
ELEMENTARY -GB-TREES

BASED PARSING FOR SANSKRIT

Dissertation submitted to]awaharlal Nehru University, in partial

fulfillment of the requirements for the award of the degree of

Master of Technology

m

Computer Science and Technology

by

Ch Shiva Prasad

Under the Esteemed Supervision

of

Prof. G. V. Singh

SCHOOL OF COMPUTER & SYSTEMS SCIENCES

JAW AHARLAL NEHRU UNIVERSITY

NEW DELHI -110067

July- 2006

SCHOOL OF COMPUTER & SYSTEMS SCIENCES

JA WAHARLAL NEHRU UNIVERSITY

NEW DELHI- 110067, INDIA

CERTIFICATE

This is to certify that the project entitled "ELEMENTARY-GB-TREES

BASED PARSING FOR SANSKRIT" being submitted by CH SHIV A

PRASAD to the School of Computer and Systems Sciences, Jawaharlal Nehru

University, New Delhi, in partial fulfillment of the requirements for the award

of the degree of Master of Technology in Computer Science & Technology, is

a bonafide work carried out by him under the guidance and supervision of

Prof.G.V.Singh.

The matter embodied in the dissertation has not been submitted for the award of any

other degree or diploma.

Professor, SC&SS,

JNU, New Delhi-67

11

~
Prof. Balasundaram

Dean, SC&SS,

JNU, New Delhi-67

SCHOOL OF COMPUTER & SYSTEMS SCIENCES

JAW AHARLAL NEHRU UNIVERSITY

NEW DELHI- 110067, INDIA

DECLARATION

This is to certify that the project entitled "ELEMENTARY -GB-TREES

BASED PARSING FOR SANSKRIT" is being submitted to the School of

Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, in

partial fulfillment of the requirements for the award of the degree of Master of

Technology in Computer Science & Technology, is a bonafide work carried out

byrne.

The matter embodied in the dissertation has not been submitted for the award

of any other degree or diploma.

iii

~t1~~
Ch Shiva Prasad,
M.Tech, Final Semester,
SC&SS,JNU
New Delhi.

Dedicated to

My beloved

Parents and Sisters

iv

ACKNOWLEDGEMENTS

I would like to pay obeisance at the feet of my parents for their blessings that are

always with me in all my aspirations including my academics.

I would like to sincerely thank my supervisor Prof.G.V.Singh, School of Computer

And Systems Sciences, Jawaharlal Nehru University for the help, encouragement and

support extended by him in successful completion of this project. His innovative ideas

and the valuable discussions we had were very much helpful in keeping the thesis

work on the right track.

I would like to gratefully acknowledge Mr. Manjit Singh for his valuable discussions

and guidance during development of this project.

I would like to record my sincere thanks to Dean, Prof. BaJa Sundaram for providing

the necessary facilities. I will fail my duty if I forget my appreciation and thanks to

my friends. I also extend my sincere gratitude to my lab mates for their continuous

academic as well as morale support through out my dissertation work.

Last, but not the least, I take this opportunity to thank all the faculty members and

friends for their help and encouragement during the course of the thesis work.

(Ch Shiva Prasad)

v

CONTENTS

Chapter 1

INTRODUCTION

1.1 NATURAL LANGUAGE PROCESSING

1.1.1 Speech Recognition

1.1.2 Speech Synthesis

1.1.3 Natural Language Understanding

1.1.4 Natural Language Generation

1.1.5 Language Translation

1.2 MACHINE TRANSLATION

1.3 NATURAL LANGUAGE PARSING SYSTEM

1.4 PROBLEM DEFINITION

1.5 ORGANISATION OF THE THESIS

Chapter 2

GOVERNMENT AND BINDING THEORY

2.1 INTRODUCTION

2.2 X-BAR LEVELS AND PHRASE STRUCTURES

2.2.1 The Phrasal Projection for a Verb

2.2.2 The Phrasal Projection for a Noun

2.2.3 The Phrasal Projection for an Adjective

2.2.4 The Phrasal Projection for a Preposition

2.2.5 The Phrasal Projection for a Sentence (Inflection Phrase)

2.2.6 The Phrasal Projection for Complementizer

2.3. LEXICON ORGANIZATION

2.3.1 Categorical Information

2.3.2 Subcategorization Information

2.3.3 Thematic Information

VI

2

2

2

3

3

3

4

5

5

7

8

10

11

11

12

13

14

14

15

15

16

2.4 THETA THEORY

2.4.1 The Argument Structure of Other Syntactic Categories

2.4.2 The Theta Criterion

2.4.3 The Projection Principle

2.4.4 The Extended Projection Principle

2.5 OTHER CONCEPTS

2.5.1 Case Theory

Chapter 3

GOVERNAMENT AND BINDING BASED GRAMMAR FOR SANSKRIT

18

19

20

21

21

22

22

3.1 INTRODUCTION 23

3.2 FORMS OF DIFFERENT GRAMMATICAL CATEGORIES 24

3.2.1 Noun Forms in Sanskrit (Declensions of Nouns) 24

3.2.2 Adjective Form 26

3.2.3 Verb Forms (Verb Conjugation) 27

3.3 SANSKRIT PHRASE STRUCTURES 34

3.3.1 VerbPhrase 34

3.3.2 Noun Phrase 35

3.3.3 Inflection Phrase 36

3.3.4 Complementizer Phrase 37

Chapter 4

LEXICON

4.1 INTRODUCTION

4.2 SANSKRIT LEXICON

4.2. I Introduction

4.3 DESIGN OF LEXICON

4.3. I Noun Table

4.3.2 Pronoun Table

4.3.3 Verb Table

4.3.4 Interface

vn

38

38

38

41

42

42

43

43

4.4SUMMARY

Chapter 5

PARSER

5.1 PARSING STRATEGIES

5.1.1 An Overview

5 .1.2 Bottom-Up Parser (LR Parsing Algorithm)

5.2 DESIGN OF PARSER

5.2.1 Our Parsing Strategy

5.2.2 Over View of Design

5.3 EXPLANATION OF PARSER WITH AN EXAMPLE

5.3.1 With a Correct Sentenc~'s

5.3.2 with a Wrong Sentence

5.4SUMMARY

44

45

45

46

47

47

49

55

55

69

70

Chapter 6 71

CONCLUSION AND FUTURE ENHANCEMENTS71Error! Bookmark not defined.

6.1 CONCLUSION 71
6.2 FUTURE ENHANCEMENTS 72

APPENDIX 74

REFERENCES 75

Vlll

ABSTRACT

An Elementary-GB-Trees Based Parsing system for Sanskrit language sentences has

been developed, which may be used to translate Sanskrit into any other language.

Various translations systems are being developed across the world using conventional

approaches like Ruled- based or Exampled-based. We have adopted Government and

Binding theory (GB) approach for parsing the sentences.

The GB theory with its emphasis on Universal Grammar, its universality in handling

Natural Languages, and its computational properties led. to its choice over other

conventional approaches. The important modules of GB are X-Bar levels and phrase

structures, Theta assignment module, Case assignment module, and Binding module

After a thorough analysis of various phrases in Sanskrit, GB Phrase Structures for

Sanskrit has been developed. These include Verb Phrase Structure, Noun Phrase

Structure, Adjective Phrase Structure, Preposition Phrase Structure, Inflection Phrase

Structure and Complementizer Phrase Structure. The analysis includes determining

the complements for each lexical type, determining adjuncts and specifiers for each

type of Phrase Structure

Whenever a word is read by parser, the type of the word is to be found out. The type

may be of verb, noun, preposition, adjective or any other. All this information is

stored in the lexicon along with categorization, sub categorization and the number of

complements it may take. As per the type of the word, corresponding elementary tree

for the word is constructed.

Lexicon is the heart of our whole system, which is typical database containing

information about all words. It contain all the words, it's tense, gender, number,

person etc. It should contain the required information, using which we can construct a

GB phrase tree. It also includes sub categorization information. We built our lexicon

strong. so that performance of the system increases and the programming complexity

also reduces

ix

Whenever a word type is known from the lexicon, with the help of category and

··subcategories information, we built elementary tree for that particular word as per the

type. Later these elementary trees will be combined to construct the full pledged

phrase tree which satisfies the GB rules of language. At this Stage each word projects

its own phrase structure tree.

At the end all these phrasal trees are combined to get the sentence phrasal tree.

Sentence may result into more than one tree depending on the attributes of words

involved.

X

Chapter 1

INTRODUCTION

1.1 NATURAL LANGUAGE PROCESSING

A Natural language (NL) is any of the languages naturally used by humans to

communicate between them (e.g. Telugu, English, Hindi, Japanese, etc.).

Programming Languages or man-made languages such as C, C++, C#, Java, etc. are

known as artificial languages. Natural Language Processing (NLP) is a convenient

description that attempt to make the computers analyze, understand, and generate

Natural Languages, enabling one to address a computer in a manner as one is

addressing a human being.

Understanding a human language is not an easy task. The main difficulty lies in

knowing the relationship between words, phrases and the concepts they represent. A

Natural Language, which is easy for humans to learn and use, is hard for a computer

to master. Even long after machines have proven capable of inverting large matrices

with speed and grace, they still fail to master the basics of our spoken and written

languages.

The difficulties in computer processing of a Natural Language arise from the highly

ambiguous nature of Natural Languages. Very simple sentences for humans to speak

and understand easily, like "Flying planes can be dangerous", can be very difficult to

a computer that lacks knowledge of the world and a native speaker's experience with

the linguistic structures of the Natural Languages. Plausible interpretations of the

sentence "Flying planes can be dangerous" could be that "the pilot is at risk", or

"there is a danger to people on the ground". Further, should "can" be analyzed as a

verb or as a noun. Which of the possible interpretations of "plane" is relevant?

Depending on context, "plane" could refer to, among other things, an airplane. a

geometric object, or a woodworking tool. How much and what sort of context needs

to be brought in to bear on these questions in order to adequately disambiguate the

sentence? These are only the few challenges we face while processing a Natural

Language.

The tenn Natural Language Processing represents any processing that is required or

need to be done to understand, generate or interpret the utterances in a given

language. But in the subsequent paragraphs we list only some main areas or domains

of Natural Language Processing:

NATURAL LANGUAGE PROCESSING INCLUDES:

1.1.1 Speech Recognition

Speech recognition is the process of converting an acoustic signal, captured by a

computer, microphone or a telephone, to a set of words. Since different people

pronounce the same words differently, the mapping of those sounds to the words in

the language turns out to be quite difficult.

1.1.1 Speech Synthesis

Speech synthesis is the artificial production of human speech. A system used for this

purpose is tenned a speech synthesizer, and can be implemented in software or

hardware. Speech synthesis systems are often called text-to-speech (TIS) systems in

reference to their abi~lity to convert text into speech. However, there exist systems that

instead render symbolic linguistic representations like phonetic transcriptions into

speech.

1.1.2 Natural Language Understanding

Natural Language Understanding means moving from words, phrases or sentences

(either in written fonn or derived by a speech recognition system) to 'meaning'. This

involves mapping Natural Language units to their meanings as any Natural Language

generates infinite number of valid units: mapping of these dynamically generated

units to meaning is quite difficult.

2

1.1.3 Natural Language Generation

Natural language generation is the natural language processing task of generating

natural language from a machine representation system such as a knowledge base or a

logical form. Some people view NLG as the opposite of natural language

understanding. The difference can be put this way: whereas in natural language

understanding the system needs to disambiguate the input sentence to produce the

machine representation language, in NLG the system needs to take decisions about

how to put a concept into words.

1.1.4 Language Translation

Language translation generally referred as Machine translation (MT) is the application

of computers to the task of translating texts from one natural language to another. One

of the very earliest pursuits in computer science, MT has proved to be an elusive goal,

but today a number of systems are available that produce output which, if not perfect,

is of sufficient quality to be useful in a number of specific domains. Since the present

work relates to Machine translation, we will explain this in some detail in the

following sections.

1.2 MACHINE TRANSLATION

Machine translation, sometimes referred to by the acronym MT, is a sub-field of

computational linguistics that investigates the use of computer software to translate

text or speech in between natural languages.

At its basic level, MT performs simple substitution of atomic words in one natural

language for words in another. Using corpus techniques, more complex translations

can be performed, allowing for better handling of differences in linguistic typology,

phrase recognition, and translation of idioms, as well as the isolation of anomalies.

However. current systems are unable to produce output of the same quality as a

human translator, particularly where the text to be translated uses casual language.

3

1.3 NATURAL LANGUAGE PARSING SYSTEM

Language parsing plays the significant role in translating the natural language. In

machine translation and natural language processing systems, human languages are

parsed by computer programs. Human sentences are not easily parsed by programs, as

there is substantial ambiguity in the structure of human language. In order to parse

natural language data, researchers must first agree on the grammar to be used. The

choice of grammar is affected by both linguistics and computational concerns; for

instance some parsing systems use lexical functional grammar, but in general, parsing

for grammars of this type is known to be NP-complete. Head driven Phrase Structure

Grammar is another linguistic formalism which has been popular in the parsing

community, but other research efforts have focused on less complex formalisms.

Another popular strategy for avoiding linguistic controversy is dependency grammar

parsing.

Parsing algorithms for natural language cannot rely on the grammar having 'nice'

properties as with manually-designed grammars for programming languages. As

mentioned earlier some grammar formalisms are very computationally difficult to

parse: in general, even if the desired structure is not context-free, some kind of

context-free approximation to the grammar is used to perform a first pass. Algorithms

which use context-free grammars often rely on some variant of the CKY algorithm,

usually with some heuristic to prune away unlikely analyses to save time. However

some systems trade speed for accuracy using, e.g., linear-time versions of the shift­

reduce algorithm. A somewhat recent development has been parse re-ranking in

which the parser proposes some large number of analyses, and a ~more complex

system selects the best option.

The Universal Grammar (UG) theory claims that the same principles are incorporated

in the grammars of all languages; variation between languages amounts to differences

in the settings for a limited number of parameters. The principles and parameters

involved are couched in terms of the framework familiar in Chomskyan work of the

1980s, usually known as Government/Binding (GB) theory. A proper GB parser has

then a strong resemblance to a model of language acquisition.

4

1.4 PROBLEM DEFINITION

For the reasons stated earlier in this Chapter we have decided to engage ourselves in

parsing Sanskrit sentences, which in tum may used to translate into another language.

The thesis aims at building An Elementary-GB-Trees Based Parsing system for

Sanskrit language.

The GB framework has been adopted for generating the phrasal trees for sentences.

The key modules required in developing a parsing system are: building a Lexicon, and

design and implementation of a parser. Bottom up approach will be the basis for the

design and implementation of the parser. Since the GB framework forms the heart of

the overall system, it also requires developing GB based grammar for language.

Finally the overall system design and implementation is aimed to make the system

available for parsing Sanskrit sentences. In the section 6 of this Chapter we present

the organization of this thesis.

1.5 ORGANISATION OF THE THESIS

The thesis consists of 6 Chapters along with conclusions and future enhancements.

Chapter I overviews the field of Natural Language Processing, gives an overview of

Machine Translation and also gives a brief introduction to parsing. Then we discuss

the significance Natural Language Processing. Finally we explain the problem

definition.

Chapter 2 analyses the Government and Binding Theory (X-bar Theory). Here we

analyze the phrasal projections for Verb, Noun, Adjective, Preposition, Inflection, and
•

Complementizer Phrases

Chapter 3 briefly explains how Government and Binding rules are used for Sanskrit

language and various phrasal projections for Nouns, Verbs, Adjectives and Adverbs.

This chapter also covers grammar rules of Sanskrit language. We are confined to

extent where grammar is sufficient for parsing the sentence. As part of the grammar

different noun forms. verb forms, adjective forms, postpositions have been discussed.

5

Chapter 4 defines lexicon, how the vocabulary in a language is structured, how words

were created and importance of Lexicon in parsing. Further it explains the different

attributes associated with each grammatical category of Sanskrit. The last section

explains the use of interface for storing the words in the database.

Chapter 5 g1ves the overview of the design of the parsing system. Parsing system

includes six different Modules. We illustrate here the parsing Process in detail with

examples.

Finally. the Chapter 6 concludes the work with suggestions for future. The Appendix

A gives the Phrase Structure Rules for Hindi. References are places at the end of the

thesis.

6

Chapter 2

GOVERNMENT AND BINDING THEORY

2.1 INTRODUCTION

Government and binding is a theory of syntax in the tradition of Transformational

grammar developed principally by Noam chomsky in the 1980's. This theory is a

radical revision of his earlier theories and was later revised in The Minimalist Program

(1995) and several subsequent papers -the latest being Three Factors in Language

Design (2005). Although there is a large literature on government and binding theory

which is not written by Chomsky, Chomsky's papers have been foundational in setting

the research agenda.

The name refers to two central subtheories of the theory: Government, which is an

abstract syntactic relation, and Binding, which deals with the referents of pronouns,

anaphores, and R-expression. GB was the first theory to be based on the principles and

parameters model of language, which also underlies the later developments of the

Minimalist Program.

The shift from programming language grammars to NLP grammars seriously increases

complexity and requires ways to handle the ambiguities inherent in every human

language. While most programming languages are expressed by subclasses of well­

understood context-free grammars (CFGs), no grammatical formalism has yet been

accepted by the linguistic community for the description of human languages. On the

contrary. new formalisms (or variants of older ones) appear constantly. These include, for

instance. Linear Indexed Grammar (LIG) [18], Range Concatenation Grammar (RCG)

161. and Definite Clause Grammar (DCG) etc. More recent formalisms. like Head-Driven

Phrasal Structure Grammar (HPSG) [7], Lexical Functional Grammar (LFG) [22], which

relies on more expressive Typed Feature Structures (TFS) [5] or constraints, and Tree

Adjoining Grammar (TAG) with trees as elementary structures [2] & [3] have been more

7

widely used by the Natural Language Processing community. However of all the

grammar formalisms mentioned above, the Government and Binding (GB) Theory, with

its emphasis on Universal Grammar, has had the most impact in NLP. Because of its very

different approach in characterizing a language, its universality in handling Natural

Languages and its interesting computational properties, we have adopted GB based

approach for our work.

This Chapter briefly presents the Government and Binding (GB also referred as X-bar

Theory) Theory. The X-bar Theory is claimed to be Universal making it very suitable for

the task of Machine Translation. Here we will analyze X-bar structures of different

phrasal structures like VP, NP, AP, PP, etc. This Chapter suggest that the distinction

between Specifier, Adjuncts, and Complements are not only based on structural

differences as suggested in the existing literature but to the large extent are determined by

the relationship of syntax with the lexicon via projection principle, the argument structure

of lexical categories, the theta theory, the case theory and the government and binding

theory.

The main tenets of GB theory of syntax are developed by Chomsky [8]. We first explain

the theory using English language and then later apply it to Hindi language used in the

translation system. GB assumes that a large portion of the grammar of any particular

language is common to all languages, and is therefore part of Universal Grammar. The

next section will focus on introducing X-bar phrasal structures and introduces three level

symmetrical rule schemata.

2.2 X-BAR LEVELS AND PHRASE STRUCTURES

Words combine to make phrases. and phrases are one of the basic patterns out of which

we build sentences. A phrase is a group of words which acts as a single unit in meaning

and in grammar, and is not built round a verb. Phrases can have many different functions

in a sentence. They are used as subjects, objects, complements, modifiers, or adverbials.

8

Understanding phrasal patterns helps us to discuss and explain the effects in our own and

others' writing. In the sentence:

The strange green creatures with bobbing heads spoke.

• The phrase the strange green creatures with bobbing heads acts as the subject of

the verb spoke. The phrase is a single unit both in its meaning and in its grammar.

• The fragment the strange green is not a phrase, because it has no separate

meaning and no grammatical function.

For phrase structures we adopt symmetrical X-bar analysis. The same set of rules will be

applicable to a11 phrases thus leading to uniformity and computational efficiency in terms

of efforts, time and space. Further, we need exactly three levels of projection, namely X0
,

X', and X". For any head XO, we require the level X' to take care of constituents larger

than XO. Both the compulsory (Complements) and optional (Adjuncts) phrases can be

joined at X', one at a time, by Adjunct Rule (refer Rule (2) below) are the Complement

Rule (refer Rule (3) below), respectively. The highest X-bar which is not dominated by

any other X projection is the maximal projection of X0 denoted by X" or XP. The

Specifier is attached at the X" level by the Specifier Rule (refer Rule (1) below). Thus we

need only three levels namely X0
, X', and X". This three level hierarchical structure 'do

so' substitution and 'one' substation constructs which can be taken care by two level flat

structure (Hageman [15], Radford [2000]). Thus the three level symmetrical X-bar

analysis is more suitable both linguistically as well as computationally.

Accordingly, an X-bar phrase in a language is defined by the following rule schemata:

For any lexical category X such as Verb, Noun, Adjective, Preposition etc, X0=Head

X" (XP) -7 (XSpecier) ; X' -- (1) (The Specifier Rule)

*X' -7 (ZP); X' -- (2) (The Adjunct Rule)

X' -7 (YP) ; X 0 -- (3) (The Complement Rule)

The terms included in the parenthesis indicates that these terms are optional, '*' indicates

that the Adjunct rule is optional, and a 'semicolon in the rules indicates that the terms on

9

the right hand side are not taken as ordered. Each of ZP and YP are full phrases like XP.

Maximal projections for categories Verb(V), Noun(N), Adjective(A), Preposion(P), etc,

are denoted as VP, NP, AP, PP, etc, respectively. The tree representation defined by

phrasal rules is given in Figure 2.1.

XP (Maximal Projection)

~
XSpecifier
(optional)

X1 (Intermediate Projection)

r--------__
X 1 ZP
~ct Phrase (optional)

xo yp

Lexical Head Complement Phrase (optional)

Figure 2.1: The pictorial representation of X-bar phrase rule schemata

Next. we briefly describe the phrasal projections for each type lexical category.

2.2.1 The Phrasal Projection for a Verb

A Verb Phrase (VP) is a phrase having a verb as its head. Depending on a particular head

complement(s) may be present or absent. The complement in a VP may be a NP, PP, AP,

IP. or a CP. For each verb a Specifier NP, according to the latest theory, is present which

then moves to the Specifier position IP as described later in the section. Adjunct(s) in a

VP may be NPs, PPs, APs, or ADVP. A Verb Phrase typically functions as a

Complement in an Inflection Phrase (IP). For example, the VP 'talked to sue' in IP 'she

talked to sue'. The tree representation for VP 'talked to sue' is given in Figure 2.2.

10

VP

I
yl

~
pp

I
pi

r----._
Jumped

P0 NP

I Jater
into

Figure 2.2: Verb Pharase

2.2.2 The Phrasal Projection for a Noun

A Noun Phrase (NP) is a phrase having Noun as lexical head. The complement of a Noun

Phrase is always a PP which is always optional. Like in a VP adjuncts in a NP are

optional. An adjunct of a NP may be a PP, an IP, or a CP. The Specifier of a NP may be a

determiner, or a genitive NP. A Noun Phrase typically functions as a Specifier in an

Inflection Phrase (IP). The tree representation for NP 'the musician's interpretation of

that sonata' is given in Figure 2.3.

2.2.3 The Phrasal Projection for an Adjective

An Adjective Phrase (AP) is a phrase having Adjective as head. The complement of an

AP is typically a PP. The Specifier of an AP is optional, but it can tak~ adverb. The tree

representation for AP 'extremely afraid of snakes' is given in Figure 2.4.

ll

Specifier

I
the musician's N° pp

I I
pi

I
interpretation

pO

I
of

Figure 2.3: Noun Phrase

Spelcifier

extremely

AI

~
A 0 PP

I I
keen pi

I
r
on

Figure 2.4: Adjective Phrase

2.2.4 The Phrasal Projection for a Preposition

A Prepositional Phrase (PP) is a phrase having preposition as lexical head. The

complement of a Prepositional Phrase is always a NP. The specifier of a PP is always a

ADVP which is always optional. The tree representation for PP 'always in the library' is

shown in Figure 2.5.

12

pp

~
Specifier

I
always

lab

Figure 2.5: Prepositional Phrase

Other than above five categories of phrases which are projected by lexical categories, the

following two categories of phrases are projected by functional categories, Inflection (I)

and Complementizer (C).

Longer phrases are like Russian dolls -they contain a number of shorter phrases:

th:1! lovely old pub by the bridge Jove< Bl
The phrases whose heads are by and over are prepositional phrases

2.2.5 The Phrasal Projection for a Sentence (Inflection Phrase)

An Inflection Phrase (IP) is a phrase having the non-lexical element Inflection (I) as its

head. The complement in an IP may be a VP or an AP. The specifier of an IP is always a

NP. The tree representation for IP 'The bus driver angered the lady' is shown in Figure

2.6.

13

NP

I
The man

I
[past]

VP

~
visited NP

I
the hospital

Figure 2.6: Inflection Phrase

2.2.6 The Phrasal Projection for Complementizer

The Complementizer Phrase (CP) is a phrase having the non-lexical element

Complementizer (C) as its head. The Complementizer Phrase corresponds either to a yes­

no question (like, for example, 'Is he poor?', 'Will ram come?', etc.), or to a clause

headed by a Complementizer ('that') (such as, for example, the CP 'that she will go

there' in the sentence 'Indira said that she will go there', etc.). The tree representation for

"where do u go" is given in the Figure 2.7.

Specifier

I
NP c IP

I I ~
where do NP I'

I I
you I

I
{ }

Figure 2.7: Complement Phrase

14

2.3. LEXICON ORGANIZATION

We assume that every speaker is equipped with a mental lexicon, an "internal lexicon",

"Yhich contains all the information they have internalized concerning the words of their

language. It contains a lexical entry for each lexical item in the language. Lexical entries

contain at least phonological, morphological, semantic and syntactic information. They

contain all the information about lexical items that cannot be predicted by the rule system

(e.g.: regular past tense forms of verbs are not given in the lexical entry since they can be

predicted). We are mainly interested in the syntactic information, which contain the

Categorical, Subcategorical Information and Thematic information. In the following

sections we briefly describe how this syntactic information is represented in the· Lexicon.

2.3.1 Categorical Information

For each entry it must be specified what syntactic category it belongs to, e.g.:

school: noun (N)

professor: N

student: N

play: verb (V)

read: V

into: preposition (P)

extremely: adverb (Adv)

fast: adjective (A)

The syntactic category determines the distribution of a word, which means that it tells us

in what context. in what syntactic environment it can occur.

2.3.2 Subcategorization Information

A subcategorization frame specifies in what syntactic environment a category a lexical

item can be inserted. It is called "subcategorization" because we can distinguish

15

subcategories (or subclasses) of categories on the basis of the context in which they

appear, e.g.:

(l) a. play: V, [--] The boy is playing.

b. draw: V, [-- NP] The boy is drawing [a picture].

c. give: V, [-- NP, PP] The boy gives [the ball] [to the man].

d. give: V, [-- NP, NP] The boy gives [the man] [the ball].

These subcategorization frames indicate the position of the verb. bhitate, for example, is

followed by one NP (such as the cat)- it selects or subcategorizes for one nominal object.

Notice that the subcategorization frame includes only the OBJECTS (or

COMPLEMENTS) of the lexical entry, but not the subject.

2.3.3 Thematic Information

As described in the section above, each lexical entry is specified for the number and type

of arguments it requires. The arguments are the participants that are minimally involved

in the activity or state expressed by the predicate, for instance: The verb imitate in (1)b

requires two participants: one person who does the imitating (the agent), and someone

who is being imitated (the patient). The verb gives in (l)c and d requires three

participants: someone who does the giving (the agent), something that is given (the

theme) and someone who receives the given entity (the recipient). These participants are

called arguments, their roles (such as agent, theme, recipient) are called thematic roles

(or theta-roles. 9-roles). This kind of specification is called thematic-grid. The 8-roles

are often represented by Arabic numerals, where the numeral I refers to the argument

realized as the subject:

(2) a. play: V; (1] The boy is playing.

b. draw: V; [1 2] The boy is drawing a picture.

c. give: V; [1 2 3] The boy gives the ball to the man I the man the ball.

16

We can now combine the theta grid and the Subcategorization frame, I.e. we add the

syntactic categories of the arguments:

(3) a. play:

b. draw:

c. give:

V; [1]

V; [1

V; [1

2]

NP

2 3]

NP NP

NP PP

Recall that the subcategorization frame includes only the objects of .a lexical item. The

thematic role of the subject can therefore not be linked to the subcategorization frame in

the same way as the other roles can. The information presented above, is summarized in a

tabular form as given in Table 2.1.

Table 2.1: Lexical Entries with their Subcategorization and Argument structures.

Categorical Subcategorization Information Thematic

Information Information

[--PP] (speak to someone) [1 2]

speak v

[--] (speak) [1]

[--NP] (receive a letter) [1 2]

receive v [--NP PP] (receive a letter from [1 2 3]
-

some one) [1 2 3]

[--NP NP] (receive someone's

letter)

In the Machine Translation process the word lexicon is used more often than the word

dictionary as this information is stored in a machine readable form. So the lexicon can be

called as a "computational dictionary". In natural languages one word can have several

17

forms and it is not wise enough to store all those forms in the lexicon as it simply

increase the size of the lexicon. In MT, the lexicon usually contains the root words of the

language and the morphological processes use the information present in the lexicon to

generate the other forms of the words. Usually this information is stored in the files or as

tables in the databases which can be easily retrieved for the computational purpose.

However, the way you organize your data is more important as it would directly affect

the speed of the computation.

2.4 THETA THEORY

The lexicon specifies the number and type of arguments that a verb takes. Arguments are

the essential participants in the event that the verb refers to. The technical term for this

aspect of the verb's meaning is argument structure. The lexical item that specifies the

argument structure is called the predicate. We have already mentioned some of the

theta-roles associated with arguments, such as agent, patient, or theme. There are other

roles such as experiencer (someone who is experiencing a physical or mental sensation,

refer (4)a below), benefactive/ recipient (someone who benefits from the action

expressed by the verb or who receives something as in (4)b below), and a few more.

(4) a. Peter feels cold.

b.Peter gives Mary the book.

We say that the predicate assigns theta-roles to its arguments or that the predicate selects

its arguments. Theta-roles assigned to complements are referred to as internal theta­

roles, complements are thus internal arguments. Theta-roles assigned to subjects are

external theta-roles, subjects are thus external arguments. Theta roles are assigned by

the Governor to its Governees under Government. The definition of Government is given

below:

Government:

A node A governs a node B iff

18

1) A is a governor.

2) Am-commands Band

3) No barrier (some YP) intervenes between A and B

•!• Maximal projections are barriers to government.

•!• Governors are heads.

There are two types of Governors:

1) Lexical governors

• E.g. V (verb), P (preposition), N (noun), A (adjective).

2) Functional governors

• E.g. I (agreement), C (complementizer).

2.4.1 The Argument Structure of Other Syntactic Categories

So far, we analyzed verbs as predicates. However, other categories like nouns,

prepositions, adjectives etc, have argument structures, as well. In the following section

we are going to analyze about those argument structures in brief.

2.4.1.1 Nouns: Argument structure is most obvious in nouns that are morphologically

related to verbs.

Consider the examples:

The Romans destroyed the city.

The Romans' destruction of the city.

As we can see, the argument structures of the nouns m the above sentences are

remarkably similar to that of their corresponding verbs. They can have subjects and

objects just like verbs.

We have already said that the syntactic arguments of nouns are usually optional (i.e. can

be left implicit). The subject of a noun is always optional, whereas the subject of a verb

must always be realized.

19

For example compare:

"The Romans destroyed the city." with "Destroyed the city." and

"The Romans' destruction of the city." with" the destruction of the city"

Similarly. objects of nouns may also be omitted, even if cannot be left implicit in the case

of the corresponding verb.

For example compare:

"Poirot will analyze the data." with "Poirot will analyze." and

"Poi rot's analysis of the data." with "Poirot's analysis"

2.4.1.2 Adjectives: Adjectives too can have arguments. Similar to nouns, their arguments

can often be left implicit and arguments are syntactically realized as PP's (often with of)

or clauses, as shown by the examples below:

Poirot envies Bertie.

Poi rot is envious of Bertie.

2.4.1.3 Prepositions: Some linguists argue that prepositions can also function as

predicates and take arguments. Some prepositions can occur with or without arguments,

as shown in the examples below:

Peter is in London.

He is outside (the house). Here argument "the house" is optional.

2.4.2 The Theta Criterion

We have seen that the number of arguments that can show up in a sentence is determined

by the number of 9-roles that a predicate has. The requirements illustrated in these

examples are captured by the Theta-Criterion: which sates that:

-7 Each argument is assigned one and only one theta-role.

20

-7 Each theta-role is assigned to one and only one argument.

2.4.3 The Projection Principle

We have said so far that the mental lexicon contains a lexical entry for each lexical item

in the language. This lexical entry in tum contains phonological, morphological, semantic

and syntactic information about that lexical item. The syntactic information contains

categorical information, subcategorization information, and thematic information. We

have also seen that the information given in the lexical entry must be represented in the

sentence that the relevant lexical item is a part of. (For instance, theta-roles must show up

in the sentence, they must be assigned to arguments. If arguments may be left implicit,

this must be specified in the lexical entry.) We have also seen that the syntactic category

of a lexical item determines the syntactic category of the corresponding phrase. This is

captured by the Projection Principle, which sates that: "Lexical

syntactically represented."

2.4.4 The Extended Projection Principle

The Ex tended Projection Principle (EPP) requires that sentences must have subjects. For •

example, in the sentences "It rains." or "It has been snowing.", although the subject 'it'

does not contribute to the meaning of the sentence, and it is not an argument of the verb.

it cannot be omitted. This follows from the EPP.

So far we have presented in brief the requirements, according to the theory, the analysis

and design of Lexicon and how the lexicon is to be organized, so that we can capture all

the required syntactic information about lexical items of words in a given sentence.

Detailed information about all these concepts can be found in Hageman [15] and Fromkin

[29]. In the following section we are going to concentrate on some other important

concepts of GB Theory, in brief.

21

2.5 OTHER CONCEPTS

In the following section we are going to give the other important concepts in GB Theory,

i.e. Case Theory and Binding Theory in brief.

2.5.1 Case Theory

According to Case Theory, every overt NP must be case-marked. Also, even though only

pronouns show overt morphological case in English, it is assumed that all NPs have Case

(called abstract case) that matches the morphological case that shows up on pronouns.

The degree of its morphological realisation varies parametrically from one language to

another. Case Theory accounts for the distribution and form of overt NP's. It defines

contexts in which NP's are assigned abstract case.

In English. overt morphological realization of case in full lexical noun phrases is

restricted to the GENITIVE case. NOMINATIVE and ACCUSATIVE case can only be

seen on pronouns. Heads of some categories (specifically V, P, I, but not A and N) have

case-assigning abilities. In English, Verbs assign ACCUSATIVE CASE to their

complements. whereas nouns and adjectives don't. Further, the passive participles cannot

assign ACCUSATIVE case to their complements and that therefore the internal argument

moves to the subject position to receive NOMINATIVE case. This in tum is possible

because the passive participle does not assign an external 8-role, but this role is absorbed

b¥ the passive morpheme. These two properties (failure of the verb to assign ACC case

and absorption of the external argument of the verb) have been related by Burzio (1986)

by a descriptive generalization which is known as Burzio's Generalization. Similarly

raising verbs do not assign an external 8-role to their subject position.

22

Chapter 3

GOVERNMENT AND BINDING BASED

GRAMMAR FOR SANSKRIT

3.1 INTRODUCTION

Sanskrit is the language of Devas or gods, and the alphabets in which it is written is

called Devanagari, or that employed in the cities of gods. The correct name for the

Sanskrit alphabet is Daivanagari sometimes abbreviated into Nagari. Perhaps in the

word Devanagari we have a history of the times when the Aryans entered and settled

in the Northern India. The Aryans who were much fairer in colour than the aborigines

of India are the Devas referred to in the name Devanagari and Nagari means the

Aryan settlements within the precincts of wi:Jich the sacred language was spoken.

In Sanskrit words that are used in a sentence are called Padas. A Pada is a fully

inflected word, i.e. the root word combined with a bound morpheme. Padas are

mainly of two types, Tingant and Subant. A Tingant is a verbal form obtained by

combining a verb root and a Ting (a bound morpheme), which gives tense, aspect.

person and number features of the resulting Tingant (the verbal form of the word). A

Subant is a nominal form obtained by combining a nominal root (referred to as

Pratipadik) and a Sup (a bound morpheme), which gives number, person and case

features of the resulting Subant (the nominal form of the word). The gender feature is

associated with the Pratipadik. Sanskrit has three genders (masculine, feminine and

neuter), three numbers (singular, plural and dual), three persons (first. second and

third), eight cases, and ten tenses and moods. The root takes different form based on

the suffix added to it. It is for reasons like this, Sanskrit packs a lot of information into

a Pada. a word in a sentence.

In our domain of source as well as the Target Language, we consider eight cases of a

Noun. these are: Nominative, Accusative, Instrumental, Dative, Ablative, Possessive,

Locative and Vocative. In English, the cases are determined by the position of a

23

Nominal Phrase in a sentence or by the presence of the preposition used with the

nouns. However in Sanskrit language a noun, as stated above, is modified with a

specific suffix for each case.

3.2 FORMS OF DIFFERENT GRAMMATICAL CATEGORIES

3.2.1 Noun Forms in Sanskrit (Declensions of Nouns)

A nominal morpheme, referred to as Sup in Sanskrit, has 24 forms depending on the

case and the number of the desired final form of the nominal Pada. Each of these 24

forms of Sup is further modified depending on the gender and the ending of the

Pratipadik with which it has to be attached. Though most of the generation is regular

in nature, in certain cases irregular processes also operate [Asthadhyayi].

Feminine noun endings

Feminine nouns may end in 3-TT, ~. ~. 3", 3i, or ;f[.

Neuter noun endings

Neuter nouns may end in 31, ~. 3", or ;f[.

Masculine noun endings

Masculine nouns may end in 31, ~. 3", or ;f[.

Therefore only some typical case(s) or example(s) are presented here. Table 3.1 gives

the complete table of the Pratipadik Udr. Table 3.2 gives the complete table of the

Pratipadik ~- Similarly Table 3.2 gives the Pratipadik ~- The root Ud1 is 31

ending masculine, the root ~ is 3-TT ending feminine, and the root ~ is 31 ending

neuter.

24

Case Singular Dual Plural

Nominative UJ=f: um -u;RT:

Vocative Udi um -u;RT:

Accusative Ud1J=[um ~

Instrumental ~ -u;RT~ ~:

Dative ~ -u;RT~ um-<:r:

Ablative ~ -u;RT~ ~:Rf:

Genitive ~ICR~ ~: ~ICRICIICR_,

Locative ~ ~: ~

Table 3.1: Pratipadik Udi

Case Singular Dual Plural

Nominative ~ m ~:

Vocative m m ~:

Accusative ~ m ~:

Instrumental ~ ~3-<:rr.f{ ~:

Dative ~ ~3-<:rr.f{ ~:

'

Ablative ~: ~<:rr.f{ ~<:T:

Genitive ~: ~: ~CRICIICR_,

Locative ~CRI~ICR_, ~: ~

Table 3.2: Pratipadik ~

25

Case Singular Dual Plural

Nominative ~ ~ ~ lc:J I fc'1

Vocative ~ ~ ~ lc:J I fc'1

Accusative ~ ~ ~ lc:J I fc'1

Instrumental ~ ~<rr.F[~:

Dative ~lc:JI~ ~ ~a=<r:

Ablative ~Jc:Jio, ~ ~a=<r:

Genitive ~lc:!{-<l ~ lc:J<il: ~Jc:JJCIJd1_

Locative ~ ~lc:J<il: ~

Table 3.3: Pratipadik ~

3.2.2 Adjective Form

An adjective is governed by the nominal it modifies. That is it is modified by adding

the same Sup ending which is used to modify the governing nominal root. The

following examples show how the adjective is governed by the governing Noun it

modifies.

In the above sloka, C£iWif4 is a genitive form of the masculine noun C£i'WT. Therefore

the adjective modifying the noun is also declined in the same way. Since~ is an

ablative form of the neuter noun q;(il', the adjective is also declined as ~'COl(''(.

26

· 3.2.3 Verb Forms (Verb Conjugation)

In Sanskrit, there are two kinds of verbs: Primitive and Derivative. Primitive verbs or

roots are those which originally exist in the language, while derivative verbs are those

which may be derived from the parent stock- a root by adding prefixes. Verbs are

associated with ten different forms of usage referred to as Lakaras. Of these six relate

to the tenses and four relate to moods. A brief description of Sanskrit Lakaras is

presented below. The six Lakaras representing tenses are:

l. N?: Present tense
'

2. ~ Past tense - imperfect

" <:N Past tense - aorist .).

4. ~ Past tense - perfect
'

5. ~ Future tense - likely

6. ~ Future tense- certain

Four Lakaras representing moods are:

~ Conditional mood

2 ~ Potential mood

" .m~~ Benedictive mood _,

4 NTc Imperative mood

A root is conjugated according to a Lakara and also conjugated according to Padas

(Atmanepada, Ubhayapada and Parasmaipada). Other than Lakara and Pada, person

and number determine the choice of Ting that needs to be affixed to the root Verb.

A Pada of a verb form determines whether the activity specified in the verb applies to

the person himself or whether it applies to someone other than the subject of the verb.

Verbs referring to the activity for the self are said to be "Atmanepada" .3"1k-Ji~Q~

27

verbs. Verbs referring to the activity for others are said to be "Parasmaipada"

Q{'fltQC\ verbs. Verbs which can take both forms are known as "Ubhayapada"

3"~ verbs.

3.2.3.1 Simple present tense: There is only one form for the present tense (~). In

simple present tense, we add suffixes to the root form of the verb before the

terminations are added. The suffix 31T is added in first person, while suffix .31 is

added in second and third persons. The terminations for the verbs in "Parasmaipada"

are stated in Table 3.4:

Person/Number Singular Dual Plural

First fJi cr: ;Jf:

Second ffr ~: ~

Third fc1 (1: ~

Table 3.4

The different forms for the verb~ in present tense are given in Table 3.5:

Person/Number Singular Dual Plural
-

First l:f<5Tfii QOTCT: QO]'(I1:

Second ~ QO~: QO~

Third Qi3fc1 QO(l: Qo~

Table 3.5

28

· The tenninations for the verbs in "Atmanepada" are stated in Table 3.6:

Person/Number Singular Dual Plural

First ~ '* ~

Second ~ ~~ ~

Third a ~ ~

Table 3.6

3.2.3.2 Simple Past Tense: Past tense has three forms associated with it

I. Expressing something that had happened sometime in the recent past, typically

last few days.

2. Expressing something that might have just happened, typically in the earlier

part of the day.

3. Expressing something that had happened in the distant past about which we

may not have much or any knowledge.

For the simple past tense, 3f is the prefix. The terminations for the verbs m

"Parasmaipada" are stated below in Table 3.7:

Person/Number Singular Dual Plural

First 3l" q - d1

Second ~ (l (1

Third <=[ill Jq

Table 3.7

29

The forms for the past tense of the verb can be obtained from the above table. The

root form of the verb is ~ and the infix corresponding to the root is 31 for the

second and third person but .31T for the first person. The different forms for the verb

~ in past tense are given in Table 3.8:

Person/Number Singular Dual Plural

First ~ JiCII"LU.ICl 3i CIJ "LUI d=l

Second ~: }iCII"L~c:j 3iCII"LU.(1

Third 3i CIJ "LU.<1, 3-1 CIJ "LU.(=I j JlCII"LU.c=t,_

Table 3.8

The terminations for the verbs in "Atmanepada" are stated in Table 3.9:

Person/Number Singular Dual Plural

First ~ ~ ~

Second ~: ~m ~Cid=[

-
Third (1 ~ .3-1'C=C1

Table 3.9

30

3.2.3.3 Simple Future tense: Future tense has two forms associated with it.

1. Expressing something that is certainly going to happen (<>K).

2. Expressing something that is likely to happen (~).

The infix for the future tense is~- The infix changes its form to~ when applied to

some rules. In some cases it may also become tR:f. However there is no direct rule

which we can be stated in respect to infix. We can see two forms for many verbs. For

example,

dTcf[, ~ are the two root forms for J I 'Lg;Q

QT, ~are the two root forms for ~

The form of the verb for future tense will be based on the first root where as the

second form of the root will be used in generating the verb in present tense and past

tense.

The terminations for the future tense in "Parasmaipada" are given in Table 3.10:

Person/Number Singular Dual Plural

First ~ tR:llCf: ~:

Second ~ tQ:f2j": 'IQ:f~

Third ~ lRRf: ~ -

Table 3.10

31

The forms for the verb Jl"t..O>Q in the future tense are given in Table 3.11:

Person/Number Singular Dual Plural

First Jl~~~~ Jl~~~lq: "'~~~l;tl:

Second Jl~~ffl Jl~~~~: "'~~~~

Third JI~~~Q <11~~(1: Jlfcfl~~~

Table 3.11

The tenninations for the future tense in "Atmanepada" are given in Table 3.12:

Person/Number Singular Dual Plural

First ~ ~ ~~~;tj~

Second ~ ~ ~

Third ~ ~ ~

Table 3.12

In our work we have considered only Present tense, past tense - Aorist, and Future

tense- certain. Parasmaipada conjugation of verb "kri" is given in the Table 3.13.

A ~ ,., •

W = CfiFrr (QH"1Q~1) krt = to do

~Qichl"'' ~ ~
t <)liC f'Cl"HI I (IWt~pt:;lpld (lll<1fc lh::'llliW!l J

~
, ,.__

~- ~: ~ ll. fftr'il Pl'~'<'•ll) -· -·
rLutl(il (kuru! ali I dwrvanti 1

(Pr~''<'nt) umfu ~; ~ 1i. (s~.:nnd p..·r -,n i
·> .,.

~ ~: ' "tt'tt: l. (third ~fWIH • ,,

~ ~ ~: ~: ll.
"

il';t "1 Perf.:.: II ~ mF.~: ~ li.

~. ~ ~ ~ l.

32

o:Simpk fuwrc.) &il~Wlfl

<~>f~•Arfi:l

fa'. ffis". ~
(P;•I<'ni i::ll mO<>dl ~: ..,

~.
-~-~- fimmt
(Bencdlclhc 1 ftntn:

f$tltU~t{

{'l!~k ~
"' (..\orbti 3fiF.rQT:

' ~
,..

(~S~ 3H61~1Zhi

..
<:C••nditlml;.tll ~:

...
3Hhi(IZU!

~:

~:

~:

~ ·• .
~-

•
~

&~l~l'l

flitttffit{

fu;-lma

~

~
' ~

,.
~Q'il\! Wdll{

~f.hi'!IZid'{_

.3fl.flnwiit

~=a.

c.-.f•u:;af-':1 u.

~:

~
~

~
~:

~

fir.tm;r

'
~:

' ~ .
3WjJ1lt'

atitif~EZFt

~(f.r~ IZirl

li.

a.

'tf.

If.

i.

'tf.

IT.

~-

'tf.

lf.

~.

~.

~-

atitif~•zuq ~-

Table 3.13: Conjugation of Verb "kri"

In Sanskrit the root word forms which do not under go declensions or conjugations

are referred to as A vyayas or unchanging. The types of words falling under the

category of A vyayas are adverbs, conjugations and interjections etc.

33

3.3 SANSKRIT PHRASE STRUCTURES

Sanskrit is a highly inflectional language and due to this property it is a completely

word- order free language. To fit Sanskrit in the GB frame work we have

superimposed a Hindi like word order on Sanskrit. So we assume that Sanskrit is a

SOV language. As described in the above section, SOY languages are head-final and

specifier-initial languages. So the phrase structures for our Sanskrit will be similar

to that of Hindi, given in the above section and are repeated below for easy reference.

The basic phrase structure rules are:

XP ~ Specifier X'

X' ~ Complements X'

X' ~ Adjuncts X0

To convert a given Sanskrit Phrase/Sentence into a SOY structure, a preprocessor

which converts word-order free Sanskrit phrases into their SOY form needs to be

developed. In our work, however we are manually converting Sanskrit sentences into

SOV structures before feeding them to the parser. Since we are considering only

simple sentences, and in that only Verb Phrases (VP), Noun Phrases (NP), and

Inflection Phrases (IP), we are going to present in the following, these Phrase

Structures only. The rules forms of Sanskrit Phrase Structures are given in Appendix

A.

3.3.1 Verb Phrase

In the Verb Phrase given in the Figure 3.7, the complement is an NP. However, in

general a Verb Phrase complement could also be an AP, an IP or a CP.

34

VP VP

I I yl yl

~ ~
NP yO

NP yO

~ I ~ I
~ <JfuiT c.n~ ~

Figure 3.7 Verb Phrase

· 3.3.2 Noun Phrase

Two examples of Noun Phrase are given in Figure 3.8. In the first example the

specifier is a Genitive NP and in the second example it is anAP.

NP NP

~ ~
NP NI AP NI

~ I ~ I
No fct~JT(>f: No

{IJFRI

I I -

~ fcl CUI <'F4 :

Figure 3.8: The Noun Phrases

35

3.3.3 Inflection Phrase : The tree representation for the Sentence "Udf: fcl{II(>F4Ji.

3iiJIJi<H,_' and"~ Jl-vDIIf<R" are shown in Figure 3.9a and Figure 3.9b respectively.

In the example the specifier is an NP. However it could be an IP or a CP.

IP

NP II

~
Udl

Nominative (q:;al)

~
VP " jO

I Tense:~
Masculine (~) yl Person: 3'tfdl

Number: 1Tcfl Singular (QCOflqiiC"') ~
Third (3nd1) NP yo

~I
fcl {II <>t ll dfcFf

Accusative (Cfidl)

Neuter (C"'".lJ.)

Singular (QCOflq illil)

Third (3tfdl)

NP

~
~

Nominative (q:;al)

Masculine (~)

Singular (QCOflq illil)

First ('O":!.l<R")

'

IP

II

~
VP fl
I Tense: (>IC

V 1 Person: '0"~

I Number: 1Tcfl

yO

I
dfd1

'

Figure 3.9: The Inflection Phrase

36

3.3.4 Complementizer Phrase

The tree representati9n for a Complementizer Phrase is shown in Figure 3.10.

CP

~
cl

r-------_
c IP

I ~
~ NP II

I ~ mrq VP ro
I I yl

I Tense: ~
yO Person:~

I Number: l:Tcfl

~

Figure 3.10: Complementizer Phrase

37

4.1 INTRODUCTION

Chapter 4

Lexicon

A lexicon is a repository of words and knowledge about those words. This

knowledge may include details of the grammatical structure of each word

(morphology), the sound structure (phonology), its part of speech, and the meaning of

the word in different textual contexts, e.g. depending on the word or punctuation mark

before or after it. Lexicons may be ordered either alphabetically or semantically. A

useful lexicon may have hundreds of thousands of entries. Lexicons are needed for

every language of application. There are a number of special cases which are usually

researched and produced separately from general purpose lexicons: dictionaries of

proper names, terminology databases, and wordnets.

Lexicon is the important module in our work. Lexicon will have all the information of

every word of language. This information is like tense, aspect, number, gender and

person etc. These attributes will change from one category to another category of

words as per the language grammar. Lexicon also contains the sub-category

information and thematic information of every word. As this information plays major

role in parsing the sentence, this information has to be stored in proper way m

database such that we can eliminate redundancy and retrieve data in optimum way.

4.2 SANSKRIT LEXICON

4.2.1 Introduction

Sanskrit Lexicon contains information of every word as per the grammatical category

of that word. In Sanskrit, words are mainly classified as Noun, Pronoun. Verb, and

Adjective as per the grammar. So, we developed different table for each category.

Along with these tables subcategory information table also exist, which provide the

38

I
I

sub-category information of words. Sanskrit have mainly two categories i.e. Verbal

and Nominal.

4.2.1.1 Noun Information

Noun comes under Nominal category.

Mainly nouns have following attributes

• Noun Case

• Number

• Gender

Word Noun Case

~: Nominative

~ Accusative

C1<ft Nominative

Number

Singular

Singular

Singular

Table 4.1 Noun Information

4.2.1.2 Pronoun Information

Gender

Masculine

Masculine

Feminine

Pronouns also come under Nominal category. Pronoun has following attributes

• Noun Case

• Number

• Gender

• Person

Word Noun Case Number Gender Person

~ Nominative Singular Both First

(=Cfd1 Nominative Singular Both Second

R Nominative Singular Male Third

Table 4.2 Pronoun Information

39

I

I
i
I
i
i

I
I

I
i
I
i

'

4.2.1.3 Adjective Information

Adjectives are also come under Nominal category. In Sanskrit adjectives and nouns

will have the same attributes. These are

• Noun Case

• Number

• Gender

Word Adjective Case Number

~: Nominative Singular

~ Nominative Singular

~c;::c;{Ji Nominative Singular

Table 4.3 Adjective Information

4.2. I .4 Verb Information

Verbs come under Verbal category.

The important attributes of the verbs are

• Number

• Person

• Tense

• Aspect

Word Number Person

qofci Singular Third

~ Singular Third

3"1 J I "t..(§IC""l Plural Third

Table 4.4 Verb Information

40

Tense

Present

Present

Past

Gender

Masculine

Feminine

Neutral

Aspect

Simple

Simple

Simple

I
l
I

I
l

4.3 DESIGN OF LEXICON

The previous section explains, what the different important categories of words are,

and their important attributes which plays major role in parsing the sentence. Current

section discusses with the organization of lexicon for Sanskrit.

After the through study of the Sanskrit vocabulary we came to know that most of the

words of similar category have the same attributes values. So, keeping it in mind in

order to eliminate the redundancy, table for every grammar category contains only

attributes. but not the word.

The words are stored in a separate table, where it can have index to its attributes in a

particular category table. As sub-categorical information also similar for many words,

it's also store in other table and words will have index to its sub-categorical

information.

Word table looks like this

Word Category Category Index Sub-category Index

o;R: Noun 1 1

qofci Verb 1 2

Table 4.5 Model of word Information Table

Sub-category table looks like

No of
Sub-category Index 151 Complement 2nd Complement

Complements

0 1 NounP(Obj)

1 2 NounP(Obj) AdjectiveP

Table 4.6 Model of Sub-category Information Table

41

4.3.1 Noun Table

As Noun and Adjective have same attribute only one table is maintained for that, in

which one column introduced to differentiate whether it's a noun or adjective. The

header of the table is shown in table 4. 7.

Noun Index Noun Case Number Gender Type

Table 4.7 Noun Table

In this Noun case tells case of noun, Number and Gender indicates number and

gender of word respectively. Type indicates word category, i.e. whether Noun or

Adjective. Here Noun Index is referred by Category Index in Word table and Noun

Index of Pronoun table.

4.3.2 Pronoun Table

As Pronoun also have same attributes as noun category, with an extra attribute person.

Only noun index is stored in pronoun table which will eliminate redundancy of data

and person information is stored in this. The header of the Pronoun table is shown

table 4.8

Pronoun Index Noun Index Person

Table 4.8 Pronoun Table

Here Pronoun Index referred by the Category Index of word table. Noun Index refers

to the Noun Index of Noun table.

42

4.3.3 Verb Table

Verb table contains all information to represent a verb. Head of Verb table shown in

Table 4.9.

Verb Index Number Person Tense · Aspect

Table 4.9 Verb Table

4.3.4 Interface

In order to store the data into lexicon, an interface has been designed which allows to

enter data very easily into database. A screen shot of that interface is shown in figure

4.1.

r·----
: RnnMinrrl Vvnrrl

i

CI'Jtegory

hltwnl:oer
Gender Person

Tense Aspect ' .~ NounCase jI

Mood Voice

SubCategory

NoOfComplements ...:J

Comp1 Comp2 Comp3

Save

Fig 4.1 Screenshot of Sanskrit Lexicon Data Entry

43

-

Lexicon data entry interface enables user to enter the data into lexicon very easily.

The interface is prepared very user friendly, so that a novice can enter data. When a

particular category selected from category combo box, the combo boxes which

corresponds to that category are only enabled and other are disabled. So, that user

can't enter the data wrongly. And all expected values are already stored in combo

boxes. it can eliminate problem of spelling mistakes. As number of complements

taken by word varies from sentence to sentence, we maintain sub categorization

information' based on number complements. Depending on the number of

complements concerned combo boxes are enabled and other is disabled. It avoids user

to enter wrong data.

4.4SUMMARY

This chapter explains what lexicon is, and its importance in parsing. Explains what

are the different attributes associated with each grammatical category of Sanskrit. A

next section explains about design of tables of lexicon database and the interface

designed to build the Lexicon database.

44

Chapter 5

PARSER

5.1 PARSING STRATEGIES

5.1.1 An Overview

The present Chapter describes the Design and Implementation of Parser. There have

been various approaches to the parsing problem. Main approaches include two left­

comer parsing algorithms, a variant of the Cocke-Kasami-Younger algorithm, Early

parsing algorithm, and Tomita's generalized LR parsing algorithm, in an LR(O)

version. These are all Context-Free parsers. The context-free grammar (CFG)

formalism, introduced by Chomsky, has enjoyed wide use in a variety of fields. CFGs

have been used to model the structure of Programming languages and Natural

languages [25]. Canonical methods for general CFG parsing are the CKY algorithm

and Earley's algorithm. Both have a worst-case running time of O(gn3
) for a CFG of

size g and string of length n, although CKY requires the input grammar to be in

Chomsky normal form in order to achieve this time bound. Asymptotically faster

parsing algorithms do exist. Graham, Harrison, and Ruzzo give a variant of Earley's

algorithm that is based on the so-called 'four Russians' algorithm for Boolean matrix

multiplication (BMM); it runs in time O(gn3/log n). Rytter further modifies this

parser by a compression technique, improving the dependence on the string length to

0(n3/log2 n). But Valiant's parsing method, which reorganizes the computations of

CKY, is the asymptotically fastest known. It also uses Boolean Matrix tviultiplication;

its worst-case running time for a grammar in Chomsky normal form is proportional to

M(n). where M(m) is the time it takes to multiply two m X m Boolean matrices

together. In the next section we are going to explain the bottom-up parser.

45

5.1.2 Bottom-Up Parser (LR Parsing Algorithm)

In bottom-up parsing we have various parsing algorithms like Shift-Reduce parsing,

SLR. CLR and LALR.

The basic idea of a bottom-up parser is that we use grammar productions in the

opposite way (from right to left). Like for predictive parsing with tables, here too we

use a stack to push symbols. If the first few symbols at the top of the stack match the

right hand side of some rule, then we pop out these symbols from the stack and we

push the lhs (left-hand-side) of the rule. This is called a reduction. For example, if the

stack is x * E + E (where x is the bottom of stack) and there is a rule E ::= E + E, then

we pop out E + E from the stack and we push E; i.e., the stack becomes x * E. The

sequence E + E in the stack is called a handle. But suppose that there is another rule

S::= E. then E is also a handle in the stack. Which one to choose? Also what happens

if there is no handle? The latter question is easy to answer: we push one more terminal

in the stack from the input stream and check again for a handle. This is called shifting.

So another name for bottom-up parsers is shift-reduce parsers. There two actions

only:

I. Shift the current input token in the stack and read the next token. and

2. Reduce by some production rule.

Consequently the problem is to recognize when to shift and when to reduce each time,

and. if we reduce, by which rule. Thus we need a recognizer for handles so that by

scanning the stack we can decide the proper action. The recognizer is actually a finite

state machine exactly the same we used for regular expressions (REs). But here the

language symbols include both terminals and non-terminal (so state transitions can be

for any symbol) and the final states indicate either reduction by some rule or a final

acceptance (success).

46

5.2 DESIGN OF PARSER

5.2.1 Our Parsing Strategy

The efficiency of the parser plays a crucial role in machine translation systems.

Therefore after studying various parsing approaches, we have decided to implement

the LR Parsing algorithm. The LR parser uses the bottom-up approach.

5.2.1.1 Generating Data Structure

In the data structure generator phase, for every word its Lexical information is picked

up from the Lexicon. This lexical information of word is stored in a data structure

which has link to previous and next structure for other words, and which can hold all

lexical information of a word. This data structure for Verb category is shown in figure

5.1. Only, attributes which are specific to particular category varies from one category

data structure another category data structure.

struct Node {

I

string word;

string category;

string number;

string person;

string tense;

string aspect;

int numberOJComplements;

string Complement];

string Complement2

Tree treePointer;

Node next;

Node previous;

Node up;

Node down;

Figure 5.1 Data Structure for verb category

47

Here verb category attributes are number, person, tense and aspect. So this attributes

changes for another category. If we consider for noun category, attributes are noun

case, number and gender, so, ~hese attributes will be presented in noun category data

structure instead of number, person, tense and aspect of verb category data structure.

In the Lexicon, one or more Lexical entries may be found corresponding to a word,

for all entries, nodes will be created, and these nodes are connected vertically. This

way, a multilevel structure (that is linked list of structures) will be created for a word.

Same routine will be executed for every word and these nodes are connected

horizontally, as shown in figure 5.2.

null null null null

Root
Lexical Lexical Lexical Lexical
information information information information
ofWord I of Word 2 ofWord3 of Word 4

Lexical Lexical Lexical Lexical
information information information information
of Word I of Word 2 of Word 3 of Word 4

Lexical Null Null Lexical
information information
of Word I of Word 4

Null Null

Fig. 5.2 Linked List Structure for sentence

5.2.1.2 Generating and Combining Trees

After the creation of linked list of words with its Lexical information, as per the

category and sub-category information, Lexical Elementary-GB-Tree will be

generated. After that, every tree will try to full fill all its requirements. I.e. it will try

to get all required complements and specifiers and optional adjuncts. When ever a

tree's all conditions are satisfied it is treated as realized and eligible to attach any

other tree, provided it is having some relation with it. If it is not realized then tree will

48

deleted. This process will go on until the end of words, at the last one or more trees

may be generated.

5.2.2 Over View of Design

The analysis of the problem and its possible solutions led to the following design of

the system. The overall design of the parsing system, in terms of the main modules

and the inter-connection between them is shown in Fig.5.3. The Parsing System

consists of 6 modules namely, Input Module, Preprocessor, Tagger, Data Structure

Generator which is connected with Lexicon, X-Bar tree generator and Parser.

5.2.2.1 Input Module

The Parser System contains a Text Box which can allow the Unicode characters also,

where user enters Sanskrit sentence.

5.2.2.2 Preprocessor

The module removes redundant spaces, if existing between words in the given

sentence. In the Fig.5.3, this module is shown with dotted lines. The output of this

module is referred to as normalized input and this is given as input to the Tagger.

5.2.2.3 Tagger

The normalized input (the output of the Preprocessor) is subdivided intq lexical items.

The process of dividing the sentence into lexical items is more often known as Lexical

Analysis. Given "john reads newspaper in the morning daily" as input this module

would give the array (john, reads, newspaper, in, the, morning, daily) of subdivided

lexical items.

49

Lexicon

Sentence with tagged words in a linked list

Parse Tree(s)

Fig. 5.3 Design of Parser.

50

REPRESENTATIONS:

-------------- ..
1--- -·- -·-- 1

I I -------------- .. , ________ I

-------------- ..

______________ ..

Figure 5.3-

5.2.2.4 The Lexicon

Independent module
with predefined input
and expected output

Independent Optional
module with predefined
input and expected output

Represents the output of the
above module and used as an
input to module below.

Represents the database

The structure of the Lexicon has been described in Chapter 4. We may note that a

given word may carry different category and subcategory information and other

attributes also. For every word one or more lexical entries will stored in lexicon,

which depends solely on word.

5.2.2.5 Data Structure Generator

In run time, all the words are stored in specially designed data structure along with all

its attributes. This data structure basically a doubly linked list, where every node have

pointer to previous and next nodes. Here nodes contain lexical information of words.

Every word may have one or more entries in Lexicon, so for a particular word, if it

contain more than one entry in Lexicon, nodes will be attached vertically. So, it

maintains doubly linked list in vertical direction also. A typical data structure of a

51

node of word for verb category looks like as shown in Figure 5.1. As per the category

some fields may vary. Here Number of complements may be less than are equal to 3,

if only one complement available remaining fields kept empty.

In data structure, tree pointer contains a pointer to a tree which will be constructed as

per the information stored in node. The complete data structure after reading all words

shown in Figure 5.2.

5.2.2.6 X-Bar Tree Generator

The Lexicon stores the category information and sub-category information of each

word, by retrieving this information X-Bar Tree generator generates the

corresponding elementary tree for given word.

The Building X-Bar tree start from the bottom and goes to up, i.e. a lexical word is

generated, followed by a "level 0" tree. And word is added as child to "level O"(XO)

tree. Then "level 1" (X') tree will be generated. X' may have none. one or two

complements, which can be known from the lexicon information of word, as per this

infom1ation number of child pointer will be present in X' n.ode. And "level 0" tree

will be attached as child to "level I" tree. Then phrase level (XP) tree will be

generated and level I tree added as child for that. This tree is pointed by the "Tree

pointer" attribute in node.

t
~

Tree
Verb Singular First Present Simple 0 Null Null Null Null

- Pointer

I~ I Verb Singular First Present I Simple II I NP(Obj) I Null I Null I Null I Tree Pointer I
1

~
Tree

Verb Singular First Present Simple 2 NP(Obj) NP(Obj) Null Null
Pointer

I

...
Figure 5.5 Data Structure for word ~'lilkt

52

Example: if word ~:wQ encountered by X-Bar Tree generator, it will find three

entries for this word as shown in Figure 5.5, first entry with no complements, second

entry with one complement i.e a Noun Phrase and third entry with the two

complements as Noun Phrases. X-Bar elementary trees for these entries are shown in

Figure 5.6.

VP VP
VP

I
V' V'

NP(Obj)

Figure 5.6 X-Bar Elementary Trees

5.2.2.7 Adjuncts and specifiers table

Every word type has its specific adjuncts and specifiers. For each kind of word type

separate tables of adjuncts and specifiers will be maintained. A typical table of

adjuncts for Verb category is shown in figure 5.7.

Verb Adjunct Table

NP(Ins)

NP(Dat)

Figure 5.7 adjuncts table for Verb category

53

5.2.2.8 Parser

We have developed a Bottom-Up approach parser, using GB Phrase rules. The parser

may generate zero or more parse trees for the given source language sentence. No

parse tree is generated if the sentence does not conform to the GB rules of the source

language. More than one tree may be obtained as the Natural Languages are

ambiguous at each level, i.e. at word level, phrase level as well as at sentence level.

5.2.2.8.1 Attaching Complements

The parser traverse nodes from left to right in linked list as shown in the figure 5.2,

for every node the parser tries to get its complements if it requires. In Sanskrit all

complements are available in the left side of that node, so the parser checks in the left

side of node to find the required complement, if it succeeds to find a complement,

then it will attach complement tree at corresponding complement position. This

complement position in present tree will be known using number of complements it

has and index of the complement.

If the tree fails to get the required complements, that particular node will be removed

from the data structure; as a result the corresponding tree will be removed. So that it

cannot be attached as complement to any other tree, hence the parser can avoid

generating unnecessary trees. As every node is being visited by parser, and the

elementary tree in that node acquires required complements, at end complete trees

will be generated when all nodes have been visited.

5.2.2.8.2 Attaching adjuncts and specifiers

After searching and connecting the complements for a particular word, parser checks

for adjuncts to it with the information available in adjunct and specifier table. If parser

gets any adjuncts, prepares a list of adjuncts and connects these to tree by modifying

existing tree. After that parser searches for specifier in the left side of the word and

connects it, if found.

54

5.2.2.8.3 Checking the completeness of Tree's

As for every sentence, subject will be treated as special case; IP should have subject

of the sentence as the specifier. If IP does not find specifier, the tree will be discarded.

Some trees may not have all words of given sentence, these sentences also discarded

by parser. Remaining trees which represents the whole words in given sentence are

treated as final trees, these are syntactically correct, in these some trees may be

eliminated at the semantic level checking.

5.3 EXPLANATION OF PARSER WITH AN EXAMPLE

5.3.1 With a Correct Sentence's

This section explains the working of the parser with the help of an example. Let the

Sanskrit sentences given to parser at different instances will be:

~: f(>HSJkl

~: CH'I~G1Jt ~ ~:wf<"l

~: ~:W~I 'tlc=c;{<A_ ~ ~:wf<"l

The Input Module reads the sentence as it IS, presents this as an input to the

Preprocessor. The Preprocessor removes the redundant blanks and converts the input

sentences into a normalized form as shown below:

~: ~:wf<"l

~: <A~~Ci<ft ~ ~:wffi

~: ~:Wc-~1 'tlc:c;'t<A_ ~ ~:mki

Next. the normalized sentence is sent to Tagger. The Tagger first divides the sentence

into lexical items ~: and ~:wki for first sentence,~:. CH'I~Ci<ft, ~and ~:mf8

for second sentence and~:. ~'l!lc:-~1. ~ and ~'l!lkl for last sentence.

55

These words will get all its attributes from the lexicon and as per the Lexicon

information, elementary trees will be created. For creating elementary tree, category

of word. number of complements and type of complements information only used.

Now for every sentence parser reacts differently to build the complete parse tree. First

we will see, how parser will work for the sentence"~: f<>'l:wffi".

The word~: have one entry in lexicon, so it will generate an elementary tree, this is

shown in figure 5.7.

NP

I
N'

I
No

I

Figure 5.7 Elementary tree for word~:

As it does not require any complement, parser not searches for complements. Now

parser will check for the adjuncts with using the information stored in adjunct table in

sentence for word~:, as no adjunct is available, tree will remain same.

Now the word f<>l:wQ will be encountered by parser. This word has three entries in

the lexicon, so three elementary trees will be generated as shown in Figure 5.8.

56

YP YP
YP

Y' Y'

yO

I NP(Obj)

Tree 1 Tree2 Tree 3

Fi1wre 5.8 X-Bar Elementarv Trees

The tree 2 and 3 will be deleted, as these trees can not find required complements. So,

only tree 1 will remain. As parser encountered YP, it generates an IP and connects YP

as complements for it. So, resulting tree after generating IP is shown in Figure 5.9.

IP

I
~I'

yp I
I f

Y' I
I

yO

I
Q:wQ

Number: Singular
Person: Third
Tense: present
Aspect: Simple

Figure 5.9 IP Tree generated for "Ud=f: Q;wfc:l"

57

Now parser will check for the specifier for the IP, specifier is to be known from

specifier table. Specifier of IP always a NP, with a Nominative case marker. So the

final tree will be generated as shown in figure 5.10.

IP

I'

~' y I
Number: Singular

V'

I
Person: Third
Tense: present
Aspect: Simple

NP

I
N'

I
No

I
Udl:

Figure 5.10 Complete parse tree for "Udl: R>'l'Wffi"

The next sentence "Udl: cm~C"!CA ~ fc>'l'Wffi" the parser acts differently. For word
'

"UJT:" parser acts similarly as acted for "Udl: R>'l:wffi" and generates tree shown in

figure 5.7.

58

NP

I
N'

I
No

I

Figure 5.11 Elementary tree for word CH'I€>G1Jt.

The next word is CH'I€>G1Jt. of sentence can have no complements. As word "Ji'I€'G1Jt.''

also did not get any adjunct, elementary tree generated will not be modified. The

elementary tree is shown in Figure 5 .11.

NP

I
N'

I
No

I
~

Figure 5.12Elementary tree for word~

The next word is~ of third sentence can have no complements and can not get any

adjuncts. The elementary tree is shown in Figure 5.12.

59

Now parser encounters word "~:Wkl" and generates three trees as shown in figure

5.8. All three trees will remain, as every tree can get required complements. That is

first tree does not require any complement, second tree require one NP(Obj)

complement which is available in form of"~' and third tree requires two NP(Obj)

as complements and can get these in form of J'I)(!>C'!Jt., ~- So resulted trees looks like

in Figure 5.13.

60

VP

I
V'

I
yO

I

Tree 1

VP

I
~V'

NP I
yO

I I
N' Q;wfc'l

I
~

I
~

Tree2

VP

I
V'

NP

I
N'

I
No

I
~

Tree3

Figure 5.13 Intermediate trees for~: m(!>i1Ji.. ~ Q;wfc'l

61

Next an IP will be generated for each YP and specifier will be attached to that tree.

NP

I
N'

I
No

I
UJ=r:

NP

I
N'

I
No

I
UJ=r:

NP

I
N'

I
No

I
~

IP

~l
YP fl

I I
Y'

I
yO

I

Tree 1

Number: Singular
Person: Third
Tense: present
Aspect: Simple

IP

~i'
YP I0

I I
~Y'

I
yo

I

Tree2

Number: Singular
Person: Third
Tense: present
Aspect: Simple

5.14. A. Trees generated for "UJ=r: afl~C1Jt ~ ft>'l:Wkt"

62

NP

I
N'

I
No

I
~·

IP

~I'
VP I

I I
-------~T

NP
NP yO

Number: Singular
Person: Third

I I I
N'

N'

I
No

I

I
No

I
Ji~(!>C1Jt.

Tree3

5.14.B. Trees generated for"~: Jilt>C1Jt. ~ fti:l:wffi"

Tense: present
Aspect: Simple

Here three final trees are generated, which are shown in figure5.14. But only tree 3

represents all words in the sentence. So, remaining trees will be deleted. Tree 3 will

become final tree.

The next is sentence"~: <'l•!Sk-lll {jc-~{Jt. ~ fti:l:wfc'l". In case"~:", its similar

to earlier cases. So, it generates a tree shown in 5.7. The next word "Jl:w;;=::tlJ" also not

have any complements and its adjunct details does not match with any word in

sentence. so a tree shown in figure 5.15 will be created. The next word is {jc:c;{CA of

the third sentence, which is adjective, will not find any matching adjuncts, so

elementary tree generated as shown in figure 5.16.

63

NP

I
N'

I
No

I

Figure 5 .15Elementary tree for word <'!'lSI e-ll I

AdjP

Adj'

Figure 5.16 Elementary tree for word '{!C"?\{d"l

The next word is~ can have no complements and can find a matched adjunct to it

as,"'tjC"?\{Ji,". The elementary tree will be altered and tree shown in figure 5.17 will be

created.

64

NP

I
N'

Ad~
J N'

I
Adj'

Figure 5.17 Intermediate tree generated for word~

Now parser encounters "f<>:I:Wkt", only first two trees can get required complements

and resulted trees can look like as shown in Figure 5.18. Third tree will be deleted.

Now parser checks for the adjuncts for f<>:l:wfct, parser can get "<'l'lil~l" as the adjunct

for tree 2 of figure 5.18. "c>l:Wc-41", "{j~{Ji" will be adjuncts for tree l of figure

5.18. So trees will be generated as shown in figure 5.19.

65

VP

VP

I
V'

I
yO

I

I
~V'

NP I
I

N'

Ad~
U N'

yO

I

Tree 1 I Tree 2

Adj'

'§i=C\'<<fi..

Figure 5.18 Intermediate trees for "Udl: ~:WG-41 'tji=C\'<<fi.. ~ fci:l:t:S~f8"

VP

I
V'

NP

I
N'

I
No

I

'tji=C\ {<A..

Figure 5.19 A Intermediate trees for "Udl: ~:t:SIG-41 ~'<<A.. ~ fci:l:t:S~f8 ,.

66

VP

I
V'

N'
ffi;wRl

NP Ad~,
I I N'

I
Adj'

No

No

I
I Adj0

~

<>J 'W c:=;q I

'ljc=?\ { 1ft.

Figure 5.19 A intermediate tree for "{ldi: <>J:wc:=;ql 'ljc=?\{J"t. ~

Now for these 2 trees IP will be generated and, specifier will be connected. But tree 1

can not represents all words, so it will be deleted. So final tree is looks like as shown

in figure 5.20.

67

NP

I
N'

I
No

I
Ud1:

NP

I
N'

I
No

I

N'

Ad-;---1
J N'

I
Adj'

IP

I

~1'
VP fl

I I
V' Number: Singular

Person: Third
Tense: present
Aspect: Simple

5.20 Complete parse tree generated for Ud1: <>l'!SJc;-<011 {jd"C\'<CF!_ ~ ~'&kl

68

5.3.2 with a Wrong Sentence

This section explains how parser will reject a wrong sentence, when it given as input

to the parser. If the following sentence given as input to parser,

UCH:. <'llilc;-lll and ~ will generate elementary trees as explained in previous

section. The word "f<>'I:Wiffi" is the verb. Which have the same entries in lexicon as of

"f<>'llilkl", but only one attribute is different. That is, person is "second". The IP will

be generated as shown in figure 5.21 for this sentence.

NP

I
N'

I
No

I

IP

I
I'

~·
VP

I
V' Number: Singular

Person: Second
Tense: Present
Aspect: Simple

Figure 5.21 intermediate tree for"~: <'lliiC""lll ~ f<>'!:wiRl"

69

NP

I
N'

I
No

I
<4-wc=<:~l

IP

I
I'

~
VP

I
V' Number: Singular

V'

Person: Second
Tense: Present
Aspect: Simple

~0
NP

I ffi:wlffl
N'

I
~

I
~

Figure 5.23 intermediate tree for "Udi: <4<wc=<:JI ~ ffi:wlffl"

Both trees need a specifier which is having a person attribute as secon~ only. but word

"Udi:" is second person. So, parser will reject the sentence. So no tree will be

generated finally.

5.4SUMMARY

Parsing is the heart in translation system. so various kinds of parsing strategies are

studied. As we are handling with the elementary tree's we chosen the bottom-up

approach parsing for parse the sentence. As per the lexicon information elementary X­

Bar trees will be generated and every tree will go on get the complements to fill its

requirements. at the last complete parse tree for a sentence is created.

70

Chapter 6

CONCLUSION AND FUTURE
ENHANCEMENTS

6.1 CONCLUSION

We have developed Elementary trees based parsing for Natural Language with

Sanskrit as language. While various parsing systems are being developed across the

world using conventional approaches like Ruled- based or Exampled-based, we have

adopted Government and Binding (GB) elementary tree approach in our Parsing

system. The GB theory with its emphasis on Universal Grammar, its universality in

handling Natural Languages, and its computational properties Jed to its choice over

other conventional approaches. The GB frame work provides symmetric structures for

the translation between any two pair of languages. The important modules of GB are

X-Bar levels and phrase structures.

The phrase structure rules are developed by us both Sanskrit include Verb Phrase

Structure, Noun Phrase Structure, Adjective Phrase Structure, and Inflection Phrase

Structure. These Phrase Structures have been obtained after a thorough analysis of

various phrases in Sanskrit language. The analysis includes determining the

complements for each lexical type, determining adjuncts and specifiers for each type

of Phrase Structure. In a sentence there are only two main types of phrases, Verb

Phrase and the Noun Phrases.

A robust lexicon has been developed for the parsing system, which contain category

and subcategory information of the every word. In general, the Lexicon contains the

category and subcategory information for the words, the phonetic information

(relating to speech sounds), and thematic information. However, in our case we are

not using phonetic and thematic information. The lexicon developed by us for the

parsing system can be further improved by defining and adding finer thematic

information and phonetic information.

71

A Bottom-Up approach parsing technique using is developed of the parser. Since all

we need to do is, recognizing the input (i.e. syntactic structure of the input), then

Bottom-Up approach parser is the best method of choice. Our parser is able to parse

all kinds of sentences, which may be ambiguous. Even for parsing, the complex

sentences we need not change the basic parsing module, but simply enter more data in

lexicon. Parser may produce more than one parse tree for sentence which are

syntactically correct, but not semantically. Parser is developed such that it can work

for any language provided lexicon data entered properly for that particular language.

The system is implemented using VISUAL C#. The rich GUI, Unicode support,

.NET technology, easy connectivity with the databases, and its user-friendly nature

led to the choice of Visual C# over other languages. The Lexicon is stored in

databases. We thus have SQL Server 2000 functioning at the back-end of our

translation system. The UNICODE has been used for storing the information.

6.2 FUTURE ENHANCEMENTS

As pointed out above enhancements are needed in the area of lexicon for storing more

information. Due to paucity of time, we have not covered movement, traces, empty

categories, binding, and case assignment. In our opinion, one way of handling all

these issues is to suitably modify the Phrase Structure (Rules). This will require few

changes in the Parser. This therefore will be the next task we would like to take up.

The cuJTent parser's space complexity also can be reduced by a little as its storing

many intermediate trees.

It can be extended for more complex sentences which contain -connectives like

conjunctions and Question forms. At this time it is also handling simple sentences not

having Complementizer Phrases. It can be extended for interrogative sentences.

We have already said that Sanskrit is a completely word order free language. There is

a need therefore to convert a word order free sentence into a structured sentence

needed for GB frame work. Here I assumed every sentence is in Subject-Object-Verb

order. if sentence is in other order that has to be modified. This is quite a heavy task.

Further, in Sanskrit Sandhi plays a very important as it is a common practise in

Sanskrit to present combinations of words as a single word. What this means is that in

72

a sentence two or more words may be written together as a single combination

replacing the original individual words. This problem in itself is quite complicated

and needs lot of thinking along with developing Sandhi and Sandhi-Vichedi modules.

Reverse morphology (finding root word from derived word) process has to included

which can reduce the size of lexicon and improve efficiency of parser.

As the work will progress further we may see the necessity of other modifications and

processes in the framework.

73

APPENDIX

CP stands for Complementizer Phrase

NP stands for Noun Phrase

VP stands for Verb Phrase

PP stands for Prepositional Phrase

AdjP stands for Adjective Phrase

ADV stands for Adverb

74

REFERENCES

[I] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles

techniques and tools. Addison-Wesley, 1986.

[2] Aravind K. Joshi. 1987. An Introduction to Tree Adjoining Grammars. In A.

Manaster-Ramer, editor, Mathematics ·of Language, John Benjamins,

Amsterdam.

[3] Aravind K. Joshi and Yves Schabes. 1992. Tree-adjoined grammars and

lexicalized grammars. In Maurice Nivat and Andreas Podelski, editors, Tree

Automata and Languages. Elsevier Science.

[4] Arnold, D., Balkan, L., Humphreys, R. L., Meijer, S. & Sadler, L. (1994),

Machine translation: an introductory guide, Blackwells/NCC, London. An

HTML and a Postscript version of this book is available at

http://clwww.essex.ac.uk/MTbook/ and

http://clwww.essex.ac.uk/MTbook/HTMU respectively.

[5] B. Carpenter.

The Logic of Typed Feature Structures with Applications to Unification

Grammars, Logic Programs and Constraint Resolution, Cambridge University

Press, 1992, no ISBN 0-521-41932.

[6] Boullier, P.: Range concatenation grammars. In: Proceedings of IWPT '00,

Trento, Italy (2000) 53-64

[7] C. Pollard, I. A. Sag. Head-Driven Phrase Structure Grammar, University of

Chicago Press, Chicago, 1994.

[8] Chomsky, Noam. 1981. Lectures on Government and Binding. Dordrecht:

Foris Publications.

75

[9] Fromkin (2000), Chapter 3.2 (Constituent Order, Case Marking and Thematic

Roles)

[10] Fromkin, V.A. and Rodman, R. 1997. Introduction to Language. Harcourt

Brace. 6th edition. Translated into Portuguese, Japanese, Chinese, Korean, Hindi,

Dutch.

[11] Gazdar, G. (1985), Applicability of indexed grammars to natural language.

Technical Report CSLI { 85-34, Center for the Study of Language and

Information, Stanford.

[12] Haegeman, Liliane. 1994. Introduction to Government and Binding Theory. 2

ed. Oxford: Blackwell.

[13] Hutchins, W. J. & Somers, H. L. (1992), An introduction to machine

translation, Academic Press, London.

[14] M. R. Kale. (1988), A Higher Sanskrit Grammar

[15] McCawley, James D. 1998. The Syntactic Phenomena of English. 2 ed.

Chicago: University of Chicago Press.

[16] R. M. Kaplan, J. Bresnan.

Lexical-Functional Grammar: A formal system for grammatical representation,

m: "The Mental Representation of Grammatical Relations, Cambridge, MA", J.

Bresnan (editor)., Reprinted in Mary Dalrymple, Ronald M. Kaplan, John

Maxwell, and Annie Zaenen, eds., Formal Issues in Lexical-Functional

Grammar, 29-130. Stanford: Center for the Study of Language and Information.

1995., The MIT Press, 1982, p. 173-281.

[17] http://pt.wikipedia.org/wikiffradutor_autom%C3%Al tico

[18] www.systransoft.com

76

[19] http://www .languageinindia.com/jan2005/apamasanskritdissertation 1.html

[20] Panini, The Ashtadhyayi

[21] Ullman J.D. and Hopecroft J. E. Introduction to Automata Theory, Languages

and Colnputation. Addison-Wesley, 1979.

[22] Wren & Martin, 2001, High School English Grammar &Composition.

[23] http://en.wikipedia.org/wiki/Govemment_and_binding

[24] Noam Chomsky, The Minimalist Program (Current Studies in Linguistics).

Massachusetts Institute of Technology, 1995.

[25] Aho, Sethi, and Ullman, 1986; Jurafsky and Martin, 2000; Durbin et al., 1998

77

	TH138100001
	TH138100002
	TH138100003
	TH138100004
	TH138100005
	TH138100006
	TH138100007
	TH138100008
	TH138100009
	TH138100010
	TH138100011
	TH138100012
	TH138100013
	TH138100014
	TH138100015
	TH138100016
	TH138100017
	TH138100018
	TH138100019
	TH138100020
	TH138100021
	TH138100022
	TH138100023
	TH138100024
	TH138100025
	TH138100026
	TH138100027
	TH138100028
	TH138100029
	TH138100030
	TH138100031
	TH138100032
	TH138100033
	TH138100034
	TH138100035
	TH138100036
	TH138100037
	TH138100038
	TH138100039
	TH138100040
	TH138100041
	TH138100042
	TH138100043
	TH138100044
	TH138100045
	TH138100046
	TH138100047
	TH138100048
	TH138100049
	TH138100050
	TH138100051
	TH138100052
	TH138100053
	TH138100054
	TH138100055
	TH138100056
	TH138100057
	TH138100058
	TH138100059
	TH138100060
	TH138100061
	TH138100062
	TH138100063
	TH138100064
	TH138100065
	TH138100066
	TH138100067
	TH138100068
	TH138100069
	TH138100070
	TH138100071
	TH138100072
	TH138100073
	TH138100074
	TH138100075
	TH138100076
	TH138100077
	TH138100078
	TH138100079
	TH138100080
	TH138100081
	TH138100082
	TH138100083
	TH138100084
	TH138100085
	TH138100086
	TH138100087

