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Abstract 

In this thesis, we study different dynamic model of gene regulatory networks. Modeling, 

reverse engineering and analysis of macromolecular networks have spurred increasing 

interest in the computational biology and system biology communities. Biologists need 

rigorous and flexible tools to describe, infer and study biological networks. There exists a 

wide variety of dynamic model for gene regulatory networks. A basic review of the 

biology behind gene regulation is introduced along with the formalisms used for 

networks of such regulatory interactions. Topological measures of large-scale complex 

networks are discussed and then applied two different modeling paradigms to simulate 

gene expression data for a given microarray data. 
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Chapter 1 

Introduction 

The study of molecular networks of molecular interaction after the availability of 

complete genome sequence and high throughput post genomics expression data 

analysis is an active research area since last few years. A major challenge to 

biologists is to understand functional behavior of gene regulatory network (GRN) and 

also the complex intermolecular interaction among the genes in a cell [2]. 

The mam goal of genomic revolution is to understand the genetic cause 

behind the characteristics of organisms [7]. With the rapid development of DNA 

microarray technology, reverse engineering the gene regulatory network from time 

series gene expression data has become more important to understand the complex 

relation between genes, proteins and other substances, also to investigate functions of 

genes and to reveal cellular process in the cells. It can also help to predict the future 

dynamical behavior of the system [31]. 

A genetic regulatory syst~m is a network which consists of a group of DNA, 

RNA, proteins and other molecules to describe the mechanisms of gene regulation. 

Deoxyribonucleic acid (DNA) is a nucleic acid molecule that contains the genetic 

information used in the development and functioning of organisms [11]. A gene is a 

small region of DNA sequence. According to central dogma of molecular biology, 

genes are transcribed into mRNA, which are then translated into proteins. It is 

important to know that which genes are regulated and which are regulator. DNA 

microarray technology provides an efficient and effective way to measure expression 

levels of thousands of genes simultaneously. The Gene Regulatory networks are 

described by some specific properties. Some of them are topology, transcription 
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control, robustness and noise. Gene networks can be model usmg different 

approaches. Once the model is chosen, the parameters need to be fit in to the data. 

Even the simplest network models are complex systems having a lot of parameters, 

and fitting them is a non trivial process, known as network inference, network 

identification and reverse engineering [ 18]. 

Genetic network model may be of different types depending upon the amounts 

and type of data available [28]. They can be physical or combinatorial, static or 

dynamic, deterministic or stochastic types etc. Some of the popular models for GRN 

are Boolean network models, Bayesian network model, State space models [28]. 

The disadvantages of gene network construction from microarray data is that 

while the gene network contains a large number of genes, the information contained 

in gene expression data is limited by the number of microarrays, their quality, the 

experimental design, noise, and measurement errors. Therefore, estimated gene 

networks contain some incorrect gene regulations which can not be evaluated from a 

biology view-point. In particular the direction of gene regulation is difficult to decide 

using gene expression data only [34]. Hence the use of biological knowledge, 

including protein-protein and protein-DNA interactions, sequences of the binding 

sites of the genes controlled by transcription regulators, literature and so on, are 

considered to be a key for microarray data analysis. The use of biological knowledge 

has previously received considerable attention for extracting more information from 

microarray data [35, 38]. 

This thesis is organized as follows. Chapter 2 introduces the various concepts 

of genetic system. The chapter 2 also includes a brief introduction of microarray and 

their measurement technologies. Chapter 3 reviews some of the common 

mathematical and computational modeling techniques for gene regulatory networks. 

This includes a brief introduction of Bayesian model, Boolean network model, 

differential equation model, state-space models and many more. Chapter 4 describes 

two different modeling paradigms used in our experiments i.e. modeling gene 
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regulatory network using state space model technique and inferring gene regulatory 

network using singular value decomposition techniques. Experimental setup and 

result are discussed in chapter 5. Finally, chapter 6 includes conclusion and future 

works. 
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Chapter 2 

Concepts of Genetic Systems 

2.1 Bioinformatics and Computational Biology 

Bioinformatics is area of active research, which involves the use of techniques 

including applied mathematics, informatics, statistics, computer science, artificial 

intelligence, and chemistry to solve biological problems at the molecular level. 

Informatics has traditionally been a discipline in which mathematics, computer 

scientists, statistician, and engineers develop technologies for supporting information 

management in fields like healthcare. Bioinformatics is now involved in these 

activities by organizing biological data related to genomes with a view to applying 

this information in agriculture, pharmacology, and other commercial application. In 

Bioinformatics and computational biology, functions are produced by a set of 

macromolecules that interact with each other at different level. _Genes and their 

products, proteins, participate to form a regulatory network that manages the response 

of the cell to external input signals [28]. 

In literature, bioinformatics and computational biology are often used 

interchangeably. Bioinformatics involves the creation and development of algorithm, 

computational and statistical methods and theory to solve formal and practical 

problem from the analysis of biological data at macro level. On the other hand 

computational biology involves the hypothesis driven analysis and investigation of a 

specific problem of biology using computer technology carried out with experimental 

data with the main objective of discovering and advancement of biological 

knowledge. It can be said that bioinformatics involves the analysis of information, 

while computational biology is concerned with the hypothesis [31]. 
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Major research areas in bioinformatics and computational biology are the followings 

[31 ]: 

a. Sequence Analysis 

b. Genome Annotation 

c. Sequence Matching 

d. Protein Folding 

e. Comparative Genomics 

f. Protein Analysis 

g. Computational evolutionary Biology 

h. Measuring Biodiversity 

1. Analysis of gene expression 

J. Analysis of mutation in cancer 

k. Modeling biological system 

1. High throughput image analysis 

2.2 System Biology 

System Biology is often used very widely in the bioscience. It can be defined in 

different ways [39]: 

a. According to few sources in literature, it is a field of study where we study the 

interaction between the components of biological system and how these 

interactions give rise to the function and behaviors of that system e.g. 

Enzymes, metabolite, E.coli etc. 

b. Other sources in literature consider systems biology as a paradigm, defined in 

antithesis to the so-called reductionism paradigm, although fully consistent 

with the scientific method. 

c. And some sources in literature consider it as a socioscientific phenomenon 

defined by the strategy of pursuing integration of complex data about the 

interactions in biological systems from diverse experimental sources usmg 

interdisciplinary tools and personnel. 
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2.2.1 Techniques associated with system biology 

According to the interpretation of system biology as the ability to obtain, integrate 

and analyze complex data from multiple experimental sources using interdisciplinary 

tools, some typical technology platforms are [39]: 

a. Gene expression measurement 

b. Protein levels through two dimensional gel electrophoresis and mass 

spectrometry including phosphoproteomics to detect chemically modified 

proteins. 

c. Metabolomics for small molecule metabolites 

d. Glycomics for sugar 

e. Interaction for interactomes 

f. Modeling Gene Regulatory Network 

A major challenge in system biology is gathering different kinds of 

information which one can then be used for computation. 

2.3 Basics of Gene Expression 

2.3.1 DNA Sequence 

Deoxyribonucleic acid (DNA) is a nucleic acid that is used in the development and 

functioning of the body of all living organisms. DNA contains information and it is 

often compared to a set of blueprints. 

'A DNA sequence is succession of four letters which represents the structure of 

DNA molecule, having the capacity to carry information. The letters in sequence are 

A, C, G, and T, representing the four nucleotide subunits of a DNA strand- adenine, 

cytosine, guanine, thymine bases respectively covalently linked to phosphorus­

backbone. Figure 2.1 shows detail structure of a DNA. A s~quence of nucleotides 

greater than four is called a DNA sequence. 
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RNA DNA 

FIGURE 2.1: Structure ofDNA [44] 

2.3.2 Gene 

·A gene is a small region ofDNA sequence that contains the necessary information to 

produce the messenger RNA (Messenger Ribonucleic acid). A gene can also be 

defined as a region of DNA (a sequence of nucleotides) that controls a hierarchical 

characteristic. A gene consists of two parts: coding DNA sequences (introns), that is 

transcribed into mRNA and non coding DNA sequences which can not be changed 

into mRNA as shown in Figure 2.2. The number of genes in a DNA sequence may 

vary from 1000 base pairs to several hundred thousands base pairs. 
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FIGURE 2.2: A gene [45] 

2.3.3 Gene Expression [47) 

Gene Expression is a multi step process where the information coded within a gene is 

changed into protein. One can describe transformation to protein from gene in terms 

of two processes. The process of changing of gene to messenger mRNA is known as 

transcription, and the process of changing from mRNA to protein is known as 

translation. As we know a gene consist introns and ex on, while introns (coding 

sequences) are transcribed into mRNA. This process is followed by post transcription 

process and translation which translates mRNA to protein. After this folding, post 

translational, modification and targeting processes are performed. The different steps 

of gene expression process are shown in Figure 2.3. 

- 8-



~ TRANSKRIPTlON 

J I EDITIERUNG I 
I 

~ TRANSLATION 

PROTEIN 

GeN(DNA) 

TRANSKRIPT (RNA) 

EDITIERTES TRANSKRIPT {RNA) 

* PROTEIN 

FIGURE 2.3: A Gene Regulation Process [47] 

2.3.4 Regulation of Gene Expression 

All genes encode protein by gene expression process and most of these proteins are 

enzymes. These are regulated by controlling the activity of enzymes produced. 

Regulation of gene expression concerned with the cellular control of the amount and 

timing of changes to the appearance of the functional product of a gene. Gene 

expression process involves the following stages [32]. 

a. Chemical'and structural modification of DNA sequence 

b. Transcription into mRNA 

·c. Translation in Protein 

d. Post Transcriptional modification 

e. RNA transport 

f. rriRNA degradation 

g. Post Translation modification 

Hence a gene regulation system consists of genes, cis-element and regulators. 

The regulators are most often proteins called transcription factors, but small 
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molecules like RNA and metabolites sometimes also participate in the overall 

regulation. The c1s-reg10n serves to aggregate the input signal mediated by the 

regulators and the regulatory connection between them, together with an 

interpretation scheme from gene network. 

2.3.5 Genetic Regulatory System 

In the regulation of gene expression, the expression of a gene may be controlled 

during RNA processing and transport mainly in eukaryotes, RNA translation, and 

modification of proteins. The degradation of proteins and intermediate RNA product 

can also be regulated in the cell. The proteins fulfilling the above regulatory functions 

are produced by other genes. This give rise to genetic regulatory system structured by 

networks of regulatory interaction between DNA, RNA and proteins and small 

molecules [28]. 

One can interprets gene regulatory network as a dynamic network, which 

describes the interaction between genes and other substances of the cell. It also 

describes the functionality of the genes or a group of genes. In this network nodes are 

represented by genes and the regulation of one gene by other genes or a group of 

genes is represented by arcs or edge. 

2.4 Measurement Technologies 

High throughput technologies for measuring mRNA expressiOn level are briefly 

discussed below [28]: 

2.4.1 DNA-Microarray Technology 

In living organism there are thousands of cell present. The entire cells are not active 

at all time. Only few of them are responsible for an activity of organism at one time. 

To study which genes are active and which genes are inactive in different cells helps 

to understand the cell function. With the help of DNA micro array technology one 

can measure the expressions of thousands of genes at same time. This is one of the 

most advance techniques to measure the expressions of mRNA. A DNA Microarray 
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known as a gene or genomes chip in which there is a group of DNA spots, where each 

spot represents a single gene's expression [43]. 

DNA microarrays work on the principle of base pamng. At first level 

microarrays data are measured in following steps: RNA from a cell is extracted. This 

RNA (targets) is then reproduced and marked with fluorescence and hybridized to 

existing DNA (probes) on the microarray. After hybridization, these probes that were 

hybridized with targets are fluorescent. The computer scanner is able to detect this 

fluorescence. These probes which are fluorescent correspond to the genes that were 

expressed in the cell [43]. 

FIGURE 1.4: Illustration ofHybridization [43] 

Two most common DNA m1croarray techniques are eDNA arrays and 

oligonucleotide arrays [28]. 
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a. eDNA Microarray Technology 

b. Oligonucleotide Arrays 

2.4.2 Serial Analysis of Gene Expression 

Serial analysis of gene expression (SAGE) is a powerful measurement technique with 

digital analysis for measuring gene expression in a given cell. The method of this 

technique is to first capture the mRNA molecules present in the cell. After that one 

determines the genes from which these mRNA are transcribed and then calculate the 

total number of mRNA for each gene. The profiles of mRNA expressions of different 

cells are very much different from those of infected cells. To analysis these gene 

activity, researchers can determine the gene activity related to particular disease and 

conditions allowing for the development of specific drug development (28]. 

We know that mRNA ends with a strings of As. To capture these mRNA 

microscopic beads are baited with strings of approximately twenty Ts. Since A and T 

form a strong chemical bond so the mRNAs are washed away from these beads. Then 

the mRNA becomes attracted to the beads. A magnet is used to extract the beads and 

mRNAs. These mRNA are then copied back into DNA with the use of reverse 

transcripts. 

These DNA fragments are then quantified using genetic sequencing. In brief, 

we can say that SAGE works by capturing RNA molecules rewriting them as DNA 

[28]. 

- 12-



Chapter 3 

Gene Regulatory Network 

The objective of genomic revolution is to understand the genetic effect on 

characteristics ofliving organisms. In molecular biology, functions are produced by a 

set of genes or their product, which interact with each other at different levels. Hence 

. genes and their product form a network, which is known as gene regulatory network. 

Genes, their products (such as protein, mRNA etc.) and other substances of the cells 

interact with each other to control the response of the cell to external input signal 

[32]. It is of interest and challenge to biologists to understand the mechanism by 

which the regulations of genes govern and also to identify gene which plays the role 

of regulator and gene which plays as a regulated gene among all the genes. The 

development of microarray technology helped to understand these problems easily, 

since with the help of microarray technology expression of thousand of genes of a 

given organism can be measured simultaneously at the same time on the same chip. 

This technique helps in research of re-engineering gene regulatory network from 

given experimental data [11]. 

3.1.1 Definition 

A gene regulatory network consists of genes, cis elements and regulators. Mostly the 

regulators are proteins also called transcription factors but some small molecules 

(RNA and metabolites) also participate in gene regulation process. The interaction 

and binding ofregulators to cis regions of genes controls the gene's expression level 

during mRNA transcription process. So the gene, regulators (proteins) and the 

regulatory connections between them form a gene regulatory network. In other words 

gene regulatory network can be described as a set of genes, their products that interact 

with each other and other substances in the cell to control the rate at which genes in 
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the network are transcribed into mRNA. Figure 3.1 shows a hypothetical gene 

regulatory network with different level at which it is modeled [12]. 

:-{; 
Gern 1 Gen93 - G~rsr 1 

,.. (') -t 
c; .E c 
i 

~ 
i 

ts ts 
£t It 

Gene 2's cis-region 

FIGURE 3.1: A hypothetical gene network [12]. 

Gene regulatory network can be viewed as a complex network where inputs 

are proteins and outputs are controlled level of gene's expressions. The node of the 

network can also be viewed as a function performed by a gene or a group of genes. 

Biologists suggest many mathematical models of gene regulatory network. Some of 

them are Boolean network [29], Bayesian network [20], Petri-net model [46], 

Graphical Gaussian state space model [8], and stochastic process models [32]. 

3.1.2 Biological properties of Gene Regulatory Network 

The basic properties of gene regulatory network are discussed below [12]: 
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Topology 

The topology of a network can be defined as the physical and logical arrangements of 

connection between the nodes of a network. It can be said as the starting point of the 

modeling of GRN. One of the most special feature in modeling gene regulatory 

network is that the topology of GRN is sparse i.e. the number of edges is very small 

in the network [21]. This property helps to prune the search space during network 

inference. In the GRN, nodes are represented by genes and the directed edges, which 

connect the nodes, represent effect of one gene on the other (excitation or inhibition). 

There are two types of topology that appears in GRN: 

1. Scale free network topologies: In recent work it has been seen that the 

fr~quency distribution of connectivity of nodes shows a nohnal distribution 

[28]. The appropriate distribution may belongs to a class of power law 

distribution shown by the given equation: 

(3.1) 

Where P(x) is the probability, xis the degree of a vertex, and y is network 

specific constant. 

Tliese types of network topologies are-known as scale-free network topologies 

2. Small-world network topologies: In 2003 Watts define small-world graph 

topologies [28]. A graph with n-vertices and vertex degree k that exhibits 

~~) k 0 

L ~ Lrandom (n,k) ~ -- and c >->- crandom ~- for n >> k >> ln(n) >> 1. c IS 
ln(k) n 

the clustering coefficient which can be calculated by: 

C = 3_ t(kv(kv -l)J 
n v=I . 2 (3.2) 

Where kv the number of neighbors of vertex v. L is is the average number of 

links connecting two nodes. L,.andom and C,andom refer to the path length and 

clustering coefficient with same k and n respectively. 
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Transcriptional control 

Transcription is the process by which DNA transcribed into mRNA. The cis-region 

depicts as the superposition of the effects of all transcription factors in gene 

regulation. The range of effects of the cis processing logic on the input transcription 

factor signal has been recognized for only few cases. From that one can learn that the 

cis function is a multi valued complex function of the input concentration even only 

for two inputs. However the functions become simpler and can be decomposed into · 

linear combination of independent functional signal contributions, when the .~· :. 

functional cis-elements are known i.e. at least when experiments are carried over the 

same condition and for the genes on the periphery of the network [12]. 

Robus~ess 

Robustness is the quality of being capable to handle stresses, pressure or changes in 

the structure of the system. A system is said to be robust if it is capable to handle 

variations in its functional environment with minimum damage. Real gene regulatory 

systems are very robust in their parameter values [1 ]. But for only specific choice of 

topology guarantees such type of strong robustness [1, 5]. 

Noise 

Noise is defined as unwanted data, which is present in a system. Noise is an integral 

part of a Gene Regulatory network. As we know that GRN is stochastic in nature 

[33], so even amount of small noise in the gene expression measurement can affect 

the whole network. The network controls the noise through the feedback. In some 

cases noise can give better result to find functional characteristic of the network. 

3.1.3 Utility 

A gene regulatory network can be said as a blueprint for understanding all the 

functional co-operativity and interaction among the genes. So GRN are representation 

to know the knowledge studied about the system. The gene network is used to 

classify that gene which act as a regulator and gene which is regulated by other genes 

and other influences in the cell. Using GRN the interaction among the genes can be 
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studied at large scale gene data. Using GRN one can predict the future behavior of the 

system. Using GRN one can also understand that gene which is responsible for a 

particular disease and it can help in identifying molecular target for specific drug or 

drug for specific target. Since we have GRN of different organisms so one can do 

comparisons among them to understand the change in GRN with respect to time (i.e. 

evolution ofGRN) [12]. 

3.2 General Properties of Modeling Formalism 

There exists many types of modeling formalism exists for gene regulatory network. 

The choice depends on the type, amount of data (gene expressions) available, prior 

information about the network, experimental and computational resources and other 

_factors. Briefly, we discuss some models which are classified based on their general 

properties and described below [2, 12]: 

3.2.1 Physical Vs Combinatorial Model 

Most of the gene regulatory systems are described by differential equation, which 

shows the quantitative relationships between the state variable in the systems. Even 

through physical model are used to run the simulation to predict the future behaviors 

.of the gene regulatory network, b.ut using physical model it is difficult to identify 

even simple features (i.e. one gene effect on the other). 

On the other hand, a typical combinational model can be represented by a 

graph. In graph, genes are represented by nodes and effect of one gene on the other is 

represented by an arc. These models start from higher-level features of GRN by 

defining features of interest like gene expression levels, the nature of relationships. 

Due to the higher level of modeling, the combinatorial models are most often 

qualitative and effective methods for their learning even for small number of 

observations (relative to the number of variables); hence there exists inference from a 

GRN. 

- 17-



3.3.2 Dynamic V s Static Models 

As most of the data available in modeling GRN is time series data, a dynamic gene 

regulatory network model can be described as the change of gene expression with 

respect to time, which is represented as follows: 

dx; (t) 
-- == J; (x;. (t), X; (t), ..... . ) 

dt I 2 
(3.3) 

Where xi on the left is concentration of gene i at time t. 

x. , x. , . . . are concentrations of molecules that influence x,. at time t. 
'1 l2 

/; {- · ·) is the rate function, which is function of concentration of different 

genes. 

Here, one can interpret each node in GRN as a function, which takes some 

inputs and gives output based on them. Dynamic model is usually more complex than 

static model because they characterize the exact interactions among the inputs. So it 

will take more amounts of input data for large number of parameters. Few examples 

of dynamic models are Boolean Network and linear Differential equation models. 

On the other hand static models do not have time component. Static models 

only define the topological characteristics of the GRN. It reveals the combinatorial 

interactions among genes and the nature of interactions. Few examples of this 

modeling formalism are Graph Theoretic Model, Bayesian Network Models and 

Linear additive models [12]. 

3.3.3 Synchronous Models 

In DNA-microarray technology of measuring gene expression, the observations are 

measured at the same time so large scale gene expression measurement drive 

asynchronous models for GRN. In these models time is descretized to the interval 

between consecutive observations. If these time interval are taken as very small the 

above equation (3.3) can be written as [12]: 
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xi (t j+l) -X; (t j) 
----~ /;(x. (t .),x. (t .), ...... ) t . - t . I II } 12 } 

]+1 J 

(3.4) 

Where t j and t J+l are two consecutive observation times. 

3.3.4 Deterministic Vs Stochastic Models 

In deterministic models the expression states of the genes are either given by a 

formula or belong to a specific class A gene's expression will remain same when it is 

measured at two different times or place while keeping all other parameters same. 

The accuracy of the observed expression values will depend on the experimental 

setup, and can be refined indefinitely with technological advances. The edges in GRN 

represent relationships are also deterministic, which is similar to node states. 

Stochastic models, on the other hand, start from the assumption that gene 

expression values are described by random variables, which follow some probability 

distributions. The difference with the deterministic models is fundamental: 

randomness is modeled to be intrinsic to the observed processes, and thus all things 

being equal, a gene's expression on two different occasions may be different. 

Stochastic edges indicate probabilistic dependencies, and their absence may indicate 

independencies between nodes. Usually it is not easy to interpret the output of 

stochastic models [40]. 

Stochastic gene network models are generally useful for reconstructing gene 

networks from expression data because of the inherent noise present in them. In order 

to take into account of imprecision and fluctuations in the measurements, It is assume 

that each observed quantity is drawn from an underlying set of values, or a statistical 

distribution, that the observable variable may take. Then, assessing whether a gene is 

differentially expressed with respect to another is transformed into well studied 

problems of statistical hypothesis testing. 
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3.3 Bayesian Network Model 

A Bayesian Network Model is a class of graphical probabilistic model that represent a 

set of nodes and their probabilities dependencies on each other [10]. Bayesian 

Network relates probability with graph theory. A Bayesian Network is denoted by a 

directed acyclic graph G(V, E) where v; E V are random variables representing genes 

and the edges indicates the dependence of one node on the other. The random 

variables are drawn by conditional probability distribution P(v;jv j) where V; is 

dependent on v j • With this assumption, one can find the decomposition of the joint 

distribution over all variables drawn to the conditional distribution of all the nodes as: 

(3.5) 

3.4 Boolean Network Model 

This model was given by Kauffman Glass and Kauffman [28]. This model is 

represented as a graph in which nodes are genes which states may be either 0 or 1. 

There is no intermediate level of transcription. In this graph each node is connected to 

the other shown in following figure 3.2. Incoming edges show that the binary values 

from other node are taken as inputs. These values are sent through a Boolean function 

that describes the current state of the node. So a Boolean network can be stated as a 

dynamic model of synchronous interaction between nodes in a network. Boolean 

Network is specified as NK-network, where N is the total number of nodes and K is 

the maximum number of incoming edges for each node. If the value of K is small 

then it shows that there are only few genes, which are responsible for controlling the 

activities of any single gene. Small K value shows that the connectivity matrix for 

GRN is sparse [28]. 

The goals of reverse engineering Boolean network from gene expression data 

infer both the topology and the Boolean function of each node. An example of 

Boolean network is shown in figure 3.2. For this Boolean network N=3 and K=2. 
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fb 

FIGURE 3.2: A simple Boolean network [12] 

For this network, 

Wiring Diagram and Truth Table: 

fA(B) = B 

/ 8 (A, C) = A and C 

fc (A) =not (A) 

state 

~.·· 

A(t+1) B(t+1) 
A(t+1)=B(t) 
B(t+1)=A(t) and C(t) 
C(t+1)=not A(t) 

(a) 

C(t+1) 

1 0 
.2 0 

3 0 
4 0 
5 1 
6 1 
7 1 
8 1 

input 
t 

B c A 

0 0 0 
0 1 0 
1 0 1 
1 1 1 
0 0 0 
0 1 0 
1 0 1 
1 1 1 

(b) 

output 
t+1 

B c 
0 1 
0 1 
0 1 
0 1 
0 0 
1 0 
0 0 
1 0 

FIGURE 3.3: (a) Wiring Diagram (b) Truth Table [12] 

(3.6) 



Liang et al, Ak:utsu, Akutsu et al (29] and many others used Boolean network 

model in both forward modeling and reverse modeling GRN. They noticed that there 

are many genes which have different regulatory effect based on their level of ... 
expression. It is suggested that there is not a direct correspondence between the 

dynamic behavior of Boolean system and their continuous counterpart indicating a 

quantitative loss of behavior information (28]. 

3.5 Petri-Net Model 

A Petri-Net Model [46] (also known as Place/Transition network or PIT Net) is one of 

the mathematical representations to describe distributed network. In modeling 

language one can graphically represents the structure of a complex system as a 

directed bipartite graph. It consists of nodes (places and transition) and arcs. Arcs are 

present between places and transition not present in between place to place or 

transition to transition. The place from which arc goes to transition is known as input 

place. And the place, which receives the arcs, is known as the output place of the 

transition. Place contains some tokens. A distribution of tokens over the places of a 

net is called a marking. Transitions performed input tokens by a process known as 

firing. A transition is enabled if it can fire, i.e., there are tokens in every input place. 

During the process of a transition fires, it consumes the tokens from its input places, 

performs some processing task, and places a specified number of tokens into each of 

its output places. The working of Petri-net network may be non-deterministic i.e. 

more than one transition can be enabled at the same time [46]. 

To represent a gene regulatory network one can represent the places by genes 

or proteins and transition node can be represented by the regulation or inhibition. A 

simple model of Petri net network is shown in following figure 3.4. 
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P2 
Tl T2 

FIGURE 3.4: A simple Petri-Net Network [46]. 

Stochastic Models 

Stochastic models remove many of the shortcomings presents in other models 

(differential equation models, Boolean network models). One of these drawbacks is 

the assumption of continuous rate of protein production. Continuous model do not 

represent the parameters of transcription factor in gene regulation process. In fact 

·protein production rate are not continuous [25]. 

If one include the noise in the gene regulation process the regulatory path of 

the cells can be changed. It is possible that evolution has selected network which can 

produce deterministic behavior from stochastic inputs in noisy environment. So the 

noise can change the topology of the network [9] and noise can also act as a stabilizer 

for other systems [ 17]. 

There are two methods for modeling stochastic models for GRN. 

I. Using Stochastic differential equation the stochastic model can be defined as 

[28], 

(3.7) 
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Here v, (t) is noise present in the measurement of gene expression data. 

2. Using Probability function, during each time interval there is a probability of 

transitioning of molecule from one state to another. So from this we can get a -

probability density function for the behavior of the system. This equation of 

probability density function is known as 'Master Equation' andean be solved by 

technique Gillespie algorithm [25]. 

3.7 Differential Equation Model 

Differential Equation· Model can be said as an alternative to the Boolean model 

described above. Differential equation may be considered as the starting point for 

quantitative modeling of complex gene regulatory network system. These models are 

continuous and deterministic modeling formalism. These models can describe non­

linear and emerging phenomenon of complex dynamical systems. 

Suppose that a gene regulatory network has N genes and let C, (t), C2 (t) ... C N (t). 

represents the concentrations of all N genes respectively. 

Then the general form of the equation for each N gene is, 

(3.8) 

Where the function J; provides the aggregate effect of its argument ofC;. The 

arguments of J; may be subset of all different concentrations. 

However differential equation model contain many parameters, which must be 

obtained from observed data [28]. 

3.7.1 Ordinary Differential Equations 

Ordinary differential equation can be derived for the chemical rate equation for GRN. 

As one know that the rate law for a substrateS and a Product Pis given by [14], 
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(3.9) 

(3.10) 

The above equation is known as Michael-Menten Equation, which models the 

concentration of a protein and gene pair. Here V max and K M are the parameters which 

control the rate of change of the substrate. 

This equation can be generalized as follows, 

dr; = /;(P) 
dt l 

dp. 
_z =g.(r) 
dt l 

(3.11) 

(3.12) 

Where p is a vector of protein concentrations. r is the vector of mRNA concentration. 

J; and g; are updating function and they are sigmoid in shape. 

3.7.2 Weight Matrices 

A weight matrix tries to model gene regulatory network using linear coefficient, 

which represents the relationship between genes [ 41]. So an individual gene's 

expression can be calculated by summation of all its regulatory inputs (which may be 

multiplied by its regulatory coefficients). This scheme can be represented as a matrix 

form where the entry (i, j) represents the effect of jth gene on ith gene. 

So we can calculate the total regulatory input r; (t) of gene i as 

ri (t) = L wifu j (t) 
j 

(3.13) 

Where w!i is the weight coefficient of gene i on gene j and u; (t) is the concentration 

of mRNA of gene i at time t. 
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If value of w!i is positive then it means gene i activates gene j, otherwise it inhibits 

gene j. If the value of w!i is equal to zero, then it represents that there is no effect of 

gene i on gene j (i.e. no interaction). 

Let us take a matrix M that expresses the expressions of all genes. Let A 

represents the vector of the weight matrix row of one gene, and B is the vector 

represented the relative expression level of the gene of interest at the given state 

transition. Then the system of equation MA=B can be solved. Since there may be not 

sufficient data i.e. more genes than data points the equation will not provide unique 

solution which is not desirable [41]. 

3.7.3 Piece-wise Linear Differential Equation Model 

One another variation of differential equation for modeling gene regulatory network 

is 'Glass Network' models with differential equation model. This model has been 

proposed as a simplified model of GRN [13] as well as the underlying model for the 

reverse engineering of gene regulatory network and to model Neural Network [13]. 

The dynamics of gene regulatory system can be represented by the following 

equation: 

(3.14) 

Where xi is the rnRNA concentration of a gene i at time t. 

Xi (t) - Binary variable. (Xi = 1 If xi 2 Bi and Xi = 0 if xi < Bi where Bi is some 

threshold value.) 

rt - Positive decay constant. 

F;- A Boolean function, which depend on K binary input variables. 
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Input(Xi) Function 
1 2 3 F1 F2 

0 0 0 1 1 
0 0 1 0 1 
0 1 0 1 1 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 0 
1 1 0 1 0 
1 1 1 0 0 

(A) (B) 

FIGURE 3.5: (A) Genetic Circuit schematic of the repressilator [11]. 

(B) Truth table define the function [11] 

F3. 

1 
1 
0 
0 
1 
1 
0 
0 

The above example is a network using a glass network, which is the repressilator 

[42]. 

3.7.4 S-Systems 

S-Systems (Synergistic and saturable system) are a modeling techniques used for 

biochemical pathways, genetic network and immune system [29]. S-Systems can be 

represented by a non-linear differential equation having the form, 

dX; (t) = lli fix. (t)gi,j -A fix. (t)h;,j 
dt j=l J j=l 1 (3.15) 

Where a and fJ are rate constants and g and h are exponential parameters (kinetic 

orders). X(t) expresses mRNA concentration of gene i at timet. In S-systems model 

each dimension represents the dynamics of a single variable. The dynamics of each 

variable can be represented in terms of the difference of two products of power-law 

functions- one describing the influxes and other describing the effluxes. The 
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weakness of S-system is the large number of parameters required. Suppose that the 

system has n-dimensional vector then it requires n*(2n+ 1) parameter to describe the 

dynamics of the system. 

3.7.5 State Space Model 

In literature, control theory or state space model for ordinary differential equation is 

in existence since last decade. A state space representation is a mathematical model of 

a physical complex system and represent in terms of as a set of inputs, outputs and 

states. The variables are commonly expressed by vectors and equations are written in 

matrix form. 

~uppose that a linear system has p inputs, q outputs and· n states variables. 

Then the general state space model can be represented by following equation, 

x(t) = A(t)x(t) + B(t)u(t) 

y(t) = C(t)x(t) + D(t)u(t) 
Wherex(t) ERn, y(t) E Rq andu(t) E RP. 

(3.16) 

(3.17) 

A and C are dynamic matrices of size n x fJ and q x n respectively. B and D are input 

matrices of size n x p and q x p respectively. 

FIGURE 3.6: A typical state space model [36]. 
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In this approach to represent GRN the state represents the concentration of 

mRNA of a gene. Since there are a large number of genes present in gene regulatory 

system so this approach take state to mean either a group of genes or certain genetic 

factor of the system. This is employed for reducing the computational requirement of 

the model. This method is used in reverse engineering of GRN by many researchers 

successfully [24]. 
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Chapter 4 

Modeling Gene Regulatory Network 

In this we discuss two different paradigms for model gene regulatory network 

employed for out experiment. In these approaches, gene regulatory networks are 

considered as a distributed, complex and dynamic system. After that we have tried to 

simulate these mode_ls. To consider the GRN as a dynamic system is useful, because it 

yields the interaction graph between genes and the simulator of the system. 

The first technique used in this chapter is to find the jacobian matrix 

(connectivity matrix) for a gene regulatory network using singular value 

decomposition methods on the given data [3]. 

In the second approach we have supposed that the gene regulatory network is 

a linear dynamic model which behaves like a complex, dynamic system, which 

behaves as a complex, dynamic system. In the measurement of gene's expressions 

levels there may be chances of noise in the measurement of gene's expressions data. 

So the framework of linear Gaussian state space model provides a way to take into 

account noise both intrinsic and extrinsic noise (noise in the observation and noise in 

the underlying dynamic process of gene regulation [22]. so we tried linear Gaussian 

state space model to simulate GRN. we will discuss these two models briefly. 
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4.1 Inferring Gene regulatory network using singular value decomposition [20] 

The singular value decomposition (SVD) is a powerful technique in linear algebra for 

matrix computation and analysis [27]. This is a factorization technique for a given 

matrix. It is useful in a lot of applications like signal processing and statistics [27]. 

Using SVD of a matrix in stead of using original matrix gives more robust result. 

SVD also gives the geometric structure of the matrix. The spectral theorem states that 

a simple matrix can be factorized on the basis of eigen vectors. SVD uses eigen 

vectors to factorize the given matrix. 

4.1.1 Definition 
Suppose that X is an m x n matrix, whose all values comes from the set K. elements 

of K may be real numbers or complex numbers. Then the SVD decomposes this 

matrix in the form, 

M = U'LV T (4.1) 

Where U'is a m x mmatrix over field K. U is also an orthogonal matrix known as left 

singular matrix. V is an n x n orthogonal matrix over K. It is known as right singular 

matrix. vr is transpose of V. 'Lis m x n diagonal matrix. Such that 'LiJ = 0 if i * j 
and 'Lu = e; if i = j, where e; 2:: 0. 

There rriay be matrix such that e1 2:: e2 2:: •••• :. eN 2:: 0. 

These values are called singular values of X. Some times it is also possible that for 

m x n matrix X. one can write, 

(4.2) 

Where U is m x p matrix. 'L is p x p and V is n x p matrix. It ts possible in R 

programming language [27]. 
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4.1.2 Connectivity matrix for a single micro array dataset [3, 20] 

This is a method of reverse engineering gene regulatory network from single micro 

array dataset. In this method, gene regulatory network is supposed to be typically 

large and sparse. It uses a singular value decomposition to find a set of solutions and 

after that robust regression to find out the sparsest solution for GRN. This algorithm 

is ofO(log n) sampling complexity and O(n/\4) computational complexity. 

Using eDNA and oligonucleotides microarray technology, it is possible to 

measure mRNA expression levels of thousands of genes at the same time. Since in a 

gene regulatory network there are thousands of genes presents, so to extract the 

topology of such network takes much more time. That's why it requires also a large 

amount of e~perimental data. 

To overcome the problem of data deficiency many research have considered 

clustering method (grouping genes into hierarchal functional units). There are many 

attempts to model GRN such as genetic algorithm [20], neural networks [13] and 

Bayesian network [30]. These models requires large amount of data. To resolve this 

problem of less availability of data researchers have adopted linear model and used 

SVD techniques to reverse engineer GRN architj;:cture. 

This method involves two steps process [3]. 

Gene regulatory network can be represented by a system of ordinary linear 

differential equation [3, 20] is given by, 

N 

X; (t) = -A;X;(t) + LJt;jxj(t) + h; (t) + ~;(t),t = 1. .... . N 
j=l 

(4.3) 

Where X; 's are mRNA concentration of ith gene at time t. A; is self degradation rate. 

Wii are real numbers represents the strength of gene i on gene j. 

Suppose that using microarray technology we have taken m observation for n 

different genes, and then we will get the matrix X for concentrations of gene as, 
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I 
XI 

2 
XI 

m 
XI 

XI x2 m 

xnxm = 2 2 x2 
(4.4) 

XI n 
2 

xn 
m 

xn 

Subscript 5 indicates individual gene and superscript j indicates observation number. 

x/ is concentration of ith mRNA on jth experiment. 

Suppose that there is no noise in the system and if B = ( bp b2 , ... b n) is a stimulus then 

we can rewrite the equation (4.1) as, 

• 
X nxm = AnxnXnxm + Bnxm (4.5) 

Here the self degradation rates 2; 's are absorbed into coupling constants W!i 

The goal of reverse engineering GRN is to use the measured data B, X and X to 

deduce A. hence the connectivity matrix W. In this context, we may take the 

transpose of the system and rewrite it as, 

• 
(Xr)m<n(~)wn =[(X)~ -(If)m<n] (4.6) 

Since m<<n, because of high cost of perturbations and measurements. This is an 

undetermined problem to find A. So we can decompose xr into, 

(XT)mxn = U mxnEnxn (VT)nxn (4.7) 

Where U and V are orthogonal matrices and E is diagonal matrix. Where E is, 

e1 0 0 

0 0 
E= (4.8) 

We may assume that all non-zero elements of Ek are listed at the end t.e., 

Then one particular solution may be, 

A • 

J =(X-B)·U ·E-I ·Vr (4.9) 

- 33-



Where E-1 = diag(I I e;) and if e; = 0 then 1 I e; = 0 . 

General solution may be, 

• A 
J=(X-B)UE-1Vr +YVr =J+YVr (4.10) 

Where Y is n x n matrix where y if = 0 if e 1 * 0 and is otherwise arbitrary scalar 

coefficients. Solutions of (4.8) represent all of the possible networks that are 

consistent with the single microarray dataset. 

Suppose that there are N micro array data sets then we can get N networks 

with N connectivity matrices as, 

• 1\.k 

Jk =(X k- B)UkE;1V[ = J + YkV[ (4.11) 

Where k = 1 ... N is the index of dataset k. 

Since different dataset may have different qualities, so different weight 

coefficients will be attached with them. Weight coefficients for all datasets can be 

calculated as, 

N 

Where L wk = 1. · 
i=l 

(4.12) 

Now we have to find most sparse network from these networks and the 

algorithm [20] to determine structure of jacobian matrix is given below: 
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Step-0: Input the Microarray datasets X nxm 

ll.k 

Step-1: Obtain J from equation (4.7) using SVD technique and wk from equation 

Ilk 

( 4.1 0). Initialize the components, J if = 0, Yifk = O,J~ = J , q = 0. A and 8 are positive 

values. 

Step-2: Fixing Jifsolve Y;fby, 

n n 

min"" "'jJ .. ~ J~j 
yk LJ LJ I) I) 

i=l }=1 

(4.13) 

Set q=q+l. 

Step-3: Fixing J~ solve J using, 

ll}i~ :D w" IJij c q)-J~ ( q)l + ~Jij c q~] 
k,i,j 

(4.14) 

Step-4: check for convergence if !IJ(q)- J(q -1)11 < 8 then terminate else go to step-

2. 

Step-S: Output J. 

4.2 Linear Gaussian State Space Models [22] 

State space models are commonly used for time series analysis and longitudinal data 

[4]. The basic model of Gaussian state space model is shown by discrete linear 

equation with respect to time added with Gaussian noise. Suppose that at each time 

interval the system produces an output variable y, (at timet), which is the observation 

vector. Suppose that the original output vector has been corrupted by some noise. 

[22]. so the vector x shows the property of hidden markov dynamics. The noise- may 

be either intrinsic or extrinsic [11]. The intrinsic noise may be present in genetic 

expression and measurement noise can be due to acquisition techniques. So each 

output vector y is generated from the current state by a simple linear equation. Both 

the state evolution (x,) and observation process are corrupted by hidden Gaussian 

nOise. 
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Suppose that x is a continuous state variable then basic linear equation model 

can be written as: 

xt+1 = A · x1 + u 

y, = Cx, + v 

(4.15) 

(4.16) 

This system is shown in following fig ( 4.1 ). Where A is transition matrix and C is 

projection matrix of size n x n andm x n respectively. u is the vector representing the 

state evolution noise and v is m vector representing observation noise. U and v are 

. independent of each other. 

u"' N(O,Q) 

V"' N(O,R) 

(4.17) 

(4.18) 

Both of these noise sources are temporally white (uncorrelated from time step to time 

step) and spatially Gaussian distributed with zero mean and covariance matrices 

which we have denoted by Q and R respectively. Since the state evolution noise and 

its dynamics are linear so x can be said as first order markov random process. 

X 
y, 

A 

v 

u 

FIGURE 4.1 A simple state space Model [22] 
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u, 

v, 

FIGURE 4.2 The network model. [22] 

A dynamical Bayesian network explains the relationship of conditiof!al dependencies 

on time-dependent variables. The Gaussian state space model also belongs to the 

family of Kalman filter models which was given by Kalman to process signal filtering 

and smoothing in the years of sixties. 

Inference in a state space model includes computing the posterior distributions 

of the hidden state variables given the sequence of observations. The algorithm for 

computing the posterior means and covariance involves two steps: a forward pass 

which uses the observations from y 1 toy,. known as the Kalman filter, and a 

backward pass from Yr to y,+1 • The combined forward and backward recursions are 

known as the Kalman or Rauch-Tung-Streibel (RTS) smoother Algorithm [22]. 

We have used toolbox available in MATLAB for our experiments. After using 

Kalman filter and smoother algorithms parameters can be learned using a generalized 

Expectation-Maximization (EM) algorithm [36]. 
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Chapter 5 
Experimental work and result 

5.1 Experimental Objective 

The Objective of our experiments is to extract structure of GRN and simulate the 

expression level of different genes of a given microarray datasets of organism. After 

that we will try to compare those models in order to determine that which the better 

approach to model gene regulatory network is. The objective of our experiments is to 

learn .the parameter of the state space model in order- to fit the available gene 

expression data. 

5.2 Datasets Used 

5.2.1 System Characteristics 

All Experiments have performed on the system with the following configuration: 

• Processor: Intel (R) Pentium (R) 4 CPU 2.80GHz 

• Memory: 256MB RAM 

• Windows Dir: C:\WINDOWS 

• Machine name: SCSS108_14 

• Operating System: Microsoft Windows XP Professional Version 2002 

Service Pack 2 

• Language: English 

• Systein Manufacturer: Acer Power 

• BIOS: Default System BIOS 
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5.2.2 Used Tools 

In this experimental work MA TLAB is used as a tool. This tool is used to implement 

the algorithm as well as computing parts of both the experiments. MA TLAB is a high 

performance language for technical computation. It integrates computation, 

visualization and programming in an easy to use environment where problems and 

solutions are expressed in familiar mathematical notations [23]. 

5.2.3 Databases 

In our experiment, we have considered the database for S.O.S DNA repair network of 

the Escherichia coli bacterium. In second experiment from this data we have tried to 

simulate the model of gene regulatory network. The experimental data has been taken 

from the homepage of Uri Alon [26]. The experimental data are expressions levels of 

the main 8 genes of the S.O.S DNA repair network of E.Coli. The measurement 

technology used to measure the gene expression levels is property of GFP (Green 

Fluorescent Proteins) [11 ]. Measurement has done after irradiation of the cells at the 

initial time with UV light. Four experiments have done for various light intensities 

and each experiment has 50 time points spaced by 6 minutes for 8 genes. These 8 

genes are uvrD, lexA, umuD, recA, uvrA, uvrY, ruvA and polB [11]. 

Escherichia Coli (E. Coli) is a type of bacteria, which normally lives, in the 

lower intestines of mammals known as gut flora. A German bacteriologist Theoder 

Escherich discovers it in 1885. E. Coli. is one of the most thoroughly discussed 

organisms. Normally, E.Coli does not cause disease although some strains frequently 

cause diarrhea in travelers and it may be the cause for urinary tract infections. 

5.2.4 S.O.S DNA Repair Network 

This genetic network consists of more than 30 genes in escherichia coli that carry out 

diverse functions in response to DNA damage. The S.O.S DNA repair network 

repairs the DNA after damage, which may be due to bacteria. Usually when no DNA 

damage occurs there is a master transcription factor lexA present in the cell, binds 

sites in the promoter region of these genes represses all genes of the network. Protein 
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recA act as a sensor of DNA damage: After binding to single strand DNA it activates 

and performs lex.A destruction. The decrease in lexA expression level causes the de­

repression (i.e. activation) of S.O.S genes. Once DNA damage is repaired the 

expression level of recA decreases, lexA activated and it inhibit the expression level 

of S.O.S genes and cells return to their initial state [11 ]. 

5.3 Experimental Results: 

Before performing our experiment, we have normalized the given experimental data. 

Normalization is carried out using Z-score, which is given by [37], 

. x. - J.1 
Xi = l 'i = 1,2 ...... N 

(j 
(5.1) 

Where X; is the expression level of gene at ith experiment. N is the total number of 

experiments. 11 and rr are mean and standard deviations respectively and defined as, 

a= 

1 N 

f.1 = -Lxi 
N i=l 

(5.2) 

(5.3) 

We have done two experiments for 50 time points of 8 genes. The first 

experiment was based on Guassian state space model and second was to infer gene 

regulatory network using singular value decomposition technique. 

Based on these two experiments we have computed the 50 expression levels 

of 8 genes. Then we compared the measured values with the expression levels for 

both the experiments. 
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The comparison graph between measured values and simulated values with 

both experiments are shown in figures 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8 

respectively. 
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The following can be observed from figure 5.1 to figure 5.8 the following: 

• Generally at initial stage, the difference between the measured and simulated 

expression levels is small while the difference between the two is prominent at 

later time units in case of state space model. 

• Generally for all genes the difference between the measured and simulated 

expressions values is significant at initial time units . 

• The simulated expression levels by both methods are different from the 

measured expression levels. However the difference between measured and 

simulated is small in case of SVD technique in comparison to using state 

space model technique. 

-45-



Conclusion 

In this thesis, we investigated different modeling paradigms used for biological 

networks and to under§tand the~r l'unctiQniii rvlations within There are many 

limitations one encounters while modeling gene regulatory network. Few of these 

limitations are the following: 

a. The number of genes is very large compare to the number of measured time 

points. 

b. The data contains substantial amount of measurement noise. 

c. The goal of genetic network modeling is to extract the genetic interactions 

rather than to accurately predict the gene expression levels. 

d. No ground truth is known with respect to the outcome of genetic network , 

models. 

e. No modeling techniques are correctly representing the genetic network 

models. 

We have carried out simulation to determine the observation level of genes 

usmg two different modeling paradigms i.e. using singular value decomposition 

techniques and using Gaussian state space model technique. We have shown the 

results of two experiments. From experimental results we conclude the following: 

• The technique used by state space model gives better result in comparison to 

SVD techniques at initial stages of time points. 

• The simulated expression levels by both methods are different from the 

measured expression levels. However the difference between measured and 

simulated is small in case of SVD technique in comparison to using state 

space model technique. 

This result can be improved by using hybrid approach, where initial structure 

extracted by SVD is considered state space model to obtain the structure of GRN. The 
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use of biological knowledge can also help to extract more information from 

microarray data. Hence the complexity to determine network parameter will also 

reduce with the prior biological knowledge. 
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