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r At present THEORY OF COMPUTATION is taught 

making use of different models of computation. The following 

are the three models in use. 

Finite Automata (FA) is a machine capable of 

recognizing sets of strings of a particular type called 

Regular Languages, Push Down Automata (PDA) is one which 

recognizes sets of strings called context Free Languages and. 

Turing Machine (TM) is the third one which is capable of 

comput~ng all Recursively Enumerable Languages. 

But it is clear that all these three models 

differ substantially from each other. (For more·details of 

FA, PDA and TM see chapter III). So it will be conceptually 

very advantageous for both students and instructors if a 

uniform model can be obtained for all computations. In this 

project an attempt is made to obtain such a model. 

The mathematical model which is assayed in 

this work can compute all recursive functions(i.e Turing 
-

computable functions). It is named as NU - Machine(pronounced 

as NEW-machine) and is abbreviated as NM. From what follows, 

it can be observed that this model is muctr simpler than ~M 

mainly because of its graphical representation. Note that 

this model is an extended version of ABACUS machine mentioned 

by SHEPHERDSON. Before going into further details, consider 

one example of NM for recursive functions and see how it 

functions. 

INTRODUCTION 
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Every NM is a digraph with labeled nodes and 

edges. Nodes are labeled 0,1,2, ... etc and edges are labeled 

a, b or e. If there is an 'a' or a 'b' from node A to node B 

then add an 'a' or a 'b' to the string in node A and move to 

node B respectively .. If the number of a's minus the number of 

b's is zero in node A then move through the edge labeled 'e' 

to node B without doing anything. The initial . node is 

represented by a triangle around that node and the final node 

is represented by a circle around that node. (More precise 

definition will be given later) . 

EXAMPLE 

(i) NM for multiplication 

3 

b 

2 

a 
4 

a 
1 

2 

a 
b 

3 

1 

0 

Initially node 1, node 2, node 3 & node 4 

have values 'x', 'y 1 , '0' & 1 0' respectively. (Value 

of a node means, the number of a's minus the .number 

of b's in that node. Initially there will be a 

INTRODUCTION 
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string_ of a's of length x, if the value is x). At the 

end of the calculation, node 4 will have the answer 

1 x.-y L. T-he description of _the states for the 

computation of '2 * 3 1 is as follows. 

value of state present 
state 

1 2 3 4 

2 3 0 0 1 
1 3 0 0 2 
1 2 0 0 3 
1 2 1 0 4 
1 2 1 1 2 
1 1 1 1 3 
1 1 2 1 4 
1 1 2 2 2 
1 0 2 2 3 
1 0 3 2 4 
1 0 3 3 2 
1 0 3 3 3 
1 0 2 3 2 
1 1 2 3 3 
1 1 1 3 2 
1 2 1 3 3 
1 2 0 3 2 
1 3 0 3 3 
1 3 0 3 1 - -
0 3 0 3 2 
0 2- 0 3 3 
0 2 1 3 4 
0 2 1 4 2 
·o 1 1 4 3 
0 1 2 4 4 
0 1 2 5 2 
0 0 2 5 3 
0 0 3 5 4 
0 0 3 6 2 
0 0 3 6 3 
0 0 2 6 2 
0 1 2 6 3 
0 1 1 6 2 
0 2 1 6 3 
0 2 0 6 2 
0 3 0 6 3 
0 3 0 6 1 
o· 3 0 6 0 

• 

INTRODUCTION 
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Before concluding this chapter we will have an 

overall look at the distribution of chapters in this thesis. 

In _the next chapter Rec~rsive Functions and related 

definitions are introduced to avoid the ambiguity in 

nDtations and to have a ready reference for the reader. For 

easy understanding several examples are included. In 

chapter III, FA,PDA & Turing Machine are introduced along 

with some examples in a very concise manner. It will be 

helpful to compare FA, PDA, and TM with NM - the model which 

is studied in very detail in chapter IV along with further 

possibilities, like restricting NM to form PDA and then FA . 

INTRODUCTION 
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r The word 'Recursive ~unction' albeit it is 

used in the first chapter, the precise definition and more 

details are furnished }n this chapter. The investigation of 

these functions is very important ·for the proper 

understanding of the remaining part of the work. Moreover, 

the notations and definitions used in this chapter may not be 

the same as in the literature. Because of the constant use of 

these words in the later part of the work, all of them are 

defined precisely to avoid confusion. The family of recursive 

functions can be further divided into three subfamilies 

namely, Primitive Recursive Functions, Total Recursive 

Functions, and Partial Recursive Functions. Before going into 

the details of the above families, the following basic 

definitions have to be looked into. ( Note that the domain 

and range of all functions are the set of natural numbers. ) 

2.1 ELEMENTARY FUNCTIONS 

The following are the three ·elementary 

functions. 

(i) Zero Function : 

z (x1 ,x2 , ....... ,xn 0 

(ii) Successor Function : 

S (x) = x' , where x' is the integer next to x in 

the natural sequence. 

(iii) Identity Function : 

Sec. 2.1 RECURSIVE FUNCTONS 
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2.2 ELEMENTARY PROCEDURES 

The following are the three elementa~~------

·procedures. 

(i) composition 

Given a set of functions Gk (x1 ,x2 , ..... ,xn), 

k=1,2, .... m and H(x1 ,x2 , ••••• ,xm), define 

F (x1 ,x2 , ...... ,xn) = H (G1 ,G2 , ..... ,Gm). 

(ii) Primitive Recursion : 

Given two functions G ( x 1 ,x2 , ....... ,xn_1 ) and 

H ( x 1 ,x2 , ..... ,xn,Y ) define F ( x1 ,x2 , ..•.. ,xn 

as follows. 

F(x1 , .... ,xn_1 ,o 

F(x1 , ..•• ,xn_1 ,1 

G ( x 1 , .... , xn _1 ) 

(iii) Minimalisation : 

Given G(x1 , ..• ,xn,y) we can construct 

F(x1 , ...... ,xn) = Min { y 1 G(x 1 , .... ,xn,y) = 0 } . 

If G = 0 is guaranteed then it is Total 

Minimalisation else it is Partial Minimalisation . 

• 
With these definitions, the above mentioned 

families of functions can be defined as follows. 

Sec. 2. 2 RECURSIVE FUNCTONS 
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2.3 TYPES OF RECURSIVE FUNCTIONS 

All functions which are defined using 

elementary functions , composition and primitive recursion 

are categorised as Primitive Recursive Functions. 

If we are using total reinimalisation in the 

derivation of a function then that function is included in 

the set of Total Recursive Functions. 

If we are using partial minimalisation instead 

of total min-imalisation then that funcion is a Partial 

Recursive Function. • 
The following examples will help the reader to 

understand the above defined functions without any ambiguity. 

EXAMPLES 

(i) For defining F(x) = 1 : Constant function 

Given G(x) = Z(x) and H(y) = S(y) . 

Using composition we ca!"l get· 

F(x) = H . G = S( Z(x) = S(O) = 1 

(ii) * F(x) = x = x ~ 1 : Proper subtraction. 

Given G. = 0 and H(x,y) = u1 (x,y) X 

We can get F (.x) using primitive recursion . 
F(O) = G = 0 

F(1) = H(O,O) = 0 

F(2) = H(1,0) = 1 

F(x) = H(x-1,x-2) ? x-1 

Sec. 2.3 RECURSIVE FUNCTONS 
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Sec. 2. 3 

Given 

H(-x1 ,x2 -,y)- = S(y)-=-y+l----.-

Using primitive recursion we get F(x1 ,x2 ). 

F(x 1 ,o) 

F(x 1 ,1) 

Multiplication . 

Given G(x 1 ) = o and 

= .xl 

Define F(x 1 ,x 2 ) as follows using primitive 

recursion. 

F(x1 ,o) 

F(x1 ,1) 

F(x1 ,2) 

F(x) = x! 

= H(x1,0,0) 

= H(x1 ,1,x1 ) 

. 
Factorial 

= 0 

8 

Given G = 1 (constant function) and H(x,y)=(x+l)*Y· 

Define F(x) as folllws . 

F ( 0) 

F(1) 

F(2) 

F(x) 

= G 

= H(0,1) 

= H(1,1) 

-H( (x-1),(x-1)! 

= 1 

1 

= 2 

= x! 

RECURSIVE FUNCTONS 



(vi) F(x1 ,x2 ) 

Given 

Define 

F(x1 ,o) 

F(x1 ,1) 

F(x1 ,2) 

._ x x2 
- 1 : Exponentiation 

G = 1 and H(x1 ,x2 ,y) 

F(x1 ,x2 ) as follows. 

G 

= H(x1 ,0,1) 

H(x1 ,1,x1 ) 

x2-1 
= H(x1 , (x2-1),x1 

9 

. 
= x 1*Y . 

= 1 

= x1 

= X 2 
1 

(vii) F(x1 ,x2 ) = x 1 .:. x 2 : Proper subtraction. 

* Define G(x1 ) = x 1 and H(x 1 ,x2 ,y) = y (prdecessor 

of y·) for derivi·ng F(x 1 ,x 2 ) using primitive 

recursion. 

F(x1 ,o) = G(xi) 

F(x1 ,1) = H(x1 ,o,x1 ) 

F(x1 ,x2 ) = H(x1 ,x2 -1, (x1 - x 2 + 1)) = x 1 - x 2 

(viii)F(x1 ,x2 ) = lx1 - x 2 1 : Absolute diference . 

Sec. 2. 3 

Given three functions G1 (x 1 ,x 2 ) = x 1 .:. x 2 , 

. G2 (x1 ,x2 ) = x 2 .:. x1 and H(x1 ,x2 ) = x 1+x2 , define 

F(x1 ,x2 ) = H(G1 ,G2 ) using composition as follows. 

= 0 

RECURSIVE FUNCTONS 
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: Minimum of two numbers. 

Define G1 (x1 ,x2 ) = x1 and G2 (x1 ,x2 ) = x 1 £ x 2 . And 

then H(x 1 ,-x 2-) = xr __ .:. x 2 ·- for -obtaining -F(x1 ,x2 ) 

using composition. 

H( x1 , (x1 .:. x 2 ) 

= xl .!. (xl .:. x2) 

x 2 if x1>x2 
= 

x 1 if x1~x2 

• 
All of the above defined functions _are 

examples of primitive recursive functions. Before seeing few 

more final definitions of this chapter,·consider two examples 

for total recursive functions. 

(i) F (x) = r X~ l Roof of x 112 . 

G(x,y) = x .!. y 2 is given. Define F(x) using 

minimalisation as follows. 

F ( x) = Min { y I x .:. y 2 = 0 } (Tot a 1 

minimalisation). 

(i.e. start putting values for y from 0 and take 

the first value of y which makes G(x,y) = 0 ). 

(ii) Ackermann function. 

Sec. 2. 3 

It is defined in a recursive fashion as follows. 

A(O,n) = n+l 

A(m,O) = A(m-1,1) 

A(m,n) = A(m-1,A(m,n-1)) 

RECURSIVE FUNCTONS 
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For example, 

A(2,n) = A(1,A(2,n-1)) 

= A(1,A(1,A(2,n-2))) 

= A(1,(1, .... , A(2,0)) .... ) and so on until 

we have, 

A(2 ,n) 2n + 3. • 

The following definitions also, are related to 

recursive functions and so should be understood. 

A recursively enumerable set is the range of a total 

function. 

A recursive set is a recursively enumerable set whose 

complement also is a recursively enumerable set. 

• 
Set of natural numbers, set of even riumbers 

etc. are recursively enumerable-sets. Set of even numbers, 

set of odd numbers etc. are recursive sets. 

The above definitions will be enough to 

understand NM which is given in chapter IV. The next chapter 

recalls the definitions of the current models. 

Sec. 2. 3 RECURSIVE FUNCTONS 
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a b a,b 

_g b Q a 0 
>• 

qo q1 q2 

( ii) 

a 

a 

b b b 

a 

a 

The above DFA accepts the language 

consisting of all strings over {a,b} that contain an 

(i) even number of a's and an even number of 

b's if 1 is the final state. 

(ii) odd number of a's and an even number of b's 

if 2 is the final state. 

(iii) even number of a's and an odd number of b's 

if the final state is 3. 

(iv) odd number of a's and an odd number of b's 

if 4 is the final state. • 
There are three models of FA namely, DFA, Non-

Deterministic Fini·te Automata ( NFA ) , NFA with f -

transition ( f-NFA >~ It can be shown that all these models 

are equivalent to each other i.e. all of them accept exactly 

Sec. 3.1 CURRENT MODELS OF COMPUTATION 
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r · As mentioned in the first chapter, FA, PDA, TM 

are the three models which are generally in use. In this 

chapter these models ara studied briefly with examples. It 

will be very helpful for the reader to compare these models 

with NU-Maohine. Moreover, the examples given for these 

current models are the same for NM, which makes the 

comparison easy for the reader. 

A languag~ recognizer or acceptor determines 

whether an input string is in a language· or not. All these 

machines process inputs and generate outputs. For example, a 

vending machine takes coins as inputs and returns food as 

output, a combination lock expects a sequence of numbers and 

opens the lock if the input is correct and so on. These 

machines can be either Deterministic or Non-Deterministic. In 

this section, only deterministic models will be studied. 

3.1 FINITE AUTOMATA 

These are the machines which accept languages 

of a special type called Regular Languages/Regular sets over 

a set of symbols called ~he Alphabet ~- Regular sets are 

defined as follows. 

( i ) 

(ii) 

{€}, {a} for every a € ~are regular sets. 

If X and Y are regular 

regular sets. 

* sets, XU Y, X . Y, X are 

(iii) Nothing else is a regular set. • 
* Examples of regular sets are {a,b} 

{aa,b,ab} and so on. (For more details of closure(*) of a 

set, alphabets, regular expressions ... etc see ref[l] ) . 

Sec. 3.1 CURRENT MODELS OF COMPUTATION 
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Deterministic Finite Automaton (DFA) is a quintuple 

M=(Q,L,6,q0 ,F) where, 

(-i) .. -- Q is a finite- set of- states, 

(ii) L is the alphabet, 

(iii) q 0 €Q is a distinguished state known as the 'initial 

state ' 

(iv) F~Q is called the set of 'final or accepting 

states', and 

(v) 6 : Q x L ~ Q is a total function known as 

'transition function'. • 
The language accepted by M, denoted by 

* L(M) is the set of strings in L accepted by M. 

State Diagram of a DFA is a labeled digraph G defined by the 

following conditions. 

(i) The nodes of G are the elements of Q. 

(ii) The labels on the arcs of G are elements of L. 

(iii) q 0 is the initial node -> 0 . 
(iv) F is the set of final or accepting nodes: each of 

them is depicted @ . 
(v) There is an arc from node labeled 'a' if 

6 (qi,a) = qj. 

(vi) For every node qi and symbol a, there is exactly 

one arc labeled 'a' leaving qi. 

Examples : 

(i) The regular expression for the following example is 

a*bb*. 

Sec. 3. 1 CURRENT MODELS OF COMPUTATION 
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the same set of languages. The main purpose of e-NFA is to 

model a machine in an algorithmic way when a regular 

expression is given. -'!'he-f-ol-lowing care -the - N-FA -and e-NFA 

respectively for the first example given above. 

a b 

( Note that the redundant arcs and node are removed without 

changing the language ) . 

€ € 

.>] € b € 1 . 8 b 9>~ 
>4---->;---->:---->•7----->l<====:l __ _:_ __ >>l~~ 

E E 

<-- mfc for a* ----> <for b> * -<-·---mjc for b ----> 

See the ref.(l) for a method of making €-NFA 

from the given regular expression. 

3.2 PUSH DOWN AUTOMATA 

Regular languages have been characterized as the 

languages generated by regular grammars and accepted by 

finite automata. This section presents a clas~ of machines, 

The Push Down Automata, that accepts the The context Free 

Languaqes(CFL). A CFL is the set corresponding to a context 

Sec. 3. 2 CURRENT MODELS OF COMPUTATION 
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Free Gra~mar(CFG). (se~ ref[1J for more details about 

grammars). A PDA is a finite state machine augmented with 

external memory, called a stack which provides the PDA with 

first-in, last-out memory management capability. 

A Push Down Automaton is a seventuple M = (Q, ~' r, o, q 0 , 

z0 ,F) where, 

(i) Q, L, ~0 & F are same as in the definition of DFA, 

(ii) r is a finite state called the 'stack alphabet', 

(iii) z0 e r is a particular stack symbol called •start 

symbol' and 

(iv) o: Q X (L U {€}) X r ~ * subsets of Q x r , is 

the 'transition function'. • 
Moves of the PDA are defined as follows. The 

Pi, l~i~m are states, a € ~' z e r and ai is in * . r , 1~1~m 

is that, the· PDA in q with input symbol a and stack symeol z 

enter state Pi for any i, replace z by the string ai and 

advance the read head (or input head) by one symbol. Note 

that the leftmost symbol of ·ai will be the top symbol of the 

stack. similarly, o(q,€,z) = {(p1 ,a1 ), ... , (pm,am)} means that 

the PDA in state q, independent of the input symbol being 

scanned and with z as the top symbol on the stack, can enter 

state Pi and replace z ·by ai for any i, l~i~m. In this case 

the read head is not advanced. 

Sec. 3. 2 CURRENT MODELS OF COMPUTATION 
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PDA M=(Q,~~r,6,q0 ,z 0 ,F) is Deterministic if, 

(i) for each q in Q and z in r, whenever o(q,€,Z) is 

--nonempty, --then 6(q,a,-z) is- empty for all a €·-z:: ;-

(ii) for no q in Q , z in r and a in (~ u {€}) does 

6(q,a,z) contain more than one element. 

Examples : 

(i) The following are the transitions for a PDA 

(deterministic) which accepts { wcwr 1 w € (0+1)* } 

by empty stack ( see ref[l] ) . Note that the rule 

6(q2 ,€,R) = (q 2 ,€) means that the PDA in state q 2 

with R the top stack symbol, can erase the R 

independently of the input symbol. In this case, the 

read head is not advanced, and infact, there need not 

be any remaining input. 

M = ({q1 ,q2 }, {O,l,c}, {R,B,G}, 6, q, R, ~) where, 

6(q1 ,0,R)=(q1 ,BR) 

6(q1 ,0,B)=(q1 ,BB) 

6(q1 ,0,G)=(q1 ,BG) 

6(q1 ,c,R)=(q2 ,R) 

6(q1 ,c,G)=(q2 , G) 

6(q2 ,0,B)=(q2 , €) 

6(q2,€,R)=(q2, €) . 

~(q1 ,1,R)=(q1 ,GR) 

6(q1 ,1,B)=(q1 ,GB) 

6(q1 ,1,G)=(q1 ,GG) 

6(q1 ,c,B)=(q2 ,B) 

• 
An Instantaneous Description (ID) is used to 

describe the configuration of a PDA at any instant formally. 

If M is a PDA then (q,aw,z~) ~ (p,w,-Ba) if 6(q,a,z) 

Sec. 3. 2 CURRENT MODELS OF COMPUTATION 
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contains (p,B) (ref[1]). Define L(M), the language accepted by 

'final state' to be { w f(q 0 ,w,z 0 ) ~ (p,€,a) for some p € F 

and a- € I'* } . Define N ( M) , the language acc.epted by 'empty 

stack (or null stack)' to be { w /(q0 ,w,z 0 ) ~ (p,€,€) for 

some p € Q } • 

For FA, the deterministic and nondeterministic 

models were equivalent with respect to the language accepted. 

The same is not true for PDA. Infact, for { wwR I w € (0+1)*} 
. 

we have the following nondeterministic PDA and there is no 

equivalent deterministic PDA. 

M = ( {q1 ,q2 }, {0,1}, {R,G,B}, o, q 1 , R, ~)where, 

o(q1 ,0,R)=(q1 ,BR) 

o(q1 ,1,R)=(q1 ,GR) 

o(q2 ,1,G)=(q2 , €) 

o(~1 ,0,G)=(q1 ,BG) 

o(q1 ,1,B)=(q1 ,GB) 

o(q1 ,1,G)={(q1 ,GG), (Q2 ,€)} 

o(q2 ,o,B)=(q2 , €) : 

o(q1 ,o,B)={(q1 ,BB), (Q2 ,€)} 

o(q1,€,R)=(q2, €)­

o(q2,€,R)=(q2, €) • 
Equivalence of, acceptance ~y final state and 

empty stack and, PDA's and CFL's can be proved. (See ref[1] 

for- proof and other details). Note that there are other 

variations of PDA such as two-stack PDA, which accepts a 

larger set of languages. 

3.3 TURING MACHINES 

The Turing machine, introduced by Alan Turing, 

exhibits many of the features commonly associated with a 

modern computer. Its significance for the theory of 

Sec. 3. 3 CURRENT MODELS OF COMPUTATION 
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computing is fundamental: 9iven a large but finite amount of 

time, the Turing machine is capable of any computation that 

___ can be done .by- any mode-r-n d-igital -computer i no matter -how 

powerful. A Turing machine is a finite-state machine_in which 

a transition prints a symbol on the tape. The tape head may 

move in either direction, allowing the machine to manipulate 

_the input as many times as desired. The structure of a Turing 

machine is similar to that of a finite automaton with the 

transition function incorporating these additional features. 

A Turing Machine(TM) is a quintuple M ( Q 1 L: 1 r I 6 I q 0 ) 

where 

(i) Q is a finite set of states, r- is a finite set 

called the 1 tape alphabet', r contains a special 

symbol B that represents a 'blank'. 

(iii) L: is a subset of r-{B} called the 'input alphabet', 

(iv) 6 Q :x: r ~ Q :x: r :x: {L, R} is a partial function·, 

(v) q 0 € Q is a distinguished state called the-

'start state'. • 
The tape of a Turing machine extends 

indefinitely in one direcion. The tape position are numbered 

by the natural numbers with the leftmost position numbered 

zero as shown below. 

A computation begins with the tape head in 

state q 0 scanning the leftmost position. The input, a string 

* from L: , is written on the tape beginning at position one. 

Position zero and remainder of the tape are assumed to be 

Sec. 3.3 CURRENT MODELS OF COMPUTATION 
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0· 1 2 3 

blank. The tape alphabet provides additional symbols that may 

be used during computation. A transition consists of three 

actions: changing the state, writing the symbol in the square 

scanned by the tape head, and moving the tape head. The 

transition o(qi,x) = (qj,y,L) means that, the machine in 

state qi with an input x, changes the state to qj replacing x 

by y and moves the read head to the left square of the tape. 

A Turing machine halts when it encounters a 

state,symbol pair for which no transition is defined. A 

transition from tape position zero may specify a move to the 

left of khe boundary of the tape. When this occurs, the 

computation is to terminate abnormally. When we say that a 
' 

computation halts, we mean.that it terminates in a n6rmal 

fashion. Turing machines are designed to perform computations 

on strings from the input alphabet. A computation begins with 

the tape head scanning the leftmost tape square with the 

input string beginning at position one. All tape squares to 

the right of the input string are assumed to be blank. The 

above defined Turing machine is called the standard Turing 

machine. 

Sec. 3.3 CURRENT MODELS OF COMPUTATION 
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A machine configuration denoted aqiBB where aB 

is the string spelled by the symbols on the tape from the 

.left..,..hand -boundary to the right·most nonblank symbo-l-. The---­

notation aqiBB ~ rqjaB indicates that the configuration 

rqjaB is obtained from aqiBB by a single transition. Turing 

machines may be used as language acceptors; a computation 

accepts or rejects the input string. Initially, acceptance is 

defined by the final state of the computation. A Turing 

machine augmented with final states can be defin~~as 
.}'ft• ..• _.. ' ' 

.( IJ 'f"c. "" \ 
\~ '<· ~9 ~~ ¢'") f1 ~ 

Let M = (Q, L, r, o, q 0 , F) be a Turing machine. A~~ 
follows. 

a€L* is accepted by final state if the computation of M with 

input a halts in a final state. The language of M, L(M), is 

the set of all strings accepted by M. • 
A language accepted by a Turing machine is 

called a recursively enumerable language. If the Turing 

machine halts for all input strings, the language is said to 

be recursive. The computations of a Turing machine provide a 

decision procedure for-membership in a 

Examples· 

where, 

c5 ( ql,o = ( q 2 ,x,R c5( ql,y = ( q4,y,R 

c5 ( q2,y = ( q2,y,R c5 ( q2,0 = q 2 ,0,R 

c5 ( q2,1 q3,y,L c5( q3,o q 3 ,o,L 

o( q3 'y = ( q3,y,L c5( q3,x ( q 1 ,x,R 

o( q4,B = ( q 5 ,B,R 

Sec. 3.3 CURRENT MODELS OF COMPUTATION 
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This TM accepts the language 

acceptance of the string 0011 lS as follows. 

q 100l1B ~ xq2 011B 

~ xoq2 11B ~ xq 3 0y1B 

~ q 3 xOy1B ~ xq 10y1B 

r- xxq2y1B ~ xxyq 2 1B 

~ xxq3 yyB ~ xq 3xyyB 

~ xxq1yyB ~ xxyq 4yB 

}---- xxyyq4B ~ xxyyBq5 

• 
Languages can be recognjzed by Turing machine~ 

without requiring the addition of final states. The 

alternative aproach accepts a string if computation generated 

by the string causes the Turing machine to halt. 

* Let M = (Q, ~, r, 6, q 0 ) be a Turing machine. A string a f ~ 

is accepted by- halting if the- computation of M wLth input a 

halts. 

There are various versions of TM such as 

Multitrack machines, NonDeterministic TM, Tw~ way tape 

machines, Multitape· machines, Atomic TM, context sensitive 

TM. It can be proved that all these machines accept precisely 

the recursively enumerable languages. 
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r In this chapter, a profound analysis of NM is 

made. Before going into details, studying an example will be 

useful-. -All-- -the --not-a-tion·s- -and its mean-ings are- gi-ven- in 

detail to avoid ambiguity.· At the end, possibilities of 

restricting NM to PDA and FA are analysed with examples. 

Examples 

(i) NM for addition 

b 

1 ~-~<-------~-J • 2 
a 

0 

Initially node 1 has a value X ( remember that 

value of a node means, a string of a's of length X ) 

and node 2 has the value Y. At thi end of the 

computation node 2 will have the answer X+Y. As 

mentioned earlier, the value of a node is, the 

number of a's minus the number of b's ~n that node. 

The following table illustrates the transitions of 

the machine when, X = 7 & Y = 5. The answer 12 

(string of a's of length 12) appears in node 2 when 

the machine halts in node o, at the end of the 

calculation . 

NU MACHINE 
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1 2 present node 

aaaaaaa aaaaa 1 
aaaaaaab aaaaa 2 
aaaaaaab aaaaaa 1 
aaaaaaabb aaaaaa · 2 
aaaaaaabb aaaaaaa 1 
.aaaaaaabbb aaaaaaa 2 
aaaaaaabbb aaaaaaaa 1 
aaaaaaabbbb aaaaaaaa 2 
aaaaaaabbbb aaaaaaaaa 1 
aaaaaaabbbbb aaaaaaaaa 2 
aaaaaaabbbbb aaaaaaaaaa 1 
aaaaaaabbbbbb aaaaaaaaaa 2 
aaaaaaabbbbbb . aaaaaaaaaaa 1 
aaaaaaabbbbbbb aaaaaaaaaaa 2 
aaaaaaabbbbbbb . aaaaaaaaaaaa 1 
aaaaaaabbbbbbb aaaaaaaaaaaa 0 (end) 

( ii) NM for exponentiation 

• 0 

1 
e a 

~ > 
2 

b 
b a 

/ 

4_]-1 1 

e 
b e b a 

C•a 5 :J It . 
4 a 5 b 3 

Initially nodes 1, 2, 3, 4 & 5 have values 

o, Y, X, 0 & o respectively. At the .end of the 

calculation the answer xY will appear in node1. The 

steps involved are exactly as in the above 

example. Now, it is time to define NM and all the 

basic machines more precisely. 

NU MACHINE 
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4.1 DEFINITION OF NM 

An NM is a labeled digraph with the following 

-properties.--

(i) There are two sorts of edges - dotted edges and line 

edges (i.e. ------- & ) . 
(ii) Edges are labeled in the form a 1 a , where 

a € (L U { e}) and a € L*. 

(iii) Two different edges can have the same label. 

( iv) Nodes are labeled 0,1,2 ...•• 

(v) Two different nodes can have the same label. 

(vi) There is one initial and one final node. 

(vii) Out degree of the final node is zero. 

In any node of a machine which accepts a 

language, there is a string of symbols taken from an 

alphabet. There is a pointer which reads the symbols 

according to the rules specified. Initially the pointer will 

be at the left end of the string. Meanings of the notations 

are as follows. The symbol 'e' represents-the blank. If there 

is no symbol from the specified alphabet on the right of the 

pointer it means the machine reads 'e'. 

aja 
If the symbol on the right of the ponter in the 

node is 'a' then replace 'a' with the string 'a' 

and move the pointer to the right of 'a'. 

aja 
If the symbol on the right of the pointer in the 

node is 'a' then replace 'a' with the string 'a' 

and move the pointer to one position left of 'a'. 

Sec. 4. 1 NU MACHINE 
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a 
If the symbol on the right of the pointer in the 

node is 'a' then replace 'a' with 'a' and move 

the pointer to one position right . 

a 
If the symbol on the right of the pointer in the 

node is 'a' then replace 'a' with 'a' and move 

the pointer to one position left. 

We say NM is halted normally if the machine ends in its final 

node which is normally Node o. Otherwise, NM is halted 

abruptly. 

Note that the example given in the first 

chapter is an example of NM which computes recursive 

functions. NM for recursive functions will be defined later 

with some restrictions in the above definition. Albeit the 

·definition of NM for recursive functions is sufficient for 

designing an NM for accepting a language, more complicated 

definiton is needed for easy understanding. NM for the 

language { On1n I n ~ 1 , E = {0,1} } is given below. 

'?t f------:- . . . . . . . . ·> . . -... e-----i 
: ••.. : 1-

0 

Sec. 4. 1 

.. . . ./ . . . ' .... 
y 

1/y 1 L-~~ 

y 

0 
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on further restrictions in the above 

definition, PDA and FA can be designed for corresponding 

languages. This is given- at the end of this chapter-with- an---

example each. Now the definition of NM for recursive 

functions is defined. Note that the alphabet is restricted to 

{a, b}, there are no dotted edges and no aja labels, and out 

degree of every node (other than final node) is - either 

one or two. 

4.2 NM FOR RECURSIVE FUNCTIONS 

An NM is a labeled digraph with the following 

properties. 

(i) Edges have labels 1 a', ·~· or-'e'. 

(ii) Two different edges can have the same label. 

(iii) Nodes are labeled o, 1, 2, •••. 

(iv) Two different nodes can have the same label. 

(v) - There is one initial and one final node. 
-

(vi) outdegree of the final node is zero. 

(vii) Outdegree of every node ( other than final node 

is either one or two. • 
It can be observed that, the examples which 

have been seen before completely agree with the definition. 

Meaning of the symbols a, b and e are mentioned in the first 

chapter. Change in the value of a node will automatically 

affect the other nodes with the same label. Final node is 

usually numbered as D. There is no limit for the 

Sec. 4.2 NU MACHINE 
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.number of nodes, each node taking values ·from the set of 

natural numbers. Let the function to be calculated be 

f(xp x 2 r- •• , xn). Initially the va-riable va-lues are-- kept --in 

the first n nodes (except 0). Answer can be in any of the 

nodes except input nodes which is specified before. If the 

output node is one of the input nodes then transfer the 

answer· into a node which is not an input·node at the end of 

computation. This makes it easier to reuse those nodes. 

Answer is given by the absolute difference between the number 

of a's and the number of b's in the output node. 

Now the existence of NM's for each of the 

elementary functions and procedures is shown. The theory 

will be clear if· it can be demonstrated how these basic 

machines can be interconnected to obtain a machine for a 

given function. And then it will be obvious that there exists 

an NM for any recursive function. 

4. 3 NM' s FOR ELEMENTARY FUNCTIONS 

(i) Zero function : 

Sec. 4. _3 

z 

x 3 , ...• ,xn respectively. (Recall that the value x 1 

means a string of a's of length x 1 ). Answer appears 

in node z (Note that all non-input nodes have values 

zero initially). 
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(ii) successor function 

s (X) = X 

s 

a 
b 

x a e 
~--1·-~--:J~>--C!) 

. X 0 

The input value is put in node x. Then an 'a' 

is added to the string in node x and transferrd to 

the output node s. The new value will be x+l in node 

x itself. 

(iii) Identity function 

k 
~ 
~ 

"e 

t· 
j 

Sec. 4. 3 

u~ (xl,x2, ..... ,xn) = xk 

b k b k b k b j 

• • > ·; ................ 
e,if e e 

a a ' I a 
/. ' ' 

.,.. 

Ji xl x2 xn 

e ..., i i e e 
b b b 

- 0 

• 
The value k is put in node k. In each step 

of the computation the value gets decreased until the 

value of node k becomes zero. When it happens the 

ma~hine will be in node xk where the value xk is 

kept. Then it transforms the value xk into the output 

node i. ( Note that all the nodes other than input 

nodes have to be initialised i.e. value of those 

nodes have to be made zero before the computation 

starts). 

NU MACHINE 
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4.4 NM's FOR ELEMENTARY PROCEDURES 

Before going into the details, make following 

machi-nes- which-will -be usefu-l---in--d-efining maGhines for-- the---

elementary procedures. Call them S(x,x1 •,x2-•, ... ,~') and 

I(x). Here, each of-the variable in the above functions is a 

set of n nodes. s stores the value of each node in x, in the 

corresponding node in x 1 •,x2 • ... xm'· The machine, 

s is ·given by, 

. I 
a x2n 

xln't;<>--• ··~~:· 
• . . . . . . . . . . . . . . I >-----@ 

0 

The machine I is used for initialisation. It 

reduces the value of each node in x to zero. The machine, 

I is given by, 

b b b 

~. 9. .......... Q p 
-(!) 

0 

The above three machiries are needed to restore 

the input values at the end of computation when the input 

nodes are being used. Here onwards only the names of the 

above machines will be used insiead of the entire machine. 

This will be clear when we study machines for elementary 

procedures which are used in constructing a machine for a 

given function. The method of construction will be 

demonstrated later. 

Sec. 4. 4 NU MACHINE 
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(i) Composition : 

Given- a set of functions Gk ( x 1 , x 2 , .... ,xn), 

k=1,2, .. ~.,m and H (y1 , y 2 , .... ,ym), define 

F (x 1 , x 2 , .... ,xn) = H (G 1 , G2 , .... ,Gm) 

NM for composition is given below. Every G 

has its own input nodes. So the inputs of F i.e. x 1 

to xn are first transformed into the input nodes of 

Gi for all i, l~i~n. Input nodes of Gi are denoted by 

x 1 i, x 2i, ... ,xni· gi's are the output nodes of Gi's 

and Yr's are the input nodes of H. The given machines 

are, 

-G)-@ ;.-G)-@; ... ;~ & ~ 

Sec. 4. 4 

The following is the machine for composition. 

First block initialises the input nodes of Gi's. Then 

in the second block each Gi is calculated and the 

result -is transferred to Yi as the input of H. Final 

node of F will be the flnal node of H and the value 

of the function F will be in the output node of H. 

b b 
a a a 
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(ii) Primitive recursion 

the second chapter(section 2.2). The given 

functions are, 

~and~ 
NM for this procedure is given below. 

~·i S(g,y) ~·--~e _____ x_n ______ ~~-e ________________ __ 
0 

• 
b 

S ( (X 1 I 1 • • 1 Xn _ 1 
1 

) 1 (X 1 1 •. • 1 Xn _ 1 ) 

I(all nodes ot H other 
than input nodes) 

Sec. 4. 4 

X ~------------~--------~ n 

b 

a 

S(x X 11 X 111
) n' n ' n 

e 
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In the above machine, node 'g' is the output 

node of the machine G and node 'h' is the output node 

of H. Two machines A and B are interconnected to get 

c in the following fashion. 

Initial node of C is the initial node of A and 

final node of c is the final node of B. The 

connection is done by replacing the final node of A 

by the initial node of B. 

(iii) Minimalisation 

Define F(x1 , .... ,xn) = Min { y I G(x 1 , ... ,xn,y) ·} 

where G is a given function. NM for this procedure is 

given below. 

I( all nodes of G other 
than input nodes) 

~-----~ar-~-----•1 y 

The following example illustrates how to make 

machines using above defined machines and how to combine 

Sec. 4 .. 4 .NU MAC'HTNF. I 
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them. The following machine is for the proper subtraction 

defined in Chapter II (see example (vii) in Sec. 2.3). This 

function is used for calculating I x 1 -x2-l- which is the seventh 

example of the above mentioned section. 

e k 

b 

e 

e 

x~[Q- xl" 

b - e 

[~11tX2 111 
x2 ~ 

. ::· ~ yt-ob 
o- e . h 

b -••· a 
xl 

e 
-~ 

x2~1l-cJb 
h y 

[5 e 

e 
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For defining the function 'absolute 

difference' we need the above machine. As explained in 

-_Sec.2.3, F(x1 , x 2 ) = I x1 - x2 - I = -H( G1 r G2 _ ~where, G1 and 

G2 are proper subtractions and H( x 1 , x 2 ) = x 1+x2 . Now, for 

getting the machine for F· connect the machines as follows. 

Let G1 and G2 be the machine given above with a totally 

different set of nodes. Let the input nodes of Gi be xi 1· and 

xi 2 . Let the output nodes be g 1 and g 2 . After changing the 

nodes as above mentioned, design a machine as follows. 

b a 
e 

e 0 

. 
where; h 1 and h 2 are the input nodes of H and 

the output lx1 - x 2 I will appear in node h 2 . 

4.5 NM's CORRESPONDING TO PDA & FA 

The machines corresponding to PDA and FA can 

be obtained by restricting the definition given in Sec.4.1 

as follows. 

Sec. 4.5 NU MACHINE 
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NM for PDA is defined as NM with the following restrictions. 

(i) There are only two sorts of nodes. Node 1 represents 

the tape and the-Node- "2- represents the stack·.---

(ii) There are no dotted edges with 'afa' labels. All the 

dotted edges have a label 'e' and 

(iii) There are no dotted edges from Node 1. 

The following machine illustrates the above 

definition, which accepts the CFL { wcwR f wE (a+b)* }. 

1 1 

r 

1 : ..... ~:/e e+ : -~- >--___J 
• • • • • . 2 

0 

.....--~/;! ; .. > .. r;~b 
L-+--<~ -: :e 

L---< 2 : .... : 
b/bb 

:e 

b 

0 

l.....--<:~_ 
:e 

"' 

2 

. ·> .. 
e 

The following table provides the steps 

involved in accepting the string 01clO. 
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string in present I 
I 

node 1 node 2 node ! 
I 

~ 1 I ~01c10 -r I 
0~1c10 

~ r 2 I 

0~1c10 rb~ 1 I 
' 

01~c10 rb~ 2 
01~c10 I 

r~b 2 
01~c10 rbg ~ 1 I 
01c~10 

I 
rbg ~ 2 

01c~10 rb~g 2 
01c~10 I rbg ~ 1 
00c1~0 

I 
rbg ~ 2 

01c1~0 rb~g 2 
01c1-0 rbe ~ 1 
01c10~ rbe ~ 2 
01c10~ rb- 2 

I 

01c10~ 

I 
r-b 2 

01c10~ re 
~ 1 

01c10~ re - 2 
01c10~ I r - 2 
01c10~ -r 2 
01c10~ e ~ 0 (end) . 

On further restrictions NM for FA can be 

defined as follows. 

NM for FA is a labeled digraph which have, 

(i) no dotted edges, 

(ii) no edges with a label of the form 'afa', 

(iii) only labels of the form 'a' and 

(iv) only one sort of nodes. 

The following example illustrates this. This 

* * machine accepts the language a bb . 
a 

b 

b 

~------~~------------· 1 

e 

• 0 
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It can be observed that the above machine is 

almost same as the DFA given in chapter III. Thus, a uniform 

mo_d~l_can be used instead of t-h-e. cu-rrent model-s o-f---­

computation. 

....1 
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The purpose of this project was to design a 

uniform model for all computations instead of having three 

difffernt models. It has been proved by showing the machines 

for the elementary functions and procedures, and how to 

connect them, that, the NU MACHINE is equally powerful as 

Turing machine and is simple to design. Hopcroft says in an 

article in Scientific American 

'' If one is inclined to try building, say, the Turing 

machine that multiplies, one soon begins to appreciate the 

difficulties that must be faced in the design of a useful 

computer program. Host small Turing machines, namely the ones 

with only a few possible states, do not carry out any useful 

or even sensible task. '' 

Moreover, we could see that NU MACHINE can be 

restricted to PDA and FA to have a uniform model for all 

computations. Thus, we have, 

NM for FA 
NM for PDA 
NM 

with one type of nodes, 
with two types of nodes and 
with many types of nodes. 

Even though, the purpose of the project is 

fulfilled, there are much more things t; do like restricting 

NM to obtain a model which accepts Context Sensitive 

Languages. 

To get more clear idea of NM, demonstration 

programs -one for addition and one for multiplication are 

included in the Appendices A and B at the end of this thesis. 
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APPENDICES 



A. 

PROGRAM FOR ADDITION 



program ADDITION; 
uses crt,graph,grworld; 
var 

driver,mode:integer; 
ch,chl:char; 
sizel,size2,x,y,i,temp,il,i2,ans:integer; 
ptrl,ptr2:pointer; 
nl,n2:array[l .. l00] of char; 
i2str,blstr,alstr,a2str:string; 

{-------------------------------------------~---------------} 
procedure CALCULATE; 
var 

j,na,nb:integer; 
begin 

na:=O; 
nb:=O; 

end; 

if x=O then ans:=O 
else 
begin 

end; 

for j:=l to il do 
if nl[j]='a' then na:=na+l 
else if nl[j]='b' then nb:=nb+l; 

ans:= na-nb; 

{----------------------------------------------------------} 
function CHECK:boolean; 
begin 

end; 

calculate; 
if.ans>O then check:=true 
else check:= false; 

{----------------------------------------------------------} 
procedure DEFINEBALL; 
begin 

end; 

setcolor{l); 
circle{l0,20,5); 
setfillstyle{l,2); 
floodf111{10,20,1); 
sizel:=imagesize(2,12,18,28 ) ; 
getmem(ptrl,sizel); 
getimage{2,12,18,28 ,ptrl~); 
size2:=imagesize{2,30,18,46); 
getmem(ptr2,size2); 
getimage(2 t30,18,46,ptr2~); 
putimage{2,12,ptr2~,normalput); 

{----------------------------------------------------------} 



procedure MOVELINE; 
var 

yl,k:integer; 
begin 

k:-=0; 
y1:=107; 
·repeat 

putirnage(153,yl,ptr2-,norrnalput); 
if k=6 then 
begin 

end; 

line(152,117,168,117); 
line(168,117,160,105); 
line(160,105,152,117); 
circle(160,112,3); 

line(160,117,160,yl+l); 
yl:=yl+2; 
putirnage(153,yl,ptrl-,norrnalput); 
k:=k+l; 

until y1=173; 
end; 
{----------------------------------------------------------} 
procedure MOVECIRCLE; 
var 

k:real; 
xl,yl,kl:integer; 

begin 
putirnage(155,108,ptrl-,norrnalput); 
delay(25); 
putirnage(155,108,ptr2-,norrnalput); 
line(152,117,i68,117); 
line(168,117,160,105); 
line{l60,105,152,117);· 
circle(160,112,3)~ 
yl:=l08; 
kl:=O; 
repeat 

putirnage(205,120,ptr2-,norrnalput); 
str(il-x,blstr); 
outtextxy(205_, 120,blstr); 
k:=(l/2)*ln(1600-(yl-80)*(yl-80)); 
xl:=round(155-exp(k)); 
putirnage(xl,yl,ptrl-,norrnalput); 
yl:=yl-5; 
circle(160,80,40); 
putirnage(xl,y1+5,ptr2-,norrnalput); 
if k1=2 then · 
line(160,117,160,130); 
kl :.= kl+l; 

until yl<42; 



end; 

putimage(155,42,ptrl-,normalput); 
delay(25); · 
putimage(155,42,ptr2-,normalput); 
circle(160,46,3); 
circle(160,80,40); 
y1:=44; 
repeat 

putimage(172,35 ,ptr2-,normalput}; 
str(i2,a2str); 
outtextxy(172,35 ,a2str); 
k:=(l/2)*ln(1600-(yl-80)*(Yl-80)); 
xl.:=round(155+exp(k)); 
putimage(xl,yl,ptrl-,normalput); 
yl:=yl+5; 
circle(160,80,40); 
putimage(xl,yl-5,ptr2-,normalput); 

until yl>103; 
circle(l60,80,40); 

{--------------------------------------------------------~-} 
begin 

repeat 
writeln{'Enter the numbers to be added'); 
readln(x); 
readln(y); 
if x>y then 
begin 

temp:=x; 
x:=y; 
y:=temp 

end; 
driver:=l; 
mode:=4; 

-initgraph(driver,mo4e, 1 b: 1 ); 

setgraphmode(cgac2); 
setcolor(l); 
defineball; 
rectangle(0,0,319,199); 
circle(160,80,40); 
circle(160,46,3 ) ; 
circle(160,112,3 ) ; 
circle(160,180,3 ); 
circle(160,180,7 ) ; 
line(160,112,160,180); 
line{l52,117,168,117); 
line(168,117,160,112); 
blstr:= 1 1 ; 

a2str:= 1 1 i 
i2str:= 1 1 ; 

· outtextxy(l43,120, 1 1'); 



end. 

outtextxy(155,35, '2'); 
outtextxy(140,180, '0'); 
outtextxy(145,140,'1'); 
outtextxy(105,80 , 'b'); 
outt~xtxy(215,80 ,'a'); 
outtextxy(173,120~'[ ]'); 
outtextxy(165,35 ,'[ , ]'); 
outtextxy(205,120,'0'); 
outtextxy(195,35 ,'O'); 
str(x,a1str); . 
outtextxy(180,120,a1str); 
str(y,a2str); 
outtextxy(172,35 ,~2str); 
ans:=O; 
for i:=1 to 100 do 
begin 

end; 

n1 [ i]: =I I ; 

n2 [ i] :=I I i 

for i1:= 1 to x do 
n1[i1]:='a'; 

for i2:= 1 toy do 
n2 [ i2] :='a' ; 

while check do 
begin 

end; 

i1:=i1+1; 
n1[i1] :='b'; 
i2:=i2+1; 
n2 ( i2] :='a' ; 
movecircle; 

moveline; 
circle(160,180,10); 
freemem(ptr1,size1); 
freemem(ptr2,size2); 
str ( i2, i2str); · 
outtextxy(5,190, 'The answer is'); 
outtextxy(120,190,i2str); 
readln; 
closegraph; 
writeln('Do you want to try more?(y/n] '); 
readln(ch); 

until ch='n'; 



B. 

PROGRAM FOR MULTIPLICATION 



program MULTIPLICATION(input,output); 
uses graph,crt,grworld; 
{---------------------------------------------~------------} 
type 

.. ch = array. [1..210}- of char; --- --- -- ---
.{----------------------------------------------------------} 
var 

n1,n2,n3,n4 : ch; 
driver,mode,x,y,temp,na,nb,size1,size2,ans, 
j1,j2,j3,j4,i: integer; 
ch1,a 1 b: char; 
ansstr 1 a1str,b1str 1 a2str 1 b2str 1 a3str 1 b3str,a4str:string; 
ptr1 1 ptr2: pointer; 

{----------------------------------------------------------} 
procedure INITIALISE; 
var 

i:integer; 
begin 

end;. 

for i:= 1 to 210 do 
begin 

n1[i] := 
n2 [ i] . -
n3 [ i] : = 
n4 [ i] : = 

I • 
I 

I • 
I 

I • , 
I • 

I 

ansstr:= 1 1 ; 

end; 

a1str := 
b1str := 
a2str .-
b2str ·-.-
a3str . -.-
b3str . -.-
a4str . -.-

I 

I 

I 

I 

I • 
I 

I • , 
I • 

I 

I • , 
I • 

I 
I • 

I 

{----------------------------------------------------------} 
procedure CALCULATE(arr1: ch; jj1:integer); 
var 

i:integer; 
begin 

end; 

na:=O; 
nb:=O; 
for i:= 1 to jj1 do 

if arr1[i]= 1 a 1 then na:=na+1 
else if arr1[i]= 1 b 1 then nb:=nb+1 ; 

ans:=na-nb 

{-------------------------------------------------~--------} 



function CHECK(arr2~ch;jj2:integer) :boolean; 
begin 

end-; 

calculate(arr2,jj2); 
if ans > 0 then check:=true 
else check:=false; 

{----------------------------------------------------------} 
procedure DEFINEBALL; -
begin 

end; 

setcolor{l); 
circle(10,150,5); 
setfillstyle(1,2)} 
floodfill(10,150,1); 
sizel:= imagesize(3,143,17,157); 
getmem(ptrl,sizel); 
getimage(3,143,17,157,ptrl-); 
size2:=imagesize(3,159,17,173); 
getmem(ptr2,size2); 
getimage(3,159,17,173,ptr2-); 
putimage(3,143,ptr2-,normalput); 

{----------------------------------------------------------} 
procedure MOVLIN(xl,yl,x2,y2:integer); 
var 

i:integer; 
begin 

i:=l; 
if( xl=x2) or (x1=250) then 
begin 

end; 

putimage(xl,yl,ptr2-,normalput); 
xl:=xl-5; 
x2:=x2-5; 
putimage(xl,yl,ptrl-,normalput) 

while (xl<>x2) or (yl<>y2) do 
begin 

if yl=y2 then 
begin 

putimage(xl,yl,ptr2-,normalput); 
xl:=x1+2; 
putimage(xl,yl,ptrl-,normalput); 
if i=7 then line(70,70,50,50); 
if i>3 then 
begin 

end 
end 

setcolor(l); 
putpixel(xl-4,yl,l) 



end 
end; 

· else if x1=x2 then 
begin 

putimage(x1,y1,ptr2-,norrnalput); 

end 

y1:=y1+1; 
- put~i-m-age(x1,y1",ptrl- ,normalput)-;­

if i>3 then 
begin 

end; 

setcolor(1); 
putpixel(x1+5,yl-5,1) 

if i=7 then 
begin 

end 

circle(150,150,i); 
line(140,155,150,140); 
line(150,140,160,155); 
line(160,155,140,155) 

else if ((x1-x2)/(yl-y2))=1 then 

i:=i+l 

begin 
putimage(x1,y1,ptr2-,normalput); 
y1:=y1-1; 

end 

x1:=x1-1; 
putimage(x1,y1,ptr1-,normalput); 
if i>7 then 

line(150,150,x1 ,y1 ) ; 
if i=20 then 
begin 

line(150,150,150,185); 
circle(150,150,3); . 
line(140,155,150,140); 
line(150,140,160,155); 
line(160,155,140,155) 

end 

else if ((x1-x2)/(yl-y2))=-l then 
begin 

putimage(xl,yl,ptr2-,normalput); 
yl:=yl+l; 

end; 

xl:=xl-1; . 
putimage(xl,yl,ptrl-,normalput); 
if i>3 then 

line(250,50,x1+5 ,yl ) 

{-------------------------------------------~--------------} 



procedure MOVCIR(x5,y5,cx,cy:integer); 
var 

xx,yy,ix:integer; 
begin 
- - xx: =x5; 

yy:=y5; 
repeat 

begin 

end 

ix:=O; 
putimage(xx,yy,ptr2~,normalput); 

yy:=yy-3; 
ix:=400-(yy-30)*(yy-30); 
xx:=cx-round(exp(ln(ix)/2)); 
putimage(xx,yy,ptrl~,normalput); 

setcolor(l); 
circle(cx,30,20); 
if( yy<35) and (yy>30 ) then 
begin 

end; 

circle(cx,S0,3); 
line(50,50,250,50); 
line(70,70,50,50); 
line(250,50,230,70} 

if (yy<20) and (yy>l6) then 
circle(30,30,3) 

until yy<=ll; 
putimage(xx,yy,ptr2~,normalput); 
putimage(cx,lO,ptrl~,normalput); 
if.x5=50 then 
begin 

end 

putimage(268,65,ptr2~ 1 normalput); 
calculate(n3,j3); 
str(na,a3str); 
outtextxy(267,70,a3str) 

else if x5=250 then 
begin .. 

putimage(292,65,ptr2~,normalput); 
calculate(n3,j3); 
str(nb,b3str); 
outtextxy(291,70,b3str) 

end; 
xx:=cx; 
yy:=lO; 
repeat 

begin 
ix:=O; 
putimage(xx,yy,ptr2~,normalput); 
yy:=yy+3; 



,end; 

end 

ix:=400-{yy-30)*(yy-30); 
xx:=cx+round(exp(ln(ix)/2)); 
putimage(xx,yy,ptrl-,normalput); 
setcolor{l); 
circle (ex, 30, 20}; --
if (yy>15) and (yy<19) then 
-begin 

circle(250,15,3) 
end; 
if (yy>40) and (yy< 44) then 

circle(70,30,3) 

until yy>=49; 
putimage(xx,yy,ptr2-,normalput); 
putimage(cx,50,ptrl-,normalput); 
if x5=50 then 
begin 

end 

str(j4,a4str); 
putimage(100,2l,ptr2-,normalput); 
outtextxy{99,25,a4str) 

else if x5=250 then 
begin 

calculate(n2,j2); 
str(na,a2str); 
putimage(256,0,ptr2-,normalput); 
outtextxy(255,3,a2str) 

end; 
circle(cx,30,20) 

{----------------------------------------------------------} 
begin 

repeat 
writeln('Enter the numbers to be multiplied with an ENTER in be 
readln(x); 
readln(y); 
if y>x then 
begin 

end; 

temp:=y; 
y:=x; 
x:=temp 

clrscr; 
driver:=l; 
mode:=4; 
initgraph(driver,mode, 'b: '); 
setgraphmode(CGAC2); 
setviewport(0,0,318,199,true); 
rectangle(0,0,317,198); 
setcolor{l); 



initialise; 
outtextxy( 120 1 5 1 'NU-Machine'); 
defineball; 
circle(150 1 185 1 3); 
circ-le (50_ , 50 , 3 ). ; 
circle(30 1 30 1 3); 
circle(70 1 30 1 3); 
circle(250 1 50 1 3); 
circle(250 1 15 1 3); 
circle(l50 1 150 1 3); 
setfillstyle(1 1 1); 
floodfill(150 1 185 1 1); 

· floodfill(50 1 50 1 1); 
floodfill(30 1 30 1 1);. 
floodfill(70 1 30 1 1); 
floodfill(250 1 50 1 1); 
floodfill(250 1 15 1 1); 
floodfill(150 1 150 1 1); 
circle(150 1 185,7); 
circle(50,30,20); 
circle(250 1 30,20); 
line(150,150,150,185); 
line(150,150,50 ,50 } ; 
line(50,50 1 250,50 ); 
line(250,50,150,150); 
line(140 1 155 1 150,140); 
line(l50,140,160,155); 
line(160,155,140,155); 
outtextxy(173,150 1 '1[ ,0 ] '); · 
putimage(188,147,ptr2~,normalput); 
str(x,alstr); 
outtextxy(188,150,a1str); 
outtextxy(35 ,63,!2'); 
outtextxy(3,30, '3'); 
outtextxy(84,25, '4[0 ,o ]'); 
outtextxy(252,70,'3[0 ,0] '); 
outtextxy(240,3,'2[ ,o ]'); 
putimage(255,0,ptr2-,normalput); 
str(y,a2str); 
outtextxy(255,3,a2str); 
outtextxy(165,185, 'O'); 
outtextxy(80,100,'b'); 
outtextxy(180,100, '1'); 
outtextxy(140,40, '1'); 
outtextxy(285,30,'a'); 
outtextxy(215,30,'b'); 
outtextxy(20,42, 'b'); 
outtextxy(55,33, 'a'); 
outtextxy(55,1, 'a'); 
outtextxy(160,165,'1'); 



j3:=0; j4:=0; 
for j1:= 1 to x do 

n1 [ j 1] : = 1 a 1 
; 

for j2:= 1 to y do 
n2 [ j 2 ] : = I ~ I j 

readln; 
while check(n1,j1} do 
begin 

end; 

j1:=j1+1; 
, n1 [ j 1] :=I b I j 
putimage(211,150,ptr2-,normalput); 
str(j1-x,b1str); 
outtextxy(210,150,b1str); 
movlin(150,150 ;50 ,50); 
for i:=1 to 4 do 

putpixel(154-i,146+i,1}; 
while check(n2,j2) do 
begin 

end; 

j2:=j2+1; 
n2 [ j 2] :=I b I j 
j3:=j3+1; ' 
n3 [ j 3 ) : = 1 a 1 ; 

'j4:=j4+1; 
n4[j4]:= 1 a 1

; 

putimage(279,3,ptr2-,normalput); 
calculate(n2,j2); 
str(nb,bistr); 
outtextxy (,278, 3, b2str); 
movcir(50,50,50,30); 

movlin(50,50 ,250 ,50); 
circle(50 ,50 ,3}; 
s~tcolor(1); 
for i:=1 to 7 do­

putpixel(57-i,57-i,1); 
while check(n3,j3) do 
begin 

end; 

j 3: =j 3+1; 
n3[j3] := 1 b 1 ;' 

j2:=j2+1; 
n2 [ j 2] : = 1 a 1 

; 

movcir(250,50,250,30); 

line(50,50,250,50); 
movlin(250,50 ,150 ,150); 
circle(250,50 ,3); 
setcolor(1);, 
for i!=1 to 7 do 

putpixel(243+i,50,1); 



putirnage(140,178,ptr2-,normalput); 
rnovlin(i50,150 ,150 ,180); 
line(150,150,150,180); 
circle(153,187,7); 
calculate(n4,j4); 
st::r ( ans, anss.tr) ; 
outtextxy(5,190, 'The answer is '); 
outtextxy(120,190,ansstr); 
freernern(ptr1,size1); 
freernern(ptr2,size2); 
readln; 
closegraph ; 
write('Do you want to try more ?[y/n) '); 
readln(ch1); 

until ch1= 'n'; 
end. 

. . . ., 
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