
MODIFIED PROCESSOR SCHEDUliNG ALGORITHM
WITH A SIMULATION EXPERIMENT

Dissertatioh submitted to the JawaharlaJ Nehru University

in partial fulfilment of the requirements

for the award of the Degree of

MASTER OF TECHNOLOGY

SANJAV . NAGPAL

SCHOOL OF COMPUTER AND SYSTEM SCIENCES

JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI • 110 067

JUNE 1989

\i1Cfh~H'11H ~ fu~fcl~t(Witl
JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI - 110067

CERTIFICATE

which c~~ the ,titfe MGVIFIEV PROCESSOR SCHEDULING

ALGORITHM WITH SIMULATIO,V EXPERIMENT ha.o been

.oubm~ed by Sa.nja.y Nagpai_, hcu~ rw;t be.en p![_eviow:.f..!J

PJto6. Ka.Jtm~hu
(Ve.cm)

SCSS/JNU

SAMJAY NAGPAL
(Stu.de.ntj

VJt. P.C. Saxena
(Supe.n.vi.oofL)
SCSS/ Jf.JU .

A C K N 0 W L E V G E M E N T

I ta.k.e. :tYU-6 oppoJLtunity :to e.xpJLe.-6.6 my ,o.{.n.c.e.Jr.e. :than.k.-6

:to VJL. P.C. Saxe.n.a, A,o,ooUa:te. PJLofiu,ooJL, Sc.hoo.t o6

Compu:te.JL &- Sy,o:te.m-6 Sue.n.c.u, JawahaJL.ta.t Ne.hJLu Un..{.ve.Mliy

fion hi-6 he..tp an.d valuable. guidan.c.e. duJL.{.n.g :the.

c.omp.f.etion. o6 my fu,oe.JL:ta.-tion an.d my M. Te.c.h • .6:tucU.u.

Than.k.-6 Me. ruo :to o:the.n .te.ac.he.M an.d me.mbe.M on .6:tafi 6

o 6 :the. .6c.hoo.t fion pnov.{.cU.ng me. he..tp.

F.{.n.aUy I am :thcmk.fiul :to :the. UbnMy S:ta66 o6 JawahM-

.e.a.e. Ne.hnu Un..{.ve.Mliy an.d IncU.an. In.,o:tdu:te. o6 Te.c.hn.o.togy,

N e.w Ve..f.h.{., 6 on :thUJr. c.o o pe.na:tW n.

SANJAY NAGPAL

CHAPTER

I

IIi

IV

v

1.1
1.2

2;1
2.2
2.3
2.4
2.5

2.6
2.7

3.1
3.2
3.3

4.1
4.2
4.3
4.4

1.Z.1
1.2.2
1.2.3
1.2.4

2.5.1
2.5.2
2.5.3

C 0 N T E N T S

Abstract

Operating System Concepts
Evolution of Operating Systems
Operating System Functions
Memory Management
Device Management
Information Management
Processor Management

Scheduling Algorithms
Introduction
Scheduling Levels
Scheduling Objectives
Non-Preemptive and Preemptive Scheduling
Performance Evaluation
Why Performance Evaluation ?
Performance Measures
Performance Evaluation Techniques
Common Scheduling Algorithms
A new Modified Multi-,level .Feed Back
Scheduling Algorithm

Analytic Modelling
Introudction
Queueing Model for New Algorithm
Analysis of waiting Time Behaviour

Simulation Experiment
Development of simulation program
Flow Charts
Program Listings
Results

Inference & Conclusion

Bibliography

Page No.

1

2
2
3
4
5
6
6

9
9
9

10
11
12
12
13
14
16
19

22
22
22
24

43
43
52
71 .
87

95

98

1

ABSTRACT

This dissertation presents a modified multi-level

feed back scheduling algorithm in uni-processor time sharing

environment. Jobs are categorized based on their run time

requirements. Depending upon the knowledge to which category

a particular job belongs, it has been shown through a simula­

tion experiment that the algorithm in question gives a better

system throughout and in general has reduced average waiting

time for the job over available feed-back algorithm in the

literature. A queueing model for the new algorithm is also

given and analytical expressions for the average waiting time

are obtained. Simulation results are validated by analytical

results.

Chapter - I

OPERATING SYSTEM CONCEPTS

1.1 Evolution of Operating Systems

2

The fact that operating systems have become an

indispensible part of a computer system hardly needs to be

emphasized. In fact, the development of operating systems

is a major investment on the part of computer manufacturers.

Historically, operating systems have evolved through

a series of 'generations'. The term generation was originally

intended to suggest differences in harware technologies, but

it has come to be applied to the entire hardware-software­

firmware system rather than the hardware alone. Zeroth genera­

tion computer systems of 1940's had no operating systems.

Programs had t obe written in the int.ernal binary code and any

error occurring during its run would have to be decoded and

corrected by the user himself holding out all other activities

of the computer. This mode of computer operation was known

as 'OPEN JOB ACTIVITY'. Then came the first generation (1950's)

systems, which had batch processing capabilities. The jobs

were gathered in groups or batches.

it had total control of the machine.

Once a job was running,

As each job terminated

(either normally or abnormally), control was returned to the

operating system that 'cleaned up after the job' and initiated

the next job. The second generation (early 1960's) of operating

3

systems was characterized by the development of shared systems

·with multi-progrannning and multi-processing facilities. Device

independence, time sharing and real time processing also began

to appear. Third generation systems (1960-70) were primarily

general purpose. systems featuring multi-node operation. Such

systems involved the interposition of a software layer between

the hardware and the user. The fourth generation is the

generation of computer net-working, personal computers, virtual

machine operating systems,database systems and distributed

data processing systems.

1.2 Operating System Functions

An operating system (also known as the control, the

monitor, the supervisor etc) is a collection of those program

modules implemented in either software or firmware within a

computer system 'tvhich govern the control of equipment resources

such as· processors, main storage, secondary storage, I/0 devices

and files. These modules resolve conflicts, attempt to optimize

performance and simplify the effective use of the system. In

other words, it acts as an interface between the user's program

and physical computer hardware. Operating systems can also be

viewed as a resource manager managing four separate resources -

memory, processors, devices and information. Hence in order to

analyze existing operating systems, to design new operating

4

systems and to study theoretical work, one can group all the

functions of the operating system in four categories

a] Memory Management

b] Device Management

c] Information Management

d] Processor Management

The definition of operating systems as given above

implies that like any other manager it must do the following

1. 2. 1

a] Keep track of the resources

b] Enforce policies to determine who gets what,
when and how much

c] Allocate the resources

d] Reclaim the resources.

M~mo~y Manag~m~nt

The memory or storage management deals with the

problem of sharing an internal store of limited capacity among

concurrent computations with and without the use of a larger,

slower backing store. The functions of it are to keep informa-

tion about what parts of memory are in use and by whom. It

also keeps a record of free memory locations. In case of multi­

programming it decides'which process to get memory, when and

how much'. Memory management also does the job of allocating

and reclaiming the resource as and when the process requests or

5

releases it. There are a number of techniques which are used

to achieve this goal of greater utilization of memory and

more flexibility for the user; the costs of greater complexity,

sophisticated hardware and increased overhead acting as

constraints. Some of the most popular among these techniques

are :

7 • 2 • 2

a] Single contiguous memory management

b] Partitioned memory management

c] Relocatable partitioned memory management

d] Paged memory management

e] Demand-Paged memory management

f] Segmented memory management

g] Segmented and Demand paged memory management

Vevi~e Management

The device management modules are concerned with the

assignment of device, I/0 units, channels, control units to

the jobs and the efficient ope.ration of these devices. Once

the job-schedular selects a job, it may request any device

according to the requirements of the job. The module which

keeps track of all device resources is typically called I/0

traffic controller. Scheduling of shared devices is done by

I/0 schedular. Initiation and termination operation of I/0

devices is also a part of device management modules.

6

1. 2 • 3 In6a~matian Managemenx

Information management is concerned with the storage

and retrieval of information entrusted to the system in much

the same manner as a library. It keeps a file directory some­

times called the Volume table of contents (VTOC). These tables

contain t'he name, location and accession rights of all infor­

mation within the system. It also selects the policy for

determining where and how information is to be stored and who

gets access to the information. Factors influencing this

policy are efficient utilization of secondary storage, efficient

access, flexibility to user and protection of access rights to,

the information requested. The modules of information manage­

ment are also called 'File System'. This particular module

is intended to free the programmer from problems of allocation

of space for his information, physical storage formats and I/0

accession and to allow him to concern himself only with the

logi(!al structure and operatim1.s performed in processing his

information.

1. 2. 4 P~a~e~~a~ Management

Processor management modules explain how concurrent

processes.and synchronizing primitives can be implemented on a

system with one or more processors and a single internal store.

It also evaluates the influence of these abstractions on the

7

real time characteristics of the system. In other words, it

is concerned with the management of physical processors;

specifically, the assignment of processors to processes. There

are three major modules of processor management : the Traffic

controller, the Job scheduler and the Processor scheduler.

Before going into further details, let us define the term

'Process' formally. Unfortunat~ly the term process which was
.

first used by the designers of multics system (1960) does't

have a unique definition. Some common interpretations are :

a] A program in execution

b] An asychronous activity

c] The 'animated spirit' of a procedure

d] The 'Locus of control' of a procedure in action

e] The entity to which processes are assigned.

Many other definitions can be found in literature but the

'program in exet!ution' is the most frequently used. Generally

a process goes through three different discrate states : the

running state (if it currently has the CPU), the ready state

(if it could use the CPU if one were available) or the blocked

state (when it is waiting for some event to happen e.g. I/0

completion before it can proceed).

The traffic controller keeps track of the status of

the process. There are also modules who do the synchronization

8

between processes and jobs. On the process levels there are

mechanisms to prevent race conditions which occur when the

result of a-computation varies, depending upon the timing of

other processes. It also tries to solve the problems of

deadlocks arising out of situations when there are two or more

processes each of which is waiting for resources that the

other has and will not give up. The job scheduler creates

the processes and in a non multiprogramming environment decides

which process is to receive a processor. It also maintains a

job control block, which keeps information about the job's

status and its position in a job queue.

The process scheduler in a multi-programming environ­

ment decides about which ready process should get the processor,

at what time and for how long. Enforcement of this policy of

assigning ready process to processor(s) in order to reduce

the average waiting time for the job and in turn to increase

the system throughout is done with the help of process schedul­

ing algorithms.

Even though problems of asynchronous concurrent

processes and deadlock etc. are important, our studies here

will deal with processor scheduling algorithms which use some

prior information about jobs.

2.1

Chapter- II

SCHEDULING ALGORITHMS

Introduction

9

The sharing of a computer installing by a group of

users in an economic necessity. It leads to situations in

which resources become scarce, there are not enough physical

processors and storage for simultaneous execution of all

processes requested by users. The available resources can be

shared among theprocessors either by executing them one at

time till completion or by executing several of them in rapid

succession of short periods of time. In both cases each

processor must pause every now and then and decide whether to

continue the execution of its present process or switch to

some other process instead. The rule according to which this

decision is made is called a 'scheduling algorithm'.

2.2 Scheduling Levels

To make the scheduling problem manageable, it is

usually considered at several levels of abstraction. The view

of scheduling presented here recognized three main levels:

1] High level scheduling

2] Medium level (intermediate level) scheduling

3] Low level scheduling

10

High level scheduling is an 'admission scheduling' in

the sense that it determines which jobs gain admission to the

system. Once admitted, jobs becomes processes or groups of

processes. The intermediate level scheduling determines which

processes shall be allowed to compete for the CPU. This parti­

cular scheduler responds to short term fluctuations in the

system load by temporarily suspending and activating processes

to achieve smooth system operation and thus helps in realizing

certain system wide performance goals. The low level scheduling

is performed by the 'dispatcher' which determines policies to

allocate ready process to CPU and actually assigns them.

2.3 Scheduling Objectives

The objectives that we should have before us in

deciding a particular scheduling policy are

[a]

[b]

[c]

A scheduling discipline should be fair in the sense

that all processes are treated in the same fashion

and no proqess suffers from indefinite postponement.

A scheduling discipline should maximize the through­

put by serving the maximum number of processes per

unit time.

It should be such that a given job runs in about

the same time and at about the same cost regardless

of the load on the system.

[d]

[e]

[f]

11

It should try to minimize the overhead.

The scheduling mechanisms should keep the resources

of the system busy. Processes that will use under

utilized resources should be favoured.

It should also try to achieve a balance between

responses and utilizations.

Apart from these, it should also try to enforce

priorities, give p~eferences to processes holding key resources,

provide better service to processes exhibiting desirable

behaviour. In addition the mechanism should not collapse under

the weight of a heavy system load.

One can immediately see that many of these objectives

are ·in conflict with one another thus making scheduling a

complex problem.

2.4 Nonpreemptive And Preemptive Scheduling

If the scheduling algorithm is such that once a

process has been allocated the processor, it can not be taken

away from the process unless and until it voluntarily leaves

it or asks for some I/0 or it finishes the quantum allocated;

then the discipline is called a 'nonpreemptive scheduling'

discipline; otherwise a scheduling discipline is said to be

'preemptive' Preemptive scheduling is useful in system in which

12

high-priority processes require rapid attention. In real

time systems and interactive time sharing systems preemptive
""· ~

. ~ . \ .• ' ...
scheduling is important in guaranteeing good respqti:~e. ~fimes.

In nonpreemptive.systems short jobs are made to wait by longer

jobs, but the treatment of all processes is fairer. Response

times are more predictable because incoming higher-prigrity ..
jobs can not displace waiting jobs.

2.5 Performance Evaluation

2 • 5 . 1 Why Pe.tt 0attma.nc.e. Eva.-tua.Li.oYL?

H. LUCAS [e] mentions three common purposes for

performance evaluation

a]

' 1 D~

c]

Sele~tion evaluation : Here the performance evalua-

tor decides whether or not selecting a particular

system is appropriate for his work.

Performance projection : The goal of the evaluator

here is to estimate the performance of a system

that does not exist. It may be a complete new soft-

ware component.

Performance monitoring : The evaluator collects

performance data on an existing system or software

component to be sure that system is meeting its

performance goals. ·This helps him in estimating the

impact of planned changes and enables him to make

13

strategic decisions such as whether or not to

modify an existing job priority system.

.2.5.2 Pe~fio~manee Mea~u~e~

Performance means the manner in which or the effici-

ency with which a computer system meets its goals. Thus

performance is relative rather than an absolute quantity,

although one can talk of absolute performance measures such as

the number of jobs per hour a given computer system can

service. But whenever a performance measure is taken, it is

normally to be used as a basis of comparison.

In simulation and modelling studies of systems, some

performance measures often employed are :

Variance in Response Times : A small variance means

that the various response times experienced by

users are relativelyclose to mean. A large variable

is undesirable.

b] Throughput --This is the work/time unit performance

measurement.

c] Work Load - This is the measure of the amount of

work that has been submitted to the system, and

which the system must process in order to be

functioning acceptably.

14

d] Capacity - This is a measure of maximum throughput

a system may have assuming that whenever the system

is ready to accept more jobs another job is immedia-

tely available.

e] Utilization - This is the fraction of a time the

resource is in use. But this is misleading since

if there are a number of processes all of which are

in infinite loops, a higher utilization is obtained.

2. 5. 3 Pe~6o~mance Evalua~ion Technique~

The importance performance evaluation techniques

are listed below in tabular form. The table shows the

techniques, and their applicability for various purposes of

software performance evaluation :

Evaluation
Techniques

TABLE - 2.5.1

Purpose of Evaluation
Selection Performance Performance
Evaluation Projection Monitoring
(system exists (system does (system in

--------------------~l~~~~~~~2------~~~-~~!~~2 ________ Qe~~~~!~~2-
Ana 1 yt i ca 1 Mode 1-s

Bench Marks
Synthetic Programs

Simulation

1

3

3

3

1

2

2

3

2

2

3

Technique not applicable

a: Has been used but is inadequate

b: Provides some assistance but is

insufficient, should be used with

other techniques

c: Satisfactory.

15

(Taken from 'Performance Evaluation and Monitoring'

H. LUCAS ACM Computing Survey, Sept. 1971).

Analytic models are mathematical representation of

computer systems. The models of queueing theory and Markov

Processes are most useful. A bench-mark is a real program

that the evaluator actually submits for execution on the

computer system being evaluated. The evaluator knows the

performance characteristics of bench-mark on existing equipment,

so running on new equipment helps him to estimate the perform­

ance of the system quickly and relatively accurately. Synthetic

programs are real programs that have been custom-designed to

exercise specific features of a computer system. Simulation is

a technique in which the evaluator develops a computerized

model of the system being evaluated. The model is then run on

a computer system over some simulated period of time which

reflects the behaviour of the system quickly and accurately.

16

2.6 Common Scheduling Algorithms

The simplest scheduling discipline is first-in-first

out (FTFO). As the name itself suggests, in this, processes

are dispatched according to their arrival time on the ready

queue. FIFO is a non-preemptive discipline. It is fair in the

formal sense but somewhat unfair in that long jobs make short

jobs wait and unimportant jobs make important jobs wait. Today's

operating systems do not have FIFO as the master scheme but it

is often embedded within other schemes. The next relatively

simple scheduling discipline is 'Round Robin', in which processes

are dispatched FIFO but are given a limited amount of CPU time

called a time-slice or a quantum. If a process does not complete

before its CPU time expires, the CPU is preempted and given to

the next waiting process. The preempted process is then placed

at the hack of the ready list. It is better than FIFO in time

sharing environments in which the system needs to guarantee

reasonable response time fo~ interactive users. The choice of

the optimal quantum in RR discipline varies from system to

system and it varies under different loads.

Shortest job first (SJF) is another non-preemptive

scheduling discipline in which the waiting job (or process)

with the smallest run time-to-completion is run next. SJF

reduces average waiting time over FIFO. SJF favours the short

17

job at the expense of larger ones. The obvious problem with SJF

is that it requires precise knowledge of how long a job or

process will run and this info~ation is rarely available. The

best SJF can do is to rely as user estimates. 'Shortest remaining

time' (SRT) is the preemptive counterpart of SJF and is useful.in
.

time-sharing. In SRT the process with the smallest estimated run

time-to-completion is run next, including new arrivals. In SRT

a running process may be preempted by a new process with a

shorter estimated run time. Brinch Hansen ('Short term scheduling

in Multi-programming System; 1971 ACM) developed the highest

response ratio next (HRN) strategy which is non-preemptive but has

dynamic priorities which are calculated according to the formula:

Priority time waiting + service time
service time

and jobs are served according.to priority.

Next we focus our attention to the multi level feed

back queues. These favour short jobs and I/0 device utilization,

determines the nature of a job·as quickly as possible and

schedules the job accordingly. In this structure a new process

enters the queueing network at the back of the top queue. It

moves through that queue FIFO until it gets the CPU. If the job

gets over or relinquishes the CPU to wait for completion of some

I/0 or other event, the job leaves the network. If the quantum

expires before the process voluntarily relinquishes the CPU,

18

the process is placed at the back of the next lower queue

(See Fig. 2.1). A multi-level feed back queueing network is

an example of an adaptive machanism that responds to the

changing behaviour of the system~it controls. This mechanism

achieves good device utilization and responsiveness to inter-

active users favouring I/0 bound processes. The CPU bound

processes are also given fair treatment by this discipline .

• •
• •

SERVICE TIME

ALLOCATED

K

d I L I I Jr-------+---~--------------
Q

--r-----

•
•
•

•

-

Q

PROCESSOR
Fig. 2.1

19

2.7 A Modified Multi~Level Feed Back Algorithm

The problem with the multi-level feed back queue is

that being a 'no prior information' discipline, if some prior

informations are available it does not have any flexibility as

such to make the changes so as to get the improved system

throughput and reduce the weighted average waiting time for the

jobs (or processes) .

In this dissertation we shall study a modified feed

back system which makes effective use of certain prior informa­

tions. For this purpose we assume that jobs can be classified

into a number of categories based on their run time estimates.

For simplicity sake, let us have only two categories 'short jobs'

and 'long job's'. Let us denote by t
0

the cut off time point

in the sense that any job needing more time than this is consi­

dered a long job. Now we define the following modified feed

back discipline which accommodates this information (See Fig.2.2).

There are two phases in the queueing network. If an

arriving job is short ie enters the Phase I whereas if it is a

long job it enters Phase II. In Phase I, the system operates

exactly like a multilevel feed back queue i.e. a job at the head

of a queue gets the quantum when there is no job waiting in the

higher level queues. After completion of the quantum if it needs

more it_joins the next lower level queue. Within a queue FIFO

20

rule is adopted. The Phase II is executed only when the Phase I

is empty. In Phase II also multi-level queue discipline is

adopted but with the -difference that when a process gets the

processor for the first time in the Phase II, it gets the amount

of time equal to what it would have got, uptil this queue, had

it been the usual feed back discipline. SERVICE TIME
ALLOCATEV

p
H
A
s
E

II

p

H

A

s
E
I

•
• •
• •

~-------4--------~---7Q

II

l

.--------­..

~----------r------~----r---~

L---------------- ---

r----

• • •
--------22~·~----~----------~ ____ j:

~--------+---~------r--7

I

I

Q

Q

Q

Q

L
....___ _________ PROCESSOR

Fig. 2.2

21

In the following chapters, we will analyse and compare

modified feed back queueing algorithm with usual feed back

algorithm from the point of view of their average waiting time

behaviour and system throughput. For this purpose, we will carry

out a simulation experiment which will help us in corroborating

certain inferences about the behaviour of these algorithms. An

analytical model is also presented which will help us in valida-

ting simulation results.

3.1 I nt roduct ion

Chapter - III

ANALYTIC MODELLING

22

Analytic models are mathematical representation of

·systems that allow the performance evaluator to draw quick and

accurate conclusions about a system's behaviour. As a mathe­

matical approach probability models are generally more realistic

than deterministic models, because they can represent the

irregular and unpredictable demands made by the computer users.

When these probability models are formulated to study the

properties of dynamic scheduling techniques they take the form

of queueing systems.

3.2 Queueing Model for New Algorithm

In this chapter we shall concentrate our attentkon

on the modified multi-level feed back scheduling discipline

which we defined in the last chapter. Our specific objective

will be to study analytically the waiting time behaviour ofthe

new algorithm in uni-processor time sharing environment. This

will help us in providing insight into the properties of the

algorithm even though idealizations or simplifying assumptions

have to be made in order to keep the models mathematically

traceable. This will eventually help us in validating our

simulation studies.

23

A general mathematical statement of the queue disci-

pline is as follows

•
There is one processor, Jobs (or processes) arrive

in a poisson stream and are assumed to have service time taken

from a discrete but otherr.Yise general probability distributions.

For the sake of simplicity let us assume there are only two types

of job arrivals classified as short job or long job based on

their ru11 time requirements .. A job requiring less than LQ amount

of execution time where Q is the Quantum size and L is any

positive finite number, is treated as a short job. All other jobs

are long jobs. If the job is a short job it joins the Phase I

of the system. Otherwise it joins the Phase II of the system.

Phase II is executed only when there is no job left in Phase I of

the system. In Phase I, after the processor has completed the

quantum allocated to a given job the next job to be executed is

the nne having received the fewest quanta of all those jobs

currently waiting. If there is a tie among several jobs is having

received the least service, then the job selected is the one with

the earliest arrival time. In the Phase II the same rule as in

Phase I is adopted but with the following difference. When a

job gets the processor for the Ist time in Phase II, it receives

the latter for the quantum size which is equal to what it would

have got had it been a usual feed back discipline i.e. for LQ

amount of time.

24

For the sake of simplicity we will assume processing

time of the jobs to be exact multiple of quantum size and the

discipline to be ?on-preemptive.

3.3 Analysis of Average Waiting Time Behaviour

We will try to get the expressions for average

waiting time for a job (referred to as tagged job) that needs

KQ amount of execution time.

Let A be the poisson arrival rate for the jobs~and

g. represent the unconditional probability that a job requires
]_

iQ amount of execution time.

Let

G(K)
k
I

i=l
g., k

]_

1 ')

.l,L., •••

Also, let Wk and Vk represent the mean waiting time for a job

of size KQ in the system and in the queue respectively.

Obviously,

(3.0)

We will consider three exclusive and exhaustive cases.

Case I K < L

In this case we obtain the average waiting time for

the short job which joins the system in Phase I. The probability

that a job

job is

as

25

requires

gi

iQ amount of time given that its a sho.rt

G (L-1) •

Now, let us write mean waiting time in the queue Vk

V = V' + vn
k k k (3.1)

where V' and V" are defined as follows k k

V'
k

V"
k

mean time to finish the quantum in progress + mean

time to service upto k quanta, all short jobs at

the Ist k levels at the time of a-rival.

every short job that arrives while the tagged job

(i.e., the job under consideration) is waiting

in the queue must be allowed to ascend to the kth

queue level if it requires in excess of (k-l)Q

units of execution time. The total execution time

required by these new arrivals has a mean value

V" k.

Let Ek(s) denote the mean amount of execution time

used by a job to which KQ time units are allowed given that

the job is a short job. Then

g.
(iQ) 1 + KQ[G(L-1)

for k

k

L-1
L

i=k+l

g.
1

G(L-1)]

1,2, ... ,L-l

1
G(L-1) [L i gi+ k[G(L-1)-G(k)]].Q

i =1

for k 1,2, ... ,L-1

Similarly, the second moment which He 'i.vill use later is

k

26

(3.2)

1
G(L-1) i 2 g.+K 2[G(L-1)-G(k)]].Q2

1 .
i = 1

for k 1,2, ... ,L-1

The rate of arrival to the Ist phase is Al say, where

-.
Hence,

L-1
L

i=l
g.

1
A G(L-1)

(3. 3)

(3.4)

This is because, Al being the arrival rate and

Vk+(k-l)Q being the time at which the tagged job gets the processor

for the last time, the number of arrivals in this time are

A1 [Vk+(k-l)Q]. Now, all these arrivals gets the processor for

at most (k-1) times and mean execution time used by them is Ek_1 (s),

hence the expression for Vk as in (3.4).

p

H
A

s
E
II

p

H

A

s
E

I

27

To compute Vk we simplify the matter as follows.

Consider a system say Sl, where in Phase I jobs served at the

Ist queue level are allocated at most KQ units of execution

time and those served at the higher level are allocated one

quantum of service. The Phase II being same as that of modified

feed back system. The system Sl's figurative discription is as

given in Fig. 3.1.

l

I
1
I
L------ -------~

I
i

I)

I

L------J
PROCESSOR

SERVICE TH,fE
ALLOCATED

Q

Q

LQ

Q £o!t ~mail job-5

0 £o!t tong j o b.6

Q 6oJt ~mal-[j ob-5

0 oO!t long job~

28

One can immediately see that from the point of view

of a short job requiring k quanta the mean time spent waiting

for these jobs in system Sl is precisely the same as that in our

modified feed back system.

Thus, by examining the system Sl we have

VI
k

E 1 (S' +N 1

r' 1 (3.5)

where E 1 (Sr) is the mean time to complete the quantum in progress

. and N: is the mean number encbuntered by the tagged job in the
l

first queue level at the time of a-rival in the system Sl.

Using the Little 1 s result which says that nuinber of

customers in the queue is equal to the product of their arrival

rate and the mean time a customer spends in the queue, we have

Nl
1

Hence from (3.5) we have,

VI
k

E I (s)
r (3. 6)

p
H

A

1
)
J
I

•
•
•

•
•

29

SERVICE TIME
ALLOCATEV

s
E.

II

p

H
A

s
E

I

L----------------~-

~Q
.I

I
I db~~T-=i

~fnP~-.L-1 --+J'
I ~------
1---- ~ - - - - - - -- - - - - - - - - - - - - --.

PROCESSOR

Fif- 3.2

Q

KQ

To calculate E'(Sr), let us consider again a new system s2 which

is equivalent to system s1 (Hence equivalent to modified feed

back system) from the point of view of a short job requiring K

quanta of execution time. The figurative discription of which is

given aQoVe., :

30

In system S2 all arriving jobs join 1st queue of

Phase I. The quantum allocated i.e. the service pattern is as

given in the figure. s2 is equivalent to sl for the simple

reason that even though·long jobs join service queue in Phase I,

they do not get any service in Phase I. When any long job is

at the head of the queue in Phase I, it immediately joins next

lower level queue without any service.

In system s2 , we have precisely four classes of jobs

any one of which may be with the processor when the tagged

arrival takes place.

a]

b)

Those receiving an allocation of at most KQ units

of execution time having just waited through the

1st queue in Phase I. Their arrival rate is A and

the second moment of the amount of execution time

used by them is Ek (S 2) where

E I (S2)
k

k
2:

i=l

k

(iQ)2.g.+(KQ)2.
1

L-1
[

i=k+l
g.+O.

1

00

[

i=L

E i 2 gi + K2[G(L-l)-G(K)]].Q2
i=l

which from (3.3) gives

g.
1

(3.7)

Those receiving an allocation of one quantum upto

(L-1-K)th queue in Phase I. The arrival rate for such

c]

d]

ith queue is

,,
A.
~

co

[

j =k+i-1
g.
~

A [1-G(K+i-2)]

fori= 2,3, ... L-K

The 2nd moment of amount of execution time used

by them in the ith queue is, Ek. 1 (S 2), where

E" . (5 2)
k,~

L-1 co

[1-G(Kli-2)] [Q
2

j=k!i-l gj+O.j:L gi]

L-1
Q2 [g.

31

j =k+i-1 ~ (3.8)
[1-G(k+i-2)]

for i 2,3, ... ,L-K

Those receiving an allocation of L quanta of executive

time in the 1st queue level of Phase II of the system.

The arrival rate for such jobs is

co

[

i=L
g.
~

A [1-G(L-1)]

and the 2nd moment of amount of execution time used

by such jobs is (LQ) 2 •

Those receiving an allocation of Q units of execution

time in the 2nd phase of the system at subsequent

queue levels. The arrival rate for such jobs is,

A I

L+i

00

A. l:
j=L+i

32

g.
J

for i 1,2, ... , 00

The second moment of amount of execution on time used

by them is Q2 •

The arrival process in the first queue level is

poisson, but the arrivals to the higher level queues do not

constitute poisson process. Note that the arrivals to the lower

level queues occur only within processor busy periods but since

the tagged job is assumed to be random (i.e. poisson) arrival,

we can make use of the residual waiting times result (3] pp162

which says that in case the arriving jobs can be grouped into

classes each having a distinct service distribution and let A p

and Bp (x) denote the arrival rate and service time distribution

respectively for jobs of class p, then the expected mean time to

finish the job in progress is given by

E I (s) 1:, l: A E(S 2) (3.9) 2 r ;:;;: 1 p p p

where E(S 2) is the second moment of service time required by a p

job. They have also showed that result is also true even if

higher level queues do not constitute strictly a poisson process.

Hence, using (3.9) we have

33

L-K
~

i=2
~ [1-G (k +i-2)] .

L-1

[l-G(~+i-2)]. Q2 j=k!i-1

A2
-2- . (LQ) 2 + ~

00 00

~ ~

j =1 i=L+j

g. +
J

') - Al E (2) + ~ E (Sr - ~ k S 2
L-K

~

i=2
[G(L-1)-G(k+i-2)].Q2

+ ~ (LQ) 2+ ~
2 2

00

~ [1-G(L+j-1)].Q 2
j=l

Then substituting (3.4) and (3.6) in (3.1) we have,

=V k

Thus from· (3.0) we

get -

w = k

E' (S)
r

E' (S)
r

1 - A 1 Ek (S) + A 1 (k -1) Q Ek -1 (S)

1- A1 ~- 1 (S)

where, the expressions forE' (Sr), Ek(S) (and Ek_1 (S)) are

given by (3.10), (3.2) respectively.

(3.10)

(3.11)

34

Case II K L

In this case tagged job is a long job of size L.

Arguments here are similar to that in case I. Waiting time in the

system for such a job is given by

Le't

where,

V'
L

and

V".
L

w
L

V' + V"
L L

(3.12)

(3.13)

mean time to complete the quantum in progress + mean

time to complete all jobs in Phase I of the system

at the time of arriva], + mean time to complete jobs

in the first queui level of Phase II of the system.

mean time to service all new jobs arrivals in Phase I

of the system during the waiting time in the queue

for the tagged arrival.

To compute VL and VL, consider on equivalent new system

(say s3) in which first phase of our modified feed back system is

replaced by a single queue in which every arrival is allocated a

35

maximum of (L-1) quanta of execution time while the second phase

is exactly the same as the second phase of the original system.

It is immediately apparent that from the point of view of the

tagged arrival the mean time spent waiting for these jobs is

same in both the systems.

and

From (3.2) we have,

L-1

EL-l (S)

I (iQ) .gi
i=l

G (L-1)

1
EL-l (S

2
)= G(L-1)

L-1
I

i=l
i2 g.].Q2

l
(3.14)

where, EL_ 1 (S) and EL_ 1 (S 2) are, as before, the mean and second

moment of amount of execution time used by the arrivals in

Phase I.

Since A1 is the arrival rate for Phase I and VL is the

waiting time in the queue for the tagged arrival the number of

arrivals in this period in Phase I is AlVL. All these arrivals

use EL_ 1 (S) amount of time on the average and hecne VL is given

by

V" =
L (3.15)

on the other hand VL can be written as

36

(3.16)

where E'(Sr) is the mean time to complete the quantum in progress.

N' 1

N'
2

is the mean queue size in Phase I.

is the mean queue length in the first queue level

of the Phase II encountered by the tagged arrival.

Note that, Nl EL_1 (S) is the mean time to complete all jobs in

Phase I of the system and N2.LQ is the average time to complete

jobs in the first queue level of Phase II of the system. To

find N
1
', N' and E'(S) we proceed as follows

2 r

Using Little's result we have

where, VI is the mean waiting time in Phase I queue of the

new system s3 .

Note that

mean number waiting in the queue x mean amount of

ex~cution time used by a job.

Since, Phase I queue system is nothing but a MIGI1. queueing

system, by making use of the result of MIGI1 queues [3] pp 161

we have mean number waiting in the queue

= 2(1-p)

where

P = >- EL-l (S)

and

Cf.-l (S)

p and Cf._
1

(S) are called traffic intensity and coefficient

of variation respectively.

Hence,

N'
1

/..
1.

p2[l+C2 (S))

L-1

2(1~, p).

Using Little's result on N~, we have

N'
2

. EL-l (S)

37

(3.17)

(3.18)

That is because, t.. 2 is the arrival rate for Phase II and VL is

the average waiting time needed for all the jobs before the

tagged arrival, in Phase I and Phase II get serviced.

38

To calculate E'(S) consider as before a new system r .

s4 which is equival.ent to s3 from the point of view of the tagged

arrival. In system s4 as shown Fig. 3.3 all jobs join Phase I,

but long jobs are not serviced in Phase I. In Phase II system

. is exactly same as that in s3 .

We note that there are three types of jobs to be

considered nm1

a]

b)

c)

All the jobs with the arrival rate in Phase I of

the new system s4 . The second moment of the amount

of execution time used by them is given by

EL-l (S)

L-1
l:

i=l
/"Q)2 +02 \ l ,g. .

l

G (L -1) . EL-l (S 2)

00

l:

i=L
g.

l

(3.19)

The jobs with arrival rate Az in the first queue

level of the Phase II in the new system s4 . The

second moment of amount of execution time used by

such job is (LQ)2.

The jobs with arrival rate A[1-G(L+i-1)] for the

ith queue in the subsequent queue of Phase II of

the new system fori= 1,2, ... ,oo

Thus by using the result (3.9) we have

A
2 •.

00

L [1-G(L+i-1)] .Q2
i=l

Substituting from (3.17), (3.18) in (3.16) we have

p2 [1+C2 (s)]

V' = E'(S)+A J,=-:l
L r 1 2(1-p)

V'
L

[E'(Sr)+ 2(1~~) p2.[l+C{_l (S)JE{_l (S)

[1 -A2LQ)

Summing (3.21) and (3.15) we get

A 1

[E ' (S r) + 2 (1- P) • P 2 [1 +C{ -1 (S)] E{ -1 (S)]

[1 - A2 LQ J

and from (3.21) we finally get,

39

(3.20)

(3.21)

(3.22)

[E'(Sr) + 2(l~pl) ~p2[l+CL2-l(S) E2 (S)]
__;::__~~~---__:_-=-=-----=L~-:=-l- + LQ (3 23)

[l->. 2LQ] [1->. 1 EL-l(S)] .

with the expressions for p, C{_1 (S), EL-l(S) and E'(Sr) as

given above.

p
H
A
s

Q

40

E

II Q

I

I
I

p

H

A
s
E
I

L-- ----------~- ~----.......
PROCESSOR.

Fig. 3.3

Case_ III K > L

1!.Q

COMPLETE SERVICE
TO SMALL JOBS

NO SERVICE TO

LONG JOB

In this case the tagged job is a long job of size

greater than L. A close look at both usual multi-level feed back

discipline and modified feed back discipline, which we presented

earlier will reveal that, from the point of view of a job

requiring more than LQ amount of run time, both the systems are

equivalent. In fact, usual and modified feed back algorithms

vary only with respect to its treatment to jobs of size less than

41

or equal to LQ. That is because, the tagged job gets its (L+l) th

and onwards quanta precisely at the same time in both the algorithms.

From the· point of view of the tagged job, it is innnaterial how we

permute small jobs·and whether we give them one quantum at a time

or in bulk service, because tagged job gets its (L+l)th quantum

in both the systems only when all the small jobs before it has

already finished service. Instead of getting one quantum at a

time for initial L queues in usual feed back discipline it gets

LQ amount at one go in modified feed back discipline which helps

small jobs to finish service earlier, but makes no difference for

tagged job. Hence, waiting time in the system Wk for the tagged

job in modified version is same as that in usual multi-leve.l feed

back algorithm, which is given as (3].

where

and

00

k
E (iQ) gi + kQ[l-G(k)]

i=l

k
E

i=l
(iQ) 2 .g. + (KQ) 2 [1-G(K)]

l.

(3.24)

Note : Results for the continuous service distribution can be

obtained from the expressions of Wk derived above by taking the

limit of Wk as Q+ 0, K + oosuch that t = QK remains constant

42

i.e. W(t) = lim Wk.

Q + 0

K + co

KQ = t

43

Chapter - IV

SIMULATION EXPERIMENT

4.1 Development of Simulation Program

· A simulation program was run to compare usual multi-

'level feed back discipline and modified feed back discipline,

with respect to weighted average waiting time for the job and

system throughput. Since, average waiting time is a multiple

of quantum size, we define weighted average waiting time as the

average waiting time divided by job size, to make the expression

independent of quantum size Q. System throughput was defined

as

wk
1/ E Prob. [Job Size= KQ]

KQ

The above is a valid measure for performance evalua~

tion as increase in throughput according to the above criteria

means reduced weighted average waiting time for the jobs and thus

number of jobs served/time unit will increase. To obtain system

throughput through simulation, an unbiased estimate of

Prob{Job Size=KQ]
No. of Job Size KQ Served
Total No. of Jobs Served

(which is nothing but the relative frequency) is used.

There are essentially two programs one for the usual

44

feed back simulation and the other one for the modified feed back

simulation. Programming Language used is Pascal. Programs make

use of Dynamic data storage, in the sense that no memory require-

ments are declared beforehand.

Two different types of Record Data structure are used

called queue-node and Job-node respectively. Fig. 4.1 shows

the node-structure explicitly.

I
Que Total No. Total

·I
Right

I
Down ~--~ob Number of Jobs Waiting

I of q-number Time of I I I
!size served Such Jobs I I I

[Queue-node Que-node

I
I

Job Job's
I Arrival Required Next

Time Time I
I

JOB-node I
JOB Node

Fig. 4.1

Programs are modular in nature arid has following

modules

i] Procedure EXPO

ii] Procedure UNIF

iii] Procedure INITIALIZE

Node

iv]

v]

vi]

vii]

viii]

[i]

Procedure ADDQ

Procedure CHANGEQ

Procedure HEADREPORT

Procedure REPORT

MAIN PROGRAM

45

.Procedure EXPO generates inter-arrival time which is

exponential since we have assumed a Poisson arrival.

The method makes use of Inverse Cumulative Distri­

bution Function. If X is a continuous random variable

with cdf F(X) then random variable Y = F(X) has uniform

[0,1] distribution. Hence Y is generated from U[0,1]

and X = F-1 (Y) gives observation from X. To generate

pseudo random numbers Tausworthe's feed back shift

register method [6] was used. The basic method uses

a sequence of polynomials {Uk} with coefficients

in GF(2), generated by recurrence relation.

1

X Uk_
1

(mod Xp + Xq + 1)

{Uk} formed in this manner are given a circular shift

of (p-q) places to the left to form the sequence of

p-tuples {Wk} on Wk the following operations are

performed. We also make the following assumptions:

46

Operations (q <I and n is integer multiple of p).

1
1) Wn is set in Register A in bit positions 1 through p.

(exclusive of sign bit).

2) Register A is copied into Register B and Register B

is left shifted to q places bringing O's into the

q right most places.

3) Register A is exclusive or-ed into Register B and

result is stored back into Register A.

4) Register B is right shifted to p-q places bringing

O's in from the left.

5) Register B is exclusive or-ed into A.

This method results in Register A containing new Pseudo-random

integer.

For assessing the goodness of generated sequences of

pseudo-random numbers, following empirical tests (the tests which

are applied to samples .of generated output) were applied

a)

a) Kolmogrov Smirnov Test

b) Marsaglia's Lattice Test

Kolmogrov Smirnov [5] (One sample, non parametric)

test for goodness of fit tests null hypothesis H :
0

F(x) = F
0

(x) for all x, against the alternative

H1 : F(x) f F
0

(x), for some x. F
0

is a completely

b)

Step 1

Step 2

specified continuous distribution function. The

K-S statistic used for this purpose is

D
n

sup
X

47

where n is the sample size and S (x) is the empirical
n

distribution function. In our case F (x)=x as X
0

follows U[0,1) Dn is a distribution free statistic

and critical values of Dn in case o~ uniform distri­

bution are available. This test gives good result

even for small values of n.

The lattice test [6] for testing n-space uniformity

is given below :

(n+1) set of n-tuples of random numbers were

generated successively and were denoted by p 1 ,p2 , ... ,

Let D the absolute value of the determinant of

• • •

If value of D is zero, then Step 1 is repeated.

Step 3

Step 4

Step 5

48

Step 1 and Step 2 are repeated to form a sequence of

D's, Dl,D2, ...

Let

g2 gcd(D
1

, D2)

g3 gcd(D
1

, n2, D3)

g4 = gcd(D
1

, D2' D3, D4)

If some g.
1.

1 generator has successfully passed the

test.

If the sequence of g.'s become constant (f 1) for a
1..

number of successive iterations, the generation have failed the

test.

The lattice test was used as recommended by Marsaglia

for n = 1,2,3, ... The program listings of these tests and

Tausworthe generator are given in the Section 4.

(ii) Procedure.UNIF generates observation from the

distribution which has the pdf given by f(X) = ~

for X=l,2, ... ,N. Though the analytical result hold

for any discrete service distribution. We have used

only the above distribution to generate service time

for the jobs. This procedure also makes use of

inverse cumulative distribution function method.

(iii)

(iv)

(v)

(vi)

Procedure INITIALIZE when called initializes the

system. It forms queue node for the first queue

and attaches the first job node to the queue-node.

In case of modified system, it initializes both

Phase I and Phase II of the system and attaches

the job node to Phase I queue or Phase II queue

depending upon its size.

49

Procedure ADDQ (r) attaches a new queue-node to the

already existing queue-node pointed by pointer r.

The q-number of the new node is assigned as the

q-number of r-node+l.

Procedure CHANGEQ (p,time) when called takes a job­

node at top of the queue-node pointed by p and checks

the required run time of the job-node. If the

job-node equals q-number it means the job has finished

its service and then by making entires about its

waiting time, it dispose the job node. Otherwise, it

attaches the job-node to next lower-level queue to

get further service. If the next lower queue does

not exist, it calls procedure ADDQ to construct one

such queue.

Procedure HEADREPORT prints the headings of the output.

(vii)

(viii)

4.2

50

Procedure REPORT prints the values obtained of the

variables.

Main program has a clock. This clock advances in

multiples of quantum size Q (which in our model is

taken as 1, without any loss of generality). The

main program first calls Procedure INITIALIZE to

initialize the system. After it becomes free, the

'simulated processor' searches for the highest-

level non-empty queue, and calls the Procedure

CHANGEQ. After the operation it advances the clock

by quantum or by L Quanta if it is the Lth queue the

modified feed back discipline. As soon as new arrival

comes it joins the tail of the highest level queue

in usual fe.ed back discipline. In case of modified

feed back system, it joins Phase I or Phase II

depending upon its JOB-size. The process is continued

till the clock exceeds 'Simulation time' limit. After

this main program calls Procedure HEADREPORT and

Procedure REPORT to print the outputs.

Flow Charts
Flow charts of usual and modified multi-level feed

back queue are listed. Procedure EXPO, Procedure UNIF and Procedure

HEADREPORT being very straightforward are not given. Procedure

ADDq and Procedure REPORT remain exactly same for both the

simulations. Procedure CHANGEq and Procedure MAIN PROGRAM being

very similar in both the cases, for the sake of brevity, only

the changes required at appropriate places are mentioned, in

modified feed back case.

Note In the flow charts, p[S] denotes the field S

of the pointer node p. An assignment of the

for p[S]+ NIL implies that no node of the

'field S' type is attached to p.

51

USUAL MULTILEVEL FEEDBACK QUEUE

Flow Chart - 4.2.1.

Pnoeedune In~t~al~ze (Sy~tem)

Tak.e a new job node po~nted by

po~nten "q "

I
l

A~~ign

Sy~;tem [q - numben 1 *- 1

Sy~tem [total no. ~enved 1 *- 0

Sy~tem [total waiting time *- 0

Sy~tem . !Ugh:t 1 *- Nil

I
I
I

Sy~tem [down 1 *- q I

Call PIWcedwce UN!F, whi.ch "-Wl!tni> a new MJtv-tce I
time I

------~--------1
I
l

Fill up ;the MelM ot} q M,

q [an!Uval time

q [nequined time

q Next

l
RETURN

*- 0

1 *- Senv~c.e time

J +Nil

52

FLOW CHART 4.2.2

I

I
j

PROCEVURE AVVq{p)

Take. a new qu.e.ue.-node. po..i..n:te.d by po..i..n:tVt q

Fill u.p :the. Metd6 o6 node. q M,

q

Q

Q

Q

Q

[q - numbe.Jt] + p[q-numbe.Jt] +1

[:to:tat no. ~eJtvedJ + 0

[:total wait..i..ng time.]+ 0.0

[!Ugh:tJ +Nil

[down 1 +- Nil

A:tta.c.h node. q :to p by M:O.ig vt..i..ng,

p[!Ugh:t] + Q

·t RETURN I

53

FLOW CHART 4.2.3.

I 1#1 I

PROCEDURE CHANGE q (p;time)

Take t:wo ne.w job-node!.> pointed by pointeJt "q" a.nd

pointeJt "S" a.nd ne.w que.ue node pointed by "Jt"

pu;t,

'It

A~~ign,

q + p [down]

,t,

I~

q[JtequiJted NQ A
[~narhbVt]

,

Yu

p [total no ~Vtved] + p [total no.~Vtved]+l

p [total waiting time] + p [total waiting time]
+time+l-q[aJtv.time]

p [down] + q [next]

Vi-6po~e q -node.

I RETURN l

54

A.6.6..tgn,
p [down] + q [next]
q [next] + Nil

Jr. + p [fLigh-t]

Yu
Jr. [down] + q

S + Jr. [down]

I Nil
Yu S +- S [next]

S [next] + q

,

RETURN

55

RETURN

56

FLOW CHART 4.2.4 PROCEVURE REPORT (It, SUM 1 1 SUM2·)

L1

Jl. [JU.g h:t J I Nil
Yet>

.... SUMJ + SUM1 +It [.to-tal. no • .6eJtved] ,

1.6
n[.total no • .6eJtved]

=0

Ave~tage waiting time = 0

/

No
.....

Ave~tage waiting .time
wcU.ting .t.i..m e

+ Jt[.total no • .6e~tved]

WEig h.ted Av eJtage (~aiting :t-Une

AveJtage waiting time
It [q - nwnbe~t J

SUM 2 + SUM 2 + weighted Ave~tage wcU.ting .t.i..me
x It [.total no.·.6enved]

t
Ptcin.t AveJtage. wad:ing time. and

Wugh.te.d Ave~tage. Waiting time

It + It [night]
G.~~ TO L 1

FLOW CHART 4.2.5 57
MAIN PROGRAM

START

Re.ad .6-i.mu.l.ation.time. .ti.rnd , AluUval... na:te.

(~)

A and Se.Jc..viee. time. paJc..ame.te.Jc.. N •

. I.u..ti~ze.

time. ctoc.k {- 0
SUM 1 f- 0
SUM 2 ~ 0

I~.>
tll..a 6 Qie inte.n~.>ay
(~e., :\ E (S)) ~ 1

No

Pll..int, S~mula;U_on

not done. a.6 pnoc.e..6.6
if.> not ~n J.Jte.adlj
J.Jtate.

Take. a new queue. node. pointed by po~nte.Jc..
"~.>IJ~.>tem"

CaU Pnoee.dull..e. I.U..U~ze. to J.Jtall..t :t:he.
J.Jy~.>tem

58

Ca.U. PMc..e.c:lwte. EXPO :to ge.neJL.a.:te. one.
I n:teJtaJrJl._,[v a.l :t.-i.m e.

Put,

Ne.x:t a.Jl!Uva£. :tUne. :tUne. ci.o c..k. + I n:tvr..a.!l.JU.va£.
;tUne.

L3--

16

L4

(ill

v

P + .6 y.6:tem
e.nd 1 6ai-6e.

0-

p(down] =NIL and
p (tight]= NIL

Yes

(-U.i)

time. c.lo dz + ne.xt
a.!l.fU. v CLt ;Ume.

e.nd 1 ..,. ;tJtu e.

59

G

I~

P [down] INI L
and

P [!U.giU: [INI L

NO

I~

P [down 11 NIL
and

P f !U.g h;(: [= NIL

No

I~

p[down]l NIL
and

P f JU.gh;t] INI L

No

GO .to L2

YES

60

Call Pnoeedune change q

.time ci.oek + .time ci.oek+ 7

end 7 + :tftue

Call p~ocedune add q.

Call Pnocedune changing

time dock + time dock + 1

end 1 +

p + p [!U.ght]

61

T a.ke. a. new job n.o de. poin.:te.d by

l E I '\.

J
,

poin.:teJt II q II

' "'
AMign.

q [a!UUva.l :Ume.] +- N e.x;t a!UUv ai.. .time.

c.aU. P.IWc.e.dwte. UNI F :to ge.n.eJta.:te. a. new .6 eJtvic.e. .time.
(iv)

q [Jte.q ui!r.e.d .time.] +- .6 e.Jt vic. e. .tim e.

q [n.e.x;t] +- Nil

1

Sy.6:te.m [down.] =NIL

62

H

m [·next:J == NIL
-No m + m [next:J

m[nex.tJ + q

/

:to g eneAa:te one

N ex.t a!l!Uval :t.Une + nex;t a!UU v a1

1 F J
63

..... ,

Call Pnoee~e Headnepont and Repont ~o
Catcul.~e and p!U~ ~he outpu:to

..... v

T lvw ug hptd = To~at no. o6 job~ ~enved
N
f W~ed.av.w~.timexno. o6job~ /~enve.d

'-'

P!U~ ~hnoughptd

·MOVIFIEV MULTILEVEL FEEV BACK QUEUE

FLOW CHART 4.2.6.

Pll..oc.e.dWLe. I rU.tiaU_ze. (Sy.otem 1, SyJ.Jtem 2 J

Take. a ne.w job node. po..<.nte.d by po..<.nte.Jt "q"

SyJ.Jtem 1 [q numbe.Jt] + 1
SyJ.Jte.m 1[total no. J.Je.Jtve.d] + 0
SyJ.Jte.m 1 [total waiting t..<.me.] + 0
SyJ.Jte.m 1 [!tight] + Nil
SyJ.Jte.m 1 [down] + Nil
SyJ.Jte.m 2 [q-numbe.Jt] + L
SyJ.Jte.m 2 [total no. J.Je.Jtve.d] + 0
SyJ.Jtem 2 [total wa.A..ting time.] +- 0
S yJ.Jte.m 2 [ll..ig ht] + Nil
SyJ.Jtem 2 [down] + Nil

M I

64

M

CCLU. PJr..oc.e.dwz.e. UNIF (-6Vrv-i.c.e. .time., N) whic.h
Jr..e..:twtn a ne.w -6 e.Jr..v-i.c.e. .time..
Fill. up the. 6<-e.ld o 6 q a6 ,
q [aJl!U.vai.. time.] + 0
q [Jr..e.qu-i.Jr..e.d time.]+ -6 e.Jr..v-i.c.e. time.
q [Ne.x:t] + Nil

I!.l

q[Jr..e.qu-i.Jr..e.d time.]+L
Yu Sy.o.te.m 1 [down]+ q

No

RETURN
Sy-6.te.m 2 [down] + q

65

FLOW CHART 4.2.7
PtLoc.edWte CHANGE q (p, ..tUne)

Repf.ac.e ; b.toc.k. maJtk.ed w..Uh 1 * 1 o 6 6f.ow c.ha!tt 4. 2. 3 by; (k.eep.{.n.g aU
o:thetL p~ .6ame)

p[total no • .6etLved] ~ p [towa.t no • .6etLved] + 1
p [down.] + q [next]

n.umbetL 1 L

No

p [to tal wa,i_ti ng time J
~P [total wa,i_tin.g .tune J

+t+l-q[anv. time]

p [total waJ.;t,tn.g timu] ,

~ p [total waiting time 1

+t+ L -q [Mv. time]

/

66

FLOW CHART 4.2.8

MAIN PROGRAM

a] Re.p.f.ac.e. b.f.o..c.k. maJtk.e.d w..Uh (-i.l by,

T ak.e. :two que.ue. nodu po-i.nte.d by po-i.nteN.>

S y.o;te.m 1 and S y.o ;te.m 2 •

bl Re.p.f.ac.e. bloc.k. m~k.e.d with (-i.-i.) by,

p +- s y.o;te.m 1

c.] Re.p.f.ac.e. bloc.k. m~k.e.& wilh (~! by,

L6

1L +- Sy.o;te.m 2

e.nd 2 +- 6al.o e.

e.nd 2 = ;t!Lue.

67

fl.[down]

and

fl.[tUght]

NO

I-6
fl. [down] f. f.!

and
!t[tUght]f. NIL

NO

c.ai.1.. pM c.e.dWLe.

t;,i_me. +- t;,i_me + 7

68

.time ctoc.k.

+ Next M!Uvaf..
>--+-~

.time

end 2 + btue

t;[me.

~
I-6

fl. [q- numb e.Jr.]
= L

1'-.10

+- time_ + L

e.nd 2 +- ;t!tue

K

Jt[Jt.i.ght] =
and

It[down]I,· NIL

h

n[JU.qht] =/NIL
and

Jt[down] =NIL

YES

end 2 bwe

c.aLt Pnoc.edWte
Add q{Jt] and

c.hange q [n,time]

69

NO

time ' time +

time time + L

!T.[!Ught]

GO TO L4

70

d) Add a.fjtvc. b.toc.k. maJtk.e.d (iv),

Sy.t>:te.m + Sy.6:te.m 1

NO

S !J.6:te.m + Sy.6:te.m 2

Att o:thvc. po!Lti..ono Jte.mcUrt .6 arne.

71

4.3 Program Listing

Enclosed Programs

1] Tausworthe Generator

'
2] Kolmogrov - Smirinov Test

3] Lattice Test

4] Usual Feedback Queue Simulation

5] Modified Feedback Queue Simulation

PROGRAM 4.3.1

C PROGRAM TAUSWORTHE GENERATOR
2 REAL*8 C<31>~A2 1 B2
3 INTEGER P,Q,PP,IA<31 1 31l,IB<31>,SBIT
4 INTEGER*B K 1 S,IS,A!31J,INT
5 PP=33

Q:13
7 P=31
8 K=2
10 DO 123 !=1~5

11 K=K!!-K
12 123 CONTINUE
13 K=K/2-1

14 A<ll=1
15
16
17

10
DO 10 1=2,P
A<Il=2!~:A\I-1l

DO 321 I=1 ~p
18 L= 1
19
20
21
22
23
24
r;r:
..: f

26

28

13

14

17

IF (A(Il.EQ.LAND.l.LT.PJ GO TO 14
IF \AUl.EQ.1.AND.L.EQ.Pl GO TO 33
IB(ll=MDD\A(Il ,2J
Adl=AUi/3
L=Lt-1
IF (l.LE.Pl GO TO 13
GO TO 121
18(Ll=1
DO 17 Kl=Lt-1 1 P
IB 0-:11=0

29 GO TO 121
30 33 IB !P!=l
31 121 DO 555 NNN=l,P-Q
32 555 IA\I,NNNJ=IB\Qt-NNNI
33 DO 556 NNN=P-Qt-l,P
34 556 IA!I,NNNl=IB<NNN-P+Ql
35 321 COUNTINUE
36 SBIT=O

• 37 DO 41 J=1 ,PP
38 DO 80 l=l,P
39 DO 21 M=l,P
40 21 IB!Ml=l
41 DO 22 M=Q+l,P
42 22 IB!MI=IA!I,M-Ql
43 CALL EXOR(IA,IB,P,Il
44 DO 29 NN=l,O
45 29 IB<NNJ=IA\I,P-Q+NNl
46 DO 30 NN=Q+l,P
47 3 -IB!NNl=O
48 CALL EXOR!IA,IB,P,IJ
49 S=IA<I,ll

72

50 DO 26 N1=7,P
51 IF liA<I,N1l.EQ.OlGO TO 26
52 IB=IAClrNlJ
53 DO 111 III~l,Nl-1

54 111 - IS=IS!o:2
55
r:•
..:b 26

S=S+IS
CONTINUE

57 A2=S
5!3 B2=K
59 Clll=A2/B2
60 IFCSBIT.EO.OJGO TO 747
61
62
63
64
65

C<I>=C<IlJ.-1000
INT=C.(I l
C<Il=C\Il_:INT
SBIT=O
GO TO 87

66 747 CCIJ=C<Ilio:lOOO
67 INT=Cill
68 Clll=CCIJ-INT
69 SBIT=1
70 87 CONTINUE
71 DO 997 I=l,P
72
73
74
75
76
77
78
79
BO
81
82
83
84

40
oo~ • , I

40

I5=P~HJ-1l+I

WRITE<6,40li5,CCil
FORMAT <IX,I4 1 10X,F14.12l
CONTINUE
CONTINUE
STOP
END
SUBROUTINE EXORIIA,IB,M,II
DIMENSION IA<31,31l,IB<31J
DO 24 N=l,M
IF <IA<I,Nl .EQ.l.AND.IB<Nl.EO.ll GO TO 25
IACI.Nl=IACI,Nl+IBINI
GO -TO 24 •

85 25 !ACI,Nl=O
86 24 CONTINUE
87 RETURN
88 END

73

74
PROGRAM 4.3.2

2
c
c
c

~~~********************************************~**~**************** 
PROGRAM KOLMOGRPV-SMIRINOV TEST FOR TESTING RANDOMNES 

3 *****************~*****************************~******~************ 
4 REAL *8 RNDI10001 ,X,MAX~DC3l.,ALPHAC3} 

N=575 -5 
6 
7 
8 
9 
10 

39 
READ <5,3911RNDI1l,I=1,Nl 
FORNAT\7X,F9. 71 
DO 149 I=1,N-1 
X=RNDII+11 
J=I 

11 J1=J+1 
12 IF <X.GE.RNDCJ}l 60 TO 75 
13 RNDCJll=RNDCJl 
14 J = J -1 
15 IF <J.EQ.Gl 60 TO 76 
16 GO TO 75 
17 76 Jl=J+l 
18 RANCJll=X 
19 149 CONTINUE 
20 
21 
22 
23 
?" -'-I 

25 

I= 1 
MAX=ABSCFLOATCil/FLOATINl-RNDCIIl 
DO 152 I=2,N 
RNSCil=ABSCFLOATill/FlOAT!Nl-RNDCill 
IF CMAX.GE.Rt4D(lll GO TO 152 
MAX=RND(Il 

26 152 CONTINUE 
27 WR!TE!5,20JMAX 
28 20 FORMAT i'MAX =· F14.10l 
24 DC11=1.63/SORTCN11.0l 
30 Dl2l=1.56/SORTCNtl.OJ 
31 DC3l=1.22/SORTCNtf.OI 
32 WRITE 16,191 CD\ II ,I=1,3l 
33 19 FORMATt2X,F15.12J 
34 ALPHAC1J=0.01 
35 APLHAC2l=0.15 
36 ALPHAC31=0.11 
37 DO 280 1=0,3 
38 IFCMAX.GT.D<IllGO TO 201 
39 WRITE(6 1 205JALPHA!Il 
40 205 FORNATC'AT ALPHA;',F6.4 1 'LEVEL OF SIGNIFICANCE' RANDOM 
41 t NUMBERS GENERATED SATISFY K-S TEST OF UNIFORMATY'l 
42 GO TO 280 
43 201 WRITE <6,206JALPHACIJ 
44 206 FORMAT ('AT ALPHA;',F6.4 'LEVEL OF SIGNIFICANCE RANDOM 
45 *NUMBERS GENERATED FAIL TO SATISFY THE K-S TEST OF UNIFORMITY;> 
46 280 CONTINUE 
47 STOP 
48 END 



75 

PROGRAM 4.3.3 

2 
c 
c 

****************************************************************** 
PROGRAM LATTICE TEST TO TEST N-SPACE UNIFORMITY 

3 
4 
5 
6 
7 
8 

88 

REAU:·8 RNDC10001 ,P<4,31 ,U,V,~J 
INTEGERf.8 MODULO,Ll,Nl,G\5001,DC5001 ,REM,TEMP 
MODUL0=64 
DO 88 K=1,500 
D <10 =0 
l2=5 

9 N1=575 
HI READ<5,131 <RND<U,I=t,NU 
11 13 FORMAT <2X,F9.71 
12 DO 999 N=1,3 
13 M=N1/(Nf.CN+111 
14 K=1 
15 Jl=! 
16 L=l 
17 222 IFCl~GT.M.OR.K.GT.MJGO TO 777 
18 DO 998 J=l,N+l 
19 DO 998 I=1,N 
20 Il=Nf.CN+1Jf.(L-11+I+CJ-11f.N 
21 PiJ,l}=RNDCill 
22 998 CONTINUE 
23 DO 997 J=l,N 
24 DO 997 I=1,N 
25 D<J,Il=P<J+l,Il-P<J,!l 
26 947 CONTINUE 
27 GO TO C51,42,531N 
28 51 DET=P\1 1 11 
29 GO TO 54 
30 52 DET=PC1,1lf.PC2,2J-PC1,2lf.PC2 1 1l 
31 GO TO 54 
32 53 U=PC2,2!f.PC3,3l-PC2,3Jf.PC3,2l 
33 V=PC2,1Jf.P(3 1 31-P<3,11f.P\2,3J 
34 W=P<2,1Jf.PC3,21-PC3 1 1lf.P\2,2l 
35 DET=PC1 1 1)f.U-P<1,21f.V+PC1 1 3Jf.W 
36 54 DET=ABSCDETI 
37 l1=MODUL0f.DET 
38 IF <Ll.GT.Ol GO TO 55 
39 l=L+l 
40 GO TO 222 
41 55 D<Kl=L1 
42 WRITE<6,2lK,OCK) 
43 2 FORMAT('K=',18.10X,'D(Kl=',181 
44 GO TO 94 
45 95 WRITEC6,316CKJ 
46 3 FORMATC'GCKJ=',I8l 
47 IF<S<Kl.EQ.ll GO TO 111 
48 Jf(GCKI.EQ.GCK-llJGO TO 193 
49 L=L+1 
50 K=K+l 



76 

51 J1=1 
52 GO TO 222 
53 193 J1=J1+1 
54 IF <J1.EO.L2l GO TO 666 
55 L=L+1 
56 t:=~:+l 

57 GO TO 999 
58 777 WRITEI6 1 776lN 
59 776 FORMATC'FOR',I2 1 '-SPACE UNIFORMITY THE TEST DIDN'T TERMINATE'! 
60 GO TO 222 
61 111 WRITEI6,112lN 
62 112 FORMAT C'FOR',I2, '-SPACE UNIFORMITY THE GENERATOR HAS SUCCESSFULLY 
63 ~ PASSED THE TEST'} 
64 GO TO 997 
65 666 . WRITE16;6671N 
66 667 FORMAT i'FOR',I2, 'SPACE UNIFORMITY THEGENERATOR HAS FAILED TO 
67 ~PASS THE TEST'} 
68 GO TO 999 
69 
70 
71 
72 
73 
74 
75 

94 

27 

76 24 
77 
78. 
79 
80 
81 
82 25 

IFCK.EQ.IJGO TO 26 
1=2 
!!=I-1 
IFIDCII.GE.DII1}l60 TO 24 
TEt1P=D I I 1 l 
D<I11=DOl 
D<Il=TEMP 
REM=ODD\Dilli,DCill 
IF<REM.EO.OIGO TO 25 
IFIREM.EQ.lOOOIGO TO 29 
!}(ll}=D<Il 
DIU=REI'l 
GO TO 24 
IF<I.GT.KIGO TO 26 

83 I=I+l 
84 GO TO 22 
85 29 GIK1=1 
86 GO TO 26 
87 26 G<KI=Ol<KI 
88 28 GO TO 94 
89 999 CONTINUE 
90 STOP 
91 END 



PRO~RAM l: .• 3 • 4 

VAR 

PROGRAM DFBSimulation<INPUT~OUTPUT,RANDU~D3,D4>: 
Type 

ptndtype2= Andtype2; 
ndtype2=RECORD 

ar-vtime:real; 
reqtime:integer; 

next:ptndtype2 
end; 

ptndtypel=Andtypel 
ndtypel=RECORO 

onumber:integer 
totalns:integer 

totalwt:real 
right:ptndtypel 

down:ptndtype2 
end; 

77 

Lamda,Suml,Sum2,Throughput,time,tiBelirnit,nextarvtirne:real; 
ProcessorUtilization~IntarvTime,wttime,avwttime:real; 

system,r,p:ptndtype1; 
m,q:ptndt-ype2 

end1:8oo!ean; 
N,X,Servicetime:integer; 

D4,RANDU,D3:TEXT; 
Procedure Expo(var intarvtime,Lamda:reall; 

\JAR 
P,X, Random:real; 

Begin 
Read!~ (RANDU,RandonJ; 

IntArvTime:=-l.O•LN(randomJ/Larnda; 
end; 

Procedure Unif<Var ServiceTime,N:integer}: 
VAR 

P,X,Randorn:re~l; 

Begin 

End; 
procedure 

VAR 

Readln<RANDU,Randoml; 
p::::1.0/N; 

begin 

x:=Random/P; 
servicetime:=Trunc(X}+1; 

Initialize(system:ptndtypell; 

q;ptndtype2; 

New(ql; 
systemA.onumber:=1 

systeeA.totalns:=O; 
systemA.totalwt:=O.O; 

systemA.right:=Nil 
systeeA.down:=q; 



End; 

q.arvtime:=O.O; 
Unif(ServiceTime,NI; 

qA.reqtime:=Servicetime; 
p·~.nel:t :=NIL 

procedm·e 
VAR 

end: 
addq(q:ptndtypell 

q:ptndtyp€1 
begin 

NEW!ql; 
qA.onueber~=pA.onumber+l; 

q ·'•. tot a 1 n s: = 0; 
qft.totalwt:=O.O; 
qA.right :=NIL; 

q ·'• • down : N I l ; 
p·'•.right :=q 

end; 
Procedure CHANGEq!p:ptndtypel;t:reall; 

'.JAR 

Begin 

q:ptndtype2; 
r:ptndtypel; 

s:ptndtype2; 

q:=p-".dovm; 
if!qA.reqtime=pA.onut~erlThen 

Begin 

end 
Else 

Begin 

End; 

pA.totalns :=pA.totalns +1; 
p ·•· • tot a I w t = p ·'• • t o t a I w t + t + 1 - q ·'• • a r v ti me ; 

pA.down :=qA.next; 
Dispose\ql; 

pA.do~n:=qA.next; 

q·'•. next: =NIL; 
r: =p·'·. right; 

else 
Begin 

If(rA.down=NILl Then rA.down:=q 

s:=r·".down ; 
While (sA.next (} Nlll Do 

s:=s·".next; 
sA.next:=q; 

procedure HeadReport<Var lamda~Timelimit:real;Var N:integerl; 
VAR 

!:integer; 
Begin 
Write l n < D3, '1 '} ; Write 1 nD3 l; Writ el n < 03 l ; Write 1 n <03 l; 

78 



Writeln(03,' ':18 1 'SINULATION RESULTS FOR A USUAL FEEDBACK QUEUE'l; 
Writeln!D3l; 

79 

Writeln\D3 1 ' ':B,'Inter·Arl'"ival rate Exponential ~lith parameter La~r.da ='J; 
Write1n(D3 1 Lamda:7:3l;Writeln<D3J; 
Writeln<D3,' ':3 1 'Service rate discrete Uniform With paralfleter N =' J; 
Writeln\03 1 N:3J;Writeln<D3l; 
Writeln\D3 1 ' ': 15, 'Simulation time:=·, Timeli~r,it:6:3l; 
WritelrdD3l; 
Write<D3l 1 ' ':16l;FoF i:=1 to 95 do Write(D3 1 '*'i;Writeln(D3l~ 
i*r it e 1 n ( D 3 1 ' .: • : 11 1 • * · : 1 7 1 • * · : 2 5 1 ' * · : 7 5} ; 
Write<D3 1 ' ':10 1 '*' 1 ' ':4,'JOB SIZE',' ':4 1 " 1 ' ':4l; 
Write\D3 1 'NO. OF JOB SERVED',' ':4,'*' 1 ' ':4 1 'A'J. !~A!TING Til'lE'l; 
Writeln<D3 1 ' ':4,'f.' 1 ' ':4 1 'WT.AV.WT.TIME',' ':4 1 '!!-'l; 
Wr i tel n ( D 3 , ' * . : 11 I ' * ' : 1 7 I • * . : 2 7 I : * . : 2 5 , • * . : 2 5; 
Write<D3,' ':100 1 For 1:=1 to 95 do Write\D3 1 'f.'l;Writeln\D3l; 

End; 
Procedure Repo~t<r:ptndtypel;Var SUM1 1 SUM2:reall; 

Var 
WtTime,Avwttirne,WavWtTime:real;T:integer; 

Begin 

Write 1 n \ D3 1 • *': 11 1 • * ·: 1 7 1 '* · : 27 1 • * · : 25, · * ·: 25, · lf • : 25! ; 
Whiie (rA.right () nilldo 

begin 

End; 
Begin 

Else 

end; 

Surnl:=Suml+rA.totalns; 
Wr i t e ( D 3 , · · : 1 0, · ¥: • , · ' : 7 , r· .~ • on umber· : 2 , · · : 7 1 • * · i ; 
Wr-ite(D3, · ':11,r·~.totalns:4J; 

If rA.totalns=O Then AvwtTime:=O.O 

begin 
WtTime:=rA.totalwt*l.O; 

AvWtTime:=WtTime/r-A.totalns; 
end; 

WavwtTime:=Av~tTime/rAonurnber; 

blr-ite<D3 1 • ':11, '*' 1 • ':6 1 AvwtTime:12:7, · ':6!; 
Writeln<D3 1 'f.', · ':6 1 Wav~JtTiiT!e: 12:7, · ':6, '+:' l; 
Write 1 n < D3 1 • * ·: 11 1 • * ·: 1 7 1 • * ·: 27 1 • *': 25 1 • +: ·: 25 l ; 

Sum2:=Su&2+WavWtTimeifrA.totalns; 
r: =r ···.r-ight; 

Write<D3 1 • ':10l;For i:=l to 95 do Write<D3 1 '+:'l; 
Wr-iteln<D3l; 

rewrite<D3l;reset<D4l; 
For Y.:=1 to 4 do 

begin 
reset!RANDUl; 

Time:=O.O;Timeli~it:=20000.00; 

Sum1:=0.0;Sum2:=0.0 
Readln<D4,Lamda,Nl; 



begin 
If( Clamda•<N+lll <=2:0Jthen 

Intarvtime:=O.O;ServiceTime:=O; 
NewCSysteml; 

Initialize\Systeml; 
ExpoCintarvTime~Lamdal; 

NextArvTime:=Time+lntArvTime; 
WhileCTime<TimelimitJDo 
Begin 

While <Time(NextArvTimeldo 
Begin 

p:=system; 
end1:=false; 

Repeat 
If(pA.down~NILland(pA.right=Nillthen 

Begin 

End; 

Time:=NextarvTime; 
Endl:=true 

1f \p·''.dmm<>NIU and (p·".r-ightO Nil l then 
Begin 

End; 

ChangeqCp,timel; 
time:=time+1;end1:=True 

lf(pA.down <> Nill and !pA.right:NILlThen 
Begin 

AddqCpi;Changeq!p,timel; 
time::time+l;endl:=true 

End; 
Jf(pA.down=Nill And (pA.right <>Nil} Then p:=pA.right; 

until endl=true; 
End;· 

New(ql; 
qA.ArvTime:=NextArvTime; 

Unif(ServiceTime,N>; 
qA.ReqTime :=ServiceTime 

q·~.Next :=Nil; 
If!SystemA.down=NilJ then Syste~A.down~=O 

Else 
Begin 

end; 

m:=SystemA.down; 
while(mA.next<>Nill do 

m:=m.next; mA.next:=O 

80 

Expo<IntarvTime,la~da>; 

NextArvTime:=NextArvTime + IntArvTime 
End; 

HeadReport<Lamda.Timelimit.Nl; 
Report<System,SUH1,SUH2>; 

Throughput:=Sum1/Sum2;WritelnC03>; 



ENO. 

Writeln\D3, • ·: 16, 'Throughput:=·, 'Throughput: 10:6}; 
ProcessorUniti1ization:= Lamda*IN+11/2.0;Writel3J; 

Writeln\03, ·- ': 16. 'Processor-Utilization:=· ,Proc:essoruti!ization: 10 
Writeln!D3J:l>Jriteln<D3 1 ' ':40,'HTIME UNIT= 1 QUANTUM H'l; 

end; 
end; 

81 



82 

PROGRAM 4.3.5 

PROGRAM 
TYPE 

VAR 

MFBSimulation<INPUT,OUTPUT,RANDU,D3,041 

ptndtype2=Andtype2; 
ndtype2=RECORO 
arvtime 
reqti me 
ne~t 

real 
integer 
ptndtype2 ; 

end; 
ptndtypel=Andtype!; 

ndtypel=RECORO 
onu111ber 
totalns 
tatalwt 
right 
dO\'In 

N,i ,Y.,servicetirne,L 

integer 
integer­
real 
ptndtypel 
ptndtype2 

. time,nexttarvtime 1 lamda,sum1,su~2 
timelimit,throughput 
processorutilization,intarvtime 
t,systeml,system2,T 1 p 
lll,q 
end1,end2 
RANDU,D3 1 D 

integer 
real 
rea 1 

end; 

real 
ptndtype1 
ptndtype2 
Boolean 
TEXT 

Procedure Expo(Var intarvtime,landa:reall; 
VAR 

Random: real; 
Begin 

End 

Readln<RANDU,randoml 
Intarvtime:=-l.O*lNCRandoml/lamda 

Procedure UnifCVAR ServiceTime,N:integerl; 
VAR 

p,x,Random:real; 
Begin 

ReadlnCRANDU,Random} 
p:=l.(t/N 

End 

X: =Ra.('dom/p 
Servicetime:=Tr~nc(xl+l; 

Procedure Initializelsyst~m1,system2:ptndtype1J; 
VAR 

q:ptndtype2; 
Begin 
NEW<qJ 

system1A.onumber:=1 
system1A.totalns:•O 
syste$1A.total~t:=O.O 

systemlh.right:=Nil 



systemlA.down:=Nil 
system2A.onumber:=1 
System2A.totalns:=O 
system2"'.totalwt:=O.O 
system2"'.right:=Nil 
system2A.down:=Nii 
q·'•.arvtime:O.O 
Unif(servicetime,n 
qA.reqtime := servicetime 
q·'•. next :=NIL 

If<q"'.reqtime(L} Then System"'.down:=q 
Else 

End; 
Procedure Addq<p:ptndtypel}; 

VAR 
q:ptndtypel; 

Begin 
NE~Uql; 

qA.onumber:=pA.onumber+1 
q·'•. total ns: =0 
q ·'•. tot a I wt: =(I · 

q·".right:=Nil 
q-''. down :=Nil 
p"'.right:=q 

End; 
Procedure CHANGEq<p:ptndtypel;t:real>; 

VAR 
q:ptndtype2; 
!":ptndtypel; 
s:ptndtype2; 

Else 

Begin 
q:=p·".down; 

If <q"'.reqtime=p"'.onumberJ Then 
Begin 

p"'.totalns := p"'.totalns + 1 
pA.down := qA.next 

If<p"'.onumber=LJ Then 

else 

Else 

pA.totalwt:= pA.totalwt +t+l-qA.arvtime~ 

p·~.t_otalwt:= p·".totahot +t+l-qA.arvtime; 
Dispose<q>; 

End 

Begin 
pA.do~n:=qA.ne~t; 

qA.next:=NIL l 
r:=pA.right ; 

If (rA.down = NIL ) Then rA.down:=q 

·I 

83 

. ' 



Beqin 

End; 
End; 
End; 

s:=-r·''.down; 
lllhile \s.ned 0 NIU Do 
s:=s·'.next; 
S".nPxt~cq; 

Procedure Headreport (Var lamda,Timelimit:real;Var N:integerl; 
Begin 

Writeln<D3,'1 'l;Writeln(D31;Writeln<D3l;Writeln(03l; 

84 

WritelnCD3.' ':11l,'SIMULATION RESULTS FOR A 110DIFI£0 FEEDBACK QUEUE.!; 

Writeln<03l; 
Write<03,' ':3,'InterArrival rate Exponential With parameter laeda ='I; 
Writeln<D3, · ':B, 'Service rate discrete Uniform With parameter N ='l; 
Write<D3,N:31;Writeln(03l; 
Write 1 n ( 03. · · :15, · Si mu 1 at ion t i ll'oe: =' , Ti Ill eli mit: 6 l ; 
Writeln<D3l; 
Writeln<D3,' ':t(I,'Job Greater than or Equal to'l; 
WritelrdD3 1 L:2,'Q"s is a Long job'!; 
Writeln<03, '*': 11, '*': 17, '*':27, '*':25, '*':251; 
Write<D3,' ': 10 1 '¥:',' ':4, 'JOB SIZE',· ':4, '*', · ':41; 
Write<D3, 'NO. OF JOBS SERVED',' ':4, '*',' ':4 1 'AV WAITING TIME'l; 
Writeln<D3,' ':4, '*',' ':4 1 'WT.AV.ltiT. TIME',' ':, '*'l; 
Write 1 n ( 0 3, · · : 11 , · · : 1 7, · * · : 2 7, · * · : 25, '* · : 25 I ; 
Writeln<D3,' ':1l;For i:l to 95 do MriteCD3,'*'l;Writelrd03l; 

END 
Procedure Report {r:ptndtypell; 

VAR 
WtTime,AvWtTime,WavWtTi~e:real;I:integer; 

Begin 

begin 

Write 1 n < 03, · *' : 11 , · ·: 1 7, · * · : 2 7, · f' · : 25, · • · : 25! ; 
While (rA.right<> Nil)do 

Sumi:=Su~l+rA.totalns; 

Write\D3, · ·: 10, '*', · ':7,r".ont~tnber:2. · ':7, 't:'l; 
Write<D3 1 ' ':11,r·".totalns:4l; 
If rA.tctalns=O Then AvWtTime:O.O 

Else-
begin 

WtTime:=rA.totalwt•l.O: 
AvWtTime:=WtTime/rA.totalns; 

end; 
~avWtTime :=AvWtTime/rA.onurnber; 
Write(D3,· ~:11 1 '*' 1 ' ':6 1 AvWtTime:12:7 1 ' ':61; 
flrt:ieln<03, '*',' ':6,WavWtTime: 12:7, · ':b'*'l; 
blriteln<D3 1 '1f-':11, '*':17. '*':27, '*':25, '*':25l; 

Sum2:=Sum2+WavWtTi~e*rA.totalns; 

r:=r·'.right; 
end; 



End; 
Begin 

rewrite(03l;resetiD41; 
For Y.:=l to 50 do 

begin 
ResetiRandul; 
Time:=O.O;Timelimit:=20000.00; 
Readln<D4,Lamda,N 1 Ll; 

IF<Ilamda*<N+11J<=2.0Jthen 
Begin 

intarvtime:=O.O;servicetime:O 
Su~l:=O.O;Sum2:=0.0 

Ne~ISystern11;1New 1System2l 
Initialize 1System1,System2l 
EY.po<Intervtime,Lamdal 
NextArvTime:=Time+IntArvTime 

While I Time < Timelimitl Do 
Begin 

While ITime<N~xtArvTimelDo 

Begin 
p: =system!; 
endl:=False; 

Repeat 
If(pA.down=NILl an~(pA.right=Nillthen 

Begin · 
r~=system2; 

end2:=False; 
Repeat 

Iflr···.down=Nill And lr".right=Nill then 
·begin 

. 
·~ 

!f<Time<NextarvTimel THEN Time:=NextarvTime; 
End2:=true 

End: 
If(r·".downONill And lr·''.rightONiil then 

begin 
Changeq It-, time I; 

If(rA.onumber=LJ Then 
time:=time+L else 

time:=time+1;End2:=true End; 
lf(rA.down<>NillAnd (rA.right=Nill then 

begin 
AddqCrl;Changeq<r,timel;IfCrA.onumber=LlThen 

time:=time+l else 
time:=time+1;End2:=true 

End; 
If(rA.down=Nill And (rA.right<>Nill then r:=rA.right; 

Until End2=true; 
Endl:=true 

End; 

85 



beqin 
Changeq<p,timel; 
time:=time+l; 
end1:=true 

end; 
If(p·~.downONill And <p·~.right<>Nil> Then 

begin 
Addq<pl;changeq<p,timel; 

time::time+1;end1:=true 
End; 

IfCpA.doHn=Nill And <pA.right<>Nill Then r:=pA.right; 
until endl=true; 

end; 
Mew<ql; 
qA.ArvTime:=NextA~vTime 

Unif(Servicetime,Nl 
qA.ReqTime:=ServiceTi~e 

q ·' • N ex t : = N i 1 

End; 

t:=syste111l If(qA.reqtime(L) Then 
else t:=syst.em2; 

t hen t ·' . d own : = 0 
BEGIN 

If \t·'·. down=Ni 1 J 

else 
rn~=t''.do~r.; 

while(mA.next<>Nilldo 
m:mA.next;mA.next:=q END; 
Expo<Intarvtime,lamda!; 
NextArvTime:=NextArvTime + IntArvTirne; 

HeadReport<Lamda,Timelimit,Nl; 
Report<systemll; 
Report<systern2l; 

86 

l~rite<D3,' ':lO;For i:=l to 95 do Write !D3,'.:'l;NritelnW3l; 
Throughput:=Sum1/Sum2;Writeln!03l; 

Wr i tel n (03,' ·: 10, ·Throughput :=·,Throughput: 10: 6}; 
Processor Utilization:•Lamda*<N+1l/2.0;WritelnCD3l; 

Write 1 n ( D3. ' ' : 10, 'Pr oc es sor Ut iJ i z at ion:= · pr oc essorut i 1 i z at ion: 10: 6 l } 
Writeln<D3l;Writeln<D3 1 ' ':4(1, 'HTIME UNIT =1 QUANTUNH'l; 

End; 
End; 

END 



TABLE 4. 4.1 

SIMULATION RESULTS FOR A USUAL FEEDBACK QUEUE 
InterAr~ival rate exponential with parameter La~da =0.050 
service rate discrete Uniform ~ith parameter N = 10 
Simulation ti~e := 20000.00 

****~**************~************************************************************•.----------------, 
* * f. li f. 
* JOB SIZE * NO. OF JOBS SERVED li AV.NAJTING TIME * WT.AW.WT.TIME f. 

Analytical 
Results 

*********************f.ff.f.f.~f.f.f.ff.f.ff.f.f.f.ff.f.f.ff.f.f.f.f.f.f.f.f.f.f.f.f.f.f.f.f.f.f.f.f.f.f.lifff.f.f.f.fff.f.f.fff~--------------~ 

* * * * * 
* 104 1.208658(1 1.2086588 * 1.144737 

************************************************~**********~********************** 

* * f. * * f. 2 f. 114 f. 2.5367341 I 1.2683670 f. 1.332451 

********************************************************************************** 
* 
f. 3 

* 
* 97 4.09l2477 1.36374n 

****"******"************************fllflillf.llillllllf.~flllllfff.fflf.lf.flllf.lf.llfl 
I f. f. I lE-

1. 2817S6 

I 4 f 113 I 5.5119171 I 1.3779793 I 1.245020 

*******************************'*********~*******************"*********f.*l******** 
I f. I I I 

f. 5 f 96 f 6.4728843 I 1.2945769 I 1.310693 

******"************************************************************~************** 
* * ., f. * 
* 6 f. 115 * 8.0061391 * 1.3343566 * 1.366263 
***********************f.f.f.lf.ff.f.lf.lflf.lf.f.lf.f.lf.llf.lf.llf.llf.f.llf.f.llf.lflllf.llf.lfllllflf 
I I I f. I 

f 7 I 122 I 9.5013115 f. 1.3573332 I 1.421583 
****************fllllf.fllff.f.f.llllllllf.f.llllf.f.llllllf.llflllf.f.f.lflff.lf.lf.f.lf.lfff.flllf. 
f. I f. f. I 

I 8 f 1 0 1 I 1 2 , 03 7 4 8 2 •l I 1. 50 4 6 8 53 I 1. 4 65 72 4 

***************************************************************'-*****~************ 
I I f f. * 
f 9 I 85 I 13.9497953 I 1.5499773 f. 1,495886 

***********************************~**'*****************''************************ 

* * * * * * 10 * 99 * 16. 665•1566 * 1. 6665452 * 1.510014 
*********fff.f.f.fff.ff.f.f.fff.lf.lff.f.f.f.ff.llfff~ff.f.~~··•***********'***********·**********~---------------4 

Throughput :=0.718010 ANALYTICAL THROUGHPUT : 0. 7 36695 

Processor Utilizatiqn := 0.275000 

**TIME UNIT - 1 QUANTUMtl 



TABLE 4.4.2 

SIMULATION RESULTS FOR A MODIFIED FEEDBACK QUEUE 
lnterArrival rate exponential 1-1ith parameter:::: 0.050 
Service rate discrete Uniform ~1th parameter :~ 10 
Si~ulation ti~e:= 20000.00 
Job Greater than or Equal to 6Q"s is a Long job 

****'-*********f.f.fff.f.f.f.f.ff.f.ff.f.f.f.f.f.f.ff.f.ff.f.f.f.f.f.ff.~ffffff~f.ff.f.f.f.fflf.f.f.f.f.lf.f.f.*********.---------------~ 

* * f. * f. 
* • 

JOB SIZE * NO. OF JOBS SERVED * 
* 

IW.WA!TING TINE f. 

* 
WT.AW.WT. TINE * 

* 

Analytical 
Results 

****f.**********************************~******************************•***********·----------------~ 
* * f. * * 
* * 1(14 * 1.41186514 * 1.4186584 * 
**********************************************************f*********************** 
* * * f. * f. 2 114 2.7419972 1.3709986 * 
********************************f.lf.ftlt~f.ttftlf.f.f.f.tf.f.f.f.*l***~**********f.f.f.fff.f.tf.f.f. 

* * If * * * 3 I 97 * 4.07725BOO * 1.3375293 * 
***********************~********~·~J.f.f.tf.f.fff.f.f.f.f.f.f.ltlllff.f.llfff.llf.ltf.f.f.f.f.tttttff.tf. 

* * f. * * 
* 4 113 4.9358984 f. 

*****************************~******************************************f.lf.f.fff.f.f.t 
* * f. f * 
I 5 96 5.8458009 1.6191602 * 
****************f.*************************~********************lf.ff.f.f.f.f.f.lff.ltf.f~** 

* * f' * * 
f. 6 * 115 * 7.0626612 * 1.1771103 * 
f.tf.lf.f.f.f.f.tf.f.tf.f.tf.lf.f.lf.f.f.**************************f.f.lf.~f.f.f.f.f.f.f.f.f.****************** 

* * " f. * * 7 * 122 f. 9.5013115 f. 1.3573302 * 
********************ltf.f.f.if.f.f.f.f.~f.fftff.lff.~*~~~~~fllft~~~~-~~~····················· 
I f. >' f. f 

* 8 101 12.0574824 1.S04b853 * 
***********************************~***~flf.f.ff.fflf.ff.f.flff.f~ffllf.lfllf.lffllf.f.f.f.lilt 

* * f * • 
• 9 * as * 13.9467953 * 1.549q773 * 
********!f.ff.flf.lf.f.f.f.f.f.fff.f.llff.f.f.f.f.tf.lllff.fffllflf.fiff.fff.f.ll}lf.lllf.~f.lf.f.f.ff.fllff.f.f.f. 

* * * * • 
10 * 99 16.66:54516 1.6665452 * 

1.525641 

1. 300107 

1.240281 

1.217313 

1.202616 

1.130607 

1.421583 

1.465 724 

1.495886 

1.510014 

f.lf.f.f.f.f.f.Hif*f.f.fff.f.f.Hif.f.; lf.lt~·f.f. ~f. f. f. If f.iH:fl tH: f.<:~ lf f. I I< f. f.lf1.-f.H:f.f. ¥:.:·f.f.f.IHHff. f.f.¥:f.f.f.f.f.lfl.:-.-------~ 
Throughput := 0. 724718 ANALYTICAL THROUGHPlJf : 0. 740203 
Processor Utilization:~ 0.275000 

lf.TIME UNIT ~ 1 OUANTUNtt 

00 
co 



TABLE : 4.4.3 
SiMULATION RESULTS FOR A USUAL FEEDBACK QUEUE 
InterArrival rate exponential with parameter lamda := 0.100 
Service rate discrete Uniform with parameter N := 5 
Simulation ti~e:= 20000.00 

**********f!ffffff:f:f¥:lHH!f. Hf:f." !H':f.f f.f.f:f.f.f.f. f. f. f. f. f. f: f. f. f. f. f. f. f. !!-f. f. H: f f.f.H:f.f. f. f: f. f:f. f. f. f. f.f.H':f: f. H:f.,...------------, 

* * f. f. * * JOB SIZE * NO. OF JOBS SERVED I AV.NAITING TIME * WT.AW.NT.TlME f. 

* * f. f' * 

Analytical 
Results 

**************************************f.f.f.f.f.f.f.f.f.f.f.f:f.f.f.f.f.f.ff.f.f.f.f.f.f.f.f:f.f.f.f.f.f.f.fff.f.fff.ff.~-------------

* ¥: f. * * 
* 1 * 412 1.1916342 * 1.166667 
***************"*********"********f.f.f.f.f.f.f.f.f:f.f.f:f.f.f.f.f.ff:f.~ff.f:f.f.f.f.f.f:f.f.f.f.f.ff:f.f.f.f.f.ff:f.f:f.f.f. 

* * f. f: * * 2 * 401 * 2.0679938 * 1.30394b9 f 1. 271382 
*******************************f.ff.f.f.ff.ff.ff.f.f.f.f.f:f.f:f.f:f:f.f.f*ff.f.f.f.f.f.ff.ff.f.f.f.f:f.f:f.f.f.f.f.f:ff.f.f. 

* * f. f. f. * 3 * 396 * 4.2077286 f. 1.4025762 f. 1.333547 

*********************************************~************************************* 

* * f. * * * 4 f. 417 f. 5.6716648 f. 1.4179162 f. 1. 372622 

**·*********************************f.f.f.f.f.f.f.f.f.f.f.f.f.f.f.********************************* 
* * f. f. f. 

* 5 * 3S1 * 7.7505437 * 1.5501037 * 1.529365 
************************************f-***********************'-******ff.f.f.f.f.f.f.f.f.f.f.f.f.f.~.--------------------~ 

Throughput := 0.729269 ANALYTICAL THROUGHPUT : 0. 7 4925 

Processor Utilization := 0.300000 

ff.TIME UNIT = 1 QUANTUM** 



TABLE 4.4.4 
·?-

SIMULATION RESULTS FOR A MODIFIED FEEDBACK DUEUE 
InterArrival rate exponential with parameter Lamda =0.100 
Service rate d~5crete Uniform with parameter N :~ 5 
Simulation time1= 20000.00 
Job Greater than or Equal to 3Q»s is a long job 

******************'**'********************~*****~***************~*****************~:----------~--------~ 
* JOB SIZE * NO. OF JOBS SERVED * AV.NAITING TJME * NT.AW.WT.TIME t 

f. * f. * * 
Analytical 

Results 
**********************************************~***********************~f.f.f.f.f.f.f.f.f.f.f.~.---------------------4 

* * * ~ * * f. 412 * 1.33299~4 f. 1.3329934 * 
**********************************i**************************'********************* 

' * * * f. f. 

* 2 * 401 2.57078b6 1. 2853933 
**************************lllf.lf.lf.f.ff.f.~f.f.f.f.f.lf.f.f.f.f.f.f.f.lf.~ff.f.ff.f.f.f.f.~flf.f.f.f.f.f.jff.f.f.f.ff.f.f. 

* * f. * f. 
f. 3 f. 396 I 3.5201529 f 1.1733843 I 

************************************llf.lf.f.lf.lllf.f.lf.lf.lllf.l~f.lf.lf.f.f.llf.ff.f.f.f.f.lf.f.lf.f.ll 

* * f. f. f. 

* 4 * 417 , 5.671665(1 1.41H162 
*******************************llf.lf.f.f.f.f.f.f.f.f.llf.f.f.f.lf.f.f.f.f.l~~~···f.f.lf.lf.lllf.f.f.f.f.llll¥:1 

* * f. f. * 
f 5 f. 381 f. 7.75054~7 I 1.5501087 f. 

1. 34375 0 

1. 214760 

1. 151930 

1. 372622 

1. 529365 
********************************************lf.lf.llf.f.~lf.f.f.f.f.f.ff.f.f.f.f.lfff.ff.f.llf.flllf.f~.--------------------·~ 

ANALYTICAL THROUGHPUT : 0.756152 

Throughput:= 0.739667 
Processor Utilization := 0.300000 

ffTIME UNIT = 1 QUANTUM** 



TABLE 4.4.6 

SIMULATION RESULTS FOR A MODIFIED FEEDBACK QUEUE 
InterArrival rate e~ponential with parameter Lamda =0.200 
Service rate di$Crete Uniform with para~eter := 5 
Simulation time:~ 20000.00 
Job Greater than or Equal to 30"s is a Long job 

******************************************************************************¥.***~-----------------------~ * JOB SIZE * NO. OF JOBS SERVED * AIJ.WAITING iiME * WT.Al.J.WT.TIME *Analytical Results 

* * f. * ¥: 

************************ .. **************************f.***************************'**~:-----------------------4 
* * * f: * * 1 * 818 * 1.6888487 * 1.6888487 * 1.717391 
***"******************************************************************************* 
* * * * ¥: * 2 * 762 * 2.8911768 f. 1.4455884 * 1.475790 
*******************************f.f.f.f.f.f.f.f.ff.li:f.f.f.ff.f.f.f.f.f.f.f.ff.f.f.f.f.f.ff.f.ffff.f.fff.f.ff.f.ffli:ff.f.f 

* * * f. * * .3 f 785 * 4.4279088 * 1.47596B6 * 1.421909 

******~**********'~*************f.ffff.f.f.f.f.f.f.f¥:¥:ff.f.f.ff.f.f¥:f.f~fff.fff.f.f.ffff.fff.fffff.f.ff.f.f. 

* * * f. • 

* * 813 9.8127822 2.4531966 * 2.488636 
*************************f.ff.f.f.fff.ff.f.ff.f.f.f.ff.ffff.f.ff.f.ff.ff.f.¥:f.f.f.f.f.f.f.ff.fff.f.f.f.f.f.f.f.f.f.f.f.f.ff 

* * * f. f. 

* 5 * 765 

Throughput := 0.483595 
ProceS$Or Utili7ation z= 0.600000 

**TIME UNIT = 1 OUANTUMf.~ 

16.4495640 3.2899123 * 3.268182 

Al\JALYTICAL THROUGHPliT : 0.4820713 



TABLE 4. 4.5 
*SIMULATION RESULTS FOR A USUAL FEEDBACK QUEUE 
InterArrival rate exponential 
Service rate discrete Uniform 
~imulation tiae:• 20000~00 

w~th parameter lamda =0.200 
with parameter := 5 

********************************************************************~fffffff.fffff.f~.--------------------~ 
* * f. • * * JOB SIZE * NO. OF JOBS SERVED * AV.WA!TING TIME f NT.AW.WT.TIME * 
f * * ~· * 

Analytical 
Results 

fff.l':ff.ff.ff.fflfffffff.ffflllf.f.f lf:f:f.ff. f. Iff H:H: !I' f.lH: ff. f. f. f. f. f. I" f. f ¥:f. f f. f. f. f.~ f. ff f. li:f:Hcf. !HI: f. H: f. f. *'"·------------1 
* * f. f. • 

* * 818 * .3965748 ~ 1.3965748 f. 

************************************f.ffff.f.f.f.f.f.f.ff.f.f.ff.f.f.f.f.f.f.ff.f.f.f.f.f.f.f.f.f.fff.ff.f.f.f.f.f.f.f.f. 

* * * f. • 
f 2 I 762 f. .0254551 f. 1.5127275 f 

*****************************"*****"*******"*f.f.f.f.f.f.ff.f.ff.ff.fff.~f.f.f.ff.f.f.fff.f.f.f.fff.f.f.ff.f. 

* • * f. * * 3 * 785 * .2879567 f. 2.0959856 * 
fJ.Ifff.ff.f.ffffff.ffffiMfff*f.ff.f.ff.ffff.f.f.f.ff.f.f.f.ff.f.f.f.f.ff.f.f~f.f.f.f.ff.f.f.f.f.f.f.f.f.f.f.f.f.f.f.f.f.fff.ff.f.f. 

* * f. f. f. 
4 913 9.8127872 f. 

***************"**¥.****¥.************•****************~f.f.f.f.f.~ff.ff.f.f.f.f.f.f.f.f.f.ff.f.ff.ff.ff.f. 

* * * f. * 
5 * 765 ·* 

1. 375000 

1.574219 

2.076122 

2.488636 

3.268182 

ANALYTICAL THROUGHPUT : 0.463729 

Throu9hput := 0.465196 
Processor Utilization:= 0.600000 

ff.TIHE UNIT = 1 QUANTUMtf. 



Table below give system throughput values obtained from usual 

and modified feed back queue simulation for different arrival 

rates A and service distribution p·arameter N. 

Table 4.4.7 

Table 4. 4. 8 

Simulation Time : 20000 Quantums 

A = 0. 03 

N Usual Feed Modified 
Back Feed Back 

10 0.818270 0.832019 

20 0.631018 0.661047 

30 0.474836 0.496152 

40 0.284554 0.307129 

Value 
of L 

6 

16 

20 

30 

A = 0. 05 
&--------usuai-Feea---Moarrrea------vaiue--

Back Feed Back of L 
-------------------------------------------

5 0.844285 0.854284 3 

10 0.718070 0.724718 6 

15 0.522434 0.545788 8 

20 0.371738 0.396979 16 

25 0.207080 0.222511 16 

30 0.101218 0.123743 20 

35 0.061388 0.08778 25 

-------------------------------------------

93 



Table 4. 4. 9 

N 

5 

10 

15 

Table 4.4.10 

>. = 0.1 

Usual Feed Modified 
Back Feed Back 

0.729269 

0.360124 

0.104368 

0.739667 

0.376124 

0.108154 

Value 
of L 

3 

94 

Table shows system throughput values obtained form 

modified feed back simulation at different values of L for fixed 

arrival rate and service distribution parameter 

0.03 

0.05 

L 

8 
10 
12 
14 
16 

8 
10 
12 
14 
16 

N = 20 

0.651763 
0.654420 
0.659232 
0.649021 
0.660147 

0.385207 
0.386710 
0.385873 
0.386786 
0.396979 



Chapter - V 

INFERENCE AND CONCLUSION 

95 

Simulation results clearly show an improvement in 

system throughput, when prior information about the execution 

times of the job is utilised in feed back algorithm. A careful 

scrutiny of the simulation results clearly reveal that change in 

the average waiting time has taken place, only for the job whose 

execution time is less than or equal to L quanta, whereas the 

jobs requiring more than L quanta of run time have their average 

waiting time in the system same in both usual feed back and 

modified feed back scheduling algorithms'. This fact is also 

supported by analytical results. (Table 4.4.1- 4.4.6). 

The results also show that there is no improvement in 

the average waiting time for very small jobs. In fact, jobs with 

very small run-time requirements have more waiting time in modi­

fied feed back algorithm compared to what it was in case of 

usual feed back algorithm. But, as the run-time requirements 

of the job increase,significant improvement in waiting time starts 

taking place. This improvement continues till the job size 

reaches L quanta, after which the average waiting time become same 

in both the algorithms. In order to justify this ·behaviour, let 

us try to find out, where exactly a short job gains or losses 

time in modified feed back algorithm compared to usual feed back 

scheduling algorithm. The expected time to finish the quantum in 



96 

progress [E'(Sr)] is more in modified feedback scheduling algorithm 

in comparison to usual feed back algorithm. This is because, when 

the processor is serving a job at the first queue level in the 

Phase II of the modified feed back system, it is allocated L 

quanta. Hence, a new arrival may have to wait for as may as L 

quanta before it becomes a candidate for getting the processor, 

whereas in case of usual feed back algorithm the new arrival will 

have to wait at most for one quantum before it becomes a candidate 

for getting the processor. This is where small jobs lo .. ·.se time in 

modified feed back algorithm. The gain achieved in the modified 

feed back queue is due to the sequencing of jobs in such a way 

that long jobs join the queue only in the Phase II of the system 

and hence do not iriterfere with short jobs in Phase I. If not 

having a long job before it saves k quanta for a job of run time 

requirement k quanta. Hence, gain is more as k increase and this 

improvement in gain continues till k=L, after which both the 

sys'tems become equivalent. This explains why as the job size 

increases significant improvement starts taking place. 

Another important observation from the results is ,that 

choice of L i.e., the criterion of classifying the jobs into two 

categories (short job ~nd long job) is also important (Table 4.4.10) 

For Example, when A= 0.05 is the arrival rate and N = 20 we 

find that best throughput is obtained when L = 16. For our 

analysis, the choice of L is arbitrary. 



97 

Thus we conclude by saying that under the circumstances 

where it is exactly known to which category the job belongs, 

the modification suggested in the feedback algorithm gives better 

results. 



B.IBLIOGIU\PHY 
---~-~-----~----~-

L BRINCH HANSEN, P. "Short tenn scheduling in Mul tiprogra-
mming Systems", Third ACM Symposium on Operating 
System Principles, Stanford University, Oct 1971, 
pp. 103-105. 

2. DEITEL, H.M. An Introduction to Operating System, Ed.l, 
Reading: Addison -Wesley, 1984 

3. DENNING, P.J. and COFFMAN, E G. Operating Systems Theory, 
Englewood Cliffs, Prentice Hall, 1973. 

4. DONOVAN, John J and MADNICK, STUART, E. Operating Systems, 
McGraw Hill, 1981. 

5. GOON, A.M. , GUPTA, M. K. and DASGUPTA, B. Outline of 
Statistic, Vol. 2, Calcutta, The World Press Private 
Limited , 19 8 0. 

6. KENNEDY, W.J., Jr. and GENTLE, J.E. Statistical Computing 
Marcel Dekker, New York, 1980. 

7. KLIENROCK, Land NILSSON, A. 'On Optimal Scheduling 
Algorithms for Time shored Systems' JACM, 

/. ·vol. 28, No. 3, July 1981, pp.456-477. 

8. LUCAS, H. Performance Evaluation and Monitoring, ACM 
computing surveys, Vol. 3, No. 3, Sept. 1971, 
pp.79-91. 

9~. TENENB.AUN, M AARON and AUGENSTEIN, MOSHE J. Data 
structures using Paxal. Prentice Hall, 
Englewood Cliffs, 1981o 


	TH29480001
	TH29480002
	TH29480003
	TH29480004
	TH29480005
	TH29480006
	TH29480007
	TH29480008
	TH29480009
	TH29480010
	TH29480011
	TH29480012
	TH29480013
	TH29480014
	TH29480015
	TH29480016
	TH29480017
	TH29480018
	TH29480019
	TH29480020
	TH29480021
	TH29480022
	TH29480023
	TH29480024
	TH29480025
	TH29480026
	TH29480027
	TH29480028
	TH29480029
	TH29480030
	TH29480031
	TH29480032
	TH29480033
	TH29480034
	TH29480035
	TH29480036
	TH29480037
	TH29480038
	TH29480039
	TH29480040
	TH29480041
	TH29480042
	TH29480043
	TH29480044
	TH29480045
	TH29480046
	TH29480047
	TH29480048
	TH29480049
	TH29480050
	TH29480051
	TH29480052
	TH29480053
	TH29480054
	TH29480055
	TH29480056
	TH29480057
	TH29480058
	TH29480059
	TH29480060
	TH29480061
	TH29480062
	TH29480063
	TH29480064
	TH29480065
	TH29480066
	TH29480067
	TH29480068
	TH29480069
	TH29480070
	TH29480071
	TH29480072
	TH29480073
	TH29480074
	TH29480075
	TH29480076
	TH29480077
	TH29480078
	TH29480079
	TH29480080
	TH29480081
	TH29480082
	TH29480083
	TH29480084
	TH29480085
	TH29480086
	TH29480087
	TH29480088
	TH29480089
	TH29480090
	TH29480091
	TH29480092
	TH29480093
	TH29480094
	TH29480095
	TH29480096
	TH29480097
	TH29480098
	TH29480099
	TH29480100
	TH29480101
	TH29480102

