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ABSTRACT 

Coevolutionary approach encourages the formation of niches representing the 
simple sub-behaviors. Evolutionary nature of each sub-behavior can be controlled 
independently, which may evolve the complex behavior without any intermediate step. In 
this approach, multiple instances of genetic algorithms (GA) are run in parallel, each 
instance of which evolve one species of individual which are good at particular task. The 
trainer does not enforce these areas of expertise but rather they evolve through seeding of 
population. Once the populations are seeded, the evolution of complex behavior proceeds 
without any human intervention. GA has the capability to solve the technical problem as 
well as it can provide the simplified scientific model that can answer questions about the 
nature. Evolutionary paradigm has been proposed to encourage the emergence of niches 
and species in single population in all these the individual niche competes for the 
allocation trials. 

A cooperative coevolutioary algorithm consists of several evolutionary algorithms 
instance. Each attempts to evolve species, which are seeded for a particular sub function. 
Representatives from each sub-populations is selected and are merged together to form a 
collaborative solution for achieving the required complex behavior. Credit is computed in 
term of how well each representative cooperates and accordingly feedback is given to 
each individual species. This helps each individual in evolving better rules. 

Rule based adaptive expert systems create and modify the rules sets over the 
time. The main disadvantage of adaptive rule based system is only best rules are being 
used always and system does not takes risk to improve over time. 

Zeigler provides an elegant solution for the above problem in which the system 
alternates two rules selection strategies from one generation to the next. During first 
generation, the best rules are selected while in the second generation the experimental . 
sets of rules are selected. In this approach, the system time is broken into generations. 

The main objective of this dissertation work is to coevolve the sequence of 
decision rules using the Zeigler model, which may lead to successful navigation of the 
robot. The robot must be able to track the path of an object while avoiding the obstacles. 
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CHAPTER-1 

INTRODUCTION 

Learning of a complex task has always been very difficult to achieve. A 

technique like "shaping" [degaries etc page 1 potter] in which a complex 

problem is divided into a number simpler subtask. These subtasks are easy to 

learn and are used as building blocks of the complex task. But this technique 

has a disadvantage that it needs a lot of human support. A proper 

decomposition of task into subtask mainly depends upon the trainer or the 

designer. Also an adaptive expert system as presented by the Zeigler [90] 

provides an elegant way to represent the knowledge by a set of rules. 

In Zeigler [3] model the system alternates two rules selection strategies 

from one generation to the next: During first generation, the best rules are 

selected while in the second generation the experimental sets of rules are 

selected. In this approach, the system time is broken into generations and 

system in a loop. 

A slightly modified Zeigler model can be used for evaluating the rules 

and weeding out the low performer rules. If we use the coevolutionary 

approach while applying the modified Zeigler model on it, very interesting and 

useful results are expected. 



This work considers two major aspects of the robot navigation namely 

path tracking and obstacle avoiding. To achieve this task the simulated 

environment has been used in such a manner so that it consists of dense 

amount of obstacles and a random moving object and robot has to track the 

object and while doing so it should not collide with obstacle. 

Coevolutionary approach [potter] permits to evolve the sets of subtasks. 

After merging these subtasks more complex task can be accomplished. The 

evolutions into sub tasks do not need explicit decomposition of a complex task. 

Only initial seeding is needed in order to evolve the subcomponents. 

The main objective of this dissertation work is to evolve the sequence 

of decision rules using modified Zeigler adaptive system, which may lead to 

successful navigation of the robot. To achieve this task two modifications have 

been made in the Zeigler adaptive system. The first one creates extended 

problem space and another one modifies the rule representation method. The 

robot must be able to track the path of an object while avoiding the obstacle at 

the same time. 

Organization of Dissertation: chapter 2 contains concept of coevolutionary 

learning. Basic frame work related with coevolution lies in this section. 

Chapter 3 has discusses the technique used to evaluate the rules and. This 

chapter creates the background for the implementation. 

Chapter 4 and 5 contains the implementation details, conclusion and further 

extension of this work. 
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2.1. Learning at a glance 

CHAPTER-2 

LEARNING 

An intelligent system has the capability to adapt and learn. 

Learning system is not only concerned with the academic but also it is 

being used in the different areas. Different authors have different views 

about the learning. 

According to Nerendra and Thachar "Learning is the ability of 

system to improve their response based on the past experience" [ 1]. 

Michalski, Carbonell and Mitchell define the learning from more cognitive 

view: "Learning is processes include the acquisition of new declaration 

knowledge, the development of motor and cognitiv skill through 

instruction and practice, the organization of new knowledge into general 

effective representation and discovery of new facts and theories through 

the experiment and observation"[2]. According to a psychologist Simon: 

"Learning denotes change in system that are adaptive in the sense that 

they enable the system to do same task drawn from the same population 

more efficiently and effective the next time."[3]. 

The reinforcement learning is formally defined as : 

Let we have two sets : A , the set of states of environment and b the set 

of actions the learning system can perform on the environment. The learning 

system is defined as function \jf=M(<I>,t) where \jf EB the action the learning 
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system performs., <I>EA the state ofthe environmentS and tEW at which this 

happens. 

The reaction of environment is defined by function p= F(\j/,<l>,t) where 

pER+ the payoff of the environment and. This measures how good the action 

of the learning system was. 

The higher p is better the learning. 

The system is said to be learning if following holds true. 

Le. 

{F(M(<I>t ,t), <l>t ,t)} > {F(M(<I>t-1 ,t-1 ), <l>t-1 ,t-1) } 

Here { } is representing the expected value. Variables <l>t and <l>t-1, are 

the states of the environments at timet and t-1 respectively. 

Ways of learning: There are various clas·sifications are available about 

the Ways oflearning 

2.1.1. Classification by Mitchell 

Rote learning and direct implementation of knowledge it is like the 

education in the primary schools. It needs directly inserting the knowledge in 

the intelligent system either by programming or putting it into the database 

system only stores and reproduce them. 

Learning from instruction: It-is somehow more interesting and in this .. 
learning the system must be able to understand the instruction it gets,_ 
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store it and integrate it with existing knowledge. But here learning is 

not much involved. 

Learning by analogy: It gives learning system more difficulties. It has 

to find in its knowledge similar to the task to be learnt and change the 

knowledge already present until it is applicable to the present situation. 

Then it has stored this newly generated knowledge. 

Learning fron, example : In this learning the system is presented with 

samples or examples from an environment together with information to 

associate with this example. This information can be an indication that 

weather an example is positive or negative whether the response ofthe 

system was good or bad or it can be some action to associate with the 

example.If the information is given at the same time as the example is 

called "true learning with examples". Ifthe information is given after 

the system has generated a response, it can be called reinforcement 

learning. 

ENVIRONMENT 

Response 

LEARNING SYSYTEM 
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Learning from observation and discovery or unsupervised learning: It is a 

kind of learning in which the learning system is left on its own to explore its 

environment and try to make classification of phenomenon. It sees or form 

theories about it. 

2.1.2. Classification based on the environment 

Classification of learning system can also be based on the kind of task 

pr environment it learns to operate. The environment can be static or dynamic, 

a deterministic or stochastic and discrete or continuos. 

Static environment doesn't change during the time a learning system IS 

active, while a dynamic environment may change. 

A deterministic environment always gives the same response in the same 

situation and it never gives examples that are flawed. Stochastic environment 

doesn't have these properties. They can have inherent stochastic features, (as in 

quantum - dynamic system, gambling problem or prediction of real -life 

phenomenon, like the weather) or be troubled by noise. 

Finite environment consists of a finite number of actions a learning system 

can take and a finite no of response it can get. While in a continuous 
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environment both i.e. action a learning system can perform and response it gets 

can be infinite. 

2.1.3. Classifications based on Algorithm 

The last distinction between learning systems will mention 1s the 

algorithm they use to learn with. The least precise way to make the distinction 

is to divide them by the line which divides all AI-Research: the symbolic /sub­

symbolic distinction. Winston gives a more precise list of different methods. 

They includes learning by aJ)alyzing difference, learning by managing multiple 

models, learning by correcting mistakes, learning by recording cases, learning 

by building identification trees and learning by explaining experience. Most of 

these are symbolic methods, concerned with noise-free static environments. 

Two other methods of learning are learning by training neural nets and 

learning by simulating evolution, both sub symbolic and more applicable to 

changing environment with noise. 

2.2. Coevolutionary Learning 

In a coevolutionary approach the learning of complex behaviors is 

.~chieved by sets of sequential decision rules [4]. This approach requires much 

less human intervention than the shaping[5] approach. In this approach the 

multiple instances of genetic algorithms are run in parallel. Each instance of 

which evolves a collection of interbreeding individuals, which are expert in 

particular area. This area of expertise is not designed explicitly rather it 
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evolves without any human intervention. Only initial seeding is required in 

order to achieve the desired subbehavior. Seeding provides the very general 

behavioral rules covering the respect area of expertise. Whereas other 

techniques like "shaping" are used to construct complex behaviors in stages by 

breaking them down into simpler behaviors which can be learned more easily, 

and then using these simpler behaviors as building blocks to achieve more 

complex behavior [5][6][7]. In these techniques trainer plays a vital role in the 

decomposition of the complex tasks into simpler subtasks, in the training of the 

organisms on the subtasks and in the synthesis of the desired behavior from the 

subtasks. In the case of robot learning it is frequently desirable to minimize 

such heavy dependency on trainers [4]. 

In coevolutionary learning, once seeding is done the sub-behavior 

evolves without any human intervention. More complex task is accomplished 

by selecting the representatives from each species and merging them together. 

These ·composite agents are called "collaboration". After merging the rules 

together the "collaboration" is evaluated and credit feedback to the individual 

subcomponents that reflects how well the representatives are c~operating or 

collaborating with the other representatives. This feedback is then used by the 

GA instance to evolve better individuals. Such systems may be called as 

Cooperative Coevolutionary Genetic Algorithms (CCGAs) [4]. 
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2 .2.1. Coevolutionary Layout 

In order to evolve a complex behavior explicit decomposition of 

complex task into subtask is needed. But this is very difficult to decide the no 

of modules needed and there exact nature. But an evolutionary paradigm is that 

in which such subcomponents "emerge" rather than being hand designed [6]. 

The use of multiple interacting subpopulations has also been explored 

as an alternate mechanism for coevolving niches using the so-called island 

model[9]. In the island model a fixed number of subpopulations evolve 

competing rather than cooperating solutions. In addition, individuals 

occasionally migrate from one subpopulation (island) to another, so there is a 

mixing of genetic material. The previous work that has looked at cooperating 

rather than competing subpopulations has involved a user-specified 

decomposition ofthe problem into species [4]. 

fitness 

Evolutionary 
Algorithm 

CCGA 
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Cooperative coevolutionary algorithms (CCAs) combine and extend 

ideas from these earlier systems in several ways. In the figure above, a CCA 

consists of a collection of evolutionary algorithm (EA) instances, each 

attempting to evolve species which are useful as modules for achieving higher 

level goals. 

Complete collaborative solutions are obtained by assembling 

representative members from each of the subpopulations. Credit assignment 

within each EA instance is defined in terms of the fitness of the collaborations 

in which ,its subpopulation members participate. This provides evolutionary 

pressure for the species from separate subpopulations to cooperate rather than 

compete. However, competition still exists among individuals within the same 

subpopulation[ 4]. 

Unlike the island model, the individuals from the separate 

subpopulations do not migrate; therefore, interbreeding does not occur. This 

lack of migration eliminates haphazard and often destructive recombination 

between dominate species once niches are established[4]. 

Mechanisms exist for seeding initial subpopulations with a bias 

towards evolving certain kinds of species. However, once evolution begins 

there is nothing to prevent the roles of species from changing considerably. In 

addition, the general coevolutionary model places no restrictions on the 

number of subpopulations. In some domains it may be desirable to allow the 
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dynamic creation of new subpopulations and the elimination of unproductive 

ones (i.e., the birth and death of species). 

In cooperative coevolutionary learning the evolution of each 

subpopulation is handled by a standard GA. 

2.2.2. Credit Assignment 

For credit assignment and weeding out the rules we will use the 

modified Zeigler model [ 1 0] of adaptive rule based expert system, described in 

the next chapter. Since knowledge is represe!lted in the coevolutionry learning 

as a sequence of decision rules. In Ziegler model rules are represented in the 

form as follows: 

If C then A, i.e., if condition C is true then perform the action A. and 

this is symbolically represented as C/ A. If there is more than one conditions 

C1, C2, C3 .... and corresponding actions are A1, A2,A3 ... , then rules are 

symbolically represented as cl 1\ c2 1\ c3 I AI 1\ A2 1\ A3' it mean 

IF C1 AND C2 AND C3 THEN A1 AND A2ANDA3. 

Credit is computed at the end of each navigation cycle and rules are 

updated to show their strength. These strengths are further used for weeding 

out the low performers while keeping the higher one. 

One more advantage of the Zeigler model [ 1 0] is that it not only keep 

best-rule-so -far but also some average rules. This always gives system an 

opportunity to learn, otherwise system will happy with it's existing rule sets 
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and will not take a risk to improve over the time. In the next chapter will see 

some more about the problem domain and the way it can be handled. 
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CHAPTER3 

PATH TRACKING AND OBSTACLE A VOIDACE SYSTEM 

3.1 Genetic Algorithm overview 

Genetic algorithm are the search algorithms based on the mechanism of 

natural selection and natural genetics (12]. It works with an entire population 

of different object, the individuals in the population are assigned fitness-value. 

This value is an indication of how good solution a certain individual is. Fitness 

is calculated by an objective evaluation function. 

3.1.1 Evaluat·ion Function 

The evaluation function is the only domain-specific part of genetic 

search. The genetic process itself is not guided by domain specific knowledge. 

The individuals are encoded in natural chromosomes, which are usually just bit 

strings. All genetic operations are conducted on theses chromosome. Because 

genetic algorithms don't use domain specific information to guide the search, 

they are almost universally applicable, especially in domains where very little 

is known about what is being searched for. 

. 
With the old population and the fitness of its members the next 

generation is created. This goes analogously to natural evolution: "the best 

individual have the biggest chance of producing offspring ". Offspring are like 
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their parents, but usually not entirely. The newly made individuals eventually 

replace the older (and hence less well adapted) ones: 

In this way we cover a large part of a search space in a short time. It 

can be proven that fit individuals will grow in number and less fit ones will 

disappear. The search will end up in an optimum in the search space, and 

because we work with a large number of individuals, this probably be a good 

optimum. 

There are three basic actions in the genetic algorithm: 

1. selection 

2. creation of a new individual from parents and 

3. Replacement of older individuals. 

These actions operate on encoding of the sought parameters, not on the 

parameters themselves. Thus the genetic algorithm does not have to know 

anything about the parameters themselves. 

Every parameter can be encoded as a gene on a chromosome. In the 

technique that will be studied in this paper, genes are characters and 

chromosomes are strings, but they can be almost anything . The only thing the 

genetic algorithm must be able to do is to copy individual genes and 

chromosomes. 
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First we select the proper parent and then new individuals are created 

form the selected parents. The new individuals are created mainly by mean of 

crossover, mutation and inversion operator. 

3.1.2. Basic Genetic Operators 

Selection :Selection of individuals for pro-creation is the first step. The ones 

with the highest fitness will have the highest probability of being selected. 

Picking of individuals is usually done in one of two ways. Roulette-wheel 

selection or rank-based selection. 

In roulette-wheel selection every individual is assigned a certain 

probability which is proportional to its fitness. All probabilities of all 

individuals should add up to one. Candidates for procreation are then selected 

according to these probabilities. This is a bit like spinning roulette -wheel. 

Roulette-Wheel with slot size according to the 
fitness.[l2] 

Rank-based selection individuals are ordered according to their fitness. 

Individuals are then assigned fixed probabilities according to their rank, that is 

their position in the list. Candidates are again selected with these probabilities. -

15 



The difference between rank-based selection and roulette-wheel 

selection is not very big. When using roulette- wheel selection one should be 

careful that the ratio between the highest and lowest probability is not too 

great ; otherwise certain individuals will very quickly start to dominate the 

population . It will usually be necessary to scale the probabilities. Goldberg 

[12] suggests that the ratio should be 1.2 and 2. 

Rank-based selection has the problem that all the individuals have to be 

sorted first. It is much easier to control the different probabilities of the 

individuals in the population. 

Crossover: Crossover is the mixing of two parents(usually there are two 

parents per child).The chromosomes of the parents have to be of the same 

length .A random point (between two genes) in one of the parents is chosen. 

The child will now consist ofthe genes before this point ofthe one parent 

and the genes after this point from the other parent . The purpose of 

crossover is to mix the genes of two parents, so good things (partial 

solutions) from one parent will be mixed with good things from the other 

parent. This could be considered an exchange of information. 
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BEFORE CROSSOVER 
AFTER CROSSOVER 

Crossin 

String I 
New String I 

Crossov 

String 2 
New String2 

Fig. creating offspring by crossover [12] 

Mutation: Mutation is a very simple operation . The value of a gene in the 

child is changed at random. This is done with a certain, rather small, 

probability. Its purpose is to introduce new solutions into the population ' 

which were not present at the outset or were lost . during the search. 

BEFORE MUTATION 

AFTER MUTATION 

~ 
00110111r6liOIOO 

I l 
:. ........ .: 

00 11 0 Ill ... l ... , 1 0 100 

L ........ : 

Fig. Mutation operator 
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Inversion:Inversion is a more complex thing. Two points in a chromosome are 

chosen at random . The sequence is a more complex thing . Two points in a 

chromosome are chosen at random. This is done to put partial solutions that 

reinforce each other closer together in the chromosome, so that they are less 

likely to be separated with . 

BEFORE INVERSION 
0011 011101 0100 

X 
AFTER INVERSION 0011 101110 0100 

Fig. Inversion operator 

These technique are not be used with every child. Crossover, mutation 

and inversion are only used with a certain probability. 

3.2. Zeigler Adaptive System 

Rule based adaptive expert systems create and modify the rules sets 

over the time [10][11]. The main disadvantage of adaptive rule based system is 

only best rules are being used always and system does not takes risk to 

improve over time. 
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3.2.1. Basic Zeigler model 

Zeigler [10] provides an elegant solution for the above problem in 

which the system alternates two rules selection strategies from one generation 

to the next. During first generation, the best rules are selected while in the 

second generation the experimental sets of rules are selected. In this approach, 

the system time is broken into generations and system operates following steps 

in a loop. 

1. 

2. 

3. 

4. 

A solution to all problems in problem set p is attempted 

using a subset of master rule set. 

Each solution reached is evaluated and credit Is 

assigned to the rule set and each rule in it. 

The master rule set has the weeding criteria applied to 

it, if the criteria at are meet low performer are removed. 

Few new rules are generated from, and placed into the 

master rule sets. 

Figure shown below is high-level description of above algorithm. Rule 

operator selects the rule by the rule generation process and loads it into the 

problem space. Using the selected rules, the rule operator attempts to solve the 
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problem ~ithin its own problem space. The final solutions are evaluated and 

results are saved in the rule manager. 

Select 
generator ... 

~ 

.~ 
Rule Operator 

~ 
Problem Space 

~ 
Solution eva! .. ' 

~ ... 

Figure 2: High level details of Ziegler adaptive system. 

3.2.2 A detail structure of Zeigler Adaptive System 

the following figure is an more detail representation of the zeigler 

adaptive system. When the system is started the master rule set the rule history 

and the problem space are initialized to contain the basic rule sets. These three 

are the only components in the system which are mainly data. 

The inference engine is used to forward the chain on rules in the 

problem space until the termination criterion becomes true. This condition will 

usually test the current current state for equality to a goal state of the current 

system. 
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Rule Select Master rule 
set 

Rule 
Rule History 

Manager 

Inf. 

Problem 
Engine 

Rule Space 
Generator 

Pref. Credit 
Eva I. Alloc. 

At any time, ifthe problem space reaches a state in which the no rule is 

applied, a subtask is invoked in which is simply a recursive call to the 

inference process using the original starting rule set. This allows the system to 

overcome such "frozen" state also allowing lost rules to be reintroduced into a ~fY:;; 
rule set. if{ l··),~~ 

,~ .... \ ·-
' \ f$_. • ·.. ""-/ I 

\./,---.. 

Upon termination, the solution is evaluated and by the performance ._"<!·'i/it: .. :,_ ~- / 
:._ ___ ..-

evaluating component. The credit resulting from the is distributed among the 

rules in the rule set using the algorithm described below. the same rule set is 

then used to solve the next problem in the problem set. 

When the all problems in the problem set have been presented the rule 

set itself is evaluated i.e. its average performance is calculated. This average 

value is compared with that of best-so-far rule set. If it is higher, it is appended 

to the rule history list and become the new best-so-far rule set. In any case the· 

21 



rules in the master ruie set are now updated to select the new credit values of 

the rules just used. 

After update in the rule history and master rule set the weeding 

I 

criterion is applied. Currently this is done every w generations. Finally a 

subset of rules are selected from the master rule set and new rules are 

generated for the next generation. These new rules are added to the master rule 

set and the problem space. The next generation then begins, using the selected 

subset and any new rules generated from them. 

3.2.3. Payoff Allocation 

The payoff enters the system upon reaching the termination -condition 

and rules are only rewarded for being in a set of profitable rules leading 

directly to payoff. Note that credit enters the system every time a problem is 

attempted. 

As system operates upon a set of problem p, given a rule set Ro. It is 

expected that Ro will be complete in the following sense. Ro must contain 

enough condition and action to allow all transitions necessary for an acceptable 

solution to all problem in p. That is, if the system is expected to evolve a 

solution from a set of rules which is not a solution then all necessary condition 

and actions at least be present in the starting rule set, as the system can't create 

the new ones. 
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Whenever new rules are generated by the rule manager, they are 

copied into the master rule set. When weeding takes place, the weeding 

algorithm is applied to the master rule set. After all undesirable rules have been 

eliminate the rule manager is loaded with a copy of all the rules from the newly 

weeded master rule set. Hence the content of the master rule set during the 

generation g is given by: 

g g 

Rg= { Ro U ( U RGi) } - U RWi 
i=l i=l 

Where 

U is union of sets. 

Ro is the initial rule set (generation 0) 

RGi is the set of rules generated at generation i. 

RWi is the set of rules weeded at generation i. 

The rules in the above formula are identified by the generation in which 

they are created, so if a rule is weeded and then an identical rule is later 

created, it is a different rule and will still be count. The rule set used during 

generation g to attempt solving the problem set is given by: 

rg = { ri : ri E select (Rg) } 

Where 

:Means "such that" 
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"Select " is the selection function 

Since weeding takes place before selection, hence Rg is taken as the 

set obtaining after weeding . 

The credit entering the system while attempting problem p is domain 

dependent and will. simply be called Cp for now. We may now compute the 

credit assigning to a rule during generation g. First the utilization of ri is 

calculated: 

Where 

:fi p is the number oftimes fi, fires while rule set 

tfp is the total number of rule firings which occurred ·while rule 

set rg is solving problem p. 

Now we can compute the credit assigned to rule ri( Erg) for each 

problem attempted during generation g: 

Cip = { 3*Cp-O.l * complexity(ri)} *uip 

Where 

Cp is the total credit apportioned to the rule set for its solution to 

problem P. 
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Since all the credit obtained by the rule set is divided among its rules 

according to their utilization, a low performing rule in a high performing rule 

set will not be able to get a "free ride " by living off its colleagues. 

Furthermore a good rule in a mediocre rule set is not highly penalized, since if 

any credit is obtained it will go to those rules that contributed the most. 

This scheme for credit assignment IS intended to provide both a 

penalty and an incentive for complexity. The penalty is the second term in the 

formula. The inceptive will be discussed below. 

After computing the cred!t for one problem, we sum over all the 

problems to obtain the total credit assigned to rule i during generation g: 

IPI 
Cig= 2: Cip 

P=l 

In addition, the total number of firing ofri is saved: 

The credit of each rule, ri is also saved for all generation in which ri 

exists in the sytem. Hence, the credit of rule ri after generation g is: 
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where S is the set of generations in which ri is selected 

A figure of merit for rules which is often used is its rating. This is 

computed whenever necessary from the above valued. The rating is the 

average credit per problem set attempted, and is computed as: 

Rating = Ci /lSI 

Information is also saved about rule sets. In particular, each rule set is 

evaluated; each rule set Is evaluated after attempting a solution to a problem 

set. The value of the best performing rule set is saved as well as the rule set 

itself The performance of a rule set is calculated as follows: 

. 1 IPI 
CR·=- LC 

1 !PI P 
P=l 

This is just the average performance of the rule set over the 

problems in the problem set . 
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3.2.4. Combination Algorithm 

There are two genetic operators used in the system. They are very 

simple and described here. However the design of the system is such that any 

new operator can be easily added. 

' 
The first is crossover, but is defined somewhat differently than usual 

for classifier systems. In this version of crossover, the crossover point, instead 

of being random, is always chosen as the point between the condition and 

action. Hence given two rules: 

Cal 1\ Ca2 1\ Ca3 1\ Ca4 .......... CaN I Aa1 1\ Aa2 1\ Aa3 ...... AaM 

The two new rules obtained from crossover are given by: 
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Note that the multiple actions on the RHS of these rules are performed 

in order, so the list of actions represents an action sequence. 

This second operator is called and-combination and works as follows: 

Two rules to combine are selected. From the two conditions, a new 

condition is made conditions, a new completed by taking the two actions and 

forming a new action from the sequence of the two. Note that this always 

~esults in rules with a higher complexity. 

Two parameters of the system are Pc and P, the probability of applying 

crossover and the probability of applying and -combination respectively. 

During the generation step of a time slice, each pair of rules in the applied to it 

Any generated rules are then added to the set which becomes the next 

generation rule set. 

3.2.5. Weeding Algorithm 

A parameter to the system is the weeding period, W which is an 

integer, It specifies the number of generations which the following steps take 

place: 

1. All rules, which have never fired, are removed. 

2. Low performing rules are removed. 
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Although rules which have not fired are not necessarily useless, they 

are weeded out as excess baggage. Most likely, such a rule has not fired 

because the state in which it fires has not been reachable using any of the rule 

sets selected so far. That does not imply that the state would not be reachable 

using future rule sets, but it was felt that such an event would be relatively rare, 

and in any case, the system would probably be able to regenerate any needed 

rule in that case. Also, rules with logically false conditions are eliminated in 

this way. 

A rule is considered to be low performing if its rating is less than -

(100/gemeration). This is to put a lower bound on each rule's rating. The lower 

bound is designed to slowly increasing generation, which will gradually force 

out rules whose rating does not increase. 

Selection Algorithms Currently, the system operates in-two modes, best and 

experimental which alternate each generation . The difference between the two 

modes is the algorithm which is used for selection of that generation's rule .To 

select a best rule set, the following algorithm is used. 

1. Select the M+P best rules , where M is the number of rules 

in the best-so-far rule set, and Pis a·parameter(order of M 

2. Randomly reduce the above list to length M. 
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The resulting list is the selected best rule set, which is used for the next 

generation. In experimental rule set is obtained using the following algorithm: 

1. Calculate the cutoff point of rule performance ,usmg the 

formula 

C= (7/8)*best + (1/8)* worst 

Where best and worst are respectively the highest and lowest 

ratings in the rule set 

'f. Select all rules with rating grater than C. 

3. Select P, rules randomly (Pc is a parameter) 

4. Take the union of the above two lists, and randomly reduce it 

to length M (length of the best-so-far rule set). 

3.3. Modified Zeigler model 

In order to use Zeigler adaptive model efficiently certain modifications 

have been done. There are basically two modifications that have been tried 

upon. As Zeigler model assume that there are p sub-problems in the problem 

space while in coevolutionary model assume that each subtask is logically a 

single task. Thus in order to evaluate the average performance of the particular 

generation we take more than one training sets and evaluate the average 
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performance. In next modification we assume that only one at each step only 

one ACTION is performed i.e. we will never fire the rule like: 

IF CI and C2 and C3 THEN AI and A2 

Rather we will use a sequence of two different rules in two steps of time i.e. 

RULE I: IF Cl THEN AI 

RULE 2: IF C2 THEN A2 

Also crossover is simplified and for above rules it 1s defined as(same as 

original Zeigler Model). 

RULE 3: IF Cl THEN A2 

RULE 4:IF C2 THEN AI 

And mutation has been defined as: 

For any rule: IF X THEN Y, replace the action Y by some other action Z. 

Hence new rule after mutation will: IF X THEN Z. 

3.4. Path tracking and obstacle avoidance system 

The work done in this dissertation implements the coevolutionary 

learning using modified Zieigler adaptive expert system. Problem domain 

considered here consists of navigation of robot. During navigation , the robot 

must be able to follow an object while avoiding the obstacle in the navigating 

path. The knowledge is represented in the form of sequential decision rules. 
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We apply modified Zeigler model in each subcomponent as well as in the 

merging module of sub-components to evaluate the performance of the 

collaborative solution. 

The navigation problem can be considered as the decision-making 

problem in each time step. Robot consists of· a limited set of sensors and 

effectors. The sensors provide the certain information about the environment to 

the robot. With the help ofthese sensors Robot also knows it's state i.e. speed, 

direction and positi9n etc. at each step of time robot matches it's sensor values 

for some rules condition to be true and action of the matched condition is 

performed. If more than one condition matches then rule with higher fitness 

value is considered. 

3.4.1. Credit assignment 

If any subcomponent performs the task· successfully then total credit 

assigned to that rule set for that particular problem space will be 100%. 

Otherwise it will be normalized over 50%. 

For example if we want a robot to navigate for 100 steps and if 

(whatever condition there may be i.e. collision avoidance or path tracking). 

Successful then credit = 1 

Otherwise credit= ((0.5)/99)*(total steps traveled successfully) 
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3.4.2. Conflict resolution 

During the rule matching and firing the conflict resolution is achieved 

through the fitness function. All rules are stored in sorted order hence first 

matching rule should be fired. Also we assume that there are sufficient rules 

are available in the rule set so that at least one matching rule must be there. 

3.4.3. Subcomponents to be evolved 

My whole idea is based on the coevolving components 1.e. 

multiple instances of Genetic algorithms, running in parallel using the 

modified Zeigler model. All rules are evolved in the form of high level rule 

and in the form of IF condition THEN action. 

The simulated robot considered in this dissertation work, it is assumed that 

sensors can detect obstacle and object within certain permissible range. The 

sensors can view by certain degree and can detect the distance of objects and 

obstacle in discrete values. Sensors used for detecting the obstacle might be 

different from the sensors needed for detecting an object. 

Now two subcomponents, which we are evolving, are: 

1. Object's Path tracking components i.e. chasing the object and if 

object goes out of range to the object detecting sensor before 

chasing the required number of steps the system will fail. 
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2. Obstacle avoiding system i.e. the robot must be able to walk in the 

navigating path for the required no of steps without collision. 

The next section dedicated for way evolving the subcomponents and 

merging the subcomponents. 

3.4.4. Evolving Subcomponents 

As it is discussed earlier that in coevolutionary learning the 

subcomponents evolve by initial seeding and no extensive hand held design is 

needed. Once population is seeded for the particular subfunction the 

population evolves without any human support. 

For evolving the first subcomponent i.e. object's path tracking system, 

N-object detecting sensors are used. These sensors provide the information 

about the distance and direction of the object with respect to robot. 
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Figure shown above has three object detecting sensors o_s_1,0_s_2 and 

o_s_3. Each can view up to angle e. Also it can detect the distance of the 

object let d. all these sensors have a non-overlapping viewing angle hence at 

any time only one out ofN ( here 3 ) object sensors will be active. Depending 

upon the active sensor and other state variables like speed etc there can be M 

actions be fire. For example if d=100, active o_s_2 ad speed =20 unit the 

corresponding action can be change direction by 10 degree in clockwise 

direction and change the speed by 5 unit +ve i.e. increase the speed by 5 unit. 

Similarly for obstacle avoiding component there are K obstacle 

detecting sensors. Each sensor has a fixed viewing angle and sensors can 

detect obstacle up to a certain permissible distance. Unlike the object sensor 

there can be more than one active obstacle sensor i.e. more than one sensor 

can report for obstacle within its range. 

For assigning the credit it is assumed that robot need to navigate up to a 

desired no of steps. Value STEP _MAX controls this factor. 

Now following steps are needed in order to evolve the rule set of the 

first sub component. 

1 Create the p simulating path. Here p corresponds to the no of sub­

problems in the original Zeigler model. 
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2 Create initial population of rules which will serve as he master rule 

set and set credit=O; 

3 Apply the modified Zeigler model for credit assignment evolving 

the new rules up to G generation or until proper performance is 

achieved. 

Similarly the second component will evolve. Only difference will be 

the set of sensors for obstacle detection may differ from set of sensors used for 

object seeing. 

3.4.5. Merging the subcomponents 

This section deals with implementation details of merging. 

Merging is one of the vital components of the coevolutioriary learning. The 

genetic material evolved from the individual subpopulation must be merged 

together by some mean in order to achieve the desired task. 

As described in the chapter two that representatives from the subcomponents 

are selected and are merged together to achieve the higher level task. The 

feedback about the collaboration is given to the original subcomponent of the 

representatives. 

The merge module has the state information of all components it is 

intended to merge. Thus while merging the rules from different component the 

following condition are possible. 

36 



1. If for the given state both rules fires the non contradicting action 

i.e. for both rule action part is the same then combine these two 

rules in to a single rule. Credit to the merged rule will be 

highest. 

2. If for the given state the rules fire has the partial contradicting 

action( change in direction = 10 clockwise in both rule but for 

speed one rule suggests increase in speed while other suggests 

the decrease in speed) then keep the partial matching action 

while among contradicting action choose the action from higher 

fitness population or in other word we choose the action part 

from the higher fitness holding individual.lf there are N 

matched and M unmatched partial actions then the total credit 

assigned to the merged . rule = (N/(M+N))*fitness of best 

representative). 

After merging the rules the feedback is floated back in order to improve 

the subpopulation again. 

The merged rule here now can generate a representative to be merged 

further. Next chapter deals with coding and implementation of these concepts 

and there performance evaluation. 
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CHAPTER-4 

IMPLEMENTATION AND RESULT 

4.1. Description of the Simulation Domain 

The simulation environment is a two-dimensional navigation path. The 

path consists of obstacles and a moving object. The robot must be capable of 

tracking the object without colliding with the obstacle. Robot has the limited 

set of sensors including sonar and various types of effectors that maps to 

sensor reading to actions to be performed. The mapping between the sensor 

reading to the action to be performed is determined at each time-step. System 

learns a specific set of rules that reactively decides a move at each time-step 

and not the specific path. 

Whole simulation has been done in C++ using "Standard Template 

Library". Rules in the different sub-components have been implemented as 

objects of different class. Feature like operator overloading from C++ has· been 

used for comparing the two incompatible rules set class without loosing the 

generality of equality operator and STL has been used as container class of the 

rules and rule set. 

4.1.1. Navigation Path 

As told the robot navigates 10 a 2-D simulating environment. The 

environment consists of stationary obstacle and a moving object. The 
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navigation path has been implemented by a mean of 2-D array. The value 0 at 

any location represents the no obstacle while value 1 represent an obstacle. The 

obstacle probability is not necessarily be 0.5 rather it is also configurable. 

#define OBST ALE PROBABILTIY 

The navigation area is also configurable i.e. 

#define MAXX //maximum permissible area in the x direction 

#define MAXY II maximum permissible area in y direction 

4.1.2. Sensors 

The robot is ·equipped with an active sonar for detecting obstacles in its 

path and the object to be tracked. The sonar is composed of NO_ OF _:SONAR 

cells, each with a resolution ofMAX_DEGREE degree, giving the robot a total 

coverage ofNO_OF_SONAR *MAX_DEGREE degrees. The robot also has 

some internal, or virtual, sensors that give the robot certain information about 

its own state. The sensors are: 

1. Last-turn: the current turning rate of the robot. This sensor can assume n 

values, rangmg from Rl degrees to R2 degrees m 

MAX ANGLE CHANGE - -
degree increments. Where n=(R2-

Rl )/MAX_ ANGLE_ CHANGE+ 1. 

2. Time: the current elapsed time, an integer. 
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3. Steps: the no of steps it has moved. Range from zero to MAX_STEP. 

4. Speed: the current speed ofthe robot. Itranges between 0-MAX_SPEED in 

step of CHANGE IN SPEED. Thus can take 

MAX SPEED/CHANGE IN SPEED+l values from 0 to MAX SPEED. - - - -

The robot can come to a stop. 

5. asonar n: One of n active sonar cells used for collision avoidance and 

object tracking. Each cell takes on values from 0 to RANGE_ OF_ SENSOR 

in increments ofSTEP_OF_RANGE unit and represents the distance to an· 

object within that sonar cell's view. If no object is seen, a special value, 

NO_ OBSTACLE, indicates infinity. Each sensor can view the 

VIEWING_ ANGLE_ OF_ SENSOR degree. Thus total viewing angle 

achieved is NO_ OF_ SENSORS* VIEWING_ ANGLE_ OF_ SENSOR 

Also each sensor can have noise added to simulate a more realistic 

environment. In particular, the sonar readings have both a Gaussian noise 

added, and a small random probability of "missing" an object, or of reading 

a "ghost" object that is not really there. 

6. object_tracking_sensor_n: n object tracking sensors. Also represented as 

o s n i.e. nth object detecting sensor. For simplicity it has the same 

characteristics, as that of asonar _ n. NO_ OF_ OBJECT_ SENSORS is the 

total no of object tracking sensors. 
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4.1.3. Actions (effectors) 

There is a discrete set of actions available to control the robot. In this 

study, we consider actions that specify discrete turning rates and discrete 

sp~eds for the robot. The control variable tum has n possible settings, between 

Rl and R2 degrees in degree MAX_ANGLE_CHANGE increments. Note that 

the sonar may cover lesser viewing angle than the turning capability i.e. the 

R2-Rl can be larger than the NO OF SENSORS* 

VIEWING_ANGLE_OF_SENSOR., so it is possible for the AUV to tum into 

an object that is not in sonar range. The control variable speed has n possible 

settings between 0 and MAX_SPEED (the units are arbitrary) with an 

increment of CHANGE_IN_SPEED, where n=MAX SPEED/ 

CHANGE_ IN_ SPEED + 1. The learning objective is to develop a reactive plan, 

i.e., set of decision rules that map current sensor readings into actions, that 

successfully allows the robot to track the target up to the specified steps i.e. 

MAX_ STEP. steps while avoiding the obstacle . 

. In this simulation, we assume that the robot can change speed a maximum of 

CHANGE IN SPEED units and direction a maximum of 

MAX_ANGLE_CHANGE degrees within one decision time step. 

The robot simulation is divided into episodes that begin with the 

placement of the robot centered in front of a randomly generated training path 

with a specified density. The episodes end with either a successful tracking for 

specified no of steps or, or there is a collision with the obstacle. 
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4.2. Performance Component 

The performance module is a production system interpreter. The 

primary features of production system are: 

1. A restricted but high level rule language; 

2. Competition-driven conflict resolution; and 

3. Incremental credit assignment methods. 

4.2.1 Knowledge Representation 

Rules are expressed in a high-level rule language. The use of a high 

level language for rules offers several advantages over low level binary pattern 

languages typically adopted in genetic learning systems i.e. 

Each rule has the form 

if c then a. 

where c is a condition on the sensors and action a specifies a setting for the 

control variables. 

The right-hand side of each rule specifies a setting for one or more 

control variables. For robot, each rule specifies a setting for the variable turn, 

and a setting for the variable speed. In general, a given rule may specify 

conditions for any subset of the sensors and actions for any subset of the 

control variables. Each rule also has a numeric strength, that serves as a 
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prediction of the rule's utility. The methods used to update the rule strengths is 

described in the section on credit assignment below. A sample rule in the 

if ((speed is [30]) 

(asonar _1 is [1 00]) 

(asonar_2 is [150]) 

(asonar_3 is [220]) 

(asonar_NO_OF_SENSORS is [100])) 

then ((change_in_angle is [10]) (change_in_speed is [-10])) 

strength 0. 7 5 

Path tracking component may produce the rules of the form 

lf((speed is [ 40]) 

(o_s_1 is [30]) 

(o_s_2 is [50]) 

(o_s_3 is [220]) 

(o_s_NO_OF _OBJECT_SENSORS is [110])) 

then ((change_in_speed is [5]) 
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(change_in_direction is [10])) 

strength 0. 50 

4.2.2 Production System Cycle 

Production system follows the match/conflict-resolution/act cycle. 

There is no guarantee that the current set of rules is in any sense complete, it is 

important to provide a mechanism for gracefully handling cases in which no 

rule matches neither in problem-space nor in master rule set. This is 

accomplished by generating new random rule for the particular condition with 

strength =0. All rules in the match set that agree with the selected action are 

said to be active, and will have their strength adjusted according to the credit 

assignment algorithm described in chapter 3. 

Thus the final rule set will evolve 

4.2.3. Merging the Subcomponents 

The merge module takes the representatives from both subcomponents 

i.e. takes the best rule set of obstacle avoidance and best rule set of object 

tracking. After merging the rule-set of both components the performance is 

evaluated in combined form. The feedback is again passed to corresponding 

sub-unit. It is quite possible that even best individual performer scan give 
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average or poor performance when they are merge together. Thus feedback 

mechanism cause to evolves some new species if required. 

After merging the rules may appear like below. 

if ((speed is [ 40]) 

(asonar_1 is [100]) 

(asonar_2 is [150]) 

(asonar _3 is 220) 

(asonar_NO_OF_SENSORS is [100]) 

(o s 1 is [10]) 

(o_s_2 is [20]) 

( o _s_3 is [5]) 

(o_sr_NO_OF_OBJECT_SENSORS is [220])) 

then ( (change_ in_ speed is [ 1 0]) 

(change_in_direction is [5])) 

strength 0 .. 3 7 
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4.3 Learning Module 

Learning is achieved at two different levels namely 

1. The credit assignment at the rule and rule set level. 

2. Genetic competition at the plan level. 

4.3.1. Credit assignment 

Total payoff to the rule set= 

1.0 if robot is able to follow the object for 

MAX_ STEP steps. 

(0.5/(MAX_STEP-l))*n ifthere is a collision. 

Where n is total no of steps traveled before collision to collision. 

Payoff at rule level is achieved according to the algorithm described in 

the chapter 3rd and weeding are perform based on the strength of the rule. 

4.3.2. The Genetic Algorithm 

The learning process is a heuristic optimization problem, i.e., a search 

through a space of knowledge structures looking for structures that lead to high 

performance. A genetic algorithm is _used to perform the search from the 
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current knowledge base on the basis of fitness, and applying idealized genetic 

search. 

While implementing a random initialization of the first population has 

been made. Since this approach requires the least knowledge acquisition effort, 

provides a lot of diversity for the genetic algorithm to work with, and presents 

the maximum challenge to the learning algorithm. Alternatively we can do 

adaptive initialization in which rule is specialized according to its early 

experien~s. 

4.3.3. Genetic Operators: CROSSOVER and MUTATION 

Crossover is used to create new rules from existing rules. Let we 

consider two rules: 

Rule 1: if cl then al 

Rule 2:if c2 then a2t 

Then new rules we get through crossover are 

Rule 3: if c 1 then a2 

Rule 4: if c2 then al 

Crossover is simply selecting rules from each parent to create an 

offspring plan. 
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Mutation operator introduces the new rules by the random changes. 

Mutation occurs with very small probability in compare to other genetic 

operators. 

Let there be a rule 

Rule 5: if c then a 

The mutation operator can define the new rules by changing the action 

a with some other action namely A. Thus new rule will be 

Rule 6: if c then A. 

4.4. Experimental Results 

Simulation has been performed in the following environment. 

#define MAX_POPULATION 1024 II initial population in the master rule set 

#define NO OF SENSORS 7 II total no of sonars 

#defineRANGE_OF _SENSOR 200 II viewing distance of the sensor 

#define STEP OF RANGE 10 

#define VIEWING ANGLE OF SENSOR 10 //viewing angle in the degree 
- - -

#define INITIAL_ANGLE 0 II all measurement will be taken from this only 

#define W 1 I I weeding period 

#define MAX_SPEED 40 //maximum speed 

#define CHANGE IN SPEED 5 

#define MAX ANGLE CHANGE 10 //maxi"mum permissible change in angle - -
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#define MAX STEP 100 II maximum steps ofwandering 

#define MUTATION .25f II mutation rate 

#define NO_ OBSTACLE 220 II indicates that there is no obstacle within the 

range 

#define NO OF GENERATION 800 

#define OBSTACLE PROBABILITY .5 

#define MAXX 400 II navigation range in X- direction 

#define MAXY 409 II navigation range in Y- direction 

4.4.1. Rules Evolved 

Some rules evolve in the generation 789. 

[ speedlsonar _II sonar_ 2lsonar_ 3lsonar _ 4lsonar _5lsonar _ 6lsonar_71o _ s _llo _ s_ 2lo _ s _ 3]/[ t.speedlt.-

direction] 

10 220 100 220 100 120 220 220 220 100 220 +5 

10* 220 100 140 150 220 180 220 220 220 100 +5 

10 130 220 220 180 220 70 220 220 220 20 0 

10 220 220 50 80 220 220 220 120 220 220 0 

20# 220 220 220 220 220 220 220 220 40 220 +5 

20 220 110 150 220 220 220 180 100 220 220 +5 

20 220 220 30 220 100 130 220 80 220 220 -5 

20 40 220 220 220 120 80 60 220 30 220 +5 

25 10 220 20 20 220 220 220 220 40 220 -5 

25 120- 220 140 80 20 220 220 100 220 220 +5 

25 220 130 220 30 220 120 220 220 70 220 0 

25 220 100 220 220 110 220 220 220 90 220 0 
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Explanation of Rules: 

The rules shown above have two parts. Pipe "I" is representing the 

logical AND. String before symbol "/" is condition part while part after"/" is 

action part. ~-speed and ~-direction are the change in speed and change in 

direction respectively. Here +ve change in speed means speed will increase by 

· that amount after firing the rule and -ve means speed should decreased by that 

amount after firing rule.change in direction will be clockwise if the value ~­

direction -ve otherwise change in direction will counter clockwise. Thus first 

bold faced rule is representing the following rule: 

IF(speed=IO AND sonar_1=no obstacle,sonar_2=100i.e. sonar 2 is detecting 

obstacle at a distance 100 AND sonar 3=140 AND sonar 4=150 sonar 5= 

onar 7= no obstacle AND sonar 6=180 AND 

object_tracking_sensor_l=object_tracking_sensor_2=No object in vision AND 

object_tracking_.:sonar_3=100 i.e. object to be traced is at a distance 100 from 

the 3rd object tracking sensor .) 

THEN (change in speed +5,here +ve means increase AND change in 

direction 10 clockwise ,since value is -ve). 
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4.4.2 Perfoi"Jilance Measurement 
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CHAPTER-S 

CONCLUSION AND FUTURE WORK 
I 

This dissertation work deals with a cooperative coevolutionary 

approach to robotics. Cooevolu~ionary approach together with modified 

Zeigler adaptive expert system ha~ been used to evolve the robot navigation. 

The knowledge has been represented in the high level language, and can be 

used in reactive systems. This is also very useful in the sense that reactive rules 

are very difficult to design by hand. 

Also this approach fon~s I the stable niches. Each niche represents a 

particular sub-behavior and never, migrates to the other species. This prevents 

any haphazardness in the overall behavior. 

In the present work a simple merging algorithm of the sub tasks to form 

collaboration has been used. Development of better merging modules to 

achieve high level collaboration would be an interesting future direction. 

Also the credit assignment technique is linear and can be explored 

further for better credit assignm'ent function. The problem domain in which 
I 

non-coevolutionary approach doesn't work well would be a logical extension 
I 

to show the potential of co-operative evolutionary approach. Other extension 
I 

might be navigating the robot in 3-D space and tracking the object among more 

than one similar confusing objects. 
I 
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