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ABSTRACT

In disfributéd systems the database is replicated
over a number of sites. The transactions are concur;ently
executed in number of sites, where a transaction (a task) is
divided into number of subtasks and may be carried out
céncurrentlywat the sites where these are assigned. In such
envirpnment,'vthe failure of hodés' or 1links may lead to‘

inconsistent updates to the database.

'The~dissertatién contributes in suggesting méééureé
for retaining consistancy in the event of the above
mentioned failures. Thé node or link failures mighf lead to
partitioniﬁg of the network .in which a set of nodéé cénnof
communicate with rest of the nodes. = Recovery fromeailures
poses a large‘ number of. problems and a great “ahount of
reseafch work has been done in order tp'solve these.
Recovéry from partitions' is the area 1n which extensive
research is going on. ?he recovery'technigues studied in
this dissertation have been_designed»to solve the problem of
consistancy. @ This dissertation also gives a solution to

recovery from multiple partitions using dynamic voting

technique and thus increasing the availability of database.
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CHAPTER

INTRODUCTION
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‘A distributed system is one in which the processors
afe diétributed over large geographical area with each of
the procéssors working autonomously without sharing any
memory buf communiéating with. the other processors 1in the
system by messages.

fhere is disagreement in defiging what a
distributed system is? This-varies from nmltipfocessors,
multicomputers, workstation LANs to interéénnectedv WANs.
Not only the memory distribution but also the type of
communication between the prbcessors determine the
characterisﬁics of a distributed éystem. This can vary by
_‘any degree from tightly coupled systems to loosely coupled
systems. The degree of communication is measured in grain
size. The systems with large grain size communicate
infrequently and spend much of their time in computation..
The system with fine grain size communicate more frequently.
The goal of the distributed system is to achieve spéedup
through parallelism in running an application.

The'difference between an ordinary combUtér system
and distributed system is that the distributed system has
got partial failure property. Even though part of the system
fails (it can be single site to multiple site) the rest of
the system must be in a position to continue with its work.
This makes the distributed system attracti&e as the failure

frequency or duration of failure is unpredictable. To



achieve partial failure propefty the data atems should be

replicated over distributed sites running autonomously. |
| The distributed  system | differsr from other

sequential systems in three issues: . .;

i) it- should be in a position to assign diffefent parts.of

"the program to different processors to use the'proceséors

optimally. |

ii) these set of processora working on some program segment

should co-operate to exchange results and for

synchronization.

iii) implementing partial failure property.

The properties (ii) and (iii) together pose the
problem of globally consistent state of the system. The
failure cah be in node or communication. This can lead to
network partitioning isolating set of nodes from rest of the
nodes 1in the system. Increasing demand for higher
throughput and higher availability makes the ‘distributed
system attractive. ButAin;reasing the availability by
replication results in inconsistencies inrthe event of
failure of one or more nodes. This is .because of
complicated failure modes of multiprocessor configurations.
To suppqrt'partial failure property failure of one node or
communication failures should not stop the system. But a
transaction involving set of nodes leads to inconsistent

state of the system. This demands the execution of



‘operations in ﬁhe transactions to be complete or ﬁhe
transaction should have no effect on the system at all.
" Such a transaction is called atomic transaction. We call an
operation aﬁomic if it satisfies both the pererties of
indivisibility and recoverability. ‘A transaction is
indivisible.if‘its intermediate states are transparent to
the external world. An operation is recoverable if the
'failure'of the transaction will force the system to get back
its state before the operation is started and tﬁus the
operation has got no effect at all. The transaction outqpme

can .be one of the three instances given below:

BEGIN

BEGIN BEGIN
action action action
action action action
action action ~ action
COMMIT . ABORT NABORT ==>

Successful Aborted by Aborted by
Transaction Client _ . Server

The important properties of atomic actions as put.
forth by Randell[RAND 78] are as follows:
i) "An action is atomic if the process (procésses)
performing it is (are) not aware of the existence of any

other active processes, and no other process is aware of the



'actiQity of ~the process (processes) during the time the
.process is . (processes are) pérforming.the action".’
ii) "An action 1is atomic if the process (processes)
performing it doeé(do)_not communicate with other processes -
while the action.is being performed".
iii)k "An action is atomic if the process (processes)
performing it can.detect no state changes except. those
performed by itself (themselves) and if it does (they do) not:
réveal its(their) state changes until the action is
complete".
(iv) "Acﬁions~are atomic if they can be considered so far
as other pfoceSses are concerned, to be indivisible and
instantaneous, such that the effects on the system are as if
they were interleaved as opposed to concurrent".

An atomic action can be achieved as follows: If a
transaction contains aﬁ operation that tries to change an

object, the changes are not applied to original object, but

-to a new copy of the object called version. If the entire
. transaction fails(or aborts), the new versions are simply
discarded. If the transaction succeeds, it commits so that

the new version becomes permanent. All objects modified by
the transaction will retain this new version. It is not
feasible to abort the transaction because of node failure or
some other internal error. For this reason latest value of
each object 1is placed in stable storage which has high

chances of surviving processor crashes.



In distributed systems data items are replicated at-
various sites ﬁo increase the avaiiébility.‘ This increases
the reliability of database by making the database to be
resilient to the site failufes. | Also it deCreésés the
-communic;tion in the network Qhen the data is present at the
requester’s site. But here the user shouid see that the
updates to the database is- made at all sites wherg the
replica exists. But this has got a serious problem of
inconsistency when the communcation fails. This may lead to
confliCtiné ‘updates to the database. This problem will
become more severe wheh.the communication failure divides
the system in to two partitions ( partition failure ). This
will update the replica of some data items at different

partitions compromising the correctness of data.

'In addition to the above complexities the prbblem
4still unsolved is the detection of the failure modes in the
system. This includes the three anomalies which the system
can not differentiate |
i) the node is down or
ii) the communication channel to the node is down or
iii) node and cbmmunication.channels are fine but the delay
is high.‘

When partitioning occurs, the transactions may or
may not be allowed to continue andvnew transactions can be

allowed to entep the partition. If the transactions are



allowed then conflicting updates can be takep care of by
undoing the trénéaction and its  effect by running
compensafing transaction which undo the effect of
transaction which is the cause of inconsistency of database.
But this may -not be suitable in certain~éases like.banking
system where 'moﬁey is withdrawn. If the transaétion is
suspended on partition then this decreases the availability.
But the databaée will be 'consistent. This may not be
acceptable in certain applications like:

i) | airline reservation‘ where partition means 1losing
custémer or

ii) in military . Command and Control systems where
availability 1is more important than correctness or
consistency.

Two strategies associated with partifidned
recovery are optimistic and pessimistic. In optimistic
strategy there is a threat to the global consistency of the
system as the system allows each partition to continue with
its operation even when the partition occurs. Thé
inconsistencies are resolved .at the recovery time when the
two partitions merge. In the pessimistic B strategy,
inconsistencies never oOcCcur as care is takén to see that
same data item can not be updated in both the partitions.

The‘optimistic strategies include version vectors

(chapter 4], optimistic protocol [chapter 3]. Some of the



’pessimistic étrafegies include primary copy [ALSB 76, STON
797, tokens [MINO 827, voting [GIFF 797, missing writes
[EAGE 83] etc. | |

My contribution in this dissertation is to find,
how to recoverAfrom multiple partitions using dynamic
voting. This is a pessimistic recovery mechanism.” Chapter 2

is a survey of fault resilient design techniques. Chapter 3

is a survey on optimistic recovery. It gives solutions to
both transient and pérsistent failure recovery. Chapter 4
discusses pessimistic recovery. ‘It tries to increase

availability in distributed systems:  using dynamic voting
while recovering from multiple partitions. Chapter 5

focusses on current and further research in this area.
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2.1 INTRODUCTION

This chapter is the survey ofvvarious étrategies
used 1in prdviding fault resiliency in éase of process
failures. Checkpointing and rollback recovery tgchniques
used in the evént-of failure in distributéd systems is -also
considered. The name distributed system itself conveys that
‘thé recovery from a failure is not only local to the failed
node but also includes the whole system or a subset of the

whole -system which is affected by failure.

Recovery in centralised system is rather clear aé
the failure is local to the failed node. Failure must have
occurred either before or after the completion of the
operation. The recovery in distributed system is two fold.
In the first case data items are distributed over sites. In
the second case the data items are also replicated over

various nodes.

The various.recovery techniques outlined in this
chapter are recovery blocks,conversation,exchange,N-version

programming -and checkpointing and rollback recovery.
2.2 RECOVERY BLOCKS

The failure of a node or site can be due to
internal or external errors. Internal errors are the errors

-in which the system can recover when the same set of

10



operations are rerun or repeated. In case of external
errors the failure is limited to the local node and it

cannot be handled by the local node. It could be because of

hardware or software. Here multiplicity of hardware or
software is of no avail. So diversified hardware and
- software is used. In the following section we discuss how

. to recover from internal errors developed by Randell [RAND

75] and external errors by Kim [KIM 84].

The recovery block mechanism needs the program to
be structuréd into set of blocks like subroutines, modules,
procedures, functions etc. Each of these program units can
be run on the primary as well as backup processes to recover
from failures. The baékup block becomes the recovery block

in case of failure of the primary block.
2.2.1 Recovery from internal errors

The recovery block consists of tryblocks. One of
the tryblocks is a primary block and the res£ ére alternate
blocks. Each of the tgy blocks consists of acceptance test
which needé to be satisfied after the module is run in a
block to determine the correctness of the exécution. In
case of failure of a block the system state is restored and
the next alternate block is tried. If the acceptance test
is passed then further try blocks are ignored. If all the

alternate blocks fail then the whole recovery block is

11



regarded as failed. The 'recovery' block structure 1is as

follows: .
BEGIN
{ PRIMARY BLOCK }
(operations)
while (acceptance-test-not-satisfied and
alternates-exist) do
begin - '
restore the system state
use alternate block for operations
end
if acceptance-test-satisfied then
return(success)
else return(failure)
END

2.2.2 Recovery from external error

External error recovery 1is done by distributed
execution of recovery blocks. It is suitable for tolerating
- failures in both hardware and software components.  The
recovery block here csnsists of tryblocks, one in:local node
and the rest in standby nodes. Acceptance test is used to
‘check the correctness of result. In caée of error the
standby node contaihing a tryblbck is invoked. To gain time
concurréntly all the tryblocks can be initiated. Two
schemes are considered. We assume that the tryblocks.will
not update global vgriables and for ease of explaining we

consider only two tryblocks, primary and backup.

12



Scheme I ‘

The primary block and the standby.block work on the
- same program moduie and at the end of the run the acceptance
test is taken. If the primary block passes the acceptance
ﬁest then its result will be directed to successor computing
station else the alternate block will be notified of the
failﬁre of primary block. The alternate block after the
acceptance test, on passing the test, passes the result to
the successor computing station. In addition to logic
acceptance test, time acceptance test is also used to put
bounds on fhe time of execution of module in all of the
tryblocks (see fig.z.l);

PRECEDING COMPUTING STATION

Primary node J' I y Backup
node
Input  ---|---- | mm
buffer : :
Primary Alternate
Acceptance . Acceptance
Test = |=====-- Test
(Time & Logic) (Time & Logic)

SUCCESSOR COMPUTING STATION

fig. 2.1 Scheme I
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Scheme II

In this scheme the primary and backup nodes will
have two tryblocks each. _One is designated as primary and
the other as'backup block. In case of failure of primary
node the roles of the primary and backup nodés are
e#changed. Also in case-of failure of any of the nodes the
roles of its primary and backup blocks.will be changed.

For example in fig. 2.2, the primary block in the
primary and backup nodes are A and B respectively. The
failure of primary node acceptance test causes the backup
node to be new primary node and primary node to be new
backup -node. The roles of A end B in primary are changed;

PRECEDING COMPUTING STATION

I

Initial Initial
Primary Node Backup node’
Input ———|m————- '
buffer o '
A B B A
Acceptance Acceptance
Test ' _— Test
(TIME & LOGIC) (TIME & LOGIC)
L . |

Y

SUCCESSOR COMPUTING STATION

fig. 2.2 Scheme II
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The failure of backup node causes the backup node to change
the roles of its primary and backup blocks and it starts
with its new primary block. The failure of backup node will

have no effect on the primary node functions.
2.3 CONVERSATION AND EXCHANGE

In the previous section of.recovery blocks notioh
of interaction between the précesses is not considered.
This makes the system slow in case éf failures either
persistent or transient. The slowness is owing. to starting
of the system from thé initial state in the event-of failure
of any of the process. In the strategy to be presented
communicating processes start from some - intermediate state
rather than from the initial state. This-worksiwéll in case“
the failure is transient. This strategy conversation and

exchénge is due to Randell [RAND 75] and Andrew [ANDR 86].-
| The process creates fecovery points as it goes on.
Whénever the process fails, it starts from a recovery point.
Since the processes aré interacting, the rolling back of
the failed process may forcenother process or set of.
proéesses to rollback to maintain the consisﬁency of the
system. This may lead to uncontrolled rolling_ back of
processes and the system starts from initial state
compromising the idea to restore from some intermediate
state. This is called the domino effect. The' reason: is -

that the processes are dependent on each others progress as

15



they are involved in message passing. For example in figure
2.3, if the process 1 fails then it will be backed up to

recovery point 4. If process 2 fails it will be backed up

to recovery point 3 and this forces process 1 to rollback to

3 and this in turn forces process 3 to rollback to recovery
point 4. 1In case process 3 fails all the processes rollback

to initial state due to domino effect.

Pl P2 P3
1 1 — 1
———————— 2
T
_________ e 2
———————— T T~ -L- 3
o 1
e L = —
I ¢ 00 -
T T }
e ¢ T~ — ]
v A% v

fig. 2.3 Domino Effect

The set of processes are said to be 1in
conversation if they are communicating among themselves and
not with any other process outside this set. Any process

needs to take recovery point on entering the conversation

16
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and all-the.procesées involved in conVersation shéuld
terminate at the same time{fig. 2:4). Failure of any of the
procesé in the set will.cause all of them to rollback to
their.respective recovery points taken on entering the

conversation and start again.

P1 P2 P3 P4
- |- - = _' ‘ - conversation
| : _ . _|- _ boundary

“acceptance
test = -

v v v %
fig. 2.4 Conversation

The exchange is a restricted form of conversation.
In exchange each_of the process will be taking a recovery
» po?nt on initiation. The set of processes are said to be in
exchange now and they are allowed to terminate only when

all the other processes in the excahange terminate. The

- 17



processes involved in the exchange are nowA allowed to
discard their initial recovery points. The failure of any
of the process forces all the prccesses 1in the exchange to
rollback to their initial recovery points:
2.4 N-VERSION APPROACH

N-version approach is based on multiple computation
technique used in hardware fault tolerancé. It is designed
by Algirdas [ALGI 85]. Here divefsified software (N-
versions) running on N different hardware units generates
results. The results -are checked with acceptance tests as
used 1in recovery bloCké. The difference between the
recovery block and N-version approach is that in recovery
block technique the acceptance test is for identical result
from the tryblocks but in N-version proéramming since
diversified software is used the results of a version also
depends ﬁpon the local software design. So check will be
for.similar results, not for identical results. But the
problem is of choosing incorrect result ‘when the similar
- errors outnumber the set of good results at a decision
point.
2.5 CHEéK.POINTING AND ROLLBACK RECOVERY

The conversation :technique -discussed places a
restraint on the set of processes taking part in
converéation'to end the conversation at the same time. This
causes extended delay in a process which finishes the task

first. So this brings down the throughput of the system.

18



- Let a process send a message to some other process .
and the other process received the message. After some time
the received process fails and forgets the information
regarding the receipt of message. Then the process which
has senf the message should undo its actions and send the
message again. This is called roll back.

When a process fails, its state is lost énd the
whole system (set of process involved in conversation)
should start from beginning. But this is not acceptable as
the transaction might have already takén considerable amount
of time. So after some interval of time the status of the
process is stored in non-volatile memory.called stable
storage. In the event of failure the process copies its
state from ifs stable storage and starts from this point.
This stored status ofvthe systeﬁ is called checkpoint. This
checkpointing and rollback recovery techniqqe is discussed
by Richard [RICH 87].

. In . the checkpointing and roilback recovery
technique presented here, when a process takes checkpoint it
forces a minimal setnof processes to take récovery point or
cheékpoint. Also rollback of a process éfter failuré forces
a minimal set of processés to rollback. This strategy is
tolerant to failures at the time of recovery. Since the
state of a process is dependent upon the state of other

processes, any process is allowed to take checkpoint only

19



"when the system remains consistent in case of failure of any,
of the process. For example (fig. 2.5) when process 'p'
sends a message to procesé 'q'. After receiving the message
say processlq takes a checkpoint. Now if process p fails,
on repair it rolls back to its latest checkpoint and thus
forgets about sending a message to (. This leads to
inconsistency in the system. |

fail

P l*\' : X >

fig. 2.5 Inconsistency
In the second example (fig. 2.6), say process p
takes a checkpoint after sending the message and process q
receivesAthe message and fails after.some time. The process
q rolls back to its latest checkpoint whiéh is taken before
the-message from p is received. So p has the knowledge of

sending the .message whereas g does not have (lost messages).

p \ i : >

\
q B ' = X >
’ fail

fig. 2.6 Lost Messages

20
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In this model two checkpoints are taken, one
teﬁtative and the other permanant. The tentative checkpoint
can be revoked or changed into permanant checkpoint. To
évercome inconsistencies‘a process is allowed to take
chéckéoint oﬁly' when all ‘the processes which have sent
messages to process p since its last checkpoint(called ékpt—
cohorts of p) are checkpointed. Process p initially takes a
temporary checkpoint and sends the request tq éll the
cohorts of p. They’inturn,take temporary checkpoints and

inform its own cohorts and so on. Cnce cohorts agree on

. checkpointing, permanant checkpoint is taken by two way

commit protocol. When a checkpointing process is going on
the processes which take teﬁtative checkpoints do not
receive any messages. Also they cannot take another
checkpoint or rollback to avoid cycles 1eéding to deadlock.
When a process p takes a rollbaék it sends
request for rollback of all the processes to which it has
sent messages-after iﬁs lgtest checkpoint(called rback-
cohorts of p) to rollback. The mechanism is similar to one
used while taking checkpointing. When it receivés positivé
response from all the cohorts then it will be'ready to take
rollback'action. During recovery a process taking part in
recovéry is not allowed to send messages-excepting the

request for rollback to its cohorts.

P <sesfzliom .
CBL' 3B 42 g R

> 17 N
he
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In the event of negative response from a cohort or
failure of a cohort the rollback is not allowed. This 1is

needed to maintain the consistency of the systemn.

22
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3.1 INTRQDUCTION

- The optimistic recovery technique 1is used when _
probability of failure.is very low and failure latency is
smali. The overhead incurred using this technique is -small
and its complexity increases linearly with increase in the

number -of failures. The computation will continue even when

the sites fail. It can withstand single site or multisite

failures. There will be no synchronization among
communication, computation and checkpointing. But

synchronization is needed when a failed process recovers and
starts from recent stored state. Herelthe set of. processes
whose states depend upon the failed process are also forcgd
to backout and replay messages to start from unique maximum
system state. A method which does not need synchronizatibn
~but uses incérnation numbers to detect duplicated messages
is discussed by [YEMIASS].

Checkpointing and rollback recovery technique

is used to achieve resiliency(see section 2.5 ). Let a

process p send a message m to process g. After receiving m
the process q fails and then 1loses the knowledge of
receiving message m. But process p still thinks that the
message 1is received by process q. Here.brocess P is called

orphan process and the computations if any performed by p

are.called orphans. Here we need to undo the actions of
process p by forcing it to some earliar state that does
not depend on the lost state. To undo the actions of p we

24



will restore the status of p to some earlier checkpoint from
stable storage and then replay the loggéd messages. The
meséages are said to be logged when the messages that the
process received is stored in stable storage. Here, care is
taken to see that the extent of roll back is restricted so
thaﬁlit will not lead to domino effect. :

Wé have seen that when process p sends a message to
process {, process p becomes orphan wﬁén g fails and thus
forgetting the receibt of message. Thé sender may keep on
sending the same message until the receiver 1logs the
messagé. But the number of ﬁessages are usually written to
stable storage depending upon the size of buffer and in a
single transfer. Writing each message on its receipt
reduces the throughput. The intention 1is to allow the
sender to continue with its actions after sending the
message, ﬁo matter the receiver has logged the message or
not and still be in a position ﬁo recover from failures
[JOHNT9O]. Also to see that, based on current checkpoint and
logged messages, recover to unique maximum recoverable
-system»stéte. This relinquishes the restriction to log all

the received messages.

This optimistic strategy will never 1limit the
availability of the system. 1In case.of single or mﬁltiple
site failures, even a single copy of the data item will make

the system to continue with i1its task. But this creates

25



inconsistencies when the network is partitioned. In each of
the partitidns data will be consistent. But as each
partition is allowed access to data the global state [CHAN:
85] of tﬁe system will be inégnsistent. When the
partitions ére to be merged these inconsistencies should be
detected and restored. Two techniques, an optimistic
protocol [DAVI 84] and version vector approach [PARK 83] are

discussed.

3.2 RECOVERY FROM SITE FAILURES

3.2.1 Determining Systeﬁ State

The state of the process is defined in terms éf the
state of its dependencies i.e. the set of processes which
can make this pfocess an orphan. The state of the system is

the collection of states of all the processes in the system.

Here the state of the érocess is defined in terms
of the number of messages it received. Each time the
aprocess'feceives a message ﬁhé state interval of the process
is incremented by one. So a process can send any number of
messages during a state intervél and it changes each time
when it receives a message (see fig. 3.1). The currént
state of a process will be its current state interval (or
the count of number of messages it received). The process
tags with each of the message sent by.it, the current staté

interval.

26



State Interval = 0
send mesg,

send mesq,

e

Rec mesg,

State Interval =1
end mes
s e gp

send mesgq

Rec mesq,

state Interval = 2

Rec mesg;

State Interval = i

fig. 3.1 Numbering State Intervals

The dependency vector of process i (Dvi) is the set
of state intervals of all the processes  on which the

process 1 depends. We call process 1 depends on sone
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process j when process 1 receives a message from process j.

When a process dosen't receive any message from process j

then the value corresponding to process j is kept at some
minimum value(l) at process i (see fig. 3.2).

DV.

i > where, n denotes the

< dl,dz,d3,. . e . ,dn

number of processes in the systemn.

0 1 . ~ 2
Process 1 >
7 1
/ /
/ /
/ /
/ /
/ /
0 / ,
Process 2 o Q ¢ >
' \
\
\
\
\
\
\ .
0 §¥ 1 2
Process 3 >
- A% |
/ \
/ \
/
/ \
y \
) , \
/ \
0 L/ Vol
Process 4 ¢ '% >

DV1 =<2 0 4+ L >

DV3=<J— 0O 2 0 >

DV, =<1 L 2 1 >
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DV =
XX n

1 L 2 1

fig. 3.2 The.system State
fhe matrix DV,, determines the system state at some
point in time. The dependency vector values determine only
the receipt ‘of messages not the logging of messages. The
diagonal values in DV, , determine the current state

intervals of the corresponding prcessess.

The dependency vectors are sent to the centralised
- controller. The centralised controller determines the whole
. state of the system (Dyy) from the information provided by
the processes. The state of the system at an instant of
time will be consiétent state of the system. When a process
fails and then recovers the system is forced back to this
consistent system state and starts all over again so that it
is equivalent to some failure free execution. The system
state is said to bé inconsistent if a message not yet sent
by the system is received by a process. It can be aue fo
failure of the sender and it rolls back on failure and
forgets about sendiné the message. This is same as saying
that the system state is inconsistent if for some process p

the status of some of the processes depends beyond the
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process p's current state interval. This can be'ensured
from the dependency matrix. In each of the column the
diagonal element (thé_current state interval éf the process)
should not be léss than any other value in that column so
that the system is'cénsistent. |

'3.2.2 Checkpointin§ and Message Logging

When a process receives a meséage it may place the
message in.stable storage so that in the event of failure of
process it will retain some stable state and replay the
messages from stable storage. This storing the messages in
stable storage 1is ca}led message logging. When ever a
process receives a message it changes (or incremehts) its
current state interval index. We can say that the message
received started the new state interval index. The méssage
received and the staté interval index it started are both
logged (logged (i,a)). Here i denotes proceés number andva
the new state interval index, the message which started new
state 1i.

A state-inferval a of a process is said to be
stable if the process can be started from its checkpoint and
the messages logged can be replayed so that it will get back
to state interval a. We say stable(i,B) if for process i
the state interval B8 is stable. Let us say process i's
state intérval p is checkpointed and r will be its stable
state interval if

¥ qgq p < g <=r [logged(i,q)]
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Here the process will roll back to its state interval p in
the checkpqint and starts reblaying the messages from p+1 to
r and hence its state interval will be r again.
3.2.3 Recoverable S8ystem State

The system state a is recoverable if the component
processes can be backed to their latest checkpoint and then
by replaying the logged meésages the process can get badk to
state a as if some equivalent failure free execution is
going on. So the system state D = [Dy,] is recoverable if

in Dy,

¥ i [Stable(i,Dj;]

The current recoverable state (CR8) is the state to
which the whole system can be restored.in the event of
failures in the system. |

3.2.4 Finding Unique maximum System State

The o0ld recovery vector (R =

®yy) and the.

dependency vectof are needed iﬁﬁaetermining the new-recovery
vector. At first when the systém starté,»the,reqovery
vector of the system is initialised to zero vector. The
recovery vector (RVi) of a process i can change ‘when

i) a new procéss state inferval became stable ( p > ;)
or | |
ii) a checkpoint Has been taken or

iii) messages received after éffective‘checkpoint are

logged.
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|

.Now the system recoveryivector (R) is changed td
reflect this new reéovery vectof value for process i by
replacing its,ifh row by new recov%ry vector value. Now the
new system recovery vector and%dependency vectors are
checked to find new current recovéry state (see fig. 3.3a
and 3.3b). In the beginning the %ecovery vectors of each

process and the current recovery state are initialised to

zero vectors.

0 Sl
Process 1 « ; '* >
\ L /
\ 1 /
\ 1 /
\ % ays
\ a /
\ : /
\ /
0 1 -1 / 2
Process 2 % o«— @ : g ] >
;. N /
\ G
\i //
&P /
AN /
/
‘ 0 AN /
Process 3 : N é

- - _ -
1 1 1 0 0 0

DVv. = | o ‘2 1 R = o 0 o
1 1 1 0 0 0 ]
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R.

- VECTOR
1 0
0 o
0 o0
1 o0
0 2
0 o
1 0
0o 2
0 o0
1 0
0 2
0 0
1 o0

2
L 1
fig.

3.3b

ACTION MODIFIED R - VECTOR

mesg. p logged

1 1 4+
replace row 1| 0 0 0 INCONSIS
by row 1 of ' TENT
DV. : 0 0 0
Process 2 takes
Checkpoint
: 1 0 0
replace row 2t
by row 2 of DV | o 2 1 INCONSIS
\ ' TENT
0 0 0 :
mesg. q is logéed
; 1 0 o0
replace row 3 i -
by row 3 of DV f 0 2 0 CONSIS
; TENT
D S |
CRS=<0 0 1>°
1.0 o
replace row 2 : - i
by row 2 of DV .0 2 1 CONSIS
: TENT
1L 1 1
J . L )
CRS =<0 2 1>
1 1 L
replace row 1 co
by row 1 of DV 0 2 1 CONSIS
- TENT
L1 2
J L J

CRS =<1 2 1>

Determining maximum recoverable states
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So the maximum recoverable system state will be < 1 2 1 >.
For this same example I will exp?ain what happens when the
same sequence of actions takes place.

0 5. 1

Process 1 « : - ,f ->
\ ; /
\\ //
\ /
\ /
\\ ! /
\ -/
<0 N1 / 2
Process 2 - « / y >
H \ /
\
\ /
\ /
\ /
N /
\ /
1 \ /
0 '. 1N, /
Process 3 } S§- o— >

Initially the current %ecovery state will be
zero vector (CRS =< 0 0 O >).1 When the message a is
logged, it can't be included in thé CRS because process 2
has not yet logged its first messagé and hence the fqilure

of process-2 makes it impossible for process 1 to send the

messagé again sinde its recovery state is one. It defers
this till process 2 makes its staée i;terval 1 stable.

Now say prﬁceSs‘Z,takes éheckpoint in state
interval 2. Here also its stable state 2 is not included in
the current recoverf state. It defefé this till message b
becomes stable in process 3. |

If process 3 logs its receiveé message b, it can be

included in the current recovery state. So the CRS

becomes <0 0 1>. This makes the waitind‘process 2 to put its
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recovéry state into CRS making it < 0 2 1 >. Process 1

eventually finds that the state interval 1 of process 2 is

stable and hence the current recovery state is changed to <
. |

12 1> Here the méssages 1 andjz of process 2 are never
logged. So this method relinquiéhes from the constraint
that all the messages reéei?ed by a proceés should be
logged. For algorithm and other définitions see [DAVI 90].

From the above method we can say that the current
|

recovery state never decreases and hence domino efect will
be taken care. Also the calculation of CRS goes
concurrently with the other précesses and the unique

|
maximum system state is calculated at the earliest. By
| .
broadcasting CRS to all the sites, the failure of the
. - |
central controller can be made robust. For the selection of
|

central controller election algérithms are discussed in

[RAYN 88].

3.3 RECOVERY FROM PARTITIONS |
_ | )
The data items are replicated to increase the

availability'of data. This reduces the network load caused
. B |

by remote data accesses, impr?ves the access time and

increases the reliability againsﬂ site failures. But this

creates new problem due to ;communication failures,
|
partitioning of network and lengthy communication delays.

This can lead to conflicting updates in each. of partition
| :
(communication delay can be coénsidered as single node

partition) compromising the consistency of the database.
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The optimistic recovery = strategy ‘assumes that
fhe failures rarely occur. So the data items are updafed
and are read in each of the pa}titions. Though the database
will be consistent in each of>£he parititions but the global
systém state will be incon%istent. Two problems are
associated with the partitions; one detection of partitions
'énd~two recovery from inconsis&encies if any. The partition
can only be detected during f%covery phase as the each of
the partitions will assume th%t the set of processes to
which it could not communicate %ailed. Once the partitions
4ére detected the incénsistenciés if any are checked. To
recover from inconsistencies tbe transactions need to be
rolled back in both the" partitions. Two strategies to
recover from the partitions leaaing to inconsistencies are
discussed. They aré ;
i) Version vector model and
ii) Precedence graph model.

'
\

3}3.1 Version Vectors . | -

This model is used -in thé design of LOCUS operating-
system [ POPE 83]. The §efsion %ectors only detect write-
write conflicts between:the copie% of same data ifem. Each
copy of the logical data item mainiains array of two fields.
The size of the array is equal té the number of copies of

the logical data item. The field$ are a) the name of the

site and b) number of times the file is updated in this
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site. The conflicts due to Epartifion can be found by
comparing the version vector values, once the partition is
detected. Two partitions are saad to ke not in conflict if
the vec£or in one of the partitions dominate the vector in
other partition (see examples below).

Partition 1. <A:1, B:2, C:4, D:B; ' NO CONFLICT
Partition 2. <A:1, B:2, C:2, D:3$Q Part.l dominates part. 2
Partition 1. <A:1, B:2, C:2, D:3>24 CONFLICT
Partition 2. <A:1, B:2, C:ﬁ, D:4>E Both part.1(C) and part.

2(D) trying to dominate.

Partition 1. <A:1l, B:2, C:4, D:3> NO CONFLICT

Partition 2. <A:1, B:2, C:3, D:4> | Part. 3 dominates other
. . two
Partition 3. <A:1, B:2, C:4, D:4>
ABCD ‘<A:0,B:0,C:0,D:0>

<A:0,B:2,C:0,D:0>  <A:0,B:0,

C:0,D:0>

<A:0,B:3,C:0,D:0> B <A:1,B:2, AC: . D <A:0,B:0,

D <A:1,B:2,
C:0,D:0>

- ABCD
CONFLICT!!!
(Both the partitions ACD and B trying to dominate).

fig. 3.4 Recovery from partitions

i

b
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The version vector'-meﬁhod .is not automatic 1i.e.
once the conflicts between thé.partitions is detected the
‘resolution is left to the databasevadﬁinistrator (see
fig.3;4).

This version vector modei will work only in case of
- single file transactions. The coﬁflicts are not detected in
case of multifile tranéactions. For example consider a bank
in which a person can withdraw money baéed on sum of his two
account balances. The informati§n regarding his balances
are replicated at. two sites A andaB. The transaction, and
the version vector applicability afe shown in fig. 3.5a and
3.5b. Though only Rs. 300'is,in both accounts -put together
he could collect Rs. 450 énd there is no conflict in the

database detected by version vectors;

SITE-A SITE-B

acctx.bal = Rs. 100 _ i acctx.bal = Rs. 100

accty.bal = Rs. 200 - : > ,ac¢ty.ba1 = Rs. 200

- If acctx.bal+accty.bal>150 If acctx.bal+accty.bal>200

then - then : ’ :
acctx.bal:=acctx.bal-150 accty.bal:=accty.bal-200

acctx.bal = Rs. -50 _ acctx.bal = Rs. 100,

accty.bal = Rs. 200_ accty.bal-# Rs. 0

fig. 3.5a
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acctx . accty

<A:0,B:0> AB AB  <A:0,B:0>
<A:1,B:0> A B <A:0,B:0> <A:0,B:0> A B <A:0,B:1>
AB <A:1,B:0> <A:0,B:1> AB

NO CONFLICT!! : NO CONFLICT!!

fig. 3:.5b Undetected.Inconsistencies

3.3.2 Precedence Graph Model

it PréEedencé"graphs- are’ used to determiné the
serialization between the sites [DAVI 82,84](3Precéndence
graph médel to check serialiéation in a single site is given
in [PAPA 79]. To construct the precedehce grgpﬁs the ;ead»
and write requests.are logged 1in stabié storagé. Once a
partition is detected the logged requests inlboth the -
partitions are used to determine serializability. The
conflicts between the partitions is detected by éycies in

the precedence graph. 'The set of transactions T;;,T;,,T

i27 i3y
- « « « , T3, determine set of n transactions in serial

order in partition 1. The interaction ,betweén the

transactions are represented by edges ‘in the preéedence

graph. The interactions are of thfee types:

i) Data dependency ‘edges : (Tj4-----=> Tjy) Here the

“transaction k reads the value of data item updatéd by
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.ii) Precedence edges : (Tij‘  > T,y) Here the

4

transaction i reads a data item. before tansaction j writes

it.

iiix Interference edges E (Tij } : > le{ Here the
transaction i reads the data item_béfore the transaction k
writes on to it in the other partition. |

.Here we assume that the readset of transactions
include the writeset. Aléo the wrife-write conflict can be
represented by. a pair of read-Qrite conflicts. The
conflicts between the transactions ‘and the cycle in the

precedence graph is shown in fig. 3.6 .

partition 1 ' partition 2

Ty1 e,f
Ll Ll S B IR D Dot b
| e
! \
|
|
* .
T12 a,f
| -——--
| - £
|
|
! )
v
Ty3

fig. 3.6 Precedence graph showing cbnflict
The precedence graph for a set oﬁ partitions is
acyclic iff resultiné database 1is consistent [ DAVI 84 ].

If the precé&ence graph contain no cycles the last updated
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A

copy of each data item is the correct value. Resolving the
inconsistencieés include un&ping the transactions until the
resulting graph is acyclic. IIt might result in uncontrolied
rolling back of transactions.].The transactions connected by’
precedence edges are not rolle&:back since they did not read
the results of the rolled-back transactions. ‘Also the

s

transactions are. rolled back opﬁpsite in direction to the

execution of transactions. \

\

\

Rolling back of the trénsactibns may not be
acceptable in some cases like bankiﬁg. Ohce the money has
been_lent to the customer the rolligg back of transactions
is not just updates to the database. aThe precedence graph
method is well sﬁited 1
i)7 when only small percentage of items.%ereupdated during
partitioning and _ &

ii) when writesets are very small fSr most of the

transactions.

3.4 CONCLUSION

This paper surveys the existing optimistic reco;éry
techniques. The message logging and checkpbinfing strategy
which also determines maximum recoverable systém state is
suitable when the failures are transient. -When tﬁe failurés
are persistent either version vectors'or precedeﬁce graph
model can -be used. But vérsion'vector model can bé.used to
detect only write-write conflicts and can be used Bniy with

single file transactions.
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4.1 INTRODUCTION

The availability of the d%tébase éan be increased
by replicating the déta at number of éités. But this poses
problems of cdnsistency in the.fevénts_ of nodal or
communication failures which makes a node inaccessible or |
partition of. the network. The pessiﬁistic model tries to
maximise availability of data items by using dynamic voting
scheme but at the same time completely avoiding conflicting
updateé in the partitions. Also to ensure the consistency
while updating the replicated data, the updaﬁe needs to be
done concurrently avoiding conflicting Ireads and writes.
This needs locking of the 1ogica1'poftion 6f the database in
all the siteé where it is replicated. = For this a
centralized locking protocol with a decenfralized_recOvery
technique 1is discussed[POPEK 80]. The léckinq protocol
‘itself is robust to the failures and the systemvrecovers
gracefully- iﬁ the case éf partition. The'?method to be
discussed tolerates single node failures, partitibn and the
failure of central contfoller. Maximum’forwara progress is

achieved in case of any of the above mentioned failures.

4.2 LOCK SERVER (LS)

The central lock server maintains. a lock table for

the entire logical partition. ‘The logical partition
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consists of nodes which caﬁgcommunicate and have gnique lock
vserver._‘Each entry in the iock table is a tuple consisting
of the host which initiated:the request for the lock, thg
tranéaction or request sequeﬁge nﬁmber and the part of the
logical database locked by the request.. Each host gives a
S B :
unique * number to the localagrequest so- that the host
identifier and tranéaction number form the traﬁsaction-or

request identifier (see fig. 4.1}.

il

host id. transaction num.
: \ . :

fig.4.1. Transaction Identifier
\.

|

il

Ih addition to Central Lodk Sérver (CLS) each of
the nodes will have its own local loék servers (LLS) . Theée
"~ local lock servers will contain'infofmatioﬁ regarding data
items locked at the site. The need fbr the LLS is to make
;he system resilient to the failures of CLS. In the event

of the failure of CLS the lock table can be reconstructed

from the information at the local lock servérs. The
\

selection of the new lock server is on ithe basis of some

static priority assigned to nodes. This fecovery mechanism

is called logical partition recovery..

The 1lock controller contains the information
pertaining to the sites where the data is being replicated

and the list of nodes which are in its 1ogica1‘partition(the

44



upliét). The lock controller broadcasts fhese lists to all
the sites(by piggibackipg with outgoiﬁg" messages) . Also
each site maintains the failure list. This consists of list
of nodes which were in fhis partitién and failed. These
three 1ists, locations whére each data item is replicated,
uplist and. failure list are maintained at each site in
nonvolatile'memory to make ﬁhe partition resilient to the

failures of the central lock ‘server.
4.2.1 Lock Server - Selection and Services

The request to lock any data item is conveyed to
the lock server. The lock servef_checks the lock table to)
determine whether the data item is already locked. If so
the request is rejected. If not, iﬁ sends lock request to
local lock servers of relevent sitéé containing replica of
data item. - Thé lock server also maiﬁtains for each loék X,
Loc(x), the set of sites which arevrelévent to lock X or the
sites where replica of data items are locked by lock x[CHU
761. T

The  failure of lock server or partition of the
system causes the new logical partition £9 undergo légical
partition recovery. This includes the seleétion of new lock
server and release of the locks for data itéms which failed
majority voting.  The transacfion in thisvcasé\is abofted in

partition.
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Once the communicatidp is.réestablished between the
two partitions, the th lock controllers will communicate to
‘establish single logical pértition c;lled”merging of
partitions. In additibn_td thé selection of combined lock
server,the number of majority vétes for data items common to
merged partitions is also changed accordingly.

4.2.2 ’Logk and Release Grants -ISafe Talk Protocbl

The requests from the external sourceé(application
prograﬁs) are delivered to the la¢k_server by the host which
receiQes the request. These requests are for locking or
releasing the locks at relevent}sites Where data item is
replicatéd. ‘Locking and ieleasing of locks. arbitrarily
leads to inconsistency. For this Séfe Talk Protocol is used-
by lock server for locking aﬁd releééing at sites in fhe

partition(see fig. 4.2).

. LS ' DESTINATION
. Request ] : 1
appl. = — o
Program : ' .
(ﬁ : >| Local
' . : L(R)-1list =
Request

. N}Ready to Update
In case lock req.
append to lock table
In case release req.
remove from lock
table. ————>(In case lock req.
Confirm request |append to local

' lock table else
remove from LLT.

fig. 4.2 Safe Talk Protocol
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The 1lock aand release requests are placed in
temporary buffers;: L-lists for locks and R-lists for:
realease. Then the lock-server sends the requests to.the
relevent 1local lock éervers and the femote sites also use
temporary buffers. "When the ackquledgement. is received
from relevent nodes;_the lock server places the lqck
requests(removes 1in céée of release) from the temporary
buffers to the lock tabie and confirms the requests to local
lock servers. On receiving the confirm request the local
" lock server commits the';equest by,placing(removing) it in
‘local lock tables.

The failure of node ié determined by some timeouts
and retransmiséions at any .stage of the Safe Talk Protocol.
The communicatiop failures-_leading to inaccessibility of
nodes 1is treated the same  way as failure of nodes.

4.3 CONSISTENCY FROM CRASHES

In central server Loc(x) denotes the set of sites
where_the lock x is effective:. From the Safe‘ﬁalk Protocol
we can be sure that if x is a lock table entry in LS,thén it
must be present in the local lock servers at Loc(x). If x
is not 'present in the rlock table of LS then it is not
present in the local lock tableéiof any -of Loc(x) or if is
present in the release tables in-Loé(x). This determines
the consistency of the iock table. 

The logical partition is ‘internally consistent if

the 1lock table is consistent and there is only one lock
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server to the partifion present at any time. The logica;
partitions are mutuélly consistent 1if the 1lock tables of
paftitions will not cénflict at any time.

The reéovery from faiiure will'be'cohsistent if the
failure occurs before the recovery is complete or after the
completion of fhe‘recoVery. We denote recovery point as
completion point.

| completion Point
TERMINAL FAI LUR.'\E ' TRAN_SPARENT FAILURE
(Before selection of newlLS) (aAfter selectiop of new LS)
4.3.1 Logical Partition Récovery

ﬁhen the lock server of a partition fails or the
logical partition is'partitioned resulting in one of the
partitions being unable to cbmmunicate with the lock server,
a new 1§ck server is seleéted. This is called Logical
Partition Recovery. The recévery from lock server crashes

has two phases i)Nomination phase ii) Lock table update

phase.

i) Nomination phase:

Duripg the nomination phase the lock server will be
selected and - the 1lock and reléhse tables -are constructed
from the local'lock(L) and releaée(R) tables, at the local
lock servers at all sites of thé‘partitionL The process
which detects. the failure 6f Ls’ is responsible for

nominating a new lock server. Some priority order called

-nomination order is used in selecting a site as LS. If a
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node is .selected as lock server.it is the responsibility of
" the lock server to intimate other sites in the partition of
its}selection and.creatidﬁzof lock and release lists. The
lock and release iists are circulated through enﬁire
partition to determine globai L and R lists (see fig; 4.3).

| We assume that-lockhyeqUest is delivered by LS and
it reaches all the nodes in the bartition. "When LS
deliveres the release reques¥, say due to communication
failure, it may not reach somek?f the nodes. At this point
of time, say LS fails and bef&;e selection of new LS the
communication is restored. So fpr the same data item some
of the nodes will contain lock-reéuest and some will contain
releaée requests leading to conflactf But sequence number
of reguésts(seé'fig. 4.1) are useé&here té'determine which

request is the latest.:

NEW LS DESTINATION
Accept @ —— > i -
Nomination
. >
Nomination Accept | Update L and R

lists

.
v

New L. and R -
lists

fig. 4.3 Nomination Phase
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ii) Lock table update phase:

During the nomlnatlonlphase the L and R lists of
the central'lock server, whlch are 1n1t1ally empty areu
.constructed from the L and R llStS-Of the sites present in
the partitioo by passing the request and tables to all the
51tes in the partition in some order The 1lock server
determlnes majority vote for all locked data items. This

can be obtained by determining identrty of nodes as L and R
\

lists pass through the sites. : \

During lock table update phase, the lock server

adds the release requests for data 1tem§ which lost majority
\
due to partition to the R-list resulted from nomination

phase and thus aborting the transaction\in that partition.

The Safe Talk Protocol is used in updatiné'the L and R lists

of all the sites(see fig. 4.4). The lock)server determines

\
. uplist and new majority needed for updates after getting

\
\

Ready to Update response from the sites. \

\

NEW LS ' - |\ DESTINATION
, >
Update Table(attach L and R)
b
i<
' ™ Ready to Update |
determine uplist 4
and new majority W
vote %i; —>
Resume Normal Activity
(piggyback uplist and majorlty
vote)

fig. 4.4 Lock Table Update Phase
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The failure df the lock server during recovery
causes rest;rting ﬂof the logical . partition recoverfi
mechanism. This logicél partition récévery mechanism is in
the event of failure of the new lockasérver. We will see
that the new lock server is robust ta_the failures. The
crash of new lock server can occur
i) Dbefore sending request to local lock servers to update
lock tables. |
ii) After sending update tables to locai lock servers but
before getting ready to update response frém all the sites.
iii) After all of the lock tables at the‘ipcal lock servers
are updated i.e. after issuing "Resume Normal Activity".

~ In case (i) logical partition reco&ery is restarted
as theré will be no change to L and R lists. 1In case (iii)
the lists are updated completely and LPR is restarted.. In
case (ii) as we are using the Safe Talk Protocol the updated
tables are kept in temporary buffers and unless Resume
Normal Activity is issued, the local tables dan nbt.anyﬁay
use the information. This needs just 1logical partition
recovery mechan;sm to be started again withou# any loss of
consistency. |

Let us see how the failures of nodes éan be éaken

care of. The transparent failure of any node cah be during
nomination phase or lock table update phase} During

nomination phase the failure causes the node to be removed
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from the uplist and added to thé failure list. During lock
table update- phase gs we are uéing Safe Talk Protocol the -
failure will cause .changes in tﬁe up and failure lists and-
also the majority is reduéedmby one for the replicated data

items in the failed partition.

4.4 RECOVERY FROM SINGLE NODE FAILﬁRES

The failure of a node forces the_lock servervto
remove its identity from the‘paftiﬁion. When the failed
node 1is recovered, it sends a message to lock server to
include it in the partition through any of the nodes that it
‘ééuld communicate. The lock controllér sends part of the
database ﬁbr which this node maintains é replicated copy so-
as to preserve consistency of the databése. In addition to
this it sends L and R lists and any §utstanding lock or
release requests. |

In case the logical partition isaitself undergoing
logica%lpartition recovery then the recovefing node becomes
a partition on its own noﬁinating itself as lock server to
the single node partitidn. It initialises its L and R lists
£0»empty. When the LPR,is-completed it will ﬁndergp Logical
Partition Merge with the partition (see sec. 4,5).

The failure of a recovering node
restores the state of the partition to the prévious state.
Ddring recovery,if the LS of the partition failé_then gingle

node recovery mechanism is started all over again.
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4.5 MERGING OF PARTITIONS

When partition occurs new ‘lock server wiil be
chosen at the partition which does not have access to lock
server. When communication is reestablished between the
partitions, a,combined lock server is chosen and the tables
are updated from the informatidn presént'at the two lqck'
controllers. This 1is called3 Merging ~of Partitions.
Partitions are always merged péirwise. ‘The merging of

partitions has got two .phases:

i) Detection of communication between the partitions and

ii) Merge of partitions.

During the first phase cenﬁral lock éefver at éﬁy
‘of the partitions is responsibie for detection of
communication between the partitions;: It will try to send
messages, after each timeout, to-the hodes which are in the
failure list to determine whether they are up. One of_the.f
partition is denoted as primary and the other seconddry.
The selection of primary is on the basis of some priority

information or on the basis of which of the two éartitions
detects-the communicatioh between thezpartitions first.
Then the transaction coﬁmon to both the paftitioﬁs are
aborted at. both partitions to enabléé consisfency of
information replicated in both partifions.z For this uplists

of both partitions are exchénged.
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. During the merge phase the data items are exchanged
to enable both the partltlons to contain latest values of
data as maximum voting would have allowed only one partition
t6 update replicated data items. The uplist of'the merged
partition will be the union of the uplists of the two
.partitions. The lock server whicﬁ is primary will be the
lock serQer for ﬁhe combined parﬁition. The updates to
tables, dafa items and neQ majority vote are done by Safe
Talk Protocol with piggybaeked updates te enable both sites

to finish the recovery at the earliest.

Either the primary or secondary lock servers can
fail during detection phase or merge phase. If it is during
detection phase the merge process is aborted and the
partition choeses'new server. If it!is during the merge
phase then also the partition which lost the lock server
will undergo.the selection of new 1ock‘server after aborting
- the merge. If updates to data items are made it will not
' cause any conflicts as_ Safe Talk Protocol is used. BecéUse'
the partition again will 1loose the majofity to update and
| this makes the data item inaccessible. éb updates will  be
reflected at all nodes in the partitioh unless a failure pf"
node within partition, which we already proved is robust in
single node recovery. Once the selection‘of new lock server

is completed the merge is restarted.
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4.6 RECOVERY FROﬁ MULTIPLi&' PARTITIONS & DYNAMIC VOTING

When  partition ‘occurS(either éingle node or
multinode) the partition .uses majority voting[THOM 76] to
determine which partition is aliowéd;to have access to data
_item. But  this reduces'the‘availébiléty when multiple
ﬁartitions occurs.

This dissertation contribuﬁes in increasing the
availabilify of data items 1in tﬁe event of multiple
paftitions by using dynamic voting technique. This is a
refinement of the techniques suggestéd-by researchers like
Barbara, D., and Garcia-Molina, H.[BARB 86), Jajodia,

S., and Mutchler, D.[JAJO 87].

I(10,6) I(10,6)
II(6,6) ' III(4,6) | I1(6,%) III(4,6)
' LOST - . LM
MAJORITY - UPDATE .
(LM) MAJORITY.
IV(4,6) v(2,6) - II(6,4)
LM . — LM : '
fig. 4.5a STATIC VOTING - IV(4,4) v(2,4)
o . LM
UPDATE . -
' MAJORITY .
VI(4,3)

fig. 4.5b DYNAMIC VOTING

fig. 4.5 The tuple (x,y), X denotes number of sites
where the data item is replicated, y denotes number
of votes needed to access the data item. New level
denotes partition. ' o
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To increase availability, 'it: is - needed to
dynamiéally reduce thé number of votes req@ired to access a
data item when a node failure or partitioh failure occurs.
For example when a paftition occurs the partition which gets
majority vote will be having}fight to accéss data item.
Once it further partitions it is ﬁogsible that no paftitioﬁ

can access the data item (fig. 4.5a).

This method allows access to replicated data even
when only one node in which data replicated is up but under
certain conditions as follost | |
i) partition occurs only pairwise
ii) partition of already partitioned nétwork will occur
only after the partition detects the partitioﬁ and some
table'management is done and
iii) In the évent of pérition divid¢§ the nodes into exactly
two hal&es then some priority of the nbdesjshall be taken to
decide upon which parition gets the right;to access the data
item. - f

The problem with this method is that when two
partitions ﬁeyge, even though they retainfmajority votevfor
some data item, they are not aliowed to access the data item
as.éome parititions(even though it is a single node) will be
having majdrity to access the data item} For example in
fig. 4.5b if paritions V and III merge, six replicas of data

item will be available in the merged parition , but they
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should not be allowed to acpeéslthe data item. The
partition gets right to access the &ata item pnly when it
merges with a parition having right té the access data item.

The above solution gives rise to another problem,.
Assume that a node haQing right tb accéss a data item fails.
In the partition in which it is presént majority vote and
uplists are updated and it continues Qf@h updates. When the
failed node recovers, it individually has got the right to
access data item or in case it merges with some partition
_which is not having the right to access data item will get
. the right resulting in the conflicting updates to the data
items. For this reason when the node recovers it should
.check"its uplist to determine whether it is the only node in
the partition before it failed or not. if}not, it will lose
majority otherwise it rétéins the right.

But the above implementation hés got one more
prqblem, In the parititon'which is having maﬁori£y vote to
éccess a data item, all thé_nbdes failvat aztimé. Here each
pode_during recovery will disqualify itself:from accessing
-the data item and hence the data item cannotabe;accessed any
lonéer. But one of the solutions is to waf; till all the
nodes in which the data item is replicatéd té be recovered
and.by looking into the uplists we can detefmine the last
set of nodes that have failed conﬁurrently. But this is not

a feasible solution. Another solution which determines the
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the last set of'node(s) which fgiled(concurrently).is
aiscussed in the next section. -
4.6.1 To Detérmine Last Set of Node(s) Failed

We assume that some data item-X is replicated in
‘n’. nodes and each node maintains up and failure_lists; "The
uplist(failurelist) of a node ’i’ gives the set of nodes
that are up( down ) as far as the node knows; Each time
‘when some node ‘i’ recovers, we remove from set S‘(initially
S = n) the nodes which failed before ’i;. This will be done
until set S is a subset of set of recovered nodes. Now this

S gives the set of nodes which have failed concurrently (see

fig. 4.6) .
1-10 1I{(10,s)
I1(9,5) 1-2,4-10 ‘ 3 FAILED
U.L. 1-2,4-10 U.L. 1~10
F.L. 3 , F.L. NIL
III(5,3) 1-2,4-6 .. IV(4,5) 7-10
. U'L. 1-2’4-6 UoLc 7-10
F.L. 3,7-10 F.L. 1-6
(LOST MAJORITY)
4 FAILED 1-2, 5-6 V(4,3)
UoLo 1-2’4-6 UoLo 1-2'5-6
F.L. 3,7-10 F.L. 3-4,7-10

fig. 4.6 Up and Failure Lists on Partitioh(n=10)
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Now say all the nodes of partition V failed
concurrently with right tqvaccess-the data item and up and’
failure lists. Also failed nodes 3 and 4 have right to have
access to data item. Now we will see how to determine the
last node(s) to fail. We will continue removing nodes from
set'S(initialized to n, the set of nodes where data4item X
is replicated) until S is a subset of reéovered nodes (R) .
'rwheh this condition is satiSfied; S gives the last set of

nodes failed.

RECOVERED NODES .~ CANDIDATES FOR LAST NODES
R=0 - s =1 to 10
R = 4 S = (S - (F.L. of 4))

1 to2 , 4 to 6.

R = 4,2 S=1to2, 5to6
R =4,2,3 S=1to2, 5to6
R =4,2,3,1 | S=1to2, 5to6
R =4,2,3,1,5 S=1to2, 5tose
R=14,2,3,1,56 S =1to2, 5to 6

"Here S is a subset of.R. So the last set of nodes
to fail are 1,2,5 and 6.
4.7 CONCLUSION

This model is an extention to the existing dynamic
voting models [BARB 86, JAJO 87]. These models either needs
atleast four sites to determine the majority or uses hybrid
model to switch back to static voting when the number of

_sites in the model becomes less than four. -
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CHAPTER,

CURRENT AND FURTHER RESEARCH .
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Further regearch in recovery in distributed systems .
is expected in the"fbllowingfdirectionsf
1) Performance tradeoffs “between various strategies 'of
recovery (pessimistic and optimistic).

2) Detecting partition in the network.

3) Dealing with nested transactions both in pessimistic and
optimistié cases. |

4) »Cost effective way of impiementing fail-stop processors;
5) Rather than having single centralized-server(although it
is robust to the crashes), with the number of nsiteé
increasing in the system the load on centralised servef
increases. The solution is to divide the sites into groups
"so that each éroup will have it own group server. There
wili be a server sitting on top of the group server. But
the‘préblem is how to divide the system intelligently so
‘that for transactions generated in a group the most probable
sites to be accessed should be present in that group.

' g) -considerations'of heu;isfics to determine majority of- a-
partition in assymetric networks which are not totally
" connected éhd in which some links are more reliable than
others.

Recently two papers came out with extentions to the
existiﬁg models. One 1is Bhargéva's (BHAR 90] péper' on
increasing availability using tokens so that each partition
is éuthorised to have atleast one operation on a data itenm.
The other is by Jajodia [JAJO 90], which uses dynamic voting

algorithm in determining the majority.
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be represented using petrinet model. It gives how
to detect the conversation, the beginning and
ending of the conversation between a set of
processors. The assumption here made is that the
system can be expressed as a set of communicating
sequential processes.

YEMINI SHAULA AND ROBERT E. STROM, Optimistic
Recovery in Distributed Systems, ACM Transactions
on Computer Systems, Vol. 3, No. 3, Aug. 1985, pp.
204-226,

This paper discussess an optimistic recovery
mechanism in which communication, checkpointing
and computation goes asynchronously. It uses
session sequence numbers to determine whether the
sender or receiver failed. It also uses
incarnation numbers to determine whether the
message 1is duplicate or not. Obsolutely no
synchronization during recovery or at any time
needed. ‘ ’
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