
FRACTAL IMAGE C0_\1PRESSION

JJissertation Submitted to
JAW AHARLAL NEHRU UNIVERSITY

in partial fulfilment of requirements
for the award ofthe degree of

l\1aster of Technology
in

Computer Science

by
J. Vijaya Kumar

SCHOOL OF COMPUTER & SYSTEMS SCIENCES
JA WAHARLAL NEHRU UNIVERSITY

NEW DELHI- 110 067
. Janumy 1997

)L-

CERTIFICATE

This is to certify that the dissertation entitled

FRACTAL IMAGE COMPRESSION

Which is being submitted by Mr. J. Vijaya Kumar to the School of
Computer and System Sciences, Jawaharlal Nehru University,
New Delhi for the award of Master of Technology in Computer
Science, is a record of bonafide work carried out by him under the
supervision and guidance of Dr. S. Balasundram.

This work is original and has not been submitted in part or full to any
University- or Institution for the award of any degree.

Prof. G.V. Singh
(Dean SC SS)

\J\~~
(_'j·\J\1f\Yf:\ ~\JM~R_)

S. Balasundram
(Supervisor)

ACKNOWLEDGEMENT

I wish to convey my heartfelt gratitude and sincere acknowledgements to
my guide Dr. S. Balasundram, School of Computer & System Sciences for his
whole hearted, tireless and relentless effort in helping me for the successful
completion of the project.

I would like to record my sincere thanks to my Dean, Prof. G.V.Singh,
School of Computer & System Sciences for providing the necessary facilities in
the centre for the successful completion of the project.

I take this opportunity to thank all niy faculty members and friends for
their critical comments during the course of the project.

J. Vijaya Kumar

CONTENTS

1. Introduction

1. 1 What is Image Compression

1.2 Image Compression Methods

1.3 Fractal Image Coding 6

2. History ofFractal Image Compression 8

3. Mathematical Foundations ofFractal Image Compression 12

3.1 What are Fractals 12

3.2 Affine Transformations 14

3.3 Iterated Function Systems 16

3.4 The Mathematical Principle Behind Fractal Image

Compression

4. Fractal Image Compression Process

4.1 Image partitioning

4.2 Discrete Image Transforms

4.3 Distortion Measure

5. Fractal Image Decompression Process

6. Conclusion

6.1 Future Enhancements

References

Appendix

19

23

25

26

27

29

31

31

33

36

l.INTRODUCTION

1.1 What is Image Compression:

Image compression maps an original image into a bit stream suitable for communication

over or storage in a digital medium. The number of bits required to represent the coded

image should be smaller than that required for the original image so that one can use less

storage space or communication time. Image compression reduces redundancy in image

data in order to store or transmit only a minimal number of bits per sample from which

a good approximation of the original image can be constructed in accordance with human

visual perception.

A single 800 by 600 pixel true color image requires 1.44 MB of storage space and an

uncompressed 10-sec video clip with 30 frames per second of 320 by 200 pixels in true

color requires an enormous 57.6MB of disk space. Now a days multimedia applications

and video conferencing are most common things in daily life. With these applications

we must be able to store many images and videos. So there is an increasing need for a

good compression method for storing images.

1.2 Image Compression Methods:

There are two basic types of compression techniques. Lossless compression, which is

also called noiseless coding, data compression, entropy coding, or invertible coding,

refers to algorithms that allow the original pixel intensities to be perfectly recovered from

the compressed representation. The most common lossless compression method is

~KWare's PKZip. These type of compression techniques are not much popular, since

they can't achieve high compression ratios. The other type of compression, Lossy

compression techniques are most popular because they can achieve more compression

ratios. They basically tries to reduce redundancy in image data in order to store only a

minimal number of bits per sample from which a good approximation of the original

image can be constructed in accordance with human visual perception.

There are many lossy compression techniques which can achieve good compression

ratios. One usually distinguish between different coding schemes: transform coding[2];

multi resolution coding; vector quantization[!]; predictive methods; and other more

recent schemes such as fractal image coding. Generally, bit rates around 0.8-0.4 b/pixel

are reported for still monochrome images without a great loss of visual quality. Higher

ratios can be obtained with hybrid coders incorporating different techniques with respect

to local image properties.

A general system for digital image compression is shown in figure l(a). It consists of

one or more of the following operations, which may be combined each other or with

additional signal processing[!].

Signal Decomposition Entropy C~ding

DCT Huffman Coding

2

Subband Coding Vector Quantization Lossless Coding

1gure l(c)

c Signal Decomposition: The image is decomposed into several images for separate

processing, typically by linear transformation by a Fourier or discrete cosine

transform or by filtering with a subband or wavelet filter bank. The goal to

concentrate energy in a few coefficients, to reduce correlation, or to provide a

useful data structure.

c Quantization: ·High-rate digital pixel intensities are mapped into a relatively small

number of symbols. This operation is nonlinear and noninvertible; it is "lossy".

The conversion can operate on individual pixels (scalar quantization (SQ)) or

groups of pixels (Vector quantization (VQ)) quantization can include throwing

away some of the components of the signal decomposition step.

c Lossless Compression: Further compression is achieved by an invertible

(Lossless, entropy code) such as Huffman, Lempul-Ziv, or arithmetic code. The

idea here is to assign code words with a few bits to likely symbols and codewords

with more bits to unlikely symbols so that the average number of bits is

minimized.

3

A bewildering variety of image compression systems have proposed, which involves

various choices for each of the true basic components. The JPEG[25] still-image

compression, for example, uses a discrete cosine transform for the first step. SQ with

different quantizer step sizes for the different transform coefficients in the second step,

and run-length coding combined with Huffman coding for the third step, as shown in

figure l(b).

DCT breaks an image into 8-by-8-pixel blocks and then uses mathematical tricks to

decide what image information can be thrown away without damaging the appearance of

image too much. DCT transforms the image data in the 8-by-8 block mathematically

from x,y space into frequency space. DCT views the data as a varying signal that can

be approximated by a collection of 64 cosine functions with appropriate amplitude. Each

cosine that DCT uses as a basis function is associated with a value called its DCT

coefficient, which determines each cosine function's amplitude.

Most of the important visual information for typical continuous-tone images JS

concentrated in the cosine function with lower frequencies. Thus, by giving less weight

to higher-frequency cosines and approximating small DCT coefficients zeros,

compression can be achieved without too much image degradation. Further space saving

are possible if we quantize the remaining DCT coefficients to a predefined set of values.

With JPEG/DCT, the algorithm is symmetrical; compression and decompression takes

roughly the same amount of time.

4

The other types of compression systems use a subband or wavelet decomposition for the

first step, some form of VQ for the second step, and any lossless coding for the third

step, as shown in figure l(c).

With subband coding, the image is decomposed into a finite set of subimages, which are

usually encoded separately using different codebooks at different rates [2]. These codes

are thus recombined to restore the whole image. This class of methods regroups subband

coding where each sub image lies in a specific frequency hand. In vector quantization

(VQ), sequences of pixels are encoded rather than each pixel separately. According to

Shan nan's rate-distortion theory, VQ should perform better than scalar quantization

because it takes the samples correlations different types of samples including DCT or

wavelet coefficient [2], [3] .

. The most popular compression technique from past one decade, Fractal Image

compression is based on concepts of iterated function systems (IFS) [4]. It can be seen

as a kind of vector quantization and multiresolution coding. The method consists of

partitioning blocks (vectors) and approximating each vector by a transformed code book ·

block derived from the image itself [5]. Each transform, described by a linear term and

a translation term, maps a block onto another block with a different resolution and

composes the coded information.

5

1.3 Fractal Image Coding:

A number of papers on fractal image compression have been proposed by researchers

since the original idea of Bamsley and Sloan in 1988 [4], implemented in a fully

automated algorithm by Jacquin in 1989 [5]. Bamsley showed that it is possible to model

a self-similar image as attractor of an IFS, with the help of the collage theorem[4]. Such

as image is encoded with the very limited number of coefficients of the contractive

mappings defining the IFS. The nonautomatic encoding algorithm he proposed consists

of segmenting the image into self-similar objects. Each object, defining a part of the

image, is covered by a set of contractive affine transformation of itself, with the property

that the resulting union approximates the object. Each part of the image is coded by the

coefficients of its associated set of transformation. The decoded image is formed by the

association of the attractor of each IFS.

The encoding algorithm of Jacquin is fully automated because it does not require an

"intelligent" segmentation of the image into distinct objects. The method is based on the

observation that a real-world image is "affine-redundant". If exploits the partial self

similarity of the image.

The first step of this algorithm is to partition the image support into nonoverlapping

square domain blocks and larger square range blocks. Given a domain block, a range

block is searched such that it provides the best affine mapping to the domain block in the

root mean squared error (MSE) sense. The encoder attempts to find, for a given image,

the set of transformation under which the distortion between the original image acnd the

union of the transformed range blocks (mapped into the domain blocks) is minimal. In

6

this paper[6], Jacquin proposed improvements by the use of a classification scheme and

a split of range blocks to adopt the mappings to the local properties of the image.

Since the publication of this original work, a number of research areas have been

investigated. They are summarized [7][8] and [9] as follows:

c Construction of the range and domain block partition (different block shapes,

different mappings)

c Quantization of affine transformation parameters.

c Improvement of the encoding step - complexity reduction, introduction of fixed

basic blocks, orthogonalization of the blocks.

c Decoding step - standard iteration, noniterative decoding, hierarchical decoding.

c Theoretical studies on the convergence to the attractor image and on the college

theorem.

7

2. HISTORY OF FRACTAL IMAGE COMPRESSION

Fractal image compression is based on the concepts and mathematical results of iterated

function systems (IFS). The roots of this theory are atleast 10-20 years old. In the mid

1980's , IFS's became very popular. It was Barnsley and his coworkers at Georgia

Institute of Technology who first noticed the potential of IFS for applications in computer

graphics. Initially. around 1985, their research focused on modeling natural shapes such

as leaves and clouds but then Barnsley and Sloan advertised in popular science magazines

the incredible power of IFS for compressing color images at rates of our 10,000 to 1

[10], [11]. Company, Iterated System, Inc., devoted to application of iterated systems,

especially fractal image compression. Their algorithm is basically image dependent

partitioning of the image into self-similar parts and IFS coding of each part separate! y.

Several researchers have taken up the challenge to design an automated algorithm to

solve the inverse (i.e the encoding) problem using the basic IFS method and its

generalizations (recurrent iterated function systems, RIFS).

In 1989 Jacquin proposed the first fully automated algorithm for fractal image

compression. It was based on affine transformations acting locally rather than globally.

This new approach first appeared in his Ph.D thesis [5] and since then several papers

[12], [13] have popularized his scheme.

A digital monochrome image is partitioned into nonoverlapping square pixel blocks

(domain blocks). Larger square pixel blocks (range blocks) which may overlap are

sorted into a set of categories (shade blocks, edge blocks and midrange blocks) following

8

a classification, well·known in image processing. For each domain block, a range block

of the same category is searched (for evident complexity reduction purposes) such that

its image under a local strictly contractive affine mapping minimizes its distance to the

original block in the root mean squares metric. Each affine mapping is composed of a

geometric part which shrinks the range block down to the size of a domain block by

shuffling (8 alternatives corresponding to the isometry group of the square), scaling with

quantized parameters and addition of a constant grey tone block.

These operations were called contrast scaling and luminance shift respectively. The

union of the affine mappings, the Jacquin block operator, is shown to be contractive on .
the set of discrete images. The iteration of the block operator upon any initial image

generates an approximation of the target image. This scheme is by many aspects related

to vector quantization with which it shares the idea of using a codebook providing a

library for the selection of the range blocks. However, the codebook in fractal

compression is only a " virtual" one since the range blocks are not stored but taken from

the image itself, thus exploring the redundancy of the information present in the image.

In [14], Fisher, Jacobs and Boss introduced adaptive methods in the encoding. They

used quadtree, rectangular and triangular partitions of the range blocks to improve the

image fidelity. They also pointed out the important fact that it is not necessary to impose

strict contractivity condition on the transformations of the code since the eventual

contractivity of their union is a sufficient condition to ensure the convergence of the

iteration process in the decoding. Their classification scheme [15] is made with a clever

design of a variable number of classes (4-12-72) taking into account not only intensity

values but also intensity variance across a domain.

Fractal compression based on piecewise self-similarities has first been implemented by

Jacquin for images, i.e., for digital signals in two dimensions. Of course, the same ideas

are applicable for modeling one-dimensional signals. The group at the Department of

Electrical Engineering at the Georgia Institute of Technology consisting of Hayes, mazel

and Vines has investigated this application in a number of papers. For example, in [16]

the approach using linear fractal interpolation as well as the piec~wise self-affine fractal

model are discussed with algorithms that are adaptive in the choice of the sizes of the

ranges and domains. Some previous work on ID-coding is in [17].

an original approach to fractal coding is described in [18]. The image is partitioned into

nonoverlapping rectangular blocks. Each block is split into a finite number of tiles using

an IFS. Then, each tile is coded by a lease-squares approximation of the transformed

block (under a contractive affine mapping). Thus, the encoding is accomplished without

searching by solving a set of linear equations whose coefficients are computed in linear

time with the total number of pixels. This method, called the Bath fractal transform,

is generalized in [19] by including searching at 9ifferent levels for which the cost/image

fidelity trade-off is experimentally investigated. The results indicate that the fidelity

pained by searching does not compensate the extra hits needed to specify the symmetries.

It is suggested that the use of higher order contractive maps (instead of the affine ones)

could be a better option [20]; in [21], Dudbridge presented a similar coding technique

10

with a fast non-iterative decoding algorithm. Some promising results on fractal video

compression. are reported in [22].

11

3. MATHEMATICAL FOUNDATIONS OF FRACTAL

IMAGE CODING

3.1 What are Fractals:

A fractal is an infinitely magnifiable picture that can be produced with small set of

instructions and data. With a fractal , the more you zoom in on an image, the more

details you see. If you zoom on a bit-mapped image, however, eventually all you will

see is big blocks of the same color. The word fractal was coined by Benoit Mandelbrot
'

to mean fractured structure possessing similar-looking forms at many different sizes. For

example, a tree in winter has large branches, small branches, and tiny twings, all

branching off in the same way at different scales. Traditional, abstract fractals, such as

the mandelbrot set, have become very popular. They tend to be harmonious, delicate,

balanced, and pleasing to the eye because they have low information content, which

follows from the fact that the program that produces them is finite even though the

picture appears to be infinite. The following paragraph explains how fractals can be used

to generate any particular image.

Suppose we want to generate pictures of man-made objects, such as bricks, wheels,

roads, building and cogs, we can easily generate them by using any graphics system. But

suppose we want to generate natural objects such as a sunset, a tree, a lump of mud, it

is very difficult to generate, because for these we have to tell the computer the address

and color attribute of each point in the cloud. To escape this difficulty, we need a richer

12

library of geometrical shapes. These shapes need to be flexible and controllable so that

they can be made to conform to clouds, mosses, feathers, leaves and faces, not to

mention waving sun flowers and glaring arctic wolves. Fractal geometry provides just

such a collection of shapes.

Using fractals to simulate landscapes and other natural effects is not new; it has been a

primary practical application. For instance, through experimentation, you can find a

fractal generates a pattern similar to tree bark. Later, when you want to render a tree,

you put the tree bark fractal to work. What is new is the ability to start with an actual

image, and find the fractals that will imitate it to any desired degree of accuracy. Since

our method includes a compact way of representing these fractals, we end up with a

highly compressed data set for reconstructing the original image.

We start with a digital image. Using image processing techniques such as color

separation, edge detection, spectrum analysis, and texture-variation analysis, we break

up the image into segments. A segment might be a fern, a leaf, a cloud, or a fence post.

A segmenting can also be a more complex collection of pixels: A seascape, for example,

may include spray, rock and mist. We then look up these. segments in a library of

fractals. The library doesn't contain literal fractals; that would require astronomical

amount storage. Instead, out library contains relatively compact sets of numbers, called

iterated function systems(IFS) codes, that will reproduce the corresponding fractals.

Furthermore, the library's cataloging system is such that images that look alike are close

together: Nearby codes correspond to the nearby fractals. This mak~s it feasible to setup

13

automated procedures for searching the library to find fractals that approximate a given

target image. A mathematical result known as the collage theorem quarantees that we can

always find a suitable IFS code - and gives a method for doing so. Once we have looked

up all the segments in our library, we can throw away the original digitized image and

keep the codes, achieving our compression ratio of 10,000 to 1 - or even higher.

3.2 Affine Transformations:

The concept of affine transformation is central to fractal image compression. An affine

transfonnation is a mathematical function made up from ~orne combination of a rotation,

a scaling, a skew, and a translation in n-dimensional space. A simple example in two

dimensions would be

W(x,y) = (ax+by+e, cx+dy+O

This can be written in matrix notation as the following.

the matrix

determines the rotation, skew and scaling, and

14

(ax+ by·+ e)
C'(+dy+f

determines the translation. This translation moves the point (0,0) to (e,f), the point (I ,0)

to (a+e,c+f), the point (0,1) to (b+e,d+f), and the point (1,1) to (a+b+e,c+d+t).

The values a,b,c,d,e and fare the affine coefficients of this transformation.

If an affine transformation causes an image to contract in spatial dimensions, then the

affine transformation is said to be contractire. That means , distance between to points

x,y in resulted image after applying affine transformation, must be less than the distance

between x,y in the original image. This type of contractive affine transformations are

important to the theory and practice of fractal image compression.

Given a two-dimensional image and its corresponding image after applying affine

transformation, we can solve the six simultaneous equations determined by the x,y

location of the three points on the contractive image to find the values of the six

coefficients (a,b,c,d,e, and f) that define the affine transformation.

Affine transformations are not restricted to two dimensional. A gray-scale image can be

considered to be a 3-D entity with two spatial dimensions and one intensity dimension.

If you apply a 3-D contractive affine transformation to a gray-scale image, then it will

become smaller spatially, the brightness will change, and the contrast will decrease. We

can represent a 3-D affine map using standard homogeneous 4 X4 transformation matrix

as follows.

15

X! a b 0 e 1/s 0 0 0 X

y! c d 0 f 0 1/s 0 0 y

z I 0 0 g h 0 0 1 0 z

1 0 0 0 1 0 0 0 1 1

where 1/s denotes the factor that scales the original image to the sizeof nncontracted

image, a,b,c,d E {-1,0,1} form an isomorphism, e,ftranslate the image, g< 1 reduces

contrast, and h adjust brightness.

3.3 Iterate~ Function systems:

IFS .theory is an extension of classical geometry. It uses affine transformations, to

express relations between parts of an image. Using only these relations, it defines and

conveys intricate pictures. Using IFS, we can describe a cloud as clearly as an architect

can describe a house. Briefly IFS is nothing but a collection of contractive affine

transformations.

An iterated function system consists of a set of affine maps {WJNi=t from Rn into itself.If

the maps of an IFS are contractive, each IFS include a single, compact, non empty set

A C Rn, called its attractor, defined as the union of images of itself under the IFS maps.

A = 1 IN w.(A)
U;=J I

The Hutchinson Operator w is a convenient shorthand notation

w(•)
1"· /

16

that allows us to simplify the definition of an IFS. attractor as A = w(A).

The Inverse Problem of Iterated Transfonnation theory:

Let (C, d) denote a metric space of digital images where d is a given metric-distortion

measure, and let J!origbe an original image that we want to encode. The inverse problem

of iterated transformation theory is the construction of a contractive image transformation

r, defined from the space(C, d) to itself, for which J!origis an approximate .fixed point. We

denote by 7 the set of allowed transformations: a specific supset defined a priori of the

space of all contractive transformations in (C, d). The requirements on the transformation

r are formulated as follows:

3s < 1 such that VJ.t, v E c, d(r(J.t), r(v)) :5 sd(J.t, v), and, (contractivity) (1)

d(pori& T(J!orig)) is as II small 11 as possible, (app. fixed point) (2)

The scalars is called the contractiviry of r. Under these conditions, and provided that r

has a lower complexity than the original image, r can be seen as a code-lossy in

general-for J!orig· By repeated application of the triangular inequality in (C, d) and use of

the contractivity of r, it is to show that, for any image J!o and any positive integer n:

(3)

17

From (3), we see that after a number of iterations, the terms of any iterated sequence of

the form:

{Ito = r' (~tJ } n ?! 0

where J.Lo is some arbitary initial image, clustered around the original image. In a space

of quantized images, the sequence converges exactly to a stable image, which as a result

of its iterative construction, is said to be .fi"acra/[23],[24].

c the closeness of r'(J.L0) to J.Lorig is conditioned by the distortion d(J.Lorig• r(J.Lorig)).

c It is clear that if sis close to one, the error bound in (3) becomes very large. The

convergence of the sequence depends fundamentally on s being strictly smaller

than one.

c The constant transformation r = J.Lorig• which has a contractivity equal to 0 and

which clearly satisfies (I) and (2), will never be in Ybecause we are interested only in .

transformations that have a lower complexity than that of the original image.

We call a transformation r in .7which satisfies (I) and (2) afracral code for J.Lorig• and say

that J.Lorig is approximately selfrran.~formable under r. This terminology is used because

images produced by the above procedure are the result of the iterated application of a

deterministic image transformation to an initial image, a procedure which is typical of

the construction of deterministic fractal objects [23], [24].

18

3.4 The mathematical principle behind fractal image compression

Fractal image coding exploits the piecewise self-similarity of the image. The basic idea

is to construct a contractive operator W in the metric space X of digital images, for

which the image to be encoded is the unique fixed point x0•

For this, the class of affine operators is preferred because of their particularity to be

"nearly linear," which makes them easy to analyze. the fixed point x0 of such an operator

W: X -+ X verifies ,.

= x0. where A is a linear operator and b belongs to X.

Real-world images are usually not self-similar-except contrived exampies-and it is

impossible to find an operator that maps a whole image x onto another image Xo such as

x equals x0 •

However, real-world images present piecewise self-similarity (5]: parts of the image

resemble other parts: starting from this observation, one can define an operator as the

sum of piecewise mappings on X. A solution is to decompose the image into N

nonoverlapping domain blocks D and into M different range blocks R and define the

operator W as

Wx = "/1 IN D) = I IN w.(Ri)
rr\Ui=I 1 Ui=I 1

19

We use the notation D; = x In; to denote the image x restricted to the domain part D;,

and w; to denote the transformation mapping the range block R; into the domain block D;.

The blocks R and D can have different sizes and shapes. The number M of blocks R;
I I

is less than, greater to , or equal to N and therefore the blocks R; can be overlapping or

picked only from parts of the image.

An additional constraint that must be imposed on the operator W is that it is eventually

contractive. W is comracrive if there exists a constants < 1 such that d[W{x}, W{y}]

::5 s.d(x, y). Vx, yE X, where d is a given distance measure and s is called the

contractivity of W. W is said to be eventually contractive (at the Kth iterate) if there

exists a constant K such that the Kth iterate of W is contractive.

If this is the case, the operator W has a unique fixed point x0 obtained with x0 =

limk-oo wo~t.x, for an arbitary x. The collage theorem proves that if the distance between

an image x and its transformation by the eventually contractive operator W is small, then

the distance between the image x and the fixed point x0 of W will also be small. It

provides a boundary given by:

ri \" .. '
U\~;, ··~.~.1 '

where s, is the Lipschitz constant of W, K is the iterate number under which the operator

W becomes contractive, and s" is the contractivity of W°K.

. ;
20

Figure 2

Partition the image into domain regions.

Choose a set of allowable range regions.

Choose the class of affine transformations
that will be considered when searching for
the "best" range for each domain

Point to the first domain

Compare the image data in this domain to
the transformed data from each possible
range using each possible affine
transformation.

Output a fractal image file comprising a
header and the pocked affine coefficients
for the chosen mops.

22

Point to the
r.ext domain.

4. FRACTAL IMAGE COMPRESSION PROCESS

The algorithm for Fractal Image Compression process IS given m figure 2. Brief

description of the algorithm is given below.

The first step in fractal image compression process IS to partition the image into

nonoverlapping domain regions. Taken together, the set of domain regions must cover

the entire image, but they can be any size or shape. Next, the program defines a

collection of possible range regions, which must be larger than the domain regions, can

overlap, and need not cover the entire image.

For each domain region, the program must choose the range region that, after an

appropriate 3-D affine transformation is applied, most closely matches the domain

regions. The affine transformations not only shrink and deform the image within the

range region, they also decrease contrast and change brightness in the intensity

dimension. Each 3-D affine transformation can be described by its affine coefficients.

A FIF(Fractal Image Format) file is then written. It consists of a header with information

about the specific choice of domain regions, followed by the packed list of affine

coefficients chosen for each domain region. This process generates a file that is

dependent of the resolution of the original image; you have found an equation for the

picture. Consider a straight line: It can be represented by the equation y = ax + b. If

you know the values of the coefficients a and b, then you can draw the line at any

resolution. In an analogous way, given the affine coefficients in the FIF file, the

23

decompression process can create a fractal replica that looks like the original at any

resolution.

Commercial implementations of the fractal transform faces some complex trade-offs when

choosing domain regions, range regions, and allowed transformations. The larger the

domain regions, the fewer the number of transformations that are needed to model the

image, and the smaller the fractal file. However, if a reasonably close match is not found

between each of the domain regions and a transformed range region, the quality of the

decompressed image is reduced.

The compressor considers domain regions of various sizes, finds the best range region

for each in the time available and uses a mathematical procedure to assess the optimum

set of domain regions for desired file size. On a region of blue sky, for example, it may

be possible to use a large domain region that matches even with an even larger patch of

the sky. But in another part of the picture, you might have to use smaller domain region

to find good-enough range region within the available search time.

To keep compression time reasonable, practical limits must be put on the collection of

possible range regions and the allowed transformations. The C language implementation

of the algorithm is given in Appendix A.

24

4.1 Image partitions:

The square support of the original digital image l!origwill be partitioned into

nonoverlapping square domain cells of two different sizes, thus forming a two-level

square panition. The larger cells-of size D x D-are referred to as (domain) parent

cells, the smaller ones-of size D/2 x D/2-as (domain) child cells. A parent cell can be

split into up to four nonoverlapping child cells. Decisions about the splitting of a parent

cell are made during the encoding of the image block over this cell. Thus a partition

constructed this way is image dependent: it allows the coder: i) to use large blocks to

take the advantage of smoothly varying image ares, and ii) to use small blocks to capture

detail in complex ares(rugged boundaries, fine textures).

The selection of sizes and shapes for image cells depends on several factors. Small image

blocks-4 x 4 and below-are i) easy to analyze and to classify geometrically, ii) they

allow a fast evaluation of interblock distances, iii) they are easy to encode accurately,

and iv) they lead to a robust encoding system-one whose performance is steady, even

when source images are diverse. On the other hand, large blocks-5 X 5 and above-i)

allow exploitation of the redundancy in smooth image areas, and ii) lead theoretically to

high compression ratios.

The maximal range pool corresponding to a domain block of sizeD x D can be thought

of as all image blocks of size B x B (B > D) located anywhere in the image to encode.

It is typicallly very large, but it can be trimmed and organized in order to make the

search for an optimal domain block tractable.

An initial range pool can be obtained by sliding a window of size B x B(B = 2D is

25

used) across the original image. The window is first located with its bottom left corner

at (0, 0). It then moves from one position to the next by steps of either on pixels

horizontally to the right, or o,. pixels vertically upwards, in such a way that it remains

entirely inside the image support, at all times. The steps are typically chosen equal to D

or Dl2.

4.2 Discrete Image Transformations

We describe the discrete form of the B:D spatial contraction operator .Y, which maps

image blocks from a range cell R; = S(in .in B), to a domain cell D; = S(id, jd, D). In

the simple case B = 2D, the pixel values of the contracted image on the domain block

S(id, jd, D) are the average of four pixels in the domain block:

(.571-')ir +i, .ir +j = (Jll(i). J(j) + ILI(i). J(j) + Jli(i). J(j) +I + Jli(i) + I,J(j) +I) I 4, for all i, j E {0, .

. . , B-1}

where the index function I and J are defined by

I(i) = id + 2i, and J(j) = jd + 2j.

In the case where BID is not integral, the action of the spatial contraction operator is best

described in two steps. Firstly, the range block is discretized at he coarser resolution B.

Secondly, the discretization at resolution B is uniformly scaled by the factor D21B2
•

Now we find the scaling, luminance shift and the isometry for transforming the range

block into the corresponding domain block in the form:

·9'JJll Bj = Tn;(a;(•?jJll Dj) + t.g;).

where a; is the scaling factor which takes values from the set {0.5, 0.6, 0.7, 0.8, 0.9,

26

1.0} and .t.g; iS the luminance Shift and {T0 }u,;; 0 ,;; 7 is the isometry.

4.3 Distortion Measure:

Let S(i0 , j 0 , D) denote the square cell of size D x D, with the bottom left comer at the

intersection of image row io and image column j 0 • Let Jl be an r X r image, and Jl
1

be

an approximation of f.l.· Let J.l.l.,J.l. 1
1• denote their restrictions to the cell S(i 0 , j 0 , D). The

~ or mean squared (MS) distortion between the image blocks f.l.l ,, and J.l.,l. is defined as

the sum over the cell S, of the squared differences of pixel values i.e.:

We define the distortion between two images as the sum over the partition of all block

distortions, and the peak-to-peak signal-to-noise ratio (SNR) by:

SNR=10log (dr(pf l
10

d(}L,J.t})/r2

where dr(JJ.) denotes the dynamic range of Jl·

The Fractal Image Decompression Process

Copy contents
of domain
screen to
range screen.

Reod 6omain partition information
ond unpock offinct transformations
from thct fractal image file.

Creote memory buffers for the
domoin ond range screens.

Initialize the range screen buffer to
and orbitary initial stage.

Point to tho first domain.

Reploee this domain with the
transformed doto irom the
oppropriote range using the offine
coeffiCients stored for this domain.

Yes

No

Output the final domoin screen.

28

Point to the
next domain.

5. FRACTAL IMAGE DECOMPRESSION PROCESS

The algorithm for fractal image decompression process IS given m figure 3. Brief

description of the algorithm is given below.

The decompression process starts when you assigns memory for two equal-size images

A and B. The size of these images can be smaller or larger than that of the original

image before compression, and the initial content is unimportant. It can be data, a picture

-anything.

For the first iteration of the decompression process I refer to image A as the range image

and image B as the domain image. I partition the domain image into domain regions

specified in the FIF file header. For each domain region in domain image, I read the

affine coefficients for this domain from the FIF file, locate the range region specified by

this affine transformation in the range image and map the contents of this range region

from the range image to the appropriate domain region in the domain image.

Note that the transformation from the range to the domain is contractive, since I require

the range regions to be larger than the domain regions. When this is done for each

domain region, a new image B is created from transformed bits of image A.

For the second iteration, I make the new image B the range image and image A the

domain image, and I repeat the process for each domain region. After two iterations, the

29

arbitary starting data has been mapped from A to B and then from B to A. I repeat this

process until the differences between images A and B is negligible, and I then display

image A.

This simple process creates an image. How closely the compressed image matches the

original depends on how accurately the chosen range regions match the domain regions

during the compression process. This convergence of the initial image to the target image

is guaranteed by the collage theorem as explained above. The C language implementation

of the algorithm is given in Appendix A.

30

6. CONCLUSION

Compressing any image data using fractal techniques has been designed and implemented

successfully in C language. The main features of the project are

I) Ability to take larger domain blocks in smooth parts the picture to achieve high

compression ratios.

(2) Ability to take small domain blocks in parts of the image where there is a change of

intensity, to get a reasonably good approximation of the original image.

(3) The Decompression time is very less compared to other methods of Image

compression and decompression.

6.1 Future Enhancements:

There is a lot of scope for enhancement of the project without modifying much in the

original programs. The features, where there is a scope for enha.ncement are

31

(1) The compression time can be decreased a lot, by classifying domain blocks, by

which searching for a suitable range block is confined to only the range blocks that are

belongs to the same type as the corresponding domain block.

(2) There is a chance to consider all the range blocks that are larger than corresponding

domain block without restricting them to only blocks with size B = 20.

32

REFERENCES

(1) P. L. Cosman, R. M. Gray and M. Vetterli, "Vector Quantization of Subband:

A Survey," IEEE Trans. Image Processing, vol.5, no.2, pp.202-225, Feb 1996.

(2) M. Antonni, M. Barlaud, and I. Daubeechies, "Image Coding using Wavelet

transform," IEEE Trans. Image Processing, vol.1,no.2,pp.205-220, 1992.

(3) M. Barlaud, P. Sole, T. Gaidon, M. Antoni, and P. Mathieu, "Pyramidal

lattice vector quantization for multiple image coding," IEEE trans. Image

Processing, vol.3,no.4,pp.367-381, 1994 . .
(4) M. Barnsley and L. Hurd, Fractal/mage Compression, Wellesley, MA;AK

Peters, 1993.

(5) A. E. Jacquin, "A fractal theory of iterated markov operators with

applications to digital image coding," Ph.D dissertation, Georgia Institute of

Technology, Atlanta, GA, Aug 1989.

(6) Arnaud E. Jacquin, "IMage Coding Based on a Fractal Theory of Iterated

Contractive Image Transformations," IEEE trans. image processing,

vol.1,no.1,pp.18-30,jan 1992.

(7) Y. Fisher, Ed., Fractal(mage Compression- Theory and Application. New

York; Springier-Verlag, 1995.

(8) --, "Fractal Image Coding: A review," inproc./EEE., vol.81 ,no-1 O,pp.1451-

1465, 1993.

(9) D. Saupe and R. Hamzaoui, "A review of the fractal image compression

33

literature," Computer Graphics, vol.28,no.4,pp.268-276, 1994.

(10) Barnsley, M. E. Sloan., A.D., "chaotic compression", Computer Graphics

World, Nov. 1987.

(11) Barnsley, M.f. Sloan.,A.D., "A better way to compress images", BYTE

Magazine, Jan. 1988.

(12) Jacquin, A.E., "Fractal image coding based on a theory of iterated

' contractive image transformations", SPIE vol.1360, visual communications -

and Image Processing, pp.227-239, 1990.

(13) Jacquin,A.E.," A novel fractal block-coding techn!que for digital images",

Proc. ICA SSP4, pp. 2225-2228, 1990.

(14) Fisher, Y., Jacob,E.W ., Boss,R.D., Fractal image compression using iterated

transforms, in: Image and Text Compression, J.A.Storer(ed.),Kiuwer Academic

Publishers, Bostan,pp.35-61, 1992.

(15) Fisher,Y., Fractal image compression- theory and applications to Digital

Images, Springler-Verlay, New York, 1994.

(16) Maze!, d.s., Hayes, M.H., Using iterated function systems to model

discrete sequences, IEEE Trans. on Signal Processing, vol.40,no. 7 ,pp.1724-

1734, 1992.

(17) Mantica,G., Sloan,A., "Chaotic Optimization and he construction of

fractals: solution of an inverse problem," comp. syst. 3, pp.37-62, 1989.

(18) Monro, D.M., Dudbridge,F.,Fractal block coding of images, Electronic

Letters, vol.28, pp.1053-1055, 1992.

34

(19) Monro, D.M., "A hybrid fractal transform", Proc. ICASSP 5, pp.169-172,

1993.

(20) Monro, D.M., Walley, S.J., Fractal image compression without searching,

Proc ICASSP, 1994.

(21) Dudbridge, F., Least-squares block coding by fractal functions, in: Fractal

Image Compression- Theory and Applications to Digital images, Y. Fisher(ed.),

Springier-verlag, New Work, 1994.

(22) Wilson, D.L, Nicholls, J.A., Monro. D.M., Rate buffered fractal video, Proc

ICASSP, 1994.

(23) Barnsley, M., Fractals EveryWhere, Academic Press, San Diego, 1988.

(24) B. Mandelbrot, The Fractal Geomentry of Nature, San Francisco, CA;
I

Freemah, 1982.

(25) Pannebaker, William 8., and Joan Mitchell. JPEG still/mage Compression

Standard, New York: Van Nostrand Rein, 1993.

35

APPENDIX

36

/***** FILE : compress.c *****/
/***** The Main Program for Compressing an input Image File *****/

#include < stdio.h >
#include < stdlib.h >
#include< alloc.h >
#include "fractal. h"

FILE *image_ file, *fractal_ file;
Rectangle image ,reduced_image;
unsigned long infinity;
void compress(short ,short ,short ,short ,int *);

main(int argc,char **argv)
{

ImageHeader header;
short domain_x,domain_y;
int no_ maps;

if (argc ! = 3)
{

}

fprintf(stderr,"\nUsage: compress image_file fractal_file.\n");
exit(l);

infinity=255*DB_SIDE*DB_SIDE;

if (NULL = = (image_file=fopen(argv[l], "rb")))
{

}

fprintf(stderr, "Unable to open file %s. \n", argv[l]);
exit(l);

if (NULL = = (fractal_file=fopen(argv[2], "wb")))
{

}

fprintf(stderr, "Unable to open file %s. \n", argv[2]);
exit(l);

read _tga _header(image_ file,&header);

fprintf(stderr, "Width %d Height %d\n" ,header. width,header.height);

37

/***** Input must be a Targa File ****_*/

if (1! =fwrite(&header,sizeof(ImageHeader), 1 ,fractal_file))
{

}

fprintf(stderr, "Error writing header to fractal file %s. \n", argv[2]);
exit(l);

image. width= header. width;
image. height= header. height;
image.length =header. width*header. height;

image.pixel = (Pixel *) calloc(image.length, sizeof(Pixel));

reduced _image. width =header. width/2;
reduced _image. height= header.height/2;
reduced_ i mage.length =header. width *header. height/4;

reduced_image.pixel = (Pixel *) calloc(reduced_image.length,
sizeof(Pixel));

if (NULL = = image. pixel)
{

}

fprintf(stderr, "Unable to allocate %ld bytes for image buffer. \n",
image.length);

exit(2);

if (image. length! = fread(i mage. pixel,

{

}

sizeof(Pixel), image. length, image_ file))

fprintf(stderr, "Error reading header from image file %s.\n", argv[l]);
exit(l);

fclose(image file);

I* rescale (contract) image in spatial and intensity directions */

reduce _image(&image,&reduced _image);

38

}

/* MAIN LOOP */
no_maps=O;
for (domain_y=O;domain_y < image.height;domain_y+ =DB _SIDE)

for (domain x=O;domain x <image.width;domain x+ =DB SIDE)

{ /* Step:: Get Domai1 Block */ - -

fprin tf(stderr, "Dx %d hy % d\n • ,domain_ x ,domain _y);
· compress(domain_ x,do ain _y ,DB_ SIDE,DB _ SIDE,&no·_ maps);

}

fwrite(&no _ 111aps,sizeof(int), 1 ,fractal_file);
fclose(fractal_file);
free(image. pixel);
return(O);

/***** Function for selecting suitatile domain block for transformation *****/

void compress(short domain_ x, short\ domain _y, short width, short height, in t
*noLmaps)

{ Rectangle domain_block,range_blkk,flipped_range_block;
Symmetry current_symmetry; \
short current_ range_ x ,current_ range _y ,current_ shift;
Pixel domain mean; \
AffineMap best_map;
unsigned long current_ distance, min{ mum_ distance;

domain_ block. width= range_ block. tidth =
flipped_range_block.wtdth =width;

domain_ block. height= range_ block. ~eight=
flipped_ range_ bldck. height= height;

domain_ block.length =range_ block.l~ngth =
flipped _range_ block-\length =width*height;

domain_block.pixel = (Pixel *) ca1I~f(width*height,sizeof(Pixel));
range_ block. pixel = (Pixel *) ca1loc(width *height, sizeof(Pixel));

flipped_ range_ block. pixel = (Pixel *) \ calloc(width *hdgh t, sizeof(Pi xel));

minimum_ distance= infinity;

39

copy _rectangle(&image,domain_ x,dotain_y ,&domain_ block,O,O,

width,height~;
domain mean =mean(&domain block);

- - I

for (current _range _y =O;current_rangd~ < =
reduced_image.height-height; cur ent_range_y+ =2)

for (current range x =O;current range x < =
r~uced =image. width-=-width\ current_range _ x + =2)

{

}

I
copy _rectangle(&reduced _image,cur\rent_range _ x,

current_ range _y ,&range_ blocf,O,O, width,height);

current_shift = ((short) domain_m~n)-((short) mean(&range_block));

intensity_ shift(&range_ bloc~,currentl shift);
I

for (current_ symmetry =O;current_ sy~nmetry < NS YMS;
current_ symmetry++~

{ tlip(&range_block,&tlipped _rbnge _block,

}

current_symmetry); \
current_ distance = 12 _ distancf(&domain _block,

&flipped _range_block); I

~f (current_ distance< minimu]
1

_distance)

mini mum_ distance =curren _distance;
best map.shift=current shift;
best= map. symmetry =c;rre~t-symmetry;
best_ map. range _x =current1range _ x;
best_ map. range _y =currentlrange _y;
best map. width = width;

}

free(domain_block.pixel);
free(range _block. pixel);
free(flipped _range_ block. pixel);
if((minimum_distance < MAX_ERROR) I I (width < = 4))
{

fwrite(&best_ map, sizeof(AffineMap), 1 rae tal_ file);

4o I

I

i

fprintf(stderr, "Error Jfd\n ",minimum_ distance);
(*no_maps)++; I

} I
else I
{ I

compress(domain_ x, dofl ai n_y, wid th/2, height/2, no_ maps);

compress(domain_ x + w dth/2, domain _y, width/2, height/2, no_ maps);
compress(domain_ X, do ~ai n _y +heigh t/2, Width/2, heigh t/2, no_ maps);

compress(domain_ x + width/2, domain-}+ height/2, width/2, heigh t/2, no_ maps);
} I

. 1 I

41

I

I
I
I
I
I

I

I
I
I
I

I
I
I

I
I

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

I

File

fractal

\
I

/***** FILE : decompres~.c *****/
/*****The Main Program\for Decompressing the coded file into an Image

*****/ I
I

#include < stdio.h >
#include < stdlib.h >

\

#include < alloc.h >
#include < conio.h >
#include "fractal. h"

\

\
I

\
I

#define DEFAULT_ITERA1fS 16

AffineMap *affine_map _ arrai, *map _ptr;
FILE *image file, *fractal fil~, *initial file;
Rectangle im;ge,reduced_imake; -
void decompress(short ,short ,\short ,short);

\
·' • I

{am(mt argc,char **argv) \

I mageHeader header, initial Jheader;
short iterate,arg_offset=O,it~rates=DEFAULT _ITERATES;
long int i; \

int number_of_maps; \
short domain_x,domain_y;

if ((argc < 3) II (argc > 5))
{ I

fprintf(stderr, "\nUsage: d~ompress [num_iterates] [initial_image]
file image file. \n "); \

l exit(!); \

if (argc= =4)
{

}

iterates =atoi(argv[I]);
arg_ offset= I ;

if (argc= =5)
{

I
·I

\
\
I
II

I
iterates=atoi(argv[l]); \
initial_file = fopen(argv[2], "rb"~;
arg_offset=2; \

} I

I
42 I

I
I

/* Read in affine maps and header information. */

if (NULL = = (fractal_file=fopen(argv[arg_offset+ 1], "rb")))
{

}

fprintf(stderr, "Unable to open fractal file %s. \n", argv[arg_ offset+ 1]);
exit(l);

if (NULL = = (image_file=fopen(argv[arg_offset+2], "wb")))
{

}

fprintf(stderr, "Unable to open image file %s. \n", argv[arg_ offset+ 2]);
exit(l);

fseek(fractal_ file, -I *(int) sizeof(int) ,SEEK_ END);
if (1! =fread(&number _ of_maps,sizeof(int), I ,fractal_file))
{

}

fprintf(stderr, "Error reading no. of affine maps from fractal file %s. \n",
. argv[arg_offset+ 1]);
exit(l);

printf("The number of Affine maps = %d" ,number of maps);
fclose(fractal_file);
if (NULL = = (fractal_file=fopen(argv[arg_offset+ 1], "rb")))
{

}

fprintf(stderr,"Unable to open fractal file %s.\n", argv[arg_offset+I]);
exit(l);

if (1! =fread(&header,sizeof(ImageHeader), I ,fractal file))
{

}

fprintf(stderr,"Error reading header from fractal file %s.\n",
argv[arg_offset+ I]);
exit(l);

write _tga_ header(image _file,&header);
affine_ map _array = (AffineMap *)

calloc(number_of_maps,sizeof(AffineMap));

43

if (number of maps!=

fread(affine _map_ array ,sizeof(AffineMap),number _ of_maps,fractal_file))
{

}

fprintf(stderr, "Error reading data from %s.\n" ,argv[arg_offset+ 1]);
exit(l);

map _ptr = affine_ map_ array;
fclose(fractal_ file);

image. width = header. width;
image.height = header.height;
image. length.= header. width*header.height;
image.pixel = (Pixel *) calloc(image.length,sizeof(Pixel));

reduced _image. width = header. width/2;
reduced_image.height = header.height/2;
reduced_image.length = header.width*header.height/4;
reduced _image. pixel = (Pixel *)

calloc(reduced _image. length, sizeof(Pixel));

I* Set source buffer to a predetermined starting condition. */

if (argc < 5)
{

for (i =O;i < image.length;i + +)
image. pixel[i] =ARBITRARY_ PIXEL_ VALUE;

}
else
{

read tga header(initial file,&initial header); - - - -
fread(i mage. pixel, image.length, sizeof(Pixel), initial_ file);

}

/* Loop for a prescribed number of iterations. */

for (iterate =O;iterate <iterates; iterate++)
{

reduce _image(&image,&reduced _image);

map_ptr = affine_map_array;

44

}

for (domain_y=O; domain_y< image.height;domain_y+ =DB_SIDE)
for (domain_ x =O;domain _ x <image. width;domain _ x +=DB_ SIDE)
{

decompress(domain_ x,domain _y ,DB _SIDE, DB_ SIDE);
}

if (image. length ! = fwrite(image.pixel,sizeof(Pixel),image.length,
image_file))

}

fprintf(stderr, "Error writing data to %s. \n" ,argv[arg_ offset+ 2]);
exit(!);

free(affine_ map_ array);
free(image. pixel);
free(reduced_image.pixel);
fclose(image_file);
return(O);

/***** Function to select the right domain block for decoding *****/

void decompress(short domain_ x,short domain _y ,short width,short height)
{

Rectangle range_ block, transformed _range_ block;
if((width > 4)&& (map_ptr- >width ! = width))
{

}

decompress(domain_ x,domain _y, width/2,height/2);
decompress(domain _x + width/2 ,domain _y, width/2, height/2);
decompress(domain_ x,domain _y+ height/2, width/2,height/2);
decompress(domain_ x + width/2 ,domain _y + height/2, width/2, height/2);

else
{

range block. width = width;
range_block.height = height;
range_ block.length = width *height;
range_block.pixel = (Pixel *) calloc(range_block.length,sizeof(Pixel));

transformed range block. width = width; - -
transformed _range_ block. height = height;

45

transformed range block.length = width*height; - -
transformed range block. pixel = - -

(Pixel *) calloc(transformed _range_ block.lengtii, sizeof(Pixel));

copy _rectangle(&reduced _image, map _ptr- >range_ x, map _ptr- > range _y, &rang
e _ block,O, 0, width,height);

}
}

intensity_shift(&range_block,map_ptr- >shift);

flip(&range _block,&transformed_range_block, map_ptr- >symmetry);
copy _rectangle(&transformed _range_ block,O,O,&image,

domain_ x,domain _y, width,height);
map_ptr+ +;
free(range_ block. pixel);
free(transformed _range_ block. pixel);

46

/***** FILE : utiLe *****/
/***** File that contains essential functions used during compression and

decompression *****/

#include < process.h >
#include "fractal.h"

/*** Function to mean of pixel intensities in a given block ***/

Pixel mean(Rectangle *rectangle)
{

}

int i;
long sum =0;
for (i =O;i <rectangle-> length;i + +)

sum + = rectangle-> pixel[i];
return(sum/rectangle-> length);

/*'** Function to shift intensities of all pixels by a fixed value ***/

void intensity _shift(Rectangle *rectangle, short shift)
{

short i;
for (i =O;i <rectangle-> length;i + +)

rectangle-> pixel[i] =rectangle-> pixel[i] +shift;
}

/*** Function to find distance between two rectangular blocks ***/

long 12 _ distance(Rectangle *rectI ,Rectangle *rect2)
/* rectI and rect2 must have the same length */
{

}

long d,distance=O;
int i;
for (i =O;i <recti-> length;i + +)
{

}

d =recti-> pixel[i]-rect2- > pixel[i];
distance + = d*d;

return(distance);

47

I*** Function to copy part of one rectangular image to another ***I

void copy _rectangle(Rectangle *src _ rect, short src _ x, short src _y,
Rectangle *dest_rect,short dest_ x,short dest_y,

{
short width,short height)

int i,j;
for G =O;j < height;j + +)

for (i=O;i<width;i++)
dest_rect- > pixel[i +dest_ x +G +dest_y)*dest_rect- >width]

src_rect- > pixel[(src _ x +i) + (src _y+j)*src _rect- >width];

I*** Function to reduce a rectangular image into another ***I

void reduce_ image(Rectangle *src _rect,Rectangle *dest_rect)
{

int i ,j;
for G =O;j < dest_rect- > height;j + +)

for (i =O;i < dest_rect- > width;i + +)
{

I* spatial rescale by 2 *I

dest_rect- > pixel[i +j*dest_rect- >width] =
(src_rect- > pixel(2*i +(2*j)*src _rect- >width]+
src_rect- > pixel[2*i +I +(2*j)*src _rect- >width]+
src rect->pixel[2*i+(2*j+1)*src rect->width]+ - -

src _rect- > pixel[2*i + 1 +(2*j + 1)*src _rect- > width])/4;

I* intensity rescale by 314 *I

dest_rect- > pixel[i +j *dest_rect- >width] =
(dest_rect- > pixe1[i +j*dest_rect- > width]*3)14;

}
}

I*** Function to flip a rectangular image ***I

void flip(Rectan~le *range_ block,Rectang1e *transformed _range_ block,
Symmetry symmetry)

{
short i,j ,x,y, t;

48

for G =O;j <range_ block-> height;j + +)
for (i =O;i <range_ block-> width;i + +)
{

}

if (symmetry & FLIP _X) x =(range-'-block-> width-1)-i;
else x =i;
if (symmetry & FLIP_Y) y=(range_block->height-1)-j;
else y=j;
if (symmetry & FLIP_ DIAG) /* not allowed unless width= height */
{

}

t=y;
y=x;
x=t;

transformed_range_block- > pixel[x+y*range_block- >width] =
range_block- > pixel[i +j*range_block- >width];

/*** Function to read a targa file header ***/

void read_tga_header(FILE *image_file, ImageHeader *header)
{

}

struct tga _ hdr tgaheader;
if (1 ! = fread(&tgaheader,sizeof(struct tga_ hdr), 1 ,image_file))
{

}

fprintf(stderr, "Error reading Targa header. \n");
exit(l);

if ((tgaheader.imtype ! = TGA_ GRAYSCALE) i i (tgaheader.depth! =8))
{

}

fprintf(stderr, "Invalid Targa file. \n ");
exit(l); ..

header-> width =tgaheader. width;
header-> height=tgaheader.height;

/*** Function to write targa file header to a file ***/

void write_tga_header(FILE *image_file, ImageHeader *header)
{

static struct tga _ hdr

49

{

}

tgaheader= {0,0, TGA_ GRA YSCALE,0,0,0,0,0,0,0,0,0,8,0};
tgaheader .. width =header-> width;
tgaheader. height= header-> height;
if (1 ! = fwrite(&tgaheader,sizeof(struct tga_hdr), 1 ,image_file))

}

fprintf(stderr, "Error writing Targa header. \n ");
exit(l);

_,

50

/*** FILE : fractal.h ***/
/*** File that contains all declarations used during compression and

decompression ***/

#include< stdio.h >
#include "tga.h"

#define DB SIDE 16
#define MAX PIXEL VALUE 255 - -
#define NSYMS 8
#define NUM ITS 16
#define FLIP X 1
#define FLIP Y 2
#define FLIP DIAG 4
#define ARBITRARY_PIXEL_ VALUE 128
#define MAX ERROR 500

typedef unsigned char Pixel;
typedef unsigned char Symmetry;

typedef struct rectangle {
unsigned short width ,height;
unsigned long length;
Pixel *pixel;

} Rectangle;

typedef struct affinemap {
unsigned char range_ x, range _y;
short shift;
Symmetry symmetry;
short width;

} AffineMap;

typedef struct imageheader {
unsigned short width,height;

} I mageHeader;

extern Pixel mean(Rectangle *rectangle);
extern long 12 _ distance(Rectangle *rect 1 ,Rectangle *rect2);
extern void copy_rectangle(Rectangle *src_rect,short src_x,

short src_y,Rectangle *dest_rect,short dest_x,
short dest_y, short width, short height);

51

extern void reduce_image(Rectangle *src_rect,Rectangle *dest_rect);

extern void flip(Rectangle *range_ block, Rectangle *transformed _range_ block,
Symmetry symmetry);

extern void intensity_ shift(Rectangle *rectangle,short shift);

extern long swap_ bytes(long qbyte);

extern void read_tga_header(FILE *image_file, ImageHeader *header);

extern void write_tga_header(FILE *image_file, ImageHeader *header);

52

/****** FILE : tga.h ******/
/****** File that contain declaration of a targa file header ******/

#define TGA GRAYSCALE 3

struct tga _ hdr {

} ;

unsigned char id,cmaptype,imtype,coll ,col2,co13,col4,col5;
short xorigin,yorigin, width,height;
unsigned char depth,descriptor;

53

	TH63930001
	TH63930002
	TH63930003
	TH63930004
	TH63930005
	TH63930006
	TH63930007
	TH63930008
	TH63930009
	TH63930010
	TH63930011
	TH63930012
	TH63930013
	TH63930014
	TH63930015
	TH63930016
	TH63930017
	TH63930018
	TH63930019
	TH63930020
	TH63930021
	TH63930022
	TH63930023
	TH63930024
	TH63930025
	TH63930026
	TH63930027
	TH63930028
	TH63930029
	TH63930030
	TH63930031
	TH63930032
	TH63930033
	TH63930034
	TH63930035
	TH63930036
	TH63930037
	TH63930038
	TH63930039
	TH63930040
	TH63930041
	TH63930042
	TH63930043
	TH63930044
	TH63930045
	TH63930046
	TH63930047
	TH63930048
	TH63930049
	TH63930050
	TH63930051
	TH63930052
	TH63930053
	TH63930054
	TH63930055
	TH63930056

