
ELEMENTARY -GB-TREES

BASED PARSING FOR HINDI

Dissertation submitted to Jawaharlal Nehru University, in partial

fulfillment of the requirements for the award of the degree of

Master of Technology

m

Computer Science and Technology

by

V.R.R Naidu Nagam

Under the Esteemed Supervision

of

Prof. G. V. Singh

SCHOOL OF COMPUTER & SYSTEMS SCIENCES

JA WAHARLAL NEHRU UNIVERSITY

NEW DELHI -110067

July -2006

SCHOOL OF COMPUTER & SYSTEMS SCIENCES

JAW AHARLAL NEHRU UNIVERSITY

NEW DELHI- 110067, INDIA

CERTIFICATE

This is to certify that the project entitled "ELEMENTARY-GB-TREES

BASED PARSING FOR HINDI" being submitted by V.R.R NAIDU

NAGAM to the School of Computer and Systems Sciences, Jawaharlal Nehru

University, New Delhi, in partial fulfillment of the requirements for the award

of the degree of Master of Technology in Computer Science & Technology, is

a bonafide work carried out by him under the guidance and supervision of

Prof.G.V.Singh.

The matter embodied in the dissertation has not been submitted for !he award of any

other degree or diploma.

~rof.G~
Professor, SC&SS,

JNU, New Delhi-67

II

Prof. Balasundaram

Dean, SC&SS,

JNU, New Delhi-67

SCHOOL OF COMPUTER & SYSTEMS SCIENCES
\ '

JA WAHARLAL NEHRU UNIVERSITY

NEW DELHI- 110067, INDIA

DECLARATION

This is to certify that the project entitled "ELEMENTARY-GB-TREES

BASED PARSING FOR HINDI" is being submitted to the School of

Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, in

partial fulfillment of the requirements for the award of the degree of Master of

Technology in Computer Science & Technology, is a bonafide work carried out

byrne.

The matter embodied in the dissertation has not been submitted for the award

of any other degree or diploma.

111

1""\. jJ)O.Dt 011'\
~ \..../ 1 ~)1 /:l(.O~

V.R.R Naidu Nagam,
M.Tech, Final Semester,
SC & SS, JNU,
New Delhi.

Dedicated to

My beloved

Grand Parents

IV

ACKNOWLEDGEMENTS

I would like to pay obeisance at the feet of my parents for their blessings that are

always with me in all my aspirations including my academics.

I would like to sincerely thank my supervisor Prof.G.V.Singh, School of Computer

And Systems Sciences, Jawaharlal Nehru University for the help, encouragement and

support extended by him in successful completion of this project. His innovative ideas

and the valuable discussions we had were very much helpful in keeping the thesis

work on the right track.

I would like to gratefully acknowledge Mr. Manjit Singh for his valuable discussions

and guidance during development of this project.

I would like to record my sincere thanks to Dean, Prof. BaJa Sundaram for providing

the necessary facilities. (will fail my duty if I forget my appreciation and thanks to

my friends. I also extend my sincere gratitude to my lab mates for their continuous

academic as well as morale support through out my dissertation work.

Last, but not the least, I take this opportunity to thank all the faculty members and

friends for their help and encouragement during the course of the thesis work.

(V.R.R Naidu Nagam)

v

CONTENTS
Chapter 1 1
INTRODUCTION 1

1.1 NATURAL LANGUAGE PROCESSING 1
1.1.1 Speech Recognition 2
1.1.2 Speech Synthesis 2
1.1.3 Natural Language Understanding 2
1.1.4 Natural Language Generation 2
1.1.5 Language Translation 3

1.2 MACHINE TRANSLATION 3
1.3 INTRODUCTION TO PARSING 3

1.3.1 Parsing Control Strategies 4
1.3.1.1 Top-down vs Bottom-up 4
1.3 .1.2 Dept first vs Breadth first 5
1.3.1.3 Combinations of Strategies 5

1.3.2 Evaluation of Strategies 6
1.3.2.1 Top-Down vs. Bottom-up Strategies 6
1.3.2.2 Depth-First vs. Breadth-First Strategies 7
1.3.2.3 Node-Selection Strategies 7

1.4 PROBLEM DEFINITION 8
1.5 ORGANISATION OF THE THESIS 8

Chapter 2 10
GOVERNMENT AND BINDING THEORY 10

2.1 INTRODUCTION 10
2.2 OVERVIEW OF GOVERNMENT AND BINDING THEORY 10
2.3 CONSTITUENT STRUCTURE AND SUBCA TEGORIZA TION 11
2.4 X-bar Theory 13

2.4.1 The Phrasal Projection for a Noun 14
2.4.2 The Phrasal Projection for an Adjective 15
2.4.3 The Phrasal Projection for a Verb 16

2.5 Lexicon Organization 1 7
2.5.1 Categorical Information 18
2.5.2 Subcategorization Information 18
2.5.3 Thematic Information 19

2.6 Theta Theory 20
2.6. J The Argument Structure of Other Syntactic Categories 22
2.6.2 The Theta Criterion 23
2.6.3 The Projection Principle 23
2.6.4 The Extended Projection Principle 24

2.7 OTHER CONCEPTS 24
2. 7 .I Case Theory 24
2.7.2 Binding Theory 25

2.8 SUMMARY 26

VI

..
Chapter 3 27
GOVERNMENT AND BINDING BASED GRAMMAR FOR HINDI 27

3.1 Introduction 27
3.2 THE OVERALL STRUCTURE OF THE HINDI VERBS 27

3.2.1 Verb Forms 27
3.2.2 The Overall Structure of the Hindi Nouns 42
3.2.3 Adjective forms for Hindi 46
3.2.4 Postposition Forms for Hindi 47
3.2.5 Adverb Forms for Hindi 48

3.3 Hindi Phrase Structures 48
3.3.1 A Verb Phrase 48
3.3.2 A Noun Phrase 49
3.3.3 An Adjective Phrase 49
3.3.4 A Prepositional Phrase 50
3.3.5 An Inflection Phrase 51
3.3.6 A Complementizer Phrase 52

3.4 SUMMARY ' 52

Chapter 4 53
Lexicon 53

4.1 INTRODUCTION 53
4.2 STRUCTURE OF HINDI LEXICON 54

4.2.1 Introduction 54
4.3 DESIGN OF LEXICON 58

4.3.1 Word table 58
4.3.2 Subcategory table 59
4.3.3 Interface 59

4.4 SUMMARY 60

Chapter 5 61
PARSER 61

5.1 PARSING STRATEGIES 61
5 .1.1 An Overview 61
5.1.2 Bottom-Up Parser (LR Parsing Algorithm) 62

5.2 DESIGN OF PARSER 63
5.2.1 Our Parsing Strategy 63

. 5.2.2 Over View of Design 65
5.3 explanation of PARSER with an Example 71

5.3.1 With a Correct Sentence's 71
5.3.2 with a Wrong Sentence 85

Vll

5.4SUMMARY

Chapter 6
CONCLUSIONS AND FUTURE ENHANCEMENTS

6.1 CONCLUSIONS
6.2 FUTURE ENHANCEMENTS

APPENDIX

REFERENCES

viii

87

88
88
88
89

90

91

ABSTRACT

An Elementary-GB-Trees Based Parsing system for Hindi language sentences has

been developed, which may be used to translate Hindi into any other language.

Various translations systems are being developed across the world using conventional

approaches like Ruled- based or Exampled-based. We have adopted Government and

Binding theory (GB) approach for parsing the sentences.

The GB theory with its emphasis on Universal Grammar, its universality in handling

Natural Languages, and its computational properties led to its choice over other
-

conventional approaches. The important modules of GB are X-Bar levels and phrase

structures, Theta assignment module, Case assignment module, and Binding module

After a thorough analysis of various phrases in Hindi, GB Phrase Structures for Hindi

has been developed. These include Verb Phrase Structure, Noun Phrase Structure,

Adjective Phrase Structure, Preposition Phrase Structure, Inflection Phrase Structure

and Complementizer Phrase Structure. The analysis includes determining the

complements for each lexical type, determining adjuncts and specifiers for each type

of Phrase Structure

Whenever a word is read by parser, the type of the word is to be found out. The type

may be of verb, noun, preposition, adjective or any other. All this information is

stored in the lexicon along with categorization, sub categorization and the number of

complements it may take. As per the type of the word, corresponding elementary tree

for the word is constructed.

Lexicon is the heart of our whole system, which is typical database containing

information about all words. It contain all the words, it's tense, gender, number,

person etc. It should contain the required information, using which we can construct a

GB phrase tree. It also includes sub categorization information. We built our lexicon

strong, so that performance of the system increases and the programming complexity

also reduces

IX

Whenever a word type is known from the lexicon, with the help of category and

subcategories information, we built elementary tree for that particular word as per the

type. Later these elementary trees will be combined to construct the full pledged

phrase tree which satisfies the GB rules of language. At this Stage each word projects

its own phrase structure tree.

At the end all these phrasal trees are combined to get the sentence phrasal tree.

Sentence may result into more than one tree depending on the attributes of words

involved.

X

Chapter 1

INTRODUCTION

1.1 NATURAL LANGUAGE PROCESSING

A Natural language (NL) is any of the languages naturally used by humans to

communicate between them (e.g. Telugu, English, Hindi, Japanese, etc.).

Programming Languages or man-made languages such as C, C++, C#, Java, etc. are

known as artificial languages. Natural Language Processing (NLP) is a convenient

description that attempt to make the computers analyze, understand, and generate

Natural Languages, enabling one to address a computer in a manner as one is

addressing a human being.

Understanding a human language is not an easy task. The main difficulty lies in

knowing the relationship between words, phrases and the concepts they represent. A

Natural Language, which is easy for humans to learn and use, is hard for a computer to

master. Even long after machines have proven capable of inverting large matrices with

speed. and grace, they still fail to master the basics of our spoken and written

languages.

The difficulties in computer processing of a Natural Language arise from the highly

ambiguous nature of Natural Languages. Very simple sentences for humans to speak

and understand easily, like "Flying planes can be dangerous':, can be very difficult to a

computer that lacks knowledge of the world and a native speaker's experience with the

linguistic structures of the Natural Languages. Plausible interpretations of the sentence

"Flying planes can be dangerous" could be that "the pilot is at risk", or "there is a

danger to people on the ground". Further, should "can" be analyzed as a verb or as a

noun. Which of the possible interpretations of "plane" is relevant? Depending on

context, "plane" could refer to, among other things, an airplane, a geometric object, or

a woodworking tool. How much and what sort of context needs to be brought in to

bear on these questions in order to adequately disambiguate the sentence? These are

only the few challenges we face while processing a Natural Language.

The term Natural Language Processing represents any processing that is required or

need to be done to understand, generate or interpret the utterances in a given language.

But in the subsequent paragraphs we list only some main areas or domains of Natural

Language Processing:

NATURAL LANGUAGE PROCESSING INCLUDE.S:

1.1.1 Speech Recognition

Speech recognition is the process of converting an acoustic signal, captured by a

computer, microphone or a telephone, to a set of words. Since different people

pronounce the same words differently, the mapping of those sounds to the words in the

language turns out to be quite difficult.

1.1.2 Speech Synthesis

Speech synthesis is the artificial production of human speech. A system used for this

purpose is termed a speech synthesizer, and can be implemented in software or

hardware. Speech synthesis systems are often called text-to-speech {TIS) systems in

reference to their ability to convert text into speech. However, there exist systems that

instead render symbolic linguistic representations like phonetic transcriptions into

speech.

1.1.3 Natural Language Understanding

Natural Language Understanding means moving from words, phrases or sentences

(either in written form or derived by a speech recognition system) to 'meaning'. This

involves mapping Natural Language units to their meanings as any Natural Language

generates infinite number of valid units; mapping of these dynamic_ally generated units

to meaning is quite difficult.

1.1.4 Natural Language Generation

Natural language generation is the natural language processing task of generating

natural language from a ma.chine representation system such as a knowledge base or a

logical form. Some people view NLG as the opposite of natural language

understanding. The difference can be put this way: whereas in natural language

2

understanding the system needs to disambiguate the input sentence to produce the

machine representation language, in NLG the system needs to take decisions about

how to put a concept into words.

1.1.5 Language Translation

Language translation generally referred as Machine translation (MT) is the application

of computers to the task of translating texts from one natural language to another. One

ofthe very earliest pursuits in computer science, MT has proved to be an elusive goal,

but today a number of systems are available that produce output which, if not perfect,

is of sufficient quality to be useful in a number of specific domains. Since the present

work relates to Machine translation, we will explain this in some detail in the

following sections.

1.2 MACHINE TRANSLATION

Machine translation, sometimes referred to by the acronym MT, is a sub-field of

computational linguistics that investigates the use of computer software to translate

text or speech in between natural languages. At its basic level, MT performs simple

substitution of atomic words in one natural language for words in another. Using

corpus techniques, more complex translations can be performed, allowing for better

handling of differences in linguistic typology, phrase recognition, and translation of

idioms, as well as the isolation of anomalies. However, current systems are unable to

produce output of the same quality as a human translator, particularly where the text to

be translated uses casual language.

1.3 INTRODUCTION TO PARSING

Sentence analysis is fundamental to most NLP applications it is an essential

component of, for instance, natural language interfaces, translation systems, text

summarization systems, and grammar checkers. This chapter describes sentence

analysis, focusing on Systemic sentence analysis. This chapter outlines the basic

analysis strategies. The term 'analysis' will be used to describe the construction of a

description on any stratum derived from a description on a lower stratum. We thus

have 'graphological analysis', where we break up an input text into graphological units

(spellings, sentences etc.); lexico-grammatical analysis, whereby we produce a lexico-

3

grammatical representation based upon a graphological analysis; and micro-semantic

analysis, whereby we produce a micro-semantic representation derived from the

texico-grammatical and graphological descriptions. We will use the term parsing to

refer specifically to texico-grammatical analysis.

1.3.1 Parsing Control Strategies

Over the years, many different approaches have been tried to apply a set of grammar

rules to the analysis of a sentence. These various approaches can be split up on a

number of dimensions, each dimension concerning different priorities in the

construction of a parse tree. This section will look at three such dimensions:

• Top-Down vs. Bottom-Up;

• Depth-First vs. Breadth-First;

• Node Selection Strategies.

1.3.1.1 Top-down vs Bottom-up

A top-down approach starts at the root of the tree (traditionally the sentence), and

builds down to the leaves of the tree (words, or in some cases, morphemes). A bottom

up approach starts with the leaves and builds upwards towards the sentence. The top7

down algorithm is theoretically based on the idea of using a generative grammar to

produce all possible sentences in a language until one is found which fits the input

sentence. This would in most cases take too much time, but there are ways to restrict

the method to the most fruitful possibilities.

The bottom-up algorithm tries to combine elements in the input sentence in different

ways until a tree covering the whole sentence is found. It starts with the single words

in the sentence. These are grouped together into larger and larger units until the whole

sentence is grouped together. Left-Corner Parsing: There are some parsing

algorithms which use a mixture of top-down and bottom-up strategies. The Left­

Corner parsing algorithm for instance invokes a rule bottom-up and finishes it top­

down. Such a parser builds sentence structure in a left-to-right, bottom-to-top fashion,

piecing together the left corner of a structural description first.

4

1.3.1.2 Dept first vs Breadth first

A depth-first approach moves as quickly as possible between root and leaves (ih a top

down approach) or leaves and root (in a bottom-up approach). A breadth-first

approach explores all branches at each level before going up/down a level. There is a
difference between whether to explore one path to its limits before trying others (for

example, to determine everything necessary about one word of the input, before

proceeding to the remaining words), or whether to explore all paths simultaneously

(for example, to carry out the first stage of the process on all the words of the input,

before proceeding to the next stage. A depth-first approach stresses the vertical

dimension of a tree, breadth-first its horizontal dimension, taking into consideration all

nodes at the same level in the tree.

1.3.1.3 Combinations of Strategies

The above discussion has defined two strategic alternatives in the design of a parsing

algorithm. There are thus four combinations of these strategies:

• Top-Down/Depth-First

• Top-Down/Breadth-First

• Bottom-Up/Depth-First

• Bottom-Up/Breadth-First

Node Selection Strategies

The strategy combinations we have defined above do not limit all the possibilities in

the construction of a parse tree. For instance, when parsing bottom-up and depth-first,

these strategies do not say which word in the input string we should start with. We

could start with the first, but this is only one possibility. When parsing top-down, any

of the possible constituents of the present unit could be expanded first. A further

restriction on the parsing process is needed to nominate which node of the parse tree

should be expanded first. Several possible strategies exist:

• Left-to-right Expansion: the left-most node is expanded first. In a bottom-up parser,

this means incorporating words of the input string starting from the leftmost and

proceeding until the right-most is incorporated. For a top-down parser, this means

5

expanding the left-most elements of the present unit's constituents before those to

the right.

• Head-driven Expansion: In a head-driven parser, some key item at each level of

structure (the "head") is expanded first, since this unit is seen as the controller of all

other units at this level. For instance, a bottom up key-search parser would start by

parsing the verb, since this item controls the presence and nature of other structural

elements (e.g., a transitive verb expects a Complement, while an intransitive one

does not). Nouns may be selected as a second-level key, since they control much of

the structure of the nominal group. The head-driven approach first scans the input

for a particular item, and then begins the analysis at that item. This option needs to

be motivated by a theoretical belief that the chosen item is in some way a key to

analyzing the input. For instance, it may be felt that the particular nature of the verb

will be the most important information to the parser in, say, segmenting the

constituents of the clause. Thus the parsing device will begin its analysis at the verb.

• Resource-driven Expansion: A resource-driven approach uses the grammatical

resources to direct the analysis, .not the representations. The resources thus decide

which node is to be expanded first. For instance, a shift reduce parser! tries to

successively apply all the rules of the grammar to the partially developed parse tree.

The parse tree is expanded at the point at which the rule fits the tree (which could be

at any point in the parse tree). The input string is thus not necessarily processed left

to right (although some shift reduce parsers do work left to right. by applying all the

rules to the left-most expansion point i~ the parse tree, before advancing to the next

point).

1.3.2 Evaluation of Strategies

This section evaluates the various strategies discussed above.

1.3.2.1 Top-Down vs. Bottom-up Strategies

The most powerful of the bottom-up parsing methods, the so-called LR(k) parsers,

accept a wider class of languages than do the most powerful top-down parsers. Also,

6

top-down parsing tends to be less efficient than bottom-up parsing, because a large

degree of hypothesis making may be required before the input string is reached. The

more complex the grammar, the higher the degree of hypothesis-making. Bottom-up

algorithms start with the input sentence (data-driven), and thus tend to be more

efficient they do not need to hypothesis about what could be in the sentence. On the

other hand top-down methods are simpler to implement, and easier to understand.

Systemic grammar, with its realization metaphor, is well-suited to top-down parsing. I

implemented various top-down parsers before switching to bottom-up approaches for

efficiency reasons. There thus tends to be a trade-of between these strategies: the

implementational simplicity of top-down parsers vs. the processing efficiency of

bottom-up parsers. For large-size grammars, the lower efficiency of top-down

approaches may become prohibitive.

1.3.2.2 Depth-First vs. Breadth-First Strategies

For top-down parsing, depth-first building is the preferred option, since "reaching the

input as fast as possible will give the earliest indication of error in hypothesis." For

bottom-up parsing, breadth-first is usually preferred, since these approaches wait to

see which other words are present, and how they are structurally related, before

climbing up a level. Depth-first approaches are more rash, building up towards the

sentence level based on just the first word of the sentence. A single word generally

provides insufficient evidence to make decisions at higher levels. For either the top­

down or bottom-up case, the best option is to see the input text as quickly as possible.

1.3.2.3 Node-Selection Strategies

The head-driven (keyword search) strategy can be more efficient, since it expands

those nodes of the parse-tree which are most likely to constrain the structure of

neighbouring units. However, this strategy requires the resources to contain a

statement of what the key, or head, elements are. Some grammars already contain such

information (e.g., dependency grammars). For grammars which do not automatically

provide this information, a separate resource would need to be provided.

7

1.4 PROBLEM DEFINITION

For the reasons stated earlier in this Chapter we have decided to engage ourselves in

parsing Hindi sentences. The thesis aims at building An Elementary-GB-Trees Based

Parsing system for Hindi language. The GB framework has been adopted for

generating the phrasal trees for sentences. The key modules required in developing a

parsing system are: building a Lexicon, and design and implementation of a parser.

Bottom up approach will be the basis for the design and implementation of the parser.

Since the GB framework forms the heart of the overall system, it also requires

developing GB based grammar for language. Finally the overall system design and

implementation is aimed to make the system available for parsing Hindi sentences. In

the section 6 of this Chapter we present the organization of this thesis.

1.5 ORGANISATION OF THE THESIS

The thesis consists of 6 Chapters along with conclusions and future enhancements.

Chapter 1 overviews the field of Natural Language Processing, gives an overview of

Machine Translation and also gives a brief introduction to parsing. Then we discuss

the developments to present date in the field of Natural Language Processing. Finally

we explain the problem definition.

Chapter 2 analyses the Government and Binding Theory (X-bar Theory). Here we

~nalyze the phrasal projections for Verb, Noun, Adjective, Preposition, Inflection, and

Complementizer Phrases

Chapter 3 briefly explains how Government and Binding rules are used for an SOY

ordered language like Hindi and various phrasal projections ~for Nouns, Verbs,

Adjectives and Adverbs. This chapter also covers grammar rules of Hindi language.

We are confined to extent where grammar is sufficient for parsing the sentence. As

part of the grammar different noun forms, verb forms, adjective forms, postpositions

have been discussed.

Chapter 4 defines lexicon, how the vocabulary in a language is structured, how people

use and store words, how they learn words, the history and evolution of words, types

8

of relationships between words as well as how words were created and importance of

Lexicon in parsing. Further it explains the different attributes associated with each

grammatical category of Hindi. The last section explains the use of interface for

storing the words in the database.

Chapter 5 gives the overview of the design of the parsing system. Parsing system

along with its Modules is explained. We illustrate here the parsing Process in detail

with examples.

Finally, the Chapter 6 concludes the work with suggestions for future. The Appendix

A gives the Phrase Structure Rules for Hindi. References are places at the end of the

thesis.

9

Chapter 2

GOVERNMENT AND BINDING THEORY

2.1 INTRODUCTION

This chapter is designed to provide a data-motivated, stepwise introduction to the main

tenets of the Government and Binding (GB) theory of Syntax, which was developed

mainly by Chomsky (1981, 1982, and 1986). The majority of the data used throughout

will be in English in order to understand the theory without the hindrance of working

with an unfamiliar language at the same time.

2.2 OVERVIEW OF GOVERNMENT AND BINDING THEORY

GB assumes that a large portion of the grammar of any particular language is common to

all languages, and is therefore part of Universal Grammar. The GB view is that Universal

Grammar can be broken down into two main components: levels of representation and a

system of constraints.

Government and binding is a theory of syntax in the tradition of Transformational

Grammar developed principally by Noam chomsky in the 1980's.[23]. This theory is a

radical revision of his earlier theories and was later revised in The Minimalist Program

(1995)[24] and several subsequent papers -the latest being Three Factors in Language

Design (2005). Although there is a large literature on government and binding theory

which is not written by Chomsky, Chomsky's papers have been foundational in setting

the research. agenda.

The name refers to two central sub-theories of the theory: Government, which is an

abstract syntactic relation, and Binding, which deals with the referents of pronouns,

anaphores, and R-expression. GB was the first theory to be based on the principles and

parameters model of language, which also underlies the later developments of the

Minimalist Program.

10

2.3 CONSTITUENT STRUCTURE AND SUBCATEGORIZATION

A word, such as a noun, verb, adjective or preposition is a lexical category. In structural

terms, they are called heads. Phrases are meaningful groupings of words built up from the

lexical category ofthe same type that they contain. Examples of phrases are: NP, VP, and

AP (=AdjectiveP), and PP. But the particular head is choosy about what can combine

with it to form a phrase.

VP examples:

1 died I *died the corpse I *died to Sue about politics

2 relied on Max I *relied I *relied from Max I *relied to Max

3 dismembered the corpse I *dismembered

4 talked (to Sue) (about politics) I *talked that the economy is poor

5 read (the book) (to John) I read that the economy is poor

6 supplied the Iraqis (with arms) I *supplied

7 told Sylvia (that it is raining)

8 revealed (to John) that problems exist I revealed the answer (to John)

A complement is a phrase that a lexical category takes or selects. Which complements

are taken by a particular verb is an arbitrary property of that verb: in (1) died cannot take

any complements; in (2) relied must have a PP complement with on as the preposition; in

(3) dismembered must take an NP complement; in (4) talked can take an optional PP

complement with to as the preposition and/or an optional PP complement where the

preposition is about, etc.

We can represent these complement selection requirements in subcategorization frames,

as shown in (9), where the square brackets delimit the phrase and the environment bar

indicates the position of the lexical head. Required complements are simply listed,

whereas optional complements are enclosed in parentheses. Finally, in cases where a

complement with a particular head is subcategorized for, the head is listed as a feature on

the complement (as for rely and talk).

11

(9) die, V, [-]

rely, V, [_ PP[on]]

dismember, V, [_ NP]

talk, V, [_ (PP[to]) (PP[about])]

Adjectives, nouns, and prepositions also subcategorize for their complements.

AP examples:

red I *red that Sylvia would win

2 afraid (of snakes) I *afraid to this issue

3 orthogonal (to this issue)

4 ambivalent ((to Joe) about her feelings)

5 certain (that Sylvia would win)

6 insistent (to Joe) (that we leave)

· NP examples:

1 group (of scientists)

2 individual

3 book (about photography I *to Fred)

4 generosity (to Fred)

5 dislike of Fred

6 ambivalence ((to John) about my feelings)

7 rumor (that all is well)

8 message (to the Contras) (about the guns)

PP examples:

1 about [the talk]

2 before [we leave]

3 from [over the hill]

4 [looked] up

We can generalize that the lexical categories (V, N, A, P):

a. Subcategorize for their complements.

b. Precede their complements in the phrase.2

c. Co-occur with other constituents.

12

Heads and complements are not the only parts of phrases. For example, NPs can be

preceded by words (or sometimes phrases) lfke: the, no, so"!e, every, John's, my

mother's. APs can be preceded by degree words such as: very, extremely, rather, quite.

These items differ from complements because they precede the lexical category and they

are not subcategorized for. They are called Specifiers.

2.4 X-bar Theory

GB seeks to capture the similarities between different categories of lexical phrases by

assigning the same structure to them. Rather than having different phrase structure rules

fpr VPs, NPs, etc., just the two basic rules as shown below cover all the lexical

categories._For phrase structures we adopt symmetrical X-bar analysis. The same set of rules

will be applicable to all phrases thus leading to uniformity and computational efficiency in terms of

efforts, time and space. Further, we need exactly three levels of projection, namely X0
, X', and

X". For any head X0
, we require the level X' to take care of constituents larger than X0

.

Both the compulsory (Complements) and optional (Adjuncts) phrases can be joined at X', one at

a time, by Adjunct Rule (refer Rule (2) below) are the Complement Rule (refer Rule (3) below),

respectively. The highest X-bar which is not dominated by any other X projection is the maximal

projection of X0 denoted by X" or XP. The Specifier is attached at the X" level by the

Specifier Rule (refer Rule (1) below). Thus we need only three levels namely X0
, X', and

X". This three level hierarchical structure 'do so' substitution and 'one' substation

constructs which can be taken care by two level flat structure. Thus the three level

symmetrical X-bar analysis is more suitable both linguistically as well as

computationally.

Accordingly, an X-bar phrase in a language is defined by the following rule schemata: For any

lexical category X such as Verb, Noun, Adjective, Preposition etc, X0=Head

X" (XP) -7 (XSpecier); X' -- (1) (The Specifier Rule)

*X' -7 (ZP) ; X' -- (2) (The Adjunct Rule)

X' -7 (YP) ; X0 -- (3) (The Complement Rule)

13

i
I

the

musician's

interpretation P'

~
pO NP

I ~
of D N'

Figure 2.2.

2.4.2 The Phrasal Projection for an Adjective

I
that

I
~
l

sonata

An Adjective Phrase (AP) is a phrase having Adjective as head. The complement of an

AP is typically a PP. The Specifier of an AP is optional, but it can take adverb. The tree

representation for AP 'extremely afraid of snakes' is given in Figure 2.3.

AP

~
Deg A'

I~
e>..1femely A0 PP

I
afraid P'

~
I

of N'

snakes

Figure 2.3.

15

2.4.3 The Phrasal Projection for a Verb

A Verb Phrase (VP) is a phrase having a verb as its head. Depending on a particular head

complement(s) may be present or absent. The complement in a VP may be a NP, PP, AP,

IP, or a CP. For each verb a Specifier NP, according to the latest theory, is present which

then moves to the Specifier position IP as described later in the section. Adjunct(s) in a

VP may be NPs, PPs, APs, or ADVP. A Verb Phrase typically functions as a

Complement in an Inflection Phrase (IP). For example, the VP 'talked to sue' in IP 'she

talked to sue'. The tree representation for VP 'talked to sue about politics' is given in

Figure 2.4.

VP
I

V'
______,---__

\'-') pp pp

I
talked P' P'
~ ~
pCI NP P0 NP

L
to Sue about

Figure 2.4.

I
N'
I
~
I

politics

Figure 2.5 illustrates how conjunction and adjunction fit into the X-bar schemata. The

conjunction rule is shown for black and white;6 huge, black and white; and extremely

angry are all adjuncts which are adjoined to N: showing how the adjunction rule is

recursive; the is in the specifier position and dog is the head of the whole NP

16

NP

~
D N'
I

the
AP
I

huge

N'

--------------AP N'

~ ~
AP Conj AP AP N'
I I I /'--...._
A'
I

Ao

I
black

and A' Deg A'
I I
A0 extremely A0 dog
I I

white angry

Figure 2.5

At this point, even though we can draw trees for some complex phrases, we still cannot

do even a simple complete sentence such as John hit the ball. The rule S ® NP VP does

not fit the X-bar schemata. We also cannot draw a tree diagram for a clausal complement

to a verb, such as the that-clause in Bill read that the economy is poor. In order to make

sentences and clauses fit X-bar theory, we need to determine the head, specifier, and

complement for each. This will be the next topic addressed.

2.5 LEXICON ORGANIZATION

We assume that every speaker is equipped with a mental lexicon, an "internal lexicon",

which contains all the information they have internalized concerning the words of their

language. It contains a lexical entry for each lexical item in the langu~ge. Lexical entries

contain at least phonological, morphological, semantic and syntactic information. They

contain all the information about lexical items that cannot be predicted by the rule system

(e.g.: regular past tense forms of verbs are not given in the lexical entry since they can be

predicted). We are mainly interested in the syntactic inforn1ation, which contain the

Categorical, Subcategorical Information and Thematic information. In the following

sections we briefly describe how this syntactic information is represented in the Lexicon.

17

2.5.1 Categorical Information

For each entry it must be specified what syntactic category it belongs to, e.g.:

school: noun (N)

professor: N

student: N

play: verb (V)

read: V

into: preposition (P)

extremely: adverb (Adv)

fast: adjective (A)

The syntactic category .determines the distribution of a word, which means that it tells us

in what context, in what syntactic environment it can occur.

2.5.2 Subcategorization Information

A subcategorization frame specifies in what syntactic environment a category a lexical

item can be inserted. It is called "subcategorization" because we can distinguish

subcategories (or subclasses) of categories on the basis of the context in which they

appear, e.g.:

(I) a. play: V, [--] The boy is playing.

b. draw: V, [-- NP] The boy is drawing [a picture].

c. give: V, [-- NP, PP] The boy gives [the ball] [to the man].

d. give: V, [-- NP, NP] The boy gives [the man] [the ball].

These subcategorization frames indicate the position of the verb. Imitate, for example, is

followed by one NP (such as the cat) - it selects or subcategorizes for one nominal object.

Notice that the subcategorization frame includes only the OBJECTS (or

COMPLEMENTS) of the lexical entry, but not the subject.

18

2.5.3 Thematic Information

As described in the section above, each lexical entry is specified for the number and type

of arguments it requires. The arguments are the participants that are minimally involved

in the activity or state expressed by the predicate, for instance: The verb imitate in (1)b

requires two participants: one person who does the imitating (the agent), and someone

who is being imitated (the patient). The verb gives in (l)c and d requires three

participants: someone who does the giving (the agent), something that is given (the

theme) and someone who receives the given entity (the recipient). These participants are

called arguments, their roles (such as agent, theme, recipient) are calle<l thematic roles

(or theta-roles, 9-roles). This kind of specification is called thematic grid. The 9-roles

are often represented by Arabic numerals, where the numeral 1 refers to the argument

realized as the subject:

(2) a. play: V; [1] The boy is playing.

b. draw: V; [1 2] The boy is drawing a picture.

c. give: V; [1 2 3] The boy gives the ball to the man I the man the ball.

We can now combine the theta grid and the Subcategorization frame, i.e. we add the

syntactic categories of the arguments:

(3) a. play:

b. draw:

c. give:

V; [1]

V; [1 2]

NP

V; [1 2 3]

NP NP

NP PP

Recall that the subcategorization frame includes only the objects of a lexical item. The

thematic role of the subject can therefore not be linked to the subcategorization frame in

the same way as the other roles can. The information presented above, is summarized in a

tabular form as given in Table 2.1.

19

Categorical Subcategorization Information Thematic

Information Information

[--PP] (speak to someone) [1 2]

speak v

[--](speak) [1]

[--NP] (receive a letter) [1 2]

receive v [--NP PP] (receive a letter from [1 2 3]

some one) [1 2 3]

[--NP NP] (receive someone's

letter)

Table 2.1: Lexical Entries with their Subcategorization and Argument structures

In the Machine Translation process the word lexicon is used more often than the word

dictionary as this information is stored in a machine readable form. So the lexicon can be

called as a "computational dictionary". In natural languages one word can have several

forms and it is not wise enough to store all those forms in the lexicon as it simply

increase the size of the lexicon. In MT, the lexicon usually contains the root words ofthe

language and the morphological processes use the information present in the lexicon to

generate the other forms of the words. Usually this information is stored in the files or as

tables in the databases which can be easily retrieved for the computational purpose.

However, the way you organize your data is more important as it would directly affect·

the speed of the computation.

2.6 THETA THEORY

The lexicon specifies the number and type of arguments that a verb takes. Arguments are

the essential participants in the event that the verb refers to. The technical term for this

aspect of the verb's meaning is argument structure. The lexical item that specifies the

argument structure is called the predicate. We have already mentioned some of the

20

theta-roles associated with arguments, such as agent, patient, or theme. There are other

roles such as experiencer (someone who is experiencing a physical or mental sensation,

refer (4)a below), benefactive/ recipient (someone who benefits from the action

expressed by the verb or who receives something as in (4)b below), and a few more.

(4) a. Peter feels cold.

b.Peter gives Mary the book

We say that the predicate assigns theta-roles to its arguments or that the predicate selects

its arguments. Theta-roles assigned to complements are referred to as internal theta­

roles, complements are thus internal arguments. Theta-roles assigned to subjects are

external theta-roles, subjects are thus external arguments: Theta roles are assigned by

the Governor to its Governees under Government. The definition of Government is given

below:

Government:

A node A governs a node B iff

1) A is a governor.

2) A m-commands B and

3) No barrier (some YP) intervenes between A and B

•!• Maximal projections are barriers to government.

•!• Governors are heads.

There are two types of Governors:

1) Lexical governors

• E.g. V (verb), P (preposition), N (noun), A (adjective).

2) Functional governors

• E.g. I (agreement), C (complementizer).

21

2.6.1 The Argument Structure of Other Syntactic Categories

So far, we analyzed verbs as predicates. However, other categories like nouns,

prepositions, adjectives etc, have argument structures, as well. In the following section

we are going to analyze about those argument structures in brief.

2.6.1.1 Nouns: Argument structure is most obvious in nouns that are morphologically

related to verbs.

Consider the examples:

The.Romans destroyed the city.

The Romans' destruction of the city.

As we can see, the argument structures of the nouns in the above sentences are

remarkably similar to that of their corresponding verbs. They can have subjects and

objects just like verbs.

We have already said that the syntactic arguments of nouns are usually optional (i.e. can

be left implicit). The subject of a noun is always optional, whereas the subject of a verb

must always be realized.

For example compare:

"The Romans destroyed the city." with "Destroyed the city." and

"The Romans' destruction of the city." with" the destruction of the city"

Similarly, objects of nouns may also be omitted, even if cannot be left implicit in the case

of the corresponding verb.

For example compare:

"Poirot will analyze the data." with "Poirot will analyze." and

"Poirot's analysis of the data." with "Poirot's analysis"

2.6.1.2 Adjectives: Adjectives too can have arguments. Similar to nouns, their arguments

can often be left implicit and arguments are syntactically realized as PP's (often with of)

or clauses, as shown by the examples below:

22

Poirot envies Bertie.

Poirot is envious of Bertie.

2.6.1.3 Prepositions: Some linguists argue that prepositions can also. function as

predicates and take arguments. Some prepositions can occur with or without arguments,

as shown in the examples below:

Peter is in London.

He is outside (the house). Here argument "the house" is optional.

2.6.2 The Theta Criterion

We have seen that the number of arguments that can show up in a sentence is determined

by the number of 8-roles that a predicate has. The requirements illustrated in these

examples are captured by the Theta-Criterion: which sates that:

-7 Each argument is assigned one and only one theta-role.

-7 Each theta-role is assigned to one and only one argument.

2.6.3 The Projection Principle

We have said so far that the mental lexicon contains a lexical entry for each lexical item

in the language. This lexical entry in tum contains phonological, morphological, semantic

and syntactic information about that lexical item. The syntactic information contains

categorical information, subcategorization information, and thematic information. We

have also seen that the information given in the lexical entry must be represented in the

sentence that the relevant lexical item is a part of. (For instance, theta-roles must show up

in the sentence, they must be assigned to arguments. If arguments may be left implicit,

this must be specified in the lexical entry.) We have also seen that the syntactic category

of a lexical item determines the syntactic category of the corresponding phrase. This is

captured by the Projection Principle, which sates that: "Lexical information is

syntactically represented."

23

2.6.4 The Extended Projection Principle

The Extended Projection Principle (EPP) requires that sentences must have subjects. For

example, in the sentences "It rains." or "It has been snowing.", although the subject 'it'

does not contribute to the meaning of the sentence, and it is not an argument of the verb,

it cannot be omitted. This follows from the EPP.

So far we have presented in brief the requirements, according to the theory, the analysis

and design of Lexicon and how the lexicon is to be organized, so that we can capture all

the required syntactic information about lexical items of words in a given sentence.

Detailed information about all these concepts can be found in Hageman [15] and Fromkin

[29]. In the following section we are going to concentrate on some other important

concepts ofGB Theory, in brief.

2.7 OTHER CONCEPTS

In the following section we are going to give the other important co'ncepts in GB Theory,

i.e. Case Theory and Binding Theory in brief.

2.7.1 Case Theory

According to Case Theory, every overt NP must be case-marked. Also, even though only

pronouns show overt morphological case in English, it is assumed that all NPs have Case

(called abstract case) that matches the morphological case that shows up on pronouns.

The degree of its morphological realisation varies parametrically from one language to

another. Case Theory accounts for the distribution and form of overt NP's. It defines

contexts in which NP's are assigned abstract case.

In English, overt morphological realization of case in full lexical noun phrases is

restricted to the GENITIVE case. NOMINATIVE and ACCUSATIVE case can only be

seen on pronouns. Heads of some categories (specifically V, P, I, but not A and N) have

case-assigning abilities. In English, Verbs assign ACCUSATIVE CASE to their

24

complements, whereas nouns and adjectives don't. Further, the passive participles cannot

assign ACCUSATIVE case to their complements and that therefore the internal argument

moves to the subject position to receive NOMINATIVE case. This· in tum is possible

because the passive participle does not assign an external 9-role, but this role is absorbed

by the passive morpheme. These two properties (failure of the verb to assign ACC case

and absorption of the external argument of the verb) have been related by Burzio (1986)

by a descriptive generalization which is known as Burzio's Generalization. Similarly

raising verbs do not assign an external 9-role to their subject position.

2.7.2 Binding Theory

The Binding Theory captures the distributional properties of overt NPs of these types in

terms of their ability or obligation to be co-indexed with other NPs. Binding theory

essentially examines the relation between NPs in A-positions (argument positions, i.e.

theta- and case-related positions), not with NPs in A'-positions (non-argument positions

such as Spec-CP or adjoined positions). Binding is done unde£._s-command and its

definition is given below:

C-Command:

Node A c-commands node B if and only if

1) A does not dominate B and B does not dominate A; and

2) The first branching node dominating A also dominates B.

c
~

A B

In the above diagram both A and B c-commands each other.

25

A

~
B C

~
D E

In the above diagram, B c-commands C, D, and E. C c-commands B, but D and E does

not c-command A Since the first branching node dominating D and E (i.e. C) does not

dominate B.

2.8SUMMARY

This chapter gives an overview of Government and binding theory that forms the base for

our work. In Government an~ Binding Theory, we discuss the x-bar theory, phrasal

projection of different grammatical categories of words, which is used to develop

elementary trees. It also explains organization of Lexicon which is heart of our whole

system which emphasizes on organizing the information of words in database along with

categorization and sub categorization information. Theta theory, Case theory and Binding

theory are the other aspects that are explained in detail here, which helps to combining

elementary trees to develop parse tree for a given sentence.

26

Chapter 3

GOVERNMENT AND BINDING BASED
GRAMMAR FOR HINDI

3.1 INTRODUCTION

Hindi is one of the most widely spoken languages of the world, possessing speakers of

the same order of magnitude as those of English and Russian. In India it has been

accorded the status of 'official Language' and, along with English, is recognized by the

central government for use for most administrative purposes. It is spoken natively by at

least 150 million persons in the Indian states of Uttar Pradesh, Madhya Pradesh, and

Bihar and as a second language by a like number in other states of North India. It is also

an Official language of Uttar Pradesh, Madhya Pradesh, Bihar, Haryana, Rajasthan and

Himachal Pradesh, as well as of the Delhi union territory. Urdu, a language so closely

related to Hindi to allow some to consider the two to be variants of a single tongue, is

spoken by tens of millions, either as a first or second language, both in Pakistan and

India. Members of emigrant Indian communities the world over use Hindi as a lingua

franca. Hindi enjoys some order of official status in countries as diverse as Fiji,

Mauritius, and Guyana.

3.2 THE OVERALL STRUCTURE OF THE HINDI VERBS

As Hindi is SOV ordered language, verb comes last in the sentences. We have

categorized the Hindi verbs into three types, intransitive verbs, transitive verbs and the

ditransitive verbs. The Hindi verbs are inflected with respect to:

Gender of the subject (masculine, feminine)

Number of the subject (singular, plural)

Tense (present, past. future)

Aspect (simple, continuous, perfect, and perfect continuous)

Degree of respect (intimate, familiar, respect)

27

However. in simple past tense the verb agrees with the object of the sentence. Hindi verbs

are often referred to in their infinitive noun form which ends in c=rr. Examples: ~- (to

speak). R>'l'iS!Ciil. (to write), <t:=IT (to take), 3-lTc:rT (to come), etc. The root forms are the

infinitive form minus the c=rr ending: mc>f, R>'llsr, ~'3fT, etc

Hindi verbs and auxiliaries change according to the tense, aspect, number, person and

gender. For example, let's take the verb"~ (go)" and see how it changes according to

gender:

Male

Female

.3.2.1.1 Verb Forms in Simple Present Tense:

The si mplc present is used for habitual actions. It is formed by adding <=IT, <f. or eft to the

stem of the verb followed by the present tense of~.

The auxiliary here changes with the number, and the person as shown below:

Gender Person Number Hindi Sentence English Sentence

male First singular Jf~~ I go

female First singular Jf~~ I go

male First plural ~~6 We go

female First plural ~~6 We go

male Second singular ~~~ You go

28

female Second singular q_~~ You go

male Second singular ¥~EJ You go

female Second singular ¥~EJ You go

male Second plural ¥~EJ You go

female Second plural ¥~EJ You go

male Second singular 3fm~6 You go

female Second singular 3fm~6 You go

male Second plural 3fm~6 You go

female Second plural 3fm~6 You go

male Th.ird singular ~ arc:rr ~ He goes

female Third singular ~~~ She goes

male Third plural cT ~ ~ They go

female Third plural cr~~ They go

3.2.1.2 V crb Forms in Present Continuous:

The present continuous is used express the idea that something is happening now. at this

very moment or simple for on going actions. It is formed according_to the rule given:

Root + ~/ ~/ ~ + present tense of ~.

The auxiliary here changes with the number, and the person as shown below:

Gender Person Number Hindi Sentence English Sentence

male First singular ~ ~ ~ ~ I am going

29

female First singular ctf 0JT ~ ~ I am going

male First plural ~0JT~~ We are going ·

female First plural ~0JT~~ We are going

male second singular (i0IT~~ You are going

female second singular (i0IT~~ You are going

male second singular <p10ll~~ You are going

female second singular <pf0ll~~ You are going

male second plural <pf0ll~~ You are going

female second plural <p10ll~~ You are going

male second singular .wr 0JT ~ ~ You are going

female second singular .wr 0JT ~ ~ You are going

male second plural .wr 0JT ~ ~ You are going

female second plural .wr 0JT ~ ~ You are going

male Third singular %0ll ~ ~ He is going

female Third singular %0ll ~ ~ She is going

male Third plural cl0JT ~ ~ They are going

female Third plural cl0JT ~ ~ They are going

3.2.1.3 Verb Forms in Present Perfect

The present perfect is the actions which have been just completed. In Hindi those are

formed by the rule: Root + ~ ~~ + the present tense of~

The changes in the auxiliary with the number. and the person are shown below.

30

Gender Person Number Hindi Sentence. English Sentence

male First singular ctf~ ~ ~ I have gone

female First singular ctf~~~ I have gone

male First plural ~~~~ We have gone

female First plural ~~~~ We have gone

male Second singular <I~~~ You have gone

female Second singular <I~~~ You have gone

male Second singular ¥~~~ You have gone

female Second singular ¥~~~ You have gone

male Second plural ¥~¥~ You have gone

female Second plural ¥~~~ You have gone

male Second singular .Jrrq~~~ You have gone

male Second singular .Jrrq~~~ You have gone

male Second plural .Jrrq~¥~ You have gone

female Second plural .Jrrq~~~ You have gone

male Third singular ~~~~ He has gone

female Third singular ~~~~ She has gone

male Third plural cr~~~ They have gone

female Third plural cr~~~ They have gone

31

3.2.1.4 Verb Forms in Present Perfect Continuous

We use the Present Perfect Continuous to show that something started in the past and has

continued up until now. In Hindi this is formed by the below rule:

Simple Present form of root+~/ ~/ ~+present tense of~

The changes in the auxiliary with the number, and the person are shown below:

Gender Person Number Hindi Sentence English Sentence

Male First Singular if~~ "' I have been going ~

female First singular if~~~ I have been going

male First plural ~~~~ We have been going

female First plural ~~~~ We have been going

male Second singular <i araT ~ ~ You have been going

female Second singular <i~~~ You have been going

male Second singular ¥~~~ You have been going

female Second singular ¥~~~ You have been going

male second plural ¥~~~ You have been going

female second plural ¥~~~ You have been going

male Second singular 3mf~~~ You have been going

female Second singular 3mf~~~ You have been going

male Second plural 3mf~~~ You have been going

female Second plural 3mf~~~ You have been going

male Third singular ~~~~ He has been going

32

female Third singular She has been going

male Third plural They have been going

female Third plural They have been going

3.2.1..5 Verb Forms in Simple Past

The simple past is used for actions in the past. In this form the verb takes its past tense

form and is mostly in·egular. Here auxiliary is absent.

The changes in the verb with the number, and the person are shown below:

Gender Person Number Hindi Sentence English Sentence

Male First singular "Jf<TJ<IT I went

Female First singular ;tt~ I went

Male First plural ~dl<l We went

female First plural ~~D We went

Male Second singular ~<TJ<IT You went

female Second singular <t~ You went

male Second singular c_prdl<l You went

female Second singular c_pr~o You went

male Second plural c_prdl<l You went

female Second plural c_pr~o You went

male Second singular 3-TTQ" "JT<T You went

female Second singular 3-TTQ" ~0 You went

male Second plural 3-TTQ" dJ<l You went

33

female Second plural 3fllT "C~Pfto You went

male Third singular ~ <JT<TI He went

female Third singular ~"C~Pft She went

male Third plural crdl<l They went

female Third plural cr "C~Pfto They went

3.2.1.6 Verb Forms in Past Continuous

The past continuous is used for ongoing actions in the past -- like the "-ing" form m

English. It is formed by the rule: Root+~/ "ft.l ~+past tense of~- The changes

in the verb and auxiliary with the number, and the person are shown below:

Gender Person Number Hindi Sentence English Sentence

Male First Singular ~ar~m I was going

female First Singular ~ar~ ~ I was going

male First Plural ~arrt;~ We were going

female First Plural ~ar~~o We were going

male Second Singular (iar~m You were going

female Second Singular (ial~~ You were going

male Second Singular ¥aT "ft.~ You were going

female Second Singular ¥aT~~D You were going

male Second Plural ¥aT "ft.~ You were going

34

~

female Second Plural ¥~~2fto You were going

male Second Singular .mq~~~ You were going

female Second Singular .mq ~ ~ 2fto You were going

male Second Plural .mq~~~ You were going

male Second Plural .mq ~ ~ 2fto You were going

male Third Singular ~~m2TT He was going

female Third Singular ~~~~ She was going

male Third Plural cr~~~ They were going

female Third Plural cr ~ ~ 2fto They were going

3.2.1. 7 Verb form in Past Perfect

The past perfect describes an action which is completed before a certain moment in the

past. In Hindi the past perfect is formed like this: root+ ¥f~ +past form of~.

The changes in the verb and auxiliary with the number, and the person are shown below:

Gender Person Number Hindi Sentence English Sentence

male First Singular d'f~ ¥f 2TT I had gone

female First Singular d'f ~~2ft I had gone·

male First Plural ~~¥~ We had gone

female First Plural ~~~2fto We had gone

male Second Singular C1.. ~ ¥f 2TT You had gone

female Second Singular C1.. ~~2ft You had gone

35

male Second Singular ¥~~~ You had gone

female Second Singular ¥~~~0 You had gone

male Second Plural ¥~~~ You had gone

female Second Plural ¥~~~0 You had gone

male Second Singular .mq~~~ You had gone

female Second Singular 3ITQ" ~ ~ ~0 You had gone

male Second Plural 3ITQ" ~ ~ ~0 You had gone

female Second Plural 3ITQ" ~ ~ ~0 You had gone

male Third Singular ~~~m He had gone

female Third Singular ~~~~ She had gone

male Third Plural ()-~~~ They had gone

female Third Plural cr~~~o They had gone

.3.2.1.8 Verb forms in Past perfect Continuous

Past perfect continuous is used for an action that began before a certain point in past and

continued up to that time.lt is formed like this: simple past form of root + wRt + past

form of~.

The changes in the auxiliary with the number, and the person are shown below:

Gender Person Number Hindi Sentence

Male First Singular # ~ W m

Female First singular # ~ ~ ~

36

English Sentence

I had been going

I had been going

Male First plural ~~~~ We had been going

Female First plural ~~~~0 We had been going

l'v1alc Second singular c:r..~m~ You had been going

Female Second singular CI..~~~ You had been going

male Second singular ¥~~~ You had been going

female Second singular ¥~~~0 You had been going

male Second plural ¥~~~ You had been going

female Second plural ¥arcfi~~ You had been going

male Second singular 3ITQ" ~ ~ ~ You had been going

female Second singular 3ITQ" aRfi ~ ~0 You had been going

male Second plural 3ITQ" ~ ~ ~ You had been going

female Second plural 3ITQ" aRfi ~ ~0 You had been going

male Third singular ~~m~ He had been going

female Third singular ~arcft~~ She had been going

male Third plural c)-~~~ They had been going

Female Third plural c)-~~~0 They had been going

.3.2.1. 9 V crb forms in Simple Future

The simple future is used to refer to the future as well as to make assumptions about the

presents (just like in English). It is formed by adding 3lJlTT I m, "Q<mrQ<rfr. 00~. or

3-lTm/3-l'IJft to the root for or the verb.

The changes in the auxiliary with the number. and the person are shown below:

37

Gender Person Number Hindi Sentence English Sentence

male First Singular # \jj(j;J((1 will go

female First Singular # \Jli3;Jft 1 will go

male First Plural ~~ We will go

female First Plural ~~ We will go

male Second Singular CJ..~ You will go

female Second Singular CJ..~ You will go

male Second Singular wr~Jmt You will go

female Second Singular wr~3IT<Jft" You will go

male Second Plural wr~Jmt You will go

female Second Plural wr~3IT<Jft" You will go

male Second Singular 3f11T~Jml You will go

female Second Singular 3f11T~ You will go

male Second Plural 3f11T~Jml You will go

female Second Plural 3f11T~ You will go

male Third Singular ~~ He will go

female Third Singular ~~ She will go

male Third Plural c)-~ They will go

female Third Plural c)-~ They will go

38

3.2.1.1 0 Verb forms in Future Continuous

The future continuous is used to refer to ongoing actions in the future. It is formed as the

present simple and the future form of~.

The changes in the auxiliary with the number, and the person here are shown below:

Gender Person Number Hindi Sentence English Sentence

male First Singular ~ 0IT m~ I will be going

female First Singular ~ 0IT m~ I will be going

male First Plural ~0IT~~ We will be going

female First Plural ~ 0IT m Wft- We will be going

male Second Singular <I. 0llm WIT You will be going

female Second Singular <I. 0llm ~ You will be going

male Second Singular ¥0IT~~ You will be going

female Second Singular ¥~m~ You will be going

male Second Plural ¥~~~ You will be going

female Second Plural ¥0ll mo~o You will be going

male Second Singular 3fll:T0IT~~ You will be going

female Second Singular 3fll:T~ m ~o You will be going

male Second Plural 3fll:T0IT~~ You will be going

female Second Plural 3fTl:T 0IT m ~o You will be going

male Third Singular ~0llm WIT He will be going

female Third Singular ~0llm~ She will be going

39

male Third Plural

female Third Plural

3.2.1.11 Verb forms in Future Perfect

They will be going

They will be going

The Future Perfect tense is used to talk about actions that will be completed by a certain

future time. The future prefect is formed as: Root + ~ ~~ + the future tense of

~ to the root.

The changes in the auxiliary with the number, and the person are shown below:

Gender Person Number Hindi Sentence English Sentence

male First Singular ctf~ ~ ~ I would have gone

female First Singular ctf~ ~·~ I would have gone

male First Plural ~~~~ We would have gone

female First Plural ~~~~ We would have gone

male Second Singular ~~~~ You would have gone

female Second Singular ~~~~ You would have gone

male Second Singular ¥~~~ You would have gone

female Second Singular ¥~~~ You would have gone

male Second Plural ¥~~.~ You would have gone

female Second Plural ¥~~~ You would have gone

male Second Singular JITQ"~¥~ You would have gone

female Second Singular 3ITQ" ~ ~ ~ You would have gone

40

male Second Plural .3ITQ"~¥~ You would have gone

female Second Plural .3ITQ" ~ ~ ~ You would have gone

male Third Singular ~~~~ He would have gone

female Third Singular ~~~~ She would have gone

male Third Plural cr~¥~ They would have gone

female Third Plural cT~~~ They would have gone

3.2.1.12 Future Perfect Continuous:

The Future Perfect Continuous tense is used for actions which will be in progress over a

period of time that will end in the future. In Hindi this is formed by the below rule:

Simple Present form of root + ~/ ~/ W + future of~

The changes in the auxiliary with the number, and the person are shown below:

Gender Person Number Hindi Sentence English Sentence

male first Singular ~~~~ I would have been going

female first Singular ~~m~ I would have been going

male first Plural ~~~~ We would have been going

female first Plural ~~m~ We wo~ld have been going

male second Singular <i.~~~ You would have been going

female second Singular <i.~W~ You would have been going

male second Singular ¥~~~ You would have been going

female second Singular ¥~~~ You would have been going

41

male second Plural ¥~~~ You would have been going

female second Plural ¥~~~ You would have been going

male second Singular 3ITQ" ~ ~ ~ You would have been going

female second Singular 3ITQ" ~ ~ ~ You would have been going

male second Plural 3ITQ" ~ ~ ~ You would have been going

female second Plural 3ITQ" ~ ~ ~ You would have been going

male third Singular ~-arc=rr~~ He would have been going

female third Singular ~~~~ She would have been going

male third Plural a~~~ They would have been going

female third Plural a~~~ They would have been going

3.2.2 The Overall Structure of the Hindi Nouns

Hindi nouns have two genders, masculine and feminine and two numbers, singular and

plural. It has eight cases which are indicated by the presence of postpositions that

immediately follow the nouns. Postpositions are analogous to the prepositions of English.

Hindi nominal forms are classified as direct or oblique. Hindi nouns followed by

postpositions are said to be in their oblique forms. Otherwise they are said to be in their

direct form ..

-
3.2.2.1 Masculine nouns: There are two classes of masculine nouns in Hindi, class I and

class II. Class I nouns end in 3IT in their singular direct, 1:[in their singular oblique and in

plural direct, JITOin their plural oblique form as shown in Table 3.la and Table 3.1 b.

42

Class I Singular Plural

Direct ~ ~

oblique ~ ~

Table 3.la

Class I Singular Plural

w.m "' Direct ¥

oblique ¥ wmo
Table 3.lb

Masculine class II nouns have no distinct endings ifi their direct singular, direct plurals

and oblique singular forms. They add 3ffi:to form the plural oblique. See Table 3.2.

Class II Singular Plural

Direct m- m

oblique m- t:RT

Table 3.2

Masculine class II nouns ending with ~ shorten this vowel to ~ and insert a <:f before the

oblique plural termination JITDSee Table 3.3

Singular Plural
Class II

Direct ~ Jn~

oblique ~ 311~~~1

Table 3.3

43

Masculine class II nouns ending in 3i shorten this vowel to 3' before the oblique plural

termination. See Table 3.3.

Class II Singular Plural

Direct ~ ~

Oblique ~ mwmo
Table 3.4

Few of the masculine nouns ending in 31T are declined according to the pattern of class II

as given in Table 3.5.

Class II Singular Plural

Direct uar uar

Oblique uar uarmo

Table 3.5

3.2.2.2 Feminine Nouns: Feminine nouns also possess two classes, class I and class II.

Class I nouns end in ~ in their singular direct, ~ in their singular oblique, ~ in their

plural direct, and¢ in their oblique plural forms. See Table 3.6.

Class I Singular Plural

Direct ~ <>l~fcn~IO

oblique ~ <>l~fcntil

Table 3.6

44

Few class I feminine nouns show forms similar to ~, except that ~ or ~ appear in

place oft in the singular forms as shown in Table 3.7.

Class I Singular Plural

Direct Rl~<:~l RI~<:JID

oblique Rl~<:~l Rl~<n

Table 3.7

The feminine class II nouns form their plural direct forms by means of the suffix if and

their plural oblique with JITD The singular forms, both direct and oblique, may end in

virtually any sound, excepting t, ~and ~which are characteristic of class I feminine

nouns. See Table 3.8.

Class II Singular Plural

lj)@Cfl lJf<ich

Direct ~ ~

dTI(1T dTI<1Tif

-
lj)@Cfl lj)'f(iChl

oblique ~ ~JITD

dTI(1T dTI<1TJITD

Table 3.8

45

Class II nouns having singular direct forms in 3'; shorten this vowel to 3" before the

plural direct termination~ and the plural oblique termination JITOSee Table 3.9.

Class II Singular Plural

Direct ~ ~

oblique ~ ~JITO

Table 3.9

3.2.3 Adjective forms for Hindi

Hindi adjectives are of two kinds, declinable and indeclinable. Declinable adjectives

agree with the nouns they modify in gender (masculine and feminine), number (singular

and plural), and case (direct and oblique).

The masculine forms of declinable adjectives end in 3fT in the singular direct, and l! in the

singular oblique, plural direct and plural oblique cases. See Table 3.10.

Masculine Singular Plural

Direct ~~ ~~
-

oblique ~~ ~~

Table 3.10

Declinable objectives always show t when modifying feminine nouns, whether singular

or plural, direct or oblique. See Table 3.11.

46

Feminine Singular Plural

Direct ~~ ~ ~~Fcf;~l

oblique ~~ ~ ~~Fcf;<n

Table 3.11

Indeclinable adjectives possess a single form when modifying nouns of different genders,

numbers or cases. These adjectives do not end in any characteristic sounds.

Hindi adjectives may be used either predicatively (to make a statement about nominal

entity) or attributively (to restrict the meaning of nominal entity). See the following

examples.

Predicative: 'The man is standing there.'

Attributive: 'The standing man is mad an.'

3.2.4 Postposition Forms for Hindi

Indirect object, etc. are indicated by a class of words called Post positions. These words

are similar in function to English prepositions, but stand after the nouns with which they

are linked. Hindi postpositions are either simple or compound. Some important Simple

Postpositions are:

Vast majority of Hindi Postpositions are compound and consists of two or more words.

47

3.2.5 Adverb Forms for Hindi

Adverbs can be defined as words that qualify or modify verbs, adjectives, or other

adverbs. Hindi adverbs can be divided into adverbs of time, place, manner, degree,

affirmation or negation. Adverbs of time specify the time at which a verbal activity or

state of affairs takes place. Some common adverbs of time are

Adverbs of place specify the location at which verbal actions or states of affairs take

place.

Adverbs of manner specify the manner in which some activity is carried out.

Adverbs of degree specify the extent to which some adjectival quality pertains to

qualified noun.

3.3 HINDI PHRASE STRUCTURES

We can refer to Hindi and other SOY languages are head-final and specifier-initial

languages. Since the specifier comes before X' and the head comes after its complements.

This generalization holds in all phrases in Hindi. The various Phrase Structures for

English have been described in detail in Chapter 2. Now in this section, we are giving

various Phrase Structures for Hindi. The rules forms of Hindi Phrase Structures are given

in Appendix B. The basic phrase structure rules are:

3.3.1 A Verb Phrase

XP ___, Specifier X'

X' ___, Complements xD
X'___, Adjuncts X'

-- (1) (The Specifier Rule)

-- (2) (The Adjunct Rule)

-- (3) (The Complement Rule)

The tree representation of Verb Phrase "dfic:r ~~is shown in Figure 3.12.

48

VP

I
yl

~
NP

~
"Jfrn

Figure 3.12 Verb Phrase

3.3.2 A Noun Phrase

The tree representation for a Noun Phrase "3CRT$ finali'>l" is shown in Figure _3.13.

NP

I
NI

::----1
pp No

~I
NP p1

II I fcnali'>l

N pO

I I
~ $
I

3CRT
Figure 3.13 Noun Phrase

3.3.3 An Adjective Phrase

The tree representation for an Adjective Phrase"~~· is shown in Figure 3.14.

49

AP

~
ADV AI

I I
~ Ao

I
~

Figure 3.14: Adjective Phrase

3.3.4 A Prepositional Phrase

The tree representation for the Prepositional Phrase "~·cfi'r mtr ~, is shown in Figure

3.15.

Figure 3.15: Prepositional Phrase

50

3.3.5 An Inflection Phrase
/

The tree representation for an Inflection Phrase "Udl ~ q:;qb Q~C:"kll ~ is shown in

Figure 3.16.

IP

NP v
~ I

AP Nl %C1

I I
~ ~

I
q:;q~

Figure 3.16: Inflection Phrase

51

.3.3;6 A Complementizer Phrase

The tree representation for a Complementizer Phrase is shown in Figure 3.17.

CP

~

c
I

VP

I
yl

----------' 0 NP V

I I

Figure 3.17: Complement Phrase

3.4SUMMARY

This ~hapter briefly explains how Government and Binding rules are used for an SOV

ordered language like Hindi and various phrasal projections for Nouns, Verbs, Adjectives

and Adverbs. This chapter also covers grammar rules of Hindi language. We are

confined to extent where grammar is sufficient for parsing the sentence. As part of the

grammar different noun forms, verb forms, adjective forms, postpositions have been

discussed.

52

4.1 INTRODUCTION

Chapter 4

Lexicon

-Lexicon is usually a list of words together with additional word-specific information.

Lexicon is a word of Greek origin, meaning vocabulary. When linguists study the lexicon,

. they study such things as what words are, how the vocabulary in a language is structured,

how people use and store words, how they learn words, the history and evolution of

words, types of relationships between words as well as how words were created. The

Jerm is also sometimes used in the title of an encyclopedic dictionary or an encyclopedia,

especially for 19th century works and those written in German (lexikon).

In linguistics, lexicon has a slightly more specialized definition, as it includes the

lexemes used to actualize words. Lexemes are formed according to morpho-syntactic

rules and express sememes. In this sense, a lexicon organizes the mental vocabulary in a

speaker's mind: First, it organizes the vocabulary of a language according to certain

principles (for instance, all verbs of motion may be linked in a lexical network) and

second, it contains a generative devi_ce producing (new) simple and complex words

ac<;:ording to certain lexical rules. For example, the suffix '-able' can be added to transitive

verbs only such that we get 'read-able' but not '*cry-able'. (Though exceptions exist to

.this rule: one can certainly imagine a 'sleepable mattress' or the expression, 'Sure, that's

workable.

53

4.2 STRUCTURE OF HINDI LEXICON

4.2.1 Introduction

The vocabulary of Modem Standard Hindi is both rich and diverse. It draws from the vast

lexical resources of Sanskrit, Arabic, Persian, Turkish, Portuguese, English, and Other

languages with which Hindi has come into contact. Indian grammarians have found it

useful to classify some of the different types of vocabulary items that coexist in the

.language. Those words that are borrowed directly from Sanskrit with little or no phonetic

alteration are classified as tatsama: e.g., paksi, jal, karya, agni. Items that are ultimately

·of Sanskrit origin but that have undergone continual phonetic change in the course of

their historical evolution are designated as tadbhava e.g., ag, sab. The Indian

Grammarians also recognize a class of vocabulary items intermediate between tatsama

and tadbhava forms. These words categorized as arddha-tatsama are direct borrowings

from Sanskrit but show degree of phonetic modification e.g., agni, saicar. The tatsama,

arddha-tatsama, and tadbhava vocabularies of Hindi are Historically Indo-Aryan, owing

their origins to Sanskrit in one way or another.

Hindi Lexicon contains information of each and every word as per the word type we

·classify these words into different categories. Hindi words are mainly classified as

Nouns, Pronouns, Verbs, and Auxiliary verbs, Adverbs, Postpositions and Adjective as

per the grammar. In the database we had maintained different table for each of the above

categories. Along with these tables we had subcategory information tables, which provide

the sub-category information for each of the words which were in the-main table. The sub

categorization tables where designed in such a manner that redundancy doesn't exist.

4.2.1.1 Noun Information

Mainly the nouns in Hindi have following attributes

• Number

• Gender

• Nominal form

54

All the information regarding nouns is stored in a different table.

Word Number

~ Singular

t:ffi Plural

<>~ sfcfl~ 10 Plural

Table 4.1

4.2.1.2 Pronoun Information

'Pronouns in Hindi have the following attributes.

• Number

• Gender

• Personal

• Nominal form

Gender

Male

Male

feminine

All the information regarding Pronouns is stored in a different table.

Word Number Gender Person

~· Singular Both First

¥ Plural Both Second

~ Singular Both Third

~ Both Both Third

Table 4.2

4.2.1.3 Verb Information

Verbs in Hindi have the following attributes.

• Tense

• Aspect

• Number

55

Nominal form

Direct

Oblique

Direct

Nominal form

Direct

Direct

Direct

Both
-

• Gender

All the information regarding primary verbs is stored in a different table

Word Tense Aspect Number Gender

~ Present Simple Both Both

dT<TI Past Simple Singular Masculine

<rr<fto Past Simple Plural Feminine

Table4.3

4.2.1.4 Auxiliary Verb Information

Auxiliary Verbs in Hindi have the following attributes.

• Tense

• Aspect

• Number

• Gender

All the information regarding Auxiliary verbs is stored in a different table

Word Tense Aspect Number Gender

.(1T ~ Present Simple Singular Male

~m Past Continuous Singular Male

~o*o Past Perfect plural - Female

Table 4.4

4.2.1.5 Post position Information

Post positions in Hindi have the following attributes.

• Number

• Gender

56

All the information regarding Post positions is stored in a different table

Word Number Gender

CfiT Singular Male

~ Both Female

c)) Both Male

Table 4.5

· 4.2.1.6 Adverb Information

Adverbs in Hindi have the following attributes.

• Number

• Gender

All the information regarding Adverbs is stored in a different table

Word Number Gender

q:;(>f Both Male

~ Both Male

~~ Both Both

Table 4.6

4.2.1.7 Adjective Information

Adjectives in Hindi have the following attributes.

• Number

• Gender

All the information regarding Adjectives is stored in a different table

57

Word Number Gender

"&Sf Singular Male

~ Both Feminine

~ Both Masculine

Table 4.7

4.3 DESIGN OF LEXICON

The tables listed above explain different categories of words and their concerned

attributes that plays a major role in parsing the sentence. Current section discusses with

the organization of lexicon for Hindi. After the through study of the Hindi vocabulary we

came to know that most of the words of similar category have the same attributes values.

So. keeping it in mind in order to eliminate the redundancy, table for every grammar

category contains only attributes, but not the word.

The words are stored in a separate table, where it can have index to its attributes in a

particular category table. As sub-categorical information also similar for many words, it's

also store in other table and words will have index to its sub-categorical information.

4.3.1 Word table

·. In the word table we have following fields.

• Word

• category

• Category index

• Sub-category index

Word Category Category index Sub-category index

Table 4.8

58

4.3.2 Subcategory table

We have the following fields in subcategory table

• Sub-category index

• No of complements

• 151 complement

• 2nd complement

• 3rd complement

Sub-category No of
2nd complement 3rd complement 151 complement

index complements

Table 4.9

4.3.3 Interface

In order to store the data into lexicon, an interface has been designed which allows to

enter data very easily into database. A screen shot of that interface is shown in figure 4.1.

Lexicon data entry interface enables user to enter the data into lexicon very easily. The

interface is prepared very user friendly, so that a novice can enter data. When a particular

category selected from category combo box, the combo boxes 'which corresponds to that

category are only enabled and other are disabled. So, that user can't enter the data
-

wrongly. And all expected values are already stored in combo boxes, it can eliminate

problem of spelling mistakes. As number of complements taken by word varies from

sentence to sentence, we maintain sub categorization information based on number

complements. Depending on the number of complements concerned combo boxes are

enabled and other is disabled. It avoids user to enter wrong data.

59

Word
Category

Category . .:J

Attrit•utes

Number Gender r--,~---~ Person

Nom ina IF orm r··-·· ... t Mood _:j I

Aspect ' Tense ~J ~
__;

Voice r-·- :::;] AdverbCase

SubCategory

NoOfSubCategory :::;]

Cornplernent1 _:j Comptement2 _:j Complement3 ~

Save

Fig 4.1 Screenshot of Hindi Lexicon Data Entry

4.4SUMMARY

This chapter defines lexicon, how the vocabulary in a language is structured, how people

use and store words, how they learn words, the history and evolution of words, types of

relationships between words as well as how words were created and importance of

Lexicon in parsing. Further it explains the different attributes associated with each

grammatical category of Hindi. The last section explains the use of interface for storing

the words in the database.

60

Chapter 5

PARSER

5.1 PARSING STRATEGIES

5.1.1 An Overview

The present Chapter describes the Design and Implementation of Parser. There have

been various approaches to the parsing problem. Main approaches include two left­

comer parsing algorithms, a variant of the Cocke-Kasami-Younger algorithm, Early

parsing algorithm, and Tomita's generalized LR parsing algorithm, in an LR(O)

version. These are all Context-Free parsers. The context-free grammar (CFG)

formalism, introduced by Chomsky, has enjoyed wide use in a variety of fields. CFGs

have been used to model the structure of Programming languages and Natural

languages [25]. Canonical methods for general CFG parsing are the CKY algorithm

and Earley's algorithm. Both have a worst-case running time of O(gn3
) for a CFG of

size g and st1ing of length n, although CKY requires the input grammar to be in

Chomsky normal form in order to achieve this time bound. Asymptotically faster

parsin.g algorithms do exist. Graham, Harrison, and Ruzzo give a variant of Earley's

algorithm that is based on the so-called 'four Russians' algorithm for Boolean matrix

multiplication (BMM); it runs in time O(gn3/log n). Rytter further modifies this

parser by a compression technique, improving the dependence on the string length to.

O(n3/log2 n). But Valiant's parsing method, which reorganizes the computations of

CKY, is the asymptotically fastest known. It also uses Boolean Matrix Multiplication;

its worst-case running time for a grammar in Chomsky normal form is proportional to

M(n), where M(m) is the time it takes to multiply two m X m Boolean matrices

together. In the next section we are going to explain the bottom-up parser.

61

5.1.2 Bottom-Up Parser (LR Parsing Algorithm)

·In bottom-up parsing we have various parsing algorithms like Shift-Reduce parsing,

SLR, CLR and LALR.

The basic idea of a bottom-up parser is that we use grammar productions in the

opposite way (from right to left). Like for predictive parsing with tables, here too we

use a stack to push symbols. If the first few symbols at the top of the stack match the

·right hand side of some rule, then we pop out these symbols from the stack and we

_.push the Ihs (left-hand-side) of the rule. This is called a reduction. For example, if the

stack is x * E + E (where xis the bottom of stack) and there is a rule E ::= E + E, then

we pop out E + E from the stack and we push E; i.e., the stack becomes x * E. The

sequence E + E in the stack is called a handle. But suppose that there is another rule

S::= E, then E is also a handle in the stack. Which one to choose? Also what happens

if there is no handle? The latter question is easy to answer: we push one more terminal

in the stack from the input stream and check again for a handle. This is called shifting.

So another name for bottom-up parsers is shift-reduce parsers. There two actions

-.only:

1. Shift the current input token in the stack and read the next token, and

2. Reduce by some production rule.

Consequently the problem is to recognize when to shift and when ro reduce each time,

and, if we reduce, by which rule. Thus we need a recognizer for handles so that by

scanning the stack we can decide the proper action. The recognizer is actually a finite

state machine exactly the same we used for regular expressions (REs). But here the

language symbols include both terminals and non-terminal (so state transitions can be

for any symbol) and the final states indicate either reduction by some rule or a final

acceptance (success).

62

5.2 DESIGN OF PARSER

5.2.1 Our Parsing Strategy

The efficiency of the parser plays a crucial role in machine translation systems.

Therefore after studying various parsing approaches, we have decided to implement

the LR Parsing algorithm. The LR parser uses the bottom-up approach.

5.2.1.1 Generating Data Structure

· In the data structure generator phase, for every word its Lexical information is picked

up from the Lexicon. This lexical information of word is stored in a data structure

which has link to previous and next structure for other words, and which can hold all

lexical information of a word. This data structure for Verb category is shown in figure

5.1. Only, attributes which are specific to particular category varies from one category

data structure another category data structure.

struct Node {

J

string word;

string category;

string number;

string person;

string tense;

string aspect;

int numberOfComplements;

string Complement];

string Complement2

Tree treePointer;

Node next;

Node previous;

Node up;

Node down;

63

Figure 5.1 Data Structure for verb category

Here verb category attributes are number, person, tense and aspect. So this attribute~

changes for another category. If we consider for noun category, attributes are noun

case, number and gender, so, these attributes will be presented in noun category data

structure instead of number, person, tense and aspect of verb category data structure.

In the Lexicon, one or more Lexical entries may be found corresponding to a word,

for all entries, nodes will be created, and these nodes are connected vertically. This

way, a multilevel structure (that is linked list of structures) will be created for a word.

Same routine will be executed for every word and these nodes are connected

horizontally, as shown in figure 5.2.

null null null null

Root
Lexical Lexical Lexical Lexical
information information information information
ofWord I of Word 2 of Word 3 ofWord4

Lexical Lexical Lexical Lexical
information information information information
ofWord I of Word 2 of Word 3 ofWord4

Lexical Null Null Lexical
information information
of Word I of Word 4

Null Null

Fig. 5.2 Linked List Structure for sentence

5.2.1.2 Generating and Combining Trees

After the creation of linked list of words with its Lexical information, as per the

category and sub-category information, Lexical Elementary-GB-Tree will be

generated. After that, every tree will try to full fill all its requirements. I.e. it will try

to get all required complements and specifiers and optional adjuncts. When ever a

.·tree's all conditions are satisfied it is treated as realized and eligible to attach any

64

other tree, provided it is having some relation with it. If it is not realized then tree will
'

deleted. This process will go on until the end of words, at the last one or more trees
0

may be generated.

5.2.2 Over View of Design

The analysis of the problem and its possible solutions led to the following design of

the system. The overall design of the parsing system, in terms of the main modules

and the inter-cormection between them is shown in Fig.5.3. The Parsing System

consists of 6 modules namely, Input Module, Preprocessor, Tagger, Data Structure

Generator which is connected with Lexicon, X-Bar tree generator and Parser.

5.2.2.1 Input Module

,The Parser System contains a Text Box which can allow the Unicode characters also,

where user enters Hindi sentence.

5.2.2.2 Preprocessor

The module removes redundant spaces, if existing between words in the given

sentence. In the Fig.5.3, this module is shown with dotted lines. The output of this

module is referred to as normalized input and this is given as input tothe Tagger.

. 5.2.2.3 Tagger

.The n01malized input (the output of the Preprocessor) is subdivided into lexical items.

The process of dividing the sentence into lexical items is more often known as Lexical

Analysis. Given "john reads newspaper in the morning daily" as input this module

would give the array Gohn, reads, newspaper, in, the, morning, daily) of subdivided

lexical items.

65

Input

Data Structure Generator Lexicon

Sentence with tagged words in a linked list

X-Bar Tree Generator

Parser

Fig. 5.3 Design of Parser.

66

REPRESENTATIONS:

--------------~

I - - - ...;; .':;; ;;;;_ ';.;;,.. _;, 1

I I --------------~
, ________ I

I t==l =~'' --------------~

--------------~

Figure 5.3

·5.2.2.4 The Lexicon

Independent module
with predefined input
and expected output

Independent Optional
module with predefined
input and expected output

Represents the output of the
above module and used as an
input to module below.

Represents the database

The structure of the Lexicon has been described in Chapter 4. We may note that a

given word may carry different category and subcategory information and other

attributes also. For every word one or more lexical entries will stored in lexicon,

which depends solely on word.

5.2.2.5 Data Structure Generator

In run time. all thewords are stored in specially designed data structure along with all

its attributes. This data structure basically a doubly linked list, where every node have

pointer to previous and next nodes. Here nodes contain lexical information of words.

Every word may have one or more entries in Lexicon, so for a particular word, if it

contain more than one entry in Lexicon, nodes will be attached vertically. So, it

maintains doubly linked list in vertical direction also. A typical data structure of a

67

node of word for verb category looks like as shown in Figure 5.1. As per the category

some fields may vary. Here Number of complements may be less than are equal to 3,

if only one complement available remaini'ng fields kept empty.

In data structure, tree pointer contains a pointer to a tree which will be constructed as

per the information stored in node. The complete data structure after reading all words

shown in Figure 5.2.

5.2.2.6 X-Bar Tree Generator

The Lexicon stores the category information and sub-category information of each

word, by retrieving this information X-Bar Tree generator generates the

coJTesponding elementary tree for given word.

The Building X-Bar tree start from the bottom and goes to up, i.e. a lexical word is

generated, followed by a "level 0" tree. And word is added as child to "level O"(XO)

tree. Then "level 1" (X') tree will be generated. X' may have none, one or two

complements, which can be known from the lexicon information of word, as per this

information number of child pointer will be present in X' node. And "leve! 0" tree

·will be attached as child to "level 1" tree. Then phrase level (XP) tree will be

generated and level 1 tree added as child for that. This tree is pointed by the "Tree

pointer" attribute in node.

t
~

Tree
Verb Singular First Present Simple 0 Null Null ~Null Null

Pointer

~
Tree

Verb Singular First Present Simple 2 PP(Obj) NP(Obj) Null Null
Pointer

I

...

Figure 5.5 Data Structure for word ffi'li>IC11

68

Exa_mple: if word ~liktl encountered by X-Bar Tree generator, it will find three

entries for this word as shown in Figure 5.5, first entry with no complements, second

entry with one complement i.e a Noun Phrase and third entry with the two

complements as Noun Phrases. X-Bar elementary trees for these entries are shown in

Figure 5.6.

VP

V'

Figure 5.6

VP

V'

NP(o;1
yo

I NP(Obj)

X-Bar Elementary Trees

5.2.2.7 Adjuncts and specifiers table

VP

V'

Every word type has its specific adjuncts and specifiers. For each kind of word type

separate tables of adjuncts and specifiers will be maintained. A typical table of

adjuncts for Verb category is shown in figure 5.7.

Verb Adjunct T~ble

NP(Ins)

NP(Dat)

Figure 5.7 adjuncts table for Verb category

69

5.2.2.8 Parser

We have developed a Bottom-Up approach parser, using GB Phrase rules. The parser

'may generate zero or more parse trees for the given source language sentence. No

'parse tree is generated if the sentence does not conform to the GB rules of the source

language. More than one tree may be obtained as the Natural Languages are

ambiguous at each level, i.e. at word level, phrase level as well as at sentence level.

5.2.2.8.1 Attaching Complements

The parser traverse nodes from left to right in linked list as shown in the figure 5.2,

for every node the parser tries to get its complements if it requires. In Hindi all

complements are available in the left side of that node, so the parser checks in the left

side of node to find the required complement, if it succeeds to find a complement,

then it will attach complement tree at corresponding complement position. This

~omplement position in present tree will be known using number of complements it

has and index of the complement.

If the tree fails to get the required complements, that particular node will be removed

from the data structure; as a result the corresponding tree will be removed. So that it

cannot be attached as complement to any other tree, hence the parser can avoid

generating unnecessary trees. As every node is being visited by parser, and the

elementary tree in that node acquires required complements, at end complete trees

wi II be generated when all nodes have been visited.

5.2.2.8.2 Attaching adjuncts and specifiers

After searching and connecting the complements for a particular word, parser checks

for adjuncts to it with the information available in adjunct and specifier table. If parser

gets any adjuncts, prepares a list of adjuncts and connects these to tree by modifying

existing tree. After that parser searches for specifier in the left side of the word and

connects it, if found.

70

5.2.2.8.3 Checking the completeness of Tree's

As for every sentence, subject will be treated as special case; IP should have subject

of the sentence as the specifier. If IP does not find specifier, the tree will be discarded.

Some trees may not have all words of given sentence, these sentences also discarded

by parser. Remaining trees which represents the whole words in given sentence are

treated as final trees, these are syntactically correct, in these some trees may be

eliminated at the semantic level checking.

5.3 EXPLANATION OF PARSER WITH AN EXAMPLE

5.3.1 With a Correct Sentence's

'this section explains the working of the parser with the help of an example. Let the

Hindi sentences given to parser at different instances will be:

The Input Module reads the sentence as it is, presents this as an input to the

Preprocessor. The Preprocessor removes the redundant blanks and converts the input

sentences into a normalized form as shown below:

Ud1 ffi {5I (""I I ~

Ud1 ~ cnT Q::f ffi {5I <""I I ~

Ud1 crn>raT ~ ~ Q::f ffi {5I <""I I ~

Next, the normalized sentence is sent to Tagger. The Tagger first divides the sentence

into lexical items Ud1, ffi{Sl<""ll and~ for first sentence, and Ud1, ~. q;l, ~. Q::f,

. ffi{Sl<""ll and ~ for second sentence and Ud1, ~. ~' Q::f, f<>:i:W<""II and ~ for last

sentence.

71

These words will get all its attributes from the lexicon and as per the Lexicon

information, elementary trees will be created. For creating elementary tree, category

of word, number of complemetlts and type of complements information only used.

Now for every sentence parser reacts differently to build the complete parse tree. First

we will see how parser will work for the sentence"~ ffi&<'11 ~·.

The word ~ have one entry in lexicon, so it will generate an elementary tree, this is

shown in figure 5.7.

NP

I
N'

I
No

I

Figure 5.7 Elementary tree for word "Udl''

As it does not require any complement, parser not searches for complements. Now

parser will check for the adjuncts with using the information stored in adjunct table in

sentence for word~. as no adjunct is available, tree will remain same.

Now the word ffi&<'11 will be encountered by parser. This word has three entries in

the lexicon. so three elementary trees will be generated as shown in Figure 5.8.

72

YP YP
YP

Y' Y'
Y'

NP(~
yO

I

yO

I NP(Obj)

Tree 1 Tree 2 Tree 3

FiQure 5.8 X-Bar Elementarv Trees

The tree 2 and 3 will be deleted, as these trees can not find required complements. So,

only tree 1 will remain. As parser encounters "t', it generates an IP and connects YP

as complements for it. So, resulting tree after generating IP is shown in Figure 5.9.

IP

I
~I'

VP . I
I ~"

V' I

I
yo

I

Number: Singular
Person: Third
Tense: present
Aspect: Simple

Figure 5.9 IP Tree generated for"~ f<>l:W("fl t''

73

Now parser will check for the specifier for the IP, specifier is to be known from

specifier table. Specifier of IP always a NP, with a Nominative case marker. So the

final tree will be generated as shown in figure 5.10.

NP

I
N'

I
N

0 .

I

IP

I'

~.
T I
V' ~

I

~ '!SI(i I

Number: Singular
Person: Third
Tense: present
Aspect: Simple

Figure 5.10 Complete parse tree for "Udi ~'!SI(il ~'

The next sentence "Udi ~ c:nl q:;r ~'!SI(il ~'the parser acts differently. For word

·"Udi'' parser acts similarly as acted for "Udi ~'!SI(il ~,and generates tree shown in

figure 5.7.

74

pp

I
P'

~
T I
N' q:;)-

1
No

I
~

Figure 5.11 Elementary tree for word " ~ cpf'

The next word is~ of sentence can have no complements. As word"~" also

did not get any adjunct, elementary tree generated will not be modified, as it followed

by a Post Position "cpf', which takes NP as complement, the tree for "~ CfiT"

generates a tree shown in Figure 5.11.

NP

I
N'

I
~

I

Figure 5.12Elementary tree for word "Q-;r'

75

The next word is Q:if of sentence can have no complements and can not get any

adjuncts. The elementary tree is shown in Figure 5.12.

Now parser encounters word "~'W('11" and generates three trees as shown in figure

_5.8. All three trees will remain, as every tree can get required complements. That is

first tree does not require any complement, second tree require one NP(Obj)

complement which is available in form of "q-3{'' and third tree requires one PP(Obj)

and one NP(Obj) as complements and can get these in form of ~ c:nl, Q:if. So

resulted trees looks like in Figure 5.13.

76

YP

I
Y'

I
yo

I

Tree 1

pp

I
P'

~0
NP p

I I
N' cnT

I
No

I

YP

I
~V'

NP I
yO

I I
N' ft>'l :& (11

I
~

I

Tree2

VP

I
V'

NP

I
N'

I
No

I

Tree3

~
=<igure 5.13 Intermediate trees for "Udl ~ cnT Q?f R>'l:&C11 ~'

77

Next an IP will be generated for each VP and specifier will be attached to that tree.

NP

I
N'

I
No

I

NP

I
N'

I
No

I

NP

I
N'

I
No

I

IP

~~~ 
VP f 

I I 
V' 

I 
yo 

I 

Tree 1 

Number: Singular 
Person: Third 
Tense: present 
Aspect: Simple 

IP 

Number: Singular 
Person: Third 
Tense: present 
Aspect: Simple 

q:r Tree 2 

5.14. A. Trees generated for "UJ1 ~ c:o1 Q:f fc:l&C"'l ~· 

78 



NP 

I 
N' 

I 
No 

I 

IP 

~I' 
VP I 
I . rio 

~V' pp ____________ N_P_ I 
I . yO 

Number: Singular 
Person: Third 

P' I I /1 N' 

r<P pO I 

I I T 
N' em 

I 
No Tree3 

Tense: present 
Aspect: Simple 

I 
~ 

5.14.B. Trees generated for "tm" ~ em ~ Q:w("'l €;' 

Here three final trees are generated, which are shown in figure 5.14. But only tree 3 

represents all words in the sentence. So, remaining trees will be deleted. Tree 3 will 

become final tree. 

The next is sentence "tm" ~ ~ ~ ~ Q<w("'l f:;"''. In case "tm"'', it is similar 

to earlier cases. So, it generates a tree shown in 5.7. The next word"~' also not 

have any complements and its adjunct details does not match with any word in 

sentence, it have a Post position word "#'so a tree shown in figure 5.15 will be 

created. The next word is~ of the third sentence, which is adjective, will not find 

79 



any matching adjuncts, so elementary tree generated as shown in figure 5.16. 

pp 

I 
P' 

~ 
NP P0 

I I 
N' ~ 

I 
No 

I 

Figure 5.15Elementary tree for word "q:;(>fcJf *'' 
AdjP 

Adj' 

Figure 5.16 Elementary tree for word"~' 

The next word is q;r can have no complements and can find a matched adjunct to it as 

"~". The elementary tree will be altered and tree shown in figure 5.17 will be 

created. 

80 



NP 

I 
N' 

Ad~, 
I 

Adj' 

~ 

I 

Figure 5.17 Intermediate tree generated for word " W t:l?f'' 

Now parser encounters "f6l<til(il", only first two trees can get required complements 

and resulted trees can look like as shown in Figure 5.18. Third tree will be deleted. 

Now parser checks for the adjuncts for f6l<til<'11, parser can get "m' as the adjunct 

for tree 2 of figure 5.18. "~ ~", "~{J"I" will be adjuncts for tree 1 of figure 

5.18. So trees will be generated as shown in figure 5.19. 

81 



VP 

I 
V' 

I 
yo 

I 

Tree 1 

VP 

I 
~Y' 

NP I 
I 

N' 

Ad~, 
I 

Adj' 

yO 

I 

Tree 2 

Figure 5.18 Intermediate trees for "'Udf ~ ~ ~ Q"'3f f<>:i<&C11 ~, 

YP 

I 
Y' 

pp 

I 
l 

P' 

N~ 
I pO 

N' l 
l ~ 

No 

I 
Figure 5.19 A Intermediate trees for "'Udf ~ ~ ~ Q"'3f f<>:i<&C11 ~' 

82 



pp 

I 
P' 

~0 
T I 
N' ~ 

I 
No 

I 

VP 

l 
V' 

V' 

/1 
T I 

fc>:l 'til (i I N' 

Ad~. 
I 

.dj' 

N> 

Ad/ I 

Figure 5.19 A intermediate tree for "Udl ~. ~ ~ Q""3f fc>:i'liiCil E;• 

Now for these 2 trees IP will be generated and, specifier will be co?nected. But tree 1 

can not represents all words, so it will be deleted. So final tree is looks like as shown 

in figure 5.20. 

83 



NP 

I 
N' 

I 
No 

I 
pp 

I 

N' 

Ad~, 
I 

Adj' 

Number: Singular 
Person: Third 
Tense: present 
Aspect: Simple 

5.20 Complete parse tree generated for"~ ~ ~ ~ Q?f ~'m(il ~, 

84 



5.3.2 with a Wrong Sentence 

This section explains how parser will reject a wrong sentence, when it given as input 

to the parser. If the following sentence given as input to parser, 

IP 

I 
I' 

~ 
VP 

I 
V' 

~' 
T J, 
P' 

N;-1 
I pO 

N' I 
I ~ 

No 

I 

Number: Singular 
Person: Third 
Tense: present 
Aspect: Simple 
Gender Female 

Figure 5.21A intermediate tree for "Uiff ~ ~ Q:f ~:Wkl (;• 

85 



tm", ~ and Q?l" will generate elementary trees as explained in previous section. 

The word "ffi:&fa" is the verb. Which have the same entries in lexicon as of 

"ffi:W<il", but only one attribute is different. That is, gender is "female". The IP will 

be generated as shown in figure 5.21 for this sentence. 

pp 

I 
P' 

~u 
T I 
N' ~ 

I 
No 

I 

NP 

I 
N' 

I 
No 

I 

IP 

I 
I' 

~ 
VP 

I 
V' 

Number: Singular 
Person: Second 
Tense: Present 
Aspect: Simple· 

Figure 5.21B intermediate tree for "tm" ~ ~ Q?l" ffi:wQ ~, 

86 



Both trees need a specifier which is having a gender attribute as female only, but word 

"Udl" is second person. So, parser will reject the sentence. So no tree will be 

generated finally. 

5.4SUMMARY 

Parsing is the heart in translation system, so various kinds of parsing strategies are 

studied. As we are handling with the elementary tree's we chosen the bottom-up 

approach parsing for parse the sentence. As per the lexicon information elementary X­

Bar trees will be generated and every tree will go on get the complements to fill its 

requirements, at the last complete parse tree for a sentence is created. 

/ 

87 



Chapter 6 

CONCLUSIONS AND FUTURE 

ENHANCEMENTS 

6.1 CONCLUSIONS 

We have developed Elementary trees based parsing for Natural Language with Hindi 

as language. While various parsing systems are being developed across the world 

using conventional approaches like Ruled- based or Exampled-based, we have 

adopted Government and Binding (GB) elementary tree approach in our Parsing 

system. The GB theory with its emphasis on Universal Grammar, its universality in 

handling Natural Languages, and its computational properties led to its choice over 

other conventional approaches. The GB frame work provides symmetric structures for 

the translation between any two pair of languages. The important modules of GB are 

X-Bar levels and phrase structures. 

The phrase structure rules are developed by us both Hindi include Verb Phrase 

Structure, Noun Phrase Structure, Adjective Phrase Structure, and Inflection Phrase 

Structure. These Phrase Structures have been obtained after a thorough analysis of 

various phrases in Hindi language. The analysis includes determining the 

complements for each lexical type, determining adjuncts and specifiers for each type 

of Phrase Structure. In a sentence there are only two main types of phrases, Verb 

Phrase and the Noun Phrases. 

A robust lexicon has been developed for the parsing system, which contain category 

and subcategory information of the every word. In general, the Lexicon contains the 

category and subcategory information for the words, the phonetic information 

(relating to speech sounds), and thematic information. However, in our case we are 

not using phonetic and thematic information. The lexicon developed by us for the 

parsing system can be further improved by defining and adding finer thematic 

information and phonetic information. 

88 



A Bottom-Up approach parsing technique using is developed of the parser. Since all 

we need to do is, recognizing the input (i.e. syntactic structure of the input), then 

Bottom-Up approach parser is the best method of choice. Our parser is able to parse 

all kinds of sentences, which may be ambiguous. Even for parsing, the complex 

sentences we need not change the basic parsing module, but simply enter more data in 

lexicon. Parser may produce more than one parse tree for sentence which are 

syntactically correct, but not semantically. Parser is developed such that it can work 

for any language provided lexicon data entered properly for that particular language. 

The system is implemented using VISUAL C#. The rich GUI, Unicode support, 

.NET technology, easy connectivity with the databases, and its user-friendly nature 

led to the choice of Visual C# over other languages. The Lexicon is stored in 

databases. We thus have SQL Server 2000 functioning at the back-end of our 

translation system. The UNICODE has been used for storing the information. 

6.2 FUTURE ENHANCEMENTS 

As pointed out above enhancements are needed in the area of lexicon for storing more 

information. Due to paucity of time, we have not covered movement, traces, empty 

categories, binding, and case assignment. In our opinion, one way of handling all 

these issues is to suitably modify the Phrase Structure (Rules). This will require few 

changes in the Parser. This therefore will be the next task we would like to take up. 

The current parser's space complexity also can be reduced by a little as its storing 

many intermediate trees. 

It can be extended for more complex sentences which contain connectives like 

conjunctions and Question forms. At this time it is also handling simple sentences not 

having Complementizer Phrases. It can be extended for interrogative sentences. 

Reverse morphology (finding root word from derived word) process has to included 

which can reduce the size of lexicon and improve efficiency of parser. 

We have already said that Hindi is a completely word order free language. There is a 

need therefore to convert a word order free sentence into a structured sentence needed 

for GB frame work. As the work will progress further we may see the necessity of 

other modifications and processes in the framework 

89 



APPENDIX 

CP stands for Complementizer Phrase 

NP stands for Noun Phrase 

VP stands for Verb Phrase 

~ PP stands for Prepositional Phrase 

AdjP stands for Adjective Phrase 

ADV stands for Adverb 

90 



REFERENCES 
/ 

[ 1] Alfred V. Aha, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles 
techniques and tools. Addison-Wesley, 1986. 

[2] Aravind K. Joshi. 1987. An Introduction to Tree Adjoining Grammars. In A. 

Manaster-Ramer, editor, Mathematics of Language, John Benjamins, Amsterdam. 

[3] Aravind K. Joshi and Yves Schabes. 1992. Tree-adjoined grammars and 

lexicalized grammars. In Maurice Nivat and Andreas Podelski, editors, Tree 

Automata and Languages. Elsevier Science. 

[4] Arnold, D., Balkan, L., Humphreys, R. L., Meijer, S. & Sadler, L. (1994), 

Machine translation: an introductory guide, Blackwells/NCC, London. An HTML 

and a Postscript version of this book is available at 

http://cl www .essex.ac.uk/MTbook/ and 

http://clwww.essex.ac.uk/MTbook!HTMU respectively. 

[5] B. Carpenter. 

The Logic of Typed Feature Structures with Applications to Unification 

Grammars, Logic Programs and Constraint Resolution, Cambridge University 

Press, 1992, no ISBN 0-521-41932. 

(6] Boullier, P.: Range concatenation grammars. In: Proceedings of IWPT '00, Trento, 

Italy (2000) 53-64 

[7] C. Pollard, I. A. Sag. Head-Driven Phrase Structure Grammar, University of 

Chicago Press, Chicago, 1994. 

[8] Chomsky. Noam. 1981. Lectures on Government and Binding. Dordrecht: Faris 

Publications. 

91 



[9] Fromkin (2000), Chapter 3.2 (Constituent Order, Case Marking and Thematic 

Roles) 

[lO] Fromkin, V.A. and Rodman, R. 1997. Introduction to Language~ Harcourt Brace. 

6th edition. Translated into Portuguese, Japanese, Chinese, Korean, Hindi, Dutch. 

[11] Gazdar, G. (1985), Applicability of indexed grammars to natural language. 

Technical Report CSLI { 85-34, Center for the Study of Language and 

Information, Stanford. 

{12] Haegeman, Liliane. 1994. Introduction to Government and Binding Theory. 2 ed. 

Oxford: Blackwell. 

[13] Hutchins, W. J. & Somers, H. L. ( 1992), An introduction to machine translation, 

Academic Press, London. 

{14] M. R. Kale.'(l988), A Higher Sanskrit Grammar 

fl5] McCawley, James D. 1998. The Syntactic Phenomena of English. 2 ed. Chicago: 

University of Chicago Press. 

[16] R. M. Kaplan. J. Bresnan. 

Lexical-Functional Grammar: A formal system for grammatical representation, in: 

"The Mental Representation of Grammatical Relations, Cambridge, MA", J. 

Bresnan (editor)., Reprinted m Mary Dalrymple, Ronald M. Kaplan, John 

MaxwelL and Annie Zaenen, eds., Formal Issues in Lexical-Functional Grammar, 

29-130. Stanford: Center for the Study of Language and Information. 1995., The 

MIT Press. 1982, p. 173-281. 

[ 17 I http://pt. wikipedia.org/wiki/Tradutor_autom%C3%A1 tico 

92 



[ 18] www .systransoft.com 

[19] Ullman J. D. and Hopecroft J. E. Introduction to Automata Theory, Languages 

and Computation. Addison-Wesley, 1979. 

[20] Wren & Martin, 2001, High School English Grammar &Composition. 

[21] http://www.it-c.dk/people/pfw/hindi 

93 


	TH138090001
	TH138090002
	TH138090003
	TH138090004
	TH138090005
	TH138090006
	TH138090007
	TH138090008
	TH138090009
	TH138090010
	TH138090011
	TH138090012
	TH138090013
	TH138090014
	TH138090015
	TH138090016
	TH138090017
	TH138090018
	TH138090019
	TH138090020
	TH138090021
	TH138090022
	TH138090023
	TH138090024
	TH138090025
	TH138090026
	TH138090027
	TH138090028
	TH138090029
	TH138090030
	TH138090031
	TH138090032
	TH138090033
	TH138090034
	TH138090035
	TH138090036
	TH138090037
	TH138090038
	TH138090039
	TH138090040
	TH138090041
	TH138090042
	TH138090043
	TH138090044
	TH138090045
	TH138090046
	TH138090047
	TH138090048
	TH138090049
	TH138090050
	TH138090051
	TH138090052
	TH138090053
	TH138090054
	TH138090055
	TH138090056
	TH138090057
	TH138090058
	TH138090059
	TH138090060
	TH138090061
	TH138090062
	TH138090063
	TH138090064
	TH138090065
	TH138090066
	TH138090067
	TH138090068
	TH138090069
	TH138090070
	TH138090071
	TH138090072
	TH138090073
	TH138090074
	TH138090075
	TH138090076
	TH138090077
	TH138090078
	TH138090079
	TH138090080
	TH138090081
	TH138090082
	TH138090083
	TH138090084
	TH138090085
	TH138090086
	TH138090087
	TH138090088
	TH138090089
	TH138090090
	TH138090091
	TH138090092
	TH138090093
	TH138090094
	TH138090095
	TH138090096
	TH138090097
	TH138090098
	TH138090099
	TH138090100
	TH138090101
	TH138090102

