A PORTABLE
NATURAL LANGUAGE INTERFACE
~ TO INGRES

DISSERTATION SUBMITTED.BY
GURJEET SINGH KHANUJA
IN PARTIAL FULFILMENT OF THE
'REQUIREMENTS FOR THE DEGREE OF
~ MASTER OF TECHNOLOGY
IN
COMPUTER SCIENCE AND TECHNOLOGY

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
- JAWAHARLAL NEHRU UNIVERSITY
NEW DELHI

DECEMBER 1990

_CERTIFICATE

This is. to certify thar the dissertation entitled
"2 Portable Naturel Lahguage interfaée‘ﬁo INGRES", being submitted '
by me to Jawaharlal Nehru'UniQerSiry in the pértial.fulfilment'dfb
‘the requirements for the.award of the .degree of ﬁaster of
Technology, . is a record of originalhwerk'dohe by.me ﬁnder_the
supervisien of br. P. c._Saxena, Associéte Profeseer, School of
eComputer and Systeme Sbienees, jawaharlal Nehru‘University_durihg
the year 1990, Monsoon Semester.

The results reported in thls dlssertatlon have not,
been submitted 1n part or full to any other Unlver51ty or‘

Institute for the award of dny degree or dlploma, etc.

EET SINGH KHANUJA

' (/21~»£340v~—/<f
Prof. N. P. Mukherjee _ Dr. P. C. Saxena
Dean, ' . : Associate Professor,

School of Computer and
Systems Sciences,
J.N.U.,

New Delhi.

School of Computer and
Systems Sc1ences,
J.N.U.,

New Delhi.

ACKNOWLEDGEMENT

I express hy sincere gratitude to my sﬁpervisor Dr. P.
c. 8axena-for_hié‘uncompromisiﬁg guidance, constant super§ision
and constructive criticism without which fhis.Workvwould‘not have -
been completed successfully. -

I exténd-my sinceré thanks to Prof. N. P. Mukherjee,
Dean, Schéol‘bf Computer énd Systems Sciences, Jawaharlal Nehru
University for ﬁié‘encouragement and_faéilities_providéd for the
_coﬁpietion of thisbwork{' | |

I also také this opportunity to thank all faculty and
staff members and my ffiendé who have been directly'or inairectly.
‘helpful in eliminating é variety of problems encountered by me in

. the course of completing this dissertation.

GURJEET SINGH KHANUJA

CONTENTS

Preface
1. Introduction

1.1 Natural Language Understanding

1.2 Techniques for Natural Language

-Interpretation
1.2.1 Traditional Approaches__
1.2.2 Transition Networks
1.2.3 Chart Parsing
1.2.4 Case Grammar
2. N&tural Language Interfacing
) 2.1 Naturai Laﬁguage.Inteffacing
2.2 Transportability and Portability
of'a System |
2.3 Recent Work on Natural Language
»Pchessing and Databases |
2.3.1 LUNAR SYSTEM
2.3.2 PLANES/JETS SYSTEM
2.3.3.ROBOT.INTELLECT SYSTEM

2.3.4 TEAM

3. Tree Adjoining Gfammar
and other Syntax Models
3.1 Grammars for Natural_LangUage
Understanding

3.2 Tree Adjoining Grammmar

10

10

11

12

14-21

14

18 -

Overview -
Brief Description of the System

A Sample Relation

‘Modules of the System -

4.3.1 Lexicon énd Pseudo: Query
4.3.2 The ParSer

4.3.3 Translator

S.Syntactic_Analysis

5.1

Design and Implementation 5
of the Lexicoﬁ |
S.I.i_Introduéﬁion

5.1.2 Deéign-of the. Lexicon
Parser o

5.2.1 Tree Sets

5.2.2 The Parsing Mechanism

5.2.3 Details of Parsing Process

6. Semantic Analysis

6.1

6.2 Details of the Translation Process

Procedures for the Translation

Process

* Conclusion

* Appendix 1 Lexicon

* Appendix 2 . Program Liéting

* References

22-31
22
24
25
26
28

29

32-48

35
39

40
49-67 .
49
54

68-70

PREFACE -

In this‘wofk, wevare bresenting a'systeﬁ Whicﬁ uses
Tree,Adjoining'Gfaﬁmaf (TAG)'to_brovids.a natural lahguags
interface to the relaﬁional,database system INGRES. Work was been
done to determine what basis trees had to be used as_inpdt to the
parser, what infofmatiqn, hads to be_:stdred in the lexicon to
suﬁport the translation of a parse trée_iﬁto_a,database quéry and -
what algorithms were hecessary to perforﬁ the tfahslation prdsess-
'A successful implementation in PROLOG has.beehvdshe. Examples are
gi§en}-Also,‘thé_interface is structured inssuch a way that ﬁush
| of it can be used.in a front_end to database query languagesiother
than INGRES. | _

Chapter 1 of this thesis covers the problems involved
in understanding natural languages. In this chapter we will
describe the different techniques used in computer-world to
understand natural languéges. Chapter 2 describesinatural language-
interfacing to databases, and their advantages. It also describes
in brief the work which has beenudone'on natural language
interfacing to databases. Chapter 3 of the thssis deals with the
generai problem of parsing and Qnderstanding natural ianguages
with emphasis on the dstabase environment. Some parsing techniques
other than those:employing tree adjoining gramhsrs are mentioned.
Then tree adjoining grammars are discussed in detail. Chaptef 4
describes the system implémented in brief. Chapter 5 describes the

syntactic aspects of the system. It covers how a lexicon is set up

fér a giveh application along with parsing .n.lechanism. The tree
'sets. used bj the system ére also givén in th_is’ ch’apter. Chapter 6
déscribés' procedures used in translating the pér_ée tree to .QUEL
querie‘s. The details of tr_ahsla,t;ion with some e‘xamplve_as are given

in this chapter.

CH. "1 INTRODUCTION

In this chapter, we briefly deséribe the different
issués regarding Natural Language Understandiné'(NLU), viz.
heaningvof NLU, whatfare theidifficuitiés in underStanding Natural
Languages, how to interpréte natﬁral language igpﬁt to a computér.
There are many épproaches‘to these problems thch are ﬁighlighted

in the second section of this chapter.

1.1 Natural Language Uﬁdérstanding‘:A
- Natural LéngUage UnderStanding has 5een an iméortaﬁt
tbpic of -interest within linguistics, .Artificial Intelligence,
.Datébase Desigﬂ and Informatioh retrieval for quite some time. The
goal of natural‘language uhdersfandingv is hdt to havg computers
understand everything we say; after all, even people misundersﬁand
each other occasionally. The understanding of natural language is
very difficult beCéuse syntactic énd semantic issues are very
tightly coupled,Avocabularies are very large, vagueness and
ambiguities abound, and many of the syntactic constructs are very
awkwérd. Problems in natural lahguage undefstanding are _
| —>Ambiguity : Many of the things we say can be interpreted
in more than oﬁe ways. Some of the factors
that contribute to the ambiguity of natu#al
language are as follows :-
ok Mﬁltiple Word Méahing : It is not uncommmon
for a single word to.have more than one

meaning.

‘a

*_Syntaétic.Ambiguity : Somé‘of the ambiguity
in English is caused by peculiarities in its
‘syntax. | |

*4 UnCléar Antecedents - : We freqﬁently use:
pronodns in-ﬁlace ofvpreviously uéed houns;

_ Imprecision : vPeople.often express'conceégs with.vagqe

' and inexact terminology. Fbr examplej how
long is a long time ?

' Incompleteness : We do not always say allvof Qﬁat we mean.
Because we share many details-without
fear. of,.being' misﬁnderstood; “we assﬁme
that our listeners can_"fead befween the

_linés."

_ Inaccuracy : It includes mistakes in any of the following
éreas, o
* Speliing errors,
* Transposed words,
* Ungtémmatical constructions,
* Incoffect syntax,
* Incompiete'sentence and/or
* Impropef.punctuation.
Real world applications tend to concéntrate on areas
where at least one of the following simpiifyihg assumptions apply
(1) Complete.dnderstanding is not required, as in automatic

. document indexing.

(2) The vocabulary,HSYntax and“sémantios are very festricted,
such as with database.‘ | |

our efforts.here'are focused on the second of fhe two

simplif}oations. Specifical;y, we have developed a natural

,'languooe'intefface, which is.curréntly being usod.as a front_end

to the general relational database sstem INGRES.

132 Techniqugs for Natural ALanguage Interpretation ﬁ
Several techniques>are ovailable for-intetpreting..

natural language input to a computer. The.objecﬁivos of all are

pfobably similar7 to extract:semantic méanihg'from human_input;vA

numoer of issues must -be resolved before choosing an apbropriate

" method. These include _ -

* Size of vocabulary.

* Use of non_grammatical input.

* The number of different users of the systéms.

* Whether the principle user population is composed of
regular or occasional_useré.

* The extent to which each individual sentence within
that session will refer ﬁo others within that
session. |

* Whether user population will mature with time.

1.2.1 Traditional Approaches :
The simplest approach to interpreting the meaning of

natural language is to seperate the analySis of syntax from the

semanti05 it appears, at first'sight,.reasonable that all
grammatical tree structures usiﬁg~'certéiﬁ' rules describe what
costitutesva weil formed sentenée.‘ | | | .

The semantic'anélysis ,(extractingameanihg) then
follows from the’result of this'éyﬁtéctic anélysis. The syﬁtactic
pégse should indicaté suéﬁ features as whether the verb isypéssiQe
ér active, the subject or objeét‘of phebseﬁtence and so on. The
meaning can thérefofe be easily drawn out. |

| mrThe procéésvhas the advant#ge of_simpliéity. The
approach is well-suited fo simplé sentences in tightlylconstrained
domains. A-user is able to build avc§mprehensivé.set of riles and
ensure that these are followed. New words can be added and definedv
in terms which the system understands.
| ~ However, there are disédvantages with this._
(1) A given. sentence may be capable of parsed into more
‘than one way.
(2) It is not,bossible to handle ungfammatical'text in this
fashion. | |
(3) Certain sentencé ' typés,f whilst grammdtical, pose

problens.

1.2.2 Transition Networks :
Transition netwofks operate essentiaily by working
through a sentence from ieft.to‘right. For each word there are
Aonly a limited number of words whiqh can grammatically follow it.

For example, an adjective is only likely to be followed by another

adjective or by a hounf The network whiéh the possible routes
' form from a giVeh’stért poiht to a completéd noun or verb phrase
form are described»asfa tranéition network.

This simple network is _inadequate; A recursive
fécility enables fhe system to handle ;ubordinate phraées. Also
Auseful are registers ‘which Can ‘be used to record information
obtained inithe anélysis'of one.phraselwhich can affect 6ther
phrases. Such an' enﬁanced system Visi known as ah Augment‘ed'

Transition Netwdrk (ATN).

;1.2.3l¢hait Pa:siﬁg :

.'Chart pars%pg is an approach which faéilitates _£he
building upAof structufe-froﬁrsmail blocks (a?bottoﬁ_u§ éppfoéch).
.Previously described techniques use top_dOWn apprdach, The
disadvantage of the top_down approach is'fhaé it-Céﬁ be very time-=
consuming.if an errbneous.aéSUmption is madévearly‘in'the parSing’
process.

Anothef advantage is that it may allow the extracﬁion
of some information fiom ungrammaticai input. | | |
There is, however, a majorvefficienqy problem. A large
number of irrelevant ®"builbing blocks" may be created. Because of
this problen, chart‘processing is genefally' used» only ih_

conjuction with some other approach to syntactic parsing.

1.2.4 Case Grammar :

This technique_ represents a departure from what has

gone beforé, in that it u_Se_s' some: semantic information.

The case gr_ammér ideas ;spring from the view of.‘ a
senténce ‘as a désCriptiQn of éome .underlying "event. Hence,
associa.ted with a gi'ven verb, qn‘e’ can describe a case frame which
has several sl‘o'ts or.céseé,_ Each éase speéifies a part’icipant-in
the e-véht. : Sd, for "example, t'pe "go" will have a comptilsory
"Actor" case to indicate who or what 1s gpincj and further optional

cases to indicate where the :Actor' is going to, or perhaps what’

_ colour the Actor is going to.

CH. 2 ' NATURAL LANGUAGE INTERFACING

This'chapter covers thé advahtages'of'Natural Language
interfacing_(NLI), espéciaily to relational databasés. 1t deéls
_with the portabiliﬁy énd transéortability of a ;atural.language
system iﬁ the context Qf relational databases. Ih the last

section, we describe a brief review of commercially available

software.

2.1 Natural Language Interfacing.:

| There afe:hany;érgumehté‘fof_préviding‘a natural
. ianguage froht_énd'to‘ a relationél database s‘Ystém. One 'of' the
mbst_common reason is to provide;naturalhess. It can ai;o provide
.greater'comprehensibiiity bf obtaining information stored iﬁ the
database by querying the sYstem'in a.natural language(With a.
natﬁral language'as a means of communication with‘computer systems
user can frame.a'queétion or statement in the way they nérmally
think‘abbut the information being discusséd,'freeing them from
haﬁing to know how the computér stores or accessés the
information. Or it allows the user to make quefies of a database
without theA need to understand the ~database’s' internal
organisation. It helps the user to formulate qderies aﬁd

generating queries for the database (convertingv a task

specification into package instructions).

\

2.2 Trﬁﬁsportability.& Portability :

Most existing nafural’language intérface sys@emé‘have.
been designed specifically'tovtreat quefies that are éostrained in
.two ways'— | |

(1) they are concerned;hith a singlé application domain and
(2).pertain‘to information in a single databasé. |

Costruction of a'systeﬁ for a new dOmaiﬁvor'databésé
requires a sizéable_néw-effort,‘alﬁost eqﬁal iﬁ magnitﬁde_to the
original one. ‘ “ - - | |

| Transportablé.natural languagé interfaces; i.e. those

that canr be easily;'adapted' fo"néw dOﬁains or databases, afel
potentially much more useful than AIcllom'ain or database specific
systems. : | o

= A méjor challange Jin building natural 1anguagev
iﬁterfaces (NLIs) is to.provide the information:needed to bridge_
the gap betwéen fhe way’the uéer.thinks about the domain.of
discourse and the‘way information about the domains is Stfuctﬁréd_
for computer processing. .,

| The databases may employ diffetent'fepreséﬁtatibns, Qf

different encodings but an NLI should be able to handle queries
for any of the encoding. Although the Englisthuéry inpﬁt t6 the
NLI Vis the same in all cases, ‘the NLI output (i.é. specific
commands to a database system to ‘retrieve the requested
'information)‘will be quite different for ﬁhe different encédings.
Ohé of the main functioné of the NLI is to make the necessary

transformations and thus to insulate the user from the

partieularities of the database. To provide tnis-' insulation &
bridge the gap between the user’s view and. the.systems's data.
structures1requires a combination of domain specific and general
informatiep. In particular, the .. system must have a model of the
application domain’s subject matter, including‘infermation about
the objects in the domain,athe propertles they possess and their
interrelationships and the worus and phrases used to refer to eaeh'
of‘these; tne system must{alse.know tne cenneetion between
entities'in that model and the informationvin the databaSe.‘In
constructing transnortable systems it isvtherefore important to'
prov1de a means for acqulrlng domain specific 1nformat10n ea511y
Our system can ea51ly be adapted to a glven ‘user
_database. Also, much of this system can be: used w1thout change to
prov1de an 1nterface to systems other than INGRES.
| This system processes a user’s English questlon into a
parse tree. Then this parse:tree is translated to an intermediate
code called a pseudo query and.passes it to INGRES.»The use of the
intermediate pseudo query makes the.SYStem portable. Conversion
for use with a different-query 1anguage is accomplished by
providing routines which convert the pseudo query into a query in

'new language

2.3 Recent Work on Natural Language Processing and Databases
The commercial systems are developed in various parts

of the world. Few of them are deseribed below.

2.3.1 LUNAR SYSTEM :
It is a Natural Language Interface to Moon Rocks
» Database by Woods 1973 at . BBN. - | o

The system uses a small vocabulary (3500 words)
required for moon»rock_database. The LUNAR database uses'encoding
in the database query language. In.this,'there.were seven data
domains. Sets of elements that could be members of each-domain
were mutually exclusive. The system used a powerful ATN‘syntactic
parser. It _parsed sentence on to the semantic program for
translation into a query." The resulting query was then executed.
The semantie analyzer gathers 1nformation from verbs and “their
cases, nouns, noun modlfiers and determiners to build the database'
query. The query is built in terms of conceptual primitlves. 'The
database uses rules tx) compare the syntactic structure of the
question w1th a syntactic template.,lf they match, thevsyntactic
part of the rule is added to the developing guery.

The'system‘can handle anaphoric references’kpronoun
reference to previous phrasesf; It>c0uld handle 90% of the.
questions posed to LUNAR by geologists. Its overall formulation is
so clean and neat that it has been used for most parsing and
language understanding systemns.

Limitations : Utterance were limitedrto database queries. This

was non portable and non extensible. It is no longer in use.
2.3.2 PLANES/JETS SYSTEM :

PLANES/JETS is a natural language interface to‘a.large

database developed by Waltx DL. in 1975 at MIT.

10

batabase was created for tﬁe mainténance of flight
recorder for all novel aircrafts.>It ‘ignores syntax and assumes
thaﬁ all inputs ére in the . form §f>réquests that it turns into
fdrmal'language quéfy extensions. It uses a semantic grammar. It
looks”férAsemahticfvconsfituents by doing a left to right scan of -
the usér(s .sentepce. Semantié coﬁstituents include itéms which
bélohg.-to 'PLANE‘. TY‘PE,‘ TIME PERIOD, MALFUNCTION, CODE, HOW MANY,
ACTION etc; It uses an ATN paréer..The top 1evei callé’yariqus
~ subnets ﬁo_anélee the;input for semantié constituents . It
,utilizes conceptfcase f:ames which»are stringnof constituents of
réasonéble querieé. After—appiication éf the cbncepﬁ—caSe frames»
the resulting‘-syntactic coétituents= are passéd .éiong;-with .the
query géneratof. | | N | .
| It-can handle ellipses and pronouns and al$é deals
with ﬁongrammafical sentences.'Systeﬁ asks for‘auréphrase if it
, doesn’t_undérstand.
Limitations : It was relatively inefficient and reliés_ too
heavily on its-particulaf world of discourse for eliminating

problems of world since selection. .

2.3.3 ROBOT INTELLECT SYSTEM :
| Robot—IntéLlect_ié a<databasé.qUéstidﬁ answering
system developed by Harris in 197? at Dartmou£h. : |
| It was an ATN syntactic paréer (with baéktracking)
 followed by semantic énalysis to produce a formal query language

representation of the input sentence. It handles # large

11

vocabulary by buildingv an inQerted ‘file of dafa “element names
indicating the data’domainé in which'each'name Qééurs. In
additibn,'thevinverted'file*contains words and phrases tﬁat are
interpre?ed as data élement.nqpes. A diétionaryvof comhon English
words is aiéo included. If tw0’méaningé pf the‘ihquiry appear
likely anq.only.returns thatvoﬁe which is interpreted to pe the
appropriate one.
.Intellect‘is one‘of.(with the first‘natdral language

"database query) the systems td be availéble commercially. It can _
handle idiomé‘via‘special meéhanisms. It can handie sdmeipronduns<'
and ellipses. - ' o ‘ ' o

Limitations : It; does not consular context Aekcept to

~~ disambiguate pronouns and ellipsis.lu'

 2.3.4 TERM :

| This systeﬁ is one of the'ealiést to have laid
emphasis onv-transpdrtability ‘6f the interface acrosé_ differént

dpmainst_ | -
TEAM is desighed.ﬁb interact with two kinds of users -

| _a databése expert and
_ an end_user.

The database is created thrdugh a'systedeirected
acqﬁisition»dialogue; As a result of this dialogﬁevthe language
processing and'daté:acceSS components are exténded.so that the

_end_user may query the new database in natural language.

12

The system has three major components _
(i) The écquisition.component,. »
(2) The DIALOGUE iangﬁége system and
(3) A data access component. | |
. The translation of an Engliéh éﬁery into a‘database'
query takes place ih two stégéé. First, the DIéLQGUE sysﬁem
vcostrucﬁs a repreéentation of the literal meaningior tﬁe logical
form into a formal datébase'query. Each of thése steps requires a
combination of informétion that is dependant on the'dohaips and:
_informafion that is not. TO'provide for}tranéportébility, TEAM

carefully distinguishes between the two. " , | : .

13

CH. 3 ~ TREE ADJOINING GRAMMAR AND OTHER SYNTAX MODELS

We.haQe used free A&jeining Grammar (TAG) to provide a
natural languaée interface to the relational database system
'INGRES; Tree adjeining grammars ere properly more ponerfnl than
context free grammars. They ?erform very well inva.database'query
environment because tney have reasonable efficient parsing
algorithms and they snpport'the concept of nested queries very
well. In the first eection of this chapter we discuss aneut.the'
grammars used for natural ienguage:understanding in the light of
Tree Adjoining Grammar. In -the iaet section we deal wifh Tree

Adjoining Grammar in detail.

3.1 Grammars for Naturai Language Understanding

Several formal models for the expressien of the syntax
and semantics of the English language have been tried. Context
free grammars are popular within> the realm of artifieial'
languages, snch as computer programming languages , because of
their eleganee, simplicity and the aQailability of automatic
parser generators such as YACC. General eontext free grammars can
be parsed in. time O(n3) where "n" is the number of Qords in a
sentence and sufficiently orderly grammars cen be parsed in linear
time. Unfortunately, context free grammars alone arelnot powerful
enough for the syntactic and semantic analysis required for

natural language understanding.

14

Several‘ more powerful syntactic' models for natural
languages have been considered and studies have been made to see
how they interact with semantic'analysis Although syntactic
analysis for structures more general than context free grammar can
be very slow, progress on the problem of automatic parser
generation for context sensitive grammars has been made.rSeveral
’exten51ons of context free languages have been applied in the
natural language environment.. |

One'important extension of context free'grammars is
the DIAGRAM grammar. DIAGRAM is a large‘phrase structureigrammar
mith rule_procedure added to it,'Tbe rule procedures allow phrases
" to inherit - attributes from “their constituents and from
surrounding,.large phrases. Ccntext sensitive constraintsemay be
imposed Wthh provide consistency conditions and information on
dominance. DIAGRAM has been used as the ba51s for theAportable
natural language database interface TEAM. Research on TEAM
investigated the problem of prcvidingva natural language interface
which can be adapted to new database by personnel that are not
themselves natural language process1ng experts. |

Perhaps the most widely used model for natural
language syntax is the Augmented Transition Net (ATN). The ATN is
the syntactic basis for the CO_OP database.interface and the YANLI
natural language front_end..A transition net is a collection of
nodes and directed arcsv calied links which describe syntactic

structures (sentence, noun phrase, prepositional phrase, etc.) and

arcs have labels which can be word categories (noun, verb,

15

’prepositi_on etc.) or syntactic structures defined by othevrl
Vsubnets.-For example an ATN can‘easiiy éxpreés the facts that a
séntence can bé a noun phrase followed'be‘a'verb'phfase and that
a noun phrase can be a determiner followed by ‘any number of’
adjectivé;; followed by a noun. Seﬁtences are parséd by the_arcs
appropriate to the word categories in the senteﬁce. An‘augmented
transition net is a transition net which can store ihfprmation as
it goes and use this informapion in making degisions on sYntactic
structure. This gives the ATN a powerful means‘df combining
syntactié and-seﬁantic'aﬁalysis. o |

The Wait~And—Seé'Parser (WASP) is a more sophisticated
kind of natural langﬁaQe'pafser. A WASP first defines noun phraée'
in the'éentende and ﬁheh éroCeedé to éroup theVnoun phrases into
é parse tree uéiﬁg the other words in thé éentence:énd‘a
collection of rules.as é guide. While buildihg a parse tree for a
sentence a WASP maintains three data étructures : a néde'stack'
.which contaihs nodes in the parse tree, a buffer cbntaining words.
"and noun phrases which have not yet been placed in the buffer. The’
liét of rules tells the WASP wheh to perfbrm the followiﬁg-
operations : move words o:.phrases into the buffer, when to use
‘buffer cbnténts-to createfa.node and push it on the node stack and
when to reduce a contiguous éet of nédés_on the stack_into a
single node.

One of the chief diffiéﬁlties in natural 1language
understanding is the fact that there is noiboundary on the

distance seperating two related nodes in the parse tree for a

16

sentence. For example, figure 3.1 is a tree diagram of the
question "What does a printer':wéigh ‘?"‘ The word "what" has. a
significanﬁ relationship to the empty leaf nbde,ﬁE"; which-écts as"
tﬁe object of the verb "weighs".:Specifically,“"what" can be said

>to function as the object of the verb in place of the'empty node.

fﬁe' . printer ~weigh | E

Figure 3.1

Transformational‘grahﬁars attempt to model these
relationships in- terms of subtree :~movéments ~ called
transformations. Informally, é transformational grammar is>a
context free grammar to which certain context sensitive rules have
been added that allow for the rearréngemeht of'subtreés in a parse
tree. When the gquestion of fig 3.1 is generated using " an
appropriate tr§nSformatioﬁal grammar'the word "what" starts outqas
the object of the verb and is moved to the beginning of fhe
sentence by a transformation (as shown in.figure 3.1 by dotted

line). At some level of generation the sentence is "A pointer does

17

weigh what ?" Two transformations are performed on this structure’
WH_MOVEMENT brings "“what" to the front of the sentence and

NP_AUX_INVERSIONrswiches the order of a "printef" and "does". ‘The

"use of transformational grammar to"podél_ natural language has

provided useful linguistic insights. It seens that
transformational grammars have more generative power than is

necessary for modelling natural_languéges.-

3.2 Tree Adjoining_Gfamﬁa# :

- We have used tree édjdining' grammars for thréé
reasons. First, they haQé parsing aléofithms‘thét are reaéqnably
efficient. Second, they have generai 'synﬁactic quelling power
fhat is'adéquate for pf@?iding a hatural'lanéﬁage database
interface. Finally, an ihterféce,bésed upon TAGs can'be easily
adapted to a variety éf different usér’é détabases with.minimum
aﬁount of effort. - {

Tree adjoining grammars éaﬁ be parsed'in-O(ﬁ4) ané they
have many liguiétically significant.featureé; suéh as having no
boundary on the distance between related nodes. 4 '

| A formal account of gene:ative powef of tree adjoining
grammars and these reéults‘may be summarized{as follows _
' .(i) For every context free grammér-there-is a TAG which defines
_‘the same sét of sentences and the same set of parse trees.

(2) There exists a context free grammar ,G and a TAG, Gtagd,

cfg’
which defines more parse trees for certain sentences.
(3) There exists a TAG which defines a non context free

language.

18

(4) Every language defined by a TAG is_context sensitive.

(5) There exists a context sensitive languagevwﬁich is not
defined by TAG. | |

Unlike othér grammars, there are no produétion rules
for TAG’s. Rather TAG, G, gonsisté of two éets'of trees. Symbols
in Tree adjoining grammar are defined as t¢rminals 6r
non_terminals and bnly non_termigals may appeér as. interior nodes
in trees. The set of trees which afe defined by the grammar G are
all of those found in the initia1 tree éet plus all of those which

can be created from the initial trees through a process called

adjoinihg._ o i - -
Adjoining : In the adjoining process, a.nbdevwithiﬁ ;vtree is
removed along with all of its descendant nodes. In ité place, an
auxiliary tree whose root is the saﬁe as theAremovai node is
inserted. Additional adjoining can occur any where in this iérge
-tree; |

Let us consider a tree adjoining 'érammar‘, G having.

following sets of trees. The initial tree set has only one tree _

A S o
' B : . e
d e f

(Initial tree)

19

Auxiliary tree set has two trees shown below _

C

(tree no.2)

L(G); thé language defined by G, tﬁat is ‘éet of .all
sentences defined by parse trees generated.by G. Therefofe L(G)
éontains'following séntencés __ "def", "degbf", "depg". The
' corresponding trees are shown below. For each adjoining operation,

the newly inserted auxiliary tree is surrounded by dotted lines.

o A : .
B ‘ : c
a e £

(for the sentence "deg")

20

(for sentence "degbf")

T™H- D65 K7

| (o7, t : .
>w
o! |

. (for sentence "depq")

Nested structures can also be handled very easily.
Suppose, there is one more auxiliary tree shown below in the

auxiliary tree set.

(tree no.3)

Then language defined by this grammar, G, is -
[def, de(n)*gbf, de(n)*pq]'where "comma" represents union

and (n)* is the closure of "n". S .
- =i <

6813048
k527

1
t

CH. 4 SYSTEM OVERVIEW

In this chapter, first we briefly describe the.system
which has beenA;mpleménted and then the different modules of the
system in short.- The detailed discussion will be in later -

chapters.

4.1 Brief DescriptiQB‘of the System :

We haveicqnsideredvthevapplication of the systeﬁ on é
vgiven user database DBF (Given in the next seétion);,Thé interface
s cbmpqsed of severai actiVe-bdmponents : paréerr tranglétbr,
interpreter and another componenﬁs‘whiCh'Act as read-only files
dﬁring the 'ﬁrocessing of a question and are known as lexicon
files. The parser; vtrénélatbr, interpreter ahd tfee adjoining
A graﬁmar free sets will remain the same for any user database,fﬁr
"which the interface will be used. |

| A database administrator who wishes-to use this system
for a given application will perform the following tasks.

(1) 'Create the data definition of the relations.

(2) Create a lexicon entry for each additional word he
wishes to ge understood by the interface by specifying
the part of speech of the word and a function'whiéh
describes the condition that the word représengs in
the‘database.‘ |

(3) Load the database with data and haintain. the data

properly.

22

£<

{nformation Tequcsted by user

INTERPRETER
WSEex’s poxse - ‘ ‘ .
qucstion PARSER ' tvee TRANSLATOR pscud'o-qucry
categories dcﬂniﬁons QUEL. quc-fy
| Serﬁcnfic
TREE SET LEXICON ,gttcssing- .
fde INGRES
_'Dedcsiigmxw | S
specification database |

| ft’guré 4 1

Once>ﬁhe éysteh is set u#; users ask English questions
and receive data in response. Tﬁe sYstemlprécesses the question as
follows. ’ ‘_ | | .

First, they are senﬁ to the parser. The parser accesées
the tree set ahd_the word category part of the lexicoﬁ to
produce. a tree (adjoining gramﬁar parse tree which
repreéents the Question. The parse tree is then sent to
the translator which uses definitions of words in the
1e#icon to construét a pséudo query.'it_is then the job
-of the inﬁerpreter to phrase the_pseudé query as a'QUEL

query, the 1énguage supported by*INGREs‘and.thé resu1t$.
are returned to the user. Figure 4.1 illustrates the

entire structﬁre of the'system.‘

4.2 A Sample Relation :

We have taken a sample relation to describe the
.working of our system. The .table' wﬁich‘ we héve created ﬁsinév
INGRES is named DBF. It is a database containing information about
the studenté of a school. This table has five attributes. The

attxibutes name and their corresponding data formats are given

below -
Column Name Data Fbrmaf
NAME TEXT (25)
AGE - INTEGER(3)
ADDRESS - | TEXT (40)
CLASS TEXT (15)
GRADE TEXT (1)

24

Steps: involved in creating this relation usincj. INGRES |
are - . |
(1) Invoke INGRES/MENU.
(2) Select TABLES option fﬂrom_t\he’maiﬁmenu.
| (3) Selec;t CREATE to create a new tabie. |
(4) En‘tef the name of the ta_ble a:s-'DBF...'
(5) Move the cursor to the table fieid; in tﬁe 'c‘olumn
| labellebd column Name. Type in the name of thé 'first‘»,
field. Tab to column labeled Data f’ormat. Enter ‘the
data format. Enter all the attribh‘tés' name ih the ‘same
fashion.- |] s
(6) Seleét the Save fnenu item to save the table aﬁd “its
columns ‘in the datgbase'. | |
Thus; the sample --'relatioﬁ DBF hés been created.l
Examples used in this diésertation and '1exico’n shown in Appendix
(A) are based on this sample database. The system can be adapted

to other databases, for that the only thing required is to change

the lexicon.

4.3 MODULES OF THE SYSTEM :

| The process of c_:onverting a natural language query
into 1its equivalent QUEL query is divided into small processes
calied modules of the sy_stem.' These modules are deséribed, in

brief, in this section.

25

-

4.3.1 Lexicon and Pseudo Query : -

Thé first £ask of natural language is understanding
each of the wofds in the_sentencevgiven. It can be achieved by
maintaining a dictidnary,'also called a lexicon, which contains an
entry for each word giving thé»target-representation of the
meaning of thé word; Unfortunately, many words have several
meanings and it méy not be possible to choose the cor:ect'One just
by 1looking at the woi:d itself. So, it is the _job‘v_of. database
designef to make ehtrj for each possib1é meaning of a word and
'give.preferehces to ﬁhe meanings. | |
| | * For examplé; the word diamond might have the.fblloﬁing
set.of'meanings>- ' |

* A geometrical shape with fougtequal sides.

* A base ball field. |

* An extremely hard and valuable.gemstdne.

If a database designer is writingva datebase for a
base ball game than he should give mofe Qeightage to the second
meaning of the word diamond than the other two.

The 1lexicon acts as a mapping between the user
database and the English language. The sample of lexicon is given.
in figure 4.2. The first field in fhe 1exicon is the word, ‘i.e.
terminal. The second field is the word categdry, i.e the category
té which that word belongs to. "WH" category contains the questibn
word, for example - what, where, who, how etc. The third and last
field of lexicon is the definition field. It can be a function

name or a definition given in the form of pseudo code.

26

WORD CATEGORY DEFINITION

Whose WH FROM DBF
- ID DBF.NAME
PRT DBF.NAME
WHERE NIL

age NOUN FROM DBF
iD DBF
PRT NIL
WHERE NIL.

is VERB FUNCTION (INSTANCE)

The pseﬁdo query . data structure (see figure 4.3)
contains a 1list of felations on which operationé are being
performed (the.FROM part), a list of database fields indicatiﬁg
the infofmation béing reguired. (the PRT-’part)_ and a list ofv
conditions which must hold for each instahcé of relation (the
- WHERE part). These .three fields are close in function to FROM,
SELECT, and WHERE in SQL and'RANGE, RETRIEVE and wHERE.in QUEL. It
makés the job of the interpréter easier. Pseudo query includes a

fourth field ID which is a sentence (pertaining to meaning)

Figure—(4,2): '

component neccessary for the translation process.

27

PSEUDO QUERY

FROM ID WHERE PRT

SOL

FROM SELECT WHERE

QUEL

RANGE RETRIEVE "WHERE

Figure 4.3 -

4.3.2 The Parser :
| Parsing is a method of séperating a sentence into its
compbnent parts}”which is the computer’s equivalent of diagramming
a sentence into a parse tree. Parsing takes advantaée of inherent
régularities'in‘natural language to ensure that the computer
understands the precise'function of each:word in a sentence, as
well as its relationship with each of the other words. |

Thé input to the parser of our system is a English
query, i.e. a strinngf words (terminals). There is a restriction,
that the query must start with a word which belongs to ﬁWH"

category or a question word. The parser generates an output which

28

‘ls’ actually the post—ofder traversal of_a tree. With each node
excepﬁ the terminal and pre terminal nodes, a number is attached.
The purpose of this numeral is to éhow humbér of children attached
to the node,'for example a node NP2 shows that it has two children
attached toAit. fhé pre_terminals can have one child only. Gi?en
the post order traversalﬂand’numbér of childern attached to each
ndde, one can uniquelyicohstruct a parse tree.‘Let us consider a
English query -~
) | thée agépi§,23.?
The parserléutput would be -
»fwhose, WH, age, - NOUN, NBAR1, NP2, -is, VERB, 23, NOUN

NBAR1, NP1, VP2, SENT2. | R |

| The‘diagrammatical representatién of this pé:ser
output is shown in fiéure_4.5.‘Note that the post—order traQersaI

of the tree is the same as the parser output.

SENT

WH NBAR
Whose NOUN is . ' NBAR
age : NOUN
23
_ figure(4.5)

29

4.3.3 Translator : 7
| "I‘he‘_ translator and thle: interpreter of our system (see
figure 4.1) are‘ integrated. into a single module. '_I‘nis m.oclule'
accepts the p'gfse tree, 1i.e. the_‘ eutpu_t of the parser "and
treneietes' it intb an intermediate structure ca_iled Pseudo query.
Finaily, a part of this mddule (interpretez") maps this pseudo)
query Ainto an INGRES query and passes it to INGRES. The idea of
.first generating e pseudo query is to ma_}ée the eystem Portable.
The‘ conversion for use with a different query 1enguage is
accomplished by providing routines which cbnvert_‘the pseudo query
into ‘a query in the new language. N -
Translation process i_s -a bottom_up sequence ef‘
tran_sfermation of the _par'se>tree. ‘Eaeh-interior. node i, the ﬁree
corresponds. to e_subroutine. _wewill discusvs’thle function of these

subroutines in Chaptef 6.

| The translator,m.aintain's a stack. It reads the
inpuﬁted string,. i.e. the parser output. If the word fetched is a
terminal,. it pushes it on to the stack. If it is a pre_terminal;
(since it has one child in the tree), it pops the top of the
stack. It should be a terminal, so it brings the definition of the
word from lexicon and pushes it on to the stack. Since each
interior node in the narsevtree fepresent’s a subroutine and it
operates on its predecessors. 'If the next symbol is a'non_terminal
then pop as many data from top of stack as the number attached to
i.t.-_ Then jump to the subroutine represented by the non_terminal
~and pass the data popped as parameters to that routine. The result

of that subroutine 1is pushed onto the stack. This procedure is

30

cohtinued until the whole input string gets exhausted;
| Let us. consider the example taken in previohs sub
sectidn‘again - R |
Whose age is 232
The oﬁtput‘of}the parser was _
Whose, WH, age; NOUN, NBAR1, NP2, 1is, VERB, 23, NOUN,
NBAR1, NP1, VP2, SENT2. |

Applying the procedure described above for the

translation, the output of the-translator wiil be (the part of

‘lexicon used for the translation»porcess_ié'shown in figure 4.3) -

'FROM DBF - | ‘ -
ID - = DBF.NAME

PRT DBF .NAME

WHERE DBF.AGE = 23

This is the equivalent pseudo query of the English
question. This is then converted into QUEL query. This conversion
is easy because the fields of pseudo query are close in function

' to fields of QUEL query. It is covered in Chapter 6.

31

CH. 5 SYNTACTIC ANALYSIS

. The lexical and syntax analysis of ouf éystem is being
éoverear in th%s chapter. ’Fifst, we discuss the design and
impleméntatiqn of the lexicbn used by ouf system; Thenvwe_describe
thé pérsing mechaﬁism in detail. The tree sets or tree adjoining

grammér used by this system are also given.

5.1 Design and Implementation of a Lexicon :-
In this section, we will look at the design and

implementation details of the lexicon used by the syétém;

' 5.1.1 Introduction :

A parser, for parsing a sentence, ﬁeeds a dictionary
fof getting syntéctic information about the words in thellanguage.
The_collection of words along with the syntactic information
constitute the léxicoﬁ of a parsing system. The information needed
in the iexicon-depends on the application. For natural language
interface to a database the lexicon WOuld differ from a
convéntional one (which gives only syntactic information), for
this‘applicétion it provides addition information regarding tﬁose
words which have a special or restricted meaning in the domain of

the database.

. 32

5.1.2 Design of the Lexicon :
| We have divided the lexicon logically into two parts -
(A) Cére lexicon and |
(B) Database speéific lexicon.
(A) Core Lexicon :

This part of the 1exié6n contains those
words whése uéagé-hardly\ever changes across different
domains. Eiample of such words are "WH".category word
what, who or pronouns like this._only the syntactic
information, which-includes_-

~'._-the lexical category and

_ feature-dimensibns.v

The lexical category of a word is what
he call part;of speech in English gtammar, like for the
word boy the lexical category is noun. It is possible
thatv a word might have one of séveral lexical
‘categories depending on the way it is used. For
instance, the word play in the sentence - "Let us play
tennis" has the lexical category verb and in the
sentence - "It was a good play", it has the lexical
category noun.

| (B) Datébase Specific Lexiéon,:
| This coné;itutes of
those words which have specific meaning with respect to
the domain. For instance, the word offer in the domain
of a university d?tabase would invafiably mean the act

of offering a caurse, by departments'or the teachers in

33

the départmepts. We see:that fhe word has'ité'meaning
restricted. This information will not be used . during
the parsing stage, but will be pulled out of the
lexicon and place? in phé output frame(of the parser
(along with the word). It will be used by the
subsequent module. - -
The;wofds are the términalg.;n the
grammaf; Each wofds in the éentence is attached to its
‘cdrrespoﬁdihg category. For this reason, the categories
}aré 6ften ‘regarded as being pre terminals. For each
‘word, there is a'definition entry in the lexicon. The -
"definition entfylgould be either -a subrou£ine name or a’
_definiﬁion; In the'léxiéoﬁ-nouné énd.adjectives always
have definitions which are in the.forﬁ.of pseudo
queries. Such.words are called bbject_words. For
example, thé definitiqn of the word age‘is a pseudo -
query which says that age corresponds to én aﬁtributé
of the relation DBF called DBF.age..The.WHERE and PRT
parts of the pseudo quéry are nil because a mere
reference to age does not imply the selection of any
specific tuples in. DBF or the request of any
inforﬁation in the lexicon as the name of a subroutine;
the function of this subroutine is to copy the
relation/field pair in the ID,field.into'the PRT field.

The role of these subroutines are explained in Ch. 6.

34

In the following section, we will describe the parser

- used by the system.

5.2 THE PARSERﬂ:

| The syntactic analysis requires sohe kind of parsing
‘téchniques (a method of carving sentence into its component ‘parts)
which is vthe' computer’s equivalent of diagramming a sentencé.
Parsing takes advantage of inherent gegularitiés in natural
language to ensure that the computer understands the precise
function of each word in a sentence as well as its relationship to

each other word.

5.2.1 Tree Sets :

We employ a Trée Adjoining Graﬁmar.(TAG)'parser fbr parse
tree construction. Unlike other grammars, there are no production
rules fdr TAG’s. Rather a TAG consists of two sets of trees, the
initial trees and aﬁxiliary trees. Symbols in a TAG are identified
as terminals or non_terminals and only non_terminalé may appear as
interiof nodes in a tree. The sét of trees defined by the grammar
G are all those found in the set of initial trees plus all those
which can be created from thelinitial ones by adding auxiliary
trees through adjoining (already discussed in chapter 3 Sec. 3.2).
The TAG which we used as paft of our database interface is showh

below; it consists of one initial tree and eleven auxiliary trees.

35

(Initial Tree)

Auxilia:x Tree set

Aux. Tree (2)

WH NP VP

Aux. Tree (3)

36

Aux. Tree (4)

NBAR

Aux. Tree (5)

Aux. Tree (6)

NBAR , ' PPH-

Aux. Tree (7)

Aux. Tree (9)

ADJ

ADJECTIVE o - ADJ

Aux. Tree (10)

ADJECTIVE NBAR

Aux. Tree (11)

38

5.2.2 The Parsing Mechanism :

The parsing of the input‘string starts with the initial
tree. This initial tree gron up using the process of adjoining,
i.e. replaCing a nodé and its corpesponding sub_tree with anather
auxiliary tree whose root node is the same as the removed node.
This process of aajoining has already been‘discussed’in Chapter.3.
NoQ, the trée'thus obtained is traversed in an in_order manﬁer.
During traversal, if the leaf.node is found ta_be a pre_terminal,
i.e. of the word category such és noun, verb, pfeposition-gtc.,
then the next word 6f the input‘string is looked whether it is of
‘éhé same category as the pretéfminal}‘For looking this, two fieldé
of the_lexiéon (discussed in previpus section) namely the word and
cafegory are used. The lexicon, in fact, tells abgut the category
the word from the input string beiongs to. However, the:definition
field is not used from the lexicon until the translation phase. If
the word is found to be of the same category than this WOrd, i.e.
the terminal is removed from the input string and is attached to
the pre_terminal in the tree. ' ' . : -

The above pfocess is continued.unﬁil-the'whole input
string gets exhausted. At this point, we have got the parse tree
for the given input strihg. |

The following_sub_section describes the parsing mechanism:
in more detail. It also covgfs the programming bonstraint like

"how" and "why". It is implemented in PROLOG.

39

5.2.3 Details of the Parsing Précess
We Qill consider the processing of an English question -
wWhat is the age of Gurjeet?
The'part of lexicon ﬁsed by the parser to parse this query

is shown in figure 5.2

WORD CATEGORY
What " WH

is ‘ VERB
the DET
of PREP
Gurjeet . . NOUN
age NOUN

Figure 5.2

The parser always starts with initial tree. The
auxiliary trees are written in the previous sub_section. At the

beginning -

NP : ’ ‘ vp
Now "NP" is replaced by first tree (see figure 5.1) of

auxiliary tree set

40

"WH" is the pre_tefminél and the first symbol in the
input string What belongé to this word catégory. So,'the word What
"is removed from the inputustring:and attached to the pre_terminal
in the ébo;e-tree. The replacemént is aanun¢ed as SUCCESSFUL. fhe
tree:left is - | - | o

SENT

What

is the age of Gurjeet

remaining string

SUCCESS

41

. Now, "NBAR" is replaced by the first auxiliary tree

with the root node "NBAR", i.e tree no. 4.

What | " NOUN

is the age of Gurjeet
remaining string
FAIL
- but the next word in the input string, i.e. "is" does not belong

to word category “NOUN". Hence, the adjoining fails here. Other.
trees with root node NBAR are tried; this is called backtracking.
So, the next tree with root node NBAR is tree number 6

(see figure 5.1) ' _

42

What ~ “nil

~is the age of Gurjeet

remaining string -

SUCCESS

nil 1is a terminal and can be attached to any non_terminél, this
replacement is always true. Now the next non;tefminal in the tree
is VP when looked in in_order manner. "VP" can be replaced by tree
number 8, i.e. the first tree with root node."VP" in the auxiiiary

tree set as shown in the figure (a) on the next page. Next symbol

to be processed is the pre terminal "VERB". The first terminal .of

the remaining input string is attached to the pre_ terminal if it

belongs to that pre_terminal category and SUCCESS is announced.

43

What

. S8UCCESS '

What

SUCCESS

is the age of Gurjeet

remaining string

Figure (a)

SENT
\'/ 4
NBAR VERB NP
nil is
the age of Gurjeet
.. ‘remaining string
Figure (b)

44

"NP" is replaced by the auxiliary tree number 1.

SENT

What : nil

the age of Gurjeet

FAIL : remaining string

Since the next word in input string, i.e. "the® does
not belong to "WH" category. _Hencer the. replacement fails and
parser has to backtrack and try other alternatives. "NP" is

replaced by tree number 2 -
. SENT

What nil is DET NBAR

the age of.Gurjeet

SUCCESS _ remaining string

45

The terminal "the" is attached to the pre_ terminal

"DET". Next NBAR is replaced and "age" is attached to NOUN -

SENT

What nil’ is - DET " NBAR
the ~ NOUN
‘age

of Gurjeet

FAIL ' remaining string

The adjoining done in the tree given above is
announced "failed". Of course, the adjoining of tree number 2 for
the node NBAR was correct, since the next tefminal from the’
remaining input string, i.e. "age” belongs to the word category
NOUN. But after doing this réplacement the tree has got no
.non_terminal free and remaining input string is not empty at this

point. Our parsing is successful only when all 1leaves are

terminals and the input string is completely exhausted. Next,.tree

number 6 is tried -

NOUN PREP NP
age of NBAR
NOUN
Gurjeet
SUCCESS remaining String

47

The ‘input string is exhausted and only terﬁinals are
at the ieaveé of the free,generated, hence parsing is‘successfﬁl.
It is the diagrammatié reprééentation of the parser output,
. actually the 'oﬁtput | of the parsér is a list of
terminals/non_terminals, This list is a post_order travefsal of
the parse tree. Whenever a SUb_trée is cdmpleted, i.e. all. its
leaves are terminals only, and the recent adjbinihg is flagged as
successful, then the post order traversal of that 'éub_tree is
stored in the list. Each-non_terminal in the. list is also having a
" numeral attached to it,'indicaﬁing,the number of children it has

in “the parse tree. For example, the sub_tree -

NP

What : | ' _ . nil |
When "nil" is attached to NBAR, the sub_tree with NP
v e . _ .
as root node is completed, hence .its post_.orderA traversal is
stored in the list as - what, WH, nil, NBAR1, NP2.
So, the output of the parse tree fof the query
"What is the age of.Gurjeet" 2 is - *
What, WH, nil, NBAR1, NP2, _is,. VERB,
the, DET, age, NOUN, NBAR1, of, FPREP, Gurjeét,’ NoUN; NBAR1, NP1,
PPH2, NBARé, Npé, VP2, SENT2 |

Auxiliary tree set can easily be extended. This makes

it possible for the parser to handle more complicated queries.

48

CH. 6 _ S8EMANTIC ANALYSI‘[S

In this.chapter, we will discuss the translation
process of our systemn. Thé trarnslation of parse tree to pseudo
query and then its interpreta_tioh to QUEL quéry has been described
in detail with examples. Algorithms have been given in pseudo code

for t'.:he- p'rocedures' used in the translation.

6.1 Procedures for the i‘r#nslatidn Process

The act of 't'ranslating a parse tree to a pseudo query
is a bottorﬁ_up— operation. The-leaves of the tree contain words~ and
each interahl node co»ntain.sv a function which acts on the values
returned by its offspring ‘and' returns é pseudo query. Pseudo
queries are themselves func;tions and the lexicon entry for each
object word is a pseudo query which d‘escribes the réle of that
word‘ in database access. The_.WH words act aé signals in the
-trénslation process. When they appear before NOUN, it is assﬁmed
that the NOUN is a class of items a_ndv that the values of
cofresponding fields in the database relation are requested by the
~user. When a WH word appears in place of an object word, its
location in relationship to the surroundihg syhtactic structures
is used to determine what information is re'questéd..'wr{ words -ére
represented in the lexicon. as t.;he .‘name of a subroutine; the
function of this subroutine ié to copy the relation/field pairs' in
the ID into the PRT field. |

The relationship between a sentence’s subject and the

49

object of its verb can be determined in"_part by the number of
objects of the verb. Thus, it is reasonaf)le to ‘p'ropose that the
semantic portion of the verb will.include a meané of determining
how many objects follow it.‘ It woqld.'also be helpful if there was
a way of- establishing whetﬂer these objects fall into recognizable
cétegories. | |

‘When the translator pevr_forms its bottom;up evaluation
of the parse tree, it starts with the individual word (terminal
node) definitions and moves up through. progressively higher
structures until the entire question has been tiranslated. It is,
4 therefore, véry natural for the translatof +to Vbu_ild'»pseudo~que1"_ies
with embedded sub_queries.: |

| The uppermost..nodes in the parse tree‘ process
informatiion that is synthe‘si'zedl from a cox;ibination of the lower
nodes. The procedure thch creates these combinations is called
HAS A function and it ‘takes as parameters two pseudo gueriés;

. The pseudo queries in the pafameter list of HAS A
fepreéenting the ﬁodifying -sub_sfructure (or..constituents)’ is
called the inferior parameter. The parameter répresenting the
constituent being modified is called superio‘_r parameter (Sup).

The ID fields of pseudoi queriés have a specific
relationship to each other. There can be many combinations of
pseudo' queries with different ID’s. For combinationa.l purpoéeé,
péii‘s of pseudo queries have been broken up into three claéses _

(1) the two IDs have the same value.

(2) the relation in the ID of the inferior pseudo

50

qguery is in the FROM 1ist»of the superior pseudo
‘query (inferior modifies the superior).

(3) all éther possibilities.

If caée(ll_holds for the pair of pseudo queries then
6nly the ;ésult of cése(l) combination ié returned. Likéwise, if
case(l) is not applicable for the pair, then result of.case(z)
combination is_retufned ;.otherwise, the result of case(3)
combination is returned.iThe_algprithm'of HAs;A function is given
below. ‘ | | | |
| Function HAS A (sup,inf);
begin -

if sup}ID = inf.ID then .
/* case(i)i*/ -
begin _
'fesult,ID = sup.ID
result.FROM =.sup,FRbk"
result.PRT = sup.fRT
AAf sup.WHERE = nil theﬁ
| result.WHERE = inf.WﬂERE
else if inf.WHERE = nil then _
o fesult.WHERE = sup.WHERE
else.
result.WHERE = sup.WHERE AND
| inf.WHERE

end /* end of case(l) */

51

else /* beginning of case(2) */
if sup.ID.relation E sup.FROM and
(inf.PRT <> 'nil or inf .WHERE <> nil)
then begin
‘ result.ID = sup.ID
-if sup.FROM = ihf;FROH then -
result.FROM = sup.FROM
else result.FROM = sup.FROM AND
"inf.FROM |
if sup.WHERE = nii:then
- résﬁlﬁ,WHERE = inf}WHERE.
-else if inf.WHERE = nil then
| N !resuit.WHERE é-sup.WHERE
eiSe‘A | | _ | |
'fesult.WHERE ﬁ_sup.WHERE AND
inf . WHERE
end - /* end of case(2) */ |
else /*‘beginning of éase(3) x/
beqgin | |
resuit.ID = sup.ID
.result.FROH_= sup. FROM
result.PRT = sup.PRT
if sup.WHERE = nil then
result.WHERE = inf.WHERE
else if inf.WHERE =.nil then

result.WHERE = sup.WHERE

52

- else.
'.fesulﬁ.WHERE =‘sﬁp.WHERE AND
| inf . WHERE
end /¥ end of case(3) */)
return (résult)
end; /* end of function HAS_A */
HAS A is a.very.general_all purpbse'procedure: Any pair_bf'pseudo,
'querieé can bé combined ﬁsing HAS A. Herver, there areipéints iﬁ.
the translation_process when functions otherbthan>mere COmbining
must be performgd on arpséudo query iist. The INSTANCE prbcedure
- of our program is a geﬁéralizatfbn of HAS_A-function and édntaihs>
passed to a higher node. The pseudo code fof INSTANCE is'giveh
below'— . ‘ |
| Function INSTANCE (sup,inf);_
/* 'sup’ parameter is the left sublink of the node
and"inf’.parameter‘is.the right -one in the parse
tree */ |
begin
| if sup = nil then
return (inf)
if inf = nil then
return (sup)
if (sup is a function ﬁame) then

if'sup.= ‘cp_id to _prt’ then

53

begin.
inf.PRT = inf.ID
return (inf)
end | |
eiSe
returﬁ (sup.funcfion, inf)
else
if (inf is a function name) ﬁhen‘
if inf = ’cp_ig;to_prt'.thén
'begin | |
| 'sup.PRT = SQp.ID‘ -
return (sup)
end
eléé.
return (inf.function,vsup)
else | |
return (HAS A (sup,inf))
, end /* end of function INSTANCE #*/
‘The use of INSTANCE will be illustrated in the

examples of the next section.

. 6.2 Details of the Translation Process :.
We have already seen (in Ch. 4) the definition for the
NOUNS, VERBS, PREPOSITIONS, WH word etc. for our sample DBF

database. The complete lexicon given is in the Appendix A. -

54

Let us examine each step of the tranélation for the
sentence - |

"Wwhat is the age of Gurjeet” ?

The lexicon used for the parsing and translation;of

this query’is shown inbfigure 6.1. The parse tree is shown in

figure 6.2.
WORD CATEGORY . DEFINITION
What WH function (cp_id_to_prt)
- is VERB - function (instance)
the DET nil L
age NOUN FROM DBF
ID DBF.AGE
PRT nil-
WHERE nil
of PREP function (instance)
Gurjeet NOUN FROM DBF
ID DBF.NAME
PRT nil
WHERE DBF.NAME = "Gurjeet"

Figure (6.1)

55

We will illustrate the translation process as 'a
bottom_up sequence of transformafion of the parse tree. Each
interiér node in the tree corresponds to a function and the first
functiPn evaluated are those corresponding to pre_terminal nodes :
WH, NOUN, VERB etc. The functions assbciated Qifh a pre_terminal
node has the same name.as the pre_tefminal node and mere1X returns
the definition of the word attaéhed £0'it, When the function NBAR
is called with only one parameter, it returns that parameter
unchanged. When NBAR has more than one parameter, it returns .a
list of pafameterhfunctions and fifst parameter_énd second
parameter as thé'parameter'of.tﬂis new fdnction, fhe pseudo - code

for NBAR is -

SENT

WH NBAR ‘VERB NP

What nil il DET NBAR
l /\
the NBAR PPH
NOUN PREP NP
|
age of NBAR
NOUN
o Gurjeet

Figure (6.2)

56

vFuhction NBAR (parameter #1, [parameter #21});
begin
if“(thére is énly one paraﬁeter) then
return (parameﬁer #1)
' elsé “
return (p?raméter #Z.function (pafametér #1
l ,parémetér #2.para list))

end; /* end of function‘NBAR */

Thus, after evaluating thg'pre_terminal function and
the. NBAR, we have the tree shown in figure ' 6.3.
o The'fdnction NP is given -in pseudo'code-beléw. The
,pa;ameter listed in square btaéket is optional. |

Funétion Né (parémeter #1, [paraméter#é]s
begin -
if (there is only one parameter) then
return (parameter #1)
else |
return (INSTANCE (para#i; para#1))
end /* end of function NP ?/

The function PPH 1is called with two parameters
representing a preposition.and its object. The preposition will bé
represented by an éppropriate function name. The code for PPH can
‘be summarized as follows - '

Function PPH (prep, object)
begin
return (a list of prep and object)

end /* end of function PPH */

57

WH NBAR VERB NP

/\

H[cp_id;tq_prtlnil instance DET NBAR

/\

- nil NBAR -
T | . NouN NP
FROM DBF ~ -|instance| NBAR

ID DBF.AGE|

PRT nil
. WHERE nil - - ~_ NOUN
FROM DBF
ID DBF.NAME
PRT. nil
WHERE DBF.NAME =
"Gurjeet"

Figure (6.3) _

58

After the PPH and NP has been applied,,we'have'the t

as shown in figure 6.4.

SENT

FROM DBF instance
ID DBF.AGE|

PRT nil

WHERE nil | |FROM DBPF .

'ID DBF .NAME
PRT nil .

WHERE DBF.NAME =

"Gurjeet"

Figure (6.4)

When INSTANCE is called with only one parameter, it
- returns that parameter unchanged. Function NP also returns the:
non nil parameter unchanged when one of them is ‘nil‘’. So, the

-

tree left is shown in figure 6.5.

59

.cp_id_to_prt VP

e
nil
- |FrROM DBF FROM DBF
ID DBF.AGE| [ID = DBF.NAME
PRT nil {PRT nil
WHERE nil - |WHERE DBF.NAME =
-"Gurjeet“

Figure (6.5)"

.'The funétion'INSTANCE,has two parameters, shown in
figdre 6.5, since noﬁe of them is a function name. So, the
INSTANCE function, in turn, calls the HAS A function. cCase (2) of
| HAS A function is applicable, since the ID fields of its
parameters are not equal. After evaluating this node, we are left

with the tree shown in figure 6.6.

60

cp_id_to_prt | - ' vP

instance| FROM DBF

ID DBF.AGE
PRT nil
" |WHERE DBF.NAME = | = -

"Gurjeet™

"Figure (6.6)
‘NeXt, the node VP is evaluated. it has two parameters
in the tree of fig._6.6._$he'function.of VP is verf simple aﬁd can
be summarized as follows - | |
Function VP (parameter #1, parameter #2)
begin |
return (a list of péra #1 and péra #2)
end /* end of function VP */
Tree'; left after solving the VP ‘node, is shown in

figure 6.7.

SENT

cp_id_to_prt : instance FROM DBF -

ID DBF.AGE
PRT nil

WHERE DBF.NAME =

"Gurjeet"

Figure (6.7)

61

Finally;. the function SEﬁT has two parameters
cofresponding to the noﬁn phrase and the verb phrase. The first
element of the_verb phrase is a functipn;'So; the notation for a
function'ané a parameter list given with the défihition of
INSTANCE may be -used. Then.sﬁNT may bé represented in pseudo code
as follows - | |

Function>SENTn(np, vp)
begin | |
géturn (vp.functionr(np, vp.para_list))
end /* end of functién SENT‘*/ | _ .
- For the tree in figure 6.7, VP.function is INSTANCE.-
So, the resu1£ of evalﬁating SENT is the resultiof evaluatiné the

tree in figure 6.8.

INSTANCE

cp_id_to prt | ' _ FROM DBF
ID DBF.AGE
PRT nil

WHERE DBF.NAME =

"Gurjeet”

Figure (6.8)

The function cp_id_to_prt copies the ID field of its
parameter into the PRT field. So, the result of evéluating this

function will give the pseudo query -

62

FROM DBF
ID DBF .AGE
PRT DBF .AGE

WHERE DBF.NAME = "Gurjeet"™
Fiqgure (6.9)

A The structure of pseudo query is so cﬁosénvthat it can
difectly_be mapped to the QUEL query used by INGRES. The FROM
field of pseudo éode is RANGE of QUEL. The PRT fieldudf pseudo
code 1is RETRIEVE of QUEL and WHERE of pseudo code ié same as.the
x ~WHERE of QUEL. Hence, the QUEL query thus obﬁained is -

| | YRANGIIZ _ bﬁF-
- S ".RET‘RIEVI-ZANDBF.AGE'
| | WHERE DBF.NAME =
| - "Gurjeet®™
for our English query.
Let ds considgr another English quefy which has nested
structure - |
What is the name of persbn-thse age is 23 ?°
- The parser output fof thisAnatural language query is -
‘What, wH, nil, NBAR1, NP2, is, VERB, the, DET, name, NOUN,
NBAR1, of, PREP, person, NOUN, NBARI1, whose, WH, age, NOUN, NBAR1,
NP1, is, VERB, 23, NOUN, NBARI1, Npi, ve2, SBAR3, NP2, P?HZ, NBAR2,
NP2, VP2, SENT2. |
This is thé post_order traversal of the parse tree and

number attached to each internal node is the number of siblings of

63

. that node. We are taking a part of the parse tree whose root nbde
is' SBAR. We have seen the function of all internalvnodes except
éBAR in the previous example. So, let us carefullyAexamine tﬁe
. evaluation of SBAR,<struéture in the parse’ tree of the above

natural language query. The sub_tree is given in figure 6.10.

SBAR

- NOUN

23

Figure (6.10)

Agéin,vthe functions at pre terminal nodes. return the
definitions of the words associated with them and the functions
NBAR and NP called with only one parameter return that parameter
unchanged. Aftef the evaluation of these functions, we have the

tree shown in figqure 6.11.

64

SBAR

FROM DBF | -~ |FROM "DBF
ID DBF.NAME ID DBF.AGE
| prr DBE.NAME | PRT nil
WHERE nil _ WHERE nil . instance _f FORM DBF

. D DBF . AGE

PRT nil

|WHERE DBF . AGE

o v | o 93

Figure (6.11)
Referring to thé_definition of VP, given previously,

‘we see that evaluation of VP gives the. tree shown in figure

6.12.
SBAR
FROM DBF FROﬁ DBF instance FROM DBF
ID . DBF.NAME ID DBF.AGE ID DBF.AGE
PRT DBF.NAME PRT nil e PRT nil |
WHERE nil | WHERE nil WHERE DBF.AGE
= 23

Figure (6.12)

65

The function off'éBAR may be ﬁséd in_ different
environments from the one we see'in this éxample. When SBAR is
| called with tree parameters, héwever, the situation is aIWAYS one
in which ‘the_ left o{fsprihg is a WH word which dendtes
possession. When it is called'with‘only two éarameters, the first
parameter is a pronoun, Qhose aﬁtecedentvis a siblinq4of the SBAR
and parameter#2 will be linked t§ this antecedent later in the
translation process. Thus, SBAR may be given in pseudo code as
ufollows - ' : e
Function SBAR (parameterfl,vparaméter#z,A[pérameter#3])
-begin | IR L

-1if theré are treé parameﬁer theh -» | -
| féfurn (para#3.function (para#l, para#2))
else . | | |
retﬁrn (parameter#2)
end;
So, evaluation of SBAR means evaluation of INSTANCE in

our éxample, as shown in figure 6.13.

" INSTANCE

FROM DBF | | Fkou DBF |
ID DBF.AGE ID DBF.AGE
PRT nil ~ |prRT nil
WHERE nil | WHERE DBF.AGE
’ = 23

. figure (6.13)

- 66

After evallua‘ting INSTANCE the pseudo query obtained
for the sub_tree is - | | |
FROM DBF
ID DB?.AGE
PliTA nii
WHERE DB?.A@;
= 23
This is equivalent to the definition of the noun "23".

@

The evaluation of rest of the tree__is same as given 'in the

- previous example. The pseudo query obtained finally is -
| - FROM DBF - - -
ID DBF.NAME
PRT DBF.NAME
WHERE DBf.AGE
= 23
This pseudo.query'is then convérted to equivalent QUEL
query. Converéion is simple because the function of FROM, ?RT and
WHERE of pseudo query fields are the same as the function of
RANGE, RETRIEVE and WHERE fields respectiveiy of the QUEL query.
Thus, the QUEL quéry.obtained is -
. RANGE ~_ DBF
RETRIEVE DBF.NAME
'WHERE DBF.AGE

= 23

67

CONCLUSION

Befofe conéludiné the diéserfation, we: discuss the
class of questiéns accepted by our system, the linguistic
phenomena that érevbeing tackled‘and;‘of course, the limitations
of the systen.

| In this system, only those questionS'whicﬁ start with

"Wh", i. e. the questions s;arting with a word belonging to the
‘ﬁ"Wh" cétegory such as Who, What, Which, When, Where,'etc,, are .
accepted. The questions beginning with a "Why" are not inclusive
'ih the - list as such type of _ questions lead to a problem of
reasoning which, clearly, is beyond the scope of our system.

-. Thev parser that we have implemehted is capabie' of
-inclﬁding:any unknownvﬁord in»thé pafse_tree. The parser treats an
unknown word as a '"noun", allowing it to take piace in the parse
tree but identifying it with a special pre-terminal - symbol.
Numbers are treated in the same way, but identifying it with a
different pre-terminal symbol tb _distinguish them from string
values. If the. parser is not able to create a parse tree, it
-backtracks‘and asks the user for the category of the unknown word.
.Its definition will be asked during the translétion phase. Still,
if.no exact parse tree is found, the user is signalled and the
translator is not invoked. '

Of the auxiliary verbs, moéals suéh as can, could,
will, would, shall, must, may, might, etc. are not included.

Questions involving comparators such as "more than", "less than",

68

"equal to",' etc. are also not allowed. Besides, some. sentencés
~which are not gi’amaticelal.ly_ correct méy also be ab.le to get
themselves parsed which is not desireable. .

This '_sys__tem'has been designed to handle the’nested
quéri_es' ail.so very efficiently. But it does not support c'onne.cltors
like anél, or, etc. . |

This system can easily be adapted to a given user
datg_bas‘,e,‘ which makes the system "transportable". The only change
required is in the part of the lexicon. The core lexic.on remailns
the same. Definitions and the categories,' if required, of the word
Q‘according to their probable ué_e in the query have tobe changed by
the 'databasé »eng‘ineer in ﬁhe daté specific lexicon. Rest of t;he
system remains unchanqéd. . |)

| The use of the intermed‘iate'4pseudo-query makes the
system portable; coﬁversion for use with a different query
language is accomplished by providing routines which convert the
pseudo-quéry into a query in a new 'langu'age. |

In an effort to ixﬂprove the 'fAG’approach, 'thé parser
will have to be redesigned to allow the use of real links. Such‘ an
improvement would allow accurate translations of sentences which
are presently untranslatable. |
| Another improvement can be made by alfering the
structure of the pseudo-query. Presently, a pseudo-query is a
hierarchical structure, consisting of a primary query with
embedded sub-queries. This approach is adequate for translating a.

wide variety of sentences. However, consider the sentence "What

69

boy, whose dog's-nosevis broken, hes a‘bicycle ?". The antecedent
of "whose".is "boy". When the NP dominating "boy" and the NBAR
(Whose dogfs nose:is broken) is processed, the resulting pseudo=
quefy mhst incorporate the fect that "boy"apossessesvthe‘"dog“._
However, because the translation of parse tfees is processed in a
.bottomfup fashion. The primary'query in the pseudo-query resulting
in the pseudofquery resulting from translating _ﬁhe SBAR would
represent the "nose'". This repfesents a probleﬁ as it will seem
to_the translator ﬁhat it is the boy whose nose is broken.

If the pseudo—queries were rest:uctured to be directed
graphs rather thanvhierarchical structures, this'problem would be
solved. ‘When the phrase "whose dog’s nose" is translated, the
" presence ofv"whoseﬁ would cause e special marker to be plaéed“eh
the processor of "dog", and then,trénsletien wouldJeontinue as
previously described..Later, the SBAR functioh woﬁld look for this
special marker. After finding it the SBAR function would direct
the next higher level of translation to use the processor of "dog"
as the antecedent of the sibling node of SBAR. Thus, "boy" would
be established as- the owner of "dog";

The TAGs have many unique properties such as links and
local constraints which make theﬁ‘useful in processing NL These
propertles‘can be used to devise a w1de range of appllcatlons

including commerc1al packages and research tools for linguists.

70

- APPENDIX 1

/***/

VAR Database file lexicon.pro. ' .ox)
/* This file should be in drive of your systemn. * /
/***/

predicates E
' lexicon(s,s,either)

clauses

/**/

/* This part of lexicon remain same, whatever may be the */

/* domain of your database. ' * /
/**/

lexicon(a,det,fUnction(m)).

lexicon(an,det, function(m)).
lexicon(the,det, function(m)). - -
lexicon(in, prep, function(instance)).
lexicon(to,prep, function(instance)).
lexicon(is,verb, function(instance)).
lexicon(of,prep, function(instance)).
lexicon(what,wh, function(cp_id_to prt)).
lexicon(who,wh, deflnltlon(dbf "dbf.name", "dbf. name“,nll))
lexicon(whose, wh ,definition(dbf,"dbf. name" *"dbf.name",nil)).

/**/

/* This is data specific part of lexicon and may have to be */

/* changed according to the domain of the database. */
/**/

lexicon(got, verb, function(instance)).
lexicon(lives,verb, function(instance)).
lexicon(belongs,verb, function(instance)).
lexicon(gurjeet,noun,definition(dbf, "dbf.name", nil,

"name = gurjeet")).
lexicon(age, noun,definition(dbf,"dbf.age",nil,nil)).
lexicon(indore,noun,definition(dbf,“dbf.address",nil

"address = indore")).
lexicon(name, noun,definition(dbf, "dbf. name",nil,nil)).
lex1con(“m tech.", noun, deflnltlon(dbf "dbf.class",nil,

"class = m.tech.")).
. lexicon(person,noun,definition(dbf,"dbf.name",nil, nil)).
lexicon(class,noun,definition(dbf,"dbf.class",nil,nil)).
lexicon(grade,noun,definition(dbf, "dbf.grade",nil, nil)).
lexicon("152 kaveri",noun,definition(dbf,"dbf.address",nil,

"address = 152 kaveri')).
lexicon("23",noun,definition(dbf, "dbf.age",nil,"age = 23")).
lexicon(address,noun,definition(dbf, "dbf.address",nil,nil)).
lexicon("A",noun,definition(dbf,"dbf.grade", nil, "grade = a")).
lexicon(mukul,noun,definition(dbf, "dbf.name",nil, "name = mukul")).

APPENDIX 2.

\

AN Iﬁpmmm-rmn OF NATURAL LANGUAGE INTERFACING
_ TO INGERS.
WRITTEN IN
Turbo PROLOG version 2.0
BY

Gurjeép Singh Khanuja

code = 3000

/* set the stack size to 3000 using Setup of main.menu */

domains
s = symbol
1s = g%
either = word(s);
function(s);
definition(s,s,s,s) .

database
node (either)

/* node database is used as stack during the translation
phase. If translation-is successful then it will cont_
ain only one data element. That data element is the
pseudo guery equivalent of the question asked.

*/

temp‘store(either)
unknown_word (either)

- /* A word is said to be unknown if it is not found in the

‘ lexicon of the system i.e lexicon.pro file. These unk_
nown words found in the natural language query are st_
ored in unknown word database. temp_store database is
used to handle these unknown words. We will store the
unknown words, their category, and thier definition in
this database. ; v

System will refer this database whenever

it fails to find a word in the lexicon.

*/

include "b:lexicon.pro®

/* The lexicon is being stored in a seperate file <lexicon.pro>
which can be changed or updated time to time by the database
~engineer. The lexicon.pro file should be in the drive [B:}-
of your computer system. :

*/

[RKkkkkkkhkkkkkkkkkkxk P R E D I CA T E S *kkhhhhhkhkhhkkhkhkhkhhk /

predicates

go
read sentence(ls)

- reverse(ls,l1s,1s) v
reverse_lst(ls,ls) R

/* PREDICATES USED FOR PARSING A QUERY */

parse_sentence(ls, 1ls,1s) - -
nounphrase(ls,1s,1s,1s) :
verbphrase(ls,1s,1s,1s) -
adjective(ls,ls,1s,1s)
nbar(ls,1s,1s,1s) -
sbar(ls,1ls,1s,1s)

parser_; output(ls)
pph(ls,1s,1s,1s)

refer(s, s)

/* PREDICATES USED FOR TRANSLATION */

find_def (s, either)
empty temp_ store
entered(s, s,either)
definition_or_function(s,s) : 4
enter def or fun(char s,s) :
translate(ls)
check (s)
category
nbarl
. npl
pph2
nbar2
np2 (either, elther)
vp2
sent2
inst R
instance (either,either)
function_id_prt(either)
has a(elther either)
cases(s,s,s,s,s,s, s, s)

part_of_case2(s,s,s,s,s,s,s,s)
part_of case2l(s,s,s,s, s s,s,s)
part_of casel(s s,s, s s,s,s s)
union(s, s, s)

write_the_result

goal
_ go.

/*i********************** CLAUSTES *************************/'
clauses

go :- .
read_sentence([]).

/* read_sentence, reads the sentence 1nputted in a llst
L until the questlon ‘mark <7> _appears in the 1nput
~—sequence. v - -

*/

read_sentence(L) :- ' : B
_ write("Enter -> "),
readln(Word),
Word <> "2%,!t,
read sentence([Word | L]).

/* Since the list works in LIFO fashion therefore it is
first reversed before sending it to the parser.

*/
read_sentence(L) :T
| ééverSe_lst(L,LR),

/* parser-is called here */
parse_sentence(LR,[],TL1),

/* TL1 is the parser output, it is post
order traversal of a tree called
parse tree. It is first reversed
before sending to the translator.

*/

reverse lst(TL1,TL2),
makewindow(1,7,7,"",0,0,25, 80),
TL3 = TL2,

- write("Parsed tree "y,nl, .

/* parser_output, writes the output of
- the parser on the crt.

*/ ‘ -
parser_ output(TL2),nl,

. /* ’‘translate’ is the first rule of the
translator phase.
x/

translate(TL3).

/* reverse_ lst, reverse the order of contents of list L.
The reversed list is in LR. Note the content and order
of elements in 1list L remain unaltered.

*/ , _ R

réverse_lst(L,LR) HE '
' reverse(L, [],LR).

feverse([]vL L).

""reverse([HlT] 11 yJL2) - '
o reverse(T [H|L1] L2).

/* The following rules writes the output of the parser */

parser_output((])
readchar().

- parser output((HlT]) :- :
write(H," "),
parser_output(T).

/* The following rule is called after the translation.
phase. At the end of translation process there should
. 'be only one data element in the ‘node’ database. This
- data element is the QUEL query which must be euivalent
to the natural language query. :
*/

write_ the result :- , '
- retract(node(definition(M, ,0,P))),!,
write ("FROM : ",M),nl,
write("RETRIVE :.",0),nl,
write ("WHERE : ",P),nl.

/************************* PARSER **************************/

' /* THere are four atoms in most of the parser rule, e.g.
nounphrase(ls,1ls,1s,1s). All the atoms are of type
list <1s> <list of symbols>. The first atom represents
the remaining list, i.e. input strihg yet to be procc_
ess. The second atom denotes, the remaining list which
is to be returned after the completion of that rule.
The third and fourth atom represent the parser output.
The third one is the parser output passed to this rule
by last rule executed, means the current status of the
parser output. The fourth, will be the parser output
after the completion of this rule.

*/

' /* Following is the Initial'treé of our Tree Adjoining
Grammar. - : o

”~ . : | | | | ‘

. parse_sentence(L,TL,TL1) :- ,
: nounghrase(L,RL,TL,TL2),

verbphrase (RL,RL1,TL2,TL3),

TL1 = [sent2|TL3],

RL1 = [].) S

/* Following rule represent the first auxiliary tree of
auxiliary tree set

*/“

nounphrase((H|T},RL,TL1,TL2) :-
. ‘ refer(H,C),

C = wh, .

TL3 = (H|TL1],

TL4 = [cat|TL3],
nbar (T,RL1,TL4,TLS),
TL2 = [np2|TLS}],

/* ‘np2’ 1is stored in the
output of the parser
because this sub tree
with node nounphrase has
got two siblings..

*/

RL = RL1.

/* It is the second auxiliary tree */

nounphrase([H|T],RL,TL1,TL2) :~ :
. refer(H,C),

C = det,

TL3 = (H|TL1}],

TL4 = (det|TL3],

nbar (T,RL1,TL4,TLS) ,

TL2 = [np2|TL5], '

/* This sub tree also have .
two siblings, one is de_
terminer and other is
nbar.

*/’

RL = RLL1.

/* This is the third auxiliary tree */
nounphrase(L,RL,TL1,TL2) :- S
- nbar (L,RL1,TL1,TL3),
sbar (RL1,RL2,;TL3,TL4),
TL2 = [np2 | TL4],
. RL = RL2. .

/* Fourth auxiliary tree */

nounphrase (L, RL, TL1, TL2) :-
: nbar (L,RL,TL1,TL3),
TL2 = [npl|TL3].

/* Following is the part of third auxiliary tree */

sbar([H|T)],RL,TL1,TL2) :- 3
refer(H,C),

C = wh, . :

TL3 = [H | TL1],

TL4 = [cat | TL3],
nounphrase(T,RL1,TL4,TLS),
‘verbphrase (RL1,RL2,TL5,TL6) ,
RL = RL2,

TL2 = [sbar3 | TL6].

/* This sub_tree has three sibli_-

gs.
*/

/* This is the fifth auxiliary tree and first of those

.
nbar ([H|T],RL,TL1,TL2) :-

auxiliary tree set which have ’nbar’ as root node.

refer(H,C),

C
. TL3
TL4

noun,

[H|TL1],
{cat|TL3],

RL = T,

- TL2

'/* Sixth auxiliary tree */
TL3"
TL2
RL = L.

nbar (L,RL, TL1,TL2)

/* Seventh auxiliary tree */‘

nbar(L,RL,TL1,TL2) :

(nil|TL1],)
{(nbarl|TL3], '

(nbar1l|TL4].

nbar (L,RL1,TL1,TL3),!,

pph (RL1,RL2,TL3,TL4),
TL2 = [nbar2|TL4],

RL = RL2.

/* This is the part of seventh auxiliary tree */

pph ([H|T],RL,TL1,TL2) :

refer(H,C),

C = prep,
TL3 = [H|TL1],
TL4 = [cat]TL3),

nounphrase(T,RL1,TL4,TLS),
TL2 = [pph2|TLS],
RL = RL1.

/* Eight auxiliary tree */

verbphrase([H|T],RL,TL1,TL2) :

refer (H,C),

C verb,

TL3 [(H|TL1],

TL4 [cat|TL3],
nounphrase(T,RL1,TL4,TL5),
TL2 [vp2|TLS],

RL RL1.

/* Nineth aukiliary_tree */

verbphrase([H|T],RL,TL1,TL2) :-
: - ' . refer(H,C),

C = verb,
TL3 = [H|TL1],
TL4 = [cat|TL3],
adjective(T,RL1,TL4 TLS),
TL2 = [vp2|TL5],
RL = RL1.

/* Tenth auxiliary tree */

adjective([H|T],RL,TL1,TL2) :-
, . refer (H,C),
o C = adjective,
TL3 = [H|TL1],
TL4 = [catlTLB],A
o v . adjectlve(T RL1,TL4 TLS),
- : - TL2 [adJZJTLS],
' - RL ='RL1.

/* Eleventh auxiliary tree */

adjectlve([H|T] RL,TL1,TL2) :-
refer(H,C),
C = adjective,
TL3 = [H|TL1],
TL4 = ([cat|TL3],
nbar(T,RL1,TL4,TL5),
TL2 = [ad32|TL5],
RL = RLl

- /* Refer rule first check the word <W> in theilexicon, if
it found in the lexicon then it returns its category,

otherwise, the parser assume that this word belongs to

‘noun’ category and try to parse the sentence. This
word along with its category is stored in a database

‘unknown word’. A definition whose first element necce

ssarily ’‘nil’ is also stored. This first element is
used later to 1dent1fy that the definition of this un_
known word is not given by the user. And ask user to
enter the definition.

*/

refer (wW,C) :-
' lexicon(w,C,).

refer(w,C) :-
: !',C = noun,

. asserta(unknown_ word(word(W))),
asserta(unknown_ “word (word (noun))),
asserta(unknown word (definition(nil,nil,nil,

nll)))
- /* refer(W,C) :-. : °
: retract (unknown_word(_)),
retract(unknown word(_)),
wrlte("What is the category of word <",W,">
: " "),
-readln(cC),!,
asserta (unknown_ word(word(C))),
asserta(unknown word(deflnltlon(nll nll nll nil)

*/.

/*******i************ T RANGSILAT O R *kkkkkkhkkkkkkhkhkkhkk/

/* The translator takes the f1rst symbo; of the parser -
output and do some processing then take another one,
~this process is contlnue until the whole strlng get
exhausted. » :

*/

translate({]) :-
' write_the_ result.

translate([H|T]) :- .
,check (H),
translate(T).

/* The symbols are checked here, each internal node in the
parse tree represent some function.

_*/

/* 'nbar’, this rule return the list of its sublinks,
hence do nothing.

*/

check (nbar2) :-
nbar2.

/* if ’‘nbar’ has only one parameter then it returns that
: parameter unaltered.
*/
check (nbarl) :-

nbarl.

* ‘np’ with one parameter returns the parameter unchang
3 p p \ —
ed.

*/

check(npl) :-
npl.

/* ‘np’ with two parameter calls instance rule, _swaps its
parameter and pass them to instance rule.
*/ ' -

v

'check(an) e : ' . -
_ '-retract(node(Dl)) ',
retract (node(D2)),!,
np2(D1,D2).

/* Since,. 'pph’ 51mply returns a llSt of 1ts parameter
therefore, it is represented as a fact

*/

check (pph2) :-
pph2.

check (vp2) :-
: vp2.

‘check (sent2) :-
sentZ.

check(cat) :- .
- category. -

/* ’‘sbar’ with three parameters, it calls instance subro
utine and passes its first and third parameter to thls
routine.

*/

check (sbar3) :-
‘ retract(node(Defl)),.
retract (node(Def2)),!,
retract (node(Def3)),!,

. y

__*/

retract(node()),.,

Def2 = function(instance),
asserta(node(Def3)),

- asserta(node(Defl)),
inst,!.

/* Determiner is ignored by our System. It puts the word
‘nil’ instead of the determiner. .

check(det) :-
retract(node(word(_))).,!,"
asserta(node(word(nll))).

/* Words are stored in the stack ‘node’ */

check(w) Hie : :
- asserta(node(word(W))).

/* When the symbol encountered, the translator pops the
word just stored in the stack <node>, and find the de_
finition of the word and push it on to the stack. This
is what the functlon of pre termlnals in the parse
tree. : .

category :-
. retract(node(word(Word))),
find_def (Word,Def), :
asserta(node(Def))

/* It finds the definition of the word. If the word is

not found in the lexicon it ask the user to enter its
definition or the functlon name and store it in the
unknown_word database

Sx/

find_def (Word,Def) :- . o
: : lexicon(Word, ,Def).

find_def (Word,Def) :-
‘ retract (unknown word(Data)),
asserta(temp_store(Data)),
Data = word(Word), .
retract(temp_store(W)),
- asserta (unknown _word(W)),
retract (temp store(word(Category))),

* »

asserta(unknown_word(word(Category))),
retract (temp_store(Definition)),
entered (Word, Category,Definition),
retract (unknown_word(Def)),

asserta (unknown_word(Def)),

empty temp_store.

/* ‘This rule is used to: ma1nta1n the unknown word data_
base. ,

.

- empty temp store :-
: retract(temp store(Data)),
asserta (unknown_word(Data)),

fail.

empty_temp_store.

/*‘This-rﬁle checks, whether the definition of unknown
word <Word> has been entered already or not.

*/

entered (Word, Category,.
definition(From,_,_,_)) :- :
From = nil,
definition_ or _function(Word,
: Category).

- /* This rule ask the user whether the unknown word has a
definition or is a subroutine name and route the con_
. trol accordingly. :
*/
definition_or function
(Word, Category) :-
write ("I assumed that the word <"
,Word, ">"),nl, _
write(" belongs to <",noun,
"> category"),nl,nl,
write("The word <", Word,
"> has a deflnltlon or a function"),
nl,
wrlte("Press <-d [/ £ > "),
readchar (Ch),nl,
" enter _def or fun(Ch Word
Category),

/* It accepts the definition for the unknown word */

enter def or fun
(’d’,Word,Category) :- :
write("Enter the.definition of <"
,Word,">"),nl,
write(" whose category is <",

. Category,"> : "), ,nl, ni
write("Enter the FROM part —> ")
readln(From),

write("Enetr the ID part -> "y,
readln(Id), .-
write("Enter the PRT part -> "),
. readln(Prt),
write("Enter the WHERE part -> "),
' readln(Where) ;
asserta(unknown word(deflnltlon
(From,Id,Prt,Where))).

- ' /* It accepts the function name of the unknown word */

enter_def or_fun ’
(£’ ,Word, Category) :-
' wrlte("Enter the function name of "
,"the word «",Word,">"),nl,
write(" whose category is <",
Category, %> : "),nl, nl
readln(Functlon name) ,
asserta(unknown word(functlon
(Functlon name))).

/* ’‘nbar’and ’np' with one parameter, returns their
parameter unchanged. ’

k[

nbarl.

npl.

/* pph' with two parameter returns a list of parameter,
therefore always’ true

*/
pph2.

/* ‘nbar’ with two parameters calls the instance rule and
pass its siblings to it as parameters.
* f '

nbar2 :- :
retract(node(Defl)),
retract(node(Def2)),

Def2 = function(instance).,
asserta(node(Defl)),

inst.

—

/* ‘np’ with two parameter, if one of the parameter is
‘nil’ then it returns the other parameter unchanged.
If both the parameter are non ‘nil’ then it swaps the
two parameter and calls instance rule.

'*/) N

np2(Db1,D2) :-
= D1 = word(nil),
asserta(node(D2)), = __
npl. '

np2(D1,D2) :- , .
_ - D2 = word(nil), - - - -
- asserta(node(D1)), ' '
- npl. ~

np2(D1,D2) :- ,

: asserta(node(Dl1)),
asserta(node(D2)),
inst.

/* ’vp7 with two parameter returns a list of parameter,
' therefore always true. '

*/
vp2. -

/* ‘sent’ it calls parameter #2.function and pass its
parameters to. this function.
%/

sent2 :-
retract(node(Def)),
retract(node(Fun)),

Fun = function(instance),
asserta(node (Def)),
inst.

/* It pops the top of stack <node> two times and get two
data. It then calls ’‘instance’ rule and pass these
data as parameter to it.

*/

inst :- _
‘retract(node(Inf)),!,
- retract(node(Sup)),!,
instance(Sup, Inf).

/* ’‘instance’, if either of two parameter is ’'nil’ it
returns the other parameter unaltered. If ‘either of
the parameter is a subroutine name, it calls that
routine and passes the other as its parameter. .
If both the parameter are definitions then 1t calls
HAS A function instead.

*/

instance(Sup,Inf) :- =
: Sup = word(nil),
asserta(node(Inf)).

instance(Sup, Inf) :- : _
: Inf = word(nil),
asserta(node(Sup)) .

instance(Sup,Inf) :- T :
- Sup = function(N),
N = cp_id_to prt,
functlon id prt(Inf)

instance(Sup, Inf) :- S
: -~ Inf = function(N),
N = cp_id_to prt,
functlon id prt(Sup)

instance(Sup, Inf) :-
: - has_a(Sup, Inf).

functlon id_prt
(definition(M,N, ,P)) :- :
asserta(node(definition(M,N,N,P))).

. /* This routine has been‘divided into three cases */

has_a(definition(M,N,0,P),
definition(w,X,Y,2)) :- .
: : cases(M,N,O0,P,W,X,Y,2).

/* This is case(1). It is appiicable when the ID fields,
i.e. the second element of the definitions are equal.

*/

- cases(M,N,0,P,W,X,Y,2) :-
: S N = X,

part of _casel(M,N,O0,P,W,X,Y,2Z).

/* This is case(2), whan case(l) does not satisfy has_a

function try this case.

* / _ . ‘ -

cases(M,N,O,P,W,X,Y,2Z2) :-
Y <> "nil", .
union(M,W,Mw) , -
union(0,Y,0y),

»

part_of case2(Mw N Oy,P W, X Y, 2).

{

/* case(2) */

cases(M,N,0,P,W,;X,Y,2) :-
_ : 7 <> "nil",

union(M,W, Mw),

- -~ union(0,Y,0y),

part_of caseZ(Mw N, Oy P,W,X,Y,2).

/* case(3), it is executed only when case(l) and case(2)

are failed.

*/

cases(M,N,O,P,_,_,;,Z) :-
union(P,2,Pz),
- ‘asserta(node(definition

(M,N,0,P2z))) .

part of case2(M,N,0,P,W,X,Y,2) :- 4
- . | 'z = "nilv,
- part_of case21(M,N,0,P,W,X,Y,32). '

part_of case2(M,N,0,P, , , ,2) :-

'part_of_caseZ(M,N,O,_,_, , 2 2Z) -

part_of_caseZl(M,N,OIP,_i;,) i

P <> "nil",

- concat(" and ",2Z,K),
concat (P,K,H), .
asserta(node(deflnltlon

~ (M,N,0,H))).

asserta(node(definition
(M,N,0,2))).

asserta(node(definition
(M,N,0,P)))

‘part_of_casel(M,N,O,P,_,_,_,Z) -
' : P = "nil", '
asserta(node(definition
(M,N,0,2))).

part of casel(M,N,O0,P, , , ,2) :-- :
- — T T 7z = wnilv, | |
asserta(node (definition
' (M,N,0,P))).

/* Union rule is used to concat two strings. If either of
~the string is ‘nil’ then ‘union’ returns the other
string without concatenation. If both the strings are
same then it returns either one.

*/

‘union(X,Y,2Z) :

X =Y,
-2 = X. .
union(X,Y,Z) :- :
. ’ X = “nil",* :
Z =Y. ' o
union(X,Y,2) :-
. Y7= "nil",
2 = X.

union(X,Y,2) :-
concat(X," U ",2z),
concat(2z,Y,Z).

./**/

(1]

(2]

(3]

(4]

(5]

(el

(7]

(8]

REFERENCES

BATEMAN,R. .F. 1983. "A translation ‘to encourage user

CLEAL,

CROFT,

modifiable man-machine q}aloguefz_ In Design%Pg
_fér Human-Compufér Cbmmunication, Academic Press;

D. M.vand HEATON, M. O. . Knowledge—based
Systens 4 Implication for Human-Computer
Interfaces.

B. énd LEWIS, D. 1987."An approach to Natural
Language Processing for document retrieval". In_
Proceedings .of the 10th 'Annual ACM SIGIR.
Conferencer on Research and Development in-

Information Retrieval, New Orleans.

GAZDAV, K., et. al. . Genéralised Phrase Structure

GROSZ,

GROSZ,

_Gfammar, Bési1~Blackwell.Av

B. J., et. al. 1986; Natural'Lahguége Précessing;
Morgan-Kaufman, Palo Alto, CA.

B. J., et. al. 1987. "TEAM : An experiment in thé
desigh' of ﬁransportablé _Natural—Language
Interfaceé". In Artificial Intelligénce, Vol. 32,

HARRIS, L. A. 1977. "User-oriented database query with

JONES,

ROBOf natural language query system". In
international Jourqal of Machine Studies.

L. P., et..al. . "INDEX : The statistical basis
for an ihvestigation". In The Journal of the

American Society for Information Science.

[9] JOSHI, A. K. 1985."Tree Adjoining Grammars : How much
context-sensitivity is required to provide
reasonable structural descriptions ?2". In Natural

Language Parsing - psychological, computation and

a ~—

theoretical berspectives, Cambridge -University
Preés, pp. 206-150.

{10] JOSHI, A. K. 1985. An jIntro‘duction to Tree Adjdining
Grammars, Deptt.Sof Computer and Information
Science, Moéfe School, Univ. of Penﬁstvania,
Philadelphia‘PA.

[il] JOSHI, A. K. and VIJAYfSHANKER, K. 1985. "Sonme
compufqtional properties of Tree"Adjoining
Graﬁmérs".»vlﬁ: 23rd Annual >Meétin§’ of the

. .Assoéiation'fOr‘Cpmputational Langugges,-pp.s-lz.

[12] JOSHI, A. K., et. al. 1075. "Tree Adjunct Grammars". In
Journai of Computer and System'Sciences; Vol. 10,
pp. 136-163. o

(13] JOSHI, A. K. and YOKOMORI, T., "Parsihg of Tree
Adjoining ‘Grammars";- In Technical Report,
Department of Computer-and Information Science,
Univ. of Pennsylvania.. |

{14] KAPLAN, S. J. 1979.' "Co-operative respcnsé from a
portable naturai ianguage query system". 1In
Technical Report; Deptt. of Computer and
Information Science, Univ. of Pennsylvania.

(15] RICH, E. 1986. Artificial Intelligence, McGraw Hill,

New York.

[16] ROBINSON, J. J. 1982. "Diagram : A grammar for
| diaioéues". In Commniéations of the ACM, Vol. 25,
No. 1, pp. 27-47. o |

[17] SAGALOWIEZ,»D. and SLOCUM; J.: ¢ "Developing NLP to
complex'déta". SRI iNternationél.

t18]_SMEATbN, A. 1986. "Incorporating syntactic"information'

| into a document retriéval sfrategy : An
investigation". In Proceedings of the ACM
Conference on Research and Development in
Information Retrieval, Pisa, Italy.

[19] STONEBRAKER, M. 1988. "current work on database

‘ system".,In;IEEﬁ, véi.z.‘_ |

(20] TENNANT, H. 1980.ANaturai Language Processing,

‘ Petrocélli[Princeton. _ |

[211 TURBO PROLOG ‘TOOLBbX_:_ Usér’é ‘Gﬁiae and. Reference
Manual. | -

[22] WALTZ, D. "Natural léngﬁage access to a large database
: An éngineering»approa;h". In Prqceedipgs 3; the
4th International Joint Conference dg”Artificial
.Intelligence, Tbilisi, USSR.- |

[23] ﬁOODS, W. A., et. al. i972. "The Lunar sciences natural
'langqage interface sfstem”. Final feport, BBN

A report 2378, Cambridge,AMassachusetts.

[24] YOUNGER, D. H. “Recognition and Pérsing of Context-free

~Languages in Time n3". In Information and

Control, Vol. 10, No. 2, pp. 189-209. -

	TH36550001
	TH36550002
	TH36550003
	TH36550004
	TH36550005
	TH36550006
	TH36550007
	TH36550008
	TH36550009
	TH36550010
	TH36550011
	TH36550012
	TH36550013
	TH36550014
	TH36550015
	TH36550016
	TH36550017
	TH36550018
	TH36550019
	TH36550020
	TH36550021
	TH36550022
	TH36550023
	TH36550024
	TH36550025
	TH36550026
	TH36550027
	TH36550028
	TH36550029
	TH36550030
	TH36550031
	TH36550032
	TH36550033
	TH36550034
	TH36550035
	TH36550036
	TH36550037
	TH36550038
	TH36550039
	TH36550040
	TH36550041
	TH36550042
	TH36550043
	TH36550044
	TH36550045
	TH36550046
	TH36550047
	TH36550048
	TH36550049
	TH36550050
	TH36550051
	TH36550052
	TH36550053
	TH36550054
	TH36550055
	TH36550056
	TH36550057
	TH36550058
	TH36550059
	TH36550060
	TH36550061
	TH36550062
	TH36550063
	TH36550064
	TH36550065
	TH36550066
	TH36550067
	TH36550068
	TH36550069
	TH36550070
	TH36550071
	TH36550072
	TH36550073
	TH36550074
	TH36550075
	TH36550076
	TH36550077
	TH36550078
	TH36550079
	TH36550080
	TH36550081
	TH36550082
	TH36550083
	TH36550084
	TH36550085
	TH36550086
	TH36550087
	TH36550088
	TH36550089
	TH36550090
	TH36550091
	TH36550092
	TH36550093
	TH36550094
	TH36550095
	TH36550096
	TH36550097
	TH36550098

