
Personalization for OLAP Querying

Jl CDissertation su6mittea to Jawafiarfa{:Nefiru Vniversity
in partia{ fu[ftffment of tfie requirements

for tfie awara of tfie aegree of

MASTER OF TECHNOLOGY
m

COMPUTER SCIENCE & TECHNOLOGY

by

VENKA TESWARULU M

Under the esteemed guidance of

Prof. PARIMALA N

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAW AHARLAL NEHRU UNIVERSITY

NEW DELHI- 110067 (INDIA)

JULY 2006

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES

JA WAHARLAL NEHRU UNIVERSITY

NEW DELHI- 110067 (INDIA)

CERTIFICATE

This is to certify that the dissertation titled "Personalization for OLAP

Querying", which is being submitted by Mr. Venkateswarulu M to the School

of Computer & Systems Sciences, Jawaharlal Nehru University, New Delhi,

in partial fulfillment of the requirements for the award of Master of Technology

in Computer Science & Technology is a bonafide work carried out by him

under the supervision of Prof. Parimala N. The matter embodied in the

dissertation has not been submitted for the award of any other degree or diploma.

Prof. Balasundaram S
Dean, SC & SS
Jawaharlal Nehru University
New Delhi - 110067

f~~N·
Prof. Pari mala N) 1 J 7 /6 6
SC&SS
Jawaharlal Nehru University
New Delhi - 110067

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES

JA WAHARLAL NEHRU UNIVERSITY

NEW DELHI- 110067 (INDIA)

DECLARATION

This is to certify that the dissertation titled "Personalization for OLAP

Querying", which is being submitted to the School of Computer & Systems

Sciences, Jawaharlal Nehru University, New Delhi, in partial fulfillment of the

requirements for the award of Master of Technology in Computer Science &

Technology is a bonafide work carried out by me.

The matter embodied in the dissertation has not been submitted for the award of

any other degree or diploma.

I,. ",').,,ctJ .
~i/2-1!04

Venkateswarulu M,
M.Tech (Final Semester),
SC& SS, JNU,
New Delhi- 110067.

ACKWNOLEDGEMENTS

An endeavor over a long period can be successful only with the advice and

support of many well-wishers. I take this opportunity to express my gratitude and

appreciation to all ofthem.

I would like to sincerely thank my supervisor Prof. Parimala N, School of

Computer and Systems Sciences, Jawaharlal Nehru University for the help,

encouragement and support extended by her in successful completion of this

dissertation. Her innovative ideas and the valuable discussions I had were very

much helpful in keeping the thesis work on the right track.

I would also like to extend my thanks to the Dean, Faculty Members and

Technical Staff of School of Computer and Systems Sciences, Jawaharlal Nehru

University.

I would like to sincerely thank my best friend Mr. Kiran Kumar Vinnakota for

the help, encouragement and support extended by him during the tenure of my

M.Tech course. I would also like to extend my thanks to Mr. Hareesh Basani for

help extended by him during the implementation of the proposed system.

Last but not the least, my sincere thanks to my parents, family members and

friends and classmates for their continuous support, inspiration and

encouragement without which this project would not have been a success.

Venkateswarulu Maddi Reddy

IV

ABSTRACT

The OLAP tools that are presently available in the market, initially present all

dimensions, dimension members, levels and measures to the analysts for decision

making. So, an analyst has to go through all the data to choose the data for

analysis. It requires more time and effort. Instead, if OLAP tools allow a user to

store his preferences in a profile, then that profile can be used for initial data

presentation and personalizing OLAP queries. Now, the time and effort required

to select the data for analysis will be less and the users get the most interesting

results to his I her queries. Traditional OLAP tools lack of this feature.

In order to overcome this we propose personalization for OLAP querying, which

helps the user to create a user profile and use this profile for personalizing the

initial data presentation and personalizing OLAP queries posed by the user. A

user profile consists of dimensions, dimension members, levels and measures in

which the user is interested. Additionally, constraints which restrict the values

can also be expressed as a part of the user profile. The user profile is built and

store in the system. When the user queries using OLAP tool, then only the

relevant dimensions, dimension members, levels and measures as stored in the

user profile are displayed. In this manner the user's screen is not filled up with

unwanted schema constraints. Further, the constraints in the user profile are used

to restrict the data that is to be retrieved.

The resultant data obtained by executing OLAP queries is presented to the user in

tabular and graphical formats. Immediately after executing a query, the interface

presents the data in tabular format. Here, a user can compare various numerical

figures for detailed analysis. Alternatively, the user can view the data graphically.

On demand, the tool presents the resultant data in a pie chart format. Using this

pie chart, the user can quickly analyze the data.

We provide a personalized graphical OLAP tool, which provides interfaces for

creating and editing the user profiles, personalizing the query interface, user

profile integration and resultant data presentation.

v

TABLE OF CONTENTS

ACKWNOLEDGEMENTS

ABSTRACT

LIST OF FIGURES

1. INTRODUCTION

1.1 General Concepts

1.1.1 Data Warehouse

1.1.2 On-Line Analytical Processing (OLAP)

1.1.2.1 OLAP Operations

1.1.2.2 Types of OLAP Systems

1.2 State of the Art

1.3 Aim of the Thesis

1.4 Organization ofThesis

2. PERSONALIZATION

2.1 Related Work

2.2 Proposed Work

2.3 User Profile Definition

2.4 Personalized Graphical OLAP Tool

2.4 .1 <;reating and Editing the User Profiles

2.4.2 Personalized Querying Interface

2.4.2.1 Initial Data Presentation

2.4.2.2 Profile Integration

2.4.3 Resultant Data Presentation

3. MULTI DIMENSIONAL MODELING

3.1 Multidimensional modeling

3 .1.1 The Star Schema

3 .1.1.1 Advantages of the Star Schema

Page No

iv

v

ix

1

2

3

8

10

11

13

14

14

16

16

16

17

17

17

21

21

21

23

24

24

25

27

3.1.2 The Snowflake Schema 28

3.1.2.1 Advantages ofthe Snowflake Schema 30

3.1.2.2 Disadvantages ofthe Snowflake Schema 30

vi

3.2 RDBMS Vs MDBMS

3.2.1

3.2.2

Benefits of MDBMS over RDBMS

Disadvantages ofMDBMS over RDBMS

4.DESIGN

4.1 Overview of System Architecture

4.2 The Design

4.2.1

4.2.2

4.2.3

4.2.4

4.2.5

Profile Management Module

Query Generation Module

Query Execution Module

Displaying Results Module

OLAP Operations Module

5. GRAPHICAL USER INTERFACE

5.1 The GUI

5.2 Creating User Account

5.3 Connecting to the Data Warehouse

5.4 Changing Password

5.5 Creating and Editing User Profiles

5.6 Querying

5.7 Viewing Resultant Data Graphically

6. IMPLEMENTATION

6.1 Building Data Warehouse

6.2 Implementation ofthe Interface

6.2.1 User Account Management

6.2.2 Connecting to Data Warehouse

6.2.3 Profile Management

6.2.4 Display Querying Window

6.2.5 Query Generation

6.2.6 Profile Integration

6.2.7 Query Execution

6.2.7.1 Establishing a Connection

30

31

32

34

34

36

38

38

39

39

40

42

42

42

44

45

46

48

53

56

56

59

61

62

63

64

65

66

68

68

VII

6.2.7.2 Query Processing

6.2. 7.3 Closing the Connection

6.2.8 Displaying Results

6.3 The Platform

7. CONCLUSION

7.1 Features ofthe System

7.2 Future Enhancements

REFERENCES

BIBLIOGRAPHY

69

70

70

72

74

75

75

76

77

viii

LIST OF FIGURES

Figure No Description Page No

1.1 An Example of Subject Orientation of Data 4

1.2 The Issue of Integration 5

1.3 The Issue ofNonvolatility 6

1.4 The Issue of Time V ariancy 7

3.1 Multi-Dimensional Data Model 24

3.2 An Example of Multi-dimensional Data Model 25

3.3 The Star Schema 26

3.4 An Example of Star Schema 27

3.5 An Example of Snowflake Schema 29

3.6 (a) RDBMS Storage 30

3.6 (b) MDBMS Storage 30

3.7 (a) RDBMS Storage 31

3.7 (b) MDBMS Storage 31

3.8 (a) RDBMS 33

3.8 (b) MDBMS 33

4.1 Architecture of the System 34

4.2 Structure Chart for the Complete System 36

4.3 Structure Chart for Profile Management 38

4.4 Structure Chart for Query Generation 39

4.5 Structure Chart for Query Execution 39

4.6 Structure Chart for Query Displaying Result 40

4.7 Structure Chart for OLAP Operations 40

5.1 Invoking Create User 43

5.2 GUI for User Creation 43

5.3 Information Message 44

5.4 Warning Message 44

5.5 Login Form 44

5.6 Password Change Form 46

5.7 Creating and Editing Profiles 47

IX

5.8 Querying Interface 48

5.9 Executing a Query 49

5.10 Roll-up I Drill-down 50

5.11 Level Selection Wizard 51

5.12 Slicing 52

5.13 Slicing Wizard 52

5.14 Resultant Data 53

5.15 Draw Chart Menu Item 54

5.16 Pie Chart 54

X

Personalization for OLAP Querying

CHAPTERl

INTRODUCTION

The amount of information available to large-scale enterprises is growing

quickly. New data is being generated continuously by operational sources such as

order processing, inventory control, and customer service systems. To make

business decisions, enterprise analysts need to ask complex analytical queries

over an integrated view of the data across all sources. Answering such complex

queries is very expensive because data from multiple distributed heterogeneous

sources must be extracted, cleansed, integrated, and processed at the query time.

Further more, the sources may not always be available, they may not support

complex analytical queries, and the network connecting them may have

unreliable performance.

To deal with these problems, data warehousing has been proposed as an efficient

approach to supporting on-demand analysis. Instead of integrating data from

sources to answer the complex queries on demand, we integrate data in advance

and store it in a data warehouse. Then, we can answer these complex queries

locally using the data warehouse without going back to the sources. On the other

hand, when the source data undergoes changes, we must perform warehouse

maintenance to keep the data in the data warehouse up-to-date.

"A Data warehouse is a repository of historical data, collected from multiple

heterogeneous data sources, integrated, and organized under a unified schema at a

single site in order to facilitate management decision making."

Data warehouse provides the best opportunity for analysis of the data and OLAP

(On-Line Analytical Processing) is the vehicle for carrying out this analysis.

OLAP tools provide a way for managers and decision makers to extract

information quickly and easily from data warehouse in order to answer questions

regarding their business. A data warehouse without OLAP tools is unthinkable.

Data warehouse users use OLAP tools for decision making process. The OLAP

tools that are presently available in the market, initially present all dimensions,

Personalization for OLAP Querying

dimension members, levels and measures to the analysts for decision making. So,

an analyst has to go through all the data to choose the data for analysis. It requires

more time and effort. Instead, if OLAP tools allow a user to store his preferences

in a profile, then that profile can be used for initial data presentation and

personalizing OLAP queries. Now, the time and effort required to select the data

for analysis will be less and the users get the most interesting results to his I her

queries. Traditional OLAP tools lack of this feature and hence there is a need for

Personalized OLAP tools, which enable Personalization for OLAP Querying.

With the help of these personalized OLAP tools, the effort and time required to

make decisions can be reduced.

In this chapter, first we introduce the concepts of Data Warehousing and On-Line

Analytical Processing and then mention the need for Personalized OLAP tools.

1.1 General Concepts

The notion of extracting useful knowledge from collected data is not a new idea

in the field of information systems technology. Only with the explosive growth of

the quantity of data, it has become crucial to explore new techniques for data

extraction and analysis. Many organizations possess large amounts of data that is

maintained, and stored, but they are unable to capitalize on the valuable

information hidden in the data. A data warehouse is designed to manage large

volumes of business data and to provide a foundation for analytical processing.

The primary goal of data warehouses is to improve the quality of decision making

process in the enterprise. Years of research have produced state-of-the-art

technology for designing and implementing such warehouses. Furthermore, in

parallel with the investigation into design of data warehouses, various techniques

for analyzing large amounts of data in the warehouses have been proposed and

accordingly, was given a new term called OLAP (On-Line Analytical Processing)

[1]. In the following sections we describe the general concepts of data warehouse

andOLAP.

2

Personalization for OLAP Querying

1.1.1 Data Warehouse

According to William H. Inmon [13], a leading architect in the construction of

data warehouse systems, "A data warehouse is a subject-oriented, integrated,

nonvolatile and time-variant collection of data in support of management's

decisions". This short, comprehensive definition presents the major features of a

data warehouse. The four key words, subject-oriented, integrated, time-variant,

and non-volatile, distinguish data warehouses from other data repository systems,

such as relational database systems, transaction processing systems, and file

systems. Let's take a closer look at each of these key features.

• Subject-oriented:

The subject orientation of the data warehouse is shown in Figure 1.1. A

data warehouse is organized around major subjects, such as customer,

supplier, product, and sales. Rather than concentrating on the day-to-day

operations and transaction processing of an organization, a data

warehouse focuses on the modeling and analysis of data for decision

makers. Hence, data warehouses typically provide a simple and concise

view around particular subject issues by excluding data that are not useful

in the decision support process.

3

Personalization for OLAP Querying

Outlet

Sales Rep
Quantity Sold
Part Number
Date
Customer Name
Product Description

I ~~~~i~~mmmm1Jl1 Unit Price
Mail Address I

i

'
!llllllllllllii!IUU

.I Customers ~~~
i

I ""nUl

Retail I Products ~I I Sales Rep
111111·

I IIIIUUI!IIillll I Quantity Sold llllllllll

Part Number
Date
Customer Name
Product Description
Unit Price
Mail Address

nnnnnm

Transactional Storage Data Warehouse Storage

Figure 1.1 An Example of Subject Orientation ofData

• Integrated

The second salient characteristic of the data warehouse is that it is

integrated. Of all the aspects of a data warehouse, integration is the most

important. Data is fed from multiple, disparate sources into the data

warehouse. As the data is fed, it is converted, reformatted, re-sequenced,

summarized, and so forth. Figure 1.2 illustrates the integration that occurs

when data passes from the application-oriented operational environment

to the data warehouse.

Design decisions made by applications designers over the years show up

in different ways. In the past, when application designers built an

application, they never considered that the data they were operating on

would ever have to be integrated with other data. Such a consideration

was only wild theory. Consequently, across multiple applications there is

no application consistency in encoding, naming conventions, physical

4

Personalization for OLAP Querying

attributes, measurements of attributes, and so forth. Each application

designer has had free rein to make his or her own design decisions. The

result is that any application is very different from any other application.

Operational Systems

Appll
Appl2
Appl3
Appl4

Appl1
Appl2
Appl3
Appl4

m,f
1, 2
x,y
male, female

em
inch
feet
yard

Encoding Data Warehouse

m. f

em

Figure 1.2 The Issue of Integration

Data is entered into the data warehouse in such a way that the many

inconsistencies at the application level are undone. For example, as

previously shown in Figure 1.2, as far as encoding of gender is concerned,

it matters little whether data in the warehouse is encoded as m If or 1 I 0.

What does matter is that regardless of method or source application, data

warehouse encoding is done consistently. If application data is encoded as

X I Y for gender, it is converted as it is moved to the warehouse. The

same consideration of consistency applies to all application design issues,

such as naming conventions, key structure, measurement of attributes, and

physical characteristics of data.

• Nonvolatile

The third important characteristic of a data warehouse is that it is non­

volatile. Figure 1.3 illustrates nonvolatility of data and shows that

operational data is regularly accessed and manipulated one record at a

time. Data is updated in the operational environment as a regular matter of

course, but data warehouse exhibits a very different set of characteristics.

Usually (but not always), data warehouse data is loaded at a time and

5

Personalization for OLAP Querying

accessed for further usage. But in general it is not updated. Instead, when

data in the data warehouse is loaded, it is loaded in a snapshot, static

format. When subsequent changes occur, a new snapshot record is

written. In doing so, a historical record of data is kept in the data

warehouse.

Operational Data warehouse

Record-by-Record manipulation of Data Mass Load I Access of Data

Change

Insert Load Access
Access

Transactional Storage Data Warehouse Storage

Figure 1.3 The Issue ofNonvolatility

• Time-variant

The last salient characteristic of the data warehouse is that it is time

variant. Time variancy implies that every unit of data in the data

warehouse is time stamped. In other cases, a record has a date of

transaction. But in every case, there is some form of time marking to

show the moment in time during which the record is accurate. Figure 1.4

illustrates how time variancy of data warehouse data can show up in

several ways.

6

Personalization for OLAP Querying

Operational

• Time horizon - current to
60-90 days

• Update of records
• Key structure may or may

not contain an element of
time

Data Warehouse

• Time horizon - 5 - 1 0 years
• Sophisticated snapshots of data
• Key structure contains an

element of time

Figure 1.4 The Issue ofTime Variancy

Different environments have different time horizons associated with them.

A time horizon is the length of time data is represented in an environment.

The collective time horizon for the data found inside a data warehouse is

significantly longer than that of operational systems. A 60 - to - 90 day

time horizon is normal for operational systems; a 5 - to - 10 year time

horizon is normal for the data warehouse. As a result of this difference in

time horizons, the data warehouse contains much more history than any

other environment.

Operational databases contain current-value data, or data whose accuracy

is valid as of the moment of access. Data warehouse data is very unlike

current-value data, however. Data warehouse data can be thought of as

nothing more than a sophisticated series of snapshots, each snapshot taken

at one moment in time. The effect created by the series of snapshots is

that the data warehouse has a historical sequence of activities and events,

something not at all apparent in a current-value environment where only

. the most current value can be found.

The key structure of operational data may or may not contain some

element oftime, such as year, month, day, and so on. The key structure of

the data warehouse always contains some element of time. The

embedding of the element of time in the data warehouse record can take

7

Personalization for OLAP Querying

many forms, such as a time stamp on every record, a time stamp for a

whole database, and so forth.

In sum, a data warehouse is a semantically consistent data store that serves as a

physical implementation of a decision support data model and stores the

information on which an enterprise needs to make strategic decisions. A data

warehouse is also often viewed as an architecture, constructed by integrating data

from multiple heterogeneous sources to support structured and/ or ad hoc queries,

analytical reporting, and decision making.

1.1.2 On-Line Analytical Processing (OLAP)

OLAP is a category of software technology that can be used to analyze the data

existing in a data warehouse. The functional and performance requirements of

On-Line Analytical Processing (OLAP) applications are very different from those

of on-line transaction processing (OL TP) applications. Transaction processing

systems are judged on their ability to collect and manage data, whereas analytical

processing systems are judged on their ability to extract information from data.

OLAP allows querying and analyzing of data from many different perspectives.

OLAP council [6], [7] defines OLAP in the following way.

"OLAP is a category of Software Technology that enables analysts, managers

and executives to gain insight into data through fast, consistent, interactive

access to a wide variety of possible views of information that has been

transformed from raw data to reflect the real dimensionality of the enterprise as

understood by the user. OLAP functionality is characterized by dynamic multi­

dimensional analysis of consolidated enterprise data supporting end user

analytical and navigational activities".

The two types of processing namely OLAP and OLTP differ in many aspects as

summarized below.

• Users

The number of users in OLTP systems is large where as in OLAP systems

this number is relatively small. OLTP is performed mainly by clerks,

8

Personalization for OLAP Querying

where as OLAP is used by management people in decision making

process.

• Data

Data in OL TP is current, accurate, and very detailed. In contrast, data

stored in data warehouses and manipulated by OLAP is historical,

multidimensional and often summarized.

• Unit of operation

Transactions in OL TP are usually short SQL statements, as opposed to

OLAP where a knowledge worker deals with very complex nested

queries. This creates a necessity for a flexible user interface and even

more importantly for an efficient query optimization.

• Number of accessed records

In most cases the number of records accessed by an OLAP server is at

least by an order of magnitude larger than in the case of OLTP. Moreover

access type in OL TP systems may be read or update or delete, where as in

OLAP systems access type is read only.

• Metrics

Transaction throughput is the main performance indicator in OL TP

applications, however query throughput and response time are important

for OLAP applications.

All these characteristics are strong arguments for physical separation of data

warehouses from operational data. Moreover, it is often the case that data

warehouses contain data consolidated from heterogeneous sources. The different

sources may contain data of varying quality, and/or may use inconsistent

representations, codes, formats, which have to be reformatted. In most cases

OL TP is developed using E-R model that is application-oriented. Such a model

cannot effectively serve for decision support, since a database model for OLAP is

9

Personalization for OLAP Querying

to be subject-oriented as mentioned earlier. Star and snowflake schemas have

emerged as the main candidates of models for efficient OLAP.

1.1.2.1 OLAP Operations

OLAP functionality is characterized by dynamic multi-dimensional analysis of

consolidated enterprise data. The following are the key operations ofOLAP.

• Drill Down

Drilling down is a specific analytical technique whereby the user

navigates among levels of data ranging from the most summarized to the

most detailed. The drilling paths may be defined by the hierarchies within

dimensions or other relationships that may be dynamic within or between

dimensions.

• Roll-up

Roll-up is a specific analytical technique whereby the user navigates

among levels of data ranging from the most detailed (down) to the most

summarized (up) along a concept hierarchy. Roll-up is considered as a

process of ascending concept hierarchies. Roll-up is a method of analysis

for retrieving higher levels of summary data starting from detailed data.

• Slice and Dice

This is an informal term referring to data retrieval and manipulation. We

can picture a data warehouse as a cube of data, where each axis of the

cube represents a dimension. Slicing means retrieving a piece (a slice) of

the cube by specifying measures and values for some or all of the

dimensions. When we retrieve a data slice, we may also move and reorder

its columns and rows as if we had diced the slice into many small pieces.

A system with good slicing and dicing makes it easy to navigate through

large amounts of data.

• Pivot

Pivot is to change the dimensional orientation of a report or page display.

For example, Rotating consists of swapping the rows and columns, or

10

Personalization for OLAP Querying

moving one of the row dimension into the column dimension, or

swapping an off-spreadsheet dimension with one of the dimensions in the

page display (either to become one of the new rows or columns), etc.

• Drill-across

Drill-across is the act of requesting similarly labeled data from two or

more fact tables in a single report.

• Drill-through

Drill-through is a specific operation whereby the user views the raw data

pertaining to a high level concept from a concept hierarchy of a given

dimension.

1.1.2.2 Types of OLAP Systems

There are five different types of OLAP systems based on storage methodology. In

all these systems the processing is same and the storage methodology is different.

Architectures of these systems are briefly summarized as under.

• ROLAP

ROLAP stands for Relational On-Line Analytical Processing, in which

data is stored as rows and columns in relational form. This model presents

data to the users in the form of business dimensions. In order to hide the

storage structure to the user and present data multi-dimensionally, a

semantic layer of metadata is created. The metadata layer supports

summarizations and aggregations. We can store the metadata in relational

databases.

• MOLAP

MOLAP stands for Multidimensional On-Line Analytical Processing. In

this model, online analytical processing is best implemented by storing

II

Personalization for OLAP Querying

the data multi-dimensionally, that is, easily viewed in a multidimensional

way.

• HOLAP

HOLAP stands for Hybrid On-Line Analytical Processing. Physical

implementation of this model is based on both relational and

multidimensional technologies. HOLAP technologies attempt to combine

the strengths of MOLAP and ROLAP. For summary-type information,

HOLAP leverages cube technology for faster performance. When detail

information is needed, HOLAP can drill through from the cube into the

underlying relational data.

• DOLAP

DOLAP stands for Desktop On-Line Analytical Processing, is a variation

that exits to provide portability for the OLAP users. It creates

multidimensional datasets that can be transferred from server to desktop,

requiring only the DOLAP software to exit on the target system. This

provides significant advantages to portable computer users, such as

salespeople who are frequently on the road and do not have direct access

to their office server.

• 03LAP

03LAP stands for Object Oriented On-Line Analytical Processing whose

physical implementation is based on object-oriented databases. It

combines the advantages ofMOLAP and ROLAP.

Defining a schema and selecting an OLAP server is only one step in the process

of building and maintaining a data warehouse. But it is important to choose

carefully the architecture which fits the needs of knowledge workers. Ideally,

creating an integrated enterprise warehouse that collects information about all

subjects (e.g., customers, products, revenues, personnel) spanning the whole

organization would be the best choice. The problem is that building such a

12

Personalization for OLAP Querying

warehouse is a long and a complex process. For this purpose, different kinds of

metadata, including administrative, business, and operational metadata, have to

be managed. Consequently, many organizations are settling for data marts

instead. A data mart is an integrated data resource, usually oriented to a specific

purpose or major data subject that may be distributed to support local business

needs. Data marts enable faster roll out, since they do not require the enterprise­

wide consensus, but they may lead to a complex integration problems in the long

run.

1.2 State of the Art

Existing OLAP tools do not have personalization for OLAP Querying. i.e.,

initially every user is presented with the same data for decision making. Even

though a user is interested in some particular data, he/she has to go through the

entire data of the data warehouse for making a decision. In this context, the time

and effort required to make a decision are more. These reasons gave a motivation

for Personalized OLAP tool. i.e., if a user is allowed to express his preferences in

a profile, then later on that profile can be used for OLAP querying. In this case,

initially the data presented to the user is purely based on the user profile. So, the

initial dataset for decision making is reduced. This leads to efficient decision

making process with the reduced efforts and time. The following example

illustrates the necessity of personalized OLAP tool.

Example:

Let us suppose that we have a data warehouse with 20 dimensions.

Further let us assume that each dimension has 5·levels and fact table

contains 5 measures. If we use a traditional OLAP tool to analyze the

data in the data warehouse, the OLAP tool presents all the dimensions,

dimension members, levels and measures to every user. i.e., a user has

to choose from the existing 105 options.

On the other hand, let us suppose that a user has a profile, which

consists of 5 dimensions, 3 measures and 3 levels in each dimension.

13

Personalization for OLAP Querying

If the OLAP tool supports personalization, then the initial dataset

contains only 18 choices for decision making.

The above example illustrates the impact of the personalization in decision

making process.

1.3 Aim of the Thesis

Our aim is to build a Personalized OLAP tool which provides Personalization

for OLAP Querying. The tool has to provide an interface to create user profile.

Initially, the profile has to be used for presenting the data to the user for decision

making. Later on, the preferences in the profile have to be integrated with the

query to get the most interested results.

Keeping this in view, we propose to develop a graphical tool, which provides an

interface for creating a user profile. This tool integrates the preferences into the

queries to get the desired results. Moreover this tool supports general OLAP

operations like drill-down, roll-up, slice and dice. Once the query is built and

executed, the results are displayed in various formats to the user. Usage of such a

tool requires no knowledge of the underlying data structures, query building, etc

to the user. The user is able to build OLAP queries and easily analyze the results

using the visual interface.

1.4 Organization ofThesis

The rest of this thesis is organized as follows.

• Chapter 2, Personalization: In this chapter, we give a definition of

user profile. We discuss about the profile creation, initial data

presentation, query generation, profile integration and displaying the

results.

• Chapter 3, Multi Dimensional Modeling: This chapter gives a

description of the multi dimensional modeling. Here we discuss the

merits and demerits of multi dimensional models and relational models.

14

Personalization for OLAP Querying

• Chapter 4, Design: This chapter presents the over all design of the

proposed system. We use structure charts to present the design of

various modules ofthe proposed system.

• Chapter 5, The GUI: This chapter describes the graphical view of the

proposed system. This acts as a user manual to help the users in using

the system.

• Chapter 6, Implementation: This chapter deals with the

implementation details of the proposed system. Here we present the

implementation details of the front-end and back-end. We also discuss

about the platform on which we develop the system.

• Chapter 7, Conclusion: In this chapter we present the features and

future enhancements of the proposed system.

15

CHAPTER2

PERSONALIZATION

Personalization for OLAP Querying

In this chapter, we discuss about the personalization framework for OLAP

querying. In section 2.1 we look at the related work and in section 2.2 we present

the proposed work. Section 2.3 presents user profile definition and section 2.4

describes about personalized graphical OLAP tool.

2.1 Related Work

Handling user preferences is an important issue in current information systems,

which has motivated many research efforts since many years. In the context of

relational databases different methods have been proposed for personalizing

queries. [2], [3] proposed some methods for personalization of queries in

database systems. In [2], a user can express his I her preferences by degree of

interest associated with values of attributes, or more generally with atomic

selection or join conditions. It stores user profiles. When a user submits a query,

this query is personalized using the preferences stored in his I her profile.

[5] Proposed a personalization framework for OLAP querying. This concentrates

in finding most interesting visualization for the resultant data of OLAP queries.

Based on the user profile, it finds the most interesting visualization for the

resultant data of OLAP queries.

None of the above. works concentrated on personalization of initial data

presentation and preference integration in OLAP and hence gave a motivation for

our present proposed work. We discuss the proposed work in the following

section.

2.2 Proposed Work

The proposed work aims at storing user preferences in user profiles and using the

profile to initial data presentation and personalization of OLAP queries. In the

present work:

16

Personalization for OLAP Querying

1. We propose a definition of user profile in OLAP context.

2. We develop a personalized graphical OLAP tool, which provides:

• An interface for creating and editing the user profiles.

• A personalized query interface

• User profile integration

• Resultant data presentation

We discuss these in detail in the following sections.

2.3 User Profile Definition

User profile is a set ofuser preferences. User profile consists of user preferences

and interests. These preferences say about the data in which the user is interested.

A user profile consists of dimensions, members, levels, values and measures in

which the user is interested. We store the user profiles in a database.

2.4 Personalized Graphical OLAP Tool

In the present work, we develop a personalized graphical OLAP tool. This tool

facilitates the following.

• An interface to create and edit the user profiles.

• A personalized querying interface.

• User profile integration

• Resultant data presentation.

2.4.1 Creating and Editing the User Profiles

The personalized graphical OLAP tool presents a GUI to create and edit the user

profiles. In this GUI, different structures of a data warehouse are displayed. To

start with, all the dimensions existing in the data warehouse are displayed. The

user can choose any number of the dimensions for analysis. After selecting a

17

· Personalization for OLAP Querying

dimension, the user can choose the members and levels he/she is interested in,

from the list that is displayed. For each of the members or levels selected by the

user, specific values that the user is interested in can also be specified. These can

be a set of discrete values or a range of values. Finally, we display a list of

measures to the user. User is allowed to choose any of these measures for

analysis. All the user preferences will be stored in a database. The following

example illustrates the process of building a user profile.

Example:

Consider the following data warehouse schema (discussed in detail m

chapter3), which consists of six dimension tables and a fact table.

Dimensions:

1. Customer Dimension

Customer

Name

2. Product Dimension

Product No Product Name

3. Time Dimension

Date Key Day

4. Sales Person Dimension

Customer

Income

Customer

Category

Product Category

Month Year

Sales Person Id Sales Person name City

5. Orders Dimension

Order No Order Date

6. Location Dimension

City Key State Region Country

Customer

Address

Unit Price

Quota

18

Personalization for OLAP Querying

Fact Table:

Customer No

Product No

Date Key

Sales Person Id

Order No

City Key

Quantity

Total Amount

Now, we see the step wise process of building a user profile for the above

schema.

• Selecting a dimension

We display a list of dimensions that are present in the data warehouse

to the user. User is allowed to choose any number of dimensions from

this list. In this example we display all the dimensions namely

customer, product, sales person, location, time, orders to the user.

Clicking on Add Dimension button in the interface adds a dimension

to the profile.

• Selecting levels and Members

After adding a dimension to the profile, we display all the members

and levels of that dimension. For example, suppose that user selects

customer dimension. Then we display customer no, customer name,

customer income, customer category, customer address, city to the

user. User can choose any of these members and levels. To add a

member or level to user profile, the user can click on Add Member I

Level button in the interface.

• Specifying Constraint

After adding a member or a level to the profile, we display all the

values corresponding to the selected one. The user can choose both

discrete values and a range of values. Suppose the user has added

customer income to his profile. Then we display all the values that

exist in the data warehouse for that. These values may be Rs. 10,000,

19

Personalization for OLAP Querying

20,000, 4,000 ... etc. Similarly, in the product dimension unit price

may have the values Rs. 200, 300 ... etc.

Now, user can specify his preferences in two ways. One way to

express the preference is to specify a range. For example, the user can

choose a range of incomes and product unit prices as shown below:

Example of a range:

CUSTOMER.CUSTOMER INCOME BETWEEN 1500 AND 20000 AND

PRODUCT.UNIT PRICE < 2000

Another way is to express the preferences in terms of discrete values.

The following example illustrates discrete valued preferences.

Example of discrete values:

CUSTOMER.CUSTOMER CATEGORY= 'STUDENT' OR

CUSTOMER.CUSTOMER CATEGORY= 'ENGINEER'

In the above manner a user can specify interested values either in

discrete values or in a range of values or in both.

• Selecting measures

Similarly, we display all the measures that exist in the data warehouse

to the user. User can choose any of these measures.

After completing the selection process, the user can save his/her

profile.

By using this interface users can create new profiles and edit or delete the

existing profiles.

20

Personalization for OLAP Querying

2.4.2 Personalized Querying Interface

Once the user profile has been built, we use it for

a) Initial data presentation

b) Query modification

The selected dimensions, members, levels and measures contribute to the initial

data presentation. The constraints are used during profile integration phase for

query modification.

2.4.2.1 Initial Data Presentation

As discussed in the previous chapter, the OLAP tools that are presently available

in the market, initially present all dimensions, dimension members, levels and . ;:.:::->.~

measures to the analysts for decision making. So, an analyst has to go through all :::s')<')~~.-_L]Sttj."
the data to choose the data for analysis. It requires more time and effort. We (s~(f·~
provide a personalized query interface to the user, in which we display all the \::Z, ,_ :1 c:_

~{'t;'>;-... -·-~·. -0 '
dimensions, dimension members, levels and measures according to the user ---1-!t>qB~

-~.;::;---

profile. In the initial data presentation, since only the chosen ones are presented,

the data set will be reduced. A user can easily browse through the reduced dataset

and make better decisions in less time.

2.4.2.2 Profile Integration

The interface supports querying, general OLAP operations like drill-down, roll­

up, slicing and dicing. Once is query is specified by the user, the system

internally translates the query to a SQL query. The following is an example of a

generated SQL query.

SELECT Customer_Name, Customer_ Category,

SUM(Total_Amount} FROM Customer, Product,

Product_Category,

SalesFacts WHERE

SalesFacts.Customer No Customer.Customer No AND

SalesFacts.Product_No = Product.Product_No

21

Personalization for OLAP Querying

Now, we gather all the constraints specified in the profile. Suppose we have the

following constraints in the profile.

Customer.Customer Income BETWEEN 1500 AND 20000 and

Product.Unit Price BETWEEN 48 AND 1899

We integrate these constraints into the generated query to get the most interested

results. The query after personalization is shown below:

SELECT Customer_Name,

SUM(Total_Amount) FROM

Sa1esFacts.Customer No

SalesFacts.Product No

Customer_Category, Product_Category,

Customer, Product, Sa1esFacts

Customer.Customer No

Product.Product No

WHERE

AND

AND

Customer.Customer Income BETWEEN 1500 AND 20000 AND Product.Unit Price

BETWEEN 48 AND 1899 GROUP BY Customer_Name, Customer_Category,

Product_Category

The constraints shown in bold are automatically integrated into the query by the

interface. A more detailed example of profile integration during slice operation is

shown below:

SELECT Customer_Name, Customer_Category, Product_Name,

sum(Total_Amount) FROM

SalesFacts.Customer No

SalesFacts.Product No

Customer.Customer Income

Customer,

BETWEEN

Product, SalesFacts

Customer.Customer No

Product.Product No

1500 21000

WHERE

AND

AND

AND

Product.Unit_Price BETWEEN 48 AND 1899 AND Customer.Customer Name

'RAJ' OR Customer. Customer Name 'KIRAN' OR

Customer.Customer Name = 'NAIDU' OR Customer.Customer Name = 'REDDY'

OR Customer.Customer Name = 'BHASKAR') GROUP BY customer_Name,

Customer_Category, Product Name

In the above example, the constraints that are shown in bold are automatically

integrated into the query by the interface. These constraints are specified by the

user at the time of profile creation and are automatically imposed on all the

queries posed by the user. So, the user gets most interested results, which helps

the user to make better decisions. In the above example, the slice conditions are

shown in italics.

22

Personalization for OLAP Querying

Similarly, during the drill-down, roll-up and dice operations, the interface

generate different queries based on the user selections.

2.4.3 Resultant Data Presentation

The resultant data obtained by executing OLAP queries is presented to the user in

tabular and graphical formats. Immediately after executing a query, the interface

presents the data in tabular format. Here a user can compare various numerical

figures for detailed analysis. Alternatively, the user can view the data graphically.

On demand, the tool presents the resultant data in a pie chart format. Using this

pie chart, the user can quickly analyze the data.

The proposed work aims at presenting a fully personalized ·visual query

generation interface to the user. So, a user does not require any prior knowledge

of the syntax of the query languages like SQL. The user doesn't require any

technical knowledge of the underlying data structures to get the required

information. The tool handles complex structures and relationships inherent in

data. It allows the user to select the data needed by him and impose conditions (if

any), on the data. By using this tool, a user can access the data and can perform

all the OLAP operations on this data. The user can view the resultant data in

different formats like tables or pie charts.

23

Personalization for OLAP Querying

CHAPTER3

MULTI DIMENSIONAL MODELING

In this chapter we explain the multi-dimensional data model, its advantages and

disadvantages. Data can be stored using Relational DBMS and Multi-dimensional

DBMS. We discuss these technologies focusing on their advantages and

disadvantages.

3.1 Multidimensional Modeling

Generally operational data is mainly stored in the form of relational tables. In

contrast to operational data, data in a warehouse needs a new kind modeling to

support the complex and efficient operations of on-line analytical processing

(OLAP). Thus, a new kind of modeling called multidimensional modeling has

been proposed to cater the needs of data warehousing. Currently,

multidimensional approach is the most commonly used design approach for

modeling a warehouse.

The multidimensional models composed of logical cubes, measures, dimensions,

hierarchies, levels and attributes.The simplicity ofthe model is inherent because

it defines objects that represent real world business entities. This logical structure

of multi -dimensional data model is shown in Figure 3 .1.

I
Cube

I

Measures Dimensions

I

I I I
Dimension Levels Hierarchies
Attributes

Figure 3.1 Multi-Dimensional Data Model

24

Personalization for OLAP Querying

Multidimensional cube is constructed based on a set of dimensions and measures.

It contains collection of cells. Each cell is an intersection among a set of

dimension members and measures. These cells can be grouped to form

aggregates. The multi-dimensional model, which views the data in the form of a

data cube, is shown in Figure 3.2.

p

R
0
D
u
c
T

I CUSTOlVIER I
Figure 3.2 An Example ofMulti-dimensional Data Model

3.1.1 The Star Schema

The Star Schema [11] is a representation of multidimensional data model. A star

schema is a set of tables comprised of a single, central fact table surrounded by

de-normalized dimensions. Each dimension is represented in a single table. Star

schema represents dimensional data structures with de-normalized dimensions.

The data is stored in a central fact table, with one or more tables holding

information on each dimension. Dimensions have levels, and all levels are

usually shown as columns in each dimension table.

As shown in Figure 3.3 the fact table is in the middle of the star schema and the

dimension tables are arranged around the fact table. This arrangement in the

multidimensional model looks like a star formation, with the fact table at the core

25

Personalization for OLAP Querying

of the star and the dimension tables along the spikes of the star. The dimensional

model is therefore called a star schema [10].

LOCATION PRODUCT

SALES FACTS

TIME

Figure 3.3 The Star Schema

Let us examine the star schema for the sales as shown in Figure 3.3, the sales fact

table is in the center. Around this fact table, we have the dimension tables of

Customer, Product, Time, Orders and Location. Each dimension table is related

to the fact table in a one-to-many relationship. In other words, for one row in a

dimension table, there exist one or more related rows in the fact table.

A fact table is a central table which is large, especially in terms of the number of

tuples, whereas the dimensional tables are usually relatively small. This

asymmetric architecture is very different from what the entity-relationship model

is built on. Each tuple in the fact table contains a pointer, in the form of a foreign

key, to each of the dimension tables, and a set of measures related to those

particular dimensional objects. On the other hand, each dimension table consists

of columns that represent attributes of the dimension.

These attributes may or may not correspond to the concept hierarchy of

dimension. An example of star schema is shown in the figure 3.4. In the example

26

Personalization for OLAP Querying

we have a "sales fact table". This fact table has pointers in the form of foreign

keys to the following dimension tables: customer, product, time, orders, and

location. The fact table is highly normalized, where as the attendant dimension

tables are kept denormalized.

CUSTOMER DIMENSION

CustomerNo

Income
Categol)'
Address
City

DateKey
Day
Month
Year

City Name
State
Region
Countl)'

SALES FACTS

Customer No

ORDERS DIMENSION

SALES PERSON
DIMENSION

Figure 3.4 An Example of Star Schema

In addition to the dimensions, the star schema collects measures of the business.

Since the main motivation for the whole data warehouse technology is to enhance

decision support process, obtaining useful measures presents a pivotal issue. All

measures of the business are stored in the fact table. In the above star schema,

"UnitsSold', "TotalSales" and "AverageSales" are measures (See Figure 3.4).

3.1.1.1 Advantages of the Star Schema

The star schema structure is a structure that can be easily understood by the users

and with which they can comfortably work. The structure mirrors how the users

normally view their critical measures along their business dimensions. In the

following section we describe the advantages of star schema.

27

Personalization for OLAP Querying

• Easy for Users to Understand

The star schema reflects exactly how the users think and need data for

querying and analysis. They think in terms of significant business metrics.

The fact table contains the metrics. The users think in terms of business

dimensions for analyzing the metrics. The dimension tables contain the

attributes along which the user normally query and analyze. Because of

this reason, the users can easily understand the structure of star schema.

• Optimizes Navigation

The relationships are used to go from one table to another for obtaining

the information we are looking for. The relationships provide the ability

to navigate through the database using the join paths. If the join paths are

simple and straightforward, our navigation is optimized and becomes

faster.

A major advantage of the star schema is that it optimizes the navigation

through the database. Even when we are looking for a query result that is

seemingly complex, the navigation is still simple and straightforward.

• Most Suitable for Query Processing

The star schema is a query-centric structure. This means that the star

schema is most suitable for query processing. Irrespective of the number

of dimensions that participate in the query and irrespective of the

complexity of the query, every query is simply executed first by selecting

rows from the dimension tables using the filters based on the query

parameters and then finding the corresponding fact table rows. This is

possible because ofthe simple and straight forward join paths and because

of the very arrangement of the star schema. There is no intermediary maze

to be navigated to reach the fact table from the dimension tables.

3.1.2 The Snowflake Schema

A Snowflake schema is a set of tables comprised of a single, central fact table

surrounded by normalized dimension hierarchies. Each dimension level is

28

Personalization for OLAP Querying

represented as a table. Snowflake schema implements dimensional data structures

with fully normalized dimensions. This is the most well known variation of star

schema. "Snow flaking" is a method of normalizing the dimension tables in a star

schema. When we completely normalize all the dimension tables, the resultant

structure resembles a snowflake with the fact table in the middle. The star schema

for sales as shown in Figure 3.4 above contains only six tables, where as the

normalized version which is the snowflake schema, contains eight tables as

shown in Figure3.5.

CITY

City Key

City

State

PRODUCT

Productld

Bran did

Attribute2

ORDERS

Attrihutel

Attribute2

Street

City Key

Figure 3.5 An Example of Snowflake Schema

BRAND

Bran did

Attribute]

Attribute2

However, the denormalized structure of the dimension tables in star schema

offers easier browsing of the dimensions. For this reason Kimball, one of the

leading experts in data warehouse technology, strongly discourages using a

snowflake schema. "The dimension tables must not be normalized but should

remain as flat tables. Normalized dimensions destroy the ability to browse".

Snow flaking is not generally recommended in a data warehouse environment.

Query performance takes· the highest significance in a data warehouse and snow

flaking hampers the performance. The difference between star and snowflake

schema· is handing the dimensions. Star schema is most preferable because of

easy to understand and less joins make quick responses.

29

Personalization for OLAP Querying

3.1.2.1 Advantages of the Snowflake Schema

The following are the advantages of the snowflake schema.

• Small savings in storage space

• Normalized structures are easier to update and maintain

3.1.2.2 Disadvantages of the Snowflake Schema

The following are the disadvantages of the snowflake schema.

• Schema is less intuitive and end-users are put off by the complexity

• Browse through the content is difficult

• Degraded query performance because of additional joins

3.2 RDBMS Vs MDBMS

Figure 3.6(a), 3.6(b) and Figure 3.7(a), 3.7(b) show how the data is stored in

Relational DBMS and Multidimensional DBMS. In Relational DBMS we store

the data in tables and in Multidimensional DBMS we store the data in

multidimensional arrays (cubes).

.l

MODEL COLOR SALES VOL
M VAN

MINI VAN BLUE 10
MINI VAN RED 30 0
MINI VAN VVHITE 20 D CAR

10 30. 29

20 10 40
SPORTS CAR BLUE 20 E
SPORTS CAR RED 10 L
SPORTS CAR VVHITE 40 SEDAN 10 . 15 .20
SEDAN BLUE 10
SEDAN RED 15
SEDAN VVHITE 20

BLUE RED WHITE

I COLOR I

Figure 3.6(a) RDBMS Storage Figure 3.6(b) MDBMS Storage

30

Personalization for OLAP Querying

MODEL COLOR DEALER VOL
MINIVAN BLUE CLYDE 10
MINIVAN BLUE GLEASON 15
MINIVAN BLUE CARR 30
MINIVAN RED CLYDE 20 /
MINIVAN RED GLEASON 10
MINIVAN RED CARR 30 M MINIVAN WHITE CLYDE 10 VAN /v
MINIVAN WHITE GLEASON 20 0
MINIVAN WHITE CARR 30 CAR
SPOJ<TSCAR BLUE CLYDE 40 D /v
SPOI<TSCAR BLUE GLEASON 30

E SPOI<TSCAR BLUE CARR 20 SEDAN
SPOI<TSCAR RED CLYDE 10 L SPOI<TSCAR RED GLEASON 20
SPOI<TSCAR RED CARR 30
SPOI<TSCAR WHITE CLYDE 30

v
/Giea

c de ly
BLUE RED WHITE

SPOI<TSCAR WHITE GLEASON 20
SPOI<TSCAR WHITE CARR 10
SEDAN BLUE CLYDE 10 COLOR
SEDAN BLUE GLEASON 20
SEDAN BLUE CLYDE 30

Figure 3.7(a) RDBMS Storage Figure 3.7(b) MDBMS Storage

As shown in Figure 3.6(a), RDBMS structure table needs 9(rows) * 3(columns) =

27(cells) of storage space, and in Figure 3.6(b), MDBMS structure of array needs

only 3(dim) * 3(dim) = 9 (cells) of space. When we add one more dimension

(Dealership) as shown in the Figure 3.7, the Relational Database requires 27 * 4

= 108 cells where as MDBMS requires 3 * 3 * 3 = 27 cells only to store the data.

Thus, we see that array is more efficient and effective means of organizing data.

3.2.1 Advantages of MDBMS over RDBMS

The performance advantages offered by multidimensional technology facilitate

the development of interactive decision support applications. Multidimensional

DBMS offer several advantages over Relational DBMS. The following are the

advantages ofMultidimensional DBMS.

• Ease of Data Presentation & Navigation

In MDBMS, a great deal of information is gleaned immediately upon

direct inspection of the array. The user is able to view data along

presorted dimensions with the data arranged in an inherently more

organized, and accessible fashion than the one offered by the relational

table.

• Storage Space

Multidimensional databases consume very low space as compared to

Relational Databases. Array is more efficient and effective means of

31

Personalization for OLAP Querying

organizing data. From the Figures 3.6 and 3. 7, we can say that the storage

space required . by MDBMS is less than the storage space required by

RDBMS.

• Performance

The multidimensional databases achieve high performance levels. It is

very useful in OLAP applications. In relational environment performance

can be achieved through database tuning (indexing and keys). Database

tuning is an expensive activity. With the help of multidimensional

databases, user queries can be answered quickly.

• Ease of Maintenance

In multidimensional databases, the data is stored in the same way as it is

viewed. So no additional overhead is required to translate user queries

into requests for data. In Relational Databases, indexes, sophisticated

joins etc. are used which require considerable storage and maintenance.

3.2.2 Disadvantages of MDBMS over RDBMS

In multidimensional databases, we mainly have sparsity problem. An example of

sparsity in multidimensional databases is shown in Figure 3.8. In the Figure 3.8

(b) most of the cells are left blank. The figure doesn't have interacting

dimensions. Because of this reason, most of the cells are left blank. However in

RDBMS that row does. not exist. The multidimensional databases in our example

requires 9(dim) * 9(dim) = 81(Cells) but in relational databases we only require

9(rows) * 3 (columns)= 27(cells).

32

Personalization for OLAP Querying

SMITH 21
LAST NAME EMP# AGE
SMITH OJ 21 REGAN 19

REGAN 12 19 L
FOX 31 63 A

FOX 63.

WELD 14 31 s WELD 31
KELLY 54 27 T
LINK 03 56 N KELLY 27

KRANZ 41 45 A LINK 56
LUCUS 33 41 M
WEISS 23 19 E KRANZ 45

LUCUS 41

WEISS 19

31 41 23 0 I 14 54 03 12 33

EMPLOYEE#

Figure 3.8 (a) RDBMS Figure 3.8 (b) MDBMS

In this case, the performance of multidimensional DBMS is less. In relational

form, we require a maximum of nine searches to locate a record, where as in

multidimensional form; we require 18 searches along two dimensions. If we have

interrelated dimensions, then multidimensional models are preferable. Otherwise,

relational models are preferable.

From the above discussion, we observe that the multidimensional models are best

suited for On-Line Analytical Processing. So, we adopt the multidimensional

modeling for implementing the system.

33

CHAPTER4

DESIGN

Personalization for OLAP Querying

In this chapter we discuss the overall architecture and design of the proposed

system. We use structure charts [4] to describe the architecture of the proposed

system.

4.1 Overview of System Architecture

The architecture of the proposed system is shown in Figure 4.1. The proposed

system provides a multi user environment, in which 'n' number of users (clients)

can connect to the OLAP server. The OLAP server gets the data from the Data

Warehouse. This server executes the queries and gives the result back to the

respective clients.

PROFILES GUI

Figure 4.1 Architecture of the system

The user doesn't require any prior knowledge of query languages like SQL, to

work with the system. The GUI provides a user friendly interface to work with

the system. The proposed system is developed using Java 1.4.2 for front-end and

Oracle 9i for back-end. The design details are explained in the following sections.

34

Personalization for OLAP Querying

The Users, Profiles Management module provides mainly two functionalities.

One is user accounts management. In this we can create a user account and a user

can change his I her password. The second one is profile management. With the

help of this we can create and edit user profiles. User profile consists of user

preferences and interests. These preferences say about the data in which the user

is interested. In other words user profile is the set of user preferences viz.

dimensions, dimension members, levels, values and measures. This module

provides a GUI to create and edit the profiles. By using this GUI a user can create

new profile or edit the existing profile.

Query Generation module provides an interface for query building. This

interface presents all the user interested dimensions, dimension members, levels

and measures according to the user profile. Then the user can choose any of these

dimensions, dimension members, levels and measures for querying. According to

the user selection, the query will be generated automatically. The generated

queries will be passed to the Profile Integration module.

Profile Integration module integrates the profile into the query. i.e., the

conditions existing in the user profile to get the most possible answers will be

integrated into the query by the profile integration module. Then the resulting

query will be forwarded to the Query Execution module.

Query Execution module first establishes a connection between OLAP server

and the system. After establishing the connection, this module passes the query to

OLAP server for execution. OLAP servers are multidimensional databases that

store summarized data, ready for business analysis. The OLAP server executes

the query and the resultant data will be sent to the Display Results module.

The Display Results module displays the resultant data in tabular format. Then,

the user can perform drill-down, roll-up, slicing and dicing operations on the

resultant data. The resultant data can also be viewed in other format like pie chart

This will help the user to quickly analyze the data.

35

Personalization for OLAP Querying

If the user performs any thing wrong in between, the system raises an exception

and the user will be given a warning message.

4.2 The Design

We use structure charts to describe the high-level design of the entire system.

These charts act as a blueprint used by an architect to build a house. The structure

chart employed in our design, breaks the problem in to major sub problems and

we repeat the process for each sub problem until we reach problems that can be

solved directly.

The overall system design is shown in Figure 4.2. The Main module controls the

execution among User Account Management, Profile Management,

Connecting to Warehouse, Query Generation, Query Execution and

Displaying Results modules.

1. Request for user creation, change password
3. Request for Profile Management
5. Request for warehouse connection
7. User requests
9. Generated queries
11. Resultant data

2. User created, password changed
4. Profile Management completed
6. Connected to the warehouse
8. Generated queries
10. Resultant data
12. Display in different formats

Figure 4.2 Structure Chart for the Complete System

The description about the structure chart for the complete system is presented in

the following section.

User Account Management module is used to maintain the user accounts. By

using this module, we can create user accounts and a user can change his/her

password.

36

Personalization for OLAP Querying

Profile Management module is used to maintain the user profiles. With the help

of this module a user can create and edit his I her profiles. User profile consists of

user preferences and interests. These preferences say about the data in which the

user is interested. In other words user profile is the set of user preferences viz.

dimensions, levels, values and measures. This module provides a GUI to create

and edit the profiles. By using this GUI a user can create new profile, edit the

existing profile.

Connecting to Warehouse module is used to connect to the data warehouse.

This module presents an interface to the user to enter user name and password.

This module verifies the user name and password entered by the user. If the user

name and password are correct then this module establishes a connection between

the system and the warehouse. After connecting to the data warehouse, a user can

query the data warehouse data for decision making.

Query Generation module is the heart of the whole system. This module

presents the dimensions, levels and measures in a tree view to the user according

to the user profile. The user can choose any of these dimensions, levels and

measures. A query will be generated based on the user selections. The generated

query will be forwarded to the Profile Integration module. The profile

integration module integrates the profile into the query and then the integrated

query will be sent back to Query Generation module. The query generation

module passes this query to the Query Execution module.

Query Execution module executes the query. The results obtained by executing

the query will be sent to the Display Results module.

Displaying Results module obtains the results from the query execution module.

This module displays the results in different formats like tables and charts. Here a

user can further perform the OLAP operations like drill-down, roll-up, slice and

dice. The detailed design of these modules is explained with structure charts in

the following sections.

37

Personalization for OLAP Querying

4.2.1 Profile Management Module

Figure 4.3 depicts the structure chart for Profile Management module. This

module first establishes a connection between the data warehouse and the system.

Then it will display all the dimensions and measures to the user. User can choose

any of the dimensions. After selecting the dimension, this module displays all the

dimension members, levels in that dimension. User is free to choose any of these

dimension members, levels, measures. A user can also specify constraints on the

values. All the user selected data will be stored in a profile. At any time the user

is allowed to edit his/her profile.

Profile Management

?I Data
Display I selected
data to I by the

Connected user I user

Profile
Management

completed

6

Figure 4.3 Structure Chart for Profile Management

4.2.2 Query Generation Module

The structured chart for Query Generation module is shown in Figure 4.4. This

module presents the dimensions, dimension members, levels· and measures in a

tree view to the user according to the user profile. The user can choose any of

these dimensions, dimension members, levels and measures. A query will be

generated based on the user selections. The generated query will be forwarded to

the Profile Integration module. The profile integration module integrates the

profile into the query and then the integrated query will be sent back to query

generation module. The query generation module passes this query to the Query

Execution module.

38

Personalization for OLAP Querying

Display
data to user

Query Generation

Generated
query

Figure 4.4 Structure Chart for Query Generation

4.2.3 Query Execution Module

The structured chart for Query Execution module is shown in Figure 4.5. This

module executes the query obtained from the query generation module. The

results obtained by executing the query will be sent to the Displaying Results

module.

Figure 4.5 Structure Chart for Query Execution

4.2.4 Displaying Result Module

Figure 4.6 depicts the structure chart for Displaying Result module. This module

displays the resultant data in tabular format. Then, the user can perform drill­

down, roll-up, slice and dice operations on the resultant data. The resultant data

39

Personalization for OLAP Querying

can also be viewed in other format like pie chart. This will help the user to

quickly analyze the data.

Display Result

Resultant
data

Display in
Chart Format Operations

Figure 4.6 Structure Chart for Displaying Result

4.2.5 OLAP Operations Module

The structure chart for OLAP operations module is shown in Figure 4.7. By

using this module a user can perform the OLAP operations like drill-down, roll­

up, slice and dice. This module integrates the conditions specified by the user into

the query and the resultant query will be handed over to the query execution

module for execution.

OLAP Operations

Requests
Slice

Condition

6
Figure 4. 7 Structure Chart for OLAP Operations

40

Personalization for OLAP Querying

The following section describes the functionalities of Drill-down I Roll-up, Slice

and Dice modules.

• Drill-down I Roll-up

This module displays all possible levels to which a user can drill-down I

roll-up. User is allowed to choose a level. After the user selection, this

module generates drill-down I roll-up condition. This condition will be

integrated within the previous query and then the resultant query will be

sent to the query execution module.

• Slice

This module displays the list of values for the selected level in a tree

view. User can select any of these values. This module generates slice

condition according to the user selections. This condition will be

integrated within the previous query and the resultant query will be

handed over to query execution module.

• Dice

This module allows the user to drag the dimensions and levels. With the

help of this module a user can analyze the data in different views.

The working model of the proposed system is shown in the Chapter 5 and all the

main modules are explained in chapter 6.

41

Personalization for OLAP Querying

CHAPTERS

GRAPHICAL USER INTERFACE

In this chapter we discuss the Graphical User Interface (GUI) of the proposed

system. We have developed the GUI using Java 1.4.2.

5.1 The GUI

This interface is a menu-driven, user friendly, point and click interface. The

system is an integrated environment in which a user can perform the following

actions.

I. Creating user account

2. Connecting to the data warehouse

3. Change password

4. Creating and editing user profiles

5. Querying

6. Viewing resultant data graphically

We will discuss about these things in detail in the following sections.

5.2 Creating User Account

The interface for creating a user account can be invoked by choosing Create

User option from the OLAP Menu. Alternatively, this can be done by hitting the

keys Ctrl - U. The process of invoking the interface for creating a user account is

shown in Figure 5.1. After choosing the Create User option from the OLAP

Menu, an interface for creating a user account will appear. This interface is

shown in Figure 5.2. The user has to enter a user name, password and confirm

password to create a new user account. After entering the details, click on Create

User button. Then, the system verifies the following conditions.

a. Are user name I password I confirm password fields empty?

b. Whether the user name already exists or not?

42

Personalization for OLAP Querying

c. Whether the password and confirm password are same or not?

Figure 5.1 Invoking Create User

., IJSerName ~Kir~an===~ If; I
PaSsword- r

I -~P-.J- ~~]
i::::?·~~u~ .Jt · · ·• ~•,,;._;J

Figure 5.2 GUI for User Creation

Based on the above verification, the system creates a user account, if the

following conditions are satisfied.

a. User name, password and confirm password fields are not empty.

b. User name not exists in the users list

c. Password and confirm passwords are same.

43

Personalization for OLAP Querying

After the successful creation of a user account the system generates a message as

shown in Figure 5.3. Otherwise, the system generates different types of warning

messages based on the situation. The warning message is shown in Figure 5.4.

Message ~

~ USerc;r,;·SUcc:essf~tompleted

liil

Figure 5.3 Information Message

~A US..~N.me.~~~th<IOS8~'\Ifler Mme.

~-:: •. . IE3i
. . '

Figure 5.4 Warning Message

5.3 Connecting to the Data Warehouse

In order to access the data warehouse, a user has to connect to the data

warehouse. The interface for connecting to the data warehouse is shown in the

Figure 5.5. This interface can be invoked by choosing Connect option from the

OLAP Menu. Alternatively, this can be done by hitting the keys Ctrl - N.

Login form rgj

Figure 5.5 Login Form

The user has to enter a user name, password and data warehouse name in order to

connect to data warehouse. After entering the details, user has to click on

Connect button. Then, the system verifies the following conditions.

a. Are user name I password I data warehouse name fields empty?

b. Whether the user name and password are correct or not?

44

Personalization for OLAP Querying

Based on the above verification, the system establishes a connection between the

user and the data warehouse, if the following conditions are satisfied.

1. User name, password and data warehouse name fields are not empty.

2. User name and password are correct.

After successfully connecting to the data warehouse the system displays a

connection confirmation message. Otherwise, the system generates different

types of warning messages based on the situation. Some examples of warning

messages are listed below.

1. User name not found I incorrect password. Try again

2. Data warehouse name not found.

5.4 Changing Password

By using this interface a user can change his I her password. To invoke the

interface for changing password choose Change Password option from the

OLAP Menn. After choosing the Change Password option, an interface for

changing the password will appear. This interface is shown in Figure 5.6.

The user has to enter old password, new password and confirm password to

change his I her password. When the user clicks on Change Password button,

the system verifies the following conditions.

a. Whether old password I new password I confirm password fields are

empty or not?

b. Whether the new password and confirm password are same or not?

c. Whether the old password is correct or not?

45

Personalization for OLAP Querying

Change Password ~
OldPassWordE ____ l'

~~
Figure 5.6 Password Change Form

Based on the above verification, the system changes the password, if the

following conditions are satisfied.

1. Old password, new password and confirm password fields are not empty

2. New password and confirm password are same

3. Old password is correct.

After successfully changing the password, the system displays a password change

confirmation message. Otherwise, the system generates warning message.

5.5 Creating and Editing User Profiles

By using this interface a user can create new profile, edit the existing profile. To

invoke this interface Profiles option can be chosen from the OLAP Menu.

Alternatively, this can be done by pressing keys Ctrl - P. The interface for

creating and editing profiles is shown in Figure 5.7.

In this interface, dimension combo box shows a list of existing dimensions

existing in the data warehouse. User can choose any of these dimensions. To add

the selected dimension to profile, the user has to click on Add Dimension button.

User is allowed to choose any number of dimensions. A list of levels for selected

dimension will be displayed in the level combo box. User can choose any of these

levels. To add a level to the profile, the user has to click on Add Dimension

Member I Level button.

Every time after selecting a level, the system checks the data type of that level. If

the data type of the selected level is either Date or Number, then the value

46

Personalization for OLAP Querying

combo box is populated with the<,>,<=,>= and Between operators. Otherwise,

value combo box is populated with the values of the selected level. After

choosing a value, the user has to click on Add button to add this value to his I her

profile.

Level Combe Bex Value Cemho Bex

_·"T;c·•-·•,-~•l<f'""c;:o::,.;,d"'

Edit Profile 0 0 0

Figure 5. 7 Creating and Editing Profiles

For the numeric and date type data, user can choose an operator from the value

combo box. Ifthe selected operator is Between, then the two combo boxes below

the value combo box will be populated with the values of the selected level.

User can specify a range by choosing values from these two combo boxes. If the

selected operator is other than Between, then only one combo box will be

populated with the values of the selected level. The other combo box will

disappear. After choosing a range, user has to click on Add button to store it in

the profile.

Measure combo box contains all the measures. User can select any of these

measures. To add the selected measure to the profile, the user has to click on Add

Measure button.

All the selected dimensions, levels, values and measures are displayed in the

corresponding text areas below the combo boxes. To save all these preferences in

the profile, user has to click on Save Profile button. In this interface, a user is

allowed to create new profile, edit or delete the existing profile.

47

Persona/izationfor OLAP Querying

5.6 Querying

The interface for querying the data warehouse can be invoked by selecting

Querying option from the OLAP Menu. Alternatively, we can invoke this

interface by pressing the keys Ctrl- Q. By using this interface, a user can select

data for analysis. The interface for querying the data warehouse is shown in

Figure 5.8.

ChariW~uri

Figure 5.8 Querying Interface

This interface contains three wizards. These are data selection wizard, data

display wizard and chart wizard. We discuss about these wizards in the following

section.

• Data Selection Wizard

Panel in the left side of the interface is the data selection wizard. This

panel consists of a tree, which display all the dimensions, levels and

measures according to the user profile. In this wizard, different types of

icons are used to distinguish the dimensions, levels and measures. A user

can choose the data for analysis by clicking on the leaves of the tree.

48

Personalization for OLAP Querying

• Data Display Wizard

Top-right panel in the interface is the data display wizard. Initially, this

wizard contains a table. This table contains no columns or rows. When the

user clicks on a leaf of the tree, then that leaf is added to the table as a

column. User must select at least one measure for analysis. To remove a

column in the table, right click on the corresponding column and select

Remove option from the popup menu. Like this user can select or remove

the attributes for analysis.

• Chart Wizard

The screen area of this wizard is meant for viewing the data in graphical

format like pie chart.

After selecting the attributes for analysis from the data selection wizard, the

selected attributes will be displayed in a tabular format. To get the resultant data,

select Execute Query from Run menu. Alternatively, this can be done by

pressing the keys Ctrl - E. The process of selecting Execute Query is shown in

Figure 5.9.

Figure 5.9 Executing a Query

49

Personalization for OLAP Querying

The resultant data obtained by executing query will be displayed in tabular

format in the data display wizard as shown in Figure 5.10. Then the user is

allowed to perform different OLAP operations on the resultant data. These OLAP

operations include the following.

1. Drill-down I Roll-up

2. Slicing

3. Dicing

We discuss about these operations in the following section.

• Drill-down I Roll-up

To drill-down I roll-up to a level in a dimension, right click on the

corresponding column of the result table and select Roll-up I Drill-down

option from the popup menu. The process of selecting roll-up I drill-down

option from the popup menu is shown in Figure 5.10.

i Personalized OLAP fJr(JWS(!r f.§J~

· + CUSTOMER_INCOME
-+CUSTOMER_ CATEGORY
+ CUSTOMER_ADDRESS
+ CUSTOMER_CilY

: 'Ci, PRODUCT

; + PRODUCT NAME
+ PRODUCT=CATEGORY
+UNIT_pRlCE

. --·QOH

T 1:& TlME
~ +DAY
. Ql LOCATION

• STATE * SALES FACTS
+QUANTITY
-·~()J~j'iij

Figure 5.10 Roll-up I Drill-down

50

Personalization for OLAP Querying

After selecting Roll-up I Drill-down option from the popup menu, a list of

levels to which a user can roll-up I drill-down will be presented as shown in

Figure 5.11. If the selected dimension doesn't have any hierarchies, then a

message, "No hierarchies defined for the selected dimension" will be

displayed.

¥ Chang,e di~ension level! ~~- • rg"]

Figure 5.11 Level Selection Wizard

User is allowed to select one of these levels. After selecting a level, the

system builds a query and executes it. The resultant data will be displayed in

data display wizard as shown in Figure 5.12.

• Slicing

To do slicing, right click on the corresponding table column and select

Slicing option from the popup menu. The process of selecting Slicing option

from the popup menu is shown in Figure 5.12.

51

CUSTOMER
CUSTOMER_NAME

+ CUSTOMER_tNCOME
··+CUSTOMER_ CATEGORY

·- · + CUSTOMER_ADDRESS
- +CUSTOMER_ CITY

~-· (i, PRODUCT

+ PROOUCT_NAME
+ PRODUCT_CATEGORY

·-· + UNIT _PRICE
+QOH

~ £a TIME
. ·-+DAY

Ui LOCATION
..... STATE

"{;(SAI..ESFACTS

·- + OUANTTTY
··It~

Personalization for OLAP Querying

Figure 5.12 Slicing

After selecting Slicing option, a window will be displayed, which contains all

the distinct values of the selected table column. The window is shown in

Figure 5.13. All the values are displayed in a tree view.

, .. _ D+SAJ

, __ D+JOHN

O+RAVl

~+KIRAN

~+REDDY

O+SHIVA

Figure 5.13 Slicing Wizard

Beside every value there exists a check box. User can choose any of these

values for slicing. After selecting the values, the system generates a query and

executes it. The resultant data will be displayed in the data display wizard as

shown in Figure 5.14.

52

Personalization for OLAP Querying

~ PeJsonalbed OLAP OrQWS.(!r EJ@rg)

· + CUSTOMER_INCOME
-·+CUSTOMER_ CATEGORY
+ CUSTOMER_AODRESS

--· + CUSTOMER CITY
£i PRODUCT-
···· + PRODUCT _NAME

+ PRODUCT_CATEGORY
+ UNIT_PRICE
+OOH

. Oi TIME
-+DAY
£i LOCATION
:._-.STATE

-fl SALES FACTS
+ QUANTTTY

-- + [QTN..fi'!lJitffi

• Dicing

Figure 5.14 Resultant Data

By rearranging table columns, one ca~ analyze the data in different views. In

the entire system, we allow users to freely rearrange the table columns. So,

when a user wants to perform dicing operation, he I she can comfortably do

the dicing.

5.7 Viewing Resultant Data Graphically

As discussed above, after executing a query the resultant data will be displayed in

the data display wizard in a tabular format. To view the data in graphical format,

Draw Chart option can be selected from Run menu. Alternatively, this can be

invoked by hitting the keys Ctrl - D. The process of selecting Draw Chart

option is shown in Figure 5.15.

53

Personalization for OLAP Querying

ii: Personitllzcd OLAP Brow:>er ~jr.g)

~ · + CUSTOMER:INCOME
i + CUSTOMER_CATEOORY
; ·· • CUSTOMER_ADORESS

+CUSTOMER_ CITY
t 'Ci PRODUCT
' , ... + PROOUCT_NAME

> + PROOUCT_CATEOORY
:- + UNrT_PRICE
. +QOH

(i, TIME
;·-+DAY

\:i, LOCATION
' +STATE
i:r SI\LES FACTE
: • QUANTfT'(

'··+;(<i.T~O)M!;

Figure 5.15 Draw Chart Menu Item

Then, a pie chart for the data in the data display wizard will be displayed in the

chart wizard. This is shown in Figure 5.16.

Figure 5.16 Pie Chart

54

Personalization for OLAP Querying

By looking at the pie chart, a user can quickly analyze the data. So, the process of

decision making requires less time.

In the next chapter, we discuss about the implementation details of the proposed

system.

55

CHAPTER6

IMPLEMENTATION

Personalization for OLAP Querying

In this chapter we discuss the implementation details of the proposed system. The

system is implemented in two stages. First stage concerns about building the data

warehouse and second stage is intended to develop the interface. To build the

data warehouse, we used Oracle 9i and Java 1.4.2 is used to develop the interface.

6.1 Building Data Warehouse

In section 3 .1.1, we discussed the logical design of the data warehouse using star

schema. Star schema is best suited to represent the structure of the data

warehouse. Logical design is what we draw with a pen and paper before building

our data warehouse. To build the data warehouse, we have to map the logical

design to the physical design. Physical design is the process of creating the

database with the help of SQL statements.

During the logical design phase, we defined a model for our data warehouse

consisting of dimensions and fact table. To create dimensions, we need database

tables. During the physical design process, we translate the schemas into actual

database structures. At this time, we have to map:

• Entities to tables

• Relationships to foreign key constraints

• Attributes to columns

• Primary unique identifiers to primary key constraints

• Unique identifiers to unique key constraints

The multidimensional data model for the example considered in this thesis was

presented in section 3.1.1 of chapter 3. The code snippets shown below give its

representation in Oracle 9i.

56

CREATE TABLE Customer

(Customer_No NUMBER(5} PRIMARY KEY,

Customer_Name VARCHAR2(30},

Customer_Income NUMBER(8},

Customer_Category VARCHAR2(15},

Customer_Address VARCHAR2(50},

City VARCHAR2(20});

CREATE TABLE Orders

(Order_No NUMBER(5} PRIMARY KEY,

Order Date DATE};

CREATE TABLE SalesPerson

(Sales_Person_Id NUMBER(5} PRIMARY KEY,

Sales_Person_Name VARCHAR2(30},

City VARCHAR2(20},

Quota NUMBER(6}};

CREATE TABLE Product

(Product_No NUMBER(5} PRIMARY KEY,

Product_Name VARCHAR2(20},

Product_Category VARCHAR2(20},

Unit_Price NUMBER(5},

QOH NUMBER(6}};

CREATE TABLE Time

(Date_Key DATE PRIMARY KEY,

Day NUMBER(2},

Month NUMBER(2},

Year NUMBER(4}};

CREATE TABLE Location

(City_Name VARCHAR2(20} PRIMARY KEY,

State VARCHAR2(20},

Region VARCHAR2(20},

Country VARCHAR2(20}};

CREATE TABLE SalesFacts

(Customer_No NUMBER(5} REFERENCES Customer,

Order_No NUMBER(5} REFERENCES Orders,

Sales_Person_Id NUMBER(5} REFERENCES SalesPerson,

Product_No NUMBER(5} REFERENCES Product,

Date_Key DATE REFERENCES Time,

City_Name VARCHAR2(20} REFERENCES Location,

Quantity NUMBER(lO},

Total Amount NUMBER(lO});

Personalization for OLAP Querying

57

Personalization for OLAP Querying

Before we create a dimension, the dimension tables must exist in the database

possibly containing the dimension data [9]. For example, if we create a customer

dimension, one or more tables must exist that contain the city, state, and country

information. In the star schema of the data warehouse, these dimension tables

already exist. So, it is a simple task to identify which tables are to be used to

build the dimensions. Then we can draw the hierarchies of a dimension.

We can define a dimension as shown below:

CREATE DIMENSION products_dim

LEVEL product IS (products.prod_id)

LEVEL subcategory IS (products.prod_subcategory) [SKIP WHEN NULL]

LEVEL category IS (products.prod_category)

HIERARCHY prod_rollup

(product CHILD OF

subcategory CHILD OF

category)

ATTRIBUTE product DETERMINES

(products.prod_name, products.prod_desc,

prod_weight_class, prod_unit_of_measure,

prod_pack_size, prod_status, prod_list_price, prod_min_price)

ATTRIBUTE subcategory DETERMINES

(prod_subcategory, prod_subcategory_desc)

ATTRIBUTE category DETERMINES

(prod_category, prod_category_desc);

Alternatively, the extended_attribute_clause could have been used instead of the

attribute_clause, as shown in the following example:

CREATE DIMENSION products_dim

LEVEL product IS (products.prod_id)

LEVEL subcategory IS (products.prod_subcategory)

LEVEL category IS (products.prod_category)

HIERARCHY prod_rollup

(product CHILD OF

subcategory CHILD OF

category)

ATTRIBUTE product_info LEVEL product DETERMINES

(products.prod_name, products.prod_desc,

prod~weight_class, prod_unit_of_measure,

prod_pack_size, prod_status, prod_list_price, prod_min_price)

ATTRIBUTE subcategory DETERMINES

(prod_subcategory, prod_subcategory_desc)

58

ATTRIBUTE category DETERMINES

(prod_category, prod_category_desc};

Personalization for OLAP Querying

After creating the dimensions, we create analytical workspaces. Analytic

workspaces store data in a multidimensional format where it can be manipulated

by the OLAP engine. An analytic workspace is stored as a LOB table in a

relational schema. Within a single database, many analytic workspaces can be

created and shared among users. There are two methods to create analytical

workspaces. Those two methods are discussed below:

• Analytic Workspace Manager

The Analytic Workspace wizard is the easiest method of creating an

analytic workspace. The wizard generates a SQL script of

DBMS_ A WM statements, which we can execute immediately or save

for execution later.

• DBMS_AWMPL/SQL package

The DBMS_ A WM package enables us to automate the build process

in a script and schedule it to run overnight in a batch window. For

most production systems, this is the preferred practice.

In the next section, we discuss the implementation details of the interface.

6.2 Implementation of the Interface

We have implemented the interface using Java. Java enables to write applications

that are platform-independent. Various modules involved in the implementation

of the interface are user accounts & profiles management, display querying

window, query generation, profile integration, query execution and displaying the

results. The design of these modules is explained in the chapter 4. Here, we

present the implementation details of some important classes and methods.

A class named OlapBrowser is used to implement the proposed system. This

is the main class and contains many sub-classes. We discuss all those sub-classes

59

Personalization for OLAP Querying

later in this chapter. This class is used to display a menu based personalized

OLAP browser. The following code snippet shows the implementation details of

OlapBrowser class.

//This class is the main class in implementing the interface.

public class OlapBrowser extends JFrame implements ActionListener

static int HORIZSPLIT = JSplitPane.HORIZONTAL_SPLIT;

static int VERTSPLIT = JSplitPane.VERTICAL_SPLIT;

JdbcTest conl =new JdbcTest();

int connFlag, profileFlag, queryFlag, flag, rowCount, columnCount;

JScrollPane left, topRight, bottomRight;

public OlapBrowser(String title)

super(title);

try

UIManager. put ("Tree .leaf! con",

new Imageicon("sourceicon.gif"));

UIManager.put("Tree.openicon",

new Imagelcon("fact.gif"));

UIManager.put("Tree.closedicon",

new Imagelcon("sub.gif"));

catch(Exception e)

System.err.println("Couldn't use system" +

"look and feel.");

JSplitPane splitPanel, splitPane2;

JMenuBar menu;

JMenu OlapMenu, Run;

JMenuitem menuCreate, menuChangePass, menuConnect;

JMenuitem menuQuerying, menuExecute, menuchart, menuExit;

JMenuitem rollUp, slice, remove, menuProfiles;

JPopupMenu popup;

/* Creating instances of the above components */

/* Adding the components to the container */

I /Rest of the code

I /Sub-classes

We discuss each of the modules in the following sections. First we describe the

implementation details ofUser Account Management module.

60

Personalization for OLAP Querying

6.2.1 User Account Management

User Account Management module is used to maintain the user accounts. By

using this module, we can create user accounts and a user can change his/h~r

password. We present two different interfaces to user to create a user account and

to change password. We used JDialog to build these two interfaces. These

interfaces contain JLabel, JTextField, JPasswordField and JButton

components. The code snippet shown below is the implementation of User

Creation interface.

//This Function is used to create a user account.

public void createUser ()

JFrame f=new JFrame();

final JDialog d=new JDialog(f,"User Creation",true);

/* Declarations */

JLabel luser, lpassword, lConfirmPWD;

JButton create, cancel;

final JTextField userText;

final JPasswordField pass, confirmPass;

Container container= d.getContentPane();

container.setLayout(new SpringLayout());

/* Creating instances of above components */

/* Adding the components to the Container */

container.add(luser);

container.add(userText);

I/•

SpringUtilities.makeCompactGrid(container, 4, 2, 6, 6, 6, 6);

I I some code ...

create.addActionListener(new ActionListener()

public void actionPerformed(ActionEvent ev)

II code to create a user account

//Rest of the code

The implementation details of Change Password are shown below.

61

Personalization for OLAP Querying

//This Function is used to change user password

public void changePassword(}

JFrame f=new JFrame(};

final JDialog d=new JDialog(f,"Change Password",true);

/* Declarations */

JLabel lOldPWD, lNewPWD, lConfirmPWD;

JButton change, cancel;

final JPasswordField pass, newPass, confirmPass;

Container container= d.getContentPane();

container.setLayout(new SpringLayout(}};

I* Creating instances of above components */

I* Adding the components to the Container */

container.add(lOldPWD};

container.add(pass};

I/ •

SpringUtilities.makeCompactGrid(container, 4, 2, 6, 6, 6, 6};

change.addActionListener(new ActionListener(}

public void actionPerformed(ActionEvent ev}

II code to change password

//Rest of the code

We discuss the implementation details of Connecting to Warehouse module in

the following section.

6.2.2 Connecting to Warehouse

Connecting to Warehouse module is used to connect to the data warehouse.

This module presents an interface to the user to enter user name and password.

This module verifies the user name and password entered by the user. If the user

name and password are correct then this module establishes a connection between

the system and the warehouse. After connecting to the data warehouse, a user can

query the data warehouse data for decision making. We used JDialog to build

this interface. This interface contains JLabel, JTextField,

JPasswordField and JButton components. The code snippet shown below

is the implementation for Connecting to Warehouse module.

62

Personalization for OLAP Querying

II This Function is used to connect to the data warehouse

public int DwConnect()

connFlag = 0;

JFrame f=new JFrame();

final JDialog d=new JDialog(f,"Login Form",true);

JLabel ll=new JLabel("User Name",JLabel.RIGHT);

JLabel 12=new JLabel("PassWord",JLabel.RIGHT);

JLabel 13=new JLabel("Warehouse Name",JLabel.RIGHT);

final JTextField userName =new JTextField(50);

final JTextField db=new JTextField(50);

final JPasswordField pass=new JPasswordField(50);

pa~s.setEchoChar('*');

JButton b =new JButton("Connect");

JButton b2=new JButton("Cancel");

d.getContentPane() .setLayout(new SpringLayout());

d.getContentPane() .add(ll);

I 1

d.setLocation(400,300);

SpringUtilities.makeCompactGrid(d.getContentPane(), 4, 2, 6, 6, 6, 6);

I 1

connect.addActionListener(new ActionListener()

public void actionPerformed(ActionEvent ev)

II code to connect to the data warehouse

)) ;

I I Rest of the code

We discuss the implementation details of Profile Management module in the

following section.

6.2.3 Profile Management

Profile Management module is used to maintain the user profiles. With the help

of this module a user can create and edit his I her profiles. We used JFrame

component to build the interface ofthis module. This interface contains JLabel,

JComboBox, JTextArea, JScrollPane and JButton components. The

63

Personalization for OLAP Querying

code snippet shown below is the implementation of Profile Management

interface.

II This Function is used to create and edit the profiles

public void Profiles() throws SQLException

JFrame f=new JFrame("Profile");

JLabel !dimension, !level, !value, !measure;

JButton addDim, addLevel, addValue, addMeasure, add, edit, save,

delete;

JComboBox dimension, level, value, measure;

JTextArea dimText, levelText, valueText, measureText;

JScrollPane dimPane, levelPane, valuePane, measurePane;

Contai·ner container = f. getContentPane () ;

container.setLayout(new SpringLayout());

//Create the instances of the above components

//Add the components to the container

SpringUtilities.makeCompactGrid(container, 5, 4, 6, 6, 6, 6);

addDim.addActionListener(new ActionListener()

public void actionPerformed(ActionEvent ev)

II code to add a dimension to profile

//code to add a level, value, measure

save.addActionListener(new ActionListener()

public void actionPerformed(ActionEvent ev)

II code to save profile

//Rest of the code

We discuss the implementation details ofDisplay Querying Window module in

the following section.

6.2.4 Display Querying Window

This interface displays the dimensions, dimension members, levels and measures

in tree view. We used a JTree component to display the data in a hierarchical

64

Personalization for OLAP Querying

view. This interface contains three wizards as we discussed in chapterS. We used

JSpli tPane and JScrollPane components to build these wizards. We

named these wizards as data selection wizard, data display wizard and chart

wizard. In the data display wizard, we display resultant data in tabular format.

We used JTable component for this purpose. A user can perform OLAP

operations on the resultant data by using the popup menus. We used

JPopupMenu component to build the popup menus. The implementation details

of the Querying module are shown below.

II This Function is used to display the querying window

public void Querying() throws SQLException

JTree tree;

DefaultMutableTreeNode root;

DefaultTreeModel treeModel;

JTable table;

JSplitPane splitPanel, splitPane2;

JScrollPane left, topRight, bottomRight;

JMenuitem rollUp, slice, remove;

JPopupMenu popup;

I I Building the tree, separating facts and dimensions with special

II symbols. & some more functions

We discuss the implementation details of Query Generation module in the

following section.

6.2.5 Query Generation

This module generates a query based on the user selections. We used + (string

concatenation operator) to build the query. The code snippet shown below is the

implementation of the Query Generation module.

//This Function is used to generate .the query

public String generateQuery()

String stmt;

stmt = "select ";

for(i=O; i<table.getColumnCount(); i++)

65

Personalization for OLAP Querying

int flag = 0;

for (int n = 0; measures [n] != null; n++)

if((tableHead[i] .equals(measures[n])))

stmt = stmt +"sum("+ tableHead[i] + ")";

flag = 1;

break;

if (flag = = 0 l

stmt += tableHead[i];

if(i != (tab.getColumnCount()-1))

stmt += n n.
I I

stmt += " from ";

I /Rest of the code

I/

return stmt;

During the query generation phase large queries may be generated based on the

user selection. The following code snippet is an example of generated query.

SELECT Customer_Name, Customer_Category, Product_Category, SUM(Total_Amount)

FROM Customer, Product, SalesFacts WHERE SalesFacts.Customer No

Customer.Customer No AND SalesFacts.Product No = Product.Product No

The generated query is sent to Profile Integration module. We discuss the

implementation details of Profile Integration module in the following section.

6.2.6 Profile Integration

This module integrates the user preferences into the query. We store user

preferences in a profile in string format. We divide this string into tokens by

using StringTokenizer class. We integrate these tokens into the query. The

following code is used to integrate the preferences into the query.

//This Function is used to integrate the profile into the query

public string integrateProfile(String queryString)

66

Personalization for OLAP Querying .

String stmt;

stmt = queryString;

if(valueText1 ==null)

return stmt;

StringTokenizer st= new StringTokenizer(valueText1, ", ");

i = 0;

//Building the Constraints

while(st.hasMoreTokens())

constraints[i++]

constraintCount = i;

st.nextToken();

for(i = 0; i < constraintCount; i++)

StringTokenizer st1 =new StringTokenizer(constraints[i], "#");

constraints1[i] [0] st1.nextToken();

constraints1[i] [1] st1.nextToken();

StringTokenizer st3 = new StringTokenizer(constraints1[i] [0],

String table= st3.nextToken();

String columnName = st3.nextToken();

String dataType =new String();

try

"• n);

data Type conl. get Type ("select " + columnName + " from

"+table);

catch(SQLException e9)

if (dataType. equalsignoreCase ("DATE"))

//code for DATE type

//Integrating the Constraints into the Query

for(i=O;i<parentCnt;i++)

for(j=O;j<constraintCount;j++)

return stmt;

if(constraints1[j] [O].startsWith(headParent[i]))

stmt += constraints1[j] [0] + " " +

constraints1[j] [1];

stmt += " and ";

System.out.println(stmt);

break;

67

Personalization for OLAP Querying

During the profile integration phase, preferences in the profile are integrated

within the query automatically. The following code snippet is a query generated

after profile integration. The code shown in bold is automatically integrated

within the query during the profile integration phase.

SELECT Customer_Name, Customer_Category, Product_Category, SUM(Total_Amount)

FROM Customer, Product, SalesFacts WHERE SalesFacts.Customer No

Customer .. Customer No AND SalesFacts.Product_No Product.Product No AND

Customer.Customer :Income BETWEEN 1500 AND 20000 AND Product.Unit Price

BETWEEN 48 AND 1899 GROUP BY Customer_Name, Customer_Category,

Product_Category

After integrating the profile into the query, the query is now ready for execution.

In the following section we discuss the implementation details of Query

Execution module.

6.2. 7 Query Execution

In this module we execute the query. To execute a query we need to connect to

the data warehouse. To connect to data warehouse, we used Java Database

Connectivity (JDBC) thin driver API. JDBC thin driver is a

platform independent driver. So, we can run our application in any environment.

Classes 12. jar file is used to establish a connection between the interface

and oracle. We discuss the implementation of Query Execution module in the

following sections.

6.2.7.1 Establishing a Connection

To establish a connection we need a JDBC driver. We register a driver using the

following syntax.

DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());

After registering a JDBC driver we can connect to the data warehouse using the

following syntax.

68

Personalization for OLAP Querying

conn DriverManager.getConnection ("jdbc:oracle:thin:@local_host:

152l:dbName", userName, password);

6.2. 7.2 Query Processing

We can do query processing in two ways. One is by using Statement and the

other one is SPLExecutor. We discuss these two methods of query processing

below.

• Using Statement to Execute Query

A statement can be created by using the connection object. The

following code snippet creates a statement.

Statement stmt = conn.createStatement();

Here conn is Connection object. By using the statement we can

execute a query as shown below.

ResultSet rset stmt.executeQuery(queryString);

We copy the result set data into objects. These objects are passed to

the Display Result module.

• Using SPLExecutor to Execute Query

If we create analytic workspace, then Oracle OLAP API provides a

way to directly manipulate analytical workspace data. It doesn't

require any metadata and OLAP API data manipulation classes. The

interface uses the SPLExecutor class to send queries directly to

Oracle OLAP for execution. It is explained in [8]. The following code

snippet shows the execution of queries using SPLExecutor;

//Executing Generated Queries

SPLExecutor Exec =new SPLExecutor (conn);

69

Personalization for OLAP Querying

try

Exec.initialize();

catch (SQLException e)

System.out.println ("Cannot initialize the SPL Executor"+ e);

String returnVal= gqExec.executeCommand(queryString);

returnVal contains the resultant data obtained by executing the

query. This data is passed to Display Result module, which displays

the data in different formats.

6.2. 7.3 Closing the Connection

After the query execution, we have to close the data warehouse connection. The

code shown below is used to close the connection.

try

conn. close() ;

catch (SQLException e)

System.out.println("Cannot close the connection "+e);

We discuss the implementation details of the Display Result module in the

following section.

6.2.8 Displaying Result

Displaying Results module obtains the results from the Query Execution

module. This module displays the results in different formats like tables and

charts. Here a user can further perform the OLAP operations like drill-down, roll­

up, slice and dice. We used JTable, JScrollPane and ImageProducer

70

Personalization for OLAP Querying

class to implement this module. The following code shows the implementation of

this module.

//This Function is used to display the data in tabular format.

public void displayResults(Object[J [] tableData[] [], Object [] tableHeader[])

JTable chart= new JTable();

DefaultTableModel chartModel = (DefaultTableModel)chart.getModel();

chartModel.setDataVector(tableData,tableHeader};

topRight.setViewportView(chart};

//This Class is used to create a pie chart for the resultant data

Public class PieChartProducer implements ImageProducer

int Image Width;

final static int

final static int

final static int

final static int

int Inset;

ImageHeight

PieWidth

PieHeight

Radius

300;

200;

200;

PieWidth/2;

public PieChartProducer (String s [] [J, int rows, int columns, String

chartHead[])

this.graphics = graphics;

currentTheta = 0;

Inset = columnCount * 150;

ImageWidth = columnCouht *400;

JFrame f =new JFrame();

f.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);

f.setVisible(true);

image= f.createimage(ImageWidth, ImageHeight);

graphics= image.getGraphics(};

drawPieGraph();

//Function for drawing pie chart

public drawPieGraph()

//code for drawPieGraph

We can perform different OLAP operations on the resultant data. During the

drill-down, roll-up and dicing operations we use the general procedure for

generating the queries as we explained in the above sections. Where as the

71

Personalization for OLAP Querying

implementation of slicing operation is little bit different from the general

procedure and needs a separate implementation. In the Slice operation, we used

CheckRender, CheckNode classes to display a check box by the side of each

tree node. The following code is the implementation of CheckRende r class.

//This class is used to display a check node tree

class CheckRenderer extends JPanel implements TreeCellRenderer

protected JCheckBox check;

protected TreeLabel label;

public CheckRenderer()

setLayout(null);

add(check =new JCheckBox());

add(label =new TreeLabel());

check.setBackground(UIManager.getColor("Tree.textBackground"));

label.setForeground(UIManager.getColor("Tree.textForeground"));

The following code is the implementation of CheckNode class.

//This class is used to display a check node tree

class CheckNode extends DefaultMutableTreeNode

protected int selectionMode;

protected boolean isSelected;

public CheckNode()

this(null);

public CheckNode(Object userObject)

this(userObject, true, false);

6.3 The Platform

We used Java programming language to design the graphical user interface and

oracle 9i is used to build the data warehouse. Windows XP is the operating

system on which this application is developed.

72

Personalization for OLAP Querying

We used Java programming language because of its unique features like platform

independence and portability. It has many advantages over other programming

languages. Java is a portable, interpreted, high-performance, robust, secure,

simple object oriented programming language. The main reason for choosing

Java is it's built in support for designing graphical user interfaces. Java swings

[12] package that comes with Java offers various widgets (buttons, text boxes,

lists etc) which make the interface both graphical and user friendly. This package

provides complex structures like table views and tree structure views which are

very useful in designing GUI.

Using Java we can write standalone Java applications which can be launched

from a browser with Java's WebStart technology, or they can create HTML

applications through servlets, JavaServerPages(JSP), and Oracle User Interface

XML (UIX), which we can access live data from an Oracle Database.

The unique feature of Java is its portability. Programs written in Java are

platform independent because of the 'bytecode' concept introduced by the Sun

Microsystems. Java programs on compilation will be converted into bytecodes.

These bytecodes will then be executed by the Java Virtual Machine (JVM). The

JVM can be implemented either in the hardware or software on a particular

machine. Hence the statement 'compile once, run any where'.

The Oracle 9i Enterprise Edition OLAP Option extends the analytic capabilities

of the Oracle database by providing new multidimensional data types, and a

multidimensional calculation engine. Not only it extends the analytic capabilities

of Oracle data warehouses but also supports core Object Oriented features like

inheritance, polymorphism, etc. It supports both the object and relational data

storage. Oracle 9i is compatible with relational, object and multidimensional data.

Irrespective of the type of the data, the Oracle 9i OLAP option will create

analytical layer and processing will be done in multidimensional way.

Because of these advantages, we opted to implement the proposed system using

Java and Oracle. We used Java 1.4.2 to develop the GUI and Oracle 9i is used as

backend.

73

Personalization for OLAP Querying

CHAPTER7

CONCLUSION

In this thesis we have proposed a framework for personalization of OLAP

Querying. There are two aspects to the personalization of queries. The first is to

provide a mechanism for building user profiles and the second is to incorporate

the user profile in OLAP queries. Both these features have been addressed in this

thesis.

The Graphical User Interface (GUI) described in this thesis provides interfaces

for user account management, profile management, querying and displaying

results.

In this system it is possible to create new user profile or edit the existing profile.

While creating a user profile, the dimensions, levels, values and measures can be

selectively chosen and conditions imposed thereupon. This user profile is

maintained by the system and incorporated in the queries posed by the user.

It is possible in this system to perform all the standard OLAP operations i.e. drill­

down, roll-up, slicing and dicing for analyzing the data. The operations however,

are restricted to operate on the dimensions, levels, values and the measures of the

user profile. Within the profile, the user can choose any of the dimensions, levels

and measures for analysis. Based on user selections, a query will be generated

automatically which integrates the conditions that are present in the user profile.

It is possible to view the result in different formats like tables and graphs. The

result is first displayed in tabular format. If the user wishes to see the result as a

Pie chart he can do so by choosing Draw Chart option from Run menu. This

facility, we believe, will support decision making.

We have used Java 1.4.2 to develop the front-end and Oracle 9i is used as back­
end.

74

Personalization for OLAP Querying

7.1 Features of the System

• This system provides a user-friendly interface to build user profiles.

• This graphical user interface effectively personalizes the OLAP

queries using user profiles.

• The user does not require any prior knowledge of query languages like

SQL.

• We can have different types of reports ·

• This system is platform independent.

• Multiple users can use this system at a time.

7.2 Future Enhancements

• The provision for displaying the data in different charts other than Pie

Charts can be incorporated.

• This application can be extended to support web based information

delivery and analysis of data.

75

Personalization for OLAP Querying

REFERENCES

1. E.F. Codd, S.B. Codd, and C.T. Salley. Providing OLAP (On-line
Analytical Processing) to User-Analysts: An IT Mandate. E.F. Codd &
Associates, White paper, 1993.

2. Georgia Koutrika and Y ann is Ioannidis. Personalization of queries in
database systems. Proceedings of the 20th International Conference on
Data Engineering (ICDE'04), pages 597-608. IEEE Computer Society,
2004.

3. Jan Chomicki. Preforence formulas in relational queries. ACM
Transactions on Database Systems, Vol. 28, No.4, December 2003, Pages
427-466.

4. James A. Senn, "Analysis and Design of Information Systems", Second
Edition, McGraw-Hill, Inc, New York, 1989.

5. Ladjel Bellatreche , Arnaud Giacometti , Dominique Laurent, A
personalization framework for OLAP queries, Proceedings of the 8th
ACM international workshop on Data warehousing and OLAP, November
04-05, 2005, Bremen, Germany.

6. OLAP Council. The APB-1 Benchmark. 1997. Available at
http://www .olapcouncil.org/researchlbmarkly .htm

7. OLAP Council. OLAP AND OLAP Server Definitions. 1997 Available at
http://www.olapcouncil.org/research/glossaryly.htm

8. Part No: B 10333 - 02. Oracle OLAP Application Developer's Guide 1 Og
Release 1 (1 0.1), Oracle Corporation, December 2003.

9. Part No: B14223-02. Oracle Data Warehousing Guide JOg Release2
(10.2), Oracle Corporation, December 2005.·

10. Paulraj Ponniah. Data Warehousing Fundamentals: A Comprehensive
Guide for IT Profossionals. John Wiley & Sons, New York, 2001.

11. Ralph Kimball, Margy Ross. The Data Warehouse Toolkit: Practical
Techniques for Building Dimensional Data Warehouses. John Wiley &
Sons, New York, 2002.

12. Sun Microsystems Documentation. Creating a GUI with JFC/Swing.
Available at: http://java.sun.com/docs/books/tutorial/uiswing/TOC.html

13. William H. Inmon. Building the Data Warehouse. Fourth Edition, Wiley
Dreamtech India (P) Ltd, New Delhi, 2005.

76

Personalization for OLAP Querying

BIBLIOGRAPHY

1. Andreas S. Maniatis, Panos Vassiliadis, Spiros Skiadopoulos, and Yannis
Vassiliou. Advanced visualization for OLAP. Proceedings of the 6th ACM
international workshop on Data warehousing and OLAP, November 07,
2003, New Orleans, Louisiana, USA.

2. Jennifer Widom. Research Problems in Data Warehousing. Proceedings
of 4th international Conference on Information and Knowledge
Management (CIKM), November, 1995.

3. Jiawei Han, Micheline Kamber. Data Mining: Concepts and Techniques.
Morgan Kaufmann Publishers, 2004.

4. Jun Yang. Temporal Data Warehousing. Ph.D Thesis, Stanford
University, 2001.

5. Nebojsa Stefanovic. Design and Implementation of On-Line Analytical
Processing (OLAP) of Spatial Data. Master of Science Thesis, University
of Belgrade, Yugoslavia, 1993.

6. Part No B10335-02. Oracle OLAP Developer Guide to the OLAP API
JOg. ORACLE Corporation, 2003.

7. Part No B10979-02. Oracle Database JDBC Developer's Guide and
Reference10g. ORACLE Corporation, 2004.

8. Part No B 10799-01. Oracle Database Application Developer's Guide­
Object -Relational Features] Og. ORACLE Corporation, 2003.

9. Part No B10795-01. Oracle Database Application Developer's Guide­
Fundamentals 1 Og. ORACLE Corporation, 2003.

10. Part No B 10339-02. Oracle OLAP DML Reference 1 Og. ORACLE
Corporation, 2003.

11. Part No B12180-01. Oracle OLAP Analytical work space Java API
Reference 1 Og. ORACLE Corporation, 2003

12. Rakesh Agrawal, Edward L. Wimmers, Aframeworkfor expressing and
combining preferences, Proceedings of the 2000 ACM SIGMOD
international conference on Management of data, p.297-306, May 15-18,
2000, Dallas, Texas, United States

13. S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP
technology. ACM SIGMOD Record, v.26 n.l, p.65-74, March 1997.

77

	TH137870001
	TH137870002
	TH137870003
	TH137870004
	TH137870005
	TH137870006
	TH137870007
	TH137870008
	TH137870009
	TH137870010
	TH137870011
	TH137870012
	TH137870013
	TH137870014
	TH137870015
	TH137870016
	TH137870017
	TH137870018
	TH137870019
	TH137870020
	TH137870021
	TH137870022
	TH137870023
	TH137870024
	TH137870025
	TH137870026
	TH137870027
	TH137870028
	TH137870029
	TH137870030
	TH137870031
	TH137870032
	TH137870033
	TH137870034
	TH137870035
	TH137870036
	TH137870037
	TH137870038
	TH137870039
	TH137870040
	TH137870041
	TH137870042
	TH137870043
	TH137870044
	TH137870045
	TH137870046
	TH137870047
	TH137870048
	TH137870049
	TH137870050
	TH137870051
	TH137870052
	TH137870053
	TH137870054
	TH137870055
	TH137870056
	TH137870057
	TH137870058
	TH137870059
	TH137870060
	TH137870061
	TH137870062
	TH137870063
	TH137870064
	TH137870065
	TH137870066
	TH137870067
	TH137870068
	TH137870069
	TH137870070
	TH137870071
	TH137870072
	TH137870073
	TH137870074
	TH137870075
	TH137870076
	TH137870077
	TH137870078
	TH137870079
	TH137870080
	TH137870081
	TH137870082
	TH137870083
	TH137870084
	TH137870085
	TH137870086
	TH137870087

