
INTRA-COMPONENT SECURITY 
CERTIFICATION 

Dissertation submitted to Jawaharlal Nehru University 
in partial fulfillment Of the requirements 

for the award of the degree of 

Master of Technology 

in 

Computer Science and Technology 

by 

BALACHANDU GUDA VALLI 

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES 
JAW AHARLAL NEHRU UNIVERSITY 

NEW DELHI -110 067 
JULY 2007 



.cERTlFlCATE· .. 

. ' ~- ·, 

.Jhis is !o~ cettiJy: }hflt the di~seftation •eptitled "lNTRA"CONf.f,()'l~·E:~T 
.... SECURITY CERfiF:ICi\tiON''' beingsubit11tted >bYBal~tha~du :Guda~alli t6 

. . ·' ~ . ~ . ". " ... ·. . . •. . . . . ' . '... . ·, . . ·. . < . ·• ' > --- . ·;: :-· ··, . 

.•. the S6hob1. of G6Inpt}ter aiid ...• Sy$ten1sSciences; .la\~~llflirlnl Nehru .OniV¢f'iit'f, 

• ··•··N~w Dilhiiri p~rtial fulfilln1enf .. ofth~ requirements'j~rt~ea\yl{rd of'iJ~e ;degreet)f 

. :z~~·:;;;:!n~~fr:~:~c;:~·:rs~~;;·"~:d.r!~;;!~~,;:i:~:;~:: 
; .matter en1bodied:iilthe (Ji~sert~tion.·li~s not been subn1i tt.eil for fh.e. award: hf a'J1i . . . . 

· :· d¢gree o; d)pJgma: 

j~&;)~~ 
• J>r()f. 1\.Q: .. Gl:lptl{ .. ·.· ·.··· 
. . ··· ·Pt6fess&t. sc&ss • . 
· •:r~wahatl~l. N~hru,Uh1;er~itv 
Nt!WPeJhl:,trq'067·, ·.·.; 

·Prof.'.M;.P~:rimalai ... 
;·D~ati,SC&SS < .. · < . 
. ······~~~~~~i:lr&.i~r6t.:~~/yers1~Y~. 

.·. ·.~~"·;~~f< •.. 
·f3iilachl:rndu (}udavalri · : .•.. 
· N1.1\~~n.:st&-ss · ·· . . .... 
• JAwahailafNe11rp lJni.;~.~rsity . 
:.1\qeW Dell~i-l:t0(J(j7.·.·· .~. . 



CERTIFICATE 

This is to ce1tify that the dissertation entitled "INTRA-COMPONENT 

SECURITY CERTIFICATION" being submitted by Balachandu Gudavalli to 

the School of Computer and Systems Sciences, Jawaharlal Nehru University, 

New Delhi in partial fulfillment of the requirements for the award of the degree of 

Master of Technology in Computer Science and Technology, is a bonafide 

work carried out by him in the School of Computer and Systems Sciences. The 

matter embodied in the dissertation has not been submitted for the award of any 

degree or diploma. 

~S?~ 
Prof. R.G. Gupta 1-
Professor, SC&SS 
Jawaharlal Nehru University 
New Delhi - 110 067 

Dean, SC&SS 
Jawaharlal Nehru University 
New Delhi- 110 067 

Prof Pa· imala N: 
Den 

School of Cemlil'll"er lk ~; ~· tem· Sc;rnccs 
]AWAliAlUAL l\1 P~l. t Ni\tE.RSlTY 

NEW D.ELHI~ll0067 



ACKNOWLEDGEMENTS 

I am very glad to express my sincere gratitude to my supervisor, Prof. R. G. 

Gupta for his valuable guidance in completing this thesis successfully. I feel it is a 

great privilege to have had the opportunity to work under his prestigious 

supervision. His constant encouragement and suppm1 helped me a lot. 

I am thankful to ProfS. Balasundaram for providing a congenial environment and 

System software lab facilities in the school. 

I am also thankful to Anurag Dixit for his valuable suggestions provided during 

my dissertation work. 

Finally, I would like to thank to Ansu Kumar Sinha, Sonia Wadhwa and all other 

friends for their discussions and help at all times during the course of my project 

work. 

G-.t~ 
Balachandu Gudavalli 



CONTENTS 

CERTIFICATE . 

ACKNOWLEDGEMENTS ii 

ABSTRACT vi 

1. INTRODUCTION 

1.1 Security Classes 1 

1.2 Secured Component 4 

1.3 Certification 6 

1.4 Motivation 8 

1.5 Problem Specification 9 

1.6 Organization of work 9 

2. CERTIFICATION MODELS 

2.1 Classification of Certification Models 11 

2.2 Mathematical Models 12 

2.2.1 Sampling Model 12 

2.2.2 Component Model 13 

2.2.3 Certification Model l3 

2.3 Process Based Models 14 

2.3.1 Architecture-Based Approaches 15 

2.3.1.1 Robocop Model 15 

2.3.1.2 CASSIA Model 16 

2.3.2 Developer's Perspective Approaches 16 

2.3.2.1 Policy Configuration Model 17 

2.3.2.2 Security Properties Assessment Model 17 

2.3.3 Third-party Approaches 18 

2.3.3.1 Usage Model 18 

Ill 



2.3.3.2 Software Component Laboratories 18 

3. SECURITY CERTIFICATION PROCESS 

3.1 Standards 20 

3.1.1 TCSEC (DoD 85) 20 

3.1.2 ITSEC (CEC 91) 20 

3.1.3 Common Criteria (CC) 21 

3.2 Difficulties 21 

3.3 Informal Techniques 22 

3.3.1 Role of Testing 22 

3.3.1.1 White Box Techniques 23 

3.3.1.2 Black Box Techniques 24 

3.4 Formal Techniques 25 

4. PROPOSED SECURITY CERTIFICATION PROCESS 

4.1 Overview of Process 26 

4.2 Algorithm 27 

4.3 Implementation Details 28 

4.4 Benefits of this Model 32 

4.5 Case Study 33 

5. SECURITY IN TECHNOLOGIES 

5.1 Security in CORBA 36 

5.1.1 Security Policies 36 

5.1.2 Principal Authentication 36 

5.1.3 Access Control 37 

5.1.4 Security Association 37 

5.2 Security in JAVA 37 

5.2.1 Security in Java2 38 

5.2.1.1 Protection Domain 38 

IV 



5.2.1.2 Dynamic class loading 39 

5.3 Security in .NET 40 

5.3.1 Evidence-Based Security 40 

5.3.2 Code Access Security 41 

5.3.3 Role-Based Security 41 

5.3.4 Application Domains 41 

5.3.5 Verification Process 42 

6. CONCLUSIONS 

6.1 Contributions 43 

6.2 Limitations of CERTDRIVER 44 

6.3 Future Work 44 

REFERENCES 45 

v 



ABSTRACT 

This disse1iation deals with the up gradation of security 

certificate of a component. As security certification is necessary for third-party 

components, taking certification from the beginning whenever a component is updated 

turns out to be a redundant process. It leads to wastage of time especially in large 

component based software systems. To remove that redundant certification we proposed 

a CERTDRIVER. 

The proposed CERTDRIVER takes the component, its required security properties as 

secmity goals and version number specified by user as input and gives output a certified 

component providing its security in terms of percentages. The whole process centers on 

version number. In the whole process, it will also take the help of test cases which can be 

useful while finding out errors in the component. 

VI 



Chapter 1 

INTRODUCTION 

1.1 Security classes 

Security in components is going to be an essential feature because components are 

available as third-party products and these have to be assembled with other 
•· 

components. Thus the main requirement lies in providing security to a component 

with respect to other component or a group of components. So, there is a need for two 

levels of security, one at component level and other at compositional level. Security 

will be given to components in terms of their properties [I]. So, there are two security 

properties namely Security Function (SF) and Non-Functional Security (NFS). 

The SF propet1ies are those which provide 

inter-component security. They will provide security to one component from other 

components. For giving this type of security, the external security features can be 

added as functions to that component. These extemal features can be name of a 

component as it distinguishes this component from others and encryption technology 

the component uses as it also distinguishes its communications to specified 

components with its digital signature on it. SF properties protect the enclosing system 

from being assembled with unauthorized components. These properties are 

pm1icularly significant in dynamic assembly scenatio where target component may be 

located in a remote server whose identity can be a questionable one. So, a greater 

effot1 is needed in designing these properties. Any violation can cause a serious flaw 

in design of system. 

NFS properties provide intra component security i.e. security within the component. 

Intra-component security provides security to data within the component. 



These security mechanisms are inbuilt. NFS properties are attached with vanous 

aspects of the component functionality in different layers of implementation, each 

representing a specific level of abstraction to achieve certain security objective. A 

component may employ ce11ain NFS properties to guard its sensitive data and 

functionality from being violated by other unauthorized entities. The NFS prope11ies 

embedded with the component's functionality may have substantial impact on the 

entire security mechanism of the composed system. If there is a weak NFS property 

in a sensitive operation, the rest of the strong SFs may not help much to protect the 

component. 

To get a better understanding about these prope11ies, we will take an 

example of a BookAIIotment component. This component can be used in library 

applications in dealing with allotment of books. First, we will look into the basic 

structure of this BookAllotment component. 

Title of Book 

Author ofBook 

Boolean Variable 
(Used to denote whether it is 
allotted) 

Allotted Student lD 

Allotment and Submission Date 

Underlying Implementation 

Fig 1.1: Component: BookAllotment 

The BookAllotment component retrieves some vital infmmation when it is called. If a 

book has to be allotted to a student, this component will be called by library 

application. This component connects user and database and retrieves some 

information from both ends. While doing all these operations, it maintains some 

security restrictions in terms of properties. 

2 



. I Student I 
Book All otment Component 

Enter ID card Number 
(SF) 

Enter Book (Title+ author) and 
lD validity DATABASE 

(NFS) 

Checking Boolean Variable 
(NFS) 

~ 
Allot if available otherwise not and 
change Boolean variable accordingly 

(NFS) 

Fig. 1.2: Book Allotment Process 

In the above book allotment process, first the BookAllotment component 

checks the authorization. This we can call as a SF property. We can do this 

authorization check before calling component also. If this check was done by another 

application, then that application calls this component, there also this BookAllotment 

component checks the authenticity of that component. The remaining like checking 

validity of ID (liniit to the number of books allotted), Boolean variable used to denote 

whether the candidate book is allotted or not, access and modification restrictions on 

that Boolean variable will come under NFS properties as component itself should 

protect this from intemal operations after retrieving this from database until it writes 

back to database. 

3 



1.2 Secured component 

A secured component is necessary to get a secured system. But the complexity lies in 

what areas the component should be secure. In. component based software 

engineering, there are different contexts in which security has different role to play. 

To get good understanding, let the contexts be divided into three categories. 

• Security based on functionality 

• Security based on whole system design 

• Security based on communication 

In the first category, the main base to say that a component is secure enough is simply 

checking its functionality. If it is functionally correct then it is secure enough to use 

otherwise not. 

Component A 

Enter 

·I I 
LOGIN DATA BASE 
PASSWORD 

Fig. 1.3: A component interacting with database 

In the above diagram, the functionality of component A is to check the validity of 

the entered LOGIN and PASSWORD with the existing database. Here the 

functionality of A is to allow any user to enter his login name and mask his password 

with any symbol and then check with database. If that component A is doing its pre 

defined task correctly, then it is functionally secure to use it for any application which 

requires LOGIN and PASSWORD check. 

In the second category, the component should be verified according to total system 

design. If we take the same example discussed above, we have component A which is 

functionally correct for only a pmiicular database say oracle. But according to system 

design, the database is of type Microsoft access. Then that component can not 

4 



function in that database. So, that component is not secure according to specific 

system design though it is functionally correct. 

In the third category, the communications between components are checked to say 

whether they are secure enough or not. If we consider the same example, the LOGIN 

and PASSWORD should be encrypted to check with existing database. There may be 

many components in a system and the communications between them should be 

encrypted whenever necessary. To get a .clear understanding, consider a bank 

transaction between accounts A and B. How much money is transferring between A 

and B, from whom to whom, and all information should be secured from other 

accounts or any other components. Generally, components communicate themselves 

according to which composition design they belong to. These compositional designs 

can be of three types. They are shown in below diagram. 

A 

A B 

B 
B 

(a) (b) (c) 

Fig. 1.4: Composition types 

In the above diagram, figure (a) is of type sequential composition. In this type of 

composition, the composed components are executed in sequence. The shaded region 

is the interface needed for composition. In figure (b), hierarchical composition is 

shown, in which one component calls the services of another. The interface of one 

5 



component is composed with required interfaces of another. In the figure (c) additive 

composition type is shown. In this type, interfaces of two components are put 

together to create a new component. So, the components should be secure m 

communication according to compositional design they belong to. 

1.3 Certification 

In a given set of components, it's really tough for an end-user to decide which 

component is secure and which is not. He can not check all components as he may 

not well equipped to do that. How he can trust that a component is secure? Solution 

for this is certification. The main aim of certification is to make components reliable. 

A ce11ification can be defined as [2] 

"A method to ensure that software components conform to well-defined standards; 

based on this certification h11sted assemblies of components can be constructed." 

This certification is also same as giving certificate to students after completion of 

course. A University will certify a student that he has that enough knowledge in that 

course. But in components, a third-pmty will certify it's security. Generally, third­

paity is a standard organization like NSA (National Security Agency), NIST 

(National Institute of Standards and Technology), and TCSEC (Trusted Computer 

Security Evaluation Criteria). Ce1tification procedure is shown in below diagram [2]. 

Developed 
Component 

Component Verification 

Verified 
Component 

~ 

Component 
Sealing 

Fig. 1.5: General component certification procedure 

Certified 
Component 

The general component certification procedure is divided into component 

verification and component sealing. The verification step can be done through two 

approaches. One is Usage-based verification and the other one process-based 

6 



verification. Usage-based verification deals with verifying final product. Process­

based verification concentrates on the production process. The developed component 

is first verified by third-party organization and fi·om that process, a verified 

component will be evolved which is later sealed by that organization. This sealing is 

like having their company's digital signature on that component to tell end-user that 

this component is secure enough in company's perspective. If user has trust in that 

company, he can use those components signed by them. We can divide the 

certification types in to three categories [3]. 

• Framework Certification 

• Component Certification 

• System Ce11ification 

·-··- ·-··-··-··-··-··-
1 

Frame Work 

I ______ ·-··-··- ·-··-··J 

(a) Framework 
Certification 

Frame Work 

(c) Component 
Certification 

Fig. 1.6: Certification Types 

r··-··-··-··-··-··-··-··: 

Frame Work 

I 

I I 

0 
(b) System 

Certification 

I 

Framework is like an operating system for the 

existing components [4]. It provides the underlying mechanism for the components so 

that they can communicate with each other. Examples of framework are .NET 

framework, EJB etc. For example, if we take the .NET framework, it contains three 

major components namely the common language runtime, class libraries and 

metadata. The common language runtime (CLR) is the execution engine for .NET 

framework-based applications. CLR is a Just in Time (JIT) compiler and MSIL 

7 



(Microsoft Intermediate Language) is the language of CLR. It provides secmity to 

.NET framework. Metadata is data relating to compiled code. It is stored with 

Microsoft intermediate language as a unit called assembly, where assembly is 

executable using one of the .NET framework's language compilers. Class libraries are 

reusable classes that provide functionality tasks such as user interface design, 

threading, network communications, authentication mechanisms and so on. 

If there is any fault in that mechanism then the 

cqmponents assigned to that framework also works badly. So, framework's 

certification is necessary. Component certification deals with mainly internal 

functionality of component. This certification will deal whether the component is 

doing required task or not. These components and framework constitutes Component 

Based System. So, a certification is needed to know how the securities of individual 

components and frameworks are affecting whole system. In the above diagram 

dashed lines show for which stage the ce11ification process is going on. 

1.4 Motivation 

Because of importance of certification, my \vork mainly 

focused on how to certify components through their functional and non-functional 

propet1ies. This leads to studying different certification models and different 

certification processes. Although, there were different certification models, their main 

concentration is on cet1ifying quality of the components. Quality itself includes 

security, availability, reliability, performance, efficiency, etc. Because of the 

impm1ance of security in component based software enginee1ing, it needs good focus. 

Though, there were also models ori security, but few. So, my work is restricted to 

studying security aspects of component through their non-functional properties that 

means intra-component security certification. 

An assessment scheme for certifying the whole system was given in [5]. If we look 

into that procedure, it is based on evaluation scheme which compares the system 

specific secmity requirements of the enclosing application with component specific 

8 



security rating. An evaluation scheme is there which gives component secmity in 

terms of rank, based on this compmison. This method is based on CC (Common 

Criteria) evaluation. Analyzing component's security properties and comparing with 

system specific properties is the main objective of this method. But it has the 

drawback that it only tests the functionality of components as its main security 

measure. My proposed work is also similar to this method, which gives an 

algorithmic way of component certification. My model can be used as a component 

itself to work as an automatic component certifier. The main aspect of my model is to 

up gradation of a pre-issued certificate based on some properties. As COTS are 

composed dynamically, a separate mechanism is needed to dynamically update the 

existing certified components. This will save a lot of time which otherwise should be 

wasted by doing certification from the scrap. 

1.5 Problem Specification 

To develop an algorithm for gtvmg a certificate to 

component or up-gradation of a pre-issued certificate by its non-functional secmity 

properties through that component version number. 

1.6 Organization of work 

The work is organized as follows: 

In chapter I, the basic concepts needed to understand the security aspects of 

component were given. Secmity prope1ties like intra component security and inter 

component security are shown with example. Need for certification and cet1ification 

types were also explained. 

In chapter 2, a survey on different certification models is given. These certification 

models are divided into two parts and then they are sub-divided. Some mathematical 

models were explained along with reliability cet1ification models. 

9 



In chapter 3, a security certification process is given through informal techniques. 

Some intemational standards in cet1ification were briefly covered. This chapter 

provides the base for the proposed work. 

In chapter 4, by using the informal techniques discussed in chapter 3, a brief overview 

of the proposed work was given. Algorithm with implementation details is also given 

by taking some examples. 

In chapter 5, a brief overview on securities of different technologies likes JAVA, 

CORBA, .NET are given. 

In chapter 6, Contributions and future work are given. 

10 



Chapter 2 

CERTIFICATION MODELS 

2.1 Classification of Certification Models 

A certification model is a mathematical process of evaluating the component with 

respect to some conditions given by user or evaluator. Certification can be done at 

any time during development of component. Generally, it is done at third-party level 

to make sure no compromise with quality of end-product and to maintain trust. The 

main objective of the certification is to evaluate the quality of the component. As 

quality itself includes reliability, security, performance, etc, certification can be done 

at reliability, security, performance aspects of a component. If we look into the 

previous certification models we can divide these models into two categmies [6]. 

• Mathematical Models 

• Process-based Models 

Certification 
Models 

Mathematical 
Models 

Process-based 
Models 

Sampling Model 

Component Model 

Certification Model 

Architecture based 
Approaches 

Ex: Robocop, 
CASSIA, 
Clarify 

Developer's 
Perspective 
Approaches 

Third-party 
approaches 

Ex: policy configuration, 
Security properties 

Ex: SCLs, Usage model 

Fig 2.1 : Classification of certification models. 

II 



2.2 Mathematical Models 

Mathematical models take the help of mathematics to 

define metrics for evaluation of component. Three models were defined in this aspect 

based on which technique they will use to evaluate metrics of the candidate 

component. These models are based on the relationship of reliability and the mean 

time to failure [7]. We can define MTTF as the average number of uses between 

failures. Time is measured as the number of uses (or test cases) and the relation 

between reliability and MTTF is given by 

MTTF= 1/ (!-reliability) 

If time is represented by in any other way, the relationship is 

MTTF=LI ( 1- reliability) 

These models were given for certifying reliability of a component. The mam 

objective is that if a component has been verified by a mathematical proof of 

conectness, we may be able to atttibute a high degree of reliability. The three models 

are given below [7]. 

• Sampling Model 

• Component Model 

• Certification Model 

2.2.1 Sampling Model 

This model is based on finding the number of test cases required to estimate the 

reliability percentage of the component. Through this, we can find number of test 

cases that should be run with out a failure. If 'C' is confidence in we want in 

experiment, then the equation is [7] 

Number of Test cases= r log (1-c)/ log (r) 1 

We can incorporate this model any one of these below methods. 

(i) Zero-failures certification method 

12 



(ii) K- Failures method. 

K-Failures method requires more test cases to show failures than of zero-failure 

certification method. It certifies software with known errors, if the errors are 

conected; the ce1tification is no longer valid because the test was conducted on the 

software before changes. Advantage of k-failures method will deny certification less 

often. The way the enors came in sampling model depends upon the certification 

method it uses. So, there are two ways of representing errors. 

(i) It can ce1tify the software that is, in fact, unreliable (zero-failures method). 

(ii) It can deny certification to software that is, in fact, reliable (k-failures). 

2.2.2 Component Model 

The component model is useful for estimating how the individual 

reliabilities of components can estimate the whole system reliability [7). This model 

can use existing component data to estimate system reliability with no additional 

testing. This model objective is to find out whether a component after being executed 

is able to transfer its control to some defined states. These defined states might be 

successful te1mination or to another component or unsuccessful termination. Consider 

a system composed of 'n' components, 1 to n, with component 1 is the single entry 

point to the system. Let ri denote the probability that when component i is being 

executed, the system continues to another component without an enor. Thus, (1-ri) is 

the probability of a failure during component i' s execution. 

2.2.3 Certification Model 

This model assumed that MTTF grows exponentially over successive versions of a 

system . The certification model has three independent aspects [7). 

1. The parametric fonn of ABk, which is used to estimate the MTTF of version k 

2. The conected-log least-squares technique, which is used to compute A and B 

from the data points. 

3. The technique for obtaining the data points. 

13 



Suppose MTTh denotes the MTTF ofversion k of the system. For all k, 

MTTFK =(B) (MTTFK_J) where B is a constant, then, 

MTTF0 = ABk where A=MTTFo 

Taking logarithms on both sides, we get 

Log (MTTFK) =log A +k (log B) 

Log (MTTFK) = a+ kb where a= log A, b=log B 

By solving above equation using standard linear regression, we can compute the 

estimates for a and b. Tentative estimates for A and B are ea and eP . The power of a 

model is the ratio of the released product's predicted MTTF to the number of tests. To 

estimate the power of the certification model, assume that A and B are exact and that 

data points lie exactly on the curve. Suppose that version n is released after versions 0 

through n-1 have been tested. The estimated MTTF of version n is then AB11 
; the 

number of tests conducted is 

k=oLn-t ABK= A (BN -1 )/ (B-1) 

And the power ratio will be approximately (B-1 ). Thus if you need N tests under the 

certification model, you expect to do roughly 2N (B-1) tests to achieve the same level 

of MTTF certification under the sampling model. 

2.3 Process-Based Models 

These models based on particular process for certification of components rather than 

on mathematical models. In these, the certification can be done at various stages 

while developing a component. These stages can be design level, Development level, 

and End-product level or alternatively called as architecture-based approaches, 

developer's approaches, third-party approaches respectively. These models are less 

reliable than mathematical models. Therefore, the three categmies of process-based 

approaches are 

• Architecture-Based approaches 

• Developer's perspective approaches 

• Third-party approaches 

14 



2.3.1 Architecture-Based approaches 

These models mainly based on the architecture of the 

whole system to ce11ify component. In these models the factors which effect the 

certification will be only the system where the component is going to fit, that means 

the design of the system. Examples of these design-based certification models are 

Robocop model, CASSIA model and CLARIFI model. A brief description of two 

models was given in the below section. 

2.3.1.1 Robocop Model 

This model was given [8]. This model is based on Robocop component architecture 

and well suited to black-box components. It is proposed as middle-ware layer 

architecture of high volume embedded appliances such as PDAs, mobile phones, set 

top boxes and DVDs. In Robocop different aspects of a component are called models. 

Examples of these models are functional specification, the executable code, a 

resource model, documentation, source code and so on. A Robocop component is a 

set of such models and relations among them. 

A Robocop component contains implicit claims [8]. A claim is expressed in terms of 

elements of component. The elements are models, relation and details about their 

representation. Certification in this type is of two step procedure. First one is the 

ve1ification of a given set of claims (claim model) about a component resulting in a 

verification model. Second step is the subsequent sealing of the component and these 

two models. The verification step verifies the claims and results in a set of 

verification reports, which is a model. The sealing step produce a seal based on the 

component with the claims and the reports included, which is again a model. 

15 



2.3.1.2 CASSIA Model 

This model was given in [9). This model certifies scalability and performance of a 

component if the whole system is made of fortresses. Component Adaptive Scalable 

Secure Infrastructure Architecture is abbreviated as CASSIA model. The secmity 

precautions which are incorporated in to system may affect performance and 

scalability of the system badly. To remove that, this model was proposed. It also uses 

on protocol called SCOP (Secure Component Protocol). The components according 

to this model are built as fortresses. "Software Fortress architecture is an ente1prise 

architecture consisting of a series of se(f-contained, mutually spacious, marginally 

co-operating software fortresses interacting through carefully crafted and managed 

treaty relationships.'' If a component enters in a fortress, it gains access to all other 

components within that fortress. The walls of fortress are collectively called a 

security perimeter of the system. Treaties are fmmal agreements within the fortress. 

For example, consider a fortress has two components cl, c2 and one more fortress has 

a component c3. If c3 wants to communicate with c2 then both these fortresses enters 

in to a treaty so that communications of these components can cross the walls of these 

fortresses. Then CASSIA makes a decision to encrypt these messages between 

components and for that it uses SCOP. This model also proves that close to 80% of 

interactions between components and their clients in different commercial systems 

occur within protected boundaries, means with in fmtresses. 

2.3.2 Developer's perspective approaches 

These approaches are based on developer's view to certify a component. This means 

there is interaction of developer while ce1iifying a component. So, these models 

mainly based on some properties of component which a developer can only specify 

clearly and abstractly. Here we will discuss two approaches, policy configuration 

model and assessing secmity prope1ties model. 

16 



2.3.2.1 Policy configuration Model 

This model was proposed in [10]. A policy confi!,>uration 

model is to represent security policies in a fmmat which can manifest conflicting 

properties across policy specification. Security cet1ification criteria goveming the 

integrated system can introduce conflicts with local component policies. Security 

policies and certification criteria lack a common representation. This model defines 

security policies according to fundamental atttibutes of property assertions, 

observable behaviors, mechanisms, constraints, communication and interaction 

expectations, dependencies on other policies, system configuration and component 

state. The common security concepts are tmst, certificate, certificate sharing, 

certificate delegation, encryption, secure channel. Cet1ificate sharing is useful when 

one component tries to allocate another component to do work on behalf of first one. 

For example, two components A and B can share a certificate then B can do work of 

A on behalf of A without any problem, but the problem comes whenever another 

component comes as proxy to A. Secmity policies addresses different overall 

concepts including goals, problems, systems, ctitical . usage and domain of the 

· application. Six common policy types on which this model was founded were 

authentication, authorization, data protection, audit, availability and non-repudiation. 

2.3.2.2 Security Properties assessment Model 

This model was proposed in [5). This model is for whole system cet1ification with the 

help of developer. lf we look into that procedure, it is based on evaluation scheme 

which compares the system specific secmity requirements of the enclosing 

application with component specific secmity rating. An evaluation scheme is there 

which gives component security in terms of rank, based on this compmison. This 

method is based on CC (Common Criteria) evaluation. Analyzing component's 

security propet1ies and comparing with system specific properties is the main 

objective ofthis method. This model treats a component as atomic one and this is not 

suitable for compositional components. It is also an engineer's perspective model 

17 



since it is not possible to clearly distinguish security properties and their specific 

evaluation for a user, only a developer knows for what aspects he designed that 

component. 

2.3.3 Third-Party approaches 

These approaches were applicable after completion of component. After building the 

component a third-party certifies whether that component is maintaining its specified 

requirements or not. These models can be applicable to either white-box or black-box 

components. Here we will discuss about usage model and software component 

libraries. 

2.3.3.1 Usage model 

This model was given in [II]. This is for certifying reliability of component. This 

model certifies a component with usage testing by developing usage models, applying 

usage profiles and· then applying a hypothesis certification model. During 

development for reuse, a usage model must be constructed in parallel with the 

development of the component. The usage model is a structural model of the external 

view of the component. The probabilities of different events are added to the model, 

creating a usage profile, which describes the actual probabilities of the events. The 

component is stored together with its characteristics, usage model and usage profile. 

The reliability measure stored should be connected to the usage profile, since another 

profile will probably give a. different perceived reliability of the component 

altogether. 

2.3.3.2 Software Component Laboratories 

This model was given in [12]. This model aim is to have an independent stand with 

the development of a component to maintain a complete trust with consumers. These 

18 



SCLs would accept software from developers, gather information from user sites, use 

data gathered from several sites to generate statistics on use and perfonnance in the 

field and provide limited wan-anties for the software based on these statistics. This 

model is based on test certificates that developers supply in a prescribed fonn so that 

purchasers can, in short order, detennines the quality and suitability of purchased 

software. The test cases are designed in extensible markup language. XML is a 

widely adopted general-purpose markup language for representing hierarchical data 

items. 

Along these models, there are other models like Bell Ia padula model, but here we 

looked at only some models. Though, we can clearly have a lot of certification 

models, the models based on security are not much. As security is an important 

aspect, there is a need of great focus in that area. 

19 



3.1 Standards 

Chapter 3 

SECURITY CERTIFICATION PROCESS 

In this chapter we particularly deal with certification of a component with respect to 

it's secmity characteristics. There are some standards which specify the way of 

evaluating a component through some specific security objectives and provide 

security in terms of levels. Generally accepted standards are FIPS I40-2 for 

cryptographic models, ITSEC (CEC 91), TCSEC [DOD 85], Common Criteria (CC), 

NIST etc. Out of these models, CC, ITSEC, TCSEC are more popular and we will 

discuss about these three models btiefly in below sections. My proposed model which 

will be discussed in the next chapter is based upon CC (Common Criteria) standard. 

3.1.1 TCSEC (DoD 85) 

This standard was developed by United States Government 

Department of Defense in I985 for assessing security controls built inside computer. 

This standard was also referred as Orange book. It defines four divisions D, B, C, A 

where A has highest security. These division levels represent the differences between 

tmsts levels desired in the target. These divisions can also have sub-divisions like C I, 

C2, C3, Bl, B2, and AI [13]. 

3.1.2 ITSEC (CEC 91) 

A security standard was published by Commission 

of European Communities (CEC) in I991 by the name ITSEC (Information 

Technology Security Evaluation Criteria) [14]. This standard is having a set of 

20 



criteria useful for evaluating security of products or systems. The evaluated product is 

given as TOE (Target Of Evaluation) to this standard and the degree of evaluation 

depends upon the level of confidence desired in the target. For this, there are different 

levels of confidence, defined as Evaluation Levels (EL) in ITSEC. They are denoted 

as EO, E I ... E6. The level of confidence increases as the level increases and hence 

higher levels require more extensive testing of the target. A given target's security 

features were documented in Security Target whose contents must be evaluated and 

approved before the target itself was evaluated 

3.1.3 Common Criteria (CC) 

It is an ISO/IEC standard for security. It provides a frame 

work in which users can specify their security requirements, developers can claim 

about security attributes of their products and third-parties or testing laboratories can 

evaluate the products to check their validity with respect to requirements [15). The 

main concepts of CC are TOE- a product or system that is subject to evaluation, PP­

protection profile, a document created by user and serve as template to security target, 

SFR-security functional requirements specify individual security functions of 

products, ST-Secmity Target, to identify the security properties of evaluated product, 

EAL-evaluation assurance level, which gives a numerical rating to target. These 

EALs are divided into ?levels EALI, EAL2 ..... EAL7. 

3.2 Difficulties TH-17472 

Certification of component is a must in today's world where the same component can 

be downloaded through out the world and it's a herculean task to do. A lot of things 

need to be verified while certifying a component. Issues like architectural and design 

styles of component, performance of the component, security issues related to that 

component, efficiency of the component, reliability etc. needs to have a deeper look 

while giving certification. But, there are no agreed-upon standards for measuring 

component's quality. So, there is confusion while measuring which characteristics of 

OD~S· 
4'f3'3 .r-)l.... 21 



a component should be highlighted and which to neglect. Applying certification 

standards to dynamically changing components is also a difficult thing. So, briefly we 

can say the below three are drawbacks of ce11ification. 

• No common set of standards for measuring a component's quality. 

• Lack of experience in applying certification standards to existing component. 

• No standard mechanism to derive mehics of certification 

3.3 Informal Techniques 

Infonnal techniques are those techniques which do not have 

strong mathematical base. They rely heavily on human reasoning and subjectivity. In 

software engineering, the general infonnal techniques are inspections, reviews, and 

walkthroughs. In security certification of components, these techniques have wider 

foot hold than formal techniques. Testing plays a vital role in these techniques. In the 

next subsequent sections we will discuss the types of testing and their importance in 

these techniques. 

3.3.1 Role of Testing 

Generally, ce11ification of a component includes some 

test cases to evaluate required properties of that candidate component. These test 

cases depend on what area the certification is going on. It might be reliability 

certification or secmity cet1ification or efficiency certification or on a whole system 

certification. But certification entirely based on testing is meaning less as in adaptive 

software like aircraft controller which "learn'' after deployment. These systems 

behave differently after being run on field. The system tested in the lab is not a tme 

reflection to the system after deployment. So, some more relevant techniques 

combined with testing are needed. 

22 



Certification of a component should be done at two levels. One is at component level 

and other at system level. System level certification can be obtained by evaluating 

composed component ce11ificates. Based on whether a component is white box or 

black box, the testing techniques used can also be white or black box [ 16]. 

White box Techniques 

Code Coverage, 
Test cases Fault Injection, 

I 
Assertion 
monitoring 

I Component _j 
Metrics Certified l Metrics 

I 
J Evaluation 

component 

I lnput Generation, 

Test cases 
Assertion 
Monitoring 

Black box Techniques 

Fig 3.1: Component Certification Model 

The above diagram represents a general certification model of a component. Test 

cases and testing techniques depend on the context. If the source code of candidate 

component is available, then we go for white box techniques otherwise black box 

techniques. These techniques will yield some metrics. By evaluating these metrics, 

the third pm1y organization will give certification. 

3.3.2 White box techniques 

There are three types of white box techniques [16]. 
• Code Coverage 

• Fault injection 

• Assertion Monitoring 

Code coverage analysis provides a measure by observing 

the codes of component which are not executed or not reached while testing. If this 

23 



analysis identifies a section of code that has not been executed, for example it can be 

a function that was not called or a loop that was not followed, then that particular 

code is cet1ified by including more test cases to the existing ones. The more that is 

tested, the higher confidence the analyst will have on the result of the certificate. 

Fault injection technique attempts to conupt inputs and 

outputs to software components. It tries to make the system fail in new and unique 

ways. Code coverage analysis is most useful when combined with security-oriented 

testing such as fault injection analysis and property-based testing. Both system inputs 

and component inputs can be conupted through this technique. Property based testing 

is the process of analyzing the behaviour of a program to detennine if it adheres or 

violates some property. 

Observing security violations either through fault injection 

analysis or through property-based testing is made possible through the use of 

assertions. Assertions are conditional statements placed in program that satisfy 

security policy of the program. Combining assertion with fault injection analysis and­

coverage analysis, property based testing of software component can be petfmmed. 

This should be done until a degree of confidence is reached. The degree of confidence 

necessary will be detennined be the application in which the component will be 

deployed. 

3.3.3 Black box techniques 

The use of security assertions provides the ability tp determine if a secmity policy 

violation has occurred as the result of input sampled from the expected user 

distribution [ 16]. The input stream can be generated as samples from the different 

input spaces of component .Most samples get input from the expected user input 

distribution or operational profile. If this is unknown, the input generation functions 

provided will support sampling from a wide range of potential user profiles. In cases 

where user profile data has been collected, the input generation module will support 

24 



sampling from the customized user profile. Generally, the most dangerous 

vulnerabilities will be detected by sampling expected input distributions. 

The test cases used for black box testing can be enhanced 

with malicious input using perturbation functions. These functions include the ability 

to huncate input streams, to overflow input buffers, to append garbage input and 

malicious commands, to append garbage input and malicious commands, to perturb 

numerical constants and to garble strings. 

3.4 Formal Techniques 

Formal techniques are those which can be expressed in 

restricted syntax language with defined semantics based on well-established 

mathematical concepts. In secmity certification of components these techniques were 

not as established as informal techniques. But, there is a need to focus on this way as 

these techniques are more valid than informal techniques. 

25 



Chapter 4 

PROPOSED SECURITY CERTIFICATION PROCESS 

4.1 Overview of Process 

In this chapter we particularly deal with our proposed security certification process 

for a component. An algorithm regarding this will be given in next section. This 

model is mainly for intra component security in which only atomic components were 

considered. For simplicity reasons, atomic components were considered rather than 

hierarchical components or compositional components. In this section we will discuss 

about general overview of our process. 

The main process is a goal-oriented approach. In 

this approach we divide every security requirement into a specific goal. There may be 

many sub requirements in a single security requirement. So, every security 

requirement is treated as a specific goal and every sub-security requirement is treated 

as a sub-goal. Every goal is evaluated by evaluating its sub-goals and in the end a 

. security percentage as a out put will be given to show how much the component is 

competent as per the user specifications. The main approach can be shown in 

algorithmic way as below. 

Main steps: 

1) Identifying Security Requirements as Security Goals. 

2) Dividing Security Goals into Sub-Goals using Secmity Profiles. 

3) Evaluation of all Sub-goals. 

4) Evaluation of main goal using those sub-goals. 

26 



5) Evaluation of whole component using all Security Goals. 

4.2 Algorithm 

Algorithm: Certification Driver 

User Report 

Input 

Required Security Goals (SGI, SG2, SG3 ....... SGn) 

A Component 

Input Structure Component specified'with security goals from User 

Report and Version Number specified in X.Y fmmilt. 

Security evaluated Component · Output 

Output Structure 

Requirements 

Component Function 

Certification Driver 

Component with security Percentage 

Test Case Database, Security Template. 

COMPONENT (name, version number, SG [], SL []) 

CERTDRIVER (component name) 

COMPONENT having loaded with input parameters with the help of User-Report 

and Version number will be given as input to CERTDRIVER. 

Step I: CERTDRIVER reads Version Number which is in X.Y format, and reads 

the value of' Y' and stores security goals in SG [ n]. 

Step 2: IfY is zero, then go to step 5. 

Step 3: From Read SG (0] to SG [n-1] 

3.1: call SECURITYTEMPLATE (SG [i]) 

3.2: Identify the sub goals based on pre defined Security Template structure 

3.3: Read sub goals into SUB [] 

3.4: From SUB [0] to SUB [n] 

3.4.1: call TESTCASEGEN (SUB [i]) 

3.4.2: Call Test cases in Descending order Based on rank 

3.4.3: lfthere is failure of a sub-goal, increment rank ofthat test case. 

3.4.4: Otherwise return the percentage value tagged to that sub-goal 

27 



And store it in SUB [i] 

3.4.5: Go to Step 3.4 

3.5: Sum up all the percentages in SUB [] 

3.6: Retum that percentage value to SG [i] 

Step 4: Go to step 3 

Step 5: Call SG [], an:d if available sum up all values in SG []otherwise continue. 

Step 6: Attribute this percentage to COMPONENT and put 'Y'=O in Version. 

Step 7: Check if there is any other component ready for certification 

Step 8: lfready go to stepl otherwise Exit CERTDRIVER. 

4.3 Implementation Details 

The main principle concepts of this algorithm are User Report, Security Goals, Test 

Case Database, Version Number and Security Template. Security properties are 

inherently represented as security goals. These security goals are again represented as 

security sub-goals. The basic stmcture ofCERTDRIVER will be shown in next page. 

User Repm1 generally gtven by user containing required 

security goals or its sub-goals directly from user's perspective. This is not a 

mandatory input as many times a user may not able to mention his required security 

aspects relating to particular domain. So, if a user having capability and want to 

pm1icularly mention his security specifications then our model allow him in that 

regard. User repm1 stmcture will be a set containing component's name and its 

required security goals. 

Security Goals are nothing but the properties of that 

component represented in informal language. Users should specify them clearly to 

match their required security features. Ambiguity in specifying the security goals may 

lead a different direction of validation. If there is any ambiguity, then the 

CERTDRIVER tries to match this with the closest property mentioned in Security 

Template. If this is also not possible, then it again asks user to mention it properly. 

28 



User can have a look at the manual of CERTDRIVER before get used to the way of 

mentioning the secmity goals. 

Component 

~ Gives .. User 
~ Report 

Version 
Number 

Gives~ 

Retrieve 'Y' value 
from Version 'X.Y' 
format and compare 

INPUT 

~--~------:~~~~----------~ 1 ~c~~al-1--~ 
Certification ofthe I Y= Y-1 I 
component is over. 

l 
Retrieve the percentages 
stored while traversing forest 
depth wise for every sub-goal 

l Ifavailable 

Calculate the total percentage 
of the security goals of the 
candidate component 

Attribute a percentage 
to component 

CERTDRIVER 

If not 

-

OUTPUT 

A security evaluated 
component with 'Y' value of 
Version number set to zero. 

No 

Security 
Template 

If there is 
any 
match 

Find out every Sub­
Goal and store them in 
the char array SUB [] 

i 
Call Test case Database 
for every sub-goal and 
tries to find faults 

Fig 4.1: Flow chart ofCERTDRIVER 

29 



Test case Database is a database consisting of pre­

constructed test cases relating to different domains and different security aspects. 

These test cases can be represented in Extensible Markup Language (XML) since it is 

in general a widely accepted standard for mentioning hierarchical test cases. Our Test 

cases are hierarchical because they have to test security goals, as security goals are 

hierarchically arranged with security sub-goals, so the test cases be. By using XML, 

we can represent test cases in tree form like those of Security Template and Test 

cases can be retrieved based upon the required security sub-goal. These test cases in 

every hierarchy have one special property, rank of test case. Rank will be given to 

those test cases which are proved to be helpful in finding faults. Rank will be 

increased by one every time, when it results in failure of the component. 

Version Number is a pre-defined syntax to know 

whether a component has been changed or not after giving at least one time 

certification. This concept plays a pivotal role in upgrading the certification. We 

follow some syntax while defining version of a particular component. Let us consider 

"Version X.Y" is a notation of a component, then 'X' denotes the number of security 

properties (Intra component secmity properties or NFS, as we particularly dealing 

with these) that component have and 'Y' denotes which properties of the components 

are going to effect after a change in the code of component. Here 'X' is an integer and 

'Y' is a string of integers. 'Y' can be of [ {a, c} ;f) where {a, c} means the properties 

from a, band c are to be checked by third-party certifier and 'f properties are also to 

be checked. To get a clear understanding, let us consider the following example 

notation, Version 7 .[ {1 ,4} ;7] denotes that there are 7 non-functional secmity 

propet1ies in which the properties set {I ,4} means I, 2, 3, 4 properties should be 

checked because of a change in the code. One more property is also to be checked 

that is of ih property. But for this implementation we need to have an order among 

security properties as we are mentioning them as numbers in version code and 

matching should be perfect. For this we can implement an alphabetic technique for 

30 



mentioning these security properties or developer should issue a repm1 specifying 

how he mentioned security prope11ies. 

The conditions that can be retrieved in Version Number 

through X and Y are as follows. Here, 'X' denotes the number of secmity goals 

prescribed in Version Number and 'Y' denotes the number of updated security goals 

which needs again ce11ification. The pre-condition on 'X' was that it can not be zero 

at any time, only 'Y' can vary. 

I. Given X, Y!=O and X=Y, then the component is a new component 

2. Given X! =0, Y=O and X=Y, then that component is already certified one. 

3. Given X, Y! =0 and X> Y, then some secmity goals needs to be re-certified. 

4. Given X, Y! =0 and X <Y, not possible condition. 

Security Template is an inbuilt pre-defined 

structure to match different security goals. This template main aim is to divide each 

security in to different security sub-goals. Goals and sub-goals are arranged in tree 

order, we can define it as forest data structure, where main goals is the root of forest, 

and the immediate sub-goals are aJTanged as immediate descendants in the forest. As 

there may be a chance that sub-goals can be fm1her divided into sub-goals, so they 

can be an·anged as next descendants of that sub-goal. Security goals can be mTanged 

as a forest data structure as shown below. 

Security Template 

Fig 4.2: Structure of Security Template 

31 



ln the above figure, we make a forest 

containing security goals as children. We choose forest as there is no limit on the 

number of security properties, a component can have. Each Security Goal is as 

important as another, so we will assign an equal value of percentage to each security 

goal. Suppose a component is having five security prope1iies, then we will assign 

20% importance to each property. That is if that component fails to satisfy two 

security properties then it is 60% (3* 20) secure to use. This structure will not suitable 

to specify priority among security properties. As security .goals are not atomic, the 

sub goals are to be given equal weightage. So, if you consider the above example, 

every sub-goal of one security goal should be managed with in 20% only. Suppose if 

there are five sub-goals, then each will get 4%, only if three were satisfied, then 

whole security goal will be only 12%(3*4) instead of 20%. Like this all values are 

propagated from leaves of forest to the root to resulting in total evaluation of whole 

component. At the end, we will get some percentage values for each security goal. By 

summing these values we will get the total security position of component. 

Let 'S' be the total security evaluation of component. 

S = SG l+SG 2+ ......... +SG n 

= (Subl+ Sub2+ ......... +Sub n) + (Subl+ Sub2+ ......... +Sub n) + ........ +SG n 

4.4 Benefits of this Model 

The main benefit of this model is the facility to upgrade the 

certification. Up gradation in certification was don~ with the help of Version number 

and following some syntax while specifying that number by developers. The main 

theme is to divide every security requirement into some property, particularly Non­

functional security prope1iies in this model. As CERTDRlVER only checks for 

changed security properties, it saves a lot of time particularly in large-scale 

component based systems where each component is very large and it takes a lot of 

time to check that component through test cases, as there is a need of large number of 

test cases. 

32 



Giving rank to test cases is also an impm1ant 

aspect of this algorithm. This is also aimed at reducing time to find faults and having 

an effective testing. We increase the rank of a test case if that test case succeeds in 

finding a fault. Storing its domain of work is also a good move. We arrange these test 

cases in the decreasing order of their rank and first we will test with those cases later 

we will test with remaining. Ordering test cases in the tree order as of Secmity 

Template allows us to check the security goal needed to test quickly and by that 

produce the test cases for that. This is because we divide and organize test cases 

according to security properties, thus for retrieving them if we search them by 

security properties it will yields results more quickly than if we search sequentially. 

The out put of this model is in very simple metric which can be understood easily by 

a common user. 

4.5 Case Study 

We discussed in previOus sections how to do up-gradation of ce11ificate through 

component's version number. To get a clear understanding of the algorithm, take an 

example, a component by name Event History and apply this algorithm. As our model 

is based on Common Criteria, this example is also based on some specifications given 

in Common Criteria. 

The component Event History, tries to store all the events generated by any user, 

whether he is administrator or guest. This component can be useful in many domains. 

The same component can be used in banking systems to retrieve the previous illegal 

operations of any user or it can be used in inter-networking of systems where any user 

tries to hack other computers. The main objective of this component is to secure other 

components through information security. Event History can be given with user 

rep011 along its Version Number to CERTDRIVER. 

The User Report should contain the required security goals of Event History. Here 

Version Number can be given depending on the state of the component. If that 

33 



component is a new one, then it's version number should be represented as Version 

3.3, assuming that there are three intra-security prope11ies. Suppose it is already 

certifi~d once and changes made to that component effect only some security goals of 

that component, then these can be represented as Version 3.2, if only two security 

goals should be again certified. So, the security goals can be represented as below. 

33.3% Event Selection 
Event History 

Version 3.3 100% 

33.3% Event Time 
Banking 
Domain 

3 0 3.3Yo Event storage 

Fig 4.3: Finding Security Goals of Event History 

The security template · shown in the above 

diagram is stored in a database and it will be connected to CERTDRIVER. When 

CERTDRIVER calls the component Event History, the Event History send its 

required goals as Security Goals and Version Number in X.Y format. Here, the 

version was given as 3.3 which mean that either it's a new component or a component 

modified such that all its secmity goals might be affected. By reading one security 

goal at a time, CERTDRIVER stores them in SG []. For these every three goals; 

CERTDRIVER calls Security Template, to find out its sub-goals. 

The division into sub-goals mainly depends on 

the process which these security goals would follow to achieve required level of 

security. First, consider the Event Selection security goal, the main objective is to 

selecting events individually, that means atomicity should be maintained while 

selecting events. In the same way, the Event Time goal can also divided into 

techniques used to get correct measuring of time at any situation, the Event storage 

goal can be divided into the efficient memory techniques for maintaining a list of 

34 



operations what had happened and what effects they got on other events. These 

storage details can be maintained by some check points. 

Event 
History 

Event Selection 

Event Time 

Event Storage 

Component -··-··-·II- Security Goals 

Atomicity checks 
while selecting the 
events. 

Techniques for 
efficient Time 
Measuring 

Techniques for efficient 
memory management 
and maintaining 
checkpoints 

-··--·~ ·-· _..,.. Sub-Goals 

Fig 4.4: Security Template for Event History 

c 
a 
s 
e 

In the above figure, we observed that all the secmity 

sub-goals are connected to a Test Case Data Base. This is maintained as a hierarchical 

data base in which test cases are an-anged in descending order of their rank. For 

maintaining hierarchical test data base we use XML. The hierarchy in test cases is 

dependent on the domain of the application and its sub-goals required. In our 

example, the first hierarchy will be domain and name of the component, second will 

be security goal of the component and third will be sub-goals of the component. Thus, 

by specifying in this order it will be very easy for retrieving test cases whenever 

required. The test cases depend on the nature of the component. For white-box 

components, code-coverage technique will be good and for black-box components, 

fault-injection technique test cases will yield good result. 

Like the same way we did dist1ibute 

percentages to different security goals, we will dist1ibute percentages to each and 

every sub-goal. At the end, all these percentages which got success while testing are 

summed up and produced as whole component's security percentage. 

35 



5.1 Security in CORBA 

Chapter 5 

SECURITY IN TECHNOLOGIES 

The security in CORBA deals with the following central 

four elements [4, 17]. 

• Security Policies 

• Principal Authentication 

• Access control 

• Security Association 

5.1.1 Security Policies 

These policies aim at differentiating security administration to 

application development with the help of rules. These rules will be defined by 

security policies for authentication, secure invocation, p1ivilege delegation, access 

control etc. There will be different security policies for different security domains. 

When a target is created, ORB will check which domain that belongs and adopts 

those policies. There may be sub-domains in a sin.gle domain, so, security policies 

are also designed specifically. 

5.1.2 Principal Authentication 

It generates credentials which carries information about the security 

attributes of a principal. Attributes can be identities and privileges of the principal or 

both. As these attributes are present in credentials, which can be expressed as 

system's policies, so, these attributes form the basis of system's policies. Which 

attributes are to be given will depend on principal authentication policy. Based on the 

36 



provided infonnation, there will be some underlying authentication mechanism which 

decides which ptivileges to put into a ptincipal' s credential object. These security 

attribute can be present at both client and target side. 

5.1.3 Access Control 

This feature will be normally at target side. This 

access control supports and controls requests coming in and out to the target side. In 

CORBA, there are standard sensitivity levels for each operations like g(get), s(set), 

u(use), m(manage). In this model, the policy compares the level required to access the 

operation with the level generated to the client. Access is allowed only if there is a 

correct matching of levels. This model can support several different policies, such as, 

access control lists, capability lists and role-based access control. 

5.1.4 Security Association 

This is mainly associating several credentials 

to several security contexts. These can be transferred to other networks i.e. to other 

remote CORBA security system, if communications among network are involved. 

These credentials provide necessary secmity information at both client and target 

sides. Generally, CORBA security services use standard network authentication 

mechanisms. This network authentication mechanism fails when both client and 

target reside on the same ORB, as the network does not involved in the 

communications, the mechanism will be ineffective. 

5.2 Security in JAVA 

Security in java provided through a model called 

sand-box model. This model keeps limitations on the down-loaded code. According 

to this model, local code will be given full access to system resources where as a 

downloaded code can have only access to limited resources. Overall security can be 

37 



enforced by some mechanisms like type-safe and easy to use. Compilers and a byte­

code ve1ifier make sure that only java byte codes are executed. At run-time language 

safety will be guarantied by byte-code verifier and java vi1tual machine. A class 

loader defines a local name space. Security manager class restricts access to critical 

system resources. We can execute downloaded programs either in sand-box model or 

in JAR fmmat. JAR format is applicable for signed applets only. 

5.2.1 Security in JA VA2 

The security architecture was introduced for the following purposes. 

• Fine-grained access control. 

• Easily configurable security policy. 

• Extensible access control structure. 

• Extension of security checks to not only remote code but also local code. 

5.2.1.1 Protection domain 

Protection can be done in two ways. 

• System protection domain. 

• Application protection domain. 

All external resources · such as the file 

system, the networking facility etc are belong to system domain. Applications 

like printing a message comes under second domain. Generally, a domain 

consists of a set of classes whose objects have same set of permissions. In 

Java, there will be mapping from code (classes and objects) to their protection 

domain. It may also possible that both application domain and system domain 

may involve in the same execution thread. Here, in this scenario, application 

domain will be restricted from gaining more permission by calling system 

38 



domain. Suppose, if system domain calls application domain by invoking some 

method in application domain, the permissions of system domain will be 

maintained same to cun·ent enabled application domain. The rule used for 

calculating permissions is the following [ 4]. 

• The permission set of an execution thread is considered to be the intersection 

of the pe1missions of all protection domains traversed by the thread. 

• When code calls the Do Privileged method, the permission thread of execution 

thread is considered to include permission if it is allowed by the code's 

protection domain and by all protection domains that are called or entered 

.. - afterwards. 

During execution, when access to a critical system resource is requested, the 

resource-handling code invokes a special AccessController class method that 

evaluates the request and decides if the request should be granted or denied. Such an 

evaluation follo,vs the rule given above. The basic principle is to examine the call 

history and the pe1missions granted to the relevant protection domains, and to 

return silently if the request is granted or throw a security exception if the request 

is denied. Finally, each domain (system or application) may also implement 

additional protection of its internal resources within its own domain boundary. _ 

5.2.1.2 Dynamic Class Loading 

Dynamic class loading provides the java platform with 

the ability to install software components at run-time [ 4]. It has a number of 

important characteristics. First of all, classes are loaded on demand and at the last_ 

moment possible. Second, dynamic class loading, maintains the type safety of the 

java virtual machine by adding link-time checks, which replace certain run-time 

checks and are performed only once. Moreover, programmers can define their own 

class loaders that, for example, specify the remote location from which ce11ain classes 

39 



are loaded, or assign appropiiate security attributes to them. Finally, class loaders can 

be used to provide separate name spaces for various software components. One can 

load mobile code from different servers using separate class loaders, thus maintaining 

a degree of isolation between those classes. This mobile code can contain classes of 

the same name, which are then treated as distinct types by the java virtual machine. 

5.3 Security in .NET 

The secmity features of framework can be classified as [4) 

• Evidence-Based security 

• Code access secuiity 

• Role-Based secuiity 

• Application domains 

• The verification process 

5.3. 1 Evidence-Based security 

Key elements of this secmity sub-system are 

policy, pe1missions and evidence .. Net framework security features are based on 

XML described secuiity policy. This defines resource allocation by matching 

pe1missions to evidence. This can be a default secuiity policy for a safe execution 

environment or customized by developers to address application specific security 

needs. Pe1missions maintain resources and associated lights implementation methods 

for demanding and asserting access. There are three types of pe1missions. Minimal, 

Optional, Refuse. The minimal crite1ia for granting an assembly, if the policy doesn't 

grant it, then the assembly will fail to load it. Using 'Refuse' request, developers can 

decline access to resources. By evaluating assembly's evidence, CLR determines 

which pe1missions can be assigned at mn time. Sources of evidence include 

cryptographically sealed namespaces (strong names), software publisher identity 

(Authenticode), Code oiigin (URL, Site, internet explorer zone). 

40 



5.3.2 Code Access Security 

This feature limits the assembly code not to exceed its 

permissions while executing. Generally, code assemblies are mapped with their 

corresponding set of pe1missions when they are loaded. An approp1iate permission 

object is therefore needed whenever a method in an assembly needs permission to 

access a resource. A stack-walk is initiated to check whether each and every assembly 

in the chain has the requ.ired permission otherwise an exemption will be generated 

causing the operation to halt. By this stack-walking feature, we can stop 

untmstworthy code attempts. By two mechanisms, developers used to control these 

permissions. They are imperative and declarative. Imperative checks request a 

demand or override portions of the stack-walk operation. These occur at mn-time. 

Declarative are also same but expressed as attributes that are evaluated at compile 

time. These checks occur at JIT also. Imperative checks limited to the place where 

they were written, where as declarative checks can cover whole class i.e. to every 

method, constructor and property in the class. 

5.3.3 Role-based Security 

Authentication and authorization will be given by Principal and 

Identity concepts. Principal represents context of running code whereas identity 

represents that particular user at that context. The running code queries the principal 

about identity roles, allowing or denying pe1missions according to role-membership. 

5.3.4 Application Domains 

Operating systems isolate application domains by mnning each 

application in different process with different address space. It is not good in terms of 

performance for loaded servers. Running different processes for each other is not 

possible. The type-safety of the code which restricts the code not to access arbitrary 

41 



address provides a good isolation at process boundary. Code mnning in one domain 

can not directly effect other applications. All code is loaded into a single application 

domain and run according to that domain security policy. 

5.3.5 The Verification Process 

We already discussed that CLR provides memory 

safety which eliminates the unexpected actions during code execution. Verification 

process is the last step in ensming the runtime safety of managed code. lt prevents 

common etrors from occurring such as buffer overflows, invalid references in the 

stack, using integer pointer to access memory locations. The unmanaged code that 

runs outside the CLR is outside of security checking and thus may cause unauthorized 

access to resources. Managed code wrappers will take care of verifying the 

permissions and parameters for unmanaged code . 

. 42 



6.1 Contributions 

Chapter 6 

CONCLUSIONS 

• My work focused mainly on intra-component security, which was not given 

much focus in previous security models though the quality properties are 

given as a whole while giving certification. 

• So, it leads to a specific non-functional security certification driver. 

• Therewas no specific algorithm for non-functional security certification. My 

work focused mainly on algorithmic way giving a step towards 

implementation. 

• Up-Gradation of certificate is an important aspect of this algorithm. By this 

feature, we can save a lot of time especially in large scale component-based 

systems where a component having large code needed to ceiiify 

unnecessarily with out any change in the source code. 

• By using Version numbers not only we can upgrade the certification and also 

we can eliminate redundant certification. 

• Giving a rank to test cases is a good addition in algorithm to make the 

process of choosing test cases more effective. As rank will be given only to 

those test cases which can result a failure of component, choosing those 

cases in the beginning will certainly improve the speed of the whole process 

in large-scale Component- based applications. 

• As it also considers previous test cases, we can say it as a self-learning 

certification driver as it learns from previous failures to make existing 

process more speed effective. 

• We can also incorporate it as a component in component based applications, 

so that it can work automatically whenever there is a need, resulting in 

Automatic self-learning ce1iification driver. 

43 



6.2 Limitations of the Proposed Model 

• This model only deals with Non-functional security properties of the 

components represented as security goals. 

• As Version number were specified by developer, if there is any mistake in 

representing it can damage whole certification process. 

• Up-Gradation of certification totally depends on Version Number, which will 

be given by developer. This means that to get up-gradation we should depend 

on developer. This is against the basic concept as the user might not trust the 

developer. 

6.3 Future Work 

As our algmithm does not deal with security 

function properties and keeping the importance of inter-component security in mind 

in compo~ent based software engineering, implementing them will be a good step. 

Making whole certification process independent of developer will make user to have 

more trust on certificate. So, the fu1iher work be developing a developer-independent 

ce1iification driver having able to do up-gradation in both intra and inter-component 

security areas. 

44 



REFERENCES 

[1] Khaled Khan, Jun Han, and Yuliang Zheng Security Properties of Software 

Components: ISW'99, LNCS 1729, pp. 52-56, 1999. 

[2] Jun Han and Yuliang Zheng, Security Characterisation and Integrity Assurance 

for Component-Based Software, pp. 61-66, 2000 IEEE. 

[3] A material on certification by CMU/SEI-2000-TR-008. 

[4] Marteen Rits, Karima Boudaoud, Component Adaptability and Secmity, a project 

internship submitted on June 29, 2003. 

[5] Khaled M Khan, Jun Han, Assessing Security Properties of Software 

Components: A Software Engineer's Perspective, Proceedings of the 2006 Australian 

Software Engineering Conference (ASWEC '06), IEEE. 

[6] Alvaro, Almeida, Meira, Software Component Certification: A Survey, 

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and 

Advanced Applications, 2005 IEEE. 

[7] J.H.Poore, Harlan D.Mills, David Mutchler, Planning And Certifying Software 

Reliability, IEEE 1993. 

[8] Hailiang Mei, Johan Lukkien and Johan Muskens, A Compositional Claim-based 

Component Cet1ification Procedure, Proceedings of the 301
h EUROMICRO 

Conference (EUROMICRO '04), 2004 IEEE 

45 



[9] Mark Grechanik, Dewayne E. Perry, Don Batory, Proceedings of the fifth 

Intemati()nal Conference on Commercial-off-the-Shelf (COTS)- Based Software 

Systems (lCCBSS 2006), 2006 IEEE. 

[ 1 0] M. Kelkar, R. Perry, R.Gamble, A. Walvekar The Impact of Cet1ification Cliteria 

on Integrated COTS-Based Systems, Sixth Intemational Conference on Commercial­

off-the-Shelf (COTS)- Based Software Systems (ICCBSS'07), 2007 IEEE. 

[11] Claes Wohlin and Per Runeson, Concise Papers, 1994 lEEK 

[ 12] John Morris, Gareth Lee, Kris Parker, Gary A. Bundell and Chiou Peng Lam, 

Software Component Certification, 2001 IEEE. 

[16] Anup K. Ghosh & Gary McGraw, An Approach for Certifying Secmity in 

Software Components, produced at Reliable Software Technologies. 

46 


	TH174720001
	TH174720002
	TH174720003
	TH174720004
	TH174720005
	TH174720006
	TH174720007
	TH174720008
	TH174720009
	TH174720010
	TH174720011
	TH174720012
	TH174720013
	TH174720014
	TH174720015
	TH174720016
	TH174720017
	TH174720018
	TH174720019
	TH174720020
	TH174720021
	TH174720022
	TH174720023
	TH174720024
	TH174720025
	TH174720026
	TH174720027
	TH174720028
	TH174720029
	TH174720030
	TH174720031
	TH174720032
	TH174720033
	TH174720034
	TH174720035
	TH174720036
	TH174720037
	TH174720038
	TH174720039
	TH174720040
	TH174720041
	TH174720042
	TH174720043
	TH174720044
	TH174720045
	TH174720046
	TH174720047
	TH174720048
	TH174720049
	TH174720050
	TH174720051
	TH174720052
	TH174720053
	TH174720054

