
A UNIFIED APPROACH TO

THEORY OF COMPUTATION

Dissertation submitted

in partial fulfilment of the requirements

for the award of the Degree of

MASTER OF TECHNOLOGY

in

COMPUTER SCIENCE a TECHNOLOGY

PRAMOD VARMA K.

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES

JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI - 110067

JANUARY 1991

-cERTIFICATE---

This is to_ certify that the thesis entitled

"A UNIFIED APPROACH TO THEORY OF COMPUTATION", being submit ted

by me to JawaharLal Nehru University in partial fulfilment of

the requirements for the award of the degree of Master of

Technology is a record of original work done by me under the

supervision of Prof. K. K. Nambiar, School of Comput-er and

Systems Sciences during the Monsoon semester, 1990.

The results reported in this thesis have not

been submitted in part or full to any other University or

Institution for the award of any degree etc ..

Prof. N. P. Mukherjee
Dean, SCSS,
J. N. U., New Delhi.

(PRAMOD VARMA K.

LL~~-~~
Prof. K. K. Nambiar
Professor, SCSS,
J. N. U., New Delhi.

ACKNOWLEDGEMENTS

J take t.hiA ~ fu ~ f1UJ ~

~ w f1UJ ifULde 'P'Wf.. X. X. H~ wha, ~

the CQ.UIU).€, ~ p.rwject pe!!Md, ~ me with· hiA

~ ~ and ~- 'J)WtUu;, thi.4 per!Lad, J

~ the trtue ~ and U1. IUm J .{l,(W9. a fL€.<11

teachelt. J am. rteaftlJ glad that J ~ q,ai..n., ae&eU ~ -

tutee, f;wm the ~ ~- he p.awted on me dwWu,t awt

~- J wLMt J cov1d &e hiA ~ ~-

!J ea:terui f1UJ thartJc<l. w 'P 'Wf.. H. 'P. !rfukhet!Jee, 'J)ean.,

5I chao1 at t'amp,u;tert and 51~ 51~. JHV. f.arL pruw.i..dUuJ me

the ~ fu wu:1eJLtaJce t.hiA p;w,ject. J ~ atM. tiJ<e

w t.lu:utk the ~ at awt ~ f.arL pruw.i..dUuJ me the

neceMA1IUJ ~ fu camp1.ete f1UJ p;w,ject.

'J hiA p.rwject ~ nat luw.e &een COITipteted

U9Ltluud the help at mafUJ people. oe ali theo,e, J am.

~ ~ fu Uml at f1UJ clooe ~. '' Jrt.atL' and

' b' lw.m' , wha heeped me ail thrto.w}h f1UJ p.rwject.

'!JUw.lltj, J dedLcate thM ~ fu fiUJ. ~

~ ~ ~ had &een a ~ <l.aWtCe of. ~.

and fu f1UJ ~ &rLOJ.herl. wluMe ~ C/lfti.,dQm fUUlhed

me mo.rte t~ f1UJ go.af.. J 009-e €A3efUJ ha.ppA; rno.m.eJ'I.t at f1UJ Uf•2

. fu them.

Pramod Varma K.

achan, amma

&

~

C 0 N T E N T S

Ch. 1 INTRODUCTION

Ch. 2 RECURSIVE FUNCTIONS

2.1 Elementary functions

2.2 Elementary procedures

2.3 Types of recursive functions

Ch. 3 CURRENT MODELS OF COMPUTATION

3.1 Finite automata

3.2 Push down automata

3.3 Turing machines

Ch. 4 NU AACHI NE

4.1 Definition of NM.

4.2 NM for recursive functions

4.3 NM's for elementary functions

4.4 NM's for elementary procedures

4.5 NM's corresponding to PDA and FA

CONCLUSION

BIBLIOGRAPHY

APPENDICES

A. NM for addition

B. NM for multiplication

1

5

5

6

7

12

12

15

18

23

25

27

28

29

34

39

. 40

Chapter 1

INTRODUCTION

1

r At present THEORY OF COMPUTATION is taught

making use of different models of computation. The following

are the three models in use.

Finite Automata (FA) is a machine capable of

recognizing sets of strings of a particular type called

Regular Languages, Push Down Automata (PDA) is one which

recognizes sets of strings called context Free Languages and.

Turing Machine (TM) is the third one which is capable of

comput~ng all Recursively Enumerable Languages.

But it is clear that all these three models

differ substantially from each other. (For more·details of

FA, PDA and TM see chapter III). So it will be conceptually

very advantageous for both students and instructors if a

uniform model can be obtained for all computations. In this

project an attempt is made to obtain such a model.

The mathematical model which is assayed in

this work can compute all recursive functions(i.e Turing
-

computable functions). It is named as NU - Machine(pronounced

as NEW-machine) and is abbreviated as NM. From what follows,

it can be observed that this model is muctr simpler than ~M

mainly because of its graphical representation. Note that

this model is an extended version of ABACUS machine mentioned

by SHEPHERDSON. Before going into further details, consider

one example of NM for recursive functions and see how it

functions.

INTRODUCTION

2

Every NM is a digraph with labeled nodes and

edges. Nodes are labeled 0,1,2, ... etc and edges are labeled

a, b or e. If there is an 'a' or a 'b' from node A to node B

then add an 'a' or a 'b' to the string in node A and move to

node B respectively .. If the number of a's minus the number of

b's is zero in node A then move through the edge labeled 'e'

to node B without doing anything. The initial . node is

represented by a triangle around that node and the final node

is represented by a circle around that node. (More precise

definition will be given later) .

EXAMPLE

(i) NM for multiplication

3

b

2

a
4

a
1

2

a
b

3

1

0

Initially node 1, node 2, node 3 & node 4

have values 'x', 'y 1 , '0' & 1 0' respectively. (Value

of a node means, the number of a's minus the .number

of b's in that node. Initially there will be a

INTRODUCTION

3

string_ of a's of length x, if the value is x). At the

end of the calculation, node 4 will have the answer

1 x.-y L. T-he description of _the states for the

computation of '2 * 3 1 is as follows.

value of state present
state

1 2 3 4

2 3 0 0 1
1 3 0 0 2
1 2 0 0 3
1 2 1 0 4
1 2 1 1 2
1 1 1 1 3
1 1 2 1 4
1 1 2 2 2
1 0 2 2 3
1 0 3 2 4
1 0 3 3 2
1 0 3 3 3
1 0 2 3 2
1 1 2 3 3
1 1 1 3 2
1 2 1 3 3
1 2 0 3 2
1 3 0 3 3
1 3 0 3 1 - -
0 3 0 3 2
0 2- 0 3 3
0 2 1 3 4
0 2 1 4 2
·o 1 1 4 3
0 1 2 4 4
0 1 2 5 2
0 0 2 5 3
0 0 3 5 4
0 0 3 6 2
0 0 3 6 3
0 0 2 6 2
0 1 2 6 3
0 1 1 6 2
0 2 1 6 3
0 2 0 6 2
0 3 0 6 3
0 3 0 6 1
o· 3 0 6 0

•

INTRODUCTION

4

Before concluding this chapter we will have an

overall look at the distribution of chapters in this thesis.

In _the next chapter Rec~rsive Functions and related

definitions are introduced to avoid the ambiguity in

nDtations and to have a ready reference for the reader. For

easy understanding several examples are included. In

chapter III, FA,PDA & Turing Machine are introduced along

with some examples in a very concise manner. It will be

helpful to compare FA, PDA, and TM with NM - the model which

is studied in very detail in chapter IV along with further

possibilities, like restricting NM to form PDA and then FA .

INTRODUCTION

Chapter 2

RECURSIVE FUNCTIONS

5

r The word 'Recursive ~unction' albeit it is

used in the first chapter, the precise definition and more

details are furnished }n this chapter. The investigation of

these functions is very important ·for the proper

understanding of the remaining part of the work. Moreover,

the notations and definitions used in this chapter may not be

the same as in the literature. Because of the constant use of

these words in the later part of the work, all of them are

defined precisely to avoid confusion. The family of recursive

functions can be further divided into three subfamilies

namely, Primitive Recursive Functions, Total Recursive

Functions, and Partial Recursive Functions. Before going into

the details of the above families, the following basic

definitions have to be looked into. (Note that the domain

and range of all functions are the set of natural numbers.)

2.1 ELEMENTARY FUNCTIONS

The following are the three ·elementary

functions.

(i) Zero Function :

z (x1 ,x2 , ,xn 0

(ii) Successor Function :

S (x) = x' , where x' is the integer next to x in

the natural sequence.

(iii) Identity Function :

Sec. 2.1 RECURSIVE FUNCTONS

6

2.2 ELEMENTARY PROCEDURES

The following are the three elementa~~------

·procedures.

(i) composition

Given a set of functions Gk (x1 ,x2 , ,xn),

k=1,2, m and H(x1 ,x2 , ••••• ,xm), define

F (x1 ,x2 , ,xn) = H (G1 ,G2 , ,Gm).

(ii) Primitive Recursion :

Given two functions G (x 1 ,x2 , ,xn_1) and

H (x 1 ,x2 , ,xn,Y) define F (x1 ,x2 , ..•.. ,xn

as follows.

F(x1 , ,xn_1 ,o

F(x1 , ..•• ,xn_1 ,1

G (x 1 , , xn _1)

(iii) Minimalisation :

Given G(x1 , ..• ,xn,y) we can construct

F(x1 , ,xn) = Min { y 1 G(x 1 , ,xn,y) = 0 } .

If G = 0 is guaranteed then it is Total

Minimalisation else it is Partial Minimalisation .

•
With these definitions, the above mentioned

families of functions can be defined as follows.

Sec. 2. 2 RECURSIVE FUNCTONS

7

2.3 TYPES OF RECURSIVE FUNCTIONS

All functions which are defined using

elementary functions , composition and primitive recursion

are categorised as Primitive Recursive Functions.

If we are using total reinimalisation in the

derivation of a function then that function is included in

the set of Total Recursive Functions.

If we are using partial minimalisation instead

of total min-imalisation then that funcion is a Partial

Recursive Function. •
The following examples will help the reader to

understand the above defined functions without any ambiguity.

EXAMPLES

(i) For defining F(x) = 1 : Constant function

Given G(x) = Z(x) and H(y) = S(y) .

Using composition we ca!"l get·

F(x) = H . G = S(Z(x) = S(O) = 1

(ii) * F(x) = x = x ~ 1 : Proper subtraction.

Given G. = 0 and H(x,y) = u1 (x,y) X

We can get F (.x) using primitive recursion .
F(O) = G = 0

F(1) = H(O,O) = 0

F(2) = H(1,0) = 1

F(x) = H(x-1,x-2) ? x-1

Sec. 2.3 RECURSIVE FUNCTONS

(v)

Sec. 2. 3

Given

H(-x1 ,x2 -,y)- = S(y)-=-y+l----.-

Using primitive recursion we get F(x1 ,x2).

F(x 1 ,o)

F(x 1 ,1)

Multiplication .

Given G(x 1) = o and

= .xl

Define F(x 1 ,x 2) as follows using primitive

recursion.

F(x1 ,o)

F(x1 ,1)

F(x1 ,2)

F(x) = x!

= H(x1,0,0)

= H(x1 ,1,x1)

.
Factorial

= 0

8

Given G = 1 (constant function) and H(x,y)=(x+l)*Y·

Define F(x) as folllws .

F (0)

F(1)

F(2)

F(x)

= G

= H(0,1)

= H(1,1)

-H((x-1),(x-1)!

= 1

1

= 2

= x!

RECURSIVE FUNCTONS

(vi) F(x1 ,x2)

Given

Define

F(x1 ,o)

F(x1 ,1)

F(x1 ,2)

._ x x2
- 1 : Exponentiation

G = 1 and H(x1 ,x2 ,y)

F(x1 ,x2) as follows.

G

= H(x1 ,0,1)

H(x1 ,1,x1)

x2-1
= H(x1 , (x2-1),x1

9

.
= x 1*Y .

= 1

= x1

= X 2
1

(vii) F(x1 ,x2) = x 1 .:. x 2 : Proper subtraction.

* Define G(x1) = x 1 and H(x 1 ,x2 ,y) = y (prdecessor

of y·) for derivi·ng F(x 1 ,x 2) using primitive

recursion.

F(x1 ,o) = G(xi)

F(x1 ,1) = H(x1 ,o,x1)

F(x1 ,x2) = H(x1 ,x2 -1, (x1 - x 2 + 1)) = x 1 - x 2

(viii)F(x1 ,x2) = lx1 - x 2 1 : Absolute diference .

Sec. 2. 3

Given three functions G1 (x 1 ,x 2) = x 1 .:. x 2 ,

. G2 (x1 ,x2) = x 2 .:. x1 and H(x1 ,x2) = x 1+x2 , define

F(x1 ,x2) = H(G1 ,G2) using composition as follows.

= 0

RECURSIVE FUNCTONS

10

: Minimum of two numbers.

Define G1 (x1 ,x2) = x1 and G2 (x1 ,x2) = x 1 £ x 2 . And

then H(x 1 ,-x 2-) = xr __ .:. x 2 ·- for -obtaining -F(x1 ,x2)

using composition.

H(x1 , (x1 .:. x 2)

= xl .!. (xl .:. x2)

x 2 if x1>x2
=

x 1 if x1~x2

•
All of the above defined functions _are

examples of primitive recursive functions. Before seeing few

more final definitions of this chapter,·consider two examples

for total recursive functions.

(i) F (x) = r X~ l Roof of x 112 .

G(x,y) = x .!. y 2 is given. Define F(x) using

minimalisation as follows.

F (x) = Min { y I x .:. y 2 = 0 } (Tot a 1

minimalisation).

(i.e. start putting values for y from 0 and take

the first value of y which makes G(x,y) = 0).

(ii) Ackermann function.

Sec. 2. 3

It is defined in a recursive fashion as follows.

A(O,n) = n+l

A(m,O) = A(m-1,1)

A(m,n) = A(m-1,A(m,n-1))

RECURSIVE FUNCTONS

11

For example,

A(2,n) = A(1,A(2,n-1))

= A(1,A(1,A(2,n-2)))

= A(1,(1, , A(2,0))) and so on until

we have,

A(2 ,n) 2n + 3. •

The following definitions also, are related to

recursive functions and so should be understood.

A recursively enumerable set is the range of a total

function.

A recursive set is a recursively enumerable set whose

complement also is a recursively enumerable set.

•
Set of natural numbers, set of even riumbers

etc. are recursively enumerable-sets. Set of even numbers,

set of odd numbers etc. are recursive sets.

The above definitions will be enough to

understand NM which is given in chapter IV. The next chapter

recalls the definitions of the current models.

Sec. 2. 3 RECURSIVE FUNCTONS

Chapter 3

- CURRENT MODELS OF- COMPUTATION

14

a b a,b

_g b Q a 0
>•

qo q1 q2

(ii)

a

a

b b b

a

a

The above DFA accepts the language

consisting of all strings over {a,b} that contain an

(i) even number of a's and an even number of

b's if 1 is the final state.

(ii) odd number of a's and an even number of b's

if 2 is the final state.

(iii) even number of a's and an odd number of b's

if the final state is 3.

(iv) odd number of a's and an odd number of b's

if 4 is the final state. •
There are three models of FA namely, DFA, Non-

Deterministic Fini·te Automata (NFA) , NFA with f -

transition (f-NFA >~ It can be shown that all these models

are equivalent to each other i.e. all of them accept exactly

Sec. 3.1 CURRENT MODELS OF COMPUTATION

• I

12

r · As mentioned in the first chapter, FA, PDA, TM

are the three models which are generally in use. In this

chapter these models ara studied briefly with examples. It

will be very helpful for the reader to compare these models

with NU-Maohine. Moreover, the examples given for these

current models are the same for NM, which makes the

comparison easy for the reader.

A languag~ recognizer or acceptor determines

whether an input string is in a language· or not. All these

machines process inputs and generate outputs. For example, a

vending machine takes coins as inputs and returns food as

output, a combination lock expects a sequence of numbers and

opens the lock if the input is correct and so on. These

machines can be either Deterministic or Non-Deterministic. In

this section, only deterministic models will be studied.

3.1 FINITE AUTOMATA

These are the machines which accept languages

of a special type called Regular Languages/Regular sets over

a set of symbols called ~he Alphabet ~- Regular sets are

defined as follows.

(i)

(ii)

{€}, {a} for every a € ~are regular sets.

If X and Y are regular

regular sets.

* sets, XU Y, X . Y, X are

(iii) Nothing else is a regular set. •
* Examples of regular sets are {a,b}

{aa,b,ab} and so on. (For more details of closure(*) of a

set, alphabets, regular expressions ... etc see ref[l]) .

Sec. 3.1 CURRENT MODELS OF COMPUTATION

13

Deterministic Finite Automaton (DFA) is a quintuple

M=(Q,L,6,q0 ,F) where,

(-i) .. -- Q is a finite- set of- states,

(ii) L is the alphabet,

(iii) q 0 €Q is a distinguished state known as the 'initial

state '

(iv) F~Q is called the set of 'final or accepting

states', and

(v) 6 : Q x L ~ Q is a total function known as

'transition function'. •
The language accepted by M, denoted by

* L(M) is the set of strings in L accepted by M.

State Diagram of a DFA is a labeled digraph G defined by the

following conditions.

(i) The nodes of G are the elements of Q.

(ii) The labels on the arcs of G are elements of L.

(iii) q 0 is the initial node -> 0 .
(iv) F is the set of final or accepting nodes: each of

them is depicted @ .
(v) There is an arc from node labeled 'a' if

6 (qi,a) = qj.

(vi) For every node qi and symbol a, there is exactly

one arc labeled 'a' leaving qi.

Examples :

(i) The regular expression for the following example is

a*bb*.

Sec. 3. 1 CURRENT MODELS OF COMPUTATION

15.

the same set of languages. The main purpose of e-NFA is to

model a machine in an algorithmic way when a regular

expression is given. -'!'he-f-ol-lowing care -the - N-FA -and e-NFA

respectively for the first example given above.

a b

(Note that the redundant arcs and node are removed without

changing the language) .

€ €

.>] € b € 1 . 8 b 9>~
>4---->;---->:---->•7----->l<====:l __ _:_ __ >>l~~

E E

<-- mfc for a* ----> <for b> * -<-·---mjc for b ---->

See the ref.(l) for a method of making €-NFA

from the given regular expression.

3.2 PUSH DOWN AUTOMATA

Regular languages have been characterized as the

languages generated by regular grammars and accepted by

finite automata. This section presents a clas~ of machines,

The Push Down Automata, that accepts the The context Free

Languaqes(CFL). A CFL is the set corresponding to a context

Sec. 3. 2 CURRENT MODELS OF COMPUTATION

16

Free Gra~mar(CFG). (se~ ref[1J for more details about

grammars). A PDA is a finite state machine augmented with

external memory, called a stack which provides the PDA with

first-in, last-out memory management capability.

A Push Down Automaton is a seventuple M = (Q, ~' r, o, q 0 ,

z0 ,F) where,

(i) Q, L, ~0 & F are same as in the definition of DFA,

(ii) r is a finite state called the 'stack alphabet',

(iii) z0 e r is a particular stack symbol called •start

symbol' and

(iv) o: Q X (L U {€}) X r ~ * subsets of Q x r , is

the 'transition function'. •
Moves of the PDA are defined as follows. The

Pi, l~i~m are states, a € ~' z e r and ai is in * . r , 1~1~m

is that, the· PDA in q with input symbol a and stack symeol z

enter state Pi for any i, replace z by the string ai and

advance the read head (or input head) by one symbol. Note

that the leftmost symbol of ·ai will be the top symbol of the

stack. similarly, o(q,€,z) = {(p1 ,a1), ... , (pm,am)} means that

the PDA in state q, independent of the input symbol being

scanned and with z as the top symbol on the stack, can enter

state Pi and replace z ·by ai for any i, l~i~m. In this case

the read head is not advanced.

Sec. 3. 2 CURRENT MODELS OF COMPUTATION

17

PDA M=(Q,~~r,6,q0 ,z 0 ,F) is Deterministic if,

(i) for each q in Q and z in r, whenever o(q,€,Z) is

--nonempty, --then 6(q,a,-z) is- empty for all a €·-z:: ;-

(ii) for no q in Q , z in r and a in (~ u {€}) does

6(q,a,z) contain more than one element.

Examples :

(i) The following are the transitions for a PDA

(deterministic) which accepts { wcwr 1 w € (0+1)* }

by empty stack (see ref[l]) . Note that the rule

6(q2 ,€,R) = (q 2 ,€) means that the PDA in state q 2

with R the top stack symbol, can erase the R

independently of the input symbol. In this case, the

read head is not advanced, and infact, there need not

be any remaining input.

M = ({q1 ,q2 }, {O,l,c}, {R,B,G}, 6, q, R, ~) where,

6(q1 ,0,R)=(q1 ,BR)

6(q1 ,0,B)=(q1 ,BB)

6(q1 ,0,G)=(q1 ,BG)

6(q1 ,c,R)=(q2 ,R)

6(q1 ,c,G)=(q2 , G)

6(q2 ,0,B)=(q2 , €)

6(q2,€,R)=(q2, €) .

~(q1 ,1,R)=(q1 ,GR)

6(q1 ,1,B)=(q1 ,GB)

6(q1 ,1,G)=(q1 ,GG)

6(q1 ,c,B)=(q2 ,B)

•
An Instantaneous Description (ID) is used to

describe the configuration of a PDA at any instant formally.

If M is a PDA then (q,aw,z~) ~ (p,w,-Ba) if 6(q,a,z)

Sec. 3. 2 CURRENT MODELS OF COMPUTATION

18

contains (p,B) (ref[1]). Define L(M), the language accepted by

'final state' to be { w f(q 0 ,w,z 0) ~ (p,€,a) for some p € F

and a- € I'* } . Define N (M) , the language acc.epted by 'empty

stack (or null stack)' to be { w /(q0 ,w,z 0) ~ (p,€,€) for

some p € Q } •

For FA, the deterministic and nondeterministic

models were equivalent with respect to the language accepted.

The same is not true for PDA. Infact, for { wwR I w € (0+1)*}
.

we have the following nondeterministic PDA and there is no

equivalent deterministic PDA.

M = ({q1 ,q2 }, {0,1}, {R,G,B}, o, q 1 , R, ~)where,

o(q1 ,0,R)=(q1 ,BR)

o(q1 ,1,R)=(q1 ,GR)

o(q2 ,1,G)=(q2 , €)

o(~1 ,0,G)=(q1 ,BG)

o(q1 ,1,B)=(q1 ,GB)

o(q1 ,1,G)={(q1 ,GG), (Q2 ,€)}

o(q2 ,o,B)=(q2 , €) :

o(q1 ,o,B)={(q1 ,BB), (Q2 ,€)}

o(q1,€,R)=(q2, €)­

o(q2,€,R)=(q2, €) •
Equivalence of, acceptance ~y final state and

empty stack and, PDA's and CFL's can be proved. (See ref[1]

for- proof and other details). Note that there are other

variations of PDA such as two-stack PDA, which accepts a

larger set of languages.

3.3 TURING MACHINES

The Turing machine, introduced by Alan Turing,

exhibits many of the features commonly associated with a

modern computer. Its significance for the theory of

Sec. 3. 3 CURRENT MODELS OF COMPUTATION

19

computing is fundamental: 9iven a large but finite amount of

time, the Turing machine is capable of any computation that

___ can be done .by- any mode-r-n d-igital -computer i no matter -how

powerful. A Turing machine is a finite-state machine_in which

a transition prints a symbol on the tape. The tape head may

move in either direction, allowing the machine to manipulate

_the input as many times as desired. The structure of a Turing

machine is similar to that of a finite automaton with the

transition function incorporating these additional features.

A Turing Machine(TM) is a quintuple M (Q 1 L: 1 r I 6 I q 0)

where

(i) Q is a finite set of states, r- is a finite set

called the 1 tape alphabet', r contains a special

symbol B that represents a 'blank'.

(iii) L: is a subset of r-{B} called the 'input alphabet',

(iv) 6 Q :x: r ~ Q :x: r :x: {L, R} is a partial function·,

(v) q 0 € Q is a distinguished state called the-

'start state'. •
The tape of a Turing machine extends

indefinitely in one direcion. The tape position are numbered

by the natural numbers with the leftmost position numbered

zero as shown below.

A computation begins with the tape head in

state q 0 scanning the leftmost position. The input, a string

* from L: , is written on the tape beginning at position one.

Position zero and remainder of the tape are assumed to be

Sec. 3.3 CURRENT MODELS OF COMPUTATION

20

0· 1 2 3

blank. The tape alphabet provides additional symbols that may

be used during computation. A transition consists of three

actions: changing the state, writing the symbol in the square

scanned by the tape head, and moving the tape head. The

transition o(qi,x) = (qj,y,L) means that, the machine in

state qi with an input x, changes the state to qj replacing x

by y and moves the read head to the left square of the tape.

A Turing machine halts when it encounters a

state,symbol pair for which no transition is defined. A

transition from tape position zero may specify a move to the

left of khe boundary of the tape. When this occurs, the

computation is to terminate abnormally. When we say that a
'

computation halts, we mean.that it terminates in a n6rmal

fashion. Turing machines are designed to perform computations

on strings from the input alphabet. A computation begins with

the tape head scanning the leftmost tape square with the

input string beginning at position one. All tape squares to

the right of the input string are assumed to be blank. The

above defined Turing machine is called the standard Turing

machine.

Sec. 3.3 CURRENT MODELS OF COMPUTATION

21

A machine configuration denoted aqiBB where aB

is the string spelled by the symbols on the tape from the

.left..,..hand -boundary to the right·most nonblank symbo-l-. The---­

notation aqiBB ~ rqjaB indicates that the configuration

rqjaB is obtained from aqiBB by a single transition. Turing

machines may be used as language acceptors; a computation

accepts or rejects the input string. Initially, acceptance is

defined by the final state of the computation. A Turing

machine augmented with final states can be defin~~as
.}'ft• ..• _.. ' '

.(IJ 'f"c. "" \
\~ '<· ~9 ~~ ¢'") f1 ~

Let M = (Q, L, r, o, q 0 , F) be a Turing machine. A~~
follows.

a€L* is accepted by final state if the computation of M with

input a halts in a final state. The language of M, L(M), is

the set of all strings accepted by M. •
A language accepted by a Turing machine is

called a recursively enumerable language. If the Turing

machine halts for all input strings, the language is said to

be recursive. The computations of a Turing machine provide a

decision procedure for-membership in a

Examples·

where,

c5 (ql,o = (q 2 ,x,R c5(ql,y = (q4,y,R

c5 (q2,y = (q2,y,R c5 (q2,0 = q 2 ,0,R

c5 (q2,1 q3,y,L c5(q3,o q 3 ,o,L

o(q3 'y = (q3,y,L c5(q3,x (q 1 ,x,R

o(q4,B = (q 5 ,B,R

Sec. 3.3 CURRENT MODELS OF COMPUTATION

22

This TM accepts the language

acceptance of the string 0011 lS as follows.

q 100l1B ~ xq2 011B

~ xoq2 11B ~ xq 3 0y1B

~ q 3 xOy1B ~ xq 10y1B

r- xxq2y1B ~ xxyq 2 1B

~ xxq3 yyB ~ xq 3xyyB

~ xxq1yyB ~ xxyq 4yB

}---- xxyyq4B ~ xxyyBq5

•
Languages can be recognjzed by Turing machine~

without requiring the addition of final states. The

alternative aproach accepts a string if computation generated

by the string causes the Turing machine to halt.

* Let M = (Q, ~, r, 6, q 0) be a Turing machine. A string a f ~

is accepted by- halting if the- computation of M wLth input a

halts.

There are various versions of TM such as

Multitrack machines, NonDeterministic TM, Tw~ way tape

machines, Multitape· machines, Atomic TM, context sensitive

TM. It can be proved that all these machines accept precisely

the recursively enumerable languages.

References [lj

Hopcroft, John E. and Ullman, Jeffrey D. : Introduction

to Automata Theory, Languages and Computation . . Narosac

Publishing'House, 1988, Ed. 2.

Sec. J. 3 CURRENT MODELS OF COMPUTATION

Chapter 4

NU MACHINE

23

r In this chapter, a profound analysis of NM is

made. Before going into details, studying an example will be

useful-. -All-- -the --not-a-tion·s- -and its mean-ings are- gi-ven- in

detail to avoid ambiguity.· At the end, possibilities of

restricting NM to PDA and FA are analysed with examples.

Examples

(i) NM for addition

b

1 ~-~<-------~-J • 2
a

0

Initially node 1 has a value X (remember that

value of a node means, a string of a's of length X)

and node 2 has the value Y. At thi end of the

computation node 2 will have the answer X+Y. As

mentioned earlier, the value of a node is, the

number of a's minus the number of b's ~n that node.

The following table illustrates the transitions of

the machine when, X = 7 & Y = 5. The answer 12

(string of a's of length 12) appears in node 2 when

the machine halts in node o, at the end of the

calculation .

NU MACHINE

24

1 2 present node

aaaaaaa aaaaa 1
aaaaaaab aaaaa 2
aaaaaaab aaaaaa 1
aaaaaaabb aaaaaa · 2
aaaaaaabb aaaaaaa 1
.aaaaaaabbb aaaaaaa 2
aaaaaaabbb aaaaaaaa 1
aaaaaaabbbb aaaaaaaa 2
aaaaaaabbbb aaaaaaaaa 1
aaaaaaabbbbb aaaaaaaaa 2
aaaaaaabbbbb aaaaaaaaaa 1
aaaaaaabbbbbb aaaaaaaaaa 2
aaaaaaabbbbbb . aaaaaaaaaaa 1
aaaaaaabbbbbbb aaaaaaaaaaa 2
aaaaaaabbbbbbb . aaaaaaaaaaaa 1
aaaaaaabbbbbbb aaaaaaaaaaaa 0 (end)

(ii) NM for exponentiation

• 0

1
e a

~ >
2

b
b a

/

4_]-1 1

e
b e b a

C•a 5 :J It .
4 a 5 b 3

Initially nodes 1, 2, 3, 4 & 5 have values

o, Y, X, 0 & o respectively. At the .end of the

calculation the answer xY will appear in node1. The

steps involved are exactly as in the above

example. Now, it is time to define NM and all the

basic machines more precisely.

NU MACHINE

25

4.1 DEFINITION OF NM

An NM is a labeled digraph with the following

-properties.--

(i) There are two sorts of edges - dotted edges and line

edges (i.e. ------- &) .
(ii) Edges are labeled in the form a 1 a , where

a € (L U { e}) and a € L*.

(iii) Two different edges can have the same label.

(iv) Nodes are labeled 0,1,2 ...••

(v) Two different nodes can have the same label.

(vi) There is one initial and one final node.

(vii) Out degree of the final node is zero.

In any node of a machine which accepts a

language, there is a string of symbols taken from an

alphabet. There is a pointer which reads the symbols

according to the rules specified. Initially the pointer will

be at the left end of the string. Meanings of the notations

are as follows. The symbol 'e' represents-the blank. If there

is no symbol from the specified alphabet on the right of the

pointer it means the machine reads 'e'.

aja
If the symbol on the right of the ponter in the

node is 'a' then replace 'a' with the string 'a'

and move the pointer to the right of 'a'.

aja
If the symbol on the right of the pointer in the

node is 'a' then replace 'a' with the string 'a'

and move the pointer to one position left of 'a'.

Sec. 4. 1 NU MACHINE

26

a
If the symbol on the right of the pointer in the

node is 'a' then replace 'a' with 'a' and move

the pointer to one position right .

a
If the symbol on the right of the pointer in the

node is 'a' then replace 'a' with 'a' and move

the pointer to one position left.

We say NM is halted normally if the machine ends in its final

node which is normally Node o. Otherwise, NM is halted

abruptly.

Note that the example given in the first

chapter is an example of NM which computes recursive

functions. NM for recursive functions will be defined later

with some restrictions in the above definition. Albeit the

·definition of NM for recursive functions is sufficient for

designing an NM for accepting a language, more complicated

definiton is needed for easy understanding. NM for the

language { On1n I n ~ 1 , E = {0,1} } is given below.

'?t f------:- ·> . . -... e-----i
: ••.. : 1-

0

Sec. 4. 1

.. . . ./ . . . '
y

1/y 1 L-~~

y

0

NU MACHINE

27

on further restrictions in the above

definition, PDA and FA can be designed for corresponding

languages. This is given- at the end of this chapter-with- an---

example each. Now the definition of NM for recursive

functions is defined. Note that the alphabet is restricted to

{a, b}, there are no dotted edges and no aja labels, and out

degree of every node (other than final node) is - either

one or two.

4.2 NM FOR RECURSIVE FUNCTIONS

An NM is a labeled digraph with the following

properties.

(i) Edges have labels 1 a', ·~· or-'e'.

(ii) Two different edges can have the same label.

(iii) Nodes are labeled o, 1, 2, •••.

(iv) Two different nodes can have the same label.

(v) - There is one initial and one final node.
-

(vi) outdegree of the final node is zero.

(vii) Outdegree of every node (other than final node

is either one or two. •
It can be observed that, the examples which

have been seen before completely agree with the definition.

Meaning of the symbols a, b and e are mentioned in the first

chapter. Change in the value of a node will automatically

affect the other nodes with the same label. Final node is

usually numbered as D. There is no limit for the

Sec. 4.2 NU MACHINE

28

.number of nodes, each node taking values ·from the set of

natural numbers. Let the function to be calculated be

f(xp x 2 r- •• , xn). Initially the va-riable va-lues are-- kept --in

the first n nodes (except 0). Answer can be in any of the

nodes except input nodes which is specified before. If the

output node is one of the input nodes then transfer the

answer· into a node which is not an input·node at the end of

computation. This makes it easier to reuse those nodes.

Answer is given by the absolute difference between the number

of a's and the number of b's in the output node.

Now the existence of NM's for each of the

elementary functions and procedures is shown. The theory

will be clear if· it can be demonstrated how these basic

machines can be interconnected to obtain a machine for a

given function. And then it will be obvious that there exists

an NM for any recursive function.

4. 3 NM' s FOR ELEMENTARY FUNCTIONS

(i) Zero function :

Sec. 4. _3

z

x 3 , ...• ,xn respectively. (Recall that the value x 1

means a string of a's of length x 1). Answer appears

in node z (Note that all non-input nodes have values

zero initially).

NU MACHINE

29

(ii) successor function

s (X) = X

s

a
b

x a e
~--1·-~--:J~>--C!)

. X 0

The input value is put in node x. Then an 'a'

is added to the string in node x and transferrd to

the output node s. The new value will be x+l in node

x itself.

(iii) Identity function

k
~
~

"e

t·
j

Sec. 4. 3

u~ (xl,x2, ,xn) = xk

b k b k b k b j

• • > ·;
e,if e e

a a ' I a
/. ' '

.,..

Ji xl x2 xn

e ..., i i e e
b b b

- 0

•
The value k is put in node k. In each step

of the computation the value gets decreased until the

value of node k becomes zero. When it happens the

ma~hine will be in node xk where the value xk is

kept. Then it transforms the value xk into the output

node i. (Note that all the nodes other than input

nodes have to be initialised i.e. value of those

nodes have to be made zero before the computation

starts).

NU MACHINE

30

4.4 NM's FOR ELEMENTARY PROCEDURES

Before going into the details, make following

machi-nes- which-will -be usefu-l---in--d-efining maGhines for-- the---

elementary procedures. Call them S(x,x1 •,x2-•, ... ,~') and

I(x). Here, each of-the variable in the above functions is a

set of n nodes. s stores the value of each node in x, in the

corresponding node in x 1 •,x2 • ... xm'· The machine,

s is ·given by,

. I
a x2n

xln't;<>--• ··~~:·
• I >-----@

0

The machine I is used for initialisation. It

reduces the value of each node in x to zero. The machine,

I is given by,

b b b

~. 9. Q p
-(!)

0

The above three machiries are needed to restore

the input values at the end of computation when the input

nodes are being used. Here onwards only the names of the

above machines will be used insiead of the entire machine.

This will be clear when we study machines for elementary

procedures which are used in constructing a machine for a

given function. The method of construction will be

demonstrated later.

Sec. 4. 4 NU MACHINE

31

(i) Composition :

Given- a set of functions Gk (x 1 , x 2 , ,xn),

k=1,2, .. ~.,m and H (y1 , y 2 , ,ym), define

F (x 1 , x 2 , ,xn) = H (G 1 , G2 , ,Gm)

NM for composition is given below. Every G

has its own input nodes. So the inputs of F i.e. x 1

to xn are first transformed into the input nodes of

Gi for all i, l~i~n. Input nodes of Gi are denoted by

x 1 i, x 2i, ... ,xni· gi's are the output nodes of Gi's

and Yr's are the input nodes of H. The given machines

are,

-G)-@ ;.-G)-@; ... ;~ & ~

Sec. 4. 4

The following is the machine for composition.

First block initialises the input nodes of Gi's. Then

in the second block each Gi is calculated and the

result -is transferred to Yi as the input of H. Final

node of F will be the flnal node of H and the value

of the function F will be in the output node of H.

b b
a a a

NU MACHINE

32

(ii) Primitive recursion

the second chapter(section 2.2). The given

functions are,

~and~
NM for this procedure is given below.

~·i S(g,y) ~·--~e _____ x_n ______ ~~-e ________________ __
0

•
b

S ((X 1 I 1 • • 1 Xn _ 1
1

) 1 (X 1 1 •. • 1 Xn _ 1)

I(all nodes ot H other
than input nodes)

Sec. 4. 4

X ~------------~--------~ n

b

a

S(x X 11 X 111
) n' n ' n

e

NU MACHINE

33

In the above machine, node 'g' is the output

node of the machine G and node 'h' is the output node

of H. Two machines A and B are interconnected to get

c in the following fashion.

Initial node of C is the initial node of A and

final node of c is the final node of B. The

connection is done by replacing the final node of A

by the initial node of B.

(iii) Minimalisation

Define F(x1 , ,xn) = Min { y I G(x 1 , ... ,xn,y) ·}

where G is a given function. NM for this procedure is

given below.

I(all nodes of G other
than input nodes)

~-----~ar-~-----•1 y

The following example illustrates how to make

machines using above defined machines and how to combine

Sec. 4 .. 4 .NU MAC'HTNF. I

34.

them. The following machine is for the proper subtraction

defined in Chapter II (see example (vii) in Sec. 2.3). This

function is used for calculating I x 1 -x2-l- which is the seventh

example of the above mentioned section.

e k

b

e

e

x~[Q- xl"

b - e

[~11tX2 111
x2 ~

. ::· ~ yt-ob
o- e . h

b -••· a
xl

e
-~

x2~1l-cJb
h y

[5 e

e

Sec. 4.4 NU MACHINE

For defining the function 'absolute

difference' we need the above machine. As explained in

-_Sec.2.3, F(x1 , x 2) = I x1 - x2 - I = -H(G1 r G2 _ ~where, G1 and

G2 are proper subtractions and H(x 1 , x 2) = x 1+x2 . Now, for

getting the machine for F· connect the machines as follows.

Let G1 and G2 be the machine given above with a totally

different set of nodes. Let the input nodes of Gi be xi 1· and

xi 2 . Let the output nodes be g 1 and g 2 . After changing the

nodes as above mentioned, design a machine as follows.

b a
e

e 0

.
where; h 1 and h 2 are the input nodes of H and

the output lx1 - x 2 I will appear in node h 2 .

4.5 NM's CORRESPONDING TO PDA & FA

The machines corresponding to PDA and FA can

be obtained by restricting the definition given in Sec.4.1

as follows.

Sec. 4.5 NU MACHINE

35

36

NM for PDA is defined as NM with the following restrictions.

(i) There are only two sorts of nodes. Node 1 represents

the tape and the-Node- "2- represents the stack·.---

(ii) There are no dotted edges with 'afa' labels. All the

dotted edges have a label 'e' and

(iii) There are no dotted edges from Node 1.

The following machine illustrates the above

definition, which accepts the CFL { wcwR f wE (a+b)* }.

1 1

r

1 : ~:/e e+ : -~- >--___J
• • • • • . 2

0

.....--~/;! ; .. > .. r;~b
L-+--<~ -: :e

L---< 2 : :
b/bb

:e

b

0

l.....--<:~_
:e

"'

2

. ·> ..
e

The following table provides the steps

involved in accepting the string 01clO.

Sec. 4.5 NU MACHINE

37

string in present I
I

node 1 node 2 node !
I

~ 1 I ~01c10 -r I
0~1c10

~ r 2 I

0~1c10 rb~ 1 I
'

01~c10 rb~ 2
01~c10 I

r~b 2
01~c10 rbg ~ 1 I
01c~10

I
rbg ~ 2

01c~10 rb~g 2
01c~10 I rbg ~ 1
00c1~0

I
rbg ~ 2

01c1~0 rb~g 2
01c1-0 rbe ~ 1
01c10~ rbe ~ 2
01c10~ rb- 2

I

01c10~

I
r-b 2

01c10~ re
~ 1

01c10~ re - 2
01c10~ I r - 2
01c10~ -r 2
01c10~ e ~ 0 (end) .

On further restrictions NM for FA can be

defined as follows.

NM for FA is a labeled digraph which have,

(i) no dotted edges,

(ii) no edges with a label of the form 'afa',

(iii) only labels of the form 'a' and

(iv) only one sort of nodes.

The following example illustrates this. This

* * machine accepts the language a bb .
a

b

b

~------~~------------· 1

e

• 0

Sec. 4.5 NU MACHINE

38

It can be observed that the above machine is

almost same as the DFA given in chapter III. Thus, a uniform

mo_d~l_can be used instead of t-h-e. cu-rrent model-s o-f---­

computation.

....1

Sec. 4.5 NU MACHINE

CONCLUSION

39

The purpose of this project was to design a

uniform model for all computations instead of having three

difffernt models. It has been proved by showing the machines

for the elementary functions and procedures, and how to

connect them, that, the NU MACHINE is equally powerful as

Turing machine and is simple to design. Hopcroft says in an

article in Scientific American

'' If one is inclined to try building, say, the Turing

machine that multiplies, one soon begins to appreciate the

difficulties that must be faced in the design of a useful

computer program. Host small Turing machines, namely the ones

with only a few possible states, do not carry out any useful

or even sensible task. ''

Moreover, we could see that NU MACHINE can be

restricted to PDA and FA to have a uniform model for all

computations. Thus, we have,

NM for FA
NM for PDA
NM

with one type of nodes,
with two types of nodes and
with many types of nodes.

Even though, the purpose of the project is

fulfilled, there are much more things t; do like restricting

NM to obtain a model which accepts Context Sensitive

Languages.

To get more clear idea of NM, demonstration

programs -one for addition and one for multiplication are

included in the Appendices A and B at the end of this thesis.

BIBLIOGRAPHY

40

1. Boolos, George and Jeffrey, Richard : Computability and

Logic. Cambridge University Press, 1974, Ed. 1.

2. Hergert, Douglas : Hastering Turbo

Publications, 1989, Ed. 1.

Pascal 5.0. BPB

· 3. Hopcroft, John E. and Ullman, Jeffrey D. : Introduction

4.

5.

to Automata Theory, Languages and Computation. Narosa

Publishing House, 1988, Ed. 2.

Rogers, David F. and Adams, Alan J. Mathematical

Elements of Computer Graphics. McGraw-Hill

Publishing Company, 1990, Ed. 2.

S~dkamp, Thomas _-A. Languages and Machines.

Addison-Wesley Publishing Company, Inc., 1988.

APPENDICES

A.

PROGRAM FOR ADDITION

program ADDITION;
uses crt,graph,grworld;
var

driver,mode:integer;
ch,chl:char;
sizel,size2,x,y,i,temp,il,i2,ans:integer;
ptrl,ptr2:pointer;
nl,n2:array[l .. l00] of char;
i2str,blstr,alstr,a2str:string;

{---~---------------}
procedure CALCULATE;
var

j,na,nb:integer;
begin

na:=O;
nb:=O;

end;

if x=O then ans:=O
else
begin

end;

for j:=l to il do
if nl[j]='a' then na:=na+l
else if nl[j]='b' then nb:=nb+l;

ans:= na-nb;

{--}
function CHECK:boolean;
begin

end;

calculate;
if.ans>O then check:=true
else check:= false;

{--}
procedure DEFINEBALL;
begin

end;

setcolor{l);
circle{l0,20,5);
setfillstyle{l,2);
floodf111{10,20,1);
sizel:=imagesize(2,12,18,28) ;
getmem(ptrl,sizel);
getimage{2,12,18,28 ,ptrl~);
size2:=imagesize{2,30,18,46);
getmem(ptr2,size2);
getimage(2 t30,18,46,ptr2~);
putimage{2,12,ptr2~,normalput);

{--}

procedure MOVELINE;
var

yl,k:integer;
begin

k:-=0;
y1:=107;
·repeat

putirnage(153,yl,ptr2-,norrnalput);
if k=6 then
begin

end;

line(152,117,168,117);
line(168,117,160,105);
line(160,105,152,117);
circle(160,112,3);

line(160,117,160,yl+l);
yl:=yl+2;
putirnage(153,yl,ptrl-,norrnalput);
k:=k+l;

until y1=173;
end;
{--}
procedure MOVECIRCLE;
var

k:real;
xl,yl,kl:integer;

begin
putirnage(155,108,ptrl-,norrnalput);
delay(25);
putirnage(155,108,ptr2-,norrnalput);
line(152,117,i68,117);
line(168,117,160,105);
line{l60,105,152,117);·
circle(160,112,3)~
yl:=l08;
kl:=O;
repeat

putirnage(205,120,ptr2-,norrnalput);
str(il-x,blstr);
outtextxy(205_, 120,blstr);
k:=(l/2)*ln(1600-(yl-80)*(yl-80));
xl:=round(155-exp(k));
putirnage(xl,yl,ptrl-,norrnalput);
yl:=yl-5;
circle(160,80,40);
putirnage(xl,y1+5,ptr2-,norrnalput);
if k1=2 then ·
line(160,117,160,130);
kl :.= kl+l;

until yl<42;

end;

putimage(155,42,ptrl-,normalput);
delay(25); ·
putimage(155,42,ptr2-,normalput);
circle(160,46,3);
circle(160,80,40);
y1:=44;
repeat

putimage(172,35 ,ptr2-,normalput};
str(i2,a2str);
outtextxy(172,35 ,a2str);
k:=(l/2)*ln(1600-(yl-80)*(Yl-80));
xl.:=round(155+exp(k));
putimage(xl,yl,ptrl-,normalput);
yl:=yl+5;
circle(160,80,40);
putimage(xl,yl-5,ptr2-,normalput);

until yl>103;
circle(l60,80,40);

{--~-}
begin

repeat
writeln{'Enter the numbers to be added');
readln(x);
readln(y);
if x>y then
begin

temp:=x;
x:=y;
y:=temp

end;
driver:=l;
mode:=4;

-initgraph(driver,mo4e, 1 b: 1);

setgraphmode(cgac2);
setcolor(l);
defineball;
rectangle(0,0,319,199);
circle(160,80,40);
circle(160,46,3) ;
circle(160,112,3) ;
circle(160,180,3);
circle(160,180,7) ;
line(160,112,160,180);
line{l52,117,168,117);
line(168,117,160,112);
blstr:= 1 1 ;

a2str:= 1 1 i
i2str:= 1 1 ;

· outtextxy(l43,120, 1 1');

end.

outtextxy(155,35, '2');
outtextxy(140,180, '0');
outtextxy(145,140,'1');
outtextxy(105,80 , 'b');
outt~xtxy(215,80 ,'a');
outtextxy(173,120~'[]');
outtextxy(165,35 ,'[,]');
outtextxy(205,120,'0');
outtextxy(195,35 ,'O');
str(x,a1str); .
outtextxy(180,120,a1str);
str(y,a2str);
outtextxy(172,35 ,~2str);
ans:=O;
for i:=1 to 100 do
begin

end;

n1 [i]: =I I ;

n2 [i] :=I I i

for i1:= 1 to x do
n1[i1]:='a';

for i2:= 1 toy do
n2 [i2] :='a' ;

while check do
begin

end;

i1:=i1+1;
n1[i1] :='b';
i2:=i2+1;
n2 (i2] :='a' ;
movecircle;

moveline;
circle(160,180,10);
freemem(ptr1,size1);
freemem(ptr2,size2);
str (i2, i2str); ·
outtextxy(5,190, 'The answer is');
outtextxy(120,190,i2str);
readln;
closegraph;
writeln('Do you want to try more?(y/n] ');
readln(ch);

until ch='n';

B.

PROGRAM FOR MULTIPLICATION

program MULTIPLICATION(input,output);
uses graph,crt,grworld;
{---~------------}
type

.. ch = array. [1..210}- of char; --- --- -- ---
.{--}
var

n1,n2,n3,n4 : ch;
driver,mode,x,y,temp,na,nb,size1,size2,ans,
j1,j2,j3,j4,i: integer;
ch1,a 1 b: char;
ansstr 1 a1str,b1str 1 a2str 1 b2str 1 a3str 1 b3str,a4str:string;
ptr1 1 ptr2: pointer;

{--}
procedure INITIALISE;
var

i:integer;
begin

end;.

for i:= 1 to 210 do
begin

n1[i] :=
n2 [i] . -
n3 [i] : =
n4 [i] : =

I •
I

I •
I

I • ,
I •

I

ansstr:= 1 1 ;

end;

a1str :=
b1str :=
a2str .-
b2str ·-.-
a3str . -.-
b3str . -.-
a4str . -.-

I

I

I

I

I •
I

I • ,
I •

I

I • ,
I •

I
I •

I

{--}
procedure CALCULATE(arr1: ch; jj1:integer);
var

i:integer;
begin

end;

na:=O;
nb:=O;
for i:= 1 to jj1 do

if arr1[i]= 1 a 1 then na:=na+1
else if arr1[i]= 1 b 1 then nb:=nb+1 ;

ans:=na-nb

{---~--------}

function CHECK(arr2~ch;jj2:integer) :boolean;
begin

end-;

calculate(arr2,jj2);
if ans > 0 then check:=true
else check:=false;

{--}
procedure DEFINEBALL; -
begin

end;

setcolor{l);
circle(10,150,5);
setfillstyle(1,2)}
floodfill(10,150,1);
sizel:= imagesize(3,143,17,157);
getmem(ptrl,sizel);
getimage(3,143,17,157,ptrl-);
size2:=imagesize(3,159,17,173);
getmem(ptr2,size2);
getimage(3,159,17,173,ptr2-);
putimage(3,143,ptr2-,normalput);

{--}
procedure MOVLIN(xl,yl,x2,y2:integer);
var

i:integer;
begin

i:=l;
if(xl=x2) or (x1=250) then
begin

end;

putimage(xl,yl,ptr2-,normalput);
xl:=xl-5;
x2:=x2-5;
putimage(xl,yl,ptrl-,normalput)

while (xl<>x2) or (yl<>y2) do
begin

if yl=y2 then
begin

putimage(xl,yl,ptr2-,normalput);
xl:=x1+2;
putimage(xl,yl,ptrl-,normalput);
if i=7 then line(70,70,50,50);
if i>3 then
begin

end
end

setcolor(l);
putpixel(xl-4,yl,l)

end
end;

· else if x1=x2 then
begin

putimage(x1,y1,ptr2-,norrnalput);

end

y1:=y1+1;
- put~i-m-age(x1,y1",ptrl- ,normalput)-;­

if i>3 then
begin

end;

setcolor(1);
putpixel(x1+5,yl-5,1)

if i=7 then
begin

end

circle(150,150,i);
line(140,155,150,140);
line(150,140,160,155);
line(160,155,140,155)

else if ((x1-x2)/(yl-y2))=1 then

i:=i+l

begin
putimage(x1,y1,ptr2-,normalput);
y1:=y1-1;

end

x1:=x1-1;
putimage(x1,y1,ptr1-,normalput);
if i>7 then

line(150,150,x1 ,y1) ;
if i=20 then
begin

line(150,150,150,185);
circle(150,150,3); .
line(140,155,150,140);
line(150,140,160,155);
line(160,155,140,155)

end

else if ((x1-x2)/(yl-y2))=-l then
begin

putimage(xl,yl,ptr2-,normalput);
yl:=yl+l;

end;

xl:=xl-1; .
putimage(xl,yl,ptrl-,normalput);
if i>3 then

line(250,50,x1+5 ,yl)

{---~--------------}

procedure MOVCIR(x5,y5,cx,cy:integer);
var

xx,yy,ix:integer;
begin
- - xx: =x5;

yy:=y5;
repeat

begin

end

ix:=O;
putimage(xx,yy,ptr2~,normalput);

yy:=yy-3;
ix:=400-(yy-30)*(yy-30);
xx:=cx-round(exp(ln(ix)/2));
putimage(xx,yy,ptrl~,normalput);

setcolor(l);
circle(cx,30,20);
if(yy<35) and (yy>30) then
begin

end;

circle(cx,S0,3);
line(50,50,250,50);
line(70,70,50,50);
line(250,50,230,70}

if (yy<20) and (yy>l6) then
circle(30,30,3)

until yy<=ll;
putimage(xx,yy,ptr2~,normalput);
putimage(cx,lO,ptrl~,normalput);
if.x5=50 then
begin

end

putimage(268,65,ptr2~ 1 normalput);
calculate(n3,j3);
str(na,a3str);
outtextxy(267,70,a3str)

else if x5=250 then
begin ..

putimage(292,65,ptr2~,normalput);
calculate(n3,j3);
str(nb,b3str);
outtextxy(291,70,b3str)

end;
xx:=cx;
yy:=lO;
repeat

begin
ix:=O;
putimage(xx,yy,ptr2~,normalput);
yy:=yy+3;

,end;

end

ix:=400-{yy-30)*(yy-30);
xx:=cx+round(exp(ln(ix)/2));
putimage(xx,yy,ptrl-,normalput);
setcolor{l);
circle (ex, 30, 20}; --
if (yy>15) and (yy<19) then
-begin

circle(250,15,3)
end;
if (yy>40) and (yy< 44) then

circle(70,30,3)

until yy>=49;
putimage(xx,yy,ptr2-,normalput);
putimage(cx,50,ptrl-,normalput);
if x5=50 then
begin

end

str(j4,a4str);
putimage(100,2l,ptr2-,normalput);
outtextxy{99,25,a4str)

else if x5=250 then
begin

calculate(n2,j2);
str(na,a2str);
putimage(256,0,ptr2-,normalput);
outtextxy(255,3,a2str)

end;
circle(cx,30,20)

{--}
begin

repeat
writeln('Enter the numbers to be multiplied with an ENTER in be
readln(x);
readln(y);
if y>x then
begin

end;

temp:=y;
y:=x;
x:=temp

clrscr;
driver:=l;
mode:=4;
initgraph(driver,mode, 'b: ');
setgraphmode(CGAC2);
setviewport(0,0,318,199,true);
rectangle(0,0,317,198);
setcolor{l);

initialise;
outtextxy(120 1 5 1 'NU-Machine');
defineball;
circle(150 1 185 1 3);
circ-le (50_ , 50 , 3). ;
circle(30 1 30 1 3);
circle(70 1 30 1 3);
circle(250 1 50 1 3);
circle(250 1 15 1 3);
circle(l50 1 150 1 3);
setfillstyle(1 1 1);
floodfill(150 1 185 1 1);

· floodfill(50 1 50 1 1);
floodfill(30 1 30 1 1);.
floodfill(70 1 30 1 1);
floodfill(250 1 50 1 1);
floodfill(250 1 15 1 1);
floodfill(150 1 150 1 1);
circle(150 1 185,7);
circle(50,30,20);
circle(250 1 30,20);
line(150,150,150,185);
line(150,150,50 ,50 } ;
line(50,50 1 250,50);
line(250,50,150,150);
line(140 1 155 1 150,140);
line(l50,140,160,155);
line(160,155,140,155);
outtextxy(173,150 1 '1[,0] '); ·
putimage(188,147,ptr2~,normalput);
str(x,alstr);
outtextxy(188,150,a1str);
outtextxy(35 ,63,!2');
outtextxy(3,30, '3');
outtextxy(84,25, '4[0 ,o]');
outtextxy(252,70,'3[0 ,0] ');
outtextxy(240,3,'2[,o]');
putimage(255,0,ptr2-,normalput);
str(y,a2str);
outtextxy(255,3,a2str);
outtextxy(165,185, 'O');
outtextxy(80,100,'b');
outtextxy(180,100, '1');
outtextxy(140,40, '1');
outtextxy(285,30,'a');
outtextxy(215,30,'b');
outtextxy(20,42, 'b');
outtextxy(55,33, 'a');
outtextxy(55,1, 'a');
outtextxy(160,165,'1');

j3:=0; j4:=0;
for j1:= 1 to x do

n1 [j 1] : = 1 a 1
;

for j2:= 1 to y do
n2 [j 2] : = I ~ I j

readln;
while check(n1,j1} do
begin

end;

j1:=j1+1;
, n1 [j 1] :=I b I j
putimage(211,150,ptr2-,normalput);
str(j1-x,b1str);
outtextxy(210,150,b1str);
movlin(150,150 ;50 ,50);
for i:=1 to 4 do

putpixel(154-i,146+i,1};
while check(n2,j2) do
begin

end;

j2:=j2+1;
n2 [j 2] :=I b I j
j3:=j3+1; '
n3 [j 3) : = 1 a 1 ;

'j4:=j4+1;
n4[j4]:= 1 a 1

;

putimage(279,3,ptr2-,normalput);
calculate(n2,j2);
str(nb,bistr);
outtextxy (,278, 3, b2str);
movcir(50,50,50,30);

movlin(50,50 ,250 ,50);
circle(50 ,50 ,3};
s~tcolor(1);
for i:=1 to 7 do­

putpixel(57-i,57-i,1);
while check(n3,j3) do
begin

end;

j 3: =j 3+1;
n3[j3] := 1 b 1 ;'

j2:=j2+1;
n2 [j 2] : = 1 a 1

;

movcir(250,50,250,30);

line(50,50,250,50);
movlin(250,50 ,150 ,150);
circle(250,50 ,3);
setcolor(1);,
for i!=1 to 7 do

putpixel(243+i,50,1);

putirnage(140,178,ptr2-,normalput);
rnovlin(i50,150 ,150 ,180);
line(150,150,150,180);
circle(153,187,7);
calculate(n4,j4);
st::r (ans, anss.tr) ;
outtextxy(5,190, 'The answer is ');
outtextxy(120,190,ansstr);
freernern(ptr1,size1);
freernern(ptr2,size2);
readln;
closegraph ;
write('Do you want to try more ?[y/n) ');
readln(ch1);

until ch1= 'n';
end.

. . . .,

	TH36390001
	TH36390002
	TH36390003
	TH36390004
	TH36390005
	TH36390006
	TH36390007
	TH36390008
	TH36390009
	TH36390010
	TH36390011
	TH36390012
	TH36390013
	TH36390014
	TH36390015
	TH36390016
	TH36390017
	TH36390018
	TH36390019
	TH36390020
	TH36390021
	TH36390022
	TH36390023
	TH36390024
	TH36390025
	TH36390026
	TH36390027
	TH36390028
	TH36390029
	TH36390030
	TH36390031
	TH36390032
	TH36390033
	TH36390034
	TH36390035
	TH36390036
	TH36390037
	TH36390038
	TH36390039
	TH36390040
	TH36390041
	TH36390042
	TH36390043
	TH36390044
	TH36390045
	TH36390046
	TH36390047
	TH36390048
	TH36390049
	TH36390050
	TH36390051
	TH36390052
	TH36390053
	TH36390054
	TH36390055
	TH36390056
	TH36390057
	TH36390058
	TH36390059
	TH36390060
	TH36390061
	TH36390062
	TH36390063
	TH36390064
	TH36390065
	TH36390066

