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ABSTRACT 

The RoboCup Federation offers a challenging and complex test bed for all kinds of 

scientific methods by organizing international competitions in robotic soccer. RoboCup 

2D-Simulation League is one of the important competitions. It is a complex multi-agent 

domain which is real-time, noisy, collaborative and adversarial .Research in this domain 

covers a gamut of areas as networking, AI and machine learning etc., but it will remain 

main problem for AI at least for fifty years. 

Learning defensive tactics at teamwork level is an example of collaborative and 

adversarial learning. This work presents a novel idea for the improvement in defensive 

tactics of an agent in Simulated RoboCup Soccer by using Extended Shaped 

Reinforcement learning under layered learning paradigm. The major contributions of this 

dissertation are to extend Shaped Reinforcement learning to make it workable for 

collaborative and adversarial domains like soccer and hence to speed up the learning 

process of an agent by reducing the state space to a drastically small level and by 

providing an efficient and implicit action selection mechanism at teamwork level. 
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Chapter 1 

Introduction 

Computing has evolved from the age of computing machines (1950-1960) to intelligent 

autonomous robots through various breakthroughs [Minsky 87]. Hence Distributed 

Artificial Intelligence (DAI) attracted special attention in the last two decades. Broadly it 

encompasses two main categories, Distributed Problem Solving and Multi-Agent 

Systems (MAS). 

1.1 Overview of the Problem Domain 

The modern approach to artificial intelligence (AI) IS centered around 

the concept of a rational agent. An agent is anything that can perceive its environment 

through sensors and act upon that environment through actuators. An agent that always 

tries to optimize an appropriate performance measure is called a rational agent. Such a 

definition of a rational agent is fairly general and can include human agents (having eyes 

as sensors, hands as actuators), robotic agents (having cameras as sensors, wheels as 

actuators), or software agents (having a graphical user interface as sensor and as 

actuator). From this perspective, AI can be regarded as the study of the principles and 

design of artificial rational agents. 

However, agents are seldom stand-alone systems. In many situations they coexist and 

interact with other agents in several different ways. Examples include software agents on 

the Internet, soccer playing robots. Such a system that consists of a group of agents that 

can potentially interact with each other is called a multi-agent system (MAS).Aithough 

according to the strong notion of agency, multi-robots are considered special case of 

multi-agent systems [Dudek et. al 96]. But there are inherent differences between these 

two sys:ems [Farinelli et. al 2003]. Certainly there are large number of domains in which 

both the areas seems to be equivalent [Farinelli et. al 2003]. But research issues related to 

multi-robots should be enquired in the context of multi-agent systems as well as in the 



light of inherently different robotics problems. An agent is anything that can be viewed as 

perceiving its environment through sensors and acting upon that environment or an agent 

is a computer based system that is capable of doing independent action on behalf of its 

user [Wooldridge 2002]. 

The study of multi-robot systems (MRS) has received increased attention since the mid-

1990's.This is not surprising as continually improving technology and infrastructure have 

made the deployment of MRS consisting of increasingly larger numbers of robots 

possible. With the growing interest in MRS comes the expectation that, at least in some 

important respects, multiple robots will be superior to a single robot in achieving a given 

task. The real world problems that are ideal for robotic solutions are very complex and 

challenging and most of them are centered on mainly three characteristics of the domains 

as, these domains are real-time, noisy and collaborative. RoboCup Soccer is the only 

problem domain of MRS which is adversarial (Other robots in the environment that have 

goals opposed to the team's long-term goal are the team's adversaries). It offers the rich 

test bed for almost every aspect of artificial intelligence. 

1.2 RoboCup Soccer 

RoboCup (The Robot World Cup Initiative) is an attempt to promote intelligent robotics 

research by providing a common task for evaluation of various theories, algorithms, and 

agent architectures . RoboCup has currently chosen soccer as its standard task. In order 

for a robot (a physical robot or a software agent) to play a soccer game reasonably well, 

many technologies need to be integrated and a number of technical breakthroughs must 

be accomplished. The range of technologies spans the gamut of intelligent robotics 

research, including design principles for autonomous agents, multi-agent collaboration, 

strategy acquisition, real-time reasoning and planning, robot learning, and sensor fusion. 

It's obvious that building a robot to play a soccer game is an immense challenge. The 

First Robot World Cup Soccer Games and Conferences (RoboCup-97) was held during 

the International Joint Conference on Artificial Intelligence (IJCAI-97) at Nagoya, Japan 

with 37 teams around the world, and the Second Robot World Cup Soccer Games and 
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Conferences (RoboCup-98) was held on July 2-9, I 998 at La Cite des Sciences et de 

I'Industrie (La Cite) in Paris with 61 teams. RoboCup-99 Stockholm will be held in 

conjunction with IJCAI-99 participated in by over 120 teams The idea of using soccer for 

robotics research is not new. In I 993, Alan Mackworth proposed in a paper titled "On 

Seeing Robots" [Mackworth 93] that soccer can be a good tested of robotics and AI 

research. Independently, several researchers have been working on the soccer domain. 

These efforts merged into RoboCup. A unique feature of RoboCup is that it is a 

systematic attempt to promote research using a common domain, mainly soccer. 

RoboCup is designed to require the handling of real-world complexities, though in a 

limited world, while maintaining an affordable problem size and research cost. RoboCup 

offers an integrated research task covering broad areas of intelligent robotics. Such areas 

include: real-time sensor fusion, reactive behavior, strategy acquisition, learning, real­

time planning, multi-agent systems, context recognition, vision, strategic decision­

making, motor control, intelligent robot control, and many more. 

Currently, RoboCup consists of three competition tracks [Asada et al. 99] : 

1.2.1 Simulation league 

Each team consists of eleven programs, each controlling separately each of the eleven 

team members. Each player has distributed sensing capabilities (vision and auditory) and 

motion energy both of which are resource bounded. Communication is available between 

players and strict rules of the soccer game are enforced (e.g., offsides). This league is 

mainly for researchers who may not have the resources for building real robots, but are 

highly interested in complex multi-agent reasoning and learning issues. 

1.2.2 Small-size real robot league 

The field is of the size and colors of a ping-pong table and up to five robots per team play 

a match with an orange golf ball. The robot size is limited to approximately 15 cm3. 

Typically robots are built by the participating teams and move at speeds of up to 2m/s. 

Global vision is allowed, offering the challenge of real-time vision-based tracking of five 

fast moving robots in each team and the ball. 
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1.2.3 Middle-size real robot league 

The field size is of the size and color of three by three ping-pong tables and up to five 

robots per team play a match with a Futsal-4 ball. The size of the base of the robot is 

limited to approximately 50 em diameter. Global vision is not allowed. Goals are colored 

and the field is surrounded by walls to allow for possible distributed localization through 

robot sensing. 

One of the major reasons why RoboCup attracts so many researchers is that it requires 

the integration of a broad range of technologies into a team of complete agents, as 

opposed to a task-specific functional module. [Asada 98] gives a partial list of research 

areas which RoboCup covers: 

• Agent architecture in general; 

• Combining reactive approaches and modeling/planning approaches; 

• Real-time recognition, planning, and reasoning; 

• Reasoning and action in a dynamic environment; 

• Sensor fusion; 

• Multi-agent systems in general; 

• Behavior learning for complex tasks; 

• Strategy acquisition; 

• Cognitive modeling in general. 

1.3 RoboCup challenge in simulation 

RoboCup offers significant long term challenges which will take few decades to meet. 

The fundamental issue for researchers who wish to build a team of RoboCup is to design 

a multi-agent system that behaves in real time, performing reasonable goal-directed 

behavior. Goals and situation change dynamically and in real time. The challenges for 

simulated league must include the following issues - Machine learning in a multi-agent 

system, collaborative and adversarial environment, Multi-agent architectures enabling 
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real time multi-agent planning and plan execution in service of team work and opponent 

modeling. 

[Kitano et al. 98] proposed three main challenges in simulated RoboCup leagues: 

• Teamwork challenge. 

• Opponent modeling challenge 

• Learning challenge. 

1.3.1 Teamwork challenge 

The RoboCup teamwork challenge addresses the issues of, real time planning, re­

planning and execution of multi-agent team work in a dynamic and adversarial 

environment 

1.3.2 Opponent modeling challenge 

It includes the research issues like modeling and reasoning about other agents goal, 

plans, Knowledge, capabilities, or emotions. The modeling issue in RoboCup can be 

broken in to three parts as on-line tracking, on-line strategy recognition and off-line 

review. 

1.3.3 Learning challenge 

The objectives of RoboCup learning challenge is to solicit comprehensive learning 

schemes that is applicable to multi-agent learning systems which need to adapt to the 

situation and to evaluates merits and demerits of proposed approaches using standard 

tasks. It includes the research issues associated with learning aspects of RoboCup as: 

• Off-line skill learning by individual agent. 

• Off-line collaborative learning by teams of agents. 

• On-line skill and collaborative learning. 

• On-line adversarial learning. 
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Among all the above written challenges learning is most challenging issue because of the 

fact that learning has to be embodied into team and agents architecture and opponent 

models under the constraints of time and recourses. 

1.4 Motivation 

On line learning has been a challenging issue in Simulated RoboCup soccer especially at 

the teamwork level. There are number of learning tasks which involves adversarial and 

collaborative learning e.g. pass selection, improving defensive and offensive tactics. This 

work is inspired from [Mataric 97] and [Stone and Veloso 98]. This work is an effort to 

combine the advantages of both the approaches and make it workable to improve 

defensive tactics. 

1.5 Related work 

Several people have studied collaboration among agents (commitment, co-evolution, etc.) 

and several people have studied adversarial multi-agent situations (game theory, Markov 

games, etc.). Yet there has been little effort towards studying situations in which agents 

reason about collaborating with other benevolent agents while at the same time trying to 

outwit one or more opponents. Collaborative environments have l:!een examined in the 

field of MAS [Grosz 96, Sycara et al. 96, Cohen et al. 99], and adversarial domains have 

been considered in AI game playing systems such as for checkers [Samuel 59] and chess 

[Newell and Simon 72]. However these adversarial domains are turn-taking as opposed to 

real-time, they are not noisy, and there are no collaborative agents. Littman uses Markov 

games to learn stochastic policies in a very abstract version of 1-on-1 robotic soccer 

[Littman 94]. There have also been a number of studies of multi-agent reinforcement 

learning in the pursuit domain with four predators chasing a single prey in a small grid­

like world. For example, [Tan 93] compares situations in which predator agents are 

allowed to share reinforcement information and/or policies , [Arai 97] provides agents 

with reinforcement for enabling successful actions by teammates and [Ono 97] equips 

each predator agent with different behavior modules based on how many teammates are 

closer than it is to the prey. Even the relatively complex backgammon [Tesauro 94] and 

elevator control [Crites and Barto 96] domains have much smaller state space than the 
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simulated robotic soccer domain. In another predator-like task, Zhao and [Schmidhuber 

96] use a single run to deal with the opponents' shifting policies and ignore the opponents' 

policies just as we do. The effects of opponent actions are captured in the reward 

function. In robotic soccer, a reinforcement learning approach has been used for strategic 

positioning [Andou 98] in the soccer server. Introducing observational reinforcement 

learning, this system allows players to notice where the ball has traveled most often in the 

past and to adjust their positions such that they are closer to the ball's path in the future. 

1.6 Outline of the Thesis 

Chapter2 Introduces the learning approaches and ideas and gives the basics of shaped 

reinforcement learning and layer learning concepts. 

Chapter 3 describes the extended shaped reinforcement learning technique along with 

details the complete behavior specifications, conditions, heterogeneous 

reward functions and progress estimators. 

Chapter 4 Provides benefits of the proposed work and results. 

Chapter 5 presents conclusion of the dissertation and future work. 
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Chapter 2 

Underlying Approaches 

Reinforcement learning offers a powerful set of techniques that allow a robot to learn a 

task without requiring its designer to fully specify how it should be carried out. If the task 

is feasible and feedback regarding how well the agent is doing is provided, several 

reinforcement learning techniques are guaranteed to converge to the optimal solution. 

The guarantees are tempered by rather strong conditions for convergence. Q-learning for 

example, requires all actions to be repeatedly sampled in all states. 

In the last decades the suitability of reinforcement learning in variety of domains 

including robotics has become a methodology for learning. But Traditional reinforcement 

learning results in poor performance [Mataric 97] in dynamic situated multi-agent 

domains characterized by multiple goals, noisy perception and action, and inconsistent 

reinforcement. In highly dynamic and noisy environment where agents can not sense the 

world's state or event their own states completely traditional reinforcement learning can 

not work, hence some modifications and enhancements should be done in traditional 
< 

reinforcement learning. Next two sections describe such learning techniques. 

2.1 Shaped Reinforcement Learning 

[Mataric 97] gives, one of the fundamental causes of inapplicability of theoretical 

reinforcement learning paradigms to real time robotic systems lies in the assumption that 

agent-environment interaction can be modeled as a Markov Decision Process ( MDP). It 

puts the main problems with traditional reinforcement learning in to two broad categories 

as: 

• . Managing complexity in size of the state space. 

• Dealing with structuring and assigning reinforcement. 

[Mataric 97] has given an intelligent way of dealing with the above written problems of 

reinforcement learning in situated domains, by reducing state space through the use of 
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behaviors and their associated conditions, and shapes reinforcement with heterogeneous 

reward function and progress estimators. 

2.1.1 Managing State Space Complexities 

The environment of an agent is partially observable through its noisy sensors, which 

provide the input state as a combination of discrete a continuous sensory inputs, this 

makes learning space exponentially high. Situation becomes worse in the presence of 

other agents. Consequently some form of input generalization or state clustering becomes 

necessary for most non-trivially sized learning problems. Moreover state transitions are 

largely externally induced and asynchronous, and their causes can not always be sensed, 

and for agents action selection becomes a more difficult task. This work describes a 

method of state clustering through the use of behaviors and conditions, which allow 

agents to learn policies without assuming any world model by the inclusion of implicit 

domain knowledge in to various reinforcements. 

Conditions 

Conditions are the predicates on sensor readings that map into a proper subset of the state 

space. Each condition is defined as the part of the state that is necessary and sufficient for 

activating a particular behavior. The truth vale of a condition determines when a behavior 

can be executed and when it should be terminated and provides a set of events for the 

learner's control algorithm. 

Behaviors 

Behaviors are goal driven control laws that achieve and/or maintain particular goals to 

abstract away the low level details of control. Well-designed behaviors utilize the 

dynamics of the system and its interaction with the world in order to achieve robust 

performance. 

2.1.2 Shaping Reinforcement 

A multi-agent environment does not provide a direct source of reinforcement because of 

the fact that other agent can also affect the environment, this makes assignment of credits 
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or punishments extremely difficult and such complex environment produces a 

confounding credit assignment problem. 

Shaping principle is based on principled embedding of domain knowledge in order to 

convert intermittent feedback into more continuous error signal using two types of 

reinforcement- heterogeneous reward functions and progress estimators. It is obvious that 

the more subgoals the system recognizes, the more frequently reinforcement can be 

applied, and the faster the learner can converge. In this system each behavior provides a 

goal whose achievement can be detected as an event, and can also be directly translated 

into reinforcement signal. 

Heterogeneous Reward Functions 

These. functions combine multi-modal feedback from the available external (sensory) and 

internal (states) modalities. The combination is a weighted sum of inputs from the 

individual event-driven functions. These reward functions, much like most typically used 

in reinforcement learning, deliver reinforcement in response to events, i.e. between 

behaviors. 

Progress Estimators 

These are evaluation metrics relative to a current goal that the robot can estimate during 

the execution of a behavior. Progress estimators diminishes the brittleness of the learning 

algorithm by decreasing the sensitivity to noise by strengthening appropriate condition 

behavior correlations, by encouraging exploration by using lack of progress to terminate 

behaviors principally and by decreasing the fortuitous rewards. 

A shaped learning algorithm learns and maintains value function that maps conditions c 

to behaviors b based on its appropriateness. This appropriateness is computed by the total 

reinforcement behavior gets over a period of time, and this total reinforcement at any 

point is the weighted sum of heterogeneous reward function and progress estimators. In 

shaped learning algorithm agent learns a matrix A(c. b) through value function to select 

appropriate action in the given environmental condition. The values in the matrix 

tluctuate over time based on received reinforcement. 
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In the following equations R11 (c,t), R; (c,t) is heterogeneous reward function and progress 

estimators respectively. 

T 

A(c,b) =I R(c,t), 
r=l 

R(c,t) = uR 11 (c,t)+ I u·iRi(c,t) 

Where u, wi > 0 and u +I wi = 1 
Vi 

2.2 Layered Learning 

Vi 

Layered learning is a bottom up hierarchical learning approach to the agent behaviors that 

allows machine learning at various levels and it is applied to the tasks for which learning 

a direct mapping from input to the output is intractable with the existed learning methods. 

[Stone and Veloso 98a] gives a framework of layered learning. Layered learning is 

designed for the domains that are too complex for learning a mapping directly input to 

the output representation. Instead the layered learning approach consists of breaking of a 

problem down into several task layers. At each layer, a concept needs to be acquired. A 

machine learning algorithm abstracts and solves local learning tasks 

2.2.1 Principles 

Layered learning is defined by four principles. In this section, I identify, motivate, and 

specify these four principles. 

Principle 1 

Motivated by robotic soccer, layered learning is designed for domains that are too 

complex for learning a mapping directly from an agent's sensory inputs to its actuator 

outputs. We assume that any domain that fits in the following criteria limited 

communication, real-time, noisy environments with both teammates and. adversaries is 

too complex for agents to learn direct mappings from their sensors to actuators. 
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Instead, the layered learning approach consists of breaking a problem down into several 

behavioral layers and using machine learning (ML) techniques at each level. Layered 

learning uses a bottom-up incremental approach to hierarchical task decomposition. 

Starting with low-level behaviors, the process of creating new ML subtasks continues 

until reaching high-level strategic behaviors that deal with the full domain complexity. 

Principle 2 

The appropriate behavior granularity and the aspects of the behaviors to be learned are 

determined as a function of the specific domain. The task decomposition in layered 

learning is not automated. Instead, the layers are defined by the ML opp011unities in the 

domain. Layered learning can, however, be combined with any algorithm for learning 

abstraction levels. In particular, let A be an algorithm for learning task decompositions 

within a domain. Suppose that A does not have an objective metric for comparing 

different decompositions. Applying layered learning on the task decomposition and 

quantifying the resulting performance can be used as a measure of the utility of A's 

output. 

Principle 3 

Machine learning is used as a central part of layered learning to exploit data in order to 

train and/or adapt the overall system. ML is useful for training behaviors that are difficult 

to fine-tune manually. It is useful for adaptation when the task details are not completely 

known in advance or when they may change dynamically. In the former case, learning 

can be done off-line and frozen during actual task execution. In the latter, on-line learning 

is necessary since the agent needs to adapt to unexpected situations, it must be able to 

alter its behavior even while executing its task. Like the task decomposition itself, the 

choice of machine learning method depends on the subtask. 

Principle 4 

The key defining characteristic of layered learning is that each learned layer directly 

affects the learning at the next layer. A learned subtask can affect the subsequent layer 

either (i) by providing a portion of the behavior used during training or (ii) by creating 
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the input representation of the learning algorithm. In general, machine learning 

algorithms - e.g. neural networks, Q-learning [Watkins 89], and decision trees [Quinlan 

93] require an input and output representation, a target mapping from inputs to outputs, 

and training examples. The goal of learning is to generalize the target mapping from the 

training examples which provide the correct outputs ~or only a portion of the input space. 

In summary, layered learning is a machine learning paradigm designed to allow agents to 

learn to accomplish a goal in a complex environment. Layered learning allows for a 

bottom up definition of agent capabilities at different levels in a complex domain. 

Machine learning opportunities are identified when data is available or the task is 

unpredictable and hand coded solutions are too complex to generate. Individual learned 

behaviors are organized, learned, and combined in a layered fashion, each facilitating the 

creation of the next. 

2.2.2 Layered Learning Formalism 

Consider the learning task of identifying a hypothesis h from among a class of 

hypothesis H which maps a set of state feature variables S to a set of output 0 such 

that based on the set of training example, his most likely (of the hypothesis H ) to 

represent un seen examples. 

When using the layered learning paradigm, the complete learning task is decomposed 

into hierarchical subtask layers {L1, L2 , ••• , Ln} with each layer defined as 

Where 

F; IS the input vector of state features relevant for learning for subtask L;. 

F- - F 1 F 2 \-/· Fj S 
i -< i' i , .... > · Vj, 1 E 

is the set of outputs from amone: which to choose for subtask L . 0 = 0 
'-. . I II 

is the set of training examples used for learnine: subtask L .Each of T consists of 
'--' . ..._.- I I 
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Correspondence between an input feature vector f E F; and o E 0;. 

M; is the machine learning algorithm and used at layer L; to select a hypothesis mapping 

F; H 0; based on 'I; . 

h; result of running M; on 'I;. h; is a function from F; to 0;. 

As set out in Principle 2 of layered learning the definitions of the layers L; are given a 

priori. Principle 4 addressed via the following stipulation. Vi< n, h; directly affects 

L;+r at least one of the three ways: 

1. h; is used to construct one or more features F;~, . 

2. lz; is used to construct elements of 'I;; and/or 

3. lz; is used to prune the output set 0;. 

2.2.3 Application Layered Learning to Simulated Robotic Soccer 

One tempting way to approach any new agent-based domain is to try to learn a direct 

mapping from the agent's sensors to its actuators. However, a quick consideration of the 

robotic soccer domain is enough to convince oneself that it is too complex for such an 

approach: the space of possible sensory inputs is huge, there are many possible actions, 

and there is a large amount of hidden state. Such complexity is an important 

characteristic of the domain for the purposes of this thesis, since robotic soccer is meant 

to represent other domains which are too complex for the straightforward approach. 

[Stone and Veloso 98a] give implementation of the various layers of agents learning in 

simulated robotic soccer. 

Fig. 1.1 A sample task decomposition within the layered learning framework in a 

collaborative and adversarial multi-agent domain. Layered learning is designed for use in 

domains that are too complex to learn a mapping straight from sensors to actuators. We 

use a hierarchical, bottom-up approach 
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Fig. 1.1 A sample task decomposition within the layered learning framework. 

in a collaborative and adversarial multi-agent domain. 

Table 1.1 illustrates a possible set of learned behavior levels within the simulated robotic 

soccer domain that correspond to the abstract task decomposition represented in Fig. I. I. 

Table 1.1 

Layer Strategic level Behavior type Examp_le 
Ll robot-ball individual ball interception 

L~ one-to-one player multi-agent pass evaluation 

L3 one-to-many player team pass selection 

L~ team -formation team strategic positioning 

L~ team-to-opponent adversarial strategic adaptation 

Layer I -Ball Interception- An Individual Skill 

First, the agents learn a low-level individual skill that allows them to control ball 

effectively. While executed individually, the ability to intercept a moving ball is required 

15 



Due to the presence of other agents: it is needed to block or intercept opponent shots or 

passes as well as to receive passes from teammates. As such it is a prerequisite for most 

of ball manipulation behaviors. 

Layer2 Pass Evaluation- A Multi Agent Behavior 

Second, the agents use their learned ball interception skill as a part of behavior for 

training a multi-agent behavior. When an agent has the ball and has the option to pass to a 

particular teammate, it is useful to have an idea of whether or not the pass will actually 

succeed if executed: will the teammate successfully receive the ball such an evaluation 

depends not only the teammate's and opponent's positions, but also their abilities to 

receive or intercept the pass. Consequently, when creating training examples for the pass 

evaluation function, the intended pass recipient is equipped with the previously learned 

ball interception behavior. 

Layer3 Pass Selection -A Team Behavior 

Pass selection represents the third and highest-level behavioral layer within layered 

learning implementation .Pass selection is a behavior that must be adaptable. Since it 

depends on the behaviors of teammates and opponents, agents must be able to adjust their 

decisions based on the empirical results of past decisions. Thus, pass selection is an 

appropriate behavior for learning because of the possibility of exploiting data to adapt to 

a shifting concept. In the robotic soccer context, [Stone and Veloso 99] used TPOT-RL to 

learn pass selection, taking advantage of the learned pass-evaluation capability described 

in Chapter 6 to construct the input representation for le.arning. 

TPOT-RL 

TPOT-RL is an effective technique for enabling a team of agents to learn to cooperate 

towards the achievement of a specific goal. It is an adaptation of traditional RL methods 

that is applicable in complex, non-stationary, multi-agent domains with large state spaces 

and limited training opportunities. TPOT-RL enables teams of agents to learn effective 

policies with very few training examples even in the face of a large state space with large 
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amounts of hidden state. In short, TPOT-RL applies In domains with the following 

characteristics: 

• There are multiple agents organized in a team. 

• There are opaque state transitions. 

• There are too many states and/or not enough training examples for traditional RL 

techniques to work. 

• The target concept is non-stationary. 

• There is long-range reward available. 

• There are action-dependent features available. 

17 



Chapter 3 

Improvement of Defensive Tactics in Simulated 
RoboCup Soccer 

Defense and offence can be considered as mirror image to each other, which necessitates 

the need of improvement in defensive tactics for better performance. There are several 

definitions of defense, some are based on the possession of ball, e.g. the moment a team 

looses possession, it is in defense, while others are based on location of ball in the field, 

e.g. if ball is in the defensive half of the team, then it is a defensive play. We have 

considered defense in this report, as a situation when ball is in the defensive half of a 

team and it does not have possession of ball. In any teamwork individual skills are the 

deciding factor in the overall performance of the team, likewise defensive tactics require 

strong individual skills (interception, passing, dribbling etc.) as a prerequisite. Learning 

defensive tactics can be considered as one of the good example of collaborative and 

adversarial learning like pass selection in [Stone and Veloso 98b], because it involves 

collaboration between the teammate agents to deal with the issues like forcing opponents 

in one direction along with the knowledge of opponents positions and behaviors. 

Learning method used in this work is based on layered learning technique described in 

chapter 2, in which output of a layer can influence working of a layer above it in three 

possible ways, it can be a part of input space, it can help to reduce the search space and 

speed up the learning process. Since defensive tactics are higher level team behaviors so 

the learning algorithm used here can form a layer or a part of layer which can be above 

pass evaluation or pass selection. The core algorithm used here is inspired from the 

Shaped Reinforcement learning technique [Mataric 97], which is one of the intelligent 

techniques to reduce the search space of complex domains to a manageable level. 
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3.1 Extended Shaped Reinforcement Learning 

Reinforcement learning has become an obvious choice for the domains which involves 

on-line and unsupervised learning but has indicators of progress through, the 

environmental feedback. But it requires some modifications when domain has very large 

search space, and interaction of environment and learners, and interaction among the 

learners is limited e.g. Simulated RoboCup Soccer (Appendix 2). 

In this work we have tried to embed defensive tactic in a simulated soccer team by using 

extended form of shaped reinforcement learning described in chapter 2. The extension is 

based on the fact that shaped reinforcement learning concept is used for the mutli-robot's 

foraging domain [Mataric 97], which hardly has any notion of teamwork. Hence we have 

focused to extend this leaning technique for teamwork (defensive tactics) through 

progress estimators. 

Like the framework of shaped reinforcement learning, in the proposed work there are 

well defined moves, situations, heterogeneous reward function~~ progress estimators and 

a control algorithm. All of these components are described in the following sections 

along with there full specifications. 

3.1.1 Assumptions 

The learning algorithm considered here is based on the following assumptions 

• Every teammate agent is well equipped with the low level behaviors and skills e.g. 

passing, clearing, dribbling, kicking etc. 

• Every teammate agent has learned the teamwork up to pass evaluation [Stone and 

Veloso 98b]. 

• There is no explicit opponent modeling or opponent's acquisition mechanism, 

however some implicit knowledge (positional aspects) about opponents is used in the 

algorithm. 

• An agent is able to know complete information about its other teammates present in 

its vicinity through direct or indirect communication. 

• Learning environment and terminologies used in this work are taken from the 

simulation environment provided by RoboCup Soccer Simulator (Appendix-2). 
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3.2 Behaviors 

There are six main behaviors and two subordinate behaviors used in this algorithm. The 

main behaviors broadly cover the defensive ta<;;tics like, delaying opponents, pressurizing 

opponents, blocking the shooting lanes, how to cope up with the situation like dangerous 

play (safe play), what to do when team gains possession of ball in the defensive half. 

While the subordinate behaviors include two main key ideas of defense, how to support a 

teammate who is doing a~tual defensive task and how far or near a teammate agent 

should place itself (staying compact) so that it can provide a good support. Behaviors 

discriminate among team members on the basis of their distance and direction from the 

ball (vicinity of the ball). Except the behavior Support2, every behavior considers only 

the team members present in the vicinity of ball. 

3.2.1 Stay Compact 

It is a subordi~ate behavior to help the behaviors like delay and pressurizing. This 

behavior allows defender to be closed enough to support each other and distant enough 

not to interfere each others working. It considers agents in the vicinity of ball. During the 

execution of this behavior agent maintains a minimum and maximum distance from every 

other player in the vicinity and it has a single role for agents. 

d ij is the distance of player- i from another player- j present m vicinity and 

dij E [dmin'dmax] ,where dmin is the distance, which an agent can travel in one simulation 

cycle and dma, is the average distance an agent can cover in three simulation cycle. 
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Algorithm for Stay Compact 

A; is any agent in a team; 

IF (A; has teammates in its vicinity) 

THEN it maintains du from all A 1 teammate present in its 

vicinity; 

3.2.2 Supportl 

It is a subordinate behavior like Stay Compact, to support the players who are doing 

actual defensive task. This behavior can have a direction of its execution e.g. support FD 

in forward direction. It has two types of roles for agents, one is to handle opponents and 

another is to perform covering of attacking space behind the player who is doing actual 

defensive task. This behavior uses Pass Evaluation layer's output in order to predict 

potential receivers of a pass. It considers the players in the vicinity of ball. The used i -~ 
. ~·~-,~ 

this behaviors are as: ~~~:-·:~·~:/_'~ 
~.E~ [~' Jc;-- \~ 

Context Player \\!.:\_ :!] }_, J 
A player is said to be context pia yer if it is tackling, challenging or a First Defender. ~}~: i ;i)' 

"'---::::.==--

Important Opponents 

An important opponent is the opponent agent which can be potential receiver of a pass. 

Handling Opponents 

An agent locates itself near an opponent so that it can block or intercept or makes 

reception of pass difficult for this opponent. It can be achieved as, agent moves itself near 

context player in a given direction (optional in Support I). It turns body and face so that it 

can view both important opponent and ball holder. 

Covering 

An agent who performs covering task is the nearest player to the goal's centre in the 

vicinity of ball. It locates itself in the covering area as shown in the Fig. 3.1 and covers 
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the attacking space left behind the FD. It keeps itself at some distance from FD where 

more chance of attack or the portion of attacking space left behind the FD. 

This behavior can be achieved in the following ways: 

• Agent can become Second Defender (SD) or Third Defender (TD). 

• Agent can cover the area behind the Context Player. 

• Agent can handle important opponents in the vicinity of Context Player. 

• Agent can cover and handle both at a time. 

It uses the following low level Skills: 

• Ball Interception 

• Passing 

• Tracking 

• Turning Body 

0 
€> 

Opponent Agent 0 

0 
Agent handling the Opponent 

r·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-1 

Covering Area I 

~--·-·-· ·-·-·-·-·-·-·-·-·-·-·-· 

Penalty Area 

Goal Area 

Fig. 3.1 Covering Area in defense 
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Some times depending on the situation an agent has to perform both the roles handling 

opponent and covering e.g. when the number of players in the defense is low. 

Let i, j is a context player and supporting players respectively. 

Algorithm for Supportl 

IF ( dij E [dmin 'd max J and agent has an Important Opponent near it) 

THEN Handle the Important Opponent; 

ELSE 
{ IF (agent is at least distance from goal's centre) 

THEN { 
IF ( agent has an important agent ) 

THEN Cover and Handle the Important Opponent; 

ELSE Cover; 
} 

IF (ball comes to the agent OR poor pass OR incorrect pass) 
THEN { 

Get the ball control; 
Make Correct and Useful Pass; 

} 

3.2.3 Blocking the Lanes of Shooting 

This move allows an agent to position itself near or in the penalty area so that it can block 

the shot to the goal, when ball comes to the agent, it must clear or pass it to the 

teammates present in its vicinity. Normally this move is executed by the agent when it 
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has least or no support of other teammates and ball movements can tum into the goal. 

Hence agents have single role in this move (block the chance of shooting towards goal) 

and are in the vicinity of ball. 

It uses the following low level Skills: 

• Ball Interception 

• Clearing 

• Passing 

• Tracking 

In order to achieve this behavior agent must move in the lane of shooting as shown in 

Fig.3.2. The agent must face towards ball and locate itself at an appropriate distance on 

Linel (Fig.3.2) near or in the penalty area dependjng upon conditions based on ball's 

distance from the centre of goal. 

Lane of 
shooting 

Q Opponent Agent 
··~·. 

- Teammate Agent 

Linel Goal Area 

Fig.3 .2 Lane of Shooting 
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Proper Positions 

Any agent who is exhibiting this move must locate itself to the appropriate positions so 

that it can execute its role according to the following rules: 

I. IF (ball is far) THEN agent locate itself on points of Line I which are above 

or on the boundary of penalty area. 

2. IF (ball is in the middle) THEN agent locate itself on points of Line I which are 

between penalty area and goal area. 

3. IF (ball is near) THEN agent locate itself on points of Line I which are inside 

the goal area. 

This move uses the Pass Evaluation technique in order to achieve the better utilization of 

ball possession. 

Algorithm for Blocking the Lane of Shooting 

Agent finds the Lane of Shooting and Linel; 

It faces directly towards the ball; 

Do 
{ 

Agent locates itself at Proper Positions; 

IF( ball is approaching towards it) 
THEN it intercepts the ball and uses Pass Evaluation to 

Clear or Pass the ball; 

While (if further modification in positions are possible) 
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3.2.4 Build Up Play 

Build Up Play means gaining and maintaining possession with the intention of goal. This 

move is normally executed when defense has sufficient number of players. Its execution 

has two phases, first is gaining possession and second phase includes maintaining 

possession with the intention of goal. This move considers only those agents which are in 

the vicinity of ball, out of them one or two do actual defensive tasks and rest of them act 

as supporting teammates. 

A. Gaining Possession 

Gaining possession means if an opponent was having ball control in previous simulation 

cycle and now (current simulation cycle) a teammate agent has ball control by tackling 

and challenging the ball. The algOiithm for gaining possession as described below 

includes Support! as a subordinate behavior, which is explained in next few sections of 

this chapter. It also assumes that all players in the vicinity of ball can view ball. 

It uses the following low level Skills: 

• Ball Interception 

• Marking 

• Tracking 
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Algorithm for Gaining Possession 

IF (Teammate agent AI is nearest to the ball) 
THEN { 

ELSE 
{ 

IF (ball is free) THEN take ball control; 

IF (ball is in kickable area & A I is in the sides of the 
opponent controlling ball) THEN Tackle; 

ELSE Challenge the ball; 

Other Teammate agent B executes Supportl; 

IF (opponent having ball makes a pass near B) 
THEN { 

IF (pass is incorrect or poor) 
THEN take ball control; 

ELSE AI=B; 

B. Maintaining Possession 

This behavior is executed after gaining ball possession and includes maintenance of ball 

control by the teammates when opponents are around, keeping in the view that ball must 

progress towards the opponent's goal (intention of goal). Like gaining possession, it 

considers only those agents which are in the vicinity of ball. It has two types of the role 

for agems, one who is having ball control and other who are supporting ball holder. This 

can be done in thefollowing ways: 

• A ball holding agent must make correct and useful passes when chance of loosing 

possession or can execute turn ball behaviors (Appendix I) if there is a chance of 

tackling or challenging. 
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• Other agents must support the ball holding agent in the forward direction (towards 

opponent's half). 

This behavior includes Supportl as subordinate behavior, Turn Balll, Turn Ball2 as 

low level behaviors and predicates like Chance of Tackling (predicates related with 

chance of loosing possession ) etc. 

It uses the following low level Skills: 

• Clearing 

• Ball Interception 

• Dribbling 

• Passing . 

• Turning Ball and Body 

Correct Passes 

A pass is said to be correct if it reaches the intended player at the proper positions where 

it can intercept it and can gain possession. In order to achieve this it uses Pass 

Evaluation to find out intended player and if it is not possible to make correct pass, then 

agent must clear or dribble according to Pass Evaluation. 

Usefulness of Passes 

Once the agent has chosen number of correct passes, usefulness of the passes should be 

calculated so that agent can make an important pass. Usefulness of any pass will depend 

upon the number of opponents in a circle of radius R of the receiving agent and the ball 

progress. Ball Progress can be measured as distanced of ball from the centre of team's 

own goal and R is the maximum distance an agent can travel in simulation cycle. 

Chance of Possession ( CP) 
' 

In order to capture the effect of number of opponents present in the circle of radius R of 

the receiver agent chance of possession is used. It calculates the likelihood of retaining 

possession if ball is being passed to the chosen agent. CP is inversely proportional to the 

number of opponents present near the receiver. 
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In the following computations nop1 denotes the number of opponents present with in 

circle of radius R from the centre of receiver, who are facing towards ball's current 

location or current ball holder, and nop2 denotes the number of opponents present with 

in circle of radius R from the centre of receiver, who are not facing towards ball's current 

location or current ball holder (see Fig. 3.3). 

0 
Radius R 

• 0/ 
,~nop2 

• Current ball holder 
Receiving Agent 

Fig 3.3 Area around a ball receiving agent 

Cumulative effect of these opponents can be computed as: 

X= wx nop1 + nop2 

Where w > 1 , a weight associated with nop1 , as they can be major contributor in taking 

possession than nop2 • 

CP can be computed as: 
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l 
if nop1 + nop2 = 0 

CP= _ .9 
otlzenrise 

w * nop1 + nop2 

Now we can compute Usefulness of a Pass in tenns of CP and d: 

Usefulness = { 
0 

d*CP 

if CP~.25 

if orhen1-·ise 

Algorithm for Maintaining Possession 

IF (Agent is controlling ball) 
{ 

ELSE 

IF (Chance of Tackling or Challenging) 
THEN { 

IF ((One side Tackling & Challenging) or One side 
Tackling or Challen!lin!!) THEN Turn Balll: 

'- - ...... . 

IF (Two side Tackling & Challenging) THEN Turn Ball2; 

Make Correct and Useful passes; 

Agent executes Supporl in forward direction; 

Now the algorithm for Build Up Play can be written as: 
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Algorithm for Build Up Play 

While (Team's Possession= No) 
Team tries to Gain Possession; 

IF (Team's Possession= Yes) 
THEN Maintain Possession; 

3.2.5 Delay 

Delaying means to stop the opponent's Progress in the field, so that other teammates can 

reach near the ball when defense does not have sufficient number of players .This can be 

achieved by blocking vicinity passes or direct shoot towards the goal. Like other 

behaviors it also considers only those players who are in the vicinity of ball. It has two 

roles for agents, first is for the First Defender (FD) and another one is for remaining 

players to support the FD agent. 

This behavior includes Supportl and Stay Compact as subordinate behaviors. It can be 

accomplished in a way that FD locates itself at the Proper Position in order to do the 

actual defensive tasks e.g. when ball comes to attacking area (shown in Fig. 3.4) it 

intercepts it. While other players execute Support l and Stay Compact in order to help 

FD. 

It uses the following low level Skills: 

• Ball Interception 

• Marking 

• Tracking 

• Turning Body 
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Proper Position 

In order to be at the proper position FD should locate itself on Linel at angles B1andB2 

( 0 s B1, 82 s 45° ) from ball and current ball holding opponent respectively and at a 

minimum distance form ball (see Fig. 3.4). 

Q Opponent Agent 0 
- Supporting Agent 

0 First Defender Agent 

Line I 

Goal Area 

Fig. 3.4 Attacking Space 

Algorithm for Delay 

IF (Agent is a FD) 
THEN { 

Agent locates itself at Proper Position; 

IF (Ball comes to it) 
THEN Make Correct and Usefitl pass; 

} 

ELSE 
Support! FD towards the goal and Stay Compact; 
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3.2.6 Pressurize 

It is a defensive tactic which is used when defense has at least two players. It is used to 

reduce the amount_ of space and time in which opponents can handle the ball, this can 

result into the possession of ball depending upon the situations. This behavior may or 

may not have specific direction of execution e.g. pressurizing towards flanks. This can be 

achieved in the following ways 

• by blocking all potential passes in the vicinity 

• FD challenges ball. 

Like Delay it also has two roles for agents, FD agent and remaining players have to 

support FD according to the situations. It includes two subordinate behaviors Supportl 

and Stay Compact, and uses Pass Evaluation layer's output to determine vicinity passes. 

It uses the following low level Skills: 

• Ball Interception 

• Marking 

• Passing 

• Tracking 

• Turning Body 

Algorithm for Pressurizing 

IF (Agent is FD) 
THEN{ 

Challenge the ball; 

IF( Ball comes to it or it gets ball control) 
THEN make correct and useful passes; 

ELSE 
Supportl FD and Stay Compact; 
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3.2. 7 Safe Play 

This behavior is executed when ball is near to the team's goal. It is used to nullify the 

chance of goal by opponents or it is used to convert dangerous play into normal play. 

Like other behaviors it considers only those agents who are in vicinity of ball. This can 

be achieved in the following way 

• Agents can cover width of goal according to the situation in the goal area. 

• Whenever any agent gets a chance to intercept the ball or gets ball then it makes 

Proper Clear or Useful pass. 

It uses the following low level Skills: 
• Ball Interception 

• Passing 

• Tracking 

• Turning Body 

Nearest Agents 

These are those agents which are present in the Nearest Area as shown in Fig. 3.5 

Proper Clear 

Proper clear means clearing ball in a direction where no or least number of opponents are 

present. 

Proper Location 

If two or more nearest agents are present in the nearest area, then nearest area IS 

distributed among them. 

Goal Area 

Near est Area Goal 

Fig. 3.5 Extended view goal 

34 



Algorithm for Safe Play 

IF (there is any Nearest Agent) 
THEN { 

ELSE 
{ 

3.2.8 Support2 

IF (number of Nearest Agents =I) 
THEN it locates itself on the mid point of line joining 

centre of goal and ball; 

ELSE 
The agent locates itself at Proper Location; 

IF (ball comes to the agent) 
THEN Proper Clear 

Agent moves towards Nearest Area; 

IF (ball comes to the agent or able to intercept ball) 
THEN Proper Clear or Useful pass; 

This is a behavior which is executed by the agents who are not in the vicinity of ball. Ir 

this agents forest look for the ball in the field then try to come near to the ball, but if there 

are sufficient number of the players around the ball then it places itself near the vicinity 

of the ball depending upon the situations e.g. if the ball is in penalty area then it will 

move towards the goal area in order to support the players who are in the vicinity of ball. 

It has single role for the agent to play. It uses dashing and turning body as low level 

behaviors. 
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Algorithm for Support2 

Agent turns and moves to locate ball in the field; 

Agent moves towards ball; 

IF (sufficient number of players in the ball's vicinity) 
THEN it locates itself near to the balls vicinity's boundary; 

ELSE 
it locates itself in the balls vicinity; 

3.3 Conditions 

Like Shaped Reinforcement Learning, this work has a set of predefined conditions and 

they are clusters of various subconditions of the environment. In this work as working 

environment of the agents is chosen from RoboCup Soccer Server hence these conditions 

has direct relationship with the playing modes of the simulator. Soccer simulator has 

eleven playing modes (Foroughi et. al 2004] out of which ten playing mode cane 

described with the hand coded rule easily, situations in these modes are set e.g. kick_offs, 

goal_kick. But play_on is the most important, which depicts the normal game situations 

apart from the set plays. Situations in play mode are highly dynamic which makes it 

extremely difficult to be captured into hand coded rules (because of large search space). 

Hence the situations used in this work reflect the play on mode of the simulator. 

[Nakashima et. al 2004] and [Konur et. al 2004] have divided the field of soccer in to the 

different zones based on the location of the ball on the field , similarly I have divided the 

defensive half of a team in to five Zones as shown in the Fig. 3.6. 
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2a 

• . 1--------r----- -, 

2b 

• • .. 
1------L----- -: 

2c I 

t 

Zone 1 

Start Line for Zone2 

Fig 3.6 Defensive Zones 

As soccer is a dynamic game, so the situation will not merely dependent on the ball's 

position on the field but also on the teammates and opponents present near the ball which 

can affect the ball, moreover agents considered here have limited sensing (seeing and 

dashing) (Appendix -2). In order to capture the real situations of soccer field the concept 

of vicinity is used . Hence defensive conditions chosen in this work are dependent on the 

following factors: 

• Balls location on the field (one out of five zones in Fig. 3.6). 

• Number of the teammates present in the vicinity of ball. 

• Number of opponents present in the vicinity of ball. 

These defensive conditions are based on the fact that as soon as team gains possession 

defense is over. Hence here only those conditions are included when team does not have 
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possession. Depending on the Fig. 3.6 these situations can be divided broadly into five 

main categories as: 

1. ball is in zone 1 

2. ball is in zone 2a 

3. ball is in zone 2b 

4. ball is in zone 2c 

5. ball is in zone 2d 

Again these main conditions are divided in to hierarchy of sub-conditions depending 

upon the number of teammates and opponents present in the balls vicinity as given 

below: 

Sub-conditions based on the number of opponents present in the vicinity of ball are as: 

1. No opponent present. 

2. Moderate (one or two) number of opponents is present. 

3. Higher (three or four) number of opponents is present. 

4. Highest (five or more) number of opponents is present. 

Sub-conditions based on the number of teammates present in the vicinity of ball are as: 

1. No teammate is present. 

2. One teammate is present. 

3. Two teammates are present. 

4. Three teammates are present. 

5. Four teammates are present. 

6. Five teammates are present. 

Every defensive condition considered in the proposed work has one main condition 

(based on the ball's location on the field) and two sub-conditions from the sub-conditions 

related with number of opponents and sub-conditions related with number of teammates 

present in the vicinity of ball. In this way complete defense can be described by 

120 (5 x 4 x 6) conditions. 
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3.4 Heterogeneous Reward Function 

As heterogeneous reward functions are multimodal feedback available from external and 

internal states, in order to find out these feedbacks events related with behaviors 

achievement should be known. These events can trigger in any condition and any point of 

time. Hence I have chosen following events: 

Eg, - Opponents has scored a goal 

E"b- Ball goes out of bound 

Ect - Comer kick is awarded to the opponents 

E,k- Penalty kick is awarded to the opponents 

E fk'- Free kick is awarded to the opponents 

E fk 2 - Free kick is awarded to the team 

Egk - Goal kick is awarded to the team 

As events are the signals which shows achievement of a any behavior, but all the agents 

are not equally contributing towards any event because all are not executing the same 

behavior. In order to incorporate this fact, unlike shaped reinforcement explained in 

chapter 2 we have considered two types of Heterogeneous Reward Functions, one for 

those agents who have major contribution on the occurrence of the event and another 

who are less responsible for the event's occurrence. 

Let A; be any team member agent who has been m the ball's vicinity during three 

simulation cycles before occurrence of the event. 
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Heterogeneous Reward Function for Ai agents 

gsi if£ l gs 

ob if E,h 

ck if Ed 

pk if E"k 
R~(c,t)= 

fkt if Etkl 

fkz if E fk2 

gk if Egk 

0 otherwise 

Heterogeneous Reward Function for agents who are not A 
~ ~ I 

. if E", 

othenvise 

Where gs 1 <0 

3.5 Progress Estimators 

Progress estimators are evaluation met1ics relative to the current goal of an agent hence it 

captures the local progress of a behavior. In this problem domain every individual agent 

has to perform its role and top of this it's performance in the role is going to contribute 

for teamwork. Hence performance estimators in this work has t\VO level i.e. first level is 

to evaluate the performance of the individual agent in a defensive role and at the second 

· level there are performance estimators for behaviors which are derived from first level. 

All constants used in the performance estimator"s formulae are positive real numbers and 

predicates are given in Appendix-2. 
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3.5.1 Individual Performance Estimators 

Since individual level defense is based on the agent's role in the behaviors progress 

estimators at individual level are divided into three categories as given below: 

a. Progress Estimators. for Actual Defense 

If an agent is in the ball vicinity and performing one of the following tasks, tackling or 

challenging (the progress estimators for challenging are same as of tackling so we have 

the progress estimators for tackling only) or FD then it is doing actual defensive task. 

Progress Estimators for First Defender 

Positional correctness estimator RFD
1 
(c,t) of the first defender is given below: 

A if el ,e2 ~ 45o 

-Aerrur if el' B2 > 45° 

pa if jel - e2j is reducing 

RFDI (c,t) = --:-pa if jel - e21 is increases 

pd if d hall E [dmin I'd maxi] 

-pd if dba/1 E [dminl'dmaxJ 

0 otherwise 

Where 81'82 are agent's relative angles from ball and the ball holding opponent and dhall 

is the distance of the agent from ball. 

Ball handling efficiency estimator RFD2 (c,t) of FD can be formulated as: 

-bm1 if ball_ miss I 

if gained_ ball_ con troll 

0 otherwise 

Total progress estimator Rm (c,t) of a FD is computed as: 
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Progress Estimators for Tackling Agent 

Positional correctness estimator RTackr (c,t) of an agent who is tackling is computed as: 

da if agent dashes at e, = 0 

-da if e, ;ro 

RTackl (c,t) = ki if kicking angle Bk E [0,45°] 

-k. 
I 

if kicking angle ek e [0,45°] 

0 otherwise 

Where ek is kicking angle at which agent kicks the ball. 

Ball handling efficiency estimator RTack 2 (c,t) of an agent who performs tackling is given 

below: 

-bm2 if ball_miss2 

RTack2 (c,t) = if gained _ball_control2 

0 othenvise 

Total progress estimator RT",J (c,t) for an agent who performs tackling is computed as: 

Progress Estimators for Blocking the Lanes of Shooting 

Positional correctness estimator RBL, (c,t) of the agent blocking lanes of shooting is 

formulated as: 
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A if 8, and 82 ~ 45° 

-A error if 8, or 82 > 45° 

pa if 18,-821 dCI·eases 

R8u (c,t) = -pa if 18,-821 increases 

dg if distance from the goal decreases 

-dg if distance from the goal increases 

0 othenvise 

Ball handling efficiency estimator R8L 2 (c,t) of an agent who performs block the shooting 

lanes is given below: 

-bm, if ball_missl 

if gained_ ball_ con troll 

0 othenvise 

Total progress estimator R8L (c,t) for an agent who perfonns block the shooting lanes 

behavior is computed as: 

R8L (c,t) = R8L2 (c,t) + K3R8u (c,t) where K~ > I. 

b. Progress Estimators for Team Support 

Any agent is in the team support if it is handling an opponent or covering the area behind 

FD. 

Progress Estimators for Handling Opponents 

Positional conectness estimator R0 HJ (c,t) of an agent A; handling opponents 1s 

formulated as: 
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A if o-::; el' B2 -::; 45° 

-Aerrur if el ,e2 > 45o 

pa if jB1 - B2 j is reducing 

R0 HI (c,t) = -pa if jB1 - B2 1 is increases 

pd if d io E [ d min 2 ' d max 2 ] 

-pd if dio e; (dmin2>dmaxJ 

0 othe1wise 

Where d;o is the distance of agent A; from its nearest opponent. 

Ball handling efficiency estimator R0112 (c, t) of an agent who handles opponent is given 

as: 

-bm~ if ball_miss3 

bc3 if gained_ ball_ coJl(ro/3 

0 othenrise 

Total progress estimator R011 (c,t) for an agent who performs handling opponent 

behavior is computed as: 

Progress Estimators for Covering 

Positional correctness estimator Rc011 (c.t) of covering agent is formulated as: 
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pa if 101-021 dCI·eases 

-pa if 101-021 increases 

dg 1 if distance from the goal decreases 

if distance from the goal increases 

pos if agent is in uncovered attacking space 

- pos if agent is not in uncovered art acting space 

0 othenrise 

Where difJ is the distance of agent A; (covering agent) from the FD. 

Ball handling efficiency estimator Rc01,2 (c,t) of an agent who performs covefing is given 

as: 

-bm_1 if ball_ miss3 

bc1 if gained_ ball_ contro/3 

0 othenvise 

Total progress estimator Rc01, (c,t) for an agent who performs covering behavior is 

computed as: 

Rc01· (c,t) = Rc01 -2 (c,t) + K 5 Rcon (c,t) where K5 >I. 

c. Progress Estimators for the Agents not in the vicinity of ball 

Total progress estimator R,vn (c,t) for agents who are not in the vicinity of the ball is 

computed as: 
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m if distance agent from vicinity of the ball is reducing 

RNvA (c,t) = -m if distance agent from vicinity of the ball increases 

0 otherwise 

3.5.2 Progress Estimators for Main Behavior 

Now, after knowing individual's progress estimators, their cumulative effect can be used 

to compute the progress of a behavior. Any behavior's, performance can be measured on 

the basis of three factors, the time opponents get to control the ball, space opponents get 

to control the ball and ball progress e.g. the purpose of delay behavior is to stop ball 

progress and to reduce the space opponents get to control the ball. Progress estimators of 

main behaviors are discussed below: 

In order to compute the amount of space ball control for opponents all the positional 

correctness estimator of the agents who are in the vicinity of ball are considered as: 

X =a 'l:R;1(c,t)+(I-a)LRi1(c,t) 
Vi Vj 

WhereA; are agents who are doing actual defensive tasks,Ai are supporting agents and 

a is parameter and .5:::; a:::; I. Variable X indicates the cumulative effect of positional 

correctness of all agents present in the vicinity of all and inversely proportional to the 

amount of space opponent get to control ball. 

R58 (c,t) estimates the behavior's performance for ball progress and a space opponent get 

to control ball. In order to calculate the progress estimators for time of ball control the 

behavior is observed up to five simulation cycles and average of number of times the 

team has gained or lost the ball possession calculated to decide the reward for the 

behavior. 
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-sp if X is reducing 

sp if X increases 

I if progress of ball is de~reased 

-l if progress of ball is increased 

0 otherwise 

RTc(c,t) estimates the behavior's efficiency towards reducing the time of ball control 

opponents gets in defense when defensive team is executing one of above written main 

behaviors. 

tc if time of ball control is reducing 

RTc(c,t) = -tc if time of ball control increases 

0 otlze1wise 

Total Reward 
Total reward for an agent while executing a behavior R(c,t) is computed as the weighted 

sum: 

R(c,t) = uR~(c,t) + vR58 (c,t) + HRTc(c,t) 

Where u, v, H' > 0 and u + v + w =I. 

This algorithm learns a value function that maps conditions cto behaviorb. This function 

is used by behavior selection algorithm to choose most appropriate behavior for each 

condition m which agent finds itself in. The learning system is matrix based and 

maintains a matrix A(c,b) estimates whose entries reflect a normalized sum of 

reinforcement R received for each condition -behavior pair over timet: 
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T 

A(c,t) = LR(c,t) 
t=l 

The values in the matrix varies over a time based on received reinforcement, these are 

collected during the execution of behavior, and updated and normalized when behaviors 

are switched. 
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Chapter 4 

Benefits of Extended Shaped Reinforcement Learning 

Extended Shaped Reinforcement learning meets some of the on line learning challenges 

given in [Kitano et al. 98]. It provides great scope for the agents to have adaptations in 

various defensive conditions than the other existing learning techniques at defensive 

teamwork level. Since the learning algorithm includes more intermediate reinforcement 

hence it allows agents to acquire more knowledge about their environment and this 

gained knowledge makes learning algorithm to converge fast. The major benefits of 

extended shaped reinforcement learning algorithm are given below. 

4.1 Reduction of State Space 

There are 10198 external states for an agent in Simulated RoboCup Soccer field which 

makes learning space extremely large to be managed by Q-learning or any other 

traditional reinforcement learning algorithm. [Stone and Veloso 99] give a mechanism to 

reduce the state space, in which TPOT-RL learning algorithm reduces number of states 

by exploiting action dependent features to create smaller vector space which is very 

similar to the state space. TPOT-RL reduces the number of states to 2816. If half the 

number of states belongs to defense i.e. 1408 states, which almost II times the number of 

the conditions ( 120) proposed in this work, this reduction is achieved through off line 

selection of important situation which are clusters of the states of a given environment . 

4.2 Speed up in Learning 

The more subgoals the system recognizes, the more frequently reinforcement can be 

applied, and the faster the learner can converge (Mataric 97]. In this work, there are 

several progress estimators for various defensive roles in a behavior. If we consider 

TPOT-RL, it has three types of the rewards for every agent. Since the proposed 

framework gives a clear distribution of reward/punishment among the agents, it allows 

the learning algorithm to converge faster and allows agents to adapt in arbitrary defensive 
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conditions because of the inclusion of more domain knowledge. The proposed learning 

scheme allows converting intermittent and delayed feedback to continuous error signals. 

4.3 Efficient action selection mechanism 

Action selection is one of the major problems m reinforcement learning techniques 

especially when agent has large learning space i.e. large action space and state space. The 

action selection mechanism in reinforcement learning works on the trade off between 

explorations vs. exploitations [Sutton and Barto 98] . A learning algorithm first explores 

the action space to choose useful actions that is the exploration rate is kept higher and at 

later stages exploration rate increases at the cost of exploitation rate. TPOT-RL used 

exploitations with probability p and exploitations with 1-p probability, where p gradually 

increases from 0 to .99. But in the proposed work there is implicit and efficient action 

selection mechanism as because the A(c, b) the matrix to be learned has at any point of 

time has cumulative effectiveness of the actions which reduces the overhead of having 

explicit action selection mechanism. 

4.4 Results 

The learning algorithm given in this work learns a value function which maps conditions 

to the behaviors. After applying the learning framework given in chapter 3 the agents will 

learn the metrics given in Tables 4.1 to 4.4 depending on the ball's positions in the 

defensive field (ball can be in one of the five zones, Zone! and Zone 2a- 2d, as given in 

Fig. 3.6). 

In the following tables X is the number of teamm~tes present in the vicinity of ball and Y 

is the number of opponents present in the vicinity of ball 
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Table 4.1 Mappings learned when ball is in Zone 1 

Y=O 0<Y<3 3~Y<5 Y~5 

X=O 
No Operation 

No Operation No Operation No Operation 

Build Up Play with 
Delay with other Block the Lane of 

X= I other players in Delay 
players in defense Shooting 

defense 

X=2 Build Up Play Pressurize Delay Delay with other 
players in defense 

X=3 Build Up Play Build Up Play Pressurize Pressurize 

X=4 Build Up Play Build Up Play Build Up Play Build Up Play 

X=5 Build Up Play Build Up Play Build Up Play Build Up Play 

Table 4.2 Mappings learned when ball is in Zone 2a 

y~ I Y=2 Y=3 Y=4 y ~5 

X=O No Operation No Operation No Operation No Operation No Operation 

Block the Lane Block the Lane 
Block the 

Block the Lane of 
X= I Delay 

of Shooting of Shooting 
Lane of Shooting 

Shooting 

Pressurize Block the Lane of 
X=2 Build Up Play towards Zone I Delay Delay Shooting 

(Flank side) 
Pressurize 

X=3 Build Up Play Build Up Play towards Zone I Delay Delay 
(Flank side) 

Pressurize 
X=4 Build Up Play Build Up Play Build Up Play Build Up Play towards Zone I 

(Flank side) 
Pressurize 

X=5 Build Up Play Build Up Play Build Up Play Build Up Play towards Zone I 
(Flank side) 
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Table 4.3 Mappings learned when ball is in zone 2b 

y < 1 Y=2 Y=3 Y=4 Y~5 

X=O No Operation No Operation No Operation No Operation No Operation 

X=1 
Block the Lane Block the Lane Block the Lane Block the Lane Block the Lane 

of Shooting of Shooting of Shooting of Shooting of Shooting 

Pressurize - Pressurize 
Block the Lane 

X=2 towards Zones towards Zones Delay Delay 
of Shooting 

2a or 2c 2a or 2c 

Pressurize 
X=3 Build Up Play Build Up Play towards Zones Delay Delay 

2a or 2c 

Pressurize Pressurize 
X=4 Build Up Play Build Up Play Build Up Play towards Zones towards Zones 

2a or 2c 2a or 2c 

Pressurize Pressurize 
'X=5 Build Up Play Build Up Play Build Up Play towards Zones towards Zones 

2a or 2c 2a or 2c 

Table 4.4 Mappings learned when ball is in Zone 2d 

y $1 Y=2 Y=3 Y=4 Y~5 

X=O 
No 

No Operation No Operation No Operation No Operation 
Operation 

Block the 
Block the Lane Block the Lane Block the Lane Block the Lane of 

X= I Lane of 
of Shooting of Shooting of Shooting Shooting 

Shooting 

X=2 Safe Play Safe Play Safe Play Safe Play Safe Play 

Build Up 
Pressurize 

X=3 Build Up Play towards Zones Safe Play Safe Play 
Play 

2a or 2c or 2b 
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Build Up 
Pressurize Pressurize 

X=4 Build Up Play towards Zones towards Zones Safe Play 
Play 

2a or 2c or 2b 2a or 2c or2b 

Build Up 
Pressurize 

X=5 Build Up Play Build Up Play towards Zones Safe Play 
Play 

2a or 2c or 2b 

This is to be noted that the mappings to be learnt when ball is in Zone 2c are the same as 
that of Zone 2a (Table 4.2) 
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Chapter 5 

Conclusion and Future work 

This dissertation discusses improvement of defensive tactics as its key learning task 

which can be in any learning layer above pass evaluation or pass selection in layered 

learning framework. The major focus of this work is to extend shaped rei.nforcement 

learning to capture the ethics of teamwork and this accomplished by splitting progress 

estimators in order to get reinforcement at individual level and at teamwork level, and 

multiple heterogeneous reward functions. 

This novel approach which is used to improve defensive tactics of agents at teamwork 

level. The major benefits of the proposed approach are to enhance learning rate, reduction 

in the number of states and hence the reduction of learning space by off line clustering of 

situations, and to provide an implicit and convenient action selection mechanism. 

Future directions 

Although the focus the proposed work is on the defensive tasks but it can be efficiently 

applied to the tasks of simulated soccer like improvement in offensive tactics, pass 

selection etc. The proposed framework of learning is general can be applied effectively in 

any complex learning domain. There is a scope to make learning even faster in this work 

by adding internal biases to the agents e.g. having probable actions for the conditions 

.This work is carried out under the assumption that An agent is able to know complete 

information about its other teammates present in its vicinity though direct or indirect 

communication. By omitting this assumption it will be extremely difficult to see the 

collective effect of the individual's performances. One of the future research directions 

will be to carry out. learning without above mentioned assumption and to extend the 

proposed framework to a full fledged RoboCup Soccer team. 
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Appendix 1 

This appendix gives a brief description of defensive soccer terms and predicates used in 
chapter 3. 

Actual Defensive tasks 
Marking, tracking, challenging or tackling are known as actual defensive tasks. 

Ball control 
An agent is having a ball control iff 

• Ball is in Kickable area. 
• 

I 

Agent's facing direction is least relative angle to the ball among the other agents 
present in the vicinity of the ball. 

• It is at least distant to the ball. 

Challenging 
If an opponent is having the ball in the current simulation cycle and an agent try to get 
ball control by making direct run towards the ball provided that ball is at reachable 
distance. 

First Defenders (FD) 
First defender is the nearest defender to the ball from goal side. 

Marking 
Guarding the goal side and ball side to prevent the marked opponent to from turning the 
ball or from moving with the ball towards the goal. 

Second Defender (SD) 
The defender close enough to support the First defender by covering the space behind the 
first defender or by handling the opponents. 

Tackling 
Making the runs in the sides of opponent handling the ball and kicking the ball in the 
desired direction to get the ball control. 

Third Defender (TD) 
All other defenders other than the first and second defenders are third defenders. 

Tracking 
Running with the marked opponent to prevent it from gaining possession of the ball in 
the available space behind or beside other defenders. 

Turn Balll 
Turning the ball at 90° angle from the current ball position. 
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Turn Ball2 
Turning the ball at 180° angle from the current ball position. 

Vicinity of ball 
An agent is said to be in the vicinity of the ball if it can view the ball in current 
simulation cycle and it can reach to the ball in next five simulation cycles. 

dminl 

It is the minimum distance an agent as a first defender must keep from the ball and can 
travel in two simulation cycles with its full stamina. 

dmin2 

It is the minimum distance of a supporting agent (performing opponent handling) from its 
nearest opponent. It is the distance which agent can cove in one simulation cycle with its 
full stamina. 

dmin3 

It is the minimum distance of a covering agent (performing team support) from the first 
defender and agent can travel this distance in two simulation cycles with its full stamina. 

drnaxl 

It is the maximum distance of an ag:ent as a first defender from the ball and can travel in 
. ~ 

four simulation cycles with its full stamina. 

drnax2 

It is the maximum distance of a supporting agent (performing opponent handling) from 
its nearest opponent. It is the distance agent can travel in two simulation cycle with its 
full stamina. 

d. lll.lX} 

It is the maximum distance of a covering agent (performing team support) from the first 
defender and agent can travel this distance in three simulation cycles with its full stamina. 
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Predicated which are being used in chapter3 are as: 

ball is free 
When there is no agent present in the vicinity of ball then ball is said to be free 

ball is far 
If the distance of the ball from an agent is more than the average distance agent can travel 
in five simulation cycles. 

ball is in the middle 
If the distance of the ball from an agent is in proximity of the distance agent can travel in 
two to three simulation cycles with its full stamina. 

ball is near 
If the distance of the ball from an agent is less than or equal to the distance agent can 
travel in one simulation cycle with its full stamina. 

ball_missl 
If the opponent having ball control passes or shoots the ball towards the goal and first 
defender can't intercept the ball. 

gained_ball_ con troll 
If the opponent having ball control passes or shoots the ball towards the goal and first 
defender manages to get the ball control. 

baH_miss2 
If an agent who is tackling or challenging miss the ball before kicking because opponent 
holding the ball can turn the ball. 

gained_ ball_ control2 
If an agent who is tackling or challenging gets the ball control after the kick. 

ball_miss3 
If an agent is executing team supporting defensive activities and miss the ball because of 
poor pass by the opponents or because of the agent's inability to intercept the pass. 

gained_ ball_ control3 
If an agent is executing team supporting defensive act1v1t1es gains the ball control 
because of the incorrect pass by opponent or because of agent's capability to intercept the 
ball. 

Chance of Tackling 
If a teammate agent has ball control, opponents are in the kickable area of ball, opponents 
are in the sides of the ball holder and approaching towards the ball. 
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Chance of Challenging 
If a teammate agent has ball control, opponent (nearest opponent to the ball) is present in 
the vicinity of ball, directly facing towards the ball and approaching towards the ball. 

One side Tackling 
If a teammate agent has ball control, only one opponent is in the kickable area of ball, it 
is in the either side of the ball holder. 

One side Tackling & Challenging 
If a teammate agent has ball control, one opponent tries to tackle from either side of the 
ball holder and one opponent tries to challenge the ball. 

Two side Tackling & Challenging 
If a teammate agent has ball control, two opponents try to tackle form both the sides of 
the ball holder and one opponent tries to challenge the ball. 
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Appendix 2 

RoboCup Soccer server 

In this Appendix, the most important features of the RoboCup Server Simulator have 
been des.cribed briefly the more detailed information is in [Foroughi et. al 2004]. This is a 
challenging simulator which can be compared to reality in many situations. The RoboCup 
Soccer Server contains many real-world complexities and is a very challenging and 
realistic base that the agent must handle. 

The RoboCup Soccer Server is almost a real-time system that works with discrete time 
intervals of lOOms. During one cycle an agent receives different information from the 
sensors surrounding him and the field. That is why the agent must respond immediately 
in each cycle in order to complete an action. This requires real-time decision making. 
When an agent decides what to do, the action will not be executed earlier then in the end 
of the cycle. At the same time the server updates the state of the environment. Therefore 
the server uses a discrete action model while, on the other hand, the agent decides in real­
time. 

A2.1 Overview 

Each agent is a separate client program that works on its own. It can not communicate 
directly but communicate through the server only. All the agents on the field use the only 
communication channel which has low bandwidth and is also very unreliable. The 
sensors provided for each agent are: the aural sensor, the body sensor and the visual 
sensor. The body sensor provides the agent with information such as the stamina or the 
current speed, physical information. It also provides information on how many actions 
the agent has performed. The aural sensor provides the agent with information about 
detected messages sent by other player objects. It has a limited range and capacity and 
one agent can only hear one message from a nearby team-mate every second simulation 
cycle. Then we have the visual sensor which provides the agent with information about 
the objects in his current field of view information such as distances, directions etc. It 
also works as a proximity sensor that can "feel" objects that are very close but behind the 
agent. The information the agent receives is relative from his perspective and can also be 
converted into global coordinates using landmarks, flags. The noise is added by 
quantizing the information, sent by the server. 

The player object, also called the agent, can perform different types of actions, which are 
divided into two categories, primary actions and concurrent actions. During one cycle 
only one primary action can be executed, whereas multiple concurrent actions can be 
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performed simultaneously with any primary action. Only one primary action can be 
performed even if there is more then one being sent 

Acting and sensing in the soccer server are asynchronous. This means that visual 
information arrives at 150ms intervals and an agent can only perform a primary action 
once every lOOms. This means that in some cycles the agent must act without receiving. 
new visual information, and this requires the ability to predict the current world state 
based on past states. 

When the soccer server simulates object movement, the velocity of an object is added to 
its position. The velocity decays by a certain rate and increases by the acceleration of the 
object resulting from certain action commands. Noise is added to the movement of all 
objects to reflect unexpected movements of objects in the real world. The soccer server 
prevents the player objects from keeping constant maximum speed by assigning a limited 
stamina to each of them. When a player is performing a dash, the action consumes some 
of his stamina, but it is also slightly restored in each cycle. Then the player objects can be 
divided into different type of players, so called heterogeneous players. Whenever a new 
game or period is started, each team can select from several different types with different 
characteristics. 

A2.2 Soccer server and clients 
The system providing simulation is the soccer server. It is a central point of connection 
for a number of players, partitioned into two teams, playing against each other. The 
server delivers sensing information to the players such as auditory, visional, and body­
sensing information. Each player analyses the receiving information and decides what to 
do such as kick or turn, then sends commands back to the server. The server is associated 
with soccer monitors that display the pitch and players on computer screens, designed for 
visualization purpose. 

Soccer clients such as players and coach connect with the server through UDP/IP sockets. 
Each client is an independent process, exchanging information with the server through a 
specific port (the default is 6000). A team can have up to 12 clients including I 0 fielders, 
a goalie and a coach. A player client is an agent, surrounded by the environment, which is 
simulated by the server. Players are provided with information, but partial and noisy 
about the environment (A2.4 Players). Their main tasks are to make decision on which 
action to take such as kick, turn, and dash. 

A2 .3 How soccer simulation performs 
Internally in the soccer server, the simulation is divided in a sequence of time steps, 
called simulation cycles. At the beginning of each cycle, the server receives action 
commands performed by all players connected \vith it. Then, it calculates the effect of 
these actions to the environment such as ball direction, player's stamina and vision. At 
the end of that cycle, it returns environment infom1ation to each player as player's 
sensing information. The interval for each cycle can be customized (the default is I 00 
milliseconds). 
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Information passing back and forth between the server and clients is under the form of 
text messages. These messages are well formatted like commands with parameter values. 
For example, when a player wants to kick to the ball with the power of 50 straight to its 
body direction, it sends this text command "(kick (50, 0))" to the server. It is important 
that the server should receive these commands before next simulation cycle. Otherwise, 
the server does not wait to receive player's messages, resulting that players will miss the 
opportunity to act, therefore, badly impact its performance. 

A2.4 Players 
Virtual players are simulated with two important abilities: perception of the world and 
action to affect the world. Perception information arrives under the form of aural and 
visual information, created by simulated sensors. Based on their perception, players make 
decision on which action they should take to affect the play. A player connects to the 
soccer server from a specific port (the default is 6000). The maximum number of players 
for each team is 11 including lO fielders and a goalie. Players send and receive 
information under the form of text commands with associated parameters. Perception 
information is noisy. In each simulation cycle, the server adds noise to the ball's and 
player's movement. Therefore, players cannot know the world exactly nor can they affect 
the world exactly the way they want. 

a. Soccer pitch layout 
The soccer pitch· composes of stationary objects including lines and flags as shown in 
Fig. A2. I. There are both horizontal and vertical Jines, defined by a fixed name such as 
"(line t)" for the top horizontal line. Flags are particular points, uniquely named, such as 
"(flag c)" for a central point of the pitch. Both soccer server and players use line and flag 
objects. The soccer server provides players with visual information about line and flag 
objects around them so that players can approximately figure out their relative position in 
the pitch. 
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Fig. A2.1 Soccer pitch layout [Soccer Simulation Manual, 2003] 

b. Player's perception 
Player's perception information comes from simulated sensors. There are 3 main types of 
sensor information: auditory, visual and body sensing. Players receive auditory 
information when communication between players happens. The two others are sent 
regularly to the players. Noise is added randomly in every simulation cycle that makes 
visual information noisy to the players. 
Visual information arrives in terms of information about objects that a player currently 
sees. As default, visual information comes every 150 milliseconds. Visual objects can be 
stationary objects including lines and flags, as well as movable objects like other players. 
Around the player, visual ranges are defined in order to confine player's vision 
capability. The closer to a surrounding object a player is, the more detailed visual 
information it receives. Around a player's standpoint, vision area is divided into circular 
ranges, and narrowed by their view angle, which specifies how broadly it can see. It is 
depicted in Fig. A2.2 that player's vision is explained as: 
I. Object a is in visible distance, but not in view angle. Therefore, only object type of a 
can be seen, such as a ball, a player, or a flag. No exact object name is given, such 
as(flag) but not (flag c). 
2. Player has no visual information about object b, and g because they are either far from 
visible distance or out of view angle. 
3. Object c and dare in uman_tooJar _length area, which is applied for player objects. If 
both are players, they are seen with their uniform number, but d with higher certainty 
whereas c with less certainty. 
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4. Object e is in team_tooJar _length area, which is applied for player objects. If e is a 
player, its team name is seen with some degree of certainty. 
5. Objectfis only seen as an anonymous player. 

f) Client whose vision perspectiYe is being illustrated 

visible distance be ..- - "" -, 
-"""' ee\ -'\- ,, \ 

ge ~-:]~- ce) ':': : 
( 1 \:·iew_~g~~' // / 

unum_far_length '\-""de "'/ ,' 
\ ,... /_,." I 

unum too far len!!th t - - - ~..... .... , f • 
tean1 far leiigrh l" - - .... " " 

\ / 

field width 

\ ..,."' 
team too far length \.- _ - - -

--~--------- field_length --------.-

Figure A2.2 Vision area of a player. The player is shown as two-semi circles, the light 
circle is its body-facing direction. Objects are around it, from a to f. Player's vision 
parameters are visible_distance, view_angle, and so on. 

Body sensor provides players with information about themselves, such as their speed, 
number of kicks, stamina, and number of turns they made, and so on. Body-sensing 
infonnation is sent every 100 milliseconds as default. 

c. Player's action 
Players should always act; otherwise, their team will lose advantage. When a player takes 
an action, it should send to the server a command corresponding to the action it takes. 
The command is text-formed. For example, a command like "(turn 50)" is to turn 50 
degrees to the right relatively to its body direction. There are a number of commands 
which were predefined in soccer simulation. Body commands are for movement control 
like turn, dash, kick, and catch which are specific to player's movement. Communication 
commands are for players to talk and hear from their teammates. In each simulation 
cycle, only one movement command is accepted to execute. For example, if a player 
decides to kick the ball first and then run to the ball, kick and dash commands should be 
separated in two different cycles. 

A2.5 Coach 
Coach is different from players in terms of privileges and therefore, different in actions. 
A coach is a client which has specific commands used to assist players. Coach connects 
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with the soccer server at other port than that of players (the default is 6002 for online 
coach and 6001 for trainer). There are two types of coaches: online coach and trainer 
(also called as offline coach). The basic difference of online coach and trainer is that they 
are created for different roles: the former is for the real game and the later is for training. 
Therefore, the commands available for online coach are more restricted than that of 
trainer. 
a. Online coach 
Online coach has the ability to know the global information about the match so that it can 
gives strategic-level advices to players by communication. It knows exact position of 
every player and other objects in the pitch. It can change the role of players depending on 
how it wants the team to play, for example, defensive or offensive strategy. Therefore, 
online coach is useful for game analysis, and strategy adjustment. 

Communication between online coach and players are restricted in order to prevent the 
overuse of centra11y controlling every single player's action. The restriction is basically 
based on minimum time interval (the default is 300 milliseconds) and maximum 
messages a coach can send to players. In every interval, a coach can send only one 
message to players. As well, the number of messages is limited for each match. 

b. Trainer 
Trainer is similar to online coach. Like online coach, a trainer knows exactly the position 
of players and other objects on the pitch. The difference is that a trainer can execute 
training specific commands for controlling players more directly such as moving a player 
to a certain position. It is only appropriate for training, not for real games. Therefore, 
trainer is useful in developing players, which are equipped with certain machine learning 
methods. It helps automate training process. 
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