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Chapter 1

INTRODUCTION



I At present THEOR\? OF COMPUTATION is Vtaught
making use of different models of éomputation. The following
‘are the three models in use. o

Finite Automata (FA) is a machine capablg of
recognizingvsets of strings of a particular type called
Regular Languages, Push Down Automata (PDA) is one which
recognizes sets of strings called Context Free Languages and,
Turihg Machine (TM) is the third one which is capable of
computing all Recursively Enumerable Languages.

But it is clear that all these three mbdels.
.differ substantially from each other. ( For more- details of
FA, PDA and TM see chapter III). So it will be conceptually
very advantageous for both students and instructors if a
uniform model can be obtained for all computations. In this
project an attempt is made to obtain such a model.

The mathematical model which is assayed in
this work can compute.all recursive functioﬁs(i.e Turing
cdmputablé functions). Ig is named as NU - Méchine(pronounced
as_NEW—machine) and is abbreviated as NM. From what follows,
it can be observed that this model is much simpler than TM
mainly because of its graphical representation. Note that
this model is an extended version of ABACUS machine mentioned
by SHEPHERDSON. Before going into further details, consider
one example of NM for recursive functions and see how it

functions. -
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Ever? NM is a digraph with»labeled.nodes and
edges. Nbdes are labeled 0,1,2,...etc and edges are labeled
a, b or e. If thefe,is an 'a' or a 'b' from node A to node B
then add an 'a' or a 'b' to the string in node A and move to
nbde B respectively.. If the number of a's minus the number of
b's is zero in node A then move through the edge labeled 'e!'
to node B without doing anything. The initial . node is
represented by a triangle around that node and the final node
is represented by a circle around that node. (More precise

definition will be given later).

EXAMPLE
(1) NM for multiplication :
a 2
3 4 !
n a
b a b Y
1
! S —
b
< 6 <
1
0
Initially node 1, node 2, node 3 & node 4
have values 'x', 'y', '0' & ‘'O respectively. (Value

of a node means, the number of a‘s minus the number

of Db's in that node. Initially there will be a
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string of a's of length,x, if the value is x). At the

node 4 will have the answer

end of the calculation,

states

The'description

the

for

the

of .

- .l X.y L_a
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Before concluding this chapter we will have an
overall look at the distribution of chapters in this thesis.
In .the next chapter Recursive Functions and related
definitions are introduced to avoid the ambiguity in
notations and to have a ready reference for the reader; For
easy understanding several examples are included. In
-chapter III, FA,PDA & Turing Machine are introduced along
with some examples in a very concisé manner. Ié.will be
helpful to compare FA, PDA, and TM with NM - the model which
is studied in very detail in chépter IV along with further

possibilities, like restricting NM to form PDA and then FA .

o
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Chapter 2

RECURSIVE FUNCTIONS



-I The word 'Recﬁrsive Function' albeit it is

used in the first chapter, the precise definition and more

-details are furnished in this chapter. Thé investigation of
these functions is very importanﬁ'for the proper
understanding of the remaining part of the work. Moreover;
the notations and defiﬁitions used in this'chapter may not pe
the same as in the literature. Because of the constant use of
these words in the later part of the work, all of them are
defined precisely to avoid confusion. The family of recursive
functioﬁs can be further divided into three subfamilies
namely, Primitive Recursive Functions, Total Recursive
Functions, and Partial Recursive Functions. Before going into
the details of the above»families, the following basic
definitions have to be 1looked into. f Note that the domain

and range of all functions are the set of natufal numbers. )

2.1 ELEMENTARY FUNCTIONS -

The following are the threefelementary
functions.
(1) Zero Function :
=0 ¥ x:'s.,
(ii) Successor Function :
S (x) = x' , where x' is the integer_next to x in
the natural sequence.
(iii) Identity Function :

n : .
Uk (Xl,Xz,°...,xk_l,xklxk+l,....,}(n ) = Xke

Sec. 2.1 ) i - RECURSIVE FUNCTONS



2.2 ELEMENTARY PROCEDURES

The following are the three elementa{y

- procedures.

(1) Composition :
‘Given a set of functions Gy (XqrXpsoeons 'Xn)'
k=1,2,....m and H(xi,xz, ..... ,xmj, define
F (Xl'le ...... ' Xn ) = H (G{,Gy,.-.-- +Gp )
(ii) Primitive Recursion :
Given two functions G ( XysXgpeeaonos 1 Xp-1 ) and
H ( X3,X5,0.... /XY ) define F ( xl;xz,..s..,xn }
as follows.
F(Xq,ee200Xpo1+0 ) = G(Xq,evve,Xp_q) = Gg
F(Xl"""xn—l'l ) = H(Xl"‘°"xn—1'O'G0) = Gq
F(xl,;...,xn_l,xn) = H(xl"""xn—l'xn-l'Gx;l) .
(iii) Minimalisation :
Given G(xl,...,xn,y) we can construct
F(Xqreeeenn 1 Xp) = Min { y / G(xl,....,xﬁ,y)'= 0 }.
If G = 0 is guaranteed then it is Total

Minimalisation else it is Partial Minimalisation.
[ |
With these definitions, the above mentioned

families of functions can be defined as follows.

Sec. 2.2 : RECURSIVE FUNCTONS



2.3 TYPES OF RECURSIVE FUNCTIONS

All functions which are defined using
eléméntéry_functions , composition and primitive recursion
are categorised‘as Primitive Recursi&e Functions.

If we are using total minimalisation in the
derivation of a function then that function is included in
the set of Total Recursive Functions.

If we are using partial minimalisation instead
of total minimalisation then that funcion is a Partial
Recursive Function. ' ' _ N

The following examples will help the reader to

understand the above defined functions without any ambiguity.

EXAMPLES
(1) For defining F(x) = 1 : Constant function
Given G(x) = Z(x) and H(y) = S(y)
Using composition we can get-
F(x)=vH.Gv=S(Z(x))=S(O) -1 .
(ii) F(x) = x* = x=+1: Proper subtraction.
Given G = 0 and H(x,y) = Uy (x,y) = %

We can get F(x) using primitive recursion

F(0) =G =0
~F(1) = H(0,0) =0
F(2) = H(l,O) =1
F(x) = H(x-1,x-2) = x-1 .

Sec. 2.3 V ' _RECURSIVE FUNCTONS



(iii) F(xg,%5) = xq + X5 Addition .

. H>(_X'1"X'2"Y)-'= S(y).w:_y.(...l_.ﬂ. R e e e e e

Given G(xq) = Uj(xq) = x; and

Using primitive recursion we get F(x;,X,).

F(xl,O) = G(x7) = X3
F(xl,l)- = H(xl,o,xl) = x1+1
F(xl,xz) = H(xl,xz-l,x1+(x2—1)) = Xq+X,

(iv)  F(Xq,%y5) = %1*x%, : Multiplication .
Given G(xq) =0 and H(x;,%X5,Y) = X531y

" Define F(x,,%,) as follows using primitive

recursion.
F(xl,O) = G(xl) =0
F(xl,l) = H(xl,0,0) = Xq
F(x1,2) = H(xl,l,xl) = 2%,
F(xl,xz) = H(xl,(xz—l),(xz—l)*xl)= Xq %X,

(V) - F(x) = x! : Factoriél .
Given G = 1 (constant function) and H(x,y)=(x+1)¥y.
Define F(x) as folllws
F(0) =G = 1
F(2) = H(1,1) = 2
F(x) = H( (x-1),(x=-1)! ) = x! .

Sec. 2.3
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X2 .  Exponentiation .

(vi) F(xq,X%X,) = %X;
Given G =1 and H(X;,X,,Y) = X3*Y

Define F(x,,X,) as follows.

F(xq,0) =G = 1
F(xq1,1) = H(x4,0,1) ' = X3
F(xq,2) = H(x;,1,%;) | = %2
F(xl,xz) = H(xl,(xz-l),x1 ) = Xq -
(vii) F(x;,%,) = %x; * x, < Proper subtraction.

Define G(xq) = x; and H(xl,xz,y) = y* (prdecessor
of y) for deriving F(x,,X;) using primitive

recursion.

F(x,,0) = G(xq) = X;
F(xq,1) = H(xy,0,%x7) = =x; -1

F(X1,X2) = H(xl,x_z-l,(x1 - x, t 1))

i =X; " X3 O
(viii)F(xy,%,) = |x; - %,| : BAbsolute diference .
Given three fupctions Gy(xq,%Xy) = %X, = 32,

Gy (Xq,%y) = X, = x; and H(xqy,Xy) = X +%X, , define

F(x,,%,) = H(Gi,GZ) using composition as follows.

F(xy,%5) = H( (xq = X5) (X5 = Xq) )
X, if X >X,
=| 0 if X=X,

Xy — X, if X1 <X,

Sec. 2.3 ’ - RECURSIVE FUNCTONS
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(ix). F(Xq,Xy) = Min (%y,%,) Minimum of two numbers.
Define Gy (%q,%,) = xl_'and G,(Xq,Xy) = X; * X,. And
e thenuH(xlfxzj = Xyt Xy for -obtaining -F(x{,X,)
using composition. | '
F(xq,%5) = H( xq, (% * X5) )
=X * (x1 = xz) |
Xy 1if x>%,

Xq if x12x2

All of the above defined functions are
examples of primitive recursive functions. Before seeing few
more final definitions of this chapter,  consider two examples

for total recursive functions.

(1) F(x) = | x5 | : Roof of xt/2,

G(x,y) = x < y2 is given. Define F(x) using
minimalisation as follows.

F(x) = Min { y / % * §2 = 0 } (Total
minimalisation).

(i.e.‘start putting values for y from 0 and take
the first value of y which makes G(x,y) = 0 ).

(ii) Ackermann function.

It 1is defined in a recursive fashion as follows.

A(0O,n) = n+1
A(m,0) = A(m-1,1)
A(m,n) = A(m-1,A(m,n-1))

Sec. 2.3 ~ RECURSIVE FUNCTONS
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For example,

A(2,n) = A(1,A(2,n-1))

A(1,A(1,A(2,n-2)))

A(1,(1,...., A(2,0))....) and so on until

we have,
A(2,n) = 2n + 3. , u

The follo&ing definitions also, are related to
recursive_functions and so should be understood.
A :ecursively enumerable set is the range of a total
function.
A recursive set is a recursively enumerable set whése
éomplement also is a recursively enumerable set.
| |
Set of natural'ﬁumbers, set ofheven numbers
_ etc. are recursively enumerable-sets. Set of even numbers,
set of odd numbers etc. are recursive seté?
| The above definitions will be enough to

understand NM which is given in chapter IV. The next chapter

—

recalls the definitions of the current models.

- Sec. 2.3 » ' RECURSIVE FUNCTONS
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Qo q3 q3
(ii)
a
1 -~ 2
a
N
A
b[ “1b b b
Y Y
l a
3 < 4
a

The above DFA accepts tpe language
consisting of all strings over {a,b} that:contain_an
(i) even number of a's and an even numbér of
b's if 1 is the final state.
(ii) odd number of a's ané an even ﬁumper.of.b's
if 2 is the final state.
(iii) even number of a's and an odd number of.b's
if the final state is 3.
(iv) odd number of a's and an odd number of b's
if 4 is the final state. » n
There are three‘modeis of FA namely, DFA, Non-
Deterministic Finite Automata ( NFA ), NFA vwith € -
transition ( €-NFA ). It can be shown that all these models

are equivalent to each other i.e. all of them accept -exactly

Sec. 3.1 . ) CURRENT MODELS OF COMPUTATION
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_ I : - As mentioned in the first chapter, FA, PDA, TM:
are the three models which are génerally in use. In this
chapter ﬁhese models are studied briefly with examples. It
will be very helpful for the reader to: compare these models
with NU—Machine. Moreover, the examples given for these
current models are the same for NM, which makes the
comparison  easy for the reader.

A'language recognizer or acceptor determines
whether an input string is in a language or not. All these
machines process inputs and generate outputé. For example, a
vending machine takes coins as inputs and returns food as
output, a combination lock expects a sequence of numbers and
opens the lock if the input is correct and so on. These
machines can be eifher Deterministic or Non-Deterministic. In
this section, only deterministic models will be studied.

3.1 FINITE AUTOMATA

- - These are the machines which accept lan§ﬁages
of a special type. called Regular Languages/Regular sets over
a set of symbols called the Alphabet Z. Regular sets are
defined‘as follows. /

(1) ¢ , {€}, {a} for every a € I afe fegular sets.
(ii) If X and Y are regqular sets,>X Uy, X .Y, x* are
: régular sets.
(iii) Nothing else is a regular set. ‘ -
Examples of regular sets are {a,b}* '

{aa,b,ab} and so on. (For more details of closure(*) of a

set, alphabets, regular expressions...etc see ref[1l] ).-

Sec. 3.1 - CURRENT MODELS OF COMPUTATION
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peterministic Finite Automaton (DFA) is a quintuple
M=(Q,2,6,qo,F) where,
. (i);A-Q is-a finite- set of states, S
(ii) ¥ is the alphabet,
(1ii) gpeQ is a distinguished étate known as the 'initial
'state ',
(iv) FE€Q is cailed the set of 'final or accepting
states', and
(v) 6§ : 0x X —Q is a total function known ‘as
'transition function'. -
The language accepted by M, denoted by
L(M) is the set of strings in =¥ accepted by M.
State Di&qram of a DFA is a labeled digraph G defined by the
"following conditions.
(1) The nodes of G are the elements of Q.
(ii) The labels on the arcs of G are elements of I.
(iii) dg is the initial node —>().
‘kiv) 'F is the set of final o£ accepting nodes: each of

them is depicted <::>.

(v) There is an arc from node g; to d5 labeled 'a' if
8 (qila) = qj'

(vi) For every node q; and symbol a, there is exactly
one arc labeled 'a' leaving gqj-

Examples

(1) The regular expression for the following example is

a*bb*.

- Sec. 3.1 CURRENT MODELS OF COMPUTATION



15

the same set of languages. The main purpose of €-NFA is to
model a machine in an algorithmic way when a regular
.~ expression is given. -The-following -are -the -NFA-- -and €-NFA

respectively for the first example given above.

a b
< <
b
-_ >
dp d,

( Note that the redundant arcs and node are removed without

changing the language ).

€ €
€ 2 a 3 € € b € € 8 b 9 ¢
—> > > > >e >e > > > >
1 I l 4 5 6 7 I ‘ 10
< <
€ ' €
<—— mf/c for a* > <for b>  <—m/c for b*—;f———>

See the ref.[1] for a method of making €-NFA
from the given regqular expfession.

3.2 PUSH DOWN AUTOMATA

Regular‘languages have been charécterized as the
languages generated by regular grammars and accepted by
finite automata. Thisvsection presents a class of machines,
The Push Down Automata, that accepts the The Context Free

Languages (CFL). A CFL 1is the set corresponding to a Context

Sec. 3.2 CURRENT MODELS OF COMPUTATION
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Free Grammar(ch). (see ref[]] for more details about
grammarS). A PDA is a finite state machine augmented with
external memory, called a stack which provides the PDA with

first-in, last-out memory management capability.

A.Push Down Automaton is a séventuple'M =(Q, £, I', § 4gq,
AZO,F) where,
(1) Q, Z, 9y & F are same as in the definition of DFA,
(ii) T is a finite state called the 'stack alphabet'’,
(iii) Zp €T is a 'particular stack symbol called 'start
symbol' and
(iv) 6: Q X (S U {€}) X T —> subsets of Q x I'* , is

the 'transition function'.’ , =

Moves of the PDA are defined as follows. The
interpretation of 6(q,a,z)={(pl;dl),...(pm,am)} where g and

. . . * .
Pi. 1<i1<m are states, a € £, z € I and @; 1s 1in r, 1<i<m

is that; the PDA in g with input symbol a and stack symbol z

enter state p; for any i, replace z by the string a; and

advance the read head (or input head) by one symbol. Note
that the leftmost symboliof di will be the top symbol of the
stack. similarly, §(qa,€,2) = {(Py,aq)s+++,(Pp,ay)} means that
the PDA in state q, independent of the input symbol being
scanned and with z as the top symbol on the stack, can enter
state p; and replace z'by'ai for any i, 1<i<m. In this case

the read head is not advanced.

Sec. 3.2 ’ CURRENT MODELS OF COMPUTATION
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PDA M=(Q,%Z,T,68,dq,%4,F) is Deterministic if,
(i) for each q in Q and z in I', whenever §(q,€,z) is
- — —-nonempty, -then §(q,a,z) -is empty for all a €¢I 7
(ii) forne qq in Q , z in I and a in (2 U {é}) does
§(qg,a,z) contain more than one element.
Examples : |
(i) The following are the trahsitions for a PDA
(deterministic) which accepts { wewt [ w e (0+1)* }

by empty stack ( see ref[l] ). Note that the rule

»6(q2,€'R)

with R the top stack symbol,

(d,,€) means that the PDA in state g,
can erase thg R
independently of the input symbol. In this case, the
read head is not advanced, and infact, there need not
be any remaining input.

M = ({93,495}, {0,1,c¢}, {R,B,G}, &, q, R, &) where,

§(d7,0,R)=(q;y,BR)
6(q,,0,B)=(q,,BB)
§(a1,0,G)=(qy,BG)
§(q1,¢,R)=(q,,R)

§(dy,c,G)=(d,, G)
§(d5,0,B)=(q,, €)

6(q2161R)=(q21 6)

6(d7,1,R)=(q;,GR) :

6(q1:1:B)=(q1:GB)
5(qller)=(qltGG)

§(q;,,c,B)=(q,,B)

6(d5,1,G)=(dy, €)

An Instantaneous Description (ID) is used to

describe the configuration of a PDA at any instant formaily.

If M 1is a PDA then (q,aw,za) |— (p,w,Ba) 1if 6&(q,a,z)

Sec. 3.2 CURRENT MODELS OF COMPUTATION
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contains (p,B)(ref[l])._Define L(M), the language accepted by
}final state' to be { w /(qo,w,zo) — (p,€,a) for some p € F
and a € r* }. Define N(M), the lénguage accepted by ‘'empty
stack (or null stack)' to be { w /(qy,%,2y) F— (p,€,€) for -
some p € Q }. | |

For FA, the deterministic and nondeterministic
models were equivalent with respect to the language accepted.
The sahe:is not true for PDA. Infact, for { wwk /] W € (0+1)*}
.we have the following nondeterministic PDA and there is no

equivalent deterministic PDA.

M= ( {qllqz}r {0,1}, {R,G,B}, §, dq. R, ¢ ) where,

6(q;,0,R)=(qq,BR) : 6§(d1,1,G6)={(97,GG),(Qy,€)} :
6(q1fl,R)=(q1.GR) : §(d,,0,B)=(qy, €) :
§(ay,1,6)=(ay, €) ¢ 8(dy,0,B)={(d;,BB), (Qy,€)} :
§(dqy,0,G)=(qy,BG) : §(ay,€,R)=(dy, €)
§(d,,1,B)=(q,,GB) :  &(95,€,R)=(gy, €) : | =

Equivalence of, acéeptance by final state and
empty stack and, PDA's and CFL's can be proved. (See ref[1l]
for proof and other details). Note that there ére other
variations of PDA such as two—stack PDA, which accepts a
larger set of languages.

3.3 TURING MACHINES

The Turing machine, introduced by Alan Turing,
exhibits many of the features commonly associated with a

modern computer. Its significance for the theory of

Sec. 3.3 - CURRENT MODELS OF COMPUTATION
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computing is fundamentalz given a large but finite amount of -
time, the Turing machine is capable of any computation that
..can be done by.any modgrn digital»computer;-no matter -how
powerful. A Turing machine is a finite-state machine in which
'a-transition prints a symbol on the tape. The tape head may
move in-either direction, allowing the machine to manipulate
the input as many times as desired._The structure of a Turing
machine is simiiar to thatvof a finite automaton with the

transition function incorporating these additional features.

A Turing Machine(TM) is a quintuple M= (Q, Z, F,'S,'qo )
where |
(1) Q is a finite set of states, I'is a finite set
| called the"tape_alphabet', I' contains a special
symbol B that repreéents a 'blank'.
(iii) ¥ is a subset of I'-{B} cailed the 'input alphabet',
(iv) 6§ : QxT — QxT x {L,R} is a partial function,
(v) “ﬁo € é is a distinguished state <called the
'start state!'. : _ n
The tape of a Turing machine extends
indefinitely in one direcion. The tape position are numbefed
- by the natural numbers with the leftmost position numbered
zero as shown below.
A computation begins with the tape head in
state g, scanning the leftmost position. The input, a string
from E*, is written on the tape beginning At position one.

Position =zero and remainder of the tape are assumed to be

Sec. 3.3 _ ) CURRENT MODELS OF COMPUTATION
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blank. The tape alphabet ppovides additional symbols that may
be used during computation. A transition cqnsists of three
acfions: changing the state, writing the symbol in the square
scanned by the tape head, and moving the tape head. The
transition §(qj,x) = (qj,y,L) means that, the machine 1in
state q; with an input x, changes the state to 3 replacing x
by y and moves the read head to the left square of the tape.
A Turing machine halts when it encounters a
state,symbol pair for which no transition is defined. A
transitioh from tape position zero may specify a move to the
left of the boundary of the tape. When this occurs, the
| computation is to terminate abnormally. When we say that a
computation halts, we mean,tﬁat it terminétes in a normal
fashion..Turing machines are designed to perform . computations
on strings from the input alphabet. A computétioh begins with
the tape head scahning the leftmost tape séuare with the
input string beginning at position one. All tape squares'to
the right of the input string are assumed to be blank. The

above defined Turing machine is called the standard Turing

machine.

Sec. 3.3 CURRENT MODELS OF COMPUTATION
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A machine configuration denoted aq;BB where af

is the string spelled by the symbols on the tape from the

~left=hand boundary- to the rightmost nonblanksymbol. The—

notation ag;BB }— Tq40B indicates that the configuration
quoB is obtained from aq;BB by a single transition. Turing
machines méy be used as language acceptors; a computation
accepts or rejects the input string. Initially, acceptance is
defined by the final state of the computation. A Turing
maéhine augmented with final states can be defi@%@ﬁgg
follows. 2 % B )

: . E?ﬁ ‘%»ﬁj
Let M = (Q, £, T, é§, g3, F) be a Turing machine. A’§ﬁn?;§£
qez* is accepted by final state if the compﬁtation bf M Q&th
input. « ﬁalté in a final state. The language of M, L(M), is
the’se£ of all strings accepted by M. -

'A language accepted by a Turing machine is

~called a recursively enumerable language. If the Turing

machine halts for all input strings, the language is said to
be recursive. The computations of a Turing machine provide a

decision procedure for membership in a recursive languagqg
o

Examples : ' : 53(33'06
— | vS9
(i) M= ( {qI:QZ{Q3:q4:q5};{O:1}, {OlllXIYIB}I 61 qOI Eq5} )

where,
§( 97,0 ) = ( 9y,%,R ) = §( 97,¥Y ) = ( dq,¥,R )
8 ( 9>,y ) = ( qZIYIR ) ¢ §( q2,0 ) = ( qzrorR )

§( 95,1 ) = ( d3,Y.,L ) §( 93,0 ) = ( 95,0,L )

§( az,x ) = ( 91,%x,R )

$( g:;:y ) = (93,y,L )

6( Q4:B ) = ( q5,B,R ) :

Sec. 3.3 ' CURRENT MODELS OF COMPUTATION
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This TM-éccepts the language { o™™ , n > 1 }. The

acceptance of the string 0011 1is as follows.

q,0011B }— xg,011B

— xoq2113 — xq;0y1B
F— g;x0y1B |— kqlole
b— xxg,Y1B |— xxyq,1B
F— xxq;yyB |— xquyﬁ'B
— xxq,YyB }— xxyq,yB
— xXyyquB |— xxyyBgg

Languages can be recognized by Turing machines
without requiring the addition of final states. The
alternative aproach accepts a string if computatién generated
by the string causes the Turing machine to halt. |
Let M = (Q, 2, T, §, qo) be a Turing machine. A string a € ™
is accepted by halting if the;compﬁtation of Mvwith input a
halts.

There are varioﬁs versions of TM such as
Multitrack machines,.NonDete:ministic TM, Two way tape
machines, Multitape'machines, Atomic TM, Context sensitive
TM. It can be proved that all these machines accept precisely

-

Hopcroft, John E. and Ullman, Jeffrey D. : Introduction

the recursively enumerable languages.

References : [1]

to Automata Theory, Languages and Computation. _Narosa:

Publishing ‘House, 1988, Ed. 2.
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In this chapter, a profound analysis of NM is

made. Before going into details, studying an example will be

useful- -All- the -notations -and its meanings are-given»ini

detail to avoid ambiguity.- At the end, possibilities of

restricting NM to PDA and FA are analysed with examples.

Examples

(1)

NM for addition :

A

Initially node 1 has a value X ( remember that
value of a node means, a string of a's of length X )

and node 2 has the value Y. At the end of the

computation node 2 will have the answer X+Y. As

mentioned earlier, the value of a node is, the
number of a's minus the number of b's in that node.

The following table illustrates the transitions of

the machine when, X = 7 & Y = 5. The answer 12

(string of a's of length 12) appears in node 2 when
the machine halts in node 0, at the end of the

calculation .

NU MACHINE



|present node

1 2
aaaaaaa |aaaaa 1
aaaaaaab aaaaa 2
aaaaaaab ‘aaaaaa 1
aaaaaaabb aaaaaa - 2
aaaaaaabb aaaaaaa 1
aaaaaaabbb aaaaaaa 2
aaaaaaabbb aaaaaaaa 1
aaaaaaabbbb aaaaaaaa 2
aaaaaaabbbb aaaaaaaaa 1
aaaaaaabbbbb aaaaaaaaa 2
aaaaaaabbbbb aaaaaaaaaa 1
aaaaaaabbbbbb aaaaaaaaaa 2
aaaaaaabbbbbb . aaaaaaaaaaa 1
aaaaaaabbbbbbb aaaaaaaaaaa 2
aaaaaaabbbbbbb . aaaaaaaaaaaa 1
aaaaaaabbbbbbb aaaaaaaaaaaa 0 (end)

(ii) NM for exponentiation :
0
[§>, a € E
Y
b
b - E a
‘ <
1 4
E >
b e Y a b *
< > ®
3 .
a -
4 a 5 b 3

Initially nodes 1, 2,

0, ¥, X, 0 &

calculation the answer X' will appear in nodel. The .

respectively. At the end of the

steps involved are exactly

example.

basic machines more precisely.

24

4 & 5 have values

as in the

above

Now, it is time to define NM and all the

NU MACHINE
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4.1 DEFINITION OF NM

An NM is a labeled digraph with the following

-propertiesr e : e e e
(i) - There are two sorts. of edges - dotted édges and ling
edges (i.e., —---—--- & — ).
(ii) Edges are labeled ih the form a / « , where

a € (T U {e}) and & e =¥.
(iii) Two different edges can have the same label.
(iy) Nodes are labeled 0,1,2.....
(v) Two different nodes can have the same label;
(vi) There is one initial and one final node.
(vii) Out degree of the final node is zero.

In any node of a machine which accepts a
language, there is a string of symbols taken from an
alphabet. There is a pointer'which reads thé_symbols
according to the rules specified. Initially the pointer will
be at the left end of the string. Meanings of the notations
are as follows. The symbol 'e'! represents'thé blank. If there
is no symbol from the specified alphabet on the riéht of the

pointer it means the machine reads 'e'.

°/e If the symbol on the right of the ponter in the
node is 'a' then replace 'a' with the string ‘'a'
and move the pointer to the right of 'a'.

aj/a |

------- : If the symbol on the right of the pointer in the
node is 'a' then replace 'a' with the string 'a'

and move the pointer to one position left of 'a'.

Sec. 4.1 , . . NU MACHINE
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i : If the symbol on tﬁe'right of the pointef in the
node is 'a' then replace ‘a' with 'a' and move
the pointer to one position right“. o |

a

If the symbol én the right of the pointer in the
node is 'a' then replace ‘'a' with 'a' and move
‘the pointer to one position left.
We say NM is halted normally if the machine ends in its final
node which is normally Node 0. Otherwise, NM is halted
abruptly. |
Note ﬁhat the example given in the first
chapter is an example of NM which computes recursive
functions. NM for recursive functions will be defined later
with some restrictions in the abové definition. Albeit the
~définition of NM for recursive functions is sufficient for
designing an NM for accepting a languége, more complicated
definiton is needed for easy understanding. NM for the

language { 0™ / n>1, T = {0,1} } is given below.

y
X 1 Y 1 >
e
0/x
- 0
N, —e...... R
e 1/y 1
0 R Yy
P IEE
Y 0

Sec. 4.1 . _ NU MACHINE
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Oon further restrictions in the above

definition, PDA and FA can be designed for corresponding

. languages. This is given- at the end of this chapter-with an . -

example each. Now the definition of NM for recursive
functions is defined. Note that the alphabet is restficted to
'{a,lb}; there are no dotted edges and no a/a labels, and out
degree of every node (cher than fiﬁal node) is ' either

one or two.

4.2 NM FOR RECURSIVE FUNCTIONS

An NM is a labeled digraph with.the following
properties.
(1) Edges have labels fa', 'b' or 'e'.
(ii) Two differént'édges can have the same label.
(iii) Nodes are labeled 0, 1, 2,....
(iv) Two different nodes can have the same label.
(V) - There is one initial and one final node.
(vi) oOutdegree of the fihal node is zero.
(vii) oOutdegree of every mnode ( other than final node )

is either one or two. . |

It can be observed that, the examples which
have been seen before completely agree with the definition;
Meaniﬁg of the symbols a, b and e are mentioned in the first
chapter. Change in‘the value of a node will automatically
affect the other nodes with the séme label. Final node is

- usually numbered as 0. There 1is no limit for the

Sec. 4.2 ' . NU MACHINE
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" number of nodes, each node taking values ' from the set of
natufal numbers. Let the function to be calculated be

£(XyyXype ey X ‘Initially the variable values are- kept -in -

n)
the first n nodes (except 0). Answer can be in any of the
nodes except input nodeé which is specified before. If the
6utput node is one of the input nodes then transfer the
answer into a vnode which is not an input node at the end of
computation. This makes it easier to reuse those nodes.
Answer is giVen by the absolute difference between the number
of a's and the number of b's in the output node.

Now the existence of NM's for each of the
~elementary functions and procedures is shown. The theory
will be clear if it can be demonstrated how these basic
‘machines can be interconnected to obtain a machine for a
given function. And then it will be obvious that there exists
an NM for any recursive function. |

4.3 NM's FOR ELEMENTARY FUNCTIONS

(1) Zero fuhction :
Z (xl,xz, ........ /Xp) = 0.
ot P o .
e
0
Xy xé, ....... ¢ X, are stored in nodes X1r X,
Xgyeeee,Xp respectively. (Recall that the value Xq

means a string of a's of length X4) . Answer appears
in node z (Note that all non-input nodes have values

zero initially).

Sec. 4.3 , NU MACHINE
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(ii) Successor function :

S (x) = X
|
A a
b 14
X a l e
> ——®
X 0

The input value is put in node x. Then an 'a'
is added to the string in node x and transferrd to
the output node s. The new value will be x+1 in node
X itself. |

(1ii) Identity function

U)I;l (Xl,Xz,oo.oo’xn) =Xk
k b k b k b k Db j
D) > —@ > - T ceeeoesas > —>—e
e e e e
a a Y Y a
]| +— 1
J X3 X5 ‘ Xn
e i i e | e ’ L> @i
b b b
- 0
(o>

The value Xk is put in node k. In each step
of the computation the value gets decreésed until the
value of node k becémes zero. When it happens the
machine will be in node Xy, where the value xy is
kept. Then it transforms the value Xy into the output
nodé i. ( Note that all the nodes other than input
nodes ‘have to be initialised i.e. value of those
nodes have to be made zero before the computation

starts).

Sec. 4.3 NU MACHINE
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4.4 NM's FOR ELEMENTARY PROCEDURES

Before going into the details, make following

.. machines- which-will -be useful--in-defining machines- for- the— -

elementary procedures. Call them S(x,xl',xzﬂ,...,xmf) and
I(x). Here, each of-the variable in the above functions is a

set of n nodes. S stores the value of each node in x, in the

corresponding node in Xy',%,'...x,'. The machine,
[ s ——4:) is 'given by,
g ]
X 2 : e e w2m
11 b xml in PRRS mn
b a b a
“ < e <~ K e
t;> ® e : >—(o)
X4 Xo Xn 0

The machine I is used for 1initialisation. It

reduces the value of each node in x to zero. The machine,

[ I V_——{:) is given by,

o
v O

. b

= T ————

Xq X5 . Xn 0
: The above three machines are needed to restore
the input values at the end of computation when'thé input
‘nodes are being used. Here onwards only the names of the
above machines will'be used instead of the entire machine.
This will be clear when we study machines for elementary
procedures which are used in constructing a machine for a

given function. The method of construction will be

demonstrated later.

Sec. 4.4 , NU MACHINE
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(1) Composition

Given- a set of functions Gy ( Xj, X5, ...+ /Xp )Y,
k=1,2,..-.,m and H (Yq, Yyre---4¥p)s define
F (X1, 'X2,....,Xn) = H (Gll G2,n.-.,Gm)o .

NM for composition is given below. Every G
has its own input nodes. So the inputs of F i.e. Xg
to x, are first transformed ‘into the input nddes of
Gi for all i, 1<i<n. Inpuf nodes of G; are denoted by
Xqir xzi,..;,xﬁi. gi's are the output nodes of Gi's

and y;'s are the input nodes of H. The given machines

are,

o 6 H® i Gzi"@ joei ® Gy HO & e H O

The following is the machine for composition.

First block initialises the input'nodes of Gj's. Then
in the second block each Gy is calculated and the
result -is transferred to y; as the input of H. Final
node of F will be the final node of H and the value

of the function F will be in the output node of H.

[>‘ S((Xll"lxn)l(glll"lgnl)I""I(glml“lgnm))'
g, e g9, 9p  ©
e G, -T———é—g- G, fT. ...8 Gp —TL—»—Q— H v-@
b N b N b AN
Y a v a v a
Yy Y2 Y

Sec. 4.4 , - NU MACHINE
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(ii) Primitive recursion
Given't@o functions G { Xq i Xggeroons 1 X1 ) and H
e mhcxIszﬁrﬁr,xﬁ7y)7—define Fm4x1,x27.wfon%gas—inmw_~:
the second chapter(section 2.2). The given |
functions are,

|§>1 G -{:) and [&>{ H - 4i)

NM for this procedure is given below.

e X e 0

[&> G |e{ S(g,y) e—— n_ —> @

'S(xn,xn',xn")—o~S(xn",xn)
|
t
S((xll"lxn—l) ! (Xl'l"lxn_l') ’ (xl"l" Ixn—l"))

!

S((Xq"'veesXn_1") s (Xy,-4Xn_q) (@ H

+

S(hIY)‘F.‘I(X11'°IXnIY) A -

I(all nodes of H other a
than input nodes)

S(Xn"' , X

?

— s((xl"l"lxn—l")l(Xll"lxn'—l))

n’

- S(xn'xn"'xn'")
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In the above machine, node-'g' is the output

node of the machine G and node 'h' is the output node

dA&f H. Two machines A and B are interconnected to get
'C in the following fashion.

[~ a ° B o

Initial node of C is the initial node of A and

final node of C is the final node of B. The
éonnection is done by replacing the final node of A
by the initial node of B.

(iii) Minimalisation :
Define F(x;,....,%X,) = Min { yv| G(Xq,eeesXpnsY) 7}
where G is a given function. NM for this procedure is

given below.

D I(Y) "r‘ Sn((xll"lxn;Y)l(Xl'l°°lxn'ly')l(Xlnl“lxn";y"))

Sn( (X]_"l . Ixn"IY") ’ (Xll . Ixnl'Y))

+

I({ all nodes of G other
than input nodes)

:
<~ Y

The following example illustrates how to make

machines using above defined machines and how -to combine

Sec. 4.4 , ' ' NU MACHTNFE
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them. The following machine is for the proper subtraction
defined in Chapter II (see example (vii} in Sec. 2.3). This
function is used for calculating |x;-X,|-which is the seventh

example of the above mentioned section..

e k
J
b
k
b Y
e b
L —<—eg
eY

e
X, 9—<
a’ b ——Ixi"
b - e
[ -—
f a —TXZ'”
X2 a——
A
Xy @< |e
b
a
X "nit > a
)
b e
—-oxXA"
[ a
h X5 —_—
N > X ]
A ? e 2
b
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For defining the function 'absolute
difference' we need the above machine. As explained 1in
-Sec.2.3, F(xy, X3) = | %; - X5-| = H( Gy, G, ) where, G; and
G2 are proper subtractions‘and H( x4y, X, ) = X +X, . -Now, for
getting the machine for F- connect the machines as follows.
Let G, and G, be the machine given above with a totally
different sét of nodes. Let the input nodes of G; be X;;" and
X590~ Let the output nodes be g; and g,. After changing the

nodes as above mentioned, design a machine as follows.

' g, e : g, e h, e 0
-— G, [e——>—e1 G, e > > @
a a a
< _ >
h1 b b hZ b hz

where; h; and h, are the input nodes of H and

the output |x; - x, | will appear in node h,.

4.5 NM's CORRESPONDING TO PDA & FA

The machines corresponding to PDA and FA can

be obtained by restricting the definition given in Sec.4.1

as follows.

Sec. 4.5 , NU MACHINE
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NM for PDA is defined as NM with the following restrictions.
(i) There are only two sorts of nodes. Node 1 represents.
the tape and the-Node 2 represents thé stack.
(ii) There are no dotted edges with 'a/a' labels. All the
dottéd edges have a label 'e' and

(iii) There are no dotted edges from Node 1.

The following machine illustrates the above

definition, which accepts the CFL { wewR / W € (a+b)* }e

1 1 0
<
r/rqg I\® r/rb
ceeee A
W : g/99 g/gb :
e: o — 3 e
P2 \ 2 1....:
b/bg c b/bb
...>..
2 +—: e
r] g\ Q« )
1 1+ 0
cee e g/e b/e S R
e.: — < — e
%2
teeees 2 e 2 e
20—: Te
IR
r/e
o}

The following table provides the steps

involved in accepting the string 01c10.

Sec. 4.5 ) NU MACHINE
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string in present

node 1 node node
“01iclo “r 1
0" 1c10 °r 2
0" 1clo rb” 1
01°clo0 rb” 2
01°clo0 r'b 2
01°c10 rbg” 1
01c~10 rbg” 2
01lc”10 rb g 2
01lc~10 rbg” 1
00cl”0 rbg 2
0lcl”0 rb”g 2
0lcl-o0 rbe” 1
0lclo0o” rbe” 2
01lcl10” rb” 2
01cl0~ r°b 2
01lcl0” re” 1
0l1lcl0” re” 2
O0lcl0” r’ 2
01cl0~ “r 2
0lcl0” e’ 0 (end).

On further restrictions NM for FA can be
defined as follows.
NM for fA is a labeled digraph which have,
(1) no dotted edges,
(ii) no edges with a label of the form 'a/a',
(iii) only labels of the form 'a' and
(iv) only one éort of nodes.
The following example.illustrateé this. This
machine accepts the language a*bb*.

a b

>

Y O

=

0}
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It can be observed that the above machine is
almost same as the DFA given in chapter III. Thus, a uniform

model can be used instead of the.current models of-- --

-

computation.

Sec. 4.5 ) ) NU MACHINE
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The purpose of this project was to design a

uﬁifd%hvmodéimEd;wéli-égﬁpdfatiohé instead ”of havihg“ fhree
difffernt models. It has been éroved by showing the machines
‘for the elementary functions and procedures, and how to
connect them, ghat, the NU MACHINE 1is equally powerful as
'Turing machine and is simplé to design. Hopcroft says 1in an
article in Sciéntific Amefican

'** If one is inclined to try building, say, the Turing
machine that multiplies, one soon begins to appreciate the
difficulties that must be faced in the design of a useful
computer program. Most small Turing machines, namely the one;
with only a few possible states, do not carry out any useful
or even sensible task. ’’

Moreover, we could see that NU MACHINE can be

restricted to PDA and FA to have a uniform model for all

computations. Thus, we have, - - N

NM for FA : with one type of nodes,
NM for PDA  : with two types of nodes and
NM : with many types of nodes.

Even though, the purpose. of the project is
" fulfilled, there are much more things to do like restricting
NM to obtain a model which -accepts Context Sensitive
Languages. _ |

To get more clear idea of NM, demonstration

programs — one for addition and one for multiplicatibn - are

included in the Appendices A and B at the end of this thesis.
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APPENDICES



A.
PROGRAM FOR ADDITION



. program ADDITION;

uses crt,graph,grworld;

var
driver,mode:integer;
ch,chl:char;
sizel,size2,x,y,i,temp,i1,1i2,ans:integer;
ptrl,ptr2:pointer;
nl,n2:array(1..100] of char;
i2str,blstr,alstr,a2str:string;

{ ___________________________________________________________
procedure CALCULATE;
var
j,na,nb:integer;
begin
na:=0;
nb:=0;
if x=0 then ans:=0
else :
begin
for j:=1 to i1 do
if ni[j]='a' then na:=na+l
else if nl[j]='b' then nb:=nb+1l;
ans:= na-nb;
end;
end;
{==———mmm e e s e e }
function CHECK:boolean;
begin
calculate;
if ans>0 then check:=true
else check:= false;
end;
{------------""---"""""--"--"-c--mm———s— = }
procedure DEFINEBALL;
begin
setcolor(1);
circle(10,20,5);
setfillstyle(1,2);
floodf111(10,20,1);
sizel:=imagesize(2,12,18,28 );
getmem(ptrl,sizel);
getimage(2,12,18,28 ,ptrl”);
~ size2:=imagesize(2,30,18,46);
- getmem(ptr2,size2);
getimage(2 ,30,18,46,ptr2");
putimage(2,12,ptr2~,normalput) ;
end;



procedure MOVELINE;
var
y1l,k:integer;
begin .
—- - N k:.:o; - e e o s . . . -
y1:=107; '
-repeat - A
putimage(153,y1l,ptr2~ ,normalput);
if k=6 then :
begin :
line(152,117,168,117);
line(168,117,160,105);
line(160,105,152,117);
circle(160,112,3);
end;
line(160,117,160,y1+1);
yl:=y1+42;
putimage(153,y1l,ptrl”,normalput);
k:=k+1; : .
until y1=173;

procedure MOVECIRCLE;
var
k:real;
x1,y1,k1l:integer;
begin '
putimage(155,108,ptrl~,normalput) ;
delay (25);
putimage(155,108,ptr2~,normalput) ;
line(152,117,168,117);
line(168,117,160,105);
line(160,105,152,117);
circle(160,112,3);
yl:=108;
k1l:=0;
repeat
putimage(205,120,ptr2~,normalput) ;
str(il-x,blstr); '
outtextxy (205,120, blstr);
kK:=(1/2)*1n(1600-(y1-80)*(y1l-80));
x1l:=round (155-exp(k)); '
putimage(x1,y1l,ptrl~,normalput) ;
yl:=y1l-5;
circle(160,80,40);
putimage(x1l,y1+5,ptr2~,normalput) ;
if k1=2 then T
line(160,117,160,130);
Kl:= K1+1;
until yi1<42;



put1mage(155 42 ,ptri- ,normalput),
delay(25);
putimage(155,42,ptr2” ,normalput)
circle(160,46 3), ,
: circle(160,80,40); . : o N
yl:=44; :
repeat _ :
putimage (172,35 ,ptr2~,normalput);
str(i2,a2str);
outtextxy (172,35 ,a2str);.
kK:=(1/2)*1n(1600-(y1-80)*(y1l-80));
xl:=round (155+exp(k)) ;
putimage(xl,yl,ptrl‘,normalput);
Y1l:=yl+45;
circle(160,80,40);
putimage (x1, y1 -5,ptr2”",normalput) ;
until y1>103;
circle(160,80,40);

repeat
writeln{'Enter the numbers to be added');
readln(x);
readln(y);
if x>y then
begin
temp:=x;
Xi=Yi
y:=temp
end;
driver:=1;
mode:=4;
~“initgraph(driver,mode, 'b:');
setgraphmode (cgac2) ;
setcolor(1);
defineball;
rectangle(o 0,319, 199),
circle(160,80, 40),
circle(160,46,3 );
circle(160,112,3 ) ;
circle(160,180,3 );
circle(160,180,7 );
line(160,112,160,180);
- 1line(152,117,168,117);
" line(168,117, 160 112),

blstr:=' t';
az2str:=' ';
i2str:=' *;

-outtextxy(143,120,'1");



‘outtextxy (155,35 ,'2"');
outtextxy(140,180,'0"');
outtextxy(145,140,'1');
outtextxy (105,80 ,'b');
outtextxy (215,80 ,'a');
outtextxy(173,120,'f , ]
outtextxy (165,35 ,'[ , ]
outtextxy(205,120,'0');
outtextxy (195,35 ,'0');
str(x,alstr); )
outtextxy(180,120,alstr);
str(y,a2str); )
outtextxy (172,35 ,a2str);
ans:=0; -

for i:=1 to 100 do

begin

for i2:= 1 to y do
n2[i2):='a';

while check do

begin
il:=1i1+41;
nl[ilj:='b"';
i2:=i2+1;
n2{i2):='a"';
movecircle;

end;

moveline;

circle(160,180,10);

freemem(ptrl,sizel);

freemem(ptr2,size2);

str(iz,i2str); .

outtextxy (5,190, 'The answer is');

outtextxy (120,190, i2str);

readln;

closegraph;

writeln('Do you want to try more?({y/n]');

readln(ch);

until ch='n"';
end.



| B.
PROGRAM FOR MULTIPLICATION



program MULTIPLICATION (input, output),
uses graph,crt,grworld;

{ __________________________________________________________
type
.- .ch = array-{1..210} of char; - -
{-—-———em e e e e e
var
nl,n2,n3,n4 : ch; ‘
'drlver mode X,Y,temp, na, nb sizel,size2,ans,
j1,32,33,34,i: integer;
~.chl,a,b: char;
ansstr alstr,blstr,a2str, bzstr a3str,b3str,a4str:string;
ptri, ptr2' p01nter, :
{ __________________________________________________________
procedure INITIALISE;
var
i:integer;
begin
for i:= 1 to 210 do
begin
nifi] := ' ';
n2{i} = ' ';
n3[i] := ' ';
n4[1] =1 0
ansstr:= ' ';
alstr := ' !,
blstr := ' ';
azstr := ' ';
b2str := ' ';
adstr := "' ';
b3str := ' ';
a4str := ' !
end;
end; -
{ __________________________________________________________
procedure CALCULATE(arrl- ch; jjl:integer);
var
i:integer;
" begin
na:=o0;
nb:=0;
for i:= 1 to jj1 do
if arril(i)='a' then na:=na+l
else if arri[i)='b' then nb'=nb+1 H
ans:=na-nb
end;



function CHECK(arr2:ch;jj2:integer) :boolean;
begin o '
calculate(arr2,jj2);
if ans > 0 then check:=true
else check:=false;

end;
{ __________________________________________________________
procedure DEFINEBALL;
~ begin '
' setcolor(l);
circle(10,150,5);
setfillstyle(1,2);
floodfill(10,150,1);
sizel:= imagesize(3,143,17,157);
getmem(ptrl,sizel); A
getimage(3,143,17,157,ptr1");
size2:=imagesize(3,159,17,173);
getmem(ptr2,size2);
getimage(3,159,17,173,ptr27);
putimage(3,143,ptr2~,normalput) ;
end;
{ __________________________________________________________
procedure MOVLIN(x1,yl,x2,y2:integer);
var
i:integer;
begin
i:=1;
if( x1=x2) or (x1=250) then
begin
putimage (x1,y1l,ptr2~,normalput) ;
X1:=x1-5; ‘
X2:=X2-5; :
putimage(x1,yl,ptrl”, normalput)
end; )
while (x1<>x2) or (yl<>y2) do
begin
if yl=y2 then
begin
putimage(x1,yl,ptr2°,normalput);
X1l:=x1+2;

putimage(x1l,yl,ptrl”,normalput) ;
if i=7 then line(70,70,50,50);
if i>3 then
begin
setcolor(1);
putpixel(x1-4,y1,1)
end
end



‘else if x1=x2 then
" begin

end
else

putimage (x1,yl,ptr2”,normalput);
yl:=yl+1;
putimage (x1,yl, ptrli”,normaiput)-;-
if i>3 then
begin :
setcolor (1) ;
putpixel (x1+5,y1-5, 1)
end;
if i=7 then
begin
circle(150,150,3);
1ine(140,155,150,140);
line(150,140,160,155) ;
line(160,155,140,155)
end ) o

if ((x1-x2)/(yl-y2))=1 then
begin
putimage(xl,yl,ptr2”,normalput);
yl:=yl-1;
x1l:=x1-1;
putimage(x1,yl,ptrl”,normalput);
if i>7 then
line(150,150,x1 ,yl );
if 1i=20 then '
begin
line(150,150,150,185);
circle(150,150,3); .
line (140,155,150, 140);
line(150,140,160,155);
line(160,155,140,155)
end B
end
else if ((x1-x2)/(yl-y2))=-1 then
begin ‘
putimage(x1,yl,ptr2”,normalput);
yl:i=yl+1;
X1l:=x1-1; : }
putimage(x1,yl,ptri”,normalput);
if i>3 then
line(250,50,x1+5 ,y1l )
end;



'procedure MOVCIR(X5,y5,cx,cy:integer);
var
XX,YY,ix:integer;

begin o i )
T X%X:1=x5;
YY:i=Y5;
repeat
begin
ix:=0; .
putimage (xx,yy,ptr2”,normalput);
YY:=yy-3;

ix:=400-(yy—-30)*(yy-30);
xx:=cx-round(exp(ln(ix)/2));
putimage (xx,yy,ptrl~,normalput) ;
setcolor (1) ;
circle(cx,30,20);
if ( yy<395) and (yy>30 ) then
begln
circle(cx,50,3);
line(50,50,250,50);
line(70,70,50,50);
line(250,50,230,70)
end; ,
if (yy<20) and (yy>16) then
circle(30,30,3)
end
until yy<=11;
putimage (xx,yy,ptr2~,normalput) ;
putimage(cx,10,ptrl”,normalput) ;
if x5=50 then
begin
putimage(268,65,ptr2~,normalput) ;
calculate(n3,j3); C
str(na,a3str);
outtextxy(267,70,a3str)
end
else if x5=250 then
begin v .
putimage(292,65,ptr2~,normalput) ;
calculate(n3,j3); ' ~
str(nb, b3str);
outtextxy (291,70, bBStr)
end;
XX:1=CX;
Yy:=10;
repeat
begin
ix:=0;
putlmage(xx YY, ptr2 ,hormalput) ;
YY:=yy+3;



ix:=400-(yy-30)*(yy-30);
xx:=cx+round(exp(ln(ix)/2));
putimage (xx,yy,ptrl”,normalput);
setcolor(1l); .
-  circle(cx;30,20);~ e \ ' e e e
if (yy>15) and (yy<19) then ' '
‘begin :
circle (250,15, 3)
end;
if (yy>40) and (yy< 44) then
‘ circle(70,30,3)
end
until yy>=49;
putimage (xx,yy,ptr2~,normalput) ;
putimage(cx,50,ptrl~,normalput) ;
if x5=50 then ’
begin _
str(j4,a4str);
putimage(100,21,ptr2~,normalput) ;
outtextxy(99,25,a4str)

end
else if x5=250 then
begin
calculate(n2,3j2);
str(na,a2str);
putimage(256,0,ptr2~,normalput);
outtextxy(255,3,a2str)
end;
circle(cx,30,20)
end;
{—===— e e }
begin
repeat

writeln('Enter the numbers to be multlplled with an ENTER 1n be
readln(x);
readln(y);
if y>x then
begin

temp:=y;

Y:i=X;

=temp

end;
clrscr;
driver'—l;
mode:=
1n1tgraph(driver,mode,'b:')}
setgraphmode (CGAC2) ;.
setviewport(0,0,318,199,true);
rectangle(0,0,317, 198),
setcolor (1) ;



initialise; _ :
outtextxy( 120 , 5 , 'NU-Machine');
defineball;
circle(150,185,3);
.circle(50 ,50 ,3).;
circle(30 ,30 ,3);
circle(70 ,30 ,3);
circle(250,50 ,3);
circle(250,15 ,3);
circle(150,150,3);
setfillstyle(1,1);
floodfill (150,185,1);
floodfill (50,50,1);
floodfi111(30,30,1); -
floodfill(70,30,1);
floodfill(250,50,1);
- £floodfill (250,15,1);
floodfill(150,150,1);
* circle(150,185,7);
circle(50,30,20);
circle(250,30,20);
line{(150,150,150,185);
line(150,150,50 ,50 );
line(50,50,250,50 );
1ine(250,50,150,150);
1line(140,155,150,140);
line(150,140,160,155);
line(160,155,140,155);
outtextxy(173,150,'1[ ,0 ]1');
putimage(188,147,ptr2~,normalput);
str(x,alstr);
outtextxy(188,150,alstr);
outtextxy(35 .,63,'2');
outtextxy(3,30,'3'); _
outtextxy(84,25,'4{0 ,0 1');
outtextxy(252,70,'3[(0 ,0 ]1');
outtextxy(240,3,'2( ,0 1');
putimage(255,0,ptr2~,normalput) ;
str(y,a2str);
outtextxy(255,3,a2str);
outtextxy(165,185,'0"');
outtextxy (80,100, 'b"');
outtextxy(180,100,'1"');
outtextxy(140,40,'1"');
outtextxy(285,30,'a');
outtextxy (215,30, 'b');
outtextxy (20,42, 'b');
outtextxy(55,33,'a'); -
outtextxy (55,1, 'a');
outtextxy(160,165,'1"');



j3:=0; j4:=0;

for jl:= 1 to x do
ni(jl]:='a"';

for j2:= 1 to y do

readln;
while check(nl, ]1) do
begin
jl:=j1+1;
‘'nl{jl):='b'; : :
putimage(211,150,ptr2”~,normalput) ;
- str(jl-x,blstr);
outtextxy(210,150,blstr);
movlin(150,150 ;50 ,50);
for i:=1 to 4 do
putpixel(154-i,146+1i,1);
while check(nz j2) do
begin
j2:=32+1;
n2[j2]:='b';
j3:=j3+1; ’
n3{j3]:='a';

" j4:=j4+1;

- n4{j4]:='a';
putimage(279,3,ptr2~,normalput) ;
calculate(n2,j2);
str (nb,b2str) ;
outtextxy (278, 3,b2str);
movcir(50,50,50,30);

end;
movlin (50,50 ,250 ,50);
circle(50 ,50 ,3);
setcolor(1); :
for i:=1 to 7 do. i
putpixel (57-1,57-1,1);
while check(n3, 33) do
begin
j3:=33+1;
n3[j3]:='b"';
j2:=j2+1;
n2[(j2]:='a';
movcir (250,50,250,30) ;
end; '
~ 1ine(50,50,250,50);
movlin (250,50 ,150 ,150);
circle (250,50 ,3);
setcolor(1);
for i:=1 to 7 do

putpixel (243+1i,50,1);

end;

n2(j2):='a'; | SR



putimage (140,178 ,ptr2~,normalput);
movlin(150,150 ,150 ,180);
line(150,150,150,180) ;
circle(153,187,7);
-.calculate(n4,j4);

str(ans,ansstr);
outtextxy (5,190, 'The answer is ');
outtextxy (120,190, ansstr);
freemem(ptrl,sizel);
freemem(ptr2, 517e2),
readln;
closegraph ;
write('Do you want ‘to try more °[y/n] Y
readln(chl);

untll chl='nt';

end.
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