
MEDICAL EXPERT
SYSTEM

A DISSERTATION
submitted in partial fulfilment of the requirement for the

award of the Degree of

MASTER OF TECHNOLOGY
IN

COMPUTER SCIENCE AND TECHNOLOGY

SHAILESH KUMAR TIWARI

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY

JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI -110067

CEERTIFICATE

It is certified that the contents of this dissertation which

carries the title MEDICAL EXPERT SYSTEM has been submitted

by SHAILESH KUMAR TIWARI , has not been previously submitted

for any other degree of this or any other university.

Prof. N.P. MUKHERJEE

(DEAN)

SCSS/JNU

r~(JIV~~
DR. P.C. SAXENA

(Supervisor)

SCSS/JNU

SHAILESH KUMAR TIWARI

(Student)

ACKNOWLEDGEMENT

I am highly indebted to my supervisor Dr. P.C. Saxena,Associate

Professor School of Computer and System Sciences, Jwaharlal

Nehru University,for his eminent guidance,constant supervision

and overwhelming encouragement th~oughout my dissertation

work.

I am grateful to Prof. N.P. Mukherjee dean SCSS J N U for

allowing me to do the project.

I am also thankful to all the teaching and non-teaching staff

in the SCSS J N U, Department of Computer Science & Engg. I.I.T.

Delhi, Eye section of AIIMS, Library Staff of J N U, I.I.T.D.

and AIIMS for providing me help.

PREFACE

According to a survey, the people in India have

lowest medical attention in the world. A very large number

of people are affected with eyesight problems. As a result

use of glasses and contact lenses have been increasing

rapidly. though contact lenses have not still become very

popular, still people are preferring to use contact lenses.

For patient who are having problems with their

lenses, there may be several causes and several approaches

towards treatment. This expert system has basically four

diagnostic outcomes. It may recommend total refit. This is

the most expensive alternative and is recommended only when

all other possibilities are exhausted. It may recommend

change of lens material or use of different cosmetics if it

is found that patient is allergic to these. A charge of

lifestyle may also be recommended of workplace is causing

problems. This expert system has the mechanism to explain

why it has asked certain questions. it also explain how it

has reached to certain conclusion. Since the distribution

of medical experts in India is very uneven, and also there

is shortage of medical experts, then system can be used on a

IBM compatible PC at any place to provide the expert advice

to the people.

CONTENTS

CHAPTER I ARTIFICIAL INTELLIGENCE

CHAPTER 2 : EXPERT SYSTEM

2.1 INTRODUCTION

2.2 TYPES OF EXPERT SYSTEMS

2.3 COMPONENTS OF EXPERT SYSTEMS

2.4 THE CONSTRUCTION OF EXPERT SYSTEMS

(i) A METHODOLOGY FOR BUILDING

EXPERT SYSTEMS

(ii) TOOLS FOR CONSTRUCTING EXPERT

SYSTEMS

CHAPTER 3: EXPERT SYSTEM DESIGN

3.1 INTRODUCTION

3.2 TOOLS AND LANGUAGES

3.3 PROLOG

3.4 RULE BASED EXPERT SYSTEMS

3.5 FRAME BASED EXPERT SYSTEMS

CHAPTER 4 : SYSTEM IMPLEMENTATION

4.1 INTRODUCTION

4.2 PROBLEM FORMULATION

4.3 SYSTEM ARCHITECTURE

CHAPTER 5 : CONCLUSION

APPENDICES A: PROGRAM

B: REFERENCES
-·

1.

CHAPTER -1

ARTIFICIAL INTELLIGENCE

intelligence concerns Artificial

and theory developments relating

reasoning and programs.

with research

human thinking,

Expert systems, knowledge bases and knowledge

processes are practical AI research results. The theories

and programs are called artificial intelligence because

they are intended to be electronic imitations of outcomes

of human mental activity. Artificial intelligence is

significant addition to analytical decision making and

problem solving software. The application of AI concepts

range from using computer to recognize human voice,

creating programs to translate text from one language to

other developing techniques that will allow robots to

identify objects and reasons about the consequences of

various actions and developing computer programs that

will reason like human experts.

Accordingly we find that all AI applications

fall into five different categories.

1. Natural language

2. Robotics

1

3. Improved human interfaces

4. Exploratory programming

5. Expert systems

L. Natural language

A natural language is any language that

~an speak. Some AI researchers are trying to

~omputer hardware and software that will allow

:o interact with people in a natural language .

humans

develop

computers

At the

1oment commercial activity that involves concepts and

:echniques derived from natural language research

.nterface is focused on developing natural language

.nterfaces to data bases.

~. Robotics

Creating Robotic devices is hardly the exclusive

:oncern of AI researchers. AI is concerned with only that

:ubset of robotic devices guided by computer programs

:hat allow the devices to analyse and solve the problems

:hat they encounter. Such "intelligent robots" use AI

:echnique to see and manipulate the object they interact

rith In essence, the robot can act "intelligent" be

:ause it has a model of the world stored in a computer

.hat allows it to identify things and analyse how those

:hings will change in response to the various actions the

2

robot might initiate.

3. Improved Human Interfaces

A third area in

techniques are being actively

design and development of better

psychological and programming

concepts and which AI

employed involves the

interfaces. By applying

techniques originally

developed in AI labs, computers with interfaces like this

found in machinfosh has been developed. The same hardware

and software techniques that make macintosh easy to use

are already on newer computers. Other improved interface

techniques will become available as the underlying AI

techniques becomes more widely understood.

4. Exploratory Programming

Exploratory programming refers to the

developing

that allow

application of AI concepts and techniques to

large scale applications. The same techniques

AI programmers to quickly develop large scale applications,

programming including new

environments,

programming

modularity and

all be used to increase

productivity.

3

languages and

incremental development can

conventional programmer's

Automatic programming uses AI techniques to all

computer programmers to develop computer programs

specifying the goals of a program and leaving it upto

automatic programming system to generate most of t

specific code for the application.

5. Expert Systems

Of all the commercial activities resulting fr

AI research expert systems have received most attentio

These problem solving systems were initially called expe

systems to suggest that they functioned as effective

as human experts at their highly specialized tasks.

An expert system is a program that

combinations of concepts, procedures and

derived from AI research. These techniques

to design and develop computer systems

knowledge and inferences techniques to solve

4

manifests so

techniqu

allow peop

that u

problems.

CHAPTER -2

EXPERT SYSTEM

2.1 Introduction

The area of expert system inve1

and techniques for constructing man-mach:

specialized problem-solving experti1

consists of knowledge about a particular

and skill at solving these problems. Kn<

speciality is of two sorts: public and

knowledge consists of the published defini1

theories of which textbook and references :

study are typically composed. But expE

more than just this public knowledge.

generally

largely of

possess private knowledge.

rules of thumb that have com1

heuristics. Reasons for emphasising on l

than formal reasoning are many. Firs

difficult and interesting problems do no1

algorithmic solutions. The second reason

experts achieve

knowledgeable.

outstanding

The third

performance

reason is tha

scarce resource whose refinement and repr1

wealth.

5

Various definitions of expert systems can be

found in literature. Some of them are

(i)

(ii)

(iii)

States An expert system is an Feigenbaum

intelligent computer program that uses knowledge

and inference - procedures to solve problems that

are difficult enough and require significant human

expertise for their solution. The knowledge

necessary to perform at such a level, plus the

inference procedures used can be thought of as a

model of the expertise of the best practitioners of

the field.

Buchnan defines expert system as a reasoning

program that can be distinguished by other AI

programs in its utility, performance and

transparency.

The British Computer Society's Committee of the

specialist Group in Expert Systems has defended

expert systems as "The embodiment within ·a

computer of a knowledge based component from an

expert skill in such a way that machine can offer

intelligent advice or take an intelligent

characteristics, which many would regard as

fundamental in the capability of the system and to

justify its own line of reasoning in a manner

6

directly

adopted

intelligible to

to attain these

knowledge based programming.

2.2. Types of Expert Systems:

inquirer. The style

characteristics is

Most knowledge-engineering applications fall into

a few distinct type.

Interpretation system such as

understanding,

descriptions from

image analysis

observables.

etc. infer

speech

situation

from

model.

Prediction system

given situations. It

The category includes

estimates etc.

infer likely consequences

employs parametric dynamic

weather forecasting, crop

Diagnosis system infers malfunctions from

observables. It relates observed behavioural

irregularities with the underlying causes. The category

includes medical, electronic, mechanical diagnosis etc.

Design systems develop configuration of objects

that satisfy the constraints of the design problem. Such

problems include circuit layouts, building design etc.

7

Planning systems design actions. These

specialise in problems of design concerned with

systems

objects

automatic that perform functions. They include

programming, robot, project, route etc.

Monitoring

system behaviour to

successful plan

vulnerability.

Debugging

malfunction. These

systems

features

outcome.

compare observations

that seem

The crucial

crucial

feature

of

to

is

systems prescribe remedies for

systems rely on planning , design and

prediction capabilities to create specifications or

recommendations for correcting a problem.

Repair system develop and

administer a remedy

systems incorporate

capabilities.

execute plans to

problem. Such for some diagnosed

debugging, planning and execution

Instruction systems diagnose and debug student

behaviours.

subsystems

system of

They incorporate diagnosis and debugging

that specifically address the student as the

interest.

A control expert

behaviour of the system.

must repeatedly interpret

8

system adaptively governs the

To do this, the control system

the current situation, predict

the future , diagnose the causes of anticipated problems

formulate a remedial plan and monitor its execution to

ensure success. This category includes traffic

business management and mission control.

2.3 Components of Expert Systems

control

Figure 1 shows an idealised representation of an

expert system. No existing expert system contains all

the components shown, but one or more components occur

in every expert system. Each component of this ideal

system is described briefly in turn.

The ideal expert system contains a language

processor for problem-oriented communications between the

user and the expert system; a "blackboard" for recording

intermediate results; a knowledge base comprising facts

as well as heuristic planning and problem-solving rules;

an interpreter that applies these rules; a scheduler to

control the order of rule processing; a consistency

enforcer that adjusts previous conclusions when new

data (or knowledge) alter their bases of support; and a

justifier that rationalizes and explains the system's

behaviour.

The user interacts with the expert system in

problem-oriented language, usually some restricted

9

User

i
I
---,

\ ~

r--
Knowledge

kqtl1.6"f t ion

System

l-----------;a

I

!

Fac.s

-----l
I
I

I
i
I Language -- -· ---~ ...

---~ I Processor j I
Rules I ,

I I ' j_
I

Knovledge-base I
Justifier I

!
' i

! I
I

~ Interpreter ~ I I Plan ..,.

l I
i

I

I

l '

1£ Scheduler I
Agenda I l I .

1
I
I

~

J Solution. Consistency Enforcer

I
Blackboard inference Engine

.,
Fig. 1 \Components of Expert Systems

variant of English and in some cases via means of a

graphics

mediates

system

or structure editor. The language

information exchanges between the

and the human user. Typically the

processor

expert

language

processor

commands,

parses and

and volunteers

interprets user questions,

information. Conversely the

language processor formats information generated by the

system, including answers to questions, explanations and

justifications for its behaviour, and requests for data.

Existing expert systems generally employ natural language

parsers written in INTERLISP (Teitelman and Masinter

1981) to interpret user inputs, and use less sophisticated

techniques exploiting canned text to generate messages

to the user.

The blackboard records intermediate hypotheses

and decisions that the expert system manipulates. Every

expert system uses some type of intermediate decision

representation, but

blackboard for the

Fig.1. The figure

only a few

various types

explicitly employ a

recorded

elements.

attack

problem,

of decisions shown in

identifies three types of decisions

on the blackboard : plan, agenda, and solution

Plan elements describe the overall or general

the system will

including current

10

pursue against the

plans, goals, problem

current

states,

and contexts. For example, a plan may recommend processing

all low-level sensor data first, then formulating a small

number of the most promising hypotheses, refining and

elaborating each of these hypotheses until one best

hypothesis emerges, and finally focusing exclusively on

that hypothesis until the complete solution is found. This

kind of plan has been incorporated in several expert

systems. The agenda elements record the potential

execution, which generally correspond to actions awaiting

knowledge base rules that seem relevant to some

decision placed on the blackboard previously. The

solution elements represent the candidate's hypotheses

and decisions the system has generated thus far, along

with the dependencies that relate decisions to one

another. Often these dependencies are called links.

The scheduler maintains control of the agenda

and determines which pending action should be executed

next. Schedulers may embody considerable knowledge,

such as "Do the most profitable

redundant effort". To apply

thing next" and "Avoid

scheduler needs

according to its

extant solution

generally needs

potential rule.

such knowledge, the

to give each agenda

relationship to the

elements. To do this,

to estimate the effects

11

item priority

plan and other

the scheduler

of applying the

The interpreter executes the chosen agenda item

by applying the corresponding knowledge base rule.

Generally the interpreter validates the relevant

conditions of the rule, binds variables in these

conditions to particular solution blackboard elements, and

then makes those changes to the blackboard that the rule

prescribes. Interpreters of this sort are generally

written in LISP because of its facility for manipulating

and evaluating programs. Other languages are also

suitable.

The consistency enforcer attempts to maintain a

consistent representation of the emerging solution. This

may take the form of likelihood revisions when the

solution elements represent hypothetical diagnoses and

some new data are introduced (Shortliffe 1976; Duda and

Gaschnig 1981; Erman et al. 1980) Alternatively the

enforcer

when

and

the

their

might implement truth-maintenance

solution elements represent logical

truth-value relationship (McDermott

expert systems use some kind of

scheme to determine the degree of

1980). Most

adjustment

procedures

deductions

and Doyle

numerical

belief in

each potential decision. This scheme attempts to ensure

that plausible conclusions are reached and inconsistent

ones are avoided.

12

The justifier explains the actions of the system

to the user. In general, it answers questions about why

some conclusion was reached or why some alternative was

rejected. To do this, the justifier uses a few general

types of question-answering plans. These typically

require the justifier to trace backward along blackboard

solution elements from the questioned conclusion to the

intermediate hypotheses or data that support it. Each

step backward corresponds to the inference of one

knowledge based rule. The justifier collects these

intermediate inferences and translates them into English

for presentation to the user.

Finally the knowledge base records rules, facts,

and information about the current problem that may be

useful in formulating a solution. Whereas the rules of

the knowledge base have procedural interpretations, the

facts play only passive roles.

2.4 The Construction of Expert Systems

Workers in expert systems conduct

empirical research to determine how to solve

principally

a problem

requiring extensive knowledge and skill. To fashion a

solution, they must build a working system by exploiting

two types of assets~ a methodology and a set of tools.

13

(i) A Methodology for Building Expert Systems

Because it takes experimentation to achieve

high performance , an expert system evolves gradually.

This evolutionary or incremental development technique

has emerged as the dominant methodology in the expert

systems area. The procedure of extracting knowledge

from an expert and encoding it in program form is called

knowledge acquisition. This transfer and transformation of

problem-solving expertise from a knowledge source to a

program is heart of the expert-system development process.

The burden of uncovering and formalizing the

expert's knowledge falls on the shoulders of the knowledge

engineer. Through an extended series of interactions,

the knowledge engineering team (the knowledge engineer

and the expert) defines the problem to be attacked,

discovers the basic concepts involved, and develops rules

that express the relationships existing between concepts.

Although work is progressing on automating the expert

system development process , at present knowledge engineers

must rely on their own skill and insight to guide the

knowledge acquisition activity. During

identification, the knowledge engineer and expert work

together to identify the problem area and define its

14

scope. They also identify the participants in the

development process (additional experts), determine the

resources needed (time, computing facilities), and decide

upon the goals or objectives of building the expert

system. A small but interesting subproblem may be

identified and used to focus the knowledge-acquisition

process.

During conceptualization, the expert and

knowledge engineer explicate the key concepts, relations,

and information-flow characteristics needed to describe the

problem-solving process in the given domain. They also

specify subtasks, strategies, and constraints related to

the problem-solving activity.

Formalization involves mapping the key concepts

and relations into a formal representation suggested by an

expert system-building tool or language. The knowledge

engineer must select the language and, with the help of

the expert, represent the basic concepts

within the language framework.

and relations

During implementation, the knowledge engineer

combines and recognizes the formalized knowledge to make it

compatible with the information flow characteristics of the

problem. The resulting set of rules and associated control

structure define a prototype program capable of being

15

executed and tested.

Finally, testing involves evaluating the

performance of the prototype program and revising it to

conform to standards of excellence defined by experts in the

problem domain. Typically the expert evaluates the

program's performance and assists the knowledge engineer in

the forthcoming revisions.

These stages of expert system development are not

clear-cut, well-defined or never independent. At best they

characterize roughly the complex process we call knowledge

acquisition. For example, formalization and implementation

are closely related, and failures to provide adequate rules

and control during implementation may lead to immediate

reformalizations. Also, during testing the knowledge

engineering team may find that prototype correction requires

partially revising the result of some earlier stage. This

could involve reformulation rules and control processes,

redesigning knowledge structure, discovering new concepts of

abandoning old ones, and even redefining the problem's scope

and goals.

(II) Tools for building Expert Systems.

Table 1 lists the primary

available for knowledge engineering tasks.

16

tools presently

Except for OPS,

they operate in the INTERLISP environment. ROSIE is an

excellent general purpose tool for building prototype expert

systems. EMYCIN, KS 300 and KA<S are very useful general

tools for diagnostic tasks. KAS provides facilities akin to

those of EMYCIN but has not yet been used in the variety of

ways EMYCIN has KS300 is an industrial system based on the

EMYCIN methodology. OPS is the most powerful pure

production-system interpreter available. AGE provides the

best extant tool for developing a variety of different

architectures. INTERLISP provides a LISP programming

environment preferred by most workers in the field.

Despite the wealth of knowledge accumulated about

constructing

for building

expert systems, c~oosing an appropriate

a particular system remains a difficult

tool

yet

crucial task. A tool that in some sense well suits a

particular problem

process, shorten

finished product

efficiency.

areas can facilitate

the

that

development time,

performs with a

17

the development

and lead to a

high degree of

Table 1

Programming systems for building exper systems

Tool

ROSIE

OPS5

EMYCIN

KAS

AGE

INTERLISP

Developer

Rand Corporation

Canegie Mellon
University

Stanford
University

Stanford Research

Stanford
University

Xerox
Corporation

Features

Rule-base, Procedure
Oriented, General purpose

Production-system formalism
General purpose

Rule-based, Diagnosis and
explanation

Rule-based, Diagnosis and
explanation

LISP-based, Builds various
PS architectures

LISP programming
environment

Table 2 Summarizes guidelines for choosing a

appropriate expert-system building tool. The predominan

consideration involves matching the problem characteristic

to necessary tool features and hence particular tools.

Figure 2 outlines a basis for this selectio

process. The problem characteristics suggest certai

solution features, and these together with the desire,

expert system features suggest tool features . that woul

facilitate development. The desired tool features then for

18

the basis for choosing a particular tool.

Suppose, as a very simple example, that c

problem characteristic is uncertain and errorful data c

one desired system feature is self-modification (the syst

will augment or change its own knowledge). The probl

characteristic suggests using certainty combining and tr\

maintenance as solution features.

Issues

Generality:

Selection

Speed:

Testing:

TABLE 2

Choosing an appropriate tool for

building an expert system

Maxims

Pick a tool with only the generality
necessary to solve the problem.

Let the problem characteristics determine
the tool selected.

When time is critical, choose a tool with
built-in explanation/interaction
facilities.

Test the tool early on by building a very
small prototype system.

Picking a tool with certainty factors and a trul

maintenance facility. The desired system feature of se:

modification suggests the tool should also contain rule

control modification facilities.

19

•

3.1 Introduction

CHAPTER 3

EXPERT SYSTEM DESIGN

The development of the expert system should begin

with thorough analysis of objective. First of all nature of

the problem is studied. The problem must be clearly

specified and the expected result from the system should

also be stated.

Once the objective is defined, the types of

problems that need to be solved and the manner in which the

program should approach them become readily apparent. In

this phase also the need for specificity is great. Although

the knowledge should be exhaustive in details it should also

be limited to the facts and rules required to achieve the

stated objectives. For existence, a heart patient's age and

weight are more important in designing there specific for

heart disease, but the patient's eye colour and hearing

activities are not.

The second phase involves, requiring, structuring

and translating the body of expertise required to solve the

problems. Both domain experts and knowledge engineers are

usually associated with this process. The complexity of the

process often determines the type and number of experts.

20

The planner should find an expert with right type of

knowledge for the stipulated objectives and problems. He

should focus on expertise acquired from indepth experience

and repeated observations. For most expert system, the

experienced practitioners are more valuable than

academicians in building a large knowledge based system with

numerous pre-defined subproblems. It is often advisable to

gather information at several levels of the organization,

from rank-and file to top management. In building a small

knowledge based system with a limited problem scope, a

single source is preferable.

Third phase of the design is concerned with the

transfer of knowledge that involves the user input from end-

user is required early in the design process to ensure that

the system will be operationally practical and provide

maximum relevance to environment.

3.2 Language and tools

Programming language plays a very important role

in expert system. The characteristics of good programming

language are that it should be easily implementable and

should be user friendly.

~Ci-S.
68f·S:bf

15 43
~

21

The earliest programming languages were imperative

or procedural language. Their drawback for using as a AI

language was that it was not possible to express logics

efficiently in these languages . Accordingly declarative

type of languages were developed. In this programming

language the statement have a declarative interpretation and

can be read as a formal description of the problem without

recource of the machine. Functional and logic

are the major programming paradigms of

languages.

3.3 PROLOG

programmings

declarative

Prolog-an acronym for programming in logic is

essentially rule base programming language. The original

objective of its creation was to integrate a development in

mathematical logic-the resolution principle proposed by J.A.

Robinson into a programming language. Robinson.s

resolution principle suggested the application of only one

powerful rule of inference to mechanical theorem proving

instead of the multiple rules proposed by logicians. This

facilitated the design of a programming language that would

enable a programmer to make a computer simulate the thinking

process by making detection from information given in

logical formulas.

22

not require the programmer to provide the computer with a

sequence of instructions to be executed. Instead of telling

the computer, what has to be done, the programmer describes

the object that must be computed. prolog should be viewed

as a formalism for defining knowledge independent of the

method of computation.

In order to learn how a machine computes the

answer to a question about the knowledge described by a

Prolog program, one must realize the two essential

properties of the machine.

1. It must be nondeterministic in that it should be

capable of exploring several choices at a given time.

2. At each instant, it should be able to reduce a

constraint (i.e. to solve a system of equations and

inequations).

The recursive version of this nondeterministic m/e

which searches the entire search space (search can be

directed using predicated fail and cut), is shown in the

figure.

The solve procedure used a number of functions

unity, copy, head, tall, append. Functions all the above

are clear except the function unity and it will be described

23

below. Given two trees (trees represent knowledge), the

unify procedure tries to make these look alike by some

substitution (called bindings) to the variables. For a

given path in a search tree (which is traversed in a depth

first fashion), the system keeps track of all the bindings

the instantiations of all the variables are kept on a stack

named trail (called env here). So, the unity function tries

to unify 2 trees in a given environment. The substitutions

made (if any) are added to, the env to give newenvironment

(newenv). If unify reaches a point in search space in which

a particular substitution conflicts with the previously made

substitution (present in the trail), then system back

tracks.

Unification:

Terms 1 , 2 (constant)
· C2

(constant) Succeed if
C1 - C2

(Variable)
X2

succeed
with

(Composite)

fail

---~------

(Variable)

X1

(Composite)

Succeed
with
X1 : -C2

fail

24

Succeed
with
X1 :-X2

Succeed
with
X2:-T1

succeed
with
X1 : -T2

succeed.if
with
(1)T1 and T2
have same
functor and
arity
(2)The matching
of corresponding
children succeeds

I

3.4 Rule base exaust system

A rule based system has two primary components the

knowledge base and inference engine.

(1) Knowledge base

The knowledge base is the data or knowledge used

to make decisions. It consists of a set of clauses where

each clause is either a fact about the given information or

a rule about how the solution may relate to or be inferred

from the given facts.

Some examples of facts in Prolog are

English

Ritu is female

Pro log

female (Ritu)

In Prolog, a rule consists of a head and a body.

The head represents the conclusion and body is antecedent.

The body consists of one or more premises. The premises in

the antecedent form a conjunction of goals and must be

satisfied for the goal to be true. If all the premises are

true then the conclusion is true, if any premise fails, the

conclusion fails.

As an example:

If condition 1 and condition 2 are true then take action.

25

This can be represented as

ACTION:- CONDITION 1, CONDITION 2,

(ii) Inference Engine

The inference engine has two functions inference

and control. The inference involves matching and

unification. the control function determines, the order in

which the rules are tested and what happens when a rule

succeeds or fails. The inference engine takes the facts

that what it knows are true from the data and rule-base and

uses them to test the rules in database through the process

of unification. When a rule succeeds, the conclusion is

added to the data base. When more than one rules may unify

with the known facts then control function must determine,

through conflict resolution, which rule to fire.

The matching can be of two types. the

type is the match to an exact pattern of literals.

of variables is another source of matching.

operation is called unification which has been

Prolog.

simplest

The use

Matching

dealt in

Backtracking is the mechanism that instructs the

Prolog where to go to Look for the solution to the program.

This process gives to prolog the ability to search for all

26

known facts and rules for a solution. the solution of the

compound goals proceeds from left to right. If any

condition in chain fails, Prolog backtracks to the previous

condition, tries to prove it again with an ordered variable

binding, and when moves forward again to see if the failed

condition will succeed with new binding. Prolog moves

relentlessly forward through. The conditions trying away

available binding in an attempt to get the goals to succeed

in as many ways as possible.

The expert system process symbolic representation

of reality by means of heuristic rules, usually by the

technique of backward chaining, the engine begins with a

terminal conclusion, the object goal. The program searches

through the rule test for my rule that has the object goal

as its conclusion. The engine then tests each part of the

rules premises and the process begins a new.

Forward chaining progresses from a given

information to goal. Starting from what is initially known,

the current state of the knowledge is used to make a chain

of inferences until either a goal is reached or a solution

is said to be unattainable after exceeding some cut off in

use of resources.

27

3.5 Frame based architecture of expert systems

A frame is a data structure for representing a

stereotyped situation, like being in certain kind of living

room or going to a child's birthday party. Attached to each

frame are general kind of information. Some is about what

one can expect to happen next, some is about what to do if

those expections are not confirmed.

We can think of a frame as a network of nodes and

relations. The "top level" of a frame is fixed and

represent things that are always true about the supposed

situation. The lower levels have many terminals - "roots"

that must be filled by specific instances of data.

Collection of related frames are linked together

into frame systems. The effects of importants actions are

mirrored by transformation between the frames of a system.

28

CHAPTER - 4

4. System implementation

4.1 Introduction

Early attempts in the field of expert systems were

made on generalized problem solving, but it was found that

these systems did not offer sufficient power for high

performance. Later knowledge based system were developed

which emphasised both the accumulation of large amount of

knowledge in single domain and development of domain

specific techniques in order to develop a high level of

expertise. But the development of such large expert systems

requires a team of people trained in knowledge engineering

and specific field of application. Moreover this type of

system requires huge amount of memory and can be implemented

only on mainframe computers. From commercial point of view,

these systems are not cost effective for organization and

individual.

Keeping in view the above facts, small expert

systems have gained wide popularity among the researchers of

this discipline in recent years. Small expert systems are

designed to run on personal computers. They are designed to

help individuals deal with small but nasty problems. In

some cases, these problems require knowledge engineering

techniques because these are not easily amenable to

29

traditional solutions. In other cases the problems are

simply ones that users understand and want to solve. Users

may not understand the traditional programming techniques

that would be required to solve these problems, but they

will be able to turn to knowledge based approaches simply

because of the user friendly interface and rapid prototyping

features that are available.

Probably the most promising gtrat~gy for an

individual exploring applications is to purchase and

experiment with one of the small tools that are now in the

market place. There are many reasonably small problems for

which knowledge based systems offer cost effective

solutions. And in the end there is no substitute for the

experiences gained from building a prototype system. With a

small investment in software and training and a properly

focussed project, one can develop a useful prototype. This

approach will allow one to investigate the field and develop

interest within his company without making a commitment.

The expert system developed here is small one for

diagnosing the causes of problem with patients who wear

contact lenses and to make recommendation for their

treatment. program has been written in Turbo Prolog. It

uses both frame and rule methods for representing the

knowledge.

30

4.2 Problem formulation

Contact lenses are an increasingly popular

replacement for conventional spectacles. Technology has

produced many alternatives in lens materials, so that many

people can improve their appearance, vision, and enjoyment

of physical activities such as dance and athletics. For

patients who are having problems with their lenses, there

are many possible causes and several approaches to treatment

short of reverting to spectacles.

The expert system begins by interviewing the

patient. As the patient responds to each question, the

system dynamically builds an abstract picture of the

patients general health condition, the contact lens history,

the patient's goals in seeking advice. Once the patient

interview is over, the system applies a set of heuristics,

or "rules of thumb", to the patient profile.

There are basically four diagnostic outcomes:

1. A total refit may be recommended, which means that

patients will start from the beginning and have their

eye measure and their vision checked, and the whole

process of monitoring their progr~ss will take place.

This is the most expensive alternative, and it must

31

be thoroughly justified.

2. A change of lens material may be recommended for

certain patients, Contact lenses can be made of many

different types of plastics and other materials, and

if it can be shown that the patient is allergic to

the present material, then simply changing the type

of lens material may be successful.

3. A pair of new lenses made of the same material is

usually suggested for patients where it is believed

that the present lenses are too old or that the lense

have become damaged in some way. In addition, if the

patient's vision has changed, a new prescription can

be given without a refit.

4. An investigation of the patient's lifestyle may be

recommended if the patient's interview does not

suggest any of the other three alternatives.

patients who wear cosmetics, take

medications, or work in a place where

exposed to dust, fumes, or chemicals may

adverse reactions to these factors rather

various

they are

be having

than to

their lenses. In this case, any changes to the

lenses cannot be recommended until it is proven that

these other factors are not causing the specific

problem.

32

4.3 Architectures of the system

(i) Frame based architecture

The frame system in the expert system is a

complete semantic network. The network contains information

relevant to the patient.

The frames are constructed and filled in as the

patients answer questions. At the top level, there is an

empty frame called "thing". Everything is a "thing".

Things are either physical objects or abstract concepts.

Thus, the PROLOG program contains three "seed" frames.

Thing.

Physobj (thing, end).

Concept (thing, end).

thing

physical object
I

concept
I

I
person lens

I
I

makeup vision
I

symptom
I

occufation

Patient actor
(michael)

33

The two arguments in the physobj and . concept

frames indicate that physobj and concept are "a kind of'

thing, and the "end" aim simply indicates that there is no

instance of a physical object or a concept when the program

begins. The concept of a frame always relating to the next

higher level, in that it is "a kind of" something else, is

very important. In other frame systems, "a kind of" may be

abbreviated as AKO,. The AKO is the connection between

frames that helps to build the semantic network. Each more

specific frame inherits the general characteristics of the

frame that it is a kind of. for example, one could say that

a characteristic of a physical object is that it has weight.

In creating an instance of a physical object, a person for

example, the person frame inherits the characteristic of

having weight.

In this frame network, frames with slots will be

generated that apply specifically to the problem domain of

diagnosing contact lens difficulties. The first two frames

to be created will be the person frame and a frame for the

specific individual, which will use the person,s first name

as the predicate name. Experts first patient will be named

Michael. The only information needed in the person frame is

that a person is an instance of a thing and that Michael ·is

an instance of a person. The finished person frame will

look like this:

34

•

Person (thing, Michael)

Specific facts about Michael are needed

understand his condition, and these facts will form

slots in the michael frame. Some of the facts that sys1

needs to know about Michael will allow that system to m;

certain inference about other facts.

Here is a list of facts the system needs to kt

about Michael as a person, and why they are needed:

1 0 The system needs

female. because

to know if

if Michael

Michael is male

is a female, it

appropriate to ask about various cosmetics that

have a bearing on the problem. (If Michael is

actor, if can be inferred that he will also use s<

stage cosmetics)

2. The system needs to know Michael's age because it c

then be inferred that he is a student if he is unc

18 and retired if he is over 65.

3. The system needs Michael's occupation because if

can't infer that he is a student or retired, then r

occupation will allow us to infer where he works ~

the types of workplace hazards that could affect h

contact lens problem.

35

4. The system needs to know Michael's general health

condition and whether he has any allergies, for

allergy medications could affect contact lens

comfort.

Four slots will be created as the information

comes in through the interviewing process. All of the

interview questions are handed through a set of similar

predicates. The predicate for question#2, which asks the

patient's first name, is given below

Question2:- Prprompt (2, [H,2]), (1)

explain_demon (H,2),_question2; (2)

make_person_frame (H)). (3)

The prprompt predicate displays the right question

according to the number supplied by the first argument. It

also collects patient's answer as a list of atoms.

The explain demon predicate is another important

concept in expert system design. A demon is a procedure

that is always active in a program, waiting for a particular

event to happen. The presence of the demon is not obvious

to the user. In this case, the purpose of the demon is to

keep checking every response the user makes to see if the

user has requested an explanation, that is, the user has

typed in 'why'. If the variable H is instantiated to the

atom 'why', then the demon becomes active and produces the

36

appropriate message according to the number supplied to it.

The predicate for creating the person and michael

frames is called make_person_frame. It requires an argument

that is the patient's first name.

make Person frame (H) :-

(retract(physobj(thing,end)); true), (1)

assertz (physobj (thing, person)), (2)

assertz (person (physobj,H)),

Clause = •. [H, person, end],

(3)

(4)

assertz (Clause), (5)

assertz (slot(H, firstname, value,H)), (6)

(name check (H,L), assertz (slot (H, gender,

value,L)); (7)

assertz (slot (H, gender, if_needed,

ask gender))) (8)

In (1) and (2), the database is updated to reflect

that now the physobj frame has an instance, person. In (3),

a person frame is created with an instance, michael, Michael

is a kind of person, person is a kind of physical object and

physobj is a kind of thing. In order to create the michael

frame, the "univ" (= ••)predicate is used to create a clause

with michael as the functor, and person and end as the

arguments. The atom and means that there is no instance of

michael.

37

All slots will have the same general format for

every slot in every frame.

For example:

Slot

(frame_name,slot_name,how_filled,specific_attribute).

The four arguments in any slot clause will represent:

1. frame name: The frame name of the frame the slot

belongs to.

2. slot name: Which attribute of the frame the slot is

representing.

3. how filled: How the slot is to be filled, for

example, value for an atom, integer for an integer.

4. specific attribute: The specific atom, integer, or

list that represents the attribute.

The first slot created in (6) is for the first

name attribute. It may seem redundant because the frame is

named michael.

aspect

Instead

The subgoals in (7) and (8) show an additional

of frame-based systems-the procedural attachment.

of a specific value as an attribute, the nature of

some slots requires that something else must happen when the

slot is created. This example deals with the simple but

38

I

critical issues of Michael's gender. The program is

equipped with a list of common first names and the assumed

gender. The predicate name - check·has a first name and the

atoms ·'male' or 'female' for its arguments. A real

production program running on a large enough system should

have hundreds of names. For the purposes of illustration,

our system does not contain any information about the name

Michael. If it did, the subgoal name check would succeed

and the following slot would be created:

slot(michael, gender, value, male).

Because Michael is missing from the database, the

gender cannot be inferred: therefore, Michael must be asked

about this. A slot for gender is created with a procedural

attachment:

slot (michael, gender, if needed, ask_gender).

The "if-needed" indicates that the slot has no

specific attribute value, and something must be done to

properly fill it. The "ask_gender" is the name of the

procedure to invoke to resolve the gender question. There

are three basic types of procedural attachments. The "if

needed" type is used whenever more information must be

collected to fill a slot. An "if added" procedural

attachment indicates that a procedure must be performed if a

particular frame or slot is added. An "if removed"

39

indicates that something must be done if a slot or frame

removed.

The system will recognize the "if needed" in

gender slot and invoke the ask_gender goal. Be:

changing the contents of the gender slot, the system

also add a clause to the check name predicate for the

Michael as a male name. This is one way an expert s~

can become a little more intelligent. Now, the next

somebody named Michael used the system, the system

infer that Michael is a male and wili not ask.

Another situation for an "if needed" proce<

attachment is created when the system obtains the patiE

age. If the patient's age is under18, the system creatE

special occupation slot with the atom default as the

filled" argument, and student as the attribute value.

the age is 65 or older, then a default slot is created

the attribute value retired. If the patient is between

ages of 18 and 65, then it will be necessary to ask c

occupation. A slot with a procedural attachment will

created. These are the possible occupation slots

could be created after the patient's age is collected.

slot (michael, age, integer, 35).

or

Slot (michael, age, if_needed,ask_age).

40

or

slot (michael, occupation, default, student).

or

slot (michael, occupation,l default, retired).

or

slot (michael, occupation, if needed, ask_job).

occupation

created.

Because Michael has given his age as 35, the

slot with the procedural attachment will be

The next step involves the creation of two more

frames, p-occupation, for patient occupation, and a specific

frame for the occupation. Michael is an actor, and the

system contains knowledge about where an actor works and the

various risk factors in the worksplace that could have an

adverse effect on contact lens wear.

will be constructed as follows:

concept (thing, p_occupation).

p_occupation (concept,actor).

actor (p occupation,end).

The frames and slot

slot (actor, workplace, value, stage).

slot (actor, risk factors, value, [makeup, dust, stress]).

The predicate that creates these slots is

called make occupation-frame. The next group of questions

41

collect information that will cause the lens frame

created and filled in. the system contains several

databases that make the following items recognizable.

to be

small

1. The type of contact lens worn. There are three basic

types: conventional firm lens ("firm"),

"gas_permeable" (a firm lens), and soft ("soft")

lens. For these types, the system also has a list of

acceptable synonyms.

2. A list of cut-rate contact lens providers. "These are

usually retail outlet setups that offer contact

lenses for very low fees. The low fee structure

frequently precludes the careful followup needed to

give a patient a good fit with the right type of

lens. If the patient's doctor or contact lens center

is not in the database, the system cannot assume that

the doctor did not do the proper followup.

3. A fictional list of popular lens care products. It's

important for the doctor to know how the patient has

been cleaning his or her lenses.

Besides this information the system must also

collect information about when the patient was last fit with

lense and how long the patient has been wearing the present

pair of lenses. At the end of the grip of questions about

42

the contact lenses, the following frames and slots will be

created.

Physobj (thing, lens).

lens (physobj, end).

slot (lens, type, value, soft).

slot (lens, when_fit, integer, 80).

slot (lens, time_num,integer,l).

slot(lens, time term,value, [year]).

slot (lens, who fit, value,smith).

The next group of questions addresses the

specifics of the patient's vision problems. The patient may

type his or her symptoms in a natural free format. The

system will simply look for key words and match them upto a

list of synonyms for a particular eye problem. The system

builds a symptom frame, with slots carrying information

about the duration of the symptoms and the type of symptoms.

ii) Rule-Based Architectures

Rule-based architectures are best suited for

diagnostic tasks. For this system, rules will take the

general form: If certain condition(s) exist(s), then draw a

conclusion.

The diagnostic part of the system is primarily a

set of rules that make inferences about the patient's

43

problem by investigating the contents of the various frames

and slots that were built during the interview phase. As

the system checks for existing conditions, it determines

which of the four possible diagnoses are indicated: a new

fit, a new pair of the same type of lenses, a new pair of

lenses of a different type, or a possible change in

cosmetics or environment. The conditions are given

different weighting factors, and the diagnosis that has the

highest score in weighting factors is offered as the

system's conclusion. The weighting factors are not

probabilistic in this case: they reflect the relative

importance of the condition for arriving at a specific

conclusion.

Several of the more complex rules will be

discussed to clarify the system design. The first rule

considers the type of lens and the age of the patient's pair

of lenses.

Rule: If the patient is wearing a firm lens and

has been wearing the same lenses for three years or longer,

or the patient is wearing a soft lens and has been wearing

the same lenses for 18 months or longer, then a new pair of

the same type of lens is suggested because the patient's

lenses have exceeded their average life span.

44

Here is this rule in PROLOG:

Check lens age ·- !.

Slot(lens, type, value, soft),

Slot(lens, time-num, integer, X),

(Slot(lens, time-term, value, months)

X>= 18, assertz (factor (1,8, new lenses));

Slot (lens, time-term, value, years),

X> 1, assertz (factor(1,8, new lenses)),!.

Check lens age ·-

Slot (lens, time-term, value, years)

X>= 3, assertz (factor (1,8, new-lenses)).

Check-lens-age : - !.

The first clause is for the situation of a patient

with a soft lens, and the second clause is for any other

type of lens (gas permeable or firm). The last clause is an

unconditional "catch all" in case the information supplied

by the patient is inconclusive.

modified to reinterview the

The system could easily be

patient for any critical

information that is missing. As each rule which is tested

is found to apply to the patient. that is, the conditions

are true, a factor clause is added to the database. The

factor predicate has the following general format:

45

Factor (Factor-number, Factor-weight, Conclusions)

The factor number is an integer that will be used

to access the right corresponding message when the system

delivers its diagnosis and recommendations. The factor

weights are integers between 0 and 10, and are "inexact"

reflections of the relative importance of the condition of

the conclusion. The factor weights are selected to make the

system's opinions come out the same as the doctor's opinion.

The second rule presented in detail concerns the

case in which a patient has always had poor vision:

Rule: If the patient is wearing firm lenses and

has always had poor vision, then assume a refit is necessary

with a toric(shaped) lens or a lens that would center better

than the present lens, or if the patients is wearing soft

lenses and has always had poor vision, then a refit may be

necessary with a newer lathe-cut material or a toric

(shaped) hydrogel lens. If the patient's poor vision is

relatively recent, then assume that the lenses have aged or

a new prescription is needed.

Check-problem-period :-

slot (lens, type, value, X), not (X= soft),

slot (vision, quality, value, poor),

slot (vision, time, value, always),

assertz (factor (3,9, refit)),!.

46

Check-problem-period :-

slot (vision, quality, value, poor),

slot (vision, time, value, always),

assertz (factor (4,9, refit)).

Check-problem-period :-

or gas

vision.

slot (vision, time-term, value, List),

not (List= [year]),not(List = [years]),

assertz (factor (5,9, new-lenses)).

The first clause is for the condition where a firm

permeable soft lens patient has always had

The second clause is for the soft lens patient

poor

who

has always had poor vision. The last clause is for any

patient whose poor vision has developed within the last 12

months.

In this particular expert system, the semantic

network created by the frames is relatively simple and is

very much controlled by the part of the program that

performs the patient's interview. There is little danger of

"unattached" slots or frames - slots that belong to a

nonexistent frame or frames that are "a kind of" nonexistent

frame. Unattached slots or frames mean that potentially

valuable knowledge is lost. A frame-based semantic network

uses the relationships provided by the network as a means of

producing a certain level of cognitive understanding of a

situation. Many systems that implement natural language

47

understanding are frame-based. For example, the

relationship between the specific patient (e.g., Michael)

and the actor frames is used to make a connection between

the fact that Michael is an actor and therefore may wear

makeup that causes problems with his contact lenses.

What about systems that may have frames and slots

created by many different processes, and systems that have a

complex and rapidly changing network? There is a danger

that frames and slots may become accidentally detached from

the network. There is a danger that frames and slots may

become accidentally .detached from the network, especially

during program development and testing. it's helpful to

have a process that checks for broken links in the network

before th~ program attempts to form some theory of

understanding using the network as a basis.

system

goal

After the interviewing process is complete,

engages a goal called check_semantic_network.

the

This

makes certain that every slot has a frame and

frame is

ultimately,

"a kind of" some more general frame

every slot and frame can be related

and

to

every

that,

thing.

If there are nay missing links, the information is displayed

at the user console. Of course, this is an undesirable

even, and one hopes it happens only during program testing,

if at all.

48

This expert

developed to diagnose

CHAPTER 5

CONCLUSION

system

the

is a small

causes of the

expert system

problems with

patients who wear contact lenses and to make recommendations

for their treatment This expert system has been

implemented in Turbo Prolog. All the knowledge used in the

system has been implemented using frames and rules. The

system has been implemented on IBM-PC under MS-DOS operating

system.

The system has the capability to explain why

certain questions have been asked by it. The expert system

begins by interviewing the patient. It builds up data base

from the answers. The diagnostic system then performs the

diagnosis. It can recommend any of the four actions such

as total refit, change of lens material, a new pair of

lenses of same material or change of life style depending

upon the inference which it has drawn from the interview.

49

Ill r)ROG R/JM ·

l*---*1
/* medical expert system for contact lens wearers */
I* *I
l*--*1
give_advice:- perform interview,check semantic network,

perform expert diagnosis. -
give_advice:- nl,printr('Thank-you.').

perform inteview:-give info,
questionl,questin2 - ,question3,question4(Age),
question5(Age), question6, question?, questionS,
question9, questionlO(Ans),(Ans=no;
questionll,question12, question13, question14,
question15, question16,question17,question18),
question19.

check semantic network:
clause(slot(Frame,X,Y,Z,Body),Body=true,
Frameclause= .. [Frame,Higher,end],
clause(Frameclause,Fbody),Fbody=true,
Frameclause= .. [Frame,Higher,Lower],
get to thing([Frame,Higher,Lower]),
fail. -

check semantic network:- ! ..
get_to_thing([A,thing,C]) :-thing,!.
get_to_thing([A,B,C]) :-

Next up= .. [B,Higher,A],
~(cla~se(Next up,Body),Body=true;
printr('Missing link ... '),write('from'),
write(B) ,nl),!,
Next up= .. [B,Higher,A],
get_to_thing([B,Higher,A]).

givo_info:- nl,tab(20),printr('Exeprt advice for
contact lens users.').
tab(20),printr('*********************'),
nl,nl,

tab(15),printr('Please answer every
question ,and your answers'),
tab(15),printr('with a carriage return.
Anytime you want to know'),
tab (15),printr ('Why I am asking you a
particular question,please'),
tab(15),printr('type why , and I will
explain it to you.'),nl,nl,
tab(30),printr('I hope I can help you
today.') ,nl ,nl.

prprompt (X, [HIT]) :-
nl,nl,write('Question
message(X),
getdata([HIT]).

#'), printr (X),

printr(String) :- write(String) ,nl.

question!:- prprompt(l,[HjT]),!,
(explain demon(H,l),questionl;
(H= yes;-H=no,sorry; question!)).

sorry ·- nl, printr('I am sorry, but this expert
system can help only people.'),
printr ('with contact lenses.'),
give advice,nl.

question2 ·- prprompt (2, [H, T]),! ,
(explain demon(H,2),question2;
make person frame(H)).

question3 :-slot (Person,gender,if needed,Goal),
call(Goal). -

question3:- !.
ask_gender :- prprompt(3, [HjT]),Sex= H,!,

((explain demon(Sex,3),ask gender);
(check gender (Sex),ask gender)),
fix gender slot(Sex). -

question4(Age) :- prprompt(4,[HjT]),!,
Age = H, ! ,
(explain demon(H,4),question4(Howold);
add_age_slot(Age)).

question5(Age) :- slot(Person,occupation,
. if needed,Goal), call(Goal).

questionS (Age):- !~
ask_job :- prprompt(S,[HjT]),oc = H, !,

((explain demon(oc,S), ask job);
add job siot(oc)). -

question6 :- prprompt(6~[HjT]),! ,
(explain_demon(H,6),question6;
create lens frame,
lens lookupTH, Lens),
add lens (Lens).

question7 ·- prprompt(7, [HjT]),!,
(explain demon(H,7),question7;
process year info(H)).

questionS ·- prprompt (8, [HTT]),!,
(explain demon(H,8),question8;
process time(lens, [HjT])).

question9 :- prprompt(9~ [HjT])),!,
(explain demon(H,9),question9;
check doctors(H)).

questionlO(Ans) :- prprompt(lO,[HjT]),!,
(explain demon(H,10),question10(A);
make vision frame([HIT],Ans)).

question11 :- prprompt (11~ [HIT]),!,
(explain demon(H, 11),question11;
(H=yes,assertz(slot(vision,time,

2

value,always));
process time(vision,[HIT]))),

question12 ·- prprompt(I2,[HITJ),
(explain demon(H,12),guestion12;
create symptom frame(LHIT])).

question13 :- prprompt-(13, [HTTJ),
(explain demon(H,13),question13;
create_care_slot(([HITJ)).

question14 :-(p occupation(Y,actor);slot(Person,
-gender,value, female)),

prprompt (14,[HITJ),
(explain demon(H,14),question14;
create_makeup_frame([HIT])).

question14:- true.
question15 ·- prprompt (15,[HIT]),

(explain demon(H,15),question15;
create health slot([HITJ)).

question16 ·- prpromptT16,[HIT]),
(explain demon(H,16),question16;
create allergy slot([HITJ)).

question17 :- prprompt-(17, [HTTJ),
(explain demon(H, 17), question17;.
(H=yes,! ;update_workplace([HITJ))).

question18:-prprompt(18,[HIT]),
(explain_demon(H,18),question18;
(H=yes,assertz(slot(symptem,time ,
value, always));
process_time(symptom,[HITJ))).

question19:-prprompt(19,[HITJ),

thing.

(explain demon(H,19),question19;
add_goals_slot(H). ·

physobj(thing,end).
concept(thing,end).
printer(String) :-Write (String),nl.

make person frame(H):-
-(retract(physobj(thing,end);true),

assertz(physobj(thing,person)),
assertz(person(physobj,H),
Clause= .. [H,person,end],
assertz(Clause),
assertz(slot(H,firstname,value,H)),
(name check(H,L),assertz(slot(H,gender,value,L);
assertz(slot(H,gender,if needed,ask gender))),!.

add age slot(Age):- key age(Age).- -
key=ageTAge):- integer(Age),age<18,

person(physobj,Person),
assertz(slot(Person,age,integer,Age)),

assertz(slot(Person,,occupation,default,student)),!.

3

key age (Age) :-
- integer(Age),Age>18,Age<65,

person(physobj,Person),
assertz(slot(Person,age,integer,Age)),
assertz(slot(Person,occupation,if_needed,ask_job)),!.

key age(Age) :- integer(Age),Age>65,person(physobj,Person),
- assertz(slot(person.age,integer,Age)),

assertz(slot(Person,occupation,default,retired)),!.
key age(Age) :-not(integer(Age)),person(physobj,Person),

- assertz(slot(Person,age,if needed,ask job)),
assertz(slot(Person,occupation,if_needed,sk_job)),!.

add job slot(H):-person(physobj,Person),
- - occupation(H,Workplace),

retract old job,
assertzTslot(Person,occupation,value,H)),
make occupation frame(H).

add_job_slot(H) :- person(physobj ,Person),
retract old job,

assertz(slot(Person,occupation,value,unknown)).
make occupation frame(H) :-

- -(retract(concept(thing,end));true),
assertz(concept(thing,p occupation)),
occupation(H,W),workplace(W,R),
assertz((p occupation(concept,H)),
Clause= .. (H,p occupation,end),
assertz(Clause),
assertz(slot(H,workplace,value,W)),
assertz(slot(H,risk factor,value,R)).

retract_old_job:-person(physobj,Person),
retract(slot(Person,occupation,if needed,ask job)).

fix_gender_slot(H):-retract(slot(Person~gender,X,YT),
add to names(Person,H).

add tonames(Person,Sex):-assertz(name check(Person,Sex)).
add=lens(Lens) :-(retract(physobj(thing,end));true),

assertz(physobj(thing,lens)),
assertz(lens(physobj,end)),
assertz(slot(lens.type,value,Lens)).

create lens frame:- assertz(lens(physobj,end)).
process year info(Year) :- Year=<71,

- - ((slot(lens,type,value,unknown),
retract unk lens,
assertzTslot(lens,type,value,firm)));true),
assertz(slot(lens,when fit,integer,Year)).

process year info(Year) :-Year>71, -
- - assertz(slot(lens,when fit,integer,Year)).

retract_unk_lens:- retract(slot(lens:type,value,unknown)).
process time(SlotType,[H,T]):-

- member(lnt,[H T]),integer(lnt),
time terms(List),
intersection(List,[HIT] ,Term),

4

assertz(slot(SlotType,time_num,integer,Int)),
assertz(slot(SlotType,time term,value,Term)).

make_vision_frame([HIT],Ans) :- -
(retract(concept(thing,end));true),
assertz(concept(thing,vision)),

(((H=excellent;H=good;H=fair),Ans=no;
((H=poor,Ans=yes),Vision=H);Vision=unknown,Ans=no),!,

assertz(vision(concept,end)),
assertz(slot(vision,quality,value,Vision)).

create_symptom_frame([HITJ):
(retract(concept(thing,end));true),
assertz(concept(thing,symptom)),
assertz(symptom(concept,end)),
fill_sysmptom_slots([HIT]).

fill_symptom_slots([]):-slot(symptom,type,value,X)).
assertz(slot(symptom,type,value,unknown)).

fill_symptom_slots([HIT]):
(symptom(Type,Wordlist),member(H,Wordlist),
assertz(slot(symptom,type,value,Type));true),
fill symptom slots(T).

create care slotT[HIT]):~lens cara(Brand,Type),
- -[HIT]=Brand , -

assertz(slot(lens,care product,value,Brand)).
create_care_slot([HITJ):- -

assertz(slot(lens,care product,value,unknown)).
create_make_frame([HIT):- -

(retract(physobj(thing,end));true),
assertz(physobj(thing,makeup)),
assertz(makeup(physobj,end)),
fill_makeup_slot([HITJ).

fill_makeup_slots([]):- slot(makeup,X,Y,Z),
assertz(slot(makeup,data,value,unknown)).

fill_makeup_slots([HITJ) :-
(cosmetic(H),assertz(slot(makeup,data,value,H)));

cosm brand(H,A),
assertz(slot(makeup,data,value,H));true)
,fill makeup slots(T).

create_health slot([HITJT:-person(physobj,Person),
(T(H=exceilent;H=good;H=fair;H=poor),
assertz(slot(Person,health,value,H)));
assertz(slot(Person,health,value,unknown))).

create_allergy_slot([HITJ):-person(physobj,Person),
((H=yes;H=no),
assertz(slot(Person,allergy,value,H));
assertz(slot(Person,allergy,value,unknown)).

update_workplace([HITJ) :-person(physobj,Person),
slot(Person,occupation,value,Oc),
p occupation(concept,Oc),
slot(Oc,risk factor,value,RiskList),
intersectionT[HIT],RiskList,[]),

5

assertz(slot(Oc,add_risks,value,[HIT]),
add risks{Oc,[HIT]).

update_workplace([HIT]):-!.
add_risks(Oc,[HIT]):-occupation(Oc,Wp),workplace(Wp,Risks),

append(Risks,[HIT],Morerisks),
retract(workplace(Wp,Risks),

assertz(workplace(Wp,MOreRisks)).
add goals slot(H):- person(physobj,Person),

- - (H=a,Goaltype= longer_wear;
H=b,Goaltype=extended wear;
H=c,Goaltype= comfort-appearance;
H=d,Goaltype=better vision),

assertz(slot(Person,goal,value,Goaltype)).
add goals slot(H) :-

- - person(physobj,Person),
assertz(slot(Person,goal,value,unknown)).

check doctors(Dr) :- doctors(Dr),
- assertz(slot(lens,who fit,value,cut rate)),!.

check doctors(Dr):- - -
assertz(slot(lens,who fit,value,not on file)).
last(X,[X]). - - -
last(X, [_IY]) :-last(X,Y).
remove(X,[XI1],1).
remove(X,[H 1],[HI1]):-not(X=H),remove(X,1,11).
member(X,[X,]).
member(X,[IT]) :-member(X,T).
append ([] , L, 1) .
append ([X I 11] r 12, [X I 13]) :-append (11,12,13) .
intersection (L] ,X, []).
intersection (([X I R] , Y, [X I Z]) :-
member(X,Y),! ,intersection(R,Y,Z).
intersection([XIR] ,Y,Z) :-intersection(R,Y,Z).
prefix ([] ,) .
prefix([XII], [XIM]) :-prefix(1,M).
appendlist([] 1,1) :-!.
appendlist([X(11], ,12, [X,13]) :
appendlist(11,12,13).
build list(X,G,):-assertz(b1(0)),

- call(GT,assettz(b1(X)),fail.
build_list(_,_,1):- gather_all([],M),! ,1=M.
gather all(S,1):-
getnext((X),! ,gather_all([XIS] ,1).
gather all(1,1). ·
getnext(X) :-retract(b1(X)),! ,X\==0.
sum up ([] , 0) .
sum=up([XIY],Z):- sum up(Y,X1),Z is X1+X.
maximum(Value,Goals, T:-
make scrpad(Value,Goals),fail.
maximum(Value,Goals,Max) :-find max(O,Max),!.
find_max(V1,V2);- -

6

gtnxt(Value),Value>Vl,find max(Value,V2);
find max(V1,V2).-

find max(V2,V3T.
make-scrpad(Value,Goals) :
assertz(found(mark)),call(Goals),

asserta(found(Value)).
getnxt(Value) :-retract(found(Value)),Value\==mark.
getdata(List):- keep reading(List).
keep_reading([HIT]):= .

getstring([HLITL]),
not([HLITL])=[l3l_]),
(HL>65,HL<91,HX is HL+32;HX is HL),
form_atom list([HXITL],[HiT]).

form atom list([],[J) :-!.
form=atom=list([HiT],[HeadwordiTailword]):

prefix(String,[HiT]),
(last(32,String),remove(32,Stringword);
last(13,String),remove(13,Stringword)),

appendlist((String,Rest,[HIT]),
name(Atomic,Word),
Headword=Atomic,
form-atom-list(Rest,Tailwords).

getstring([HIT]) :- getO(H),
(not(H=13),getstring(T);!).

time_terms([month,months,year,years,week,weeksday,days]).
name check(shailesh,male) :-!.
name-check(shalini,female) :-!.
check gender(male) :-!.
check-gender(female) :-!.
occupation(executive,office).
occupation(teacher,school).
occupation(athelete,sports arena).
occupation(actor,stage). -
occupation(waiter,restaurant).
occupation(factory,factory).
occupation(secretary,office).
occupation(computer,office).
occupation(construction.construction).
workplace(office,['cigerette smoke' ,stress]).
workplace(school,[stress]).
workplace(sports arena,[dirt,stress]).
workplace(stage,Tmakeup,dust,stress]).
workplace(restaurant,['cigrette
smoke' ,fumes,stress]).
workplace(factory,[dust,fumes,chemicals,stress]).
workplace(construction,[dust,fumes,
chemicals,stress]).
lens-lookup(firm,firm).
lens lookup(hard,firm).
lens=lookup(gas,gas_permeable).

7

lens lookup(soft,soft).
lens=lookup(hydrogel,soft).
lens lookup(hydrophilic,soft).
lens-lookup(,unknown).
doctors(lensomat).
doctors(contactville).

doctors(lensmark).
symptem(blinking,[blinking]).
symptom(red eyes,[red,pink]).
symptom(dry-eye,[eye]).
symptom(itch,[itching,itchy,itch,itches]).
symptom(tearing,[tearing,tears,watery,water,watering]).

symptom(clouding,[clouding,fogging,
blurring,blur,cloudy,clouding)).
symptom(squinting,[squinting,squint]).
symptom(pain,[pain,hurt]).
symptom(centering,[slip,fall,lose,loose]).
symptom(foreign body sensation,[something,speck]).

cosmetic(remover).-
cosmetic(mascara).
cosmetic(eyeshadow).
cosmetic(eyelinder).
cosm_brand(suzyq,hypo).
cosm brand(luckygirl,hypo).
cosm-brand(superglitz,no).
cosm-brand(curtainup,hypo).
cosm-brand(breakaleg,no).
lens-care([super,lens],soft).
lens-care([ultra,lens] ,gas permeable).
lens-care([mazic,lens] ,firm).
factor(O,O,drift type).
factor(O,O,refitT.
factor(O,O,change).
factor(O,O,new lenses).
factor(O,O,other).
perform expert diagnosis:-

- abo1Ish(question1/1),
abolish(question2/1),
abolish(question3/1),
abolish(question4/1),
abolish(uestion5/1),
abolish(question6/1),
abolish(question7/1),
abolish(question8/1),
abolish(question9/1),
abolish(question10/1),
abolish(question11/1),
abolish(question12/1),
abolish(question13/1),
abolish(question14/1),

8

abolish(question15/1),
abolish(question16/1),
abolish(question17/1),
abolish(question18/1),
abolish(question19/1),
check lens age,
check-previous doctor,
check-problem period,
check-makeup used,
check-allergies,
check-workplace,
check-symptom time,
check-wearing-time,

'
check=finances,
summarize.

check lens age:-
- - slot(lens,type,value,soft),

slot(lens,time num,integer,X),
(slot(lens,time term:value,months),X>=18,

assertz(factor(1,8,new lenses));
slot(lens,time term,vaiue,years),
X>1,assertz(1,8,new lenses))),).

check lens age:- -
- - slot(lens,time term,integer,X),

X>=3,assertz(factor(1,8,new lenses)).
check lens age:-!. -
check-previous doctor:-

- slot(lens,who fit,value,cut rate),
assertz(factor(2,9,refit)).

check previous doctor:-!.
check-problem period:-

- slot(lens,type,value,X),
not(X=soft),
slot(vision,quality,value,poor),
slot(vision,time,value,always),
assertz(factor(3,9,refit)),!.

check problem period:-
- siot(vision,quality,value,poor),

slot(vision,time,value,always),
assertz(factor(4,9,refit)).

check problem period:-
- siot(vision,time term,value,List),

not(List=[year])~not(List=[years]),
assertz(factor(5,9,new lenses)).

check problem period:-!. -
check-makeup used:-makeup(physobj,X),

- assertz(factor(6,8,change)).
check makeup used:-!.
check=allergies:-slot(Person,allergy,value,yes),

assertz(factor(7,9,change).

9

I

check allergies:-!.
check-workplace:-slot(Person,occupation,value,X),

- occupation(X,Y),workplace(Y,RiskList),
(member(dust,RiskList);
member(fumes,RiskList);
member(chemicals,RiskList)),
assertz(factor(8,10,change)).

check workpla~e:-!.
check=symptom_time:-prprompt(20,[HIT]),

(explain demon(H,20),check symptom time;
(H=sudden~assertz(factor(9,6,new lenses)));
(H=constant,assertz(factor(8,10,diff type)));
(H=gradual,assertz(factor(11,6,new lenses)));

check symptom time). -
check_wearing_time:-prprompt(21,[HIT]),

(explain demon(H,21),check wearing time;
(integer(H),check wearing time)),
check lens type(HT. -

check lens type(HT:-H<I2,
- slot(Person,goal,value,extended_wear),

slot(lens,type,value,soft),
assertz(factor(12,10,other)).

check lens type(H) :-!.
check=finances:-prprompt(22,[HIT]),

(explain demon(H,22),check finances;
H=yes,assertz(slotTPerson,finances,value,yes));
H=no,assertz(slot(Person,finances,value,no));
check_finances),!.

summarize:-
build list(X,factor(,X,new lenses),Listl),

build list(Y ,factor(,Yrefit) ,List2),
build=list(Z,factor(-,Z,change),List3),

build list(A,factor(,A,diff type),List4),
build list(B,factor(,B,other) ,ListS),

sum up(Listl,Suml),assertz(total(new lenses,
- Suml)),sum up(List2,Sum2), -

assertz(total(refit,Sum2)),
sum_up(List3,Sum3),assertz(total(change,Sum3)),

sum_up(List4,Sum4) ,assertz(total(diiff_type,Sum4)),
sum up(List5,Sum5),assertz(total(other,Sum5)),

- maximum(Value,total(X,Value),Max),
total(Diagnosis,Max),
output diagnosis(Diagnosis,Max).

output diagnosis(Diagnosis,Max):-
- nl,nl,printr('My conclusion is that you

should consider following:'),
nl,d lookup(Diagnosis),nl,

write('because- there is afactor weight
of') ,

write(Max) ,write('.') ,nl,nl,printr('explation'),

10

nl,print factor(Diagnosis).
ask if done:-!.-
d lookup(new lenses):-printr('a new pair of same
typeof lenses that you are wearing').
d lookup(refit):-printr('anew refit for contact
tenses').
d lookup(change):- printr('an evaluation of your
workplace'),
printr('cosmetic products or medicine you are
using').
d lookup(diff type):- printr('a different type of
fens'). -
d lookup(other) :-printr('a goal other than
extended wear at this point').
print factors(Diagnosis) :-factor(X,Y,Diagnosis),
factor message(X),fail.
print factors(Diagnosis) :-!.

factor message(1):-nl,printr(The average life span of
a soft-lens is 18months.'),
printr (' The average life span of firm lens is 3
years.'),

printr('because you have been wearing your lenses for a
period'), printr('which exceeds the life span ,a new pair

of lenses is
recommended').
factor_message(2):-nl,printr('because your practioner was
one

that operated with a'),
printr('cut rate or feestructure he probably did not have

the') ,
printr('resaurces to do the follow up you were'),
printr(' never fitted probably in the first place').
factor message(3):-nl,printr('since you are wearing firm

lens 'and have always had poor vision'),
printr('a refit with a toric lens is recommended for

better vision,').
factor message(S):-nl,printr('Since yourpoor vision is

arecent-problem,your lenses may'),
printr('just be too old or you need a prescription

change').
factor message(6):-nl,printr('Because you use cosmetics

regularly,
an investigation of'),

printr('the specific products that you are using is
recommended),
printr('before taking any other action.').
factor message(7):-nl,printr('Because you said that you

have allrgies ,you may be taking '),
printr('some medications that may be causeng dry eye

feeling or

11

other.'),
printr('discomfort.A careful investigation of any

medication
should'),
printr('be performed before anything else is done.').
factor message(8):-nl, printr('Because you are exposed to

dust, fume,vhemcals at your workplace')'
printr('it is recomended that environmentbe checked out.'),
printr('before taking any other action.').
factor message(9):-nl,printr('Because your symptoms are
sudden~ the problem may be due to a'),
printr('scratched lens, a fractured lens or due to aforeign

body in the eye.').
factor message(10):-nl,printr('Because your symptoms have

been constant over time,there'),
printr(,is probably some problem with the material of the

lens. ') .
factor message(11):-nl,printr('Because your symptoms have

been gradually increasing,'),
printr('it is likely that material of your lenses is made

of') ,
printr('is breaking down and causing even adverse

chemical. ') ,
printr('reactions').
factor message(12) :- nl,printr('Because you report that you
can wear your lenses only for a')'
printr('few hours at a time,it is not realistic to be able

to use
estended wear lens at this time.').
explain demon(why,l):-nl,printr('unable to help because you

are not aregular contact lens wearer.').
explain demon(why,2):-nl,printr('I want to know your name

so that -
ican have conversation.').
explain_demon(why,3):-nl,printr('Iwant to know about your

sex so that I can infer about cometics.')'
explain demon(why,4):-nl,printr('To make some assumptions

about life style age is required.').
explain demon(why,5):-nl,printr('Job will help to make

inferences about workplace environment.').
explain demon(why,6):-nl,printr('Type of lens is required

to help you.').
explain demon(why,7):-nl,printr('if Iknow what year you

were fit with the glasses then I can be more certain of
type of lens.').
explain demon(why,8):-nl.printr('I must know for how long

YOU are USing COntacd lenS t0 1
)I ,printr(I determine Whether

you need complete refit or
some new lense .').

explain_demon(why,9):-nl,printr('Your practitioner may be

12

one who delivered services for very low'),
printr(' fee and therefore did not have time to do a

careful followup on your fitting.').
explain demon(why,10):-nl,printr('General state of vision

is required so that questions can be continued.').
explain demon(why,11):-nl,printr('Poor vision was

onset of-wearing or started later.').
explain demon(why,12):-nl,printr('symptoms are

for diagnosis.').

from

important

explain demon(why,13):-nl,printr('type of lens being used
may be cause of the problem.').
explain demon(why,14):-nl,printr('Changing the brand

cosmetic-may help.').
explain(why,15) :- nl,printr('General health

indicator of how well you can wear lenses.').
is

of

the

explain demon(why,16):- nl,printr('Allergies may contribute
to the symptom.').
explain_demon(why,17):-nl,printr(,Job will help to know

about
some of environmental conditions.').

explain(why,18) :-nl,printr('If symptoms have
later then lens may not be problem.').

developed

explain demon(why,19):-nl,printr('To assess whether goals
are realistic based on your history.').
explain demon(why,20):-nl,printr('It

diagnosis.').
will help

explain_demon(why,21):-nl,printr(To qualify as acandidate
for etended wear lens you mustwear for fullday without
discomfort.').

explain_demon(why,22):- nl,printr(Concern over the cost may
be a factor in staying with firm lenses.').
message(l):-printr('Are you wearing contact lenses

regularly.').
message(2):-printr('What is your first name please?').
message(3):-printr('Are you a male or female?').
message(4) :-printer ('How old are you? Please give your

name in whole years.').
message(5) :-printer ('What
message(6) :-printer ('What

wearing: '),printer ('Firm,

is job or occupation?').
type of contact lenses are you
gas permeable, or do not

know?').
message(7) :

fit with your
printer ('Approxmately in what year were you
present ') ,
printer (' lenses? just give the last two

digits of the year.').
message(8) ·- printer (' For how long have you

consistently been wearing your'),printer ('present lenses?
Answer in years, month, weeks or days. ').

mess age (9) ·- printer ('Who was your former contact lens
practitioner? I will not '),printer ('not contact him or her

13

unless you agree to it .').
message(10) :- printer ('How well are you seeing with your

contact lenses? Is your'),printer ('vision with the lenses:
excellent, dood, fair or poor?').

message(11) :-printer ('Has your vision always been poor?
If the answer is not yes,'),printer(' then for how long in
years, months, weeks or days/').

message(12) :-printer(' How do the contact lenses feel?
Describe symptoms.').

message(13) :-printer ('What type of lens care system have
you been using?'),printer ('Which products').

message(14) :- printer ('What sort of eye make-up, make-up
remover, or other eye'),printer ('cosmetics have you been
using? Which products ').

message(15) ·- printer ('How is your general health?
excellent, good, fair or poor?').
message(16) :-printer ('Do you have any allergies?').
message(17) :- slot(Person, Occupation, Value, Occup),

occupation(Occup, Wrkpl),
workplace(Wrkpl,Risks),

write('Because your occupatio is that of '),
write(Occup),nl,

write('I assume that ytour workplace ia a/an
'),write(Wrkpl),nl,write('Where you may be exposed to any of
the following: '),nl,write(Risks),nl,printer('Is this true?
If you have any factors to add,'), printer ('list them
here. ').

message(18) ·- printer (' Have you always had these
symptoms? If not, then for how'),printer ('many years,
months, weeks or days?').

message(19):- printer ('What are your goals for your
contact lenses? Choose the letter of the),printer ('phrase
which comes closest to your goal. '),nl,
printer ('a. longer wear'),printer ('b. overnight wear or

extended wear'),printer ('c. better comfort or cosmetic
appearance'),printer('d. better vision').
message(20) ·- printer ("Was the development of your

present symptoms: '),printer ('sudden or gradual or were
they constant?').

message(21) :- printer('How many hours per day do you wear
your present lenses '),printer('comfortably? Just give the
number of hours. ').

message(22) ·- printer (' Is the cost of the lenses and
lens care of concern'),printer ('to you? Answer yes or no.
I) •

14

B - REFERENCES:

1. Andrew Basden "On the application of expert system"

(published in developments in expert system)

2. Avion Band Feigenbaum, E.A.(1982). The Handbook Of

Artificial Intelligence . 3 Vols.(Lsaltos, CA: William

Kaufman),1:3.

3. Bruce I.Blum and Ralph E.Watcher. "Expert system appli·

cation software in software engineering." Published in tel'

communication and informatics, vols. 3 of no. 4.

4. Bruce , G.Buchnan and Edward H. Shortliffe, "Rule Based

Expert Systems", (Reading, M.A. :Addison -Wesley).

5. Brattle research corporation , Artificial Intel

ligence and Fiffth Generation Computer Technologies

(Boston)

6. Elaine Rich (1983), " Artificial Intelligence", (New

York: Mcgraw Hill).

7. Fagan, L. Shortliffe, E. and Buchnan, B.(1980), Comput

based medical decision making from Mycin to VM. Autorr

dica, Vol.3.

8. Farkas P. Kassalow Tw : A guide to refitting the

unsuccessful contact lens patients. J Am

1965 Mar.

Optom Assoc

9. Hayes-Roth, F. ,Waterman, D.A. and Lenat , D.B. (1983),

" Building Expert Systems" (Addison -Wesley)

10. Harmon , P. and King D. (1985), "Expert

Systems", (NewYear :Wiley Press).

11. Hector , J. L. (1986) : "Making believers out of com put

ers". Artificial Intelligence 30.

12. Holman ,J .G. and Cookson , M.J., (1987) " Expert Systen

for Medical Applications", Journal of Medical Engg.

and Technology, Vol.1. no.4.

13. Jackson, P. (1986). "Introduction to expert systems.'

, Addison Wesley.

14. Jorgens, J. (1988) . " Expert Sys terns in C linica 1 Eng in·

eering", J. of Clinical Engineering May/June.

15. Nilsson, N.J., "Principles of AI ".(Springer- Verlae

Heidelberg) .

16. Rich, E. (1983). AI, New York: Mcgraw Hill.

17. Townsend, C.(1988)," Introduction to Turbo Prolog."

BPB Publications.

18. Turbo Prolog Reference Guide.Vrsion 2.0,IBM Borland.

19. Turbo Prolog Users' Guide, version 2.0,IBM, Borland.

	TH36540001
	TH36540002
	TH36540003
	TH36540004
	TH36540005
	TH36540006
	TH36540007
	TH36540008
	TH36540009
	TH36540010
	TH36540011
	TH36540012
	TH36540013
	TH36540014
	TH36540015
	TH36540016
	TH36540017
	TH36540018
	TH36540019
	TH36540020
	TH36540021
	TH36540022
	TH36540023
	TH36540024
	TH36540025
	TH36540026
	TH36540027
	TH36540028
	TH36540029
	TH36540030
	TH36540031
	TH36540032
	TH36540033
	TH36540034
	TH36540035
	TH36540036
	TH36540037
	TH36540038
	TH36540039
	TH36540040
	TH36540041
	TH36540042
	TH36540043
	TH36540044
	TH36540045
	TH36540046
	TH36540047
	TH36540048
	TH36540049
	TH36540050
	TH36540051
	TH36540052
	TH36540053
	TH36540054
	TH36540055
	TH36540056
	TH36540057
	TH36540058
	TH36540059
	TH36540060
	TH36540061
	TH36540062
	TH36540063
	TH36540064
	TH36540065
	TH36540066
	TH36540067
	TH36540068
	TH36540069
	TH36540070
	TH36540071
	TH36540072
	TH36540073

