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ABSTRACT

This dissertation presents a modified multi-level
feed back scheduling-algorithm in uni-prbcessor time sharing
environment. Jobs are categorized based on their run time
requirements. Depending‘upon the knowledge to which category
a particular job belongs, it has been shown through a simula-
tion experiment that the algorithm in question gives a better
system throughout and in general has reduced average waiting
time for the job over available feed-back algorithm in the
literature. A queueing model for the new algorithm is also
given and analytical expressions for the average waiting time
are obtained. Simulation results are validated by analytical

results.



| Chapter - 1
OPERATING SYSTEM CONCEPTS

1.1 Evolution of Operating Systems

The fact that operatihg systems have become an
indispensible part of a computer system hardly needs to be
emphasized. In fact, the development of operating systems

is a major investment on the part of computer manufacturers.

Historically, operating systems have evolved ﬁhrough
a series of 'generations'. The term generation was originally
intended to suggest differences in harware technologies, but
it has come to be applied to the entire hardware-software-
firmware system rather than the hardware alone. Zeroth genera-
tion computer systems of 1940's had no operating systems.
Programs had tobe written in the internal binary code and any
error occurring during its run would have to be detoded and
corrected by the user himself holding out all other activitiés
of the computer. This mode of computer operation was known
as 'OPEN JOB ACTIVITY'. Then came the first_géneration (1950's)
systems, which had batch processing capabilities. The jobs
were gathered in groups or batches. Once a job was running,
it had total control of the machine. As each job terminated
(either normally or abnormally), control was returned to the
operating system that 'cleaned up after the job' and initiated

the nekt job. The second generation (early 1960's) of operating



systems was characterized by the development of shared systems
with multi-programming and multi-processing facilities. Device
independence, time sharing and real time processing also negan
to appear. Third generation systems (1960-70) were primarily
general purbosevsystems featuring multi-node‘operation. Such
systems involved the interposition of e software layer beﬁween
the hardware and the user. The fourth generation is the
generation of computer net—working, personal computers, virtual

machine operating systems,database systems and distributed

data processing systems.
1.2 Operating System Functions

An operating system (alsq‘known as the control, the
monitor, the supervisor etc) is a collection of those program
modules implemented in either software or firmware within a
computer system which govern the contfel of equipment resources
such -as processors, main stnrage, secondary storage, I/0 devices
and files. These modules resolve conflicts, attempt to optimize
performance and simplify the effective use of the system. In
other words, it acts as an interface between fhe user's program
and physical computer hardware; Operating systems can also be
viewed as a resource manager managing four separate resources -
memory, processors, devices and information. Hence in order to

analyze existing operating systems, to design new operating



systems and to study theoretical work, one can group all the

functions of the operating system in four categories :

al Memory Management
bl Device Management
c] Information Management

d] Processor Management

The definition of operating systems. as given above

implies that like any other manager it must do the following

al Keep track of the resources

bl Enforce policies to determine who gets what,
when and how much

c] Allocate the resources
d] Reclaim the resources.
1.2.1 Memory Management

The memory or storage management deals with the
problem of sharing an internal store of limited capacity among
concurrent computations with and without the use of a larger,
slower backing store. The functions of it are to keep informa-
tion about what parts of memory are in use and by whom. It
also keeps a record of free memory locations. In case of multi-
programming it décides'which process to get memory, when and
how much'. Memory management also does the job of allocating

and reclaiming the resource as and when the process requests or



releases it. There are a number of techniques which are used
to achieve this goal of greater utilization of memory and

more flexibility for the user; the costs of greater complexity,
sophisticated hardware and increased overhead acting as

constraints. Some of the most popular among these techniques

are

aj Single contiguous memory management

b] Partitioned memory management

cl Relocatable partitioned memory management

d] Paged memory management

el Demand-Paged memory management

f] Segmented memory management

gl Segmented and Demand paged memory management
1.2.12 Device Management

The device management modules are concerned with the
assignment of device, I/0 units, channels, control units to
the jobs and the efficient operation of these devices. Once
the job-schedular selects a job, it may request any device
according to the requirements of the job. The module which
keeps track of all device resources is typically called I1/0
traffic controller. Scheduling of shared devices is done by
I/0 schedular. Initiation and termination operation of I/0

devices is also a part of device management modules.



1.2.3 Information Management

Information management is concerned with the storage
and retrieval of information entrusted to the system in much
the same manner as a library. It keeps a file directory some-
times called the Volume table of contents (VTOC) . These tables
contain the name, location and accession rights of all infor-
mation within the system. It also selects the policy for
determining where and how information is to be stored and who
gets access to the information. Factors influencing this
policy are efficient utilization of secondary storage, efficient
access, flexibility to user and protection of access rights to .
the information requested. The modules of information manage-
ment are also called 'File System'. This particular module
is intended to free the programmer from problems of allocation
of space for his information, physical storage formats and I/0
accession and to allow him to concern himéelf only with the

logical structure and operations performed in processing his

information.
1.2.4 . Processorn Management

Processor management modules explain how concurrent
processes .and synchronizing primitives can be implemented on a
system with one or more processors and a single internal store.

It also evaluates the influence of these abstractions on the



real time charécteristics of the system. 1In other words, it

is concerned with the management of physical processors;
specifically, the assignment of processors to processes. There
are three major modules of processor management : the Traffic
controller, the Job scheduler and the Processor scheduler.
Before going into further details, let us.define the term
'Process' formally. Unfortunately the term process which was
first used by the designers of multics system (1960) does't

have a unique definition. Some common interpretations are

al A program in execution

bl - An asychronous activity

cl The 'animated spirit' of a procedure
d] The 'Locus of control' of a procedure in action
el The entity to which processes are assigned.

Many other definitions can be found in literature but the
'program in execution' is the most frequently used. Generally
a process goes through three different discrate states : the
running state (if it currently has the CPU), the ready state
(if it could use the CPU if one were available) or the blocked
state (when it is waiting for some event to happen e.g. I1I/0

completion before it can proceed).

The traffic controller keeps track of the status of

the process. There are also modules who do the synchronization



between processes and jobs. On the process levels there are
mechanisms to prevent race conditiéns which occur when the
result of a-computation varies, depending upon the timing of
other processes. It also tries to solve the problems of
deadlocks arising out of situétions when there are two or more
processes each of which is waiting for resources that the

other has and will not give up. The job scheduler creates

the processes and in a non multiprogramming environment decides
which process is to receive a processor. It also maintains a
job control block, which keeps information about the job's

status and its position in a job queue.

The process scheduler in a multi-programming environ-
ment decides about which ready process should get the processor,
at what time and for how long. Enforcement of this policy of
assigning ready process . to processor(s) in order to reduce
the average waiting time for the job and in turn to increase
the system throughout is done with the help of procesé schedul -

ing algorithms.

Even though problems of asynchronous concurrent
processes and deadlock etc. are important, our studies here
will deal with processor scheduling algorithms which use some

prior information about jobs.



Chapter - I1
SCHEDULING ALGORITHMS

2.1 Introduction

The sharing of a computer instailing by a group of
users in an economic necessity. It leads to situations in
which resources become scarce, there are not enough physical
processors and storage for simultaneous execution of all
Aprocesses requested by users. The available resources can be
shared among theprocessors either by executing them one at
time till completion or by executing several of them in rapid
succession of short periods of time. In both cases each
processor must pause every now and then and decide whether to
continue the execution of its present process or switch to
some other process instead. The rule according to which this

decision is made is called a 'scheduling algorithm'.

2.2 Scheduling Levels

To make the scheduling problem manageable, it is
usually considered at several levels of abstraction. The view
of scheduling presented here recognized three main levels:

1] High level scheduling

2] Medium level (intermediate level) scheduling

3] Low level scheduling
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High level scheduling is an 'admission scheduling' in
the sense that it determines which jobs gain admission to the
system. Once admitted, jobs becomes processes or groups of
processes. The intermediate level scheduling determines which
processes shall be allowed to compete for the CPU. This parti-
cular scheduler responds to short term fluctuations in the
system load by temporarily suspending and activating processes
to achieve smooth system operation and thus helps in realizing
certain system wide performance goals. The low level scheduling
is performed by the 'dispatcher' which determines policies to

allocate ready process to CPU and actually assigns them.

2.3 Scheduling Objectives

The objectives that we should have before us in

deciding a particuiar scheduling policy are

{al A scheduling discipline should be fair in the sense
that all processes are treated in the same fashion
and no process suffers from indefinite postponement.

[bl. A scheduling discipline should maximize the through-
put by serving the maximum number of processes per
unit time.

[c] It should be such that a given job runs in about
the same time and at about the same cost regardless

of the load on the system.
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[(d] It should try to minimize the overhead.

[e] -~ The scheduling mechanisms should keep the resources
of the system busy. Processes that will use under
utilized resources should be favoured.

[£] It should also try to achiéve a balance between

responses and utilizations.

Apart from ﬁhese, it should also try to enforce
priorities, give preferences to processes holding key resources,
provide better service to processes exhibiting désirable
‘behaviour. 1In éddition the mechanism should not collapse under

the weight of a heavy system load.

One can immediately see that many of these objectives
‘are ‘in conflict with one another thus making scheduling a

complex problem.

2.4 Nonpreemptive And Preemptive Scheduling

If theAscheduling algorithm.is such that once a
proce;s has been allocated the processor, it can not be taken
away from the process unless and until it VOluntarily leavés
it or asks for some I/0O or it finishes the quantum allocated;
then the discipline is called a 'nonpreemptive scheduling'

discipline; otherwise a scheduling discipline is said to be

'preemptive' Preemptive scheduling is useful in system in which
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high—pridrity processes require raﬁid attention. In real

time systems and interactive tiﬁé sharing systéms pregmptive
scheduling is important in guaranteeing good'respéﬁgé{%imes,
In nonpreemptive. systems short jobs are made to wait by longer
jobs, but the treatment of all processes is fairer. Response
times are more predictable because incoming higher-prigrity

jobs can not displace waiting jobs.

2.5 Performance Evaluation

2.5.1 Why Pernformance Evaluation?

H. LUCAS [8 ] mentions three common purposes for

performance evaluation

aj Selection evaluation : Here the performance evalua-
tor decides whether or not selecting a particular
system 1is appropriate for his work.

bl Performance projection : The goal of the evaluator
here is to estimate the performance of a system
that does not exist. It may be a complete new soft-
ware component.

cl . Performance monitoring : The evaluator collects
performance data on an existing system or software
component to be sure that system is meeting its
performance goals. This helps him in estimating the

impact of planned changes and enables him to make



2.5.2

strategic decisions such as whether or not to

modify an existing job priority system.
Pesngormance Measunes

Performance means the manner in which or the effici-

ency with which a computer system meets its goals. Thus

performance is relative rather than an absolute quantity,

although one can talk of absolute performance measures such as

the number of jobs per hour a given computer system can

service. But whenever a performance measure is taken, it is

normally to be used as a basis of comparison.

In simulation and modelling studies of systems, some

performance measures often employed are

al

b]

c]

Variance in Response Timés*: A small variance means
that the various response times experienced by

users are relativelyclose to mean. A large variable
is undesirable.

Throughput - -This is the work/ time unit performance
measurement.

Work Load - This is the measure of the amount of
work.that has been submitted to the system, and
whiéh.the system must process in arder to be

functioning acceptably.
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d] Capacity - This is a measure of maximum throughput
"a system may have assuﬁing that whenever the system
is ready to accept more jobs another job is immedia-
tely available.

e] Utilization - This is the fraction of a time the
resource is in use. But this is misleading since
if there are a number of processes all of which are

in infinite loops, a higher utilization is obtained.
2.5.3 Performance Evaluation Techniques

The importance performance evaluation techniques
are listed below in tabular form. The table shows the
techniques, and their applicability for wvarious purposes of

software performance evaluation

TABLE - 2.5.1

Evaluation Purpose of Evaluation

Techniques Selection Performance Performance
Evaluation Projection Monitoring
(system exists (system does (system in
elsewhere ) not exist) ~ Operation)

- —— - . - . G T . e = M e - o - m NP o o = v = - . -

Analytical Models 1 1

Bench Marks 3 2 2

Synthetic Programs 3 2 2
3 3 3

Simulation
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Technique not applicable

a: Has been used but is inadequate

b: . Provides some assistance but is
insufficient, should be used with
other techni@ues

c: Satisfactory.

(Taken from 'Performance Evaluation and Monitoring'

H. LUCAS ACM Computing Survey, Sept. 1971).

Analytic models are mathematical representation of
computer systems. The models of queueing theory and Markov
Processes are most useful. A bench-mark is a real program
that the evaluator actually submits for execution on the
computef_system being evaluated. The evaluator knows the
performance characteristics of bench-mark on existing equipment,
so running on new equipment helps him to esfiméte the perform-
ance of the system quickly and relatively accurately. Syntheﬁic'
programs are real programs that have been custom-designed to
exercise specific features of a computer system. ' Simulation is
a technique in which the evaluator develops a computérized
model of the system being evaluated. The model is then fun on
a computer system over some simulated period of time which

reflects the behaviour of the system quickly and accurately.
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2.6 Common Scheduling Algorithms

The éimplest scheduling discipline is first-in-first
out (FIFO). As the name itself suggests, in this, pfocesses
are dispatched according to their érrival time on the ready
. queue. FIFO is a non-preemptive discipliﬁé. It is fair in the
formal sense but somewhat unfair in that long jobs make short
jobs wait and unimportant jobs make important jobs wait. Today's
operating systems do not have FIFO as the maéter scheme but it
is often embedded within other schemes. The next relatively
simple scheduling discipline is 'Round Robin'; in which processes
are dispatched FIFO but are given a limited amount of CPU time
called a time-slice or a quantum. If a process does not complete
before its CPU time expires, the CPU is preempted and given to
the nekt waiting process. The preempted process is then placed
at the back of the ready list. It is better than FIFO in time
sharing environments in which the systemvneeds to guarantee
reasonable response time fox interactive users. The choice of
- the optimal quantum in RR discipline varies from system to

system and it varies under different loads.

" Shortest job first (SJF) is another non-preemptive
scheduling -discipline in which the waiting job (or process)
with the smallest run time-to-completion is run next. SJF

reduces average waiting time over FIFO. SJF favours the short
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job at the expense of 1argér ones. The obvious problem with SJF
is that it requires precise knowledge of how long a job or
process will run and this information is rarely available. The
best SJF can do is to rely as user estimates. 'Shortest remaining
time' (SRT) is the preemptive counterpart of SJF and ié useful in
time—sharing: In SRT the process with the smallest estimated run
time-to-completion is run next, including new arrivals. In SRT

a running process may be preempted by a new process with a
shorter estimated rﬁn time. Brinch Hansen ('Short term scheduling
in Multi-programming System; 1971 ACM) developed the highest
response ratio next (HRN) strategy which is non-preemptive but has

dynamic priorities which are calculated according to the formula:

time waiting + service time
service time

Priority =

and jobs are served according. to priority.

Next we focus our attention to the multi level feed
back queues. These favour short jobs and I/0 device utilization,
determines the nature of a job 'as quickly as possible and
schedules the job accordingly. in this structure a new process
enters the queueing network at the back of the tbp queue. It
moves through that queue FIFO until it gets the CPU; If the job
gets over or relinquishes the CPU to wait for completion of some
I/0 or other event, the job leaves the network. If the quantum

expires before the process voluntarily relinquishes the CPU,
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the process is placed at the back of the next lower queue
(See Fig. 2.1); A multi-level feed back queueing network is
an example of an adaptive machanism that responds to the
changing beha?iour of the system it controls. This mechanism
achieves good device utilization and responsiveness to inter-
aétive users favouring I/0 bound processes. The CPU bound

processes are also given fair treatment by this discipline.

SERVICE TIME
ALLOCATED

¢
195

he)

v

PROCESSOR
Fig. 2.1
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2.7 A Modified Multi-Level Feed Back Algorithm

The problem with the multi-level feed back queue is
that being a 'mo prior information' discipline, if some prior
informations are available it does not have any fleéxibility as
such to make the changes so as to get the improved system
throughput and reduce the weighted average waiting time for the

jobs (or processes).

In this dissertation we shall study a modified feed
back system which makes effective use of certain prior informa-
tions. For this purpose we assume that jobs can be classified
into a number of categories based on their run time estimates.
For simplicity sake, let us have only two categories 'short jobs'
and 'long job's'. Let us denote by t, the cut off time point
iﬁ the sense that any job needing more time than this is consi-
dered a long job. Now we define the following modified feed

back discipline which accommodates this information (See Fig.2.2).

There are two phases in the queueing network. If an -
arriving job is short ie'entefs the Phase I whereas if it is a
long job it enters Phase II. In Phaée I, the system operates
exactly like a multilevel feed back queue i.e. a job at the head
of a queue'gets the quantum when there is no job waiting in the
higher level queues. After completion of the quantum if it needs

more it joins the next lower level queue. Within a queue FIFO
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rule is adopted. ThevPhase IT is executed only when the Phase 1
isvempty.‘ In Phase II also multi-level queue discipline is
adopted but with the difference that when a process gets the
processor for the first time in the Phase II, it gets the amount
of time equal to what it would have got, uptil ghis queue, had

it been the usual feed back discipline. SERVICE TIME
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In the following chapters, we will analyse and compare
modified feed back queueing algorithm with usual feed back
algorithm from the point of view of their average waiting time
- behaviour and system throughput. For this purpése, we will carry
out a éimulation ekperiment which will help us in corroborating
certain infefences about the behaviour of these algorithms. An

analytical model is also presented which will help us in valida-

ting simulation results.
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Chapter - 111

ANALYTIC MODELLING

3,1 Introduction

Analytic models are mathematical representation of
systems that allow the performance evaluator to draw quick and
accurate conclusions about a system's behaviour. As a mathe-
matical approach probability models are generally more realistic
than deterministic models, because they can represent the
irregular and unpredictable demands made by the compﬁter users.
When these probability models are formulated to study the
properties of dynamic sché&uling techniqﬁes they take the form

of queueing éystems.

3.2 Queueing Model for New Algorithm

In this chapter we shall concentrate our attentkon
on the modified multi-level feed back scheduling discipline
which we defined in the last chapter. Ouf specific objective
will be to study analytically the waitingvtime behaviour of the
new algorithm in uni-processor time Sharing environment. This
will help us in providing insight into the properties of the
algorithm even though idealizations or simplifying assumptions
have to-be made in order to keep the models mathematically
traceable. This will eventually help us in validating our

simulation studies.
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A general mathematical statement of the queue disci-

pline is as follows

There is one processor, Jobs (or processes) arrive
in a poisson stream and are assumed to have service time taken
from a discrete but otherwise general probabiiity distributions.
For the sake of simplicity let us assume there are only two types
of job arrivals classified aé éhértﬂjdb or ldng job based on
their run time requirements. A job requiring less than LQ amount
of execution time whefe Q is the Quantum size and L is any
positive finite number, is treated as a short job. All other jobs
are long jobs. If the job is a shdrt job it joins the Phase I
of the system. Otherwise it joins the Phase II of the system.
Phase II is executed only when there is no job left in Phase I of
the system. In Phase I, after the processor has completed the
quantum allocated to a given job the next job to be executed is
the one having received the fewest quanta of all those jobs
currently waiting. If there is a tie among several jobs is having
received the least service, then the job selected is the one with
the earliest arrival time. In the Phase II the same rule as in
Phase I is adopted but with the following difference. When a
job gets the processor for the Ist time in Phase II, it receives
the latter for the quantum size which is equal to what it would
have got had it been a usual feed back discipline i.e. for LQ

amount of time.
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For the sake of simplicity we will assume processing
time of the jobs to be exact multiple of quantum size and the

discipline to be non-preemptive.

3.3 Analysis of Average Waiting Time Behaviour

We will try to get the expressions for average
waiting time for a job (referred to as tagged job) that needs

KQ amount of execution time.

Let » be the poisson arrival rate for the jobs.and
g; represent the unconditional probability that a job requires

iQ amount of execution time.

Let

(o33

G(K) =
1

i
Also, let Wk and Vk represent the mean waiting time for a job

of size KQ in the system and in the queue respectively.

Obviously,
Wk = Vk + KQ . (3.0)

We will consider three exclusive and exhaustive cases.
Case 1 K < L

In this case we obtain the average waiting time for

the short job which joins the system in Phase I. The probability
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that a job requires iQ amount of time given that its a short
. . g1
job 1is G ( L-D

Now, let us write mean waiting time in the queue Vk
as

V =V o+ U (3.1)

where Vé and Vﬁ are defined as follows

< N
I

k mean time to finish the quantum in progress + mean
time to service upto k quanta, all short jobs at
the Ist k levels at the time of a-rival.

Vﬁ = every short job that arrives while the tagged job

(i.e., the job under consideration) is waiting
in the queue must be allowed to ascend to the kth

queue level if it requires in excess of (k-1)Q
units of execution time. The total execution time

required by these new arrivals has a mean value
13
Vk'
Let Ek(S) denote the mean amount of execution time

used by a job to which KQ time units are allowed given that

the job is a short job. Then
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Ey (s) : (iQ) e S KQI . ]
s) = z 1 — T
k i =1 G(L-1) ioxe1 C@-D)
for k = 1,2,...,L-1
1 koo
=g L 12:1 i g+ k[G(L-1)-G(k)]11.Q

for k =1,2,...,L-1 (3.2)

Similarl the second moment which we will use later is
Y,

k
p i? g #K2[G(L-1)-G(k)]].Q?2
i=1 |

o
Ep(s®) =gy |

for k = 1,2,...,L-1 (3.3)

The rate of arrival to the Ist phase is A, say, where

L-1
A=A oz g; =1 G@L-DI)
- i=1
Hence,
VE = Ay [Vp+(k-DQJ.E, _;(s) (3.4)

This is because, Al being thé arrival rate and
Vk+(k-l)Q being the time at which the tagged job gets the processor
for the last time, the number of arrivals in this time are
Al[Vk+(k—1)Q].‘ Now, all these arrivals gets the processor for
at most (k-1) times and mean execution time used by them is Ek-l(S)’

hence the expression for Vﬁ as in (3.4).
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To compute Vi we simplify the matter as follows.

Consider a system say S1, where in Phase I jobs served at the

Ist queue level are allocated at most KQ units of execution

time and those served at the higher level are allocated one

quantum of service. The Phase II being same as that of modified

feed back system.

given in Fig. 3.1.
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One can immediately see that from the point of view
of a short job requiring k quanta the mean time spent waiting
for these jobs in system S1 is precisely the same as that in our

modified feed back system.
- Thus, by examining the system S1 we have

= E'(S5_) + Nj Ek(S) (3.5)

where E'(Sr) is the mean time to complete the quantum in progress
-and Ni is the mean number encountered by the tagged job in the

first queue level at the time of a-rival in the system SI.

Using the Little's result which says that number of

customers in the queue is equal to the product of their arrival
rate and the mean time a customer spends in the queue, we have

N1 = Al'vk

Hence from (3.5) we have,
A =E'(Sr) + N Vl'( Ek(s)

E'(Sr)
I A » (3.6)
k 1 Al E:k(S)
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To calculate E'(Sr), let us consider again a new system 82 which

is equivalent to system Sl (Hence equivalent to modified feed

back system) from the point of view of a short job requiring K

quanta of execution time.

given ahove,

The figurative discription of which is
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In system S2 all arriving jobs join lst queue of
Phase I. The quantum allocatéd i.e. fhe serviée pattern is as
given in the figure. S, is eqﬁivalent to S; for the simple
reason that even though -long jobs join service queue in Phase I,
they do not get-any service in Phase I. When any long job is
‘at the head of the queue in Phase I, it immediately joins ﬁext

lower level queue without any service.

In system 82, we have precisely four classes of jobs
any one of which may be with the processor when the tagged

arrival takes place.

aj _ Those receiving aﬁ allocation of at most KQ units
of execution time having just waited through the
l1st queue in Phase I. Their arrival rate is 2 and
the second momént of the amount of execution time
used by‘them is Eﬁ (S2) where
k L-1 o

z (1iQ) 2.g. +(KQ) 2. z g.t0. = g
= - isk+l - i= L

I

EQ(SZ) )

i=1

i2 g; + K2[G(L-1)-G(K)11.Q2

i~ &

i=1

which from (3.3):giveé
Ei(Sz) = G(L-1) .E, (5%) (3.7)

b] Those receiving an allocation of one quantum upto

(L-1-K)th queue in Phase I. The arrival rate for such
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ith queue is

A, = ) g. = A [1-G(K+i-2)]

for 1 = 2,3,...L-K

The 2nd moment of amount of execution time used

by them in the ith queue 1is, Eﬁ 1(SZ), where

L-1 o
g.t0. = gi]

1 z
j=k+i-1 I j=L

[1-G(K+1i-2)] [Q*

ln 2
Ek,i(s )

L-1
Q* gy

jkti-1 (3.8)
TG (R+1-7) ]

I

Those receiving an allocation of L quanta of executive
time in the lst queue level of Phase II of the sYstem.
The arrival rate for such jobs is

Aa = A DA g; = » [1-G(L-D1)]
i=L

and the 2nd moment of amount of execution time used

by such jobs is (LQ)?Z2.

Those receiving an allocation of Q units of execution
time in the 2nd phase of the system at subsequent

queue levels. The arrival rate for such jobs is,
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A! = 2. z g. fori=1,2,...,»
L+i j=L+i
The second moment of amount of execution on time used

by them is Q2.

The arrival process in the first queue level is
poisson, but the arrivals to the higher level queues do not
constitute poisson process. Note that the arrivals to the lower
level queues occur only within processor busy periods but since
the tagged job is assumed to be random (i.e. poisson) arrival,
we can make use of the residual waiting times result [3] ppl62
which says that in case the arriving jobs can be grouped into
classes each having a distinct service distribution and let xp
and Bp (x) denote the arrival rate and service time distribution

respectively for jobs of class p, then the expected mean time to
finish the job in progress is given by
.

E'(S)) = \p E(S2) | (3.9)

1 P

N
v ™

1%

where E(S;) is the second moment of service time required by a
job. They have also showed that result is also true even if
higher level queues do not constitute strictly a poisson process.

Hence, using (3.9) we have
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\ L-k
' = - -— 2 —_— - } -
E'(S,) 5 -G(L-1)E, (S2)+ B2 [1-G(k+i-2)].
1 L-1
— — . Q2 z g. +
[I-G(k+i-2)] Serio1
A, ) " o
—— . (LQ2%2 + 5 . = z g., Q2
2 27§21 i-1+] *
v — xl 2 ) A L-K r e 2
E (Sr) = 5 Ek(S ) + -2— z (G(L-1)-G(k+1-2)].Q
i=2
+ 52 @@+ 5 & [1-G(L+j-1)].Q2  (3.10)
i=1

Then substituting (3.4) and (3.6) in (3.1) we have,

E'(S_)
_ r
Vk - l—Al Ek(S) * Al[vk+(k_l)Q]'Ek-l(S)
E' (Sr)
1
l_klEk(S) + Ai(ﬁ‘l)Q Ek‘l(S)_
1- 2y B _1(S)

Thus from (3.0) we E'(S )

get - 17, E,(S) ™y (k-DQ Ey 4 (S)
, , |

= : +XQ (3.11)
k I -xy B 1 (S

where, the expressions for E’ (8., E, (S) (and E; ,(S)) are

given by (3.10), (3.2) respectively.
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K

]
-

In this case tagged job is a long job of size L.

Arguments here ‘are similar to that in case I. Waiting time in the

system for such a job is given by

Let

where,

and

V" .

WL = VLr+ﬂLQ _ (3.12)

v, =V + V" (3.133

= mean time to complete the quantum in progress + mean
time to complete all iobs in Phase I of the system

-
1

at the time of arrival + mean time to complete jobs

in the first queue level of Phase II of the system.

= mean time to service all new jobs arrivals in Phase I
of the system during the waiting time in the queue

for the tagged arrival.

]

To compute VL

and Vﬁ, consider on equivalent new system

(say 83) in which.first phase of our modified feed back system is

replaced by a single queue in which every arrival is allocated a
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maximum of (L-1) quanta of execution time while the second phase
is exactly the same as the second phase of the original system.
It is immediately apparent that from the point of view of the
tagged arrival the mean time spent waiting for these jobs is

same in both the systems.

From (3.2) we have,

L-1

D(iQ).g;
B .(s) =izl
L-1 G (L-1)

and
1 L-1 v
sy 1 X

B D= g [ 5 1 eyl (3.14)

where, EL-l(S) and EL_l(SZ) are, as before, the mean and second
moment of amount of execution time used by the arrivals in

Phase I.

Since AlAis the arrival rate for Phase I and Vi is the
waiting time in the queue for the tagged arrival the number of
arrivals in this period in Phase I is AWVL' All these arrivals

(S) amount of time on the average and hecne V!' is given

use EL—l I

by .
V' = x,V. E (S) (3.15)

on the other hand V.! can be written as

L
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vy =E (Sf) + N1 EL-l(S) + N,.1Q (3.16)
where E'(Sr) is the mean time to complete the quantum in progress.

Ni is the mean queue size in Phase I.
Né is the mean queue length in the first queue level

of the Phase II encountered by the tagged arrival.

Note that, Ni E; _1(S8) is the mean time to complete all jobs in
- Phase I of the system and-Né.LQ is the average time to complete
jobs in the first queue level of Phase II of the system. To

find Ni, Né and E'(Sr) we proceed as follows

Using Little's result we have

where, VI is the mean waiting time in Phase I queue of the

new system S3.
Note that’

VI = mean number waiting in the queue x mean amount of

execution time used by a job.

Since, Phase I queue system is nothing but a M|G|l. queueing
system, by making use of the result of M|G|l queues [3] pp 161

we have mean number waiting in the queue
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2
p2[14C2_1(S)]

2(1-p)
where
p= A EL_l'(S)
‘and
E (S52)
Ci.q (3 EL_l 6
-1

p and Cf—l (S) are called traffic intensity and coefficient

of variation respectively.

Hence,

N = Alvl
02[1 + C2 (S)]
-2 L-1 CE (9 (3.17)
2(1= o).
Using Little's result on Né, we have
N2 = AZVL (3.18)
That is because, Az is the arrival rate for Phase II and V! is

L
the average waiting time needed for all the jobs before the

tagged arrival, in Phase I and Phase II get serviced.

i
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To calculate E'(Sr) consider as before a new system

Sy which is equivalent to 83 from the point of view of the tagged

arrival. In system S, as shown Fig. 3.3 all jobs join Phase I,
4

but long jobs are not serviced in Phase I. In Phase II system

is exactly same as that in S3.

We note that there are three types of jobs to be

considered now :

al

b]

c]

All the jobs with the arrival rate in Phase I of
the new system S&' The second moment of the amount

of execution time used.by them is given by

L-1 ®
z (iQ)2,g.+02. ¢ g.
=1 * i=L

el
~~
wn
N
il

i

G(L-1).E; _{(82) | (3.19)

The jobs with arrival rate 1\, in the first queue
level of the Phase II in the new system S&' The
second moment of amount of execution time used by

such job is (LQ)?Z2.

The jobs with arrival rate A[1-G(L+i-1)] for the
ith queue in the subsequent queue of Phase II of

the new system for i =1,2,...,=

b
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Thus by using the result (3.9) we have

' _ A A2
E (Sr) =5 G(L-1) EL-].(SZ) + a5 (LQ)2 +

(o]

>+ f [1-G(L+i-1)].Q? (3.20)
©i=l

Substituting from (3.17), (3.18) in (3.16) we have

p2[1+C? (S)1]

" ' “LE=1 '
SV = BSOSy [E_1(S)12+2,Vp 1Q
' Al
[E'(S)+ ASETE pz.[1+Cffl(S)]Ef_1(S)
vy o= 1 IO (3.21)
Summing (3.21) and (3.15) we get
o
' - 2 2 2
. ) [E'(S )+ 5rg—sy -2 [1+C2_[(S)IEZ_,(S)]
+ AV EL—l (S) (3.22)
and from (3.21) we finally get,
' >‘1___ . '
o [E'(S) + qpoty= t0?[14C2_1(S) EZ ) (S)] r 10 (3.23
L [1-2,1Q1 [1-2q E; _;(8)] Q (3.23)

. . ) ,
with the expressions for o, CL-l (s), EL-I(S) and E (Sr) as

given above.
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E
I Fig. 3.3
Case. III K> L

In this case the tagged job is a long job of size
greater than L. A close look at both usual multi-level feed back
discipline and modified feed back discipline, which we presented
earlier will reveal that, from the point of view of a job
requiring more than LQ amount of run time, both the systeﬁs are
equivalent. In fact, usual and modified feed back aléorithms

vary only with respect to its treatment to jobs of size less than
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or equal to LQ. That is because, the tagged job gets its (L%l) th
.and'onwards quanta precisely at the same time in both the algorithms.
From the point of view of the tagged job, it is immaterial how we
permute small jobs and whether we give them one quantuﬁ at a time
or in bulk éervice, because tagged job gets its (L+l)th quantum

in both the systems only when all the small jobs before it has
already finished service. Instead of getting one quantum at a
time for initial L queues in usual feed back discipline it gets

LQ amount at one go in modified feed back discipline which helps
small jobs to finish service earlier, but makes no difference for
tagged job. Hence, waiting time in the system Wk for the tagged
job in modified version is same as that in usual multi-level feed
back algorithm, which is given as [3].

w =
k T Z(I-3E, (D ITIDE (ST | T g (5 2

(3.24)

where

B (S) - (iQ) g; + kQI1-G(K)]

N~ x

i=1

and

Ek(Sz) = (iQ)Z.gi + (KQ)?2 [1-G(K)]

1

I~ =

i
Note : Results for the continuous service distribution can be
obtained from the expressions of Wk derived above by taking the

limit of Wk as Q> 0, K -+ «~such that t = QK remains constant
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Chapter - IV

SIMULATION EXPERIMENT

4.1 Development of Simulation Program

.--A simulation pfogram was run to compare usual multi-
. level feed back discipline and modified feed back discipline,
with respect to weighted average waiting time for the job and
system throughput. Since, average waiting time is a multiple

of quantum size, we define weighted average waiting time as the
average waiting time divided by job size, to make the expression
independent of quantum siée Q. System throughput was defined

as

W

1/ 5 £ Prob. [Job Size= KQ]

KQ
The above is a valid measure for performance evalua-
tion as increase in throughput according to the above criteria
means reduced weighted average waiting time for the jobs and thus
nuﬁbér of jobs served/time unit will increase. To obtain system
throughput through simulation, an unbiased estimate of

- No. of Job Size KQ Served
Prob[Job Size=KQ] Total No. of Jobs Served

(which is nothing but the relative frequency) is used.

There are essentially two programs one for the usual
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feed back simulation and the other one for the modified feed back
simulation. Programming Language used is Pascal. Programs make
use of Dynamic data storage, in the sense that no memory require-

ments are declared beforehand.

Two different types of Record Data structure are used
called queue-node and Job-node respectively. Fig. 4.1 shows

the node-structure explicitly.

| | [ - | I
| Que Total No. Total | Right Down —,
| Number of Jobs Waiting Job Nod
| of g-number | Time of | | | 0b Rode
l size served ' Such Jobs I I .
Que-node {+Queue-node
! | !
Job Job's
Arrival Required Next
I Time ’ Time ’ |
|
‘JOB-node l
JOB Node
Fig. 4.1

Programs are modular in nature and has following

modules
i] Procedure EXPO
i1i] Procedure UNIF

iii) Procedure INITIALIZE



iv]
v]
vi]
vii]

viii]

(1]
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Procedure ADbQ
Procedure CHANGEQ
Procedure HEADREPORT
Procedure REPORT |

MAIN PROGRAM

Procedure EXPO generates inter-arrival time which is

exponential since we have assumed a Poisson arrival.

The method makes use of Inverse Cumulative Distri-
bution Function. If X is a continuous random variable
with cdf F(X) then random variable Y = F(X) has uniform
[0,1] distribution. Hence Y is generated from U[0,1]
and X = F—l(Y) gives observation from X. To generate
pseudo random numbers Tausworthe's feed back shift
register method [6] was used. The basic method uses

a sequence of polynomials {Uk} with coefficients

in GF(2), generated by recurrence relation.

U = 1
o

U x Uy _;(mod ¥ +x1 + 1)

k

{Uk} formed in this manner are given a circular shift
of (p-q) places to the left to form the sequence of.
p-tuples {W 1 on W, the following operations are

performed. We also make the following assumptions:
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Operations ( q < % and n is integer multiple of p).

2)

3)

4)

5)

Wn is set in Register A in bit positions 1 through p.

(exclusive of sign bit).

Register A is copied ihto Register B and Register B
is left shifted to q places bringing O's into the

q right most places.

Register A is exclusive or-ed into Register B and
result is stored back intoeRegister A.

Register B is right shifted to p-q places bringing
0's in from the left.

Register B is exclusive or-ed into A.

This method results in Register A containing new Pseudo-random

integer.

For assessing the goodness of generated sequences of -

pseudo-random numbers, following empirical tests (the tests which

are applied to samples.of generated output) were applied

a)

a) Kolmogrov Smirnov Test

b) Marsaglia's Lattice Test

Kolmogrov Smirnov [5] (One sample, non parametric)
test for goodness of fit tests null hypothesis Ho:
F(x) = FO (x) for all x, against the alternative

Hy: F(x) # F (x), for some x. F, is a completely



b)

Step 1 :

Step 2

47

specified continuous distribution function. The

K-S statistic used for this purpose is

D, = S;p | s, (x) - F (x)]

. where n is the sample size and Sn(x) is the empirical

distribution function. In our case Fo(x)=x as X
follows U[0,1) Dn is a distribution free statistic
and critical values of Dn in case of uniform distri-
bution are available. This test gives good result

even for small values of n.

The lattice test [6] for testing n-space uniformity

is given below

(ntl) set of n-tuples of random numbers were
generated successivély and were denoted by PysPpse--s

PN+1-

Let D = the absolute value of the determinant of

Po - Py

P3 7 Py

pn+1ipn

If value of D is zero, then Step 1 is repeatéd.
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Step 3 : Step 1 and Step 2 are repeated to form a sequence of
1]
D's, Dy,Dy,...
Step 4 : Let

8y = gcd(Dl, D2)

g3 = gcd(Dy, D,, Dy)

84 = ng(Dl’ DZ’ D3; DQ)
Step 5 : If some gy = 1 generator has successfully passed the
test.

If the sequence of gi's become constant (# 1) for a
number of successive iterations, the generation have failed the

test.

The lattice test was used as recommended by Marsaglia
for n = 1,2,3,... The program listings of these tests and

Tausworthe generator are given in the Section 4.

(ii) Procedure. UNIF generates observation from the

distribution which has the pdf given by f(X) = %

for X=1,2,...,N. Though the analytical result hold

for any discrete service distribution. We have used
only the above distribution to generate service time
for the jobs. This procedure also mékes use of

inverse cumulative distribution function method.



(iii)

(iv)

(v)

(vi)
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Procedure INITIALIZE when called initializes the
system. It forms queue node for the first queue
and attaches the first job node to the queue-node.
In case of modified system, it initializes'both
Phase I and Phase IT of the system and attaches

the job node to Phase I queue or Phase II queue

depending upon its size.

Procedure ADDQ (r) attaches a new queue-node to the
alreadyrexisting queue-node pointed by pointer r.
The gq-number of the new node is assigned as the

q-number of r-node+l.

Procedure CHANGEQ (p,time) when called takes a job-
node at top of the queue-node pointed by p and checks
the required run time of the job-node. If the
job-node equals q-number it means the job has finished
its service and then by making entires about its
waiting time, it dispose the job node. Otherwise, it
attaches the job-node to next lower-level queue to

get further service. If the next lower queue does

not exist, it calls procedure ADDQ to construct one

such queue.

Procedure HEADREPORT prints the headings of the output.
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S (vii) Procedure REPORT prints the values obtained of the
variables.
(viii) Main program has a clock. This clock advances in

multiples of quantum size Q (which in our model is
taken as 1, without any loss of generality). The
main program first calls Procedure INITIALIZE to
initialize.the system. After it becomes free, the
'simulated processor' searches for the highest- |
level non-empty queue, and calls the Procedﬁre
CHANGEQ. After the operation it advances the clock

. by quantum or by L Quanta if it is the Lth queue the
modified feed back discipline. As soon as new arrival
comes it joins the tail of the highest level queue
in usual feed back discipline. 1In case of modified
feed back system, it joins Phase I or Phase II
depending upon its JOB-size. The process is continued
till the clock exceeds 'Simulation time' limit. After
this main program calls Procedure HEADREPORT and

Procedure REPORT to print the outputs.

4,2 Flow Charts

Flow charts of usual and modified multi-level feed
back queue are listed. Procedure EXPO, Procedure UNIF and Procedure
HEADREPORT being very straightforward are not given. Procedure
ADDq and Procedure REPORT remain exactly same for both the
simulations. Procedure CHANGEq and Procedure MAIN PROGRAM being
very similar in both the cases, for the sake of brevity, only

the changes required at appropriate places are mentioned, in
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modified feed back case.

Note

In the flow charts, p[S] denotes the field S
of the pointer node p. An assignment of the
for p[S]« NIL implies that no node of the

'field S' type is attached to p.



USUAL MULTILEVEL FEEDBACK QUEUE

Flow Chart - 4.2.1.

. Procedunre Initialize (System)

i
| Take a new fob node pointed by
g pointen "g"

l

|
J

Assdign

System [ q - numben
System [ total no. served
System [ total waiting time
[
[

System night

[P — —_— ey —

System down

Call Prnocedune UNIF, which retuns a new service

Lime
l
%
FLlL up the fields of q as,
q [ awtival time I « 0
q [ requined time ] < Service time
q [ Next 1« Nee

| RETURN |

52



FLOW CHART 4.2.2

PROCEDURE ADDq (p)

Take a new queue-node pointed by pointer q

FAE up the gields of node q as,

[ ¢ - numben ] < plg-numben] +1
[total no. served] * 0

[total waiting time]<« 0.0

[ night] « N2

[ down ] « N2

'{
|

L

Attach node q to p by assigning,
plright] < q

RETURN

53




FLOW CHART 4.2.3.

PROCEDURE CHANGE g (p;time)

Take fwo new fob-nodes pointed by pointern "q" and
pointen "S" and new queue node pointed by "a"

1%

Assign,
q < p [down]

q [fw:quﬂmd
[ hehoen)

Yes

put,
p [total no served] « p [total no.served]+]1

p [total waiting time] <« p [total waiting time]
+time+1-qlarnv.time]

. p [down] <« q [next]

W

Dispose  g-node

Y

RETURN

54
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Assign,
p [down] < q [next]
q [next] « Ni&
n o« p [right]

‘y

i [down] <« q

RETURN

S « n [down]

N

A

Is

Yeos
Sinext] # NiL S « S [next]

No

S [next] <« g

RETURN
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FLOW CHART 4.2.4 PROCEDURE REPORT (n, SUMT,SUMZ)

L1

No Ves

RETURN 3 ninight] #NAL SUMI <« SUMT +r [total no.served)

Ay

J

Avernage waiting time
walting time

nitotal no. served]

N

nltotal no.served]
=0

\’

Y

Average waiting time = 0

WELghted Average Waiting taime

Average waiting tame
L 1q - number ] e

SUM 2 = SUM 2 + weighted Average waiting time
x & [fotal no.: served]

L

Print Average walting time and
Wedighted Avernage Waiting time

n € n [night]
G>- T9 L1




FLOW CHART 4.2.5 >7

MAIN PROGRAM
START =

g

Read simulationtime Limit , Aviival rate
A and Service time parametern N.

Print, Simulation
not done as process
5 not in steady
state

Fraffic intensity
({e,AE(S)) <1

SToP

Take a new queue node pointed by pointen
(L) , "system" ‘

Call Procedure Tnitialize to stant the
system




Call Procedure EXPO to generate one
Interarvival time

Put,

Next annival time = time clock + Interarrival
Lime

time clock < time Limif

L3 -—

58

time clock < Next arival time

L4




(L)

f

p « sysiem
end 1 false

pldown]=NIL and
plright]= NIL

No

L4

<
\/g

- Yes

{(4d)

59

Y

time clock < next
awvlval tame

end 1 « thue

N




o[ down] ANTL

60

Call Procedure change q

time clock < time cloch+]

No

Yes
and > end 1 <+ thue
plright[#NTL
< Y
™~
Call procedure add q.
pldown]# NIL VES
and © > Call Procedure changing
plright] = NIL
time clock <« time clock +1
end 1 <« time
'
d NI 1% .
pl Ozﬁi# L es 5 b« p [night]
plrnight] #NIL

GO to L2

N
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' Take a new fob node pointed by ]

Y

pOK:VthZL "Q"

Assign
q [avuival time] <« .Nex,t arvival time
call Procedure UNIF o generate a new service £ime
q [nequined time] < Aernvice time

q [next] <« NiE

\%

| System[down] « g

m < System [down]

L5
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N

!
=
Q

m< m [next]

X

m [next] = NIL -

minext] < ¢

~
/

Call Procedure EXPO
- to generate one

Interavival . time

Next arvival time < next avrnival

Lime + Inien—annival time.

GO TO L3




Call Procedure Headrnepont and Repont to
Caleulate and print the outputs

Throughput = ﬁotaﬂ no. of jobs served

% Wied.av.wt.timexno. ofjobs served

Print  throughput

+

Stop

63



"MODIFIED MULTTILEVEL FEED BACK QUEUE

FLOW CHART 4.7.6.

Procedure Initialize (System 1, System 2)

Take a new job node pointed by pointern "g"

Assdign.

System 1 [q numbern] <« 1
System 1[total no. served] <« 0

System 1 [total waiting time] <« 0
System 1 [rnight] « Ni&

System 1 [down] <« N&
System 2 [q-numben] < L

System 2 [total no. served] <« 0
System 2 [total waiting time] <« 0
System 7 [right] « Ni&

System 2 [down] <« N&L




Call Procedure UNIF (service time, N) which
return a new servdice time.

FALL up the gleld of q as,

q [avuval time] < 0

g [nequined time]< service time

q [ Next ] «~ N

65

qlrequirned time]<L :
~ Yes System 1 [downl< q

- RETURN
System 2 [down] <« q - —_—




, 66
FLOW CHART 4.2.7 Procedure CHANGE ¢ (p, time) '

Repﬂace ; btock manked with '*' of §low chart 4.2.3 by; (keeping all
othen pants same)

pltotal no. served] < p [towal no. serwed] + 1
p [down] <+ q [next]

pltotal waiting times] . 7
& pl total waiting time]

+t+[-qlarnv. time]

pltotal waiting time]
epltotal walting time]

+t+1-qlarnv. time]

N




FLOW CHART 4.2.8

MAIN PROGRAM

Fozzauing changes 4in the §low chart of 4.2.5 are nequined

a] Replace block marked with (L) by,

Take two queue nodes pointed by pointenrs
System 1 and System 2,

b] Replace bLock marked with (LL) by,

p <« System 1

end’l ~ fatlse

c] Replace block manked with (iiL) by,

n < System 2
end 2 <« galse

L6 YES D

No

67
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time clock
<+ Next arvival
Lime

. nldown] =Ni&
and
n[rnight] =NIL

Time clock{next VE

Vo end 2 « thie

Y

call procedure

nnight]# NIL change q[n,time]

N

NO

time
+~ Time + L

N

time <« time + 1 ond 72 <« thue

v

A
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n[night] = NIL
and

adown]#, NIL VES

v

call Proceduwre
Add q{n] and

change q[r,time]

Pl

n[niaht] =/NIL

Y

and
nldown] =NIL

< time = time + 1
end 2 e Xime time + L
YVES n nlright]

> GO TO L4
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d) Add agten block marked (v},

qnequined time] _
System < System 1

System < System 2

AL othen portions remain 4ame



4,3

1]
2]

3]

5]

Program Listing

Enclosed Programs

Tausworthe Generator

Kolmogrov - Smirino§ Test
Lattice Test

Usual Feedback Queue Simulation

Modified Feedback Queue Simulation

71
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PROGRAM 4.3.1

C PROGRAM TAUSWORTHE BENERATOR
HEAL *8 £¢31),AZ,82

L=1
13 IF {A{1).EQ@.1.RND.L.LT.P) GO 70 14
IF {A{1).EQG.1.AND.L.EB.P)} GO T8 33
IB(LY=NGB(ACT) ,2)
(1) =6{11/3
L=L+1 :
IF ({.LE.P) B0 T8 i3
60 T4 1721
14 1BiL)=1
DO 17 KisLet,F

INTEGER P,0,PP,IA{31,31},IB(31),8BIT
INTEGER#8  K,5,I8,A¢31},INT ' :
pPP=33
g=13
p=31
K=2

G pa 123 I=t,5

1 K=K *K

2 123 CONTINUE

3 K=k72-1

5 fi1)=1

5 DO 10 (=27

& 16 B(I)=2EAll-1}

7 Do 32t I=t.F

g

g

Lo}

(SO O IS

n L

w1 o

§ 17 1B {Kiysf
g 50 TG 12t

0 I3 IR {F)st

¢ 171 DO 555 HNM=1L ,F-G

2 555 IACI,MMM)=IB{O+NNN)
3 DO 556 MNN=P-@+1,P
3 56 1A{T,NNN}=IB(NNN-F+§)
5 321 COUNTINUE

& SBIT=0

7 08 41 J=t,PF

g B8 80 I=t,F

7 D8 21 M=1,P

o 2t IB{M)=t

1 DO 22 M=Q+t,P

727 IBOM=1A(1,M-0)

3 CALL EXOR{IA,IE,P,I)
3 DG 29 NN=1{,0 :

§ 29 IB(NN)=IA{1,P-Q+NM)
& DO 30 NN=Q+1,P

7 3 LIB(NNI=O

g CALL EXOR(IA,IB,P, 1)
g S=14(1,1)



54 DB 26 Ni=7,F
54 IF (I&(I,N1).EG.0)60 TO 26
52 IB=1641, N1}
53 DG 11t ITI={,Nt-{
S4 11t - 18=18#2
55 §=5+1§
%6  2&  CONTINUE
57 a7=8
=g B2=K _
13 C(1)=62/82
£0 IF(SBIT.EG.0)G0 70 747
61 CO1Y=C(I1} %1000
62 INT=CAI}
3 CL1)=C{1)-INT
&4 SEIT=0
65 G0 TG 87
66 747 CAIy=C(1}%1000
&7 INT=C(I)
&8 CC1)=C{1)~INT
69 GBIT=1
74 87  COHTINUE
74 DG 997 I=i,F
72 1S=F#{J-1)+I]
73 WRITE(&,40115,C(1)

74 4G FORMAT (IX,14,10%,F14.12)
75 997 CONTINUE :
76 40  CONTINUE

77 510F
78 END
79 SUBRBUTINE EXOR(IA,IB,M, T}
8¢ DIMENSION TA(31,31},1B(31)
81 DO 24 N=t{,M
82 IF (14(1,M) .EG.1.GND.IB{NI.EQ.1) B8 TG 25
83 IACI. N =TACT (M3 «TE{N)
ga - 60 TO 28

85 25  1A(I,N)}=0
86 24  CONTINUE
a7 RETURN

88 END
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PROGRAM 4.3.2

[ I S I

el = B 6N S 7 LR 8 4 R =Y
[asd

i el e
N Lo L4 1Y

~J

o

[ B N R

DO RN NI R S SE S I NS
SI e LI & Y

4.0 .

(50 J O0 p }

Lo T - T %5 I Y [ XY Qi 28 R R I 8% O
Laalilon JNS ot I o SR A + B -V 00 I S QS S

47
43
44

. 45

44
47
48

C .":i-**{'*ﬁ»*{-ﬁ*’}*{'**{-ﬁ:!&%&ﬁ@»*ﬁ***********f:{‘*****§§-*!—§******{>§{-§*§:{'§*§***
c PROGRAM KOLMOGRPY-SMIRINGY TEST FOR TESTING KANDOMNES
C EREEEN R AR B E SRR R R U N E U E PR LR E B L UN RN R A F SRR RSB EE RS S E SRS LR E RN R EREF £
REAL #8 RND (10G0) , X , MAX, D {3}, ALPHA(S)
N=575 . :

READ (S,39) (RND{1},I=1 N}
3% - FORMAT{(7X,F9.7)
BG 149 I=1{ N-1
X=RND{I+1)
J=1
di=J+1
IF (X.GE.RMD(J}} GGQ 10 75
ARND{(J1)1=RND(J)
Jd = J -t
IF (J.EG.8) GO 10 7é&
68 10 75
78 Ji=3+1
FaAN{JLY=X
189 COMTINUE
i=t :
MAX=ABS(FLOATCI} /FLOAT (NI -RND (I}
BG 152 1=2.M
ANS{I)=fABS(FLOAT (1} /FLOBTI{N)-RND{I)}
IF (MAX.GE.RND{I)) GO 10 152
MAX=AND(I)
152 CONTINUE
WRITE(S,Z0IMEX
290 FORMGT {"MAX =" F14.10}
D)=t &3/G0RT(N*L. G}
D{2)=1.86/80RT{H¢1.G}
D3y =1 22/80RT{Nxl.0}
WRITE {6,19)(Di1),1I=1,3}
19 FORMATI(ZY ,FL13.12)
BLPHAE(L) =00
AELHA(Z2)=0.15
ALPRA(SI=0. 1
pG 280 1=0.3
IF{MAY.GT.D(I)IBE T4 201
WRITE(&6,205)6LPHA(D)
205 FORNAT( AT G&LFPHA=",F6.4, LEVEL OF SIGNIFICANCE' RANDOM
# NUMBERS GENERATED SATISFY K-§5 TEST OF UNIFORMATY')
GG TG 280 )
201 WRITE (6,204)}ALPHA(T)
2046 FORMAT ('AT ALPHA=',F6.4 "LEVEL OF SIGNIFICANCE RANDOM
*# NUMBERS GENERATED FAIL TO SATISFY THE K-8 TEST OF UNIFORMITY)
2680 CONTIMUE '
STOP
END

~!
(%]
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PROGRAM 4.3.3

(or]

a8

[N ]
[N ]
]

298

347

w
N

wn
i

wh
w

N

(2}

FEREER RS ERE R R R F R FFE AR R ERE S E AR EEF R R ER R R R R SR E LK R E R E RN R E R RS
PROGRAM LATTICE TEST T8 TEST M-SPACE UNIFORMITY

REGL#8 AND{1400),F(4,3) U,V ¥

INTEGER*8 MODULO,Lt,N1,6(5G0),D{500) REM,TENP

NODULO=64

DG 88 K=1,500
DK =0

£2=5

M1=575

READ(5,13) (RND(I),I=1,N1)
FORM&T (2X,F9.7)

DO 999 N=1,3

M=N1/{(Ns{N+1})

K=1

Ji=t

L=t _
IF(L.GT.M.OR.K.GT.M}GB TQ 777
DO 998 Jd=1,N+1

DG 998 I=1,N

[i=f% N+ 8L -1) ¢I+(J-1) &N
P{J,1}=RND{1L)

CONTINUE

DG 997 I=1,N

D8 997 I=1,N

DU, 1) =p(J+t 1} =-P(J, 1)
CONTINUE

60 TO (51,42,53)N

DET=P(1,1)

B0 TO 54

DET=F (1, 1) %P{2,2)~FP(L,2)%P(2,1)
G0 TO 54
U=P(2,21%P{3,3)-F{2,3)%F (3,2}

Y=R(2,1) 8P (3,3)-F(3, 1) ¥F{2,3)

W=P(2,1)%P(3,2)}-P(3,1}#P (2.2}
DET=P {1, 1) &U-P(1,2)80+F ([, 3) ¥
DET=ABS(DET)

Li=MODULO®DET

IF (L1.67.8) BB 70 &S

L=L¢t

60 70 222

D{K}=L1

WRITE(S,2)K,D{K)
FORMAT('K=",18.10¥, 'D{K})=",18}
60 170 94

WRITE(6,316(K)

FORMAT( G(K)=",18)
IF(B(K).ER. 1) GO TO 11t
IF({6(K}.EB.6(K-1)3}60 T0 193
L=t +1{ . .

K=K+1

75
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70
71
72
73
74
75

76

77

78 .

74
8¢
81
82
83
84
85
84
g7
a8
a9
90
g1

di=1
66 10 222
183 Ji=J1+t¢
IF (31.EQ.L2) GO T8 466
L=t +d -
K=k+t
80 78 999
777 HRITE{LSH, 77&)N
776 FORMAT(FORS ‘~SPACE UNIFQRNMITY THE TEST DIDN'T TEAMINATE )
80 T8 2Z2
118 MRITELS,1(2)}H
112 FORMAT ('FOR ,12, -SPACE UNIFORMITY THE GEMERATOR HAS SUCCESSFULLY
% PASSED THE TEST')
66 10 997
666 - MRITELS,667IN .
667 FORMAT {'FOR",12, SPACE UNIFORMITY THEGENERATOR HAS FAILED 10
¥ PRSS THE TEST ) -
54 TQ 999

94 IF{K.EB.1}68B TO 24
i=2

27 Ti=1-14
IF{D(I).GE.D(XLY)GO TO 24
TEMP=D{(11}
DeIti=D411
DAIY=TEMNF

24 REM=DDD(D(I1},D{I}}
IF(REM.EG.0YBO TG 25
IF(REM.EQ. 100060 TO 29
BeI1Y=D{(1) )
D{I}=REM
G0 70 24

25 IF(I.BT.KIEG TO 26
I=1+14
G0 70 22

29 GiK)=1
60 10 Z¢&

24 G =04 (K}

28 GO 70 24

399 CONTINUE
g870P
END
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PROGRAM 4.3.4

PROGRAM DFBSimulation{INPUT, QUTPUT.RANDU,D3,D4):
Type
ptndtype2= “ndtvpel:
ndtypeZ=RECORD
arvtime:real;
reqtime:integer;
next:ptndtypel
end;
ptrdtypeli="ndtypetl
ndtypel=RECORD
snumber:integer 3
totains:integer :
totalwtireal g
right:ptndtype!l :
down:ptndtypel
end:
V&R
Lamda,5umi ,Sune?,Throughput ;time timelimit, nextarvtime:reals
Processarltilization,Intarviige,wttime,avuttinerreal;
cystem.r ,piptndtvpel;
m,q:ptndtype’?
endi:Boolean;
N,X,Servicetime:integer;
: D4, RANDU,D3:TEXT;
Frocedure Ewpoivar intarvtime,Lamdazreall:

YEaR
. F,X, Kendom:real;
Begin
Readln (RANDU.Randonl;
IntArvTime:=~-1 0%t N{randomn}/Lamda;
end;
Procedure Unif{Var ServiceTime,N:integer}:
VAR
F X,Random:rezl;
‘Begin .
Readln (RaNDY, Random);
pr=1.G/Ns
n:=Random/P;
servicetimes=Trunc{i}+!;
End;
procedure - Inittialize(systen:ptndtypet};
VAR '
giptndtype2;
begin
New(g};

systesa”.onusber:=1{
systea”.totalns:=0;
system”.totalut:=0.0;
system”.right:=Ni}
systeas”.daun:=q;
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g.arvtime:=0, 03
UniftBervicelime N}
q".regtime:=Servicetinme;
pt.next :=NIL

end:
procedure addgig:ptodtvpel) ;
VAR
g:ptndtype! 3
tegin
NEW{g)3 .
g .onueber:=p”.onumber+ly
g”.totalinss=0;
g”.totalwti=0.0;
g*.right :1=NIL;
g".down :NILj
pt.right :=qg
end;
Procedure CHANGEg(p:ptndtypeiitireall;
VAR

grptndtypel:

rzptndtvoels

s:ptndtypel:s

g:=p".doun: )

i1fig”.regtime=p".enusver}Then
Hegin

p“.totalns :=p".totains +i;
p*.tetalut = p”.totslut + t+i-g .arvtine;
p*.down 1=g".next;
Dispeeeigly

-
N

p*.downi=g”.next;
g*.nexti=NIL;
ri=p*.righty
1¢(r~ . down=NIL} Then r".douwn:=g
elce
Begin
Csi=r*.down 3
hhile {(s".next (> NIL) Do
s1=s” . nexty
s“.next:=qg;
End;,
End; .
procedure HeadReport(Var Lamda,Timelimit:realj;Var Niinteger};
VAR
I:tintegers
Begin .
Writeln(D3, 1 )jlriteinD3);Writeln(D3)jlriteln(D3);



Writeln(D3, " ':18, SIMULATION RESULTS FOR A USUAL FEEDEALK

Writein(D3};
WritelniD3, " ':8,
Hritein(D3,tanda:7:3)sWriteln{D3};
Writein(D3,"
WritelniD3 N:3)sHriteln(DB3);
Writelni(D3,  ':15, 'Sigpuiaticn tige:="’
Writeln(D3)g
Write{d3),

“t16)3For i:=1 to 95 do WritedD3, '«

Writeln(D3, ' # 114, % :17,"# 125, "#°:75)

Write(D3," ‘:10, ' 14,7788 SIZE’,
WriteiD3, N8. OF JOB stnven' T,
Writeln(D3, " "4, %" ;"
Writeln(D3, % 1t "#° -1; e 127, %7:25,"
Write(D3,"

NT AV NT.TINES

‘31006, For {:=1 to 95 do Britet(D3, %

sTimelimit:s:3);

Td 0 t1d)
P 4,‘ﬁv. WAl
i, ¥
*’ :25;
or

QUEUE ") ;

‘13, 'Service rate dzscrete Uniform Bith parameter

“rydritelniB3),

Writeln{(D3}:

End;
Procedure Reportir:ptndtypelyVar SUML,SUMZ:real);
Var
WtTime,Avuttime,WavitTige:realjTrinteger;y
Hegin
WritelniD3, # ¢4, & 247, "' ¢27, % 125, "#'¢}
Whiie {r".right <> niildo
beain
Sumi:=%ual+r".totalns;
Writed(D3," "ti0,°¢", " ":17,r".onumber:Z?, 7y
Writel(D3, " ":1i,r".totalns:4};
It r~.totalins=0 Then AvuiTime:=0_0
Else
beain
WtTimez=r".totalwtsl.{;
vt Tioe:=WtTime/r".totalnsy
end;
NathTime:=ﬁthTime/r*0nLnber'
Hrite(D3,  ":c1i,'#", " ":16,AvutTioe:12:7, 16}y
Writeln(D3, &'~ ‘:6,wath71me 17'/,' '*6, %13
Writelni(D3, "# ¢1{,"'#":47, " # 227, % 125 "129);
SumZ:=Sum2+WavitTine*r" .totalns'
r'=r“.right'
Write{D3," ":{0};For i:=1 to 93 do Write(D3,"*
Writeln{b3}y
end;
End;
Begin

reurite{D3}jreset(D4);
for X:=t to 4 do
begin
reset (RANDU) 5

Tige:=0.03Timelimit:=20000.00;

Sunl:=0.0;8um2:=0.0
Readin(D4,Lamda, N}y

]

TING TINME');

33
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‘Interfirrival rate Experential With parameter Lamda =');
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If¢ {Lamda*i{N+1}} (=2:0})then
begin _
Intarvtime:=0G.0;ServiceTime: =0;
Hew(Systeml};
InitializeiSystealy
ExpolintarvTiae,Lamdal;
NextArvTime:=Tinet+tIntdrvTine;
WhiletTime(Timelimit) Do :
Begin
While (Timed{Nextfirviimeldo
Begin
pr=system;
endi:=false;
. Repeat
I£{p".doun=NIL}and(p“.right=Nit}then
Begin
Times=Nextarviime;
Endi:=true
- Eﬁd;
I¢i{p~.down{>NIL} and {(p”.rightd{; Nil) then
Eegin
Changen{p,time};
time:=time+{jendli=True
End;
Ifip“.down <> MIL} and {p*.right=NIL)}Then
Begin
fiddqi{p}iChangeqgip,timel;
time:=tipe¢tijendlis=true
End;
I¢(p".down=Nil) find (p“.right <>Nil} Then p:=p“.rights
until endi=true;
End;
Newi{g};
g*.ArvTimer=NextArvTimey
Unif{ServiceTime, N}y
g”.KeqTime :=ServiceTime j
q*.Next :=Niljs
I1¢{(System".down=Nil} then Systes".down:=0
Eice
Begin
m:=Systesn”.douny
while(as".next(>Nil} do
m:=s.next; s*.next:=0
end; ’
Expotintarviise,lLandal;
Nextl@rvTime:=NexthrvTime + IntArvTime
End; ‘
HeadReporti{iamda.Tionelimit. N}
Report{System,SUMI ,SUMZ);
Throughput:=Sumi/Sum2;¥ritelnid3);



END.
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Writeln(d3," ‘:1&, 'Throughput:=', 'Throughput:10:4};
Processortnitilization:= Lamda® (N+1}/2.03Writeld3};
Hritelni{D3, " ":146. Frocessortitilization:=' Processorutilization:id
Writeln(D3}:biriteln(D3, ' ‘:40, #sTIME UNIT = { QUANTUM #+');
end;
end;



PROGRAM 4.3.5

PROGRAN . MFBSimulatien{INPUT,OUTPUT,RANDL,D3,D4) 5
TYPE
ptndtypeZ=“ndtypel;
’ ndtypeZ=rRECORD

arvtime : real H
reqtime : integer 3
next : ptndtvpe? H

end;

ptadtypetl="ndtypel;
ndtypel=RECORD

onurber : integer H
totalns : integer H
tatalwt H real 3
right : ptndtypel H
doun : ptrdtypeZ? 3
erd:
VAR
Nyi,X,servicetime,lL p integer H
time nexttarvtipe,famda,sumi,svaZ real H
timelimit,throughput : real A
processorutilization;intarvtine : real 3
t,system!,systemZ,7,p : ptadtypel H
®,q : ptndtyped :
endf{,enc? H Hoolean H
FaNDU, 03,0 : TEXT 3
Frocedure ExpetVar intarvtime,landa:reall;
VAR '
Random:real:
Begin
Readin(RANDU randon} ?
Intarvtige:=~{ 0#LN(Random} /Lamnda
End , :
Frocedure Unif (VAR ServiceTime Nrinteger);
VAR
p,x,Random:vreal;
Begin
Headln{RANDU.Random) H
pr=1.0/N 3
X:=Randcoca/p _ H
Servicetimer=Tranci{x)+1;
. End ' 3
Frocedure Initialize(system!,systemZ:ptndtypel);
VAR
q:ptndtypel;
Beqgin
HEW{qQ)

systemi".onumber:=1
systemi{“.totalns:=90
systeai”.totalut:=0.0
systeal*.right:=Nil

[PV IR T JReT



cystepl”®, . downz=Hil
systes?”.onunsber:={
System2”,totalns:=0
system2”.totalwt:=0.0
system2”.right:=N1i
systemZ”.dawn:=Nil
o gt.arvtime: 0.0
Unif{cervicetine,n
q*.reqtiee := servicetime
q".next :=NIL
1f{g".regtime(l) Then Systemw".doun:=gq
Eicze
Systea?”.downz=qg

End;
Frocedure Addqip:ptndtypel);
VAR .
g:ptndtypelys
Begin
HEb (g}
g".onumber :=p*.onumber+!
g“.totalns:=0
q".totalut:i=0-
g*.right:=Nitl
g”.doun :=Hil
p*.righti=g
End;
Frocedure CHANGEg(p:ptndtypel;t:real);
VAR
q:ptndtypeZ;
riptndtypels
s:ptndtvpel;
Begin

g:=p”.doun;
if {(g".reqtime=p".onumber) Then
Begin
p”.totalns =
p”.dovwn :
if{p~.onumber=L} Then

-pt.totalwt:= p~.totatwut +t+l-q".arvtime;
3

p*.totains + 1
g”.next

- wa

else )
pe.totaiwt:= p".totalwt +t+i-q*.arvtime;
Dispose{q)s

End
Elce
Begin _
p".down:=g”*.next;
q*.next:=NIL H
r:=p*.right 3

I¢ (r".down = NIL ) Then r*.down:i=g
Else '
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Begin
si=r”.downy
Yhile {s.next <> NIL} Do
s1=s".next;
§*.next:=qj;
End;
End,
Eﬁd;
Procedure Headreport {(Var tamde,Timelimit:realjVar Nrinteger);

Begin
Writeln(D3, "1 YsbiritelniD3)jlriteln{D3)jlriteln(D3)}
Writeln(D3. ' “:11), SIMULATION RESULTS FOR A MODIFIED FEEDBACK SUEUE 1y
Writeln(D3);
Write{D3, " ":3, InterArrival rate Exponential With parameter Laeda =");
Writeln(D3, ' ":8, 'Service rate discrete Uniform With parameter N ='}3
Write(D3,N:3)3lritein(D3);
Writeln(D3. ' ':15, 'Simulation time:z=',TimelLimit:&)y
CWriteln(D3l;
Writeln(B3, " “:1¢, ' Job Breater than or Equal to’'});
Writeln(D3,L:12,'8"s is & Long job'};
Writeln(D3, ®# :18, # 217, % 227, ' 125, "% 125},
WritedD3," ":10,'%° " ":4,°30B SIZE", " ":4,'#'," ":4):
Write(D3, 'NO. OF JOBS SERVED . ":14,°'#%#°',"' ":4, AY WAITING TIME };
Writeln(D3," ":4,'#' " ‘<4 "HT.AV.WT.TIME",  ‘':,°%°};
Hriteln{D3, " "stt, " "t17, % 227, % :25, ¢ '+25);
Writeind{D3,  ‘:i)3For i:l to 95 do write(D3, * );driteln(D3i;
ERE ‘
Procedure Heport {r:ptndtypel);
VAR
WtTime ,AvidtTime MaviktTime:real;itinteger;
Begin
Nriteln(ﬂj,'*':11,":!7,'*':27,'%':25,'%‘:?q5'
While (r”.right<{> Nilldo

begin
Sumi:=Sumisr” . totalnsy
Write{53,’ 1G6,'# " "17,r".onumber:Z." ":7,°% )3

WriteiD3,  “:il,r".totalns:4);
1¢ r*.totalns=0d Then avitTime: 0.0
ise

in C

[

begin
BtTime:=r".totaluwt®l. G
AviitTime:=WtTime/r".totalnsy
end;
#avktTime 1=AvitTimes/r".onumber:
Write(D3,  ":11l,'% ;' ":6,AvHtTimes12:7," ‘16
Hrtieln(D3, %', "16,WavtTimes12:7," ":t&'%7)
Writeln(D3, ®':t11, # «17, #2327, "€ 125, % 125}
SumZ:=SumZ+¥avitTimesr".totalnsy
r:=r*.rights
end;
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End;
Begin
rewritei{d3)jreset (D4},
For n:={ to 50 deo
begin
Reset {(Handul;
Time:=0.03Tinelimit:=20000, 00;
Readin{D4,Lamda b, L}
IF{{Landa*(N+1}}{(=2.0}then
. Begin
intarvtime:=0.03servicetine:d
Supl:=0.0;8um2:=0.0
New(Svstenmi);iden (SystemZ)
Initialize {(Bystem!i,System?]
Expof{lintervtiase,Lamdal : s
NextArvTime:=Time+intdrviime H
hile { Time < TimeLimit} Do
Begin
Hhite (TimedNMNextérvTiae! Do
Begin
pr=systemiy
endir=Faise;
Hepeat
If(p".doun=MIL} and{p”.right=Nil)then
Eegin B
ri=systeanl:

AR saa can

e

endZ:=False;
Repeat
Ifir~.down=Nil} énd {(r*.right=Nil} then
-Begin
Tf{TimeiNextarvTine) THEN Time:=NextarvTime;
EngZ:=true
End;
I4ir".down{>Nil} find {(r".right{>Nii} then
begin
Changeq{r,time); .
, : I¢(r".onuasber=L} Then
time:=time+l else
time:=time+ij;EndZr=true &nd;
I¢#(r*.doun{2Nillénd (r“.right=Nil} then
begin : ]
Addg(r};Changeqfi{r,timel;jit{r".onuaber=_L)Then
- timer=time+l else
time:=time+l;End2:=true
End;
1¢¢(r".down=Nil} And (r*.right<{>Nil) then r:=r*.right;
- Until EndZ=true;
‘ Endi:=true
- End;

If (p*.down<>NIL) and (p”.right{INIL} Then



86

begin
Changegip,time);
time:=time+i;
endi:=true
end;
I¢#{p~.down<>Nil) And (p".right<{:Nil}) Then
begin
Addag{p)jchangegip,timel}
times=time+ijendlis=true
End; .
If{p~".doun=Ni1l) find {(p .right{>Nil} Then r:=p~.right;
until endli=truesy

end;
Mewigls '
g".ArvTime:=NextfirvTime 3
Unif (Servicetime N} H
g”.Regliee:=Servicelime 3
g".Next 1=Nil H
If{g".reqtimedl) Then ti:=systen!
else tr=syvstea?y
I4{t".doun=Nil} then t".doun:=0
else BEGINM

me=t".down;
nhileim".cext{*Nilldo
s:m”.nextym®.next:=g END;
Erxpolintarvtime.tamdaly
NextArvTime:=NextérvTime + Intdrviime;

End:
HeadReport (Lamda,Timelimit ,N)
Reportisystem!iy
Report{systemnZ?}:
Write(D3,  ":10;For i:=1 to 95 do Hrite (D3, ¥ ')jWriteln{(D3);
Throughput:=Sumi/SumZi¥ritelniD3};
Writeln(D3,' “:1d, 'Throughput :=',Throughput:10:6};
Processor Utilization:=tamda*{N+1}/2.058ritelini{B3};
Writeln(D3. ' ':10, Processor Htilization:='processorutilization:10:4)}
Hriteln(B3)ydritelndD3,  ‘:40, *£TIME UNIT ={ QUANTUMER');
End;
End;

END



TABLE 4.4.1

SIMULATIOM RESULTS FOR A USUARL FEEDBACK QUEUE
InterArrival rate exponential with parameter lamda =0.050
service rate discrete Uniform wWith parameter N 1o
Simulation time 1= 20000.0¢
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TABLE 4.4.2

SIMULATION RESULTS FOR & MDDIFIED FEEDRACK QUEUE
InterfArrival rate expenential with parzmeter := (.050
Service rate discrete Uniform with parameter := 10
‘Gimulation tise:= 20000.00

Job Greater than or Egual to &G"s is & Long iob
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TABLE : 4.4.3
SIMULATION RESULTS FOR A& USUAL FEEDHACK QUEUE
InterArrival rate exponential with paraseter Lanad
Service rate discrete Uniform with parameter N
Simulation time:= 20000,00
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TABLE 4;4.4

SIMULATION RESULTS FOR # MODIFIED FEEDBACK QUEUE
InterArrival rate exponential with parameter Laamda ={(.104¢
Service rate discrete Uniform with parameter N := §
Simulation time:= 200090.00
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TABLE 4.4.6

SIMULATION RESULTS FOR A MODIFIED FEEDBACK QUEUE
Interfirrival rate exponential with parameter Lamda =0.200
Service rate discrete Unifora with parameter := 5
Simulation time:= 20000.00

Job Greater than or Egual to 38"s is a Lorg iob
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ANALYTICAL THROUGHPUT : 0.4820713
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TABLE 4.4.5

¥GIMULATION RESULTS FOGR A USUAL FEEDBACK QUEUE
InterArrival rate exponential with parameter tLamda =0.200
Service rate discrete Unifarm with parameter := 5
simulation time:= 20000,00
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Table below give system throughput values obtained from usual
and modified feed back queue simulation for different arrival

rates X and service distribution parameter N.
Simulation Time : 20000 Quantums

Table 4.4,7

A= 0.03
N Usual Feed Modified Value
Back Feed Back of L
10 0.818270 0.832019 6
20 0.631018 0.661047 16
30 0.474836 0.496152 20
40 0.284554 0.307129 30
Table 4.4.8 v
»=0.05 )
N T Usual Feed Modified ~~~~ Valte ~
Back Feed Back of L
5 0.844285 0.854284
10 0.718070 0.724718
15 0.522434 0.545788
20 - 0.371738 0.396979 16
25 0.207080  0.222511 16
30 0.101218 0.123743 20
35 0.061388 0.08778 » 25
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Table 4.4.9

= 0.1
N Usual Feed Modified Value
Back Feed Back of L
5 - 0.729269 0.739667 3
10 0.360124 0.376124
15 0.104368 0.108154

Table  4.4.10
Table shows system throughput values obtained form
modified feed back simulation at different values of L for fixed

arrival rate and service distribution parameter

—— e o —— . e = = e mm Ak e e e = e m e - -

L N =20
8 0.651763
10 0.654420
0.03 12 0.659232
14 0.649021
16 0.660147
8 0.385207
- 10 0.386710
0.05 12 0.385873
14 0.386786
16 0.396979
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Chapter - V
INFERENCE AND CONCLUSION

Simulation results clearly show an improvement in
system throughput, when prior information about the execution
times of the job is utilised in feed back algorithm. A careful
scrutiny of the simulation results clearly reveal that change in
the average waiting time has taken place, only for the job whose
execution time is less than or equal to L quanta, whereas the
jobs requiring more than L quanta of run time have their average
waiting time in the system same in both usual feed back and
modified feed back scheduling algorithms. This fact is also

supported by analytical results. (Table 4.4.1 - 4.4.6).

The results also show that there is no improvement in
the average waiting time for very small jobs.' In fact, jobs with
very small run-time requirements have more waiting time in modi-
fied feed back algorithm compared to what it was in case of
usual feed back algorithm. But, as the run-time requirements
of the job increase,significant improvement in waiting time starts
taking place. This improvement continues till the job size
reaches L quanta, after which the average waiting time become same
in both the algorithms. In order to justify this behaviour, let
us try to find out, where exactly a short jbb gains or losses
time in modified feed,béck algorithm compared to usual feed back

scheduling algorithm. The expected time to finish the quantum in
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progress [E'(Sr)] is more in modified feedback scheduling algorithm
in comparison to usual feed back algorithm. This is because, when
the processor is serving a job at the first queue level in the
Phase II of the modified feed back system, it is allocated L
quanta. Hence, a new arrival may have to wait for as may as L
quanta before it becomes a candidate for getting the processor,
whereas in case of usual feed back algorithm the new arrival will
have to wait at most for one quantum before it Becomes a candidate
for getting the processor. This is where small jobs louse time in
modified feed back algorithm. The gain achieved in the modified
feed back queue is due to ﬁhe sequencing of jobs in such a way
that long jobs join the queue only in the Phase II of the system
and hence do not interfere with short jobs in Phase I. If not
having a long job before it saves k quanta for a job of run time
requirement k quanta. Hence, gain is more as k increase and this
improvement in gain continues till k=L, aftervwhich both the
systems become equivalent. This explains why as the job size

increases significant improvement starts taking place.

Another important observation from the results is that
choice of L i.e., the criterion of classifying the joﬁs into two
categories (short job and long job) 1is also impértant (Table 4.4.10)
For Example, when aA= Q.OS is the arrival rate and N = 20 we
find that best throughput is obtained when L = 16. For our

analysis, the choice of L is arbitrary.
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Thus we conclude by saying that under the circumstances
where it is exactly known to which category the job belongs,
. the modification suggested in the feedback algorithm gives better

results.
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