
A PORTABLE
NATURAL LANGUAGE INTERFACE

TO INGRES

DISSERTATION -SUBMITTED. BY

GU~JEET SI·NGH KHANUJA
IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF TECHNOLOGY
IN

COMPUTER SCIENCE AND TECHNOLOGY

SCHOOL OF COMPUTER -~ND ~YSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI

·DECEMBER 19.90

.CERTIFICATE

This is to certify that the dissertation e·ntitled

"A Portable Natural Language Interface .to INGRES", being submitted

by me to Jawaharlal Nehru University in the partial fulfilment-of

·the requirements for the award of the .degree of Master of

Technology,. is a record of original work done by me under the

supervision of Dr. P. C. Saxena, Associate Professor, School of

Computer and Systems s·ciences, Jawaharlal Nehru University .during

the year 1990, Monsoon Semester.

The results reported in this dissertation have not

been submitted in part or full to· any other University· or
-

Institute for the award of any degree or diploma, etc.

Prof. N. P. Mukherjee
Dean,
School of Computer and
Systems Sciences,
J.N.U.,
New Delhi.

G EET SINGH KHANUJA

·~{7~
Dr. P. c. Saxena
Associate Professor,
School of Computer and
Systems Sciences,
J.N.U.,
New Delhi.

ACKNOWLEDGEMENT

I express my sincere gratitude to my supervisor Dr. P.

C. Saxena for his uncompromising guidance, constant supervision

and constructive criticism without which this work would not have

been completed successfully. ·

I extend my sincere thanks to Prof. N. P. Mukherjee,

Dean, School of Computer and Systems Sciences, Jawaharlal Nehru

University for his encouragement and facilities provided for the

.completion of this work.

I also take this opportunity to thank all faculty and

staff members and my friends who have been directly or indirectly .

helpful in eliminating a variety of problems encountered by me in

the course of completing this dissertation.

GURJEET SINGH KHANUJA

CONTENTS.

Preface

1. Introduction

1.1 Natural Language Understanding

1.2 Techniques for Natural Language

·Interpretation

1.2.1 Traditional Approaches

1.2.2 Transition Networks

1.2.3 Chart Parsing

1.2.4 Case Grammar

2. Natural Language Interfacing

2.1 Natural Language Interfacing

2.2 Transportability and Portability

of a System

2.3 Recent Work on Natural Language

Processing and Databases

2.3.1 LUNAR SYSTEM

2.3.2 PLANES/JETS SYSTEM

2.3.3 ROBOT INTELLECT SYSTEM

2.3.4 TEAM

3. Tree Adjoining Grammar

and other Syntax Models

3.1 Grammars for Natural Language

Understanding

3.2 Tree Adjoining Grammmar

1-6

1

3

3

4

5

5

8

9

10

10

11

12

14-21

14

18 -

4. System

4.1

4.2

4.3

Overview ·

Brief Description of the

A Sample Relation

Modules of the System

4.3.1 Lexicon and

4.3.2 The Parser

4.3.3 Translator

Pseudo

5.Syntactic Analysis

5.1 Design and Implementation

of the Lexicon

5.1.1 Introduction

System

Query

5.1.2 Design of the Lexicon

5.2 Parser

5.2.1 Tree sets

5.2.2 The Parsing Mechanism

5.2.3 Details of Parsing Process

6. Semantic Analysis

6.1 Procedures for the Translation

Process

6.2 Details of the Translation Process

* conclusion

* Appendix 1

* Appendix 2

* References

Lexicon

Program Listing

22-31

22

24

25

26

28

29

32-48

32

32

33

35

35

39

40

49-67 .

49

54

68-70

PREFACE

In this work, we are presenting a- system which uses

Tree Adjoining· Grammar (TAG) to provide a natural language

interface to the relational_database system INGRES. Work was been

done to determine what basic trees had to be used as input to the

parser, what information had to be stored in the lexicon to

support the translation of a ,parse tree into a database query and

what algorithms were necessary to perform the translation process.

A successful implementation in PROLOG has been done. Examples are

given. -Also, the. interface is struct-ured in- such a way that much

of it can be used in a front end to database query languages other

than INGRES.

Chapter 1 of this thesis covers the problems involved

in understanding natural languages. In this chapter we will

describe.the different techniques used in computer world to

understand natural languages. Chapter 2 describes natural language

interfacing to databases, and their advantages. it also describes

in brief the work which has been done on natural language

interfacing to databases. Chapter 3 of the thesis deals with the

general problem of parsing and understanding natural languages

with emphasis on the database environment. Some parsing techniques

other than those employing tree adjoining grammars are mentioned.

Then tree adjoining grammars are discussed in detail. Chapter 4

describes the system implemented in brief. Chapter 5 describes th~

•
syntactic aspects of the system. It covers how a lexicon is set up

for a given application along with parsing mechanism. The tree

sets used by the system are also given in this chapter. Chapter 6

describe~ procedures used in translating the parse tree t6 QUEL

queri~s. T~e details of translation with some examples ~re given

in this chapter.

CH. "1 INTRODUCTION

In this chapter, we briefly describe the different

issues regardin~ Natural Language Understanding (NLU), viz.

meaning of NLU, what·are the difficulties in understanding Natural

Languages, how to interprete natural language i~put to a computer.

There are many approaches to these problems which are highlighted

in the second section of this. chapter.

1.1 Natural Language Understanding :.

Natural Language Under~tanding has been an import~nt

topic of -interest within linguistics, Artificial Intelligence,

Database Design and Information retrieval for quite some time. The

goal of natural language understanding is not to have computers

understand everything we say; after all, even people misunderstand

each other occasionally. The understanding of natural language is

very difficult because syntactic and semantic issues are very

tightly coupled, vocabularies are very large, vagueness and

ambiguities abound, and many of the syntactic constructs are very

awkward. Problems in natural language understanding are

Ambiguity : Many of the things we say can be interpreted

in more· than one ways. Some of the factors

that contribute to the ambiguity of natural

language are as follows :-

* Multiple Word Meaning It is not uncommmon

for a single word to have more than one

meaning.

1

.•

* Syntactic Ambiguity : Some of the ambiguity

in English is caused by peculiarities in its

syntax.

* Unclear Antecedents We frequently use

pronouns in place of previously used nouns.

Imprecision People often express concep~s with vague

and inexact terminology. For example, how

long is a long time ?

_ Incompleteness : We do not always say all of what w~ mean.

Because we ~hare many details without

fear of being misunderstood; -we assume

that our listeners can "read between the

lines."

_ Inaccuracy : It includes mistakes in any of the following

areas,

* Spelling errors,

* Transposed words,

* Ungrammatical constructions,

* Incorrect syntax,

* Incomplete sentence and/or

* Improper punctuation.

Real world applications tend to concentrate on areas

where at least one of the following simplifying assumptions apply

(1) Complete understanding is not required, as in automatic

document indexing.

' 2

(2) The vocabulary, syntax and semantics are very restricted,

such as with database.

Our efforts her~· are focused on the second of the two

simplif~cations. Specifical.ly, we have developed ·a natural

language interface, which is currently being used as a front end

to the general relational database system INGRES.

1. 2 Techniques for Nat·ural Language Interpretation

Several techniques are available for interp+eting .

natural language input to a computer. The objectives of all are

probably similar; to extract.semantic meaning-~rom human input~ A -

number of issues must ·be resolved before choosing an appropriate

method. These include

* Size of vocabulary.

* Use of non_gramrnatical input.

* The number of different users of the systems.

* Whether the principle user population is composed of

regular or occasional users.

* The extent to which each individual sentence within

that session will refer to others within that

session.

* Whether user population will mature with time.

1.2.1 Traditional Approaches :

The simplest approach to interpreting the meaning of

natural language is to seperate the analysis of syntax from the

3

semantic. It appears, at first ·sight, reasonable that all

grammatical tree structures using certain rules describe what

costitutes a well formed sentence.

The semantic analysis (extracting. meaning) then

follows from the result of this syntactic analysis. The syntactic

parse should indicate such features as whether the verb is passive

or active, the subject or object of the sentence and so on. The

meaning can therefore be easi~y drawn out.

The process has the advantage of simplicity. The

approach is well-suited to simple sentences in tightly constrained

domains. A-user is ·able to build a comprehensiv~ set of rtiles and

ensure that these are followed. New words can be added and defined

in terms which the system understands.

However, there are disadvantages with this

(1) A given sentence may be capable of parsed into more

than one way.

(2) It is not possible to handle ungrammatical text in this

fashion.

(3) Certain sentence

problems.

1.2.2 Transition Networks :

types, whilst grammatical, pose

Transition networks operate essentially by working

through a sentence from left to right. For each word there are

only a limited number of words which can grammatically follow it.

For example, an adjective is only likely to be followed by another

4

adjective or by a noun. The network which the possible routes

form from a given start point to a completed noun or verb phrase

form are described ?S a transition network.

This simple network is inadequate. A recursive

facility enables the system to handle subordinate phrases. Also

useful are registers which can be used to record information

obtained in the analysis of one phrase which can affect other

phrases. Such an enhanced system is known as an Augmented

Transition Network (ATN).

1.2.3 Chart Pa~sing :

Chart parsing is an· approach which facilitates the

building up of structure from small blocks (a bottom_up approach).

Previously described techniques use top_down approach~ The

disadvantage of the top_down approach is that it can be very time-

consuming if an erroneous assumption is made early in ·the parsing

process.

Another advantage is that it_may allow the extraction

of some information from ungrammatical input.

There is, however, a major efficiency problem. A large

number of irrelevant "builbing blocks" may be created. Because of

this problem, chart processing is generally used only in

conjuction with some other approach to syntactic parsing.

1.2.4 Case Grammar :

This technique represents a departure from what has

5

gone before, in that it uses some semantic information.

The case grammar ideas spring from the view of a

sentence ,as a description of some underlying ·event. Hence,

associated with a given verb, one can describe a ca~e frame which

has several slots or cases. Each case specifies a participant in

the event. So, for example, the "go" will have a compulsory

"Actor" case to indicate who or what is going and further optional

cases to indicate where the .Actor is going to, or perhaps what·

colour the Actor is going to.

6

CH. 2 NATURAL LANGUAGE INTERFACING

This chapter covers the advantages'of Natural Language

Interfacing (NLI) , especially to relational databases. It deals
•

with the portability and transportability of a natural language

system in the context of relational databases. In the last

section, we describe a brief review of commercially available

software.

2.1 Natural Language Interfacing

There are ~an~ ~rguments fof providing a natural

language front end to a relational database system. One of the

most common reason is to provide.naturalness. It can also provide

greater comprehensibility of obtaining information stored in the

database by querying the system in a natural language. With a

natural language as a means of communication with computer systems

user can frame a question or statement in the way they normally

think about the information being discussed, freeing them from

having to know how the computer stores or accesses the

information. Or it allows the user to make queries of a database

without the need to understand the database's internal

organisation. It helps the user to formulate. queries and

generating queries for the database (converting a task

specification into package instructions).

7

2.2 Tr~nsportability & Portability

Most existing natural language interface systems have

been designed specifically to treat queries that ar~ costrained in

two ways -

(1) they are concerned ~ith a single application domain and

(2) pertain to information in a single database.

Costruction of a system for a new domain or database

requires a sizeable new effort, almost equal in magnitude to the

original one.

Transportable natural language interfaces, i".e. those

that can be easily adapted to- new domains or databases, are

potentially much more useful than domain or database specific

systems.

A major challange in building natural language

interfaces (NLis) is to provide the information needed to bridge

the gap between the way ·the user thinks about the domain of

discourse and the way information about the domains is structured

for computer processing. •

The databases may employ different representations, or

different encodings but an NLI should be able to handle queries

for any of the encoding. Although the English query input to the

NLI is the same in all cases, the NLI output (i.e. specific

commands to a database system to retrieve the requested

information) will be quite different for the different encodings.

One of the main functions of the NLI is to make the necessary

transformations and thus to insulate the user from the

8

particularities of the database. To provide this insulation &

bridge the gap between the user's view and the systems's data

structures requires a combination of domain specific and general

informatiop. In p~rticular, the. system must have a mod~l of the

application domain's subject matter, including information about

the objects in the domain, the properties they possess and ~heir

interrelationships and the words and phrases used to refer to each

of these; the system must . also know the connection between

entities in that model and the information in the database. In

constructing transportable systems it is therefore important to

provide a means for acquiring dolll_ain specific information easily.·

Our system can easily be adapted to a given user

database. Also, much of this system can be used without change to

provide an interface to systems other than INGRES.

This system processes a user's English question into a

parse tree. Then this parse tree is translated to an intermediate

code called a pseudo query and passes it to INGRES. The use of the

intermediate pseudo query makes the . system portable. Conversion
..

for use with a different query language is accomplished by

providing routines which convert the pseudo query into a query in

new language.

2.3 Recent Work on Natural Language Processing and Databases :

The commercial systems are developed in various parts

of the world. Few of them are described below.

9

2.3.1 LUNAR SYSTEM

It is a Natural Language Interface to Moon Rocks

Database by Woods,1973 at BBN. _

The system uses a small vocabulary (3500 words}

required for moon rock_database. The LUNAR database uses encoding

in the database query language. In this, there were seven data

domains. Sets of elements that could be members of each domain

were mutually exclusive. The .system used a powerful ATN syntactic

parser. It_ parsed sentence on to the semantic progr~m for

translation into a query. The resulting query was then executed.

The semantiG analyzer gathers information from verbs and -th-eir

cases, nouns, noun modifiers and determiners to build the database·
-

query. The query is built in terms of conceptual primitives. ·The

database uses rules to compare the syntactic structure of the

questiOI)) with a syntactic template. If they match, the· syntactic

part of the rule is added to the developing query.

The system can handle anaphoric references (pronoun

reference to previous phrases·). It could handle 90% of the

questions posed to LUNAR by geologists. Its overall formulation is

so clean and neat that it has been used for most parsing and

language understanding systems.

Limitations : Utter~nce were limited to database queries. This

was non portable and non extensible. It is no longer in use.

2.3.2 PLANES/JETS SYSTEM

PLANES/JETS is a natural language interface to a large

database developed by Waltx DL. in 1975 at MIT.

10

D~tabase was created for the maintenance of flight

recorder for all novel aircrafts. It ignores syntax and assumes

that all inputs are in the form of requests that it turns into

formal language query extensions. It uses a semantic grammar. It

looks for se~antic constituents by doing a left to right scan of

the user's sentence. Semantic constituents include i terns V?hich

belong to PLANE. TYPE, TIME PERIOD 1 MALFUNCTION 1 CODE, HOW MANY 1

ACTION etc. It uses an ATN parser. The top level calls various

subnets to analyze the_input for semantic constituents It

utilizes concept-case frames which are string of constituent~ of

reasonable queries. After- application of- the concept-case frames

the resulting syntactic costituents are passed along with the

query generator.

It can handle ellipses and pronouns and also deals

with nongrammatical sentences. System asks for a rephrase if it

doesn't understand.

Limitations It was relatively inefficient and relies too

heavily on its particular world of discourse for eliminating

problems of world since selection.

2.3.3 ROBOT INTELLECT SYSTEM

Robot-Intellect is a database question answering

system developed by Harris in 1977 at Dartmouth.

It was an ATN syntactic parser (with backtracking)

followed by semantic analysis to produce a formal query language

representation of the input sentence. It handles a large

11

Limitations It · does not consular context except to

disambiguate pronouns and ellipsis.

2.3.4 TEAM :

This system is one of the ealiest to have laid

emphasis on transportability of the interface across different

domains._

. TEAM is designed to interact with two kinds of users -

a database expert and

an end user.

The database is created through a system-directed

acquisition dialogue. As a result of this dialogue the language

processing and data access components are extended so that the

end user may query the new database in natural language.

12

The system has thr~e major components

(1) The acquisition component,

(2) The DIALOGUE language system and

(3) A data ac~ess component.

The translation of an English query into a database

query takes place in two s.tages. First, the DIALOGUE system

costructs a representation of the literal meaning or the logical

form into a formal database ~uery. Each of these steps requires a

combination of information that is dependant on the domains and

information that is not. To provide for transportability, TEAM

carefully-distinguishes between the two;

13

CH. 3 TREE ADJOINING GRAMMAR AND OTHER SYNTAX MODELS

We have used Tree Adjoining Grammar (TAG)- to provide a

natural language interface to the relation~! database system

- INGRES. Tree adjoining grammars are properly more powerful than

context free grammars. The,y perform very well in a database query

environment because they have reasonable efficient parsing

algorithms and they support . the concept of nested queries very

well. In the first section of this chapter we discuss about the

grammars used for natural language understanding in the light of

Tree Adjoining Grammar. In the -last section we deal with Tree

Adjoining Grammar in detail.

3.1 Grammars for Natural Language Understanding :

Several formal modE;!lS for the expression of the syntax

and semantics of the English language have been tried. Context

free grammars are popular within the realm of artificial

languages, such as computer programming languages because of

their elegance, simplicity and the availability of automatic

parser generators such as YACC. General context free grammars can

be parsed in time 0 (n3) where "n" is the number of words in a

sentence and sufficiently orderly grammars can be parsed in linear

time. Unfortunately, context free grammars alone are not powerful

enough for the syntactic and semantic analysis required for

natural language understanding.

14

Several more powerful syntactic models for natural

languages have been considered and studies have been made to see

how they interact with semantic analysis. Although syntactic

analysis for structures more general than context free grammar can

be very slow, progress on the problem of automatic parser

generation for context sensitive grammars has been made. Several

extensions of context free languages have been applied in the

natural language environment.

One important extension of context free gramm~rs is

the DIAGRAM grammar. DIAGRAM is a large phrase structure grammar

with rule_procedure added to it. The rule procedures allow phrases

to inherit attribute~ from · their ~onstituents and frcm

surrounding, large phrases. Context sensitive constraints may be

imposed which provide consistency conditions and information on

dominance. DIAGRAM has been used as the basis for the portable

natural language database interface TEAM. Research on TEAM

investigated the problem of providing a natural language interface

which can be adapted to. new· database by personnel that are not

themselves natural language processing experts.

Perhaps the most widely used model for natural

language syntax is the Augmented Transition Net (ATN). The ATN is

the syntactic basis for the CO_OP database interface and the YANLI

natural language front_end. A transition net is a collection of

nodes and directed arcs called links which describe syntactic

structures (sentence, noun phrase, prepositional phrase, etc.) and

arcs have labels which can be word categories (noun, verb,

15

..
preposition etc.) or syntactic structures defined by other

subnets. For example an ATN can easily express the facts that a

sentence can be a noun phrase followed ·. by a verb phrase and that

a noun phrase can be a determiner followed by any number of

adjectives, followed by a noun. Sentences are parsed by the arcs

appropriate to the word categories in the sentence. An augmented

transition net is a transition net which can store information as

it goes and use this information in making decisions on syntactic

structure. This gives the ATN a powerful means of compining

syntactic and semantic analysis.

The Wait-And-See Parser (WASP) is a more sophisticated

kind of natural language parser. A WASP first defines noun phrase
-

in the sentence and then proceeds to group the noun phrases into

a parse tree using the other words in the sentence and a

collection of rules as a guide. While building a pars~ tree for a

sentence a WASP maintains three data structures a node stack

which contains nodes_ in the parse tree, a buffer containing words

·and noun phrases which have not yet been placed in the buffer. The

list of rules tells the WASP when to perform the following

operations : move words or phrases into the buffer, when to use

buffer contents to create a node and push it on the node stack and

when to reduce a contiguous set of nodes on the stack into a

single node.

One of the chief difficulties in natural language

understanding is the fact that there is no boundary on the

distance seperating two related nodes in the parse tree for a

16

sentence. For example, figure 3. 1 is a tree diagram of the

question "What does a printer weigh ?" The word "what" has a

significant relationship to the empty leaf node,"E", which acts as·

the object of the verb "weighs". Specifically,. "what" can. be said

to function as the object of the verb in place of the empty node.

s

what· does Ni? VP

.A A
the printer weigh E

Figure 3.1

Transformational grammars attempt to model these

relationships in tenus of subtree -movements called

transformations. Informally, a transformational grammar is a

context free grammar to which certain context sensitive rules have

been added that allow for the rearrangement of subtrees in a parse

tree. When the question of fig 3.1 is generated using an

appropriate transformational grammar the word "what" starts out as

the object of the verb and is moved to the beginning of the

sentence by a transformation (as shown in figure 3.1 by dotted

line) . At some level of generation the sentence is "A pointer does

17

weigh what ?" Two transformations are performed on this structure ·

WH_MOVEMENT brings "what" to the front of the sentence and

NP AUX INVERSION ·swiches the order of a "printer" and "does". ·The

use of transformational grammar to model natural language has

provided useful linguistic insights. It seems that

transformational grammars have more generative power than is

necessary for modelling natural languages.

---· 3.2 Tree Adjoining Grammar

We have used tree adjoining grammars for three

- reasons. First, they have parsing algorithms -that are reasonably

efficient. Second, they have general ·syntactic modelling power

that is adequate for providing a natural ·language database

interface. Finally~ an interface based upon TAGs can be easily

adapted to a variety of different user's databases with minimum

amount of effort.

Tree adjoining grammars can be parsed in o (n4) and they

have many liguistically significant features, such as having no

boundary on the distance between related nodes.

A formal account of generative power of tree adjoining

grammars and these results may be summarized as follows

(1) For every context free grammar there is a TAG which defines

the same set of sentences and the same set of parse trees.

(2) There exists a context free grammar ,Gcfg' and a TAG, Gtag,

which defines more parse trees for certain sentences.

(3) There exists a TAG

language.

which defines a non context free

18

(4) Every language defined by a TAG is context sensitive.

(5) There exists a context sensitive language which is not

defined by TAG.

Unlike other grammars, there are no production rules

for TAG's. Rather TAG, G, consists of two sets of trees. Symbols

in Tree adjoining grammar are defined as termirtals or

non terminals and only non_terminals may appear as interior nodes

in trees. The set of trees w~ich are defined by the grammar G are

all of those found in the initial tree set plus all of those which

can be created from the initial trees through a process called

adjoin-ing.

Adjoining In the adjoining process, a node within a tree is

removed along with all of its descendant nodes. In its place, an

auxiliary tree whose root is the same as the removed node is

inserted. Additional adjoining can occur any where in this large

tree.

Let us consider a tree adjoining grammar, G having

following sets of trees. The initial tree set has only one tree _

A

B c

I
f

(Initial tree)

19

Auxiliary tree set has two trees shown below

c

g D

~
b f

(~ree no. 1)

c

(tree no.2)

L(G), the language defined by G, that is set of all

sentences defined by parse trees generated by G. Therefore L(G}

contains following sentences 11 de f 11
, "deg,bf", 11 dep.q 11

• The

corresponding trees are shown below. For each adjoining operation,

the newly inserted auxiliary tree is surrounded by dotted lines.

A

B c

~ I
d e f

(for the sentence "deg")

20

A

B c

d e
~ g . D

~·.

~. ~

A
b f

(for sentence "degbf")

A

B

\

~
~

d e p q

(for sentence "depq")

Nested structures can also be handled very easily.

suppose, there is one more auxiliary tree shown below in the

auxiliary tree set.

c

n c

(tree no.3)

Then language defined by this grammar, G, is -

* . * [def, de(n) gbf, de(n) pq] where "comma" represents union

* and (n) is the closure bf "n".

21

;t:J-:,, £.

6Bt''& ·o~

k527

fo·

CH~ 4 SYSTEM OVERVIEW

Iti this chapter, first we briefly describe the system

which has been Jmplemented and then the different modules of the

system in short.- The detailed discussion will be in later

chapters.

4.1 Brief Description of the ~ystem :

We have considered the application of the system on a

given user database DBF (Given in the next section). The interface

. is- composed of several active- -components parser,- translator,

·interpreter and another components ·which act as read-o'nly files

during the processing of a question and are known as lexicon

files. The parser, translator, interpreter and tree adjoining

grammar tree sets will remain the same for any user database. for

which the interface will be used.

A database administrator who wishes to use this system

for a given application will perform the following tasks.

(1) Create the data definition of the relations.

(2) Create a lexicon entry for each additional word he
\

wishes to be understood by the interface by specifying

the part of speech of the word and a function which

describes the condition that the word represents in

the database.

(3) Load the database with data and maintain the data

properly.

22

I.

INTERPRETeR

question
po.yse ...

t..-ec. "" TRANSLAIOR
1 PARSER

pseudo- qut:Yy 7
..__ _____ ._~

- '"
......

I'

dcfi ni tions QUEL

se J'7t<=nb: c.

TR££ S£T L£XICON

. ' .

. fJU(S.S irtg. ·
fltc ' INGRES

i
II'

IT'

r---'------&---, ..
j

·og desi$ne..-
t--------~' specJ'ftco.b'an. , ' dat~bose. 1

Orice the system is set up, users ask English questions

a·nd receive data in response. The system processes the question as

follows.

First, they are sent to the parser. The parser accesses

the tree set and the word category part of the lexicon to

produce a tree adjoining grammar parse tree which

represents the question. The parse tree is then sent to

the translator which uses definitions of words in the

lexicon to construct a pseudo query. It is then the job

of the interpreter to phrase the pseudo query as a QUEL

query, the language supported by -INGRES -and the results

are returned to the user. Figure 4.1 illustrates the

entire structure of the system.

4.2 A Sample Relation :

We have taken a sample relation to describe the

working of our system. The .table which we have created using

INGRES is named DBF. It is a database containing infor~ation about

the students of a school. This table has five attributes. The

attributes name and their corresponding data formats are given

below -

Column· Name

NAME

AGE

ADDRESS

CLASS

GRADE

Data Format

24

TEXT(25)

INTEGER(3)

TEXT (40)

TEXT(15)

TEXT(l)

Steps involved in creating ~his relation using INGRES

are -

(1) Invoke INGRES/MENU.

(2) Select TABLES option from the-main menu. .
(3) Select CREATE to create a·new table.

(4) Enter the name of the table as DBF ..

(5) Move the cursor to the table field, in the column

labelled Column Nijlme. Type in the name of the first

field. Tab to column labeled Data Format. Ent~r the

data format. Enter all the attributes' na:rne in the same

fashion.-

(6) Select the Save menu item to save the table and its

columns in the database.

Thus, the sample -relation DBF has been created.

Examples used in this dissertation and lexicon shown in Appendix

(A) are based on this sample database. The system can be adapted

to other databases, for that the only thing required is to change

the lexicon ..

4.3 MODULES OF THE SYSTEM :

The process of converting a natural language query

into its equivalent QUEL query is divided into small processes

called modules of the system. These modules are described, in

brief, in this section.

25

4.3.1 Lexicon and Pseudo Query

The first task of natural language is understanding

each of the words in the sentence given. It can be achieved by

maintaining a dictionary, also called a lexicon, which.contains an

entry for each word giving the target representation of the

meaning of the word. Unfortunately, many words hav~ several

meanings and it may not be possible to choose the correct one just

by looking at the word its~lf. So, it is the job . of database

designer to make entry for each possible meaning of a word and

giv~ preferences to the meanings.

For example, the word diamond might have the. following

set of meanings -

* A geometrical shape with four equal sides.

* A base ball fiel'd.

* An extremely hard and valuable gemstone.

If a database designer is writing a database for a

base ball game than he should give more weightage to the second

meaning of the word diamond than the other two.

The lexicon acts as a mapping between the user

database and the English language. The sample of lexicon is given.

in figure 4.2. The first field in the lexicon is the word, i.e.

terminal. The second field is the word category, i.e the category

to which that word belongs to. 11 WH 11 category contains the question

word, for example - what, where, who, how etc. The third and last

field of lexicon is the definition field. It can be a function

name or a definition given in the form of pseudo code.

26

WORD CATEGORY DEFINITION

Whose WH FROM DBF

·ID DBF.NAME

PRT DBF.NAME

WHERE NIL

age NOUN FROM DBF

ID DBF

PRT NIL

WHERE NIL

is VERB FUNCTION (INSTANCE)

Figure- (4.2)

The pseudo query data structure (see figure 4. 3)

contains a list of relations on which operations are being

performed (the FROM part), a list of database fields indicating

the information being required (the PRT part) and a list of

conditions which must hold for each instance of relation (the

WHERE part). These three fields are close in function to FROM,

SELECT, and WHERE in SQL and RANGE, RETRIEVE and WHERE in QUEL. It

makes the job of the interpreter easier. Pseudo query includes a

fourth field ID which is a sentence (pertaining to meaning)

component neccessary for the translation process.

27

PSEUDO QUERY

FROM ID WHERE PRT

SQL

FROM. SELECT WHERE ·

QUEL

RANGE RETRIEVE .. WHERE

Figure 4.3

4.3.2 The Parser :

Parsing is a m~thod of seperating a sentence into its

component parts·, which is the computer's equivalent of diagramming

a sentence into a'parse tree. Parsing takes advantage of inherent

regularities in natural language to ensure that the computer

understands the precise function of each word in a sentence, as

well as its relationship with each of the other words.

The input to the parser of our system is a English

query, i.e. a string of words (terminals). There is a restriction.

that the query must start with a word which belongs to "WH"

category or a question word. The parser generates an output which

28

is· actually the post-order traversal of a tree. With each node

except the terminal and pre_terminal nodes, a number is attached.

The purpose of this numeral is to show number of children attached

to the node. For example a node NP2 shows that it.has two children

attached to it. The pre_terminals can have one child only. Given

the post order trp.versal and· number of childern attached to each

node, one can uniquely construct a parse tree. Let us consider a

English query -

Whose age .i:?.. 23 ?

The parser_output would be-

Whose, WH, age,·· NOUN, NBARl~ NP2, -is, VERB, 23, NOUN

NBARl, NPl, VP2, SENT2.

The diagrammatical representation of this parser

output is shown in figure 4.5. Note that the post-order traversal

of the tree is·the same as the parser output.

SENT

NP VP

WH NBAR VERB NP

I I I I Whose NOUN is NBAR
., I

age NOUN
~~ I

23

figure(4.5)

29

'

4.3.3 Translator :

· The translator and the interpreter of our system (see

figure 4 .1) are integrated into a single module. This module

accepts the P'.;lrse tree, i.e. the_. output of the parser ·and

translates it into an intermediate structure called Pseudo query.

Finally, a part . of this module (interpreter) maps this pseudo

query into an INGRES query and passes it to INGRES. The idea of

first generating a pseudo qu~ry is to make the system Portable.

The conversion for use with a different query language is

accomplished by providing routines which convert the pseudo query

into a query in the new-language.

Translation process is . a bottom_up sequence o·f ·
-

transformation of th~ parse tree. Each interior node i, the tree

corresponds to a subroutine. We will discuss the function of these

subroutines in Chapter 6.

The translator . maintains a stack. It reads the

inputted string, i.e. the parser output. If the word fetched is a

terminal, it pushes it on to the stack. If it is a pre_terminal~

(since it has one child in the tree), it pops the top of the

stack. It should be a terminal, so it brings the definition of the

word from lexicon and pushes it on to the stack. Since each

interior node in the parse tree represents a subroutine and it

operates on its predecessors. If the next symbol is a non_terminal

then pop as many data from top of stack as the number attached to

it. Then jump to the subroutine represented by the non_terminal

and pass the data popped as parameters to that routine. The result

of that subroutine is pushed onto the stack. This procedure is

30

coritinued until the whole input string gets exhausted.

Let us, consider the example taken in previous sub

section again -

Whose age is 23?

The output of the parser was

Whose, WH, age,_ NOUN, NBARl, NP2, is, VERB, 23, NOUN,

NBARl, NPl, VP2, SENT2 •.

Applying the procedure described above for the

translation, the output of the --translator will be {the part of

lexicon used for- the translation porcess is shown in figure 4.3) -

FROM DBF --

ID DBF.NAME

PRT

WHERE

DBF.NAME

DBF.AGE = 23

This is the equivalent pseudo query of the English

question. This is then converted into QUEL query. This conversion

is easy because the fields of pseudo query are close in function

to fields of QUEL query. It is covered in Chapter 6.

31

CH. 5 SYNTACTIC ANALYSIS

The lexical and syntax analysis of our system is being

covered in this chapter. First we discuss the design and

implementation of the lexicon used by our system. Then we .describe

the parsing mechanism in detail. The tree sets or tree adjoining

grammar used by this system are also given.

5.1 Design and Implementation of a Lexicon : ·

In this section, we will look at the design and

implementation details o·f the lexicon used by the system.

5.1.1 Introduction :

A parser, for parsing a sentence, needs a dictionary

for getting syntactic information about the words in the language.

The collection of words along with the syntactic information

constitute the lexicon of a parsing system. The information needed

in the lexicon _depends on the application. For natural language

interface to a database the lexicon would differ from a

conventional one (which gives only syntactic information) , for

this ·application it provides addition information regarding those

words which have a special or restricted meaning in the domain of

the database.

32

5.1.2 Design· of the Lexicon :

We have divided the lexicon logically into two parts -

(A) Core lexicon and

(B) Database specific lexicon.

(A) Core Lexicon :

This part of the lexicon contains those

words whose usage hardly ever changes across different

domains. Example '?f such words are "WH" category word

what, who or pronouns like this-- only the syntactic

information, which includes -

the lexical category and

feature dimensions.

The lexical category of a word is what

we call part of speech in English grammar, like for the

word boy the lexical category is noun. It is possible

that a word might have one of several lexical

categories depending on the way ·it is used. For

instance, the word play in the sentence - "Let us play

tennis" has the lexical category verb and in the

sentence - "It was a good play", it has the lexical

category noun.

{B) Database Specific Lexicon

This constitutes of.

those words which have specific meaning with respect to

the domain. For instance, the word offer in the domain

of a university database would invariably mean the act
-

of offering a course, by departments or the teachers in

33

the departme~ts. We see that the word has its· meaning

restricted. This information will not be used. during

the parsing stage, but will be pul·led out of the

lexicon and placed i~ the output frame of the parser

(along with the word). It will be used by the

subsequent module.

The words are the terminals in the

grammar. Each words in the sentence is attached to its

corresponding category. For this reason, the categories

are often regarded as being pre_ terminals. For each

word, there is a definition entry in the lexicon. The

definition entry could be either-a subroutine name or a

definition~ In the lexicon nouns and adjectives always

have definitions which are in the . form of pseudo

queries. Such words are called object_words. For

example, the definition of the word age is a pseudo

query which says that age corresponds to an attribute

of the relation DBF called DBF.age. The WHERE and PRT

parts of the pseudo query are nil because a mere

reference to age does not imply the selection of any

specific tuples in DBF or the request of any

information in the lexicon as the name of a subroutine;

the. function of this subroutine is to copy the

relation/field pair in the ID field into the PRT field.

The role of these subroutines are explained in Ch. 6.

34

In the following section, we ~ill describe the parser

used by the system.

5.2 THE PARSER

The syntactic analysis requires some kind of parsing

techniques (a method of carving sentence into its component parts)

which is the computer's equivalent of diagramming a sentence.

Parsing takes advantage of inherent regularities in natural

language to ensure tbat the computer understands the precise

function of each word in a sentence as well as its relationship to

each other word.

5.2.1 Tree Sets :

We employ a Tree Adjoining Grammar (TAG) parser for parse

tree construction. Unlike other grammars, there are no production

rules for TAG's. Rather a TAG consists of two sets of trees, the

initial trees and auxiliary trees. Symbols in a TAG are identified

as terminals or non_terminals and only non_terminals may appear as

interior nodes in a tree. The set of trees defined by the grammar

G are all those found in the set of initial trees plus all those

which can be created from the initial ones by adding auxiliary

trees through adjoining (already discussed in chapter 3 Sec. 3.2).

The TAG which we used as part of our database interface is shown

below; it consists of one initial tree and eleven auxiliary trees.

35

SENT

NP VP

(Initial Tree)

Auxiliary Tree set

NP

NBAR

Aux. Tree (1)

NP

DET NBAR

Aux. Tree· (2)

NP

NBAR SBAR·

WH NP VP

Aux. Tree (3)

36

NBAR

NP

NBAR

Aux. Tree (4)

NBAR

NOUN

Aux. Tree (5) ·

NBAR

nil

Aux. Tree (6)

NBAR

PREP

Aux. Tree (7)

PPH

NP

VP

VERB NP

Aux. Tree (8) ·

VP

VERB ADJ

Aux. Tree (9)

ADJ

ADJECTIVE ADJ

Aux. Tree (10)

ADJ

ADJECTIVE NBAR

Aux~ Tree (11)

38

5.2.2 The Parsing Mechanism

The parsing of the input string starts with the initial

tree. This initial tree grows up using the process of adjoining,

i.e. replacing a node and its corFesponding sub tree with another

auxiliary tree whose root node is the same as the removed node.

This process of a~joining has already been discusse~ in Chapter.J.

Now, the tree thus obtained is traversed in an in order manner.

During traversal, if the leaf. node is found to be a pre_terminal,

i.e. of the word category such as noun, verb, ~reposition· etc.,

then the next word of the input string is looked whether it is of
-

-the same category- as the preterminal.- For looking this, two fields

of the. lexicon (discussed in previous section) namely the word and

category are used. The lexicon, in fact, tells about the category

the word from the input string belongs to. However, the definition

field is not used from the lexicon until the translation phase. If

the word is found to be of the same category than this word, i.e.

the terminal is removed from the input string and is attached to

the pre_terminal in the tree.

The above process is continued until the whole input

string gets exhausted. At this point, we have got the parse tree

for the given input string.

The following sub_section describes the parsing mechanism

in more detail. It also covers the programming constraint like

"how" and·"why". It is implemented in PROLOG.

39

5.2.3 Details of the Parsing Process :

we will consider the processing of an English question -

What is the age of Gurjee't?

The part of lexicon used by the parser t? parse this query

is shown in figure 5.2

WORD CATEGORY

What WH

is VERB

the DET

of PREP

Gurjeet NOu'N

age NOUN

Figure 5.2

The parser always starts with initial tree. The

auxiliary trees are written in the previous sub section. At the

beginning -

SENT

NP VP

Now "NP" is replaced by ·first tree (see figure 5. 1) of

auxiliary tree set

40

SENT

NP. VP

WH NBAR

"WH" is the pre_terminal and the ~irst symbol _in the

input string What belongs to this word category. so, the word What

is removed from the input-~tring and attached to the pre_term~nal

in .the above tree. The replacement is announced as SUCCESSFUL. The
..

tree left is -

SENT

NP VP

WH NBAR

I
What

is the age of Gurjeet

remaining string

·-

SUCCESS

41

Now, "NBAR" . is replaced by the first auxiliary tree

with the root node "NBAR", i.e tree no. 4.

S.ENT

NP VP

NBAR

What NOUN

is the age of Gurjeet.

remaining string

FAIL

but the next word in the input string, i.e. "is" does not belong

to word category "NOUN". Hence, the adjoining fails here. Other

trees with root node NBAR are trieq; this is called backtracking.

So, the next tree with root node NBAR is tree number 6

(see figure 5.1)

42

SENT

NP VP

WH NBAR

I
What nil

is the age of Gurjeet

remqining string

SUCCESS

nil is a terminal and can be attached to any non_terminal, this

replacement is always true. Now the next non_terminal in the tree

is VP when looked in ·in order manner. "VP" can be replaced by tree

number 8, i.e. the first tree with root node "VP" in the auxiliary

tree set as shown in the figure (a) on the next page. Next symbol

to be processed is the pre_terminal "VERB". The first terminal.of

the remaining input string is attached to the_pre_terminal if it

belongs to that pre_terminal category and SUCCESS is announced.

43

SENT

NP -VP

/
WH NBAR VERB NP

~ .

What nil

is the age of Gurjeet

SUCCEss· remaining string

Figure (a)

SENT

NP VP

WH NBAR VERB NP

I
What

I
nil

J
is

the age of Gurj eet

SUCCESS -remaining string

Figure (b)

44

"NP" is replaced by the auxiliC:try tree number 1.

SENT

NP VP

WH NBAR

I I
What nil NBAR

the age of Gurjeet

FAIL remaining string

Since the next word in input string, i.e. "the" does

not belong to "WH" category. Hence the replacement fails and

parser has to backtrack and try other alternatives. "NP" is

replaced by tree number 2 -
SENT

WH NBAR VERB

I I I
What nil is DET NBAR

the age of_GUrjeet

SUCCESS remaining str~ng

45

The ter~inal "the" is attached to the pre_terminal

"DET". Next NBAR is replaced and "age" is attached to NOUN -

SENT

NP VP

WH NBAR VERB NP

~
What nil:

--
is DET NBAR

the NOUN

.,.

age

of Gurjeet

FAIL remaining string

The adjoining done in the tree given above is

announced ''failed". O(course, the adjoining of tree number 2 for

the node NBAR was correct, since the next terminal from the

remaining input string, i.e. "age" belongs to the word category

NOUN. But after doing this replacement the tree has got no

non terminal free and remaining input string is not empty at this

point. Our parsing is successful only when all leaves are

46

terminals and the input string is completely exhausted. Next, tree

number 6 is tried -

SENT

NP VP

WH NBAR VERB NP

A
What -nil is -DET - NBAR -

A
the NBAR PPH

A
NOUN PREP NP

age of NBAR

I
NOUN

Gurjeet

SUCCESS remaining string

47

The input string is exhausted and only terminals are

at the leaves of the tree generated, hence parsing is successful.

It is the diagrammatic representation of the parser output,

. actually the output of the parser is a list o.f

terminalsjnon_terminals. This list is a post_order traversal of

the. parse tree .. Whenever a sub_tree is completed, i.e. all its

leaves are terminals only, and the recent adjoining is flagged as

successful, then the post_ order traversal of that sub tree is

stored in the list. Each-nort terminal in the. list,is also having a

numeral attached to itj indicating the number of children it has

in -the parse tree. For example, the sub tree -

NP

WH ·NBAR

What nil

.When "nil" is attached to NBAR,_ the sub tree with NP

as .root node is completed, herice its post . order traversa_l is

stored in the· list as - what, WH, nil, NBARl, NP2.

So, the output of the parse tree for .the query

•what is the age of Gurjeet• ? is -

What, WH, nil., NBARl., NP2, is, VERB,

the, DET, age, NOUN, NBARl., of, .PREP, Gurjeet, NOUN, NBARl, NPl.,

PPH2, NBAR2, NP2, VP2, SENT2

Auxiliary tree set can easily be extended. This makes

it pos~ible for the parser to handle more complicated queries.

48

CH. 6 SEMANTIC ANALYSIS

In this chapter, we will discuss the translation

process of our system. The translation of parse tre~ to. pseudo

query and then its interpretation to QUEL query has been described

in detail with examples. Algorithms have been given in. P.seudo code

for the procedures used in the translation.

6.1 Procedures. for the Translation Process

The act of translating a parse tree to a pseudo query

is a bottom_up- operation. The-leaves of the tree contain words-arid

each interanl node contains a function which acts on the values

returned by· its offspring and returns a pseudo query. Pseudo

queries are themselves functions and the lexicon entry for each

object_word is a pseudo query which describes the role of that

word in database access. The WH words act as signals in the

translation process. When they appear before NOUN, it is assumed

that the NOUN is a class of ftems and that the values of

corresponding fields in the database relation are requested by the

user. When a WH word appears in place of an object word, its

location in relationship to the surrounding syntactic structures

is used to determine what information is requested. WH words are

represented in the lexicon as the name of a subroutine; the

function of this subroutine is to copy the relation/field pairs in

the ID into the PRT field.

The relationShip bet~een a sentence's subject and the

49

object of i ls verb can be determined in part by the number of

objects of the verb. Thus, it is reasonable to propose that the

semantic portion of the verb will include a means of determining

how m~ny objects follow it. It would also be helpful if there was

a way_of·establishing whether these objects fall into recognizable

categories.

When the translator performs its bottom_up evaluation

of the parse tree, it starts with the individual word (terminal

node) definitions arid moves up through_. progressively higher

structures until the entire question has been translated. It is,

therefore, very natural for the translator -to build-pseudo-queries

with embedded sub_queries.

The uppermost nodes in the parse tree process

information that is synthesized from a combination of the lower

nodes. The procedure which C):"eates these combinations is called

HAS A function and it takes as parameters two pseudo queries.

The pseudo queries in the parameter list of HAS A

representing the modifying sub_structure (or constituents)· is

called the inferior parameter. The parameter representing the

constituent being modified is called superior parameter (Sup) .

The ID fields of pseudo queries have· a specific

relationship to each other. There can be many combinations of

pseudo queries with different !D's. For combinational purposes,

pairs of pseudo queries have been broken up into three classes

(1) the two IDs have the same value.

(2) the relation in the ID of the inferior pseudo

50

only

query is in the FROM list of the superior pseudo

query (inferior modifies the superior).

(3) all other possibilities.

If case(l) holds for the pair ~f pseudo queries then

the result of case(l) combination is returned. Likewise, if

case (1) is not applicable for the pair, then result of case (2)

combination is returned . , otherwise, the result of case (3)

combina.tion is returned. The algorithm of HAS A function is given

below.

Function HAS A (sup,inf);

begin

if sup.ID = inf.ID then

/* case(l) *l

begin

·result.ID = sup.ID

result.FROM = sup.FROM

result.PRT = sup.PRT

.. if sup. WHERE = nil then

result.WHERE = inf.WHERE

else if inf.WHERE = nil then

result.WHERE = sup.WHERE

else

result. WHERE = sup. WHERE AND.

inf. WHERE

end /* end of case(l) */

51

else /* beginning of case(Z) */

if sup.ID.relation E sup.FROK and

(inf. PRT <> nil or inf. WHERE <> nil)

then begin

result.ID = sup:ID

if sup.FROK = inf.FROK then

result.FROK = sup.FROK

else result.FROK = sup.FROK AND

inf.FROK

if sup.WHERE = nii then

result.WHERE = inf.WiiERE

·else if inf. WHERE = nil then

result.WHERE = sup.WHERE

else

result.WHERE = sup.WHERE AND

inf.WHERE

end /* end of case(2) */

_else /* beginning of case(3) */

begin

result.ID = sup.ID

result.FROK = sup.FROM

result.PRT = sup.PRT

if sup.WHERE = nil then

result.WHERE = inf.WHERE

else if inf. WHERE = nil then

result.WHERE = sup.WHERE

52

end;

else

. result.WHERE = sup.WHERE AND

inf.WHERE

end /* end of case(3) */

return (result)

/* end of function HAS_A */

HAS A is a very general all purpose procedure. Any pair of·pseudo

queries can be combined using HAS_A. However, there are points in

the translation_process when functions other than mere combining

must be performed on a pseudo query list. The INSTANCE procedure

of our program ~s a generalization of HAS_A function and contains

the code needed to correct~y handle case~ where.a function name is

passed to a higher node. The pseudo code for INSTANCE is given

below -

Function INSTANCE (sup,inf);

/~ 'sup' parameter is the ·left sublink of the node

and 'inf' parameter is the right ·one in the parse

tree */

begin

if sup = nil then

return (inf)

if inf = nil then

return (sup)

if (sup is a function name) then

if sup = 'cp_id_to_prt' then

53

begin

end

else

else

inf.PRT = inf.ID

return (inf)

return (sup.function, inf)

if (inf is a function name) then

if inf = 'cp_i_9_to_prt' then

begin

else

sup.PRT = sup.ID

return (sup)

end

else

return (inf.function, sup)

return (HAS_A (sup,inf))

end l* end of function INSTANCE */

·The use of INSTANCE will be illustrated in the

examples of the next section.

6.2 Details of the Translation Process :

We have already seen (in Ch. 4) the definition for the

NOUNS, VERBS, PREPOSITIONS, WH word etc. for our sample DBF

database. The complete lexicon given is in the Appendix A.

54

Let us examine each step of the translation for the

sentence -

"What is the age of Gurjeet" 7,

The lexicon used for the parsing and translation of

this query is shown in figure 6.1. The parse tree is shown in
'

figure 6.2.

WORD CATEGORY DEFINITION

What WH function (cp_id_to_prt)

is VERB function (instance)
.:

the DET nil

age NOUN FROM DBF
.

ID DBF.AGE

PRT nil

WHERE nil

of PREP function (ins.tance)

Gurjeet NOUN FROM DBF

ID DBF.NAME

PRT nil

WHERE DBF.NAME = "Gurjeet"

Figure (6.1)

55

We will illustrate t·he. translation process as a

bottom_up sequence of transformation of the parse tree. Each

interior node in the tree corresponds to a function and the first

function evaluated are those corresponding to pre terminal nodes :
··< -

WH, NOUN, VERB etc. The funct±ons associated with a pre_terminal

node has the same name as the pre_terminal node and merely returns

the definition of the word attached to it. When the function NBAR

is called with only one p~rameter, it returns that parameter

unchanged. When NBAR has more than one parameter, it returns. __ a

list of parameter functions and first parameter and second

parameter as the parameter of. this new function. The pseudo-code

for NBAR is -
SENT·

NP VP

WH NBAR ·VERB NP

I -
What

I
nil .I

1S
~.

DET NBAR

I ~-
the NBAR PPH

I~
NOUN PREP NP

I I I
age of NBAR

I
NOUN

.I
GurJeet

Figure (6.2)

56

the. NBAR,

Function NBAR (parameter #1, [parameter #2));

begin

if (there is only one parameter) then

return (parameter #1)

else

return (parameter #2.function (parameter #1

,parameter #2.para_list))

end; /* end of ~unction NBAR */

Thus, after evaluating thg_ pre_terminal function and

we have the tree shown in figure 6 • 3 •

The function NP is given -in pseudo code- below. The

parameter listed in square bracket is optional.

'
Function NP (parameter #1, [parameter#2])

begin

if (there is only one parameter) then

return (parameter #1)

else

return (INSTANCE (para#1, para#1))

end /* end of function NP */

The function PPH is called with two parameters

representing a preposition and its object. The preposition will be

represented by an appropriate function name. The code for PPH can

be summarized as follows -

Function PPH (prep, object)

begin

return (a list of prep and object)

end /* end of function PPH */

57

SENT

NP VP

WH NBAR VERB NP

linsLcel [cp_id_to_prtlnil
A

DET NBAR

~
- nil NBAR PPH

·I A
NOUN PREP NP

FROM DBF

ID DBF.AGE

PRT nil

WHERE nil. NOUN

FROM DBF

ID DBF.NAME

PRT nil.

WHERE DBF. NAME

"Gurjeet"

Figure (6.3)

58

After the PPH and NP has been applied,. we have the t

as shown in figure 6.4.

SENT

NP VP

NP

~
nil - NBAR

ID DBF.AGE ·

PRT nil

WHERE nil FROM DBF

ID DBF.NAM:E

PRT ,nil

WHERE DBF. NAME =

"Gurjeet"

Figure (6.4)

When INSTANCE is called with only one parameter, it

returns that parameter unchanged.. Function NP also returns the

non nil parameter unchanged when one of them is 'nil 1 • So 1 the

tree left is shown in figure 6.5. ~

59

SENT

VP

nil instance

FROM DBF FROM DBF

ID DBF.AGE ID DBF.NAME

PRT nil PRT nil

WHERE nil WHERE DBF. NAME =

"Gurjeet"

Figure (6.5) ·

The function INSTANCE has two parameters, shown in

figure 6. 5, since none of them is a function name. So, the

INSTANCE function,• in turn, calls the HAS_A function. Case (2) of

HAS A function is applicable, since the ID fields of its

parameters are not equal. After evaluating this node, we are left

with the tree shown in figure 6.6.

60

SENT

VP

·Figure (6.6)

FROM DBF

ID DBF.AGE

PRT nil

WHERE DBF.NAME =

"GUrjeet"

Next, the node VP is evaluated. It has two par~meters

in the tree of fig. 6.6. The function of VP is very simple and can

be summarized as follows -

figure 6.7.

Function VP (parameter #1, parameter #2)

begin

return (a list of para #1 and para #2)

end /* end of function VP */

Tree, left after sol virig the VP node, is shown in

SENT

[instance J FROM DBF

ID DBF.AGE

PRT nil

WHERE DBF.NAME =

"Gurjeet"

Figure (6.7)

61

Finally; the function SENT has two parameters

corresponding to the noun phrase and the verb phrase. The first

element of the verb phrase is a function. So, the notation for a

function and a parameter list given with the definition of

INSTANCE may be -used. Then SENT may be represented in pseudo code

as follows -

Function SENT .(np, vp)

begin

return (vp.function (np, vp.para_list))

end /* end of function SENT */

For the tree in -figure 6.7, VP.function is INSTANCE.­

So, the result of evaluating SENT is the result of evaluating the

tree in figure 6.8.

INSTANCE

Figure (6.8)

ID DBF.AGE

PRT nil

WHERE DBF. NAME =

"Gurjeet"

The function cp_id_to_prt copies the ID field of its

parameter into the PRT field. So, the result of evaluating this

function will give the pseudo query -

62

FROM

ID

PRT

WHERE

DBF

DBF.AGE

DBF.AGE

DBF.NAME = "Gurjeet"

Figure (6.9)

The structure of pseudo query is so chosen that it can

directly be mapped to the QUEL query used by INGRES. The FROM

field of pseudo code is RANGE of QUEL. The PRT field of pseudo

code is RETRIEVE of QUEL and WHERE of pseudo code is same as the

- WHERE of QUEL. Hence, the QUEL query thus obtained is

RANGE DBF

RETRIEVE DBF. AGE

WHERE DBF.NAME =

"Gurjeet"

for our English query.

Let us consider another English query which has nested

structure· ...,

What is the name of person whose age is 23 ?

The parser output for this natural language query is -

What, WH, nil, NBARl, NP2, is, VERB, the, DET, name, NOUN,

NBARl, of, PREP, person, NOUN, NBARl, whose, WH, f!.ge, NOUN, NBARl,

NPl, is, .VERB, 23~ NOUN, NBARl, NPl, VP2, SBAR3, NP2, PPH2, NBAR2,

NP2, VP2, SENT2.

This is the post_order traversal of the parse tree and

number attached to each internal node is the number of siblings of

63

that node. We are taking a part of the parse tree whose root node

is SBAR. We have seen the function of all internal nodes except

SBAR in the previous example. So, let us carefully examine the

evaluation of SBAR "structure in the parse tree of the above

natural language query. The sub tree is given in figure 6.10.

SBAR

WH NP VP

Whose NBAR VERB NP

is NBAR

NOUN

23

Figure (6.10)

Again, the functions at pre_terminal nodes return the

definitions of the words associated with them and the functions

NBAR and NP called with only one parameter return that parameter.

unchanged. After the evaluation of these functions, we have the

tree shown in figure 6.11.

64

FROM DBF

ID DBF.NAKE

PRT DBF.NAME

WHERE nil

SBAR

FROM DB I""

ID DBF.AGE

PRT nil

WHERE nil

Figure (6 .11)

VP

DBF

ID DBF.AGE

PRT nil

WHERE DBF. AGE

= 23

Referring to the definition of VP, given previously,

we see that evaluation of VP gives the. tree shown in figure

6.12.

SBAR

FROM DBF FROM DBF j instance j FROM DBF

ID DBF.NAKE ID DBF.AGE ID DBF.AGE

PRT DBF.NAKE PRT nil PRT nil

WHERE nil WHERE nil WHERE DBF.AGE

= 23

Figure (6.12)

65

The function of ·SBAR may be used in different

environments from ·the one we see in this example. When SBAR is

called with tree parameters, however, the situation is always one

in which the left offspring is a WH word which denotes

possession. When it is called with only two parameters, the first

parameter is a pronoun, whose antecedent is a sibling of the SBAR

and parameter#2 will be linked to this antecedent later in the

translation process. Thus, SBAR may be given in pseudo code as

. follows -

Function SBAR (parameter#!, parameter#2,_ [parameter#J])

--begin

-if there are tree parameter then

return (para#3.function (para#l, para#2))

else.

return (parameter#2)

end;

So, evaluation of SBAR means evaluation of INSTANCE in

ou~ example, as shown in figure 6.13.

INSTANCE

FROM DBF FROM DBF

ID DBF.AGE ID DBF.AGE

PRT nil PRT nil

WHERE nil WHERE DBF.AGE

= 23

< figure (6.13) --

. 66

J

After evaluating INSTANCE the pseudo query obtained

for the sub tree is

FROM DBF

ID DBF.AGE

PRT nil

WHERE DBF. AGE

= 23

This is equivalen~ to the definition of the noun "23".

The evaluation of· rest of the tree _ _is· same as given in the

previous example. The pseudo query obtained finally is -

FROM DBF

ID DBF.NAME

PRT DBF. NAME

WHERE DBF.AGE

= 23

This pseudo query is then converted to equivalent QUEL

query. Conversion is simple because the function of FROM, PRT and

WHERE of pseudo query fields are the same as the function of

RANGE, RETRIEVE and WHERE fields respectively o'f the QUEL query.

Thus, the QUEL query obtained is -

RANGE

RETRIEVE

. WHERE

DBF

DBF.NAME

DBF.AGE

= 23

67

CONCLUSION

Before concluding the dissertation, we discuss the

class of questions accepted by our system, the linguistic

phenomena that are being tackled and, of course, the limitations

of the system.

In this system, only those questions which start with

"Wh", i. e. the questions starting with a word belonging to the

"Wh" category such as Who, What, Which, When, Where, etc., are.

accepted. The questions beginning with a "Why" are not inclusive

in the · list as such type of __ questions lead to a problem of

reasoning which, clearly, is beyond the scope of our system.
-

The parser that we have implemented is capable of

including any unknown word in the parse tree. The parser treats an

unknown word as a "noun", allowing it to take place in the parse

tree but identifying it with a special pre-terminal symbol.

Numbers are treated in the same way, but identifying it with a

different pre-terminal symbol to distinguish them from string

va 1 ues. If the. parser is not able to create a parse tree, it

backtracks and asks the user for the category of the unknown word.

Its definition will be asked during the translation phase. ~till,

if no exact parse tree is found, the user is signalled and the

translator is not invoked.

Of the auxiliary verbs, modals such as can, could,

will, would, shall, must, may, might, etc~ are not included.

Questions involving comparators such as ''more than", "less than",

68

"equal to", etc. are also not allowed. Besides, some sentences

which are not gramatically correct may also be able to get

themselves parsed which is not desireable.

This system ·has been designed to handle the nested

queries also very efficiently. But it does not support connectors

like and, or, etc.

This system can easily be adapted to a given user

database, which makes the sy~tem "transportable". The only change

required is in the part of the lex-icon. The core lexicon remains

the same. Definitions and the categories, if required, of the word

according to their probable use in th~ query have to-be changed by

the database engineer in the data specific lexicon. Rest of the

system remains unchanged.

The use of the intermediate. pseudo-query makes the

system portable; conversion for use with a different query

language is accomplished by providing routines which convert the

pseudo-query into a query in a new language.

In an effort to improve the TAG approach, the parser

will have to be redesigned to allow the use of real links. such an

improvement would allow accurate translations of sentences which

are presently untranslatable.

Another improvement can be made by altering the

structure of the pseudo-query. Presently, a pseudo-query is a

hierarchical structure, consisting of a primary query with

embedded sub-queries. This approach is adequate for translating a

wide variety of sentences. However, consider the sentence "What

69

boy, whose dog's nose is broken, has a bicycle ?". The antecedent

of "whose" is 11 boy". When the NP dominating 11 boy" and the NBAR
..

(Whose dog's nose is broken) is processed, the resuliing pseudo~

query must incorporate the fact that "boy" . possesses the "dog 11
• _,

However, because the translation of parse trees is processed in a

bottom-up fashion. The primary query in the ps~udo-query resulting

in the pseudo-query resulting from translating the SBAR would

represent the "nose". This r~presents a problem as it will seem

to.the translator that it is the boy whose nose is broken.

If the pseudo-queries were restructured to be directed

graphs rather than hierarchical structures, this problem would be

solved. When the phrase ."whose dog's nose" is translated, the

presence of "whose" would cause a special marker to be placed on

the processor of "dog", and then translation would continue as

previously described. Later, the SBAR function would look for this

special marker. After finding it the SBAR function would direct

the next higher level of translation to use the processor of "dog 11

as the antecedent of the sibling node of SBAR. Thus, "boy" would

be established as· the owner of "dog".

The TAGs have many unique properties such as links and

local constraints which make them useful in processing NL. These

properties can be used to devise a wide range of applications

including commercial packages and research tools for linguists.

70

APPENDIX 1

1***~***************/
I* Database file lexicon.pro. */
I* This file should be in drive of your system. */
1***********************~***************************************1

predicates
lexicon(s,s,either)

clauses

l**************************i****~********************************/
I* This part of lexicon remain same, whatever may be the *I
I* domain of your database. · *I
I**~~****************~***** I

lexicon(a,det,function(m)).
lexicon(an,det,function(m)).
lexicon(the,det,function(m)).
lexicon(in,prep,function(instance));
lexicon(to,prep,function(instance)).
lexicon(is,verb,function(instance)).
lexicon(of,prep,function(instance)).
lexicon(what,wh,function(cp id to prt)).
lexicon{who,wh,definition(dbf,'ii'dbf.name","dbf.name",nil)).
lexicon(whose,wh,definition(dbf,"dbf.name";"dbf.name",nil)).

1**1
/* This is data specific part of lexicon and may have to ~e *I
I* changed according to the domain of the database. *I
/**/

lexicon(got,verb,functiori(instance)).
lexicon(lives,verb,function(in~tance)).
iexicon(belongs,verb,function(instance)).
lexicon(gurjeet,noun,definition(dbf,"dbf.name",nil,

"name= gurjeet")).
lexicon(age,noun,definition(dbf,"dbf.agei•,nil,nil))~
lexicon(indore,noun,definition(dbf,"dbf.address",nil,

. "address = indore")) .
lexicon(name,noun,definition(dbf,"dbf.name",nil,nil)).
lexicon("m.tech.",noun,definition(dbf,"dbf.cla~s",nil,

"class= m.tech.")).
lexicon(person,noun,definition(dbf,"dbf.name'',nil,nil)).
lexicon(class,noun,definition(dbf,"dbf.class",nil,nil)).
lexicon(grade,noun,definition(dbf,"dbf.grade",nil,nil)).
lexicon("152 kaveri",noun,definition(dbf,"dbf.address",nil,

"address= 152 kaveri")).
lexicon("23",noun,definition(dbf,"dbf.age",nil,"age = 23")).
lexicon(address,noun,d~finition(dbf,"dbf.address",nil,nil)).
lexicon("A'',noun,definition(dbf,"dbf.grade",nil,"grade =a")).
lexicon(mukul,noun,definition(dbf,"dbf.name",nil,"name = mukul")).

APPENDIX 2.

AN IMPLIMENTATION OF NATURAL LANGUAGE INTERFACING

TO _INGERS.

WRITTEN IN

Turbo PROLOG version 2.0

BY

Gurjee~ Singh Khanuja

code = 3000

f* set the stack size to 3000 using setup of main-menu */.

domains

database

s = symbol
ls - s*
either= word(s);

function(s);
definition(s,s,s,s)

node(either)

/* node database is used as stack during the translation
phase. If translation-is successful then it will cont
ain only one data element. That data eleme~t is the -
pseudo query equivalent of the question asked.

*I

temp store(either)
unknown_word(either)

/* A word is said to be unknown if it is not found in the
lexicon of the system i.e lexicon.pro file. These unk
nown words found in the natural language query are st­
ored in unknown word database. temp store database is­
used to handle these unknown words.-We will store the
unknown words, their category, and thier definition in
this database.

*I

System will refer this database whenever
it fails to find a word in the lexicon.

include "b:iexicon.pro"

I* The lexicon is being stored in a seperate file <lexicon.pro>
which can be changed or updated time to time by the database
engineer. The lexicon.pro file should be in t6e drive [B:]­
of your computer system.

*I

I****************~*** P R E D I C A T E S **********************I

predicates

go
read sentence(ls)

-- reverse (ls, ls, Is)
reverse_lst(ls,ls)

I* PREDICATES USED FOR PARSING A QUERY *I

parse sentehce(ls,ls,ls)
nounphrase(ls,ls,ls,ls)
verbphrase(ls,ls,ls,ls)
adjective(ls,ls~ls,ls)
nbar(ls,ls,ls,ls) ·
sbar(ls,ls,ls,ls)
parser output(ls)
pph{ls~ls,ls,ls)
refer(s,s)

I* PREDICATES USED FOR TRANSLATION *I

find def(s,either)
empty temp store
entered(s,s,either)
definition or function(s,s)
enter_def_or_fun(char,s,s)
translate (ls)
check(s)
category
nbarl
npl
pph2
nbar2
np2(either,either)
vp2
sent2
inst
instance(either,either)
function id prt(either)
has_a(either,either)
cases(s,s,s,~,s,s,s,s)

,

•

..

part of case2(s,s,s,s,s,s,s,s)
part-of-case21(s,s,s,s,s,s,s,s)
part-of-casel{s,s,s,s,s,s,s,s)
union(s-;s,s)
write the result

goal
go .

I************************ C L A U S E S *************************I

clauses

go :-
read_ sentence (()) ·.

I* read sentence, reads the sentence inputted in a list
L until the question mark <?> appears in the input

-sequence.
*I

read_sentence(L) :-
write("Enter -> "),
readln(Word),
Word <> 11 '? 11 ,!,
read_sentence((Word L)) •

I* Since the list works in LIFO fashion therefore it is
first reversed before sending it to the parser.

*I

read_sentence(L) :-
I . '
reverse_lst(L,LR),

I* parser is called here *I

parse_sentence(LR,[],TLl),

I* TLl i~ the parser output, it is post
order traversal of a tree called
parse tree. It is first reversed
before sending to the translator.

*I

reverse lst(TL1,TL2),
makewindow(1,7,7,"",0,0,25,80),
TL3 = TL2,
write("Parsed tree• "),nl,

I* parser output, writes the output of
the parser on the crt.

*I
parser_output(TL2),nl,

_ /* 'translate' is the first rule of the
translator phase~

*I
translate (TL3).

/* reverse_lst, reverse the order of contents of list L.

*I

The reversed list is in LR. Note the content and order
of elements in lise L remain unaltered.

reverse_lst(t.,LR) :-
reverse (L, [], L~) .

reverse((],L,L). ~

--reverse ([HIT] ,·Ll, L2) :­
reverse(T,[HILl],L2).

l* The following rules writes the output of the parser *I

parser output([]). :-
- readchar (_) .

parser_output([HjT]) :-
write (H , " ") ,
parser_output(T).

/* The following rule is called after the translation
phase. At the end of translation process there should
be only one data element in the 'node' database. This
data element is the QUEL query which must be euivalent
to the natural language query.

*I
write the result :-

retract(node(definition(M, ,O,P))) ,!,
write ("FROM : 11

, M) , n 1 ,
write("RETRIVE :.",O),nl,
write("WHERE : 11 ,P),nl.

I************************* P A R S E R **************************I

I* There are four atoms in most of the parser rule, e.g.
nounphrase(ls,ls,ls,ls). All the atoms are of type
list <ls> <list of symbols>. The first atom represents
the remaining list, i.e. input string yet to be procc
ess. The second atom denotes, the remaining list which
is to be returned after the completion of that rule.
The third and fourth atom represent the parser output.
The third one is the parser output pa·ssed to this rule
by last rule executed, means the current status of the
parser output. The fourth, will be the parser output
after the completion of this rule.

*I

I* Following is the Initial tree of our Tree Adjoining
Grammar.

*I
parse_sentence(L,TL,TLl) :-

~ounphrase(L,RL,TL,TL2),
verbphrase(RL,RL1,TL2,TL3),
TL1 = (sent2jTL3],
RLl = [].

I* Following rule represent the first auxiliary tree of
auxiliary tree set

*I
nounphrase((HjT],RL,TLl,TL2) :-

refer(H,C),
C = wh, ..
_TLJ = [HI TLl],
TL4 = (catjTLJ],
nbar(T,RL1,TL4,TL5),
TL2 = [np2ITL5],

I* 'np2' is stored in.the
output of the parser
because this sub tree
with riode nounphrase h~s
got two siblings.

*I

RL = RLl.

I* It is the second auxiliary tree *I

nounphrase((HITJ,RL,TL1,TL2) :­
refer(H,C),
c = det,
TL3 = [HITLl],
TL4 = [detiTL3],
nbar(T,RL1,TL4,T~5),

TL2 = (np2ITL5],

I* This sub tree also have
two siblings, one is de
terminer and other is -
nbar.

*I
RL RLl.

I* This is the third auxiliary tree *I

nounphrase (L, RL, TLl, 'I'L2) :-
nbar(L,RLl,TLl,TL3),
sbar(RL1,FL2;TL3,TL4),
TL2 = [np2 I TL4],
RL = RL2.

I* Fourth auxiliary tree */

nounphrase(L,RL;TL1,TL2) :­
nbar(L,RL,TL1,TL3),
TL2 = (npliTL3].

I* Following is the part of third au~iliary tree */

sbar([HITJ,RL,TL1,TL2) :-
refer(H,C),
C = wh,
TL3 = [H I TLl],
TL4 =(cat I TL3],
nounphrase(T,RL1,TL4,TL5),
verbphrase(RL1,RL2,TL5,TL6),
RL = RL2,
TL2 = (sbar3 I TL6).

I* This sub tree has three. sibli
gs.

*I

I* This is the fifth auxiliary tree and first of thos~
auxiliary tree set which have 'nbar' as root node.

*I

nbar([HITJ~RL,TL1,TL2) :­
refer(H,C),
C = noun,
TLJ = [HITLl],
TL4 = (cat I TLJ] ,
RL = T,
TL2 = [nbarl~TL4J:

I* Sixth auxiliary tree *I

nbar(L,RL,TLl,TL~) :-
TLJ = [nil I TLl],
TL2 = (nbarliTLJ],
RL = L.

I* Seventh auxiliary tree *I

nbar (L, RL., TLl, TL2) :....;
nbar(L,RLl,TLl,TLJ),!,
pph (RL1,RL2,TL3,TL4),
TL2 = [nbar2ITL4],
RL = RL2.

I* This is the part of seventh auxiliary tree *I

pph([HITJ,RL,TL1,TL2) :­
refer(H,C),
C = prep,
TLJ = [HITLl],
TL4 = (cat1TL3],
nounphrase(T,RL1,TL4,TL5),
TL2 = [pph2ITL5],
RL = RLl.

I* Eight auxiliary tree *I

verbphrase([HjT],RL,TLl,TL2) :­
refer(H,C),
C = verb,
TLJ = [HjTLl],
TL4 = (catjTL3],
nounphrase(T,RL1,TL4,TL5),
TL2 = (vp2ITL5],
_R~ = RLl.

I* Nineth auxiliary tree *I

verbphrase([HITJ,RL,TL1,TL2) :-

I* Tenth auxiiiary tree */

. refer(H,C),
C = verb,
TL3 = [HI TLl],
TL4 = (cat!TL3],
adjective(T,RL1,TL4,TL5),
TL2 = [vp2ITL5],
RL = RLl.

adjective((HITJ,RL,TL~,TL2) :­
refer(H,C),

I* Eleventh auxiliary tree *I

c = adjective,
TL3 = [HITLl],
TL4 = (cat1TL3],
adjective(T,RL1,TL4,TL5),
TL2 = [ad-j 21 TLS] ,
RL = RLl.

adjective([HITJ,RL,TL1,TL2) :­
refer(H,C),
C = adjective,
TL3 = [HITLl],
TL4 = (cat1TL3],
nbar(T,RL1,TL4,TL5),
TL2 = (adj2ITL5],
RL = RLl.

I* Refer rule first check the word <W> in the lexicon, if
it found in the lexicon then it returns its category,
otherwise, the parser assume that this word.belongs to
'noun' category and try to parse the sentence. This
word along with its category is stored in a database
'unknown word'. A definition whose first element necce
ssarily 1 nil' is also stored. This first element is
used later to identify that the definition of this un
known word is not given by the user. And ask user to -
enter the definition.

*I

refer(W,C) :-
lexicon(W,C,) .

refer(W,C) :-
! ,c = noun,·
asserta(unknown word(word(W))),
asserta(unknown-word(word(noun))), ·
asserta(unknown-word(definition(nil,nil,nil,

- nil))).

I* refer(W,C) :-

*I

retract(unknown word()) ,
retract(unknown-word(-)),
write("What is the category of word <",W,">

' o II)
0 '

readln(C),!,
asserta(unknown word(word(C))), .
asserta(u~known=word(definition(nil,nil,nil,nil)

I******************** T R A N S L A T 0 R **********************I

I* The translator takes the first symbol of the parser
output and do some processing then take another one,
this process is continue until the whole string get
exhausted.

*I

translate([]) :-
write the result.

translate ([HIT]) :-
! , check (H) ,
translate(T).

/*The symbols are checked here, each internal node in the.
parse tree represent some function.

*I

I* 'nbar', this rule return the list of its sublinks,
hence do nothing.

*I

check(nbar2) :­
nbar2.

I* if 'nbar' has only one parameter then it returns that
parameter unaltered.

*I
check(nbarl) :­

nbarl.

I* 'np' with one parameter returns the'parameter unchang_
ed.

*I
check(npl) :­

npl.

I* 'np' with two parameter calls instance rule, __ swaps its
parameter and pass them to instance rule.

*I
·check(np2) :­

-retract(node(Dl)),!,
retract(node(D2)),!,
np2(Dl,D2).

1 * Since,. 'pph' simply returns a list of its parameter
therefore, it is represented as a fact.

*I
check(pph2) :­

pph2.

check(vp2) :­
vp2.

check(sent2) :­
sent2.

check(cat) :­
category.

I* 'sbar' with three parameters, it calls instance subro
utine and passes its first and third parameter to this
routine.

*I
check(sbar3) :-

retract(node(Defl)), !,
retract(node(Def2)),!,
retract(node(D~fJ)),!,

•

retract(node()),!,
Def2 = functi~n(instance),
asserta(node(Def3)),
asserta(node(Def1)),
inst, ! .

I* Determiner is ignored by our system. It puts the wcii·d
'riil' instead of the determiner.

*I

check(det) :-
retract{node{word{))) ,!,
asserta{node{word{~il))).

I* Words are stored in the stack 'node' *I

check(W) :­
asserta(node{word{W))).

I* When the symbol encountered, the translator ·pops the
word just stored in the stack <node>, and find the de
finition of the word and push it on to the stack. This
is what the function of pre terminals in the parse
tree. - .

. *I

category :­
retract(node(word(Word))),
find_def(Word,Def),
asserta(node{Def)).

I* It finds the definition of the word. If the word is
not found in the lexicon it ask the user to enter its
definition or the function name and store it in the
unknown word database.

*I

find_def{Word,Def) :-
lexicon{Word, ,Def).

find_def(Word,Def) :-
retract(unknown word(Data)),
asserta{temp st~re(Data)),
Data= word(Word),
retract(temp store(W)),
asserta(unkn~wn word(W)),
retract(temp_st~re(word(Category))),

.. •
asserta(unknown word(word(Category))),
retract(temp store(Definition)),
entered(Word~Category,Definition),
retract(unknown word(Def)),
asserta(unknown~word(Def)),
empty_temp_store.

I* This rule is used to maintain the unknown word data
base.

*I
empty_temp_store :-

empty_temp_store.

retract(temp store(Data)),
asserta(unknown word(Data)),
fail. -

1 * ·This- rule checks, whether -the definition of unknown
word <Word> has been entered already or not.

*I
entered (Word, Category,.
definition(From,_,_,_)) :-

From = nil,
definition or function(Word,

- - Category) .

· I* This rule ask the user whether the unknown word has a
definition or is a subroutine name and route the con
trol accordingly.

*I
definition or function

(Word,Category) :-
write("I assumed that the word <"

, Word,">")_, nl,
write(" belongs to <",noun,

"> category"),nl,nl,
write("The word <",Word,
">has a definition or a function"),
nl,
write("Press <· d I f.> "),
readchar(Ch) ,nl,
enter def or fun(Ch,Word,

- - - Category) ~

I* It accepts the definition for the unknown word *I

enter def or fun
('d'-;wor'd,category) :-

writ~("Enter the-definition of <"
,Word,">") ,nl,

write(" whose category is <",
Category,"> : "),nl,nl,

write("Enter the FROM part -> "),
readln(From),
write("Enetr the ID part -> "},
readln(Id),
write("Enter the PRT part->"),
readln(Prt),
write("Enter the WHERE part -> "),
readln(Where);
asserta(unknown word(definition

(From,Id,Prt,Where))).

I* It accepts the function name of khe unknown word *I

enter def or fun
('f'-;wor'd,category) :- _

write("Enter the function name of "
,"the word <",Word,">"),nl,

write(" whose category is <",
Category,"> : "),nl,nl,

readln(Function name),
asserta(unknown-word(function

- (Function_narne))).

I* 'nbar'and 'np' with one parameter, returns their
parameter unchanged .

. *I.

nbarl.

npl.

/* 'pph' with two parameter returns a list of parameter,
therefore always· true.

*I
pph2.

I* 'nbar' with two parameters call~ the instance rule and
pass its siblings to it as parameters.

*l

nbar2 :- ·
retract(node(Defl)),
retract(node(Def2)),
Def2 = function(instance).,
asserta(node(Defl)),
inst.

I* 'np' with two parameter, if one of the parameter is
'nil' tl)en it returns the othe.r parameter unchanged.
If both the parameter are non 'nil' then it swaps the
t~o parameter and calls instahce rule.

*I
np2(Dl,D2) :-

Dl = word'(nil),
asserta(node(D2)),
npl.

np2(Dl,D2) :-
02 = word{nil),
asserta(node(Dl)),
npl.

np2(Dl,D2) :­
asserta{node{Dl))i
asserta(node(D2)),
inst.

I* 'vp' with two parameter returns a list of parameter,
therefore always true.

*I
vp2.

I* 'sent' it calls parameter #2.function and pass its
parameters to this function .

. *I

sent2 :-
retract(node(Def)),
retract(node(Fun)),
Fun= function(instance),
asserta(node(Def)),
inst.

I* It pops the top of stack <node> two times and get two
data. It then calls 'instance' rule and pass these
data as parameter_to it.

*I

inst :­
retract(node(Inf)),!,
retract(node(Sup)),!,
instance(Sup,Inf).

I* 'instance', if either of two parameter is 'nil' it
returns the other patameter unaltered. If ~ither of
the parameter is a subroutine name, it calls that

*I

routine and passes the other as its parameter. _
If both the parameter are definitions then it calls
HAS A function instead~

instance(Sup,Inf) :-
Sup = word (nil),
asserta(node(Inf)).

instance(Sup,Inf) :-
Inf = word(nrl),
asserta(node(Sup)).

instance(SUQ,Inf) :-
Sup= function(N),
N = cp id to prt,
function_Id_prt(Inf).

instance(Sup,Ihf) :-
Inf = function(N),
N = cp id to prt,
function~ _ _Id_prt (Sup).

instance(Sup,Inf) :­
has_a(Sup,Inf).

function id prt
(definition(M,N,_,P)) :­

asserta(node(definition(M,N,N,P))) .

. I* This routine has been divided into three cases *I

has a(definition(M,N,O,P),
- definition(W,X,Y,Z)) :­

cases(M,N,O,P,W,X,Y,Z).

I* This is case(l). It is applicable when the ID fields,
i.e. the second element of the definitions are equal.

*I

cases(M,N,O,P,W,X,Y,Z) :-
N = X,
part_of_casel(M,N,O,P,W,X,Y,Z).

I* This is case(2), whan dase(l) does not satisfy has a
function try this case.

*I

cases(M,N,O,P,W,X,Y,Z) :-

I* case(2) *I

y <> "nil",
union(M,W,Mw),
union(O,Y,Oy),
part_of_case2(Mw,N,Oy,P,W,X,Y,Z).

cases(M,N,O,P,W,X,Y,Z) :-
Z <> "nil",
union(M,W,Mw),
union(O,Y,Oy),
part_of_case2(Mw,N,Oy,P,W,X,Y,Z).

I* case(J), it is exe6uted only when case(l) and case(2)
are failed.

*I

cases(M,N,O,P,_,_,_,z) :-
union(P,Z,Pz),
asserta(node(definition

part_of_case2(M,N,O,P,W,X,Y,Z) :-
z = "nil",

part_of_case21 (M,N, o, P, W, X, Y., Z) ..

part_of_case2(M,N,O,P,_,_,_,z) :-
P <> "nil",_

(M, N, 0, Pz))) .

concat(" and ",Z,K),
concat(P,K,H),
asserta(node(definition

(M,N,O,H))).

part_of_case2(M,N,o,_,_,_,_,z) ·-
asserta(node(definition

(M,N,O,Z))).

part of case21(M,N,O,P, i , ,) :--- . ----
asserta(node(definition

(M,N,O,P)))

part_of_casel(M,N,O,P,_,_,_,Z) :-

part_of_casel(M,N,O,P,_,_,_,Z)

P = "nil",
asserta(node(definition

(M,N,O, Z))).

:--
Z = "nil" . I •

asserta(node(definition
(M,N,O,P))) .

.
I* Union rule is used to concat two strings. If either of

the string is 'nil' then 'union' ~eturns the ~ther
string without concatenation. If both the strings are
same then it returns either one.

*I

union(X,Y,Z)

union{X,Y,Z)

union(X,Y,Z)

union(X,Y,Z)

:-
X
z

:-
X
z

. -.
y
z

·-.

=
=

=
=

=
=

Y,
x.

"nil",
Y.

"nil",
x.

concat(X, " u " , Zz) ,
concat(Zz,Y,Z).

I*******************************~******************************** I

REFERENCES

[1]" BATEMAN,R .. F. 1983. "A translation to encourage user

modifiable man-machine d.ialogue" ~ _ In Designing

for Human-Computer c~mmunication, Academic Press.

(2] CLEAL, D. M. and HEATON, M. 0. Knowledge-based

Systems Implication for Human-Computer

Interfaces.

(3] CROFT, B. and LEWIS, D. 1987."An approach to ~atural

Language Processing for document retrieval". In

Proceedings .of the lOth Annu~l ACM SIGIR

Conference on Research and_ Development in

Information Retrieval, New Orleans.

[4] GAZDAV, K., et. al. . Generalised Phrase Structure

Grammar, Basil-Blackwell.

(5] GROSZ, B. J., et. al. 1986. Natural Language Processing,

Morgan-Kaufman, Palo Alto, CA.

(6] GROSZ, B. J.~ et. al. 1987. "TEAM : An experiment in the

design of transportable Natural-Language

Interfaces". In Artificial Intelligence, Vol. 32,

pp • 17 3-2 4 3 4 .

(7] HARRIS, L. A. 1977. "User-oriented database query with

ROBOT natural language query system". In

International Journal of Machine Studies.

[8] JONES, L. P., et. al. . "INDEX : The statistical basis

for an investigation". In The Journal of the

American Society for Information Science.

[9] JOSHI, A. K. 1985."Tree Adjoining Grammars : How much

context-sensitivity is required to provide

reasonable structural descriptions ?". In Natural

Language Parsing ~ psychological, computation and

theoretical perspectives, Cambridge ·University

Press, pp. 206-150.

[10] JOSHI, A. K. 1985. An Introduction to Tree Adjoining

Grammars, Deptt. of Computer and Information

Science, Moore School, Univ. of Pennsylvania,

Philadelphia PA.

[1,1] JOSHI, A. K. and VIJAY-SHANKER,

computational properties of

Gra~mars". In 23rd Annual

K. 1985. "Some

Tree Adjoining

Meeting of the

Association for ·Computational Langu~ges, pp.B-12.

[12] JOSHI, A. K., et. al. 1975. "Tree Adjunct Grammars.". In

Journal of Computer and System Sciences, Vol. 10,

pp. 136-163.

[13] JOSHI, A. K. and Y_OKOMORI, T. , "Parsing of Tree

Adjoining Grammars". In Technical Report,

Department of Computer and Information Science,

Univ~ of Pennsylvania.

[14) KAPLAN, s. J. 1979. "Co-operative response from a

portable natural language query system". In

Technical Report, Deptt. of computer and

Information Science, Univ~ of Pennsylvania.

[15) RICH, E. 1986. Artificial Intelligence, McGraw Hill,

New York.

[16) ROBINSON, J. J. 1982. "Diagram A grammar for

dialogues". In Commnications of the ACM, Vol. 25,

No. 1, pp. 27-47.

[17] SAGALOWIEZ, 4D. and SLOCUM, J.- -·. "Developing NLP to

complex.data". SRI iNternational.

(18) SMEATON, A. 1-986. "Incorporating syntactic information

into a document retrieval strategy An

investigation". In Proceedings of the ACM

Conference on Research and Development in

Information Retrieval, Pisa, italy.

[19] STONEBRAKER, M. 1988. "Current work on database

system". In IEEE, Vol.2.

[20] TENNANT, H. 1980. · Natural Language Processing,

[21]

Petrocelli, Princeton.

TURBO PROLOG TOOLBOX

Manual.

. . User's Guide and Reference

(22] WALTZ, D. nNatural language access to a large database

: An engineering approach". In Pr~cee~~~gs (f the

4th International Joint Conference 6n··Artificial

Intelligence, Tbilisi, USSR.

(23] WOODS, w. A., et. al. 1972. "The Lunar sciences natural

language interface system''· Final report, BBN

report 2378, Cambridge, Massachusetts.

(24] YOUNGER, D. H. "Recognition and Parsing of Context-free

Languages in Time nJ". In Information and

Control, Vol. 10, No. 2, pp. 189-209.

	TH36550001
	TH36550002
	TH36550003
	TH36550004
	TH36550005
	TH36550006
	TH36550007
	TH36550008
	TH36550009
	TH36550010
	TH36550011
	TH36550012
	TH36550013
	TH36550014
	TH36550015
	TH36550016
	TH36550017
	TH36550018
	TH36550019
	TH36550020
	TH36550021
	TH36550022
	TH36550023
	TH36550024
	TH36550025
	TH36550026
	TH36550027
	TH36550028
	TH36550029
	TH36550030
	TH36550031
	TH36550032
	TH36550033
	TH36550034
	TH36550035
	TH36550036
	TH36550037
	TH36550038
	TH36550039
	TH36550040
	TH36550041
	TH36550042
	TH36550043
	TH36550044
	TH36550045
	TH36550046
	TH36550047
	TH36550048
	TH36550049
	TH36550050
	TH36550051
	TH36550052
	TH36550053
	TH36550054
	TH36550055
	TH36550056
	TH36550057
	TH36550058
	TH36550059
	TH36550060
	TH36550061
	TH36550062
	TH36550063
	TH36550064
	TH36550065
	TH36550066
	TH36550067
	TH36550068
	TH36550069
	TH36550070
	TH36550071
	TH36550072
	TH36550073
	TH36550074
	TH36550075
	TH36550076
	TH36550077
	TH36550078
	TH36550079
	TH36550080
	TH36550081
	TH36550082
	TH36550083
	TH36550084
	TH36550085
	TH36550086
	TH36550087
	TH36550088
	TH36550089
	TH36550090
	TH36550091
	TH36550092
	TH36550093
	TH36550094
	TH36550095
	TH36550096
	TH36550097
	TH36550098

