +.A+ A2 + A3 + 

where 'E' is a diagonal matix of same size as A with all the 

diagonal elements having value 'e' (i.e. the null string). So, 

e 0 0 o a 0 

o e 0 + o o a + + 

0 0 e a 0 0 

Therefore, 

(aJ)* (a 3 ) *a, (a3) *a2 

A* = (a3)*a2 
~ 

(~3>* (a 3)*a 

(a 3)*a (a3)*a2 (a3)* 

e a a2 

= (a3)* a2 e ·a = (a3)* c 

a a2 e 
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where C is called Cayley matrix and 'C is given by 

e a, a2 

c a2 e a 

a a2 e 

This Cayley graph forms a group. The elements of 

the first row i.e. , e,a and a2 give rise to group with 

generator relation a3 = e . The multiplication table for 

this group is, 

• e 

a a 

a 

a 

a2 

a 

e 

Multiplication 

Table 

From above it can be seen that multiplication 

table is same as the Cayley matrix c. Cayl~y matrix has got 

another interesting properties. 

1. For a Cayley matrix C the following property holds, 

c . c = c 

2. In addition to this the determinant of a Cayley 

matrix is equal to 'e'. 

3. Also for any cayley matrix the inverse is same as 

the matrix itself, i.e. c-l = c. 

For graph A we have found its A* and also its 

Cayley matrix, similar to this for graph B we can find its s* 

and the Cayley matrix. The s* and Cayley matrix C' for graph 

B is 

4Z 



e a ab b 

a e b ab 
B* = (a2 + b2 + abab)* 

ab b e a 

b ab a e 

and Cayley matrix is 

e a ab b 

a e b ab 
c• = 

ab b e a 

b ab a e 

= Cab) 2 
The generator relations for this graph are a 2 = b 2 

= e 

In this chapter we have studied Cayley graphs in 

details with two examples. The Cayley graphs have got 

applications in group theory and formal language theory. 
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GRAPHICAL EVALUATION OF DETERMINANTS 

We now investigate a new way of evaluating the 

determinant of a square matrix .using graphical method. For a 

given square matrix we can draw its corresponding digraph and 

vice versa. There is ·one to one correspondence between a 

square matrix and its digraph. we give below a method which 

will be used for drawing a digraph for a given square matrix. 
\ 

METHOD : If the size of the square matrix A is n x n, then 

drawn points (or nodes), numbering them from 1 ton. Now for 

each element aij of the matrix we draw a corresponding edge 

on the graph by joining node 'i' and node 'j' with a directed 

line segment from 'i' to 'j'. The directed edge from node 'i' 

to node _'j' is assigned a value equal to ~lement aij of the 

determinant. 

EXAMPLE 

Suppose we have the following square matrix : 

8 4 5 

A = 4 1 2 

9 3 7 

Then, using the above method its corresponding graph wil1 be 
8 

Graph of square 

matrix A 

7 
2 

The algorithm for evaluating the determinant by 

graphical method follows with an example. 
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ALGORITHM : 

STEP 1. Draw the graph of the square matrix whose determinant 

is to be calculated. 

STEP 2. Select one node in the graph. 

STEP 3. List all the outgoing edges of this node. ( or all 

incoming edges of this node). 

STEP 4. For each edge E·. in the above set of edges do the 
1) 

following 

4.1 Every edge E·. is assigned a 11 weight" defined by 
1) 

the following equation 

[ 
+a .. if i = j (i.e. for a self loop} 

1) 
Weight(Eij} = 

- a·. if i + j otherwise } 
1) 

4.2 Remove all the outgoing edges of node IiI from the 

graph and also all the incoming edges of node I • I J • 

4.3 In the remaining graph thus obtained now, club_ 

node 'i 1 and 'j 1 by putting them into a single node. 

4.4 The resulting graph after execution of STEP 4.3 

differs from the original graph. This reduced graph can 

be evaluated using the same algorithm. ,The determinant 

of the resulting graph is given na~e Sub-determinant 

corresponding to the edge Eij· 

Note that when the graph after STEP 4.3 gets ~educed to a 

graph of only one node then its determinant value is nothing 

but the value of self-loop edge associated with it. 
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STEP 5. Corresponding to each edge Eij from the set of 

edges of STEP 3, there is a contribution to the original 

determin~nt which is given the name of "contribution••. This 

contribution is given by the following equation. 

* Sub-determinant(Eij) 

STEP 6. The value of the original determinant is given by 

Determinant = ~ Contribution(Eij) 

The above algorithm is a recursive algorithm for 

determinant evaluation. After STEP 4.3 of the .above algorithm 

we are again using the same algorithm for evaluating Sub-

determinant(Eij) corresponding to edge Eij . Thus the control 

goes barik to STEP 2 of the algorithm until the graph is 

reduced to a single node graph at which time· Sub-determinant 

gets the value of self-loop edge and then this process 

terminates. Hence it is clear how this algorithm works 

recursively. 

To clarify this algorithm consider an example, 

Suppose we have the following determinant : 

'2 5 

A = ,3 1 2 

4 6 2 
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2 

STEP 1. The graph corresponding to above matrix is 

2 

1 
2. 

STEP 2. We have chosen node 1. 

GRAPH A 

Graph of 

square matrix A 

STEP 3. The edges going out from this node are E11 ,E12 and 

El3" 

STEP 4. 

STEP 4.1 

Weight(E11 )= +2 

STEP 4.2 

2. 

STEP 4.3 

1 
2. 

GRAPH B 

1 

Weight(E12 ) = -4 Weight(E13 )= -5 

[I J [I) 

3 

GRAPH C GRAPH D 
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STEP 4.4 
Sub-determinants 

These can be evaluated by using the same algorithm once 

again i.e. we have to go back to STEP 2 and start the process 

of evaluating the determinant of reduced graph corresponding 

to edge Eij . The value of this determinant 'is nothing but 

Sub-determinant(Eij) for the original deter~inant.Here in 

this example we shall evaluate only one Sub-determinant say, 

E12 . The other two can be calculated in a similar fashion. 

The reduced graph corresponding to edge E12 is the 

following 

[a] 

Graph c 
4 2 

[3) 

STEP 2 Node "3" is chosen here. 

STEP 3 The edges going out from this node are E33 ,E3a. 

STEP 4.1 
Weight(E33 ) - +2 

STEP 4.2 

• (3) 
)t 

[3] 

STEP 4.3 
~ 

0 [a] 

2 

Q [c) 
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STEP 4.4 Each of the above reduced graphs contains only 

one node with a self loop associated with it. Thus we have, 

Sub-determinant(E33 ) = 3 

STEP 5 

Sub-determinanant(E3a) = 2 

Contribution(E33 ) Contribution(E3a) 

= (-+2)*(3) = -+6 = (-4 ) * ( 2 ) = -8 

STEP 6 Determinant(Graph C) 2: Contribution 

= (-+6) + (-8) = -2 

Sub-determinant(E12 ) = Determinant(Graph C) = -2 

Similarly Sub-determinant(E11 ), Sub-determinant(E13 ) 

could also be obtained by evaluating Determinant(Graph B) and 

Determinant(Graph D) respectively . For our example it could 
(.) 

be seen that, 

Sub-~eterminant(E11 ) = -10 and Sub-determinant(E13 )= -14 

Therefore from STEP 5 now we have, 

Contribution(~11 ) = Weight(E11 ) * Sub-detsrminant(E11 ) 

= 2 ) * -10 

Contribution(E12 ) = ( -4 ) * ( -2 ) 

Contribution(E13 ) = ( -5 ) * ( -14 

On moving to STEP 6 we get, 

= -20 

= 8 

= 10 

Determinant(A) = 2: Contribution= (-20) + ,(8) + (70) =58 

SOME USEFUL RESULTS 

1. We need not draw an edge E· · in th. e digraph in case the 1J 

value of element aij is zero, because such an edge has zero 

weight making its contribution equal to zero. 
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2. In the graph if indegree ( or outdegree ) of one of the 

nodes is zero, then the determinant corresponding to that 

graph vanishes. 

3. Take a n x n square matrix and draw its graph. Now from 

this graph if we remove the node numbers, then we can 

renumber the ''n" nodes of this graph in n! ways. There is one 

particular square matrix corresponding to every numbering. 

Each of these n! determinants has the same value. This is 

because the algorithm evaluates the determinant without 

taking node numbers into consideration. 

4. The ''transpose" of a square matrix in terms of graphs 

can be obtained merely by changing the directions of every 

edge of the graph. 
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CONCLUSION 

An attempt has been made in this thesis to study 

the matrices with the elements from a.loose algebraic 

structure not as strong as a field. In particular, the 

matrices w
1
i th regular expressions as their elements were seen 

in detail. We have given an algorithm for finding out the 

wordspace of a finite automaton. In this method the matrices 

with regular expressions as elements were u~ed. Study of this 

method may be of help to computer scientists who are working 

in the area of formal languages, language development, and 

compiier design. 

The recursive functions were discussed in detail, 

we have studied the Nu Machine which can compute any 

recursive function in a mechanical manner~ In additon, the 

non linear algebra was studied in the same ~ontext. 

We have made a study of Cayley graph which has 

applications in group theory. Some of the results are listed 

in the chapter related to Cayley graph~. This graph is 

intimately related to groups. 

While we were studying matrices during our project 

work, a useful result of finding determinant using graphical 

method was discovered. The method has been discussed in 

detail in the last chapter. We feel that:a lot more can be 

done in this area. 
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