
Automatic Generation Of Hierarchical Structures
from ·Large database

Dissertation submitted to Jawaharlal Nehru University
In partial fulfillment of the requirement for the award
of degree of

MASTEROFTECHONOLOGY
In

COMPUTER SCIENCE & TECHONOLOGY

By

Sudesh Singh Chandel
./

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI - 110067

JANUARY 2004

CERTIFICATE

This is to certify that the thesis entitled "Automatic Generation of Hierarchical

Structures from Large Databases", being submitted by Mr. Sudesh Singh

Chandel to The School of Computer & Systems Sciences, Jawaharlal Nehru

University, New Delhi in partial fulfilment of the requirement for the award of the

degree of Master of Technology in Computer Science & Technology, is a

record of original work done by him under the supervision of Prof. K K Bharadwaj

during the Monsoon Semester, 2003.

The results reported in this thesis have not been submitted in part or full to any

other University or Institution for the award of any degree etc.

Prof.Karm~
(Dean, SC&SS, JNU, New Delhi-11 0067)

Sud~ingh Chandel
(Student)

~1 _.-- 0 7
r-~0

.. ~

Prof. KK Bharadwaj
(Supervisor)

ii

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to my supervisior

Prof. K. K. Bharadwaj, for his enthusiasm, support and encouragement

throughout my thesis. Without his consitent guidance and timely advice, the

thesis would not have been completed.

I would like to thank all the staff of SC &SS, JNU especially to the caretaker of

lab, where I spent most of my time working for the thesis. My thanks also goes

to the staff members of the university library for providing the conducive

environment to study for the research.

And finally special thanks to my family and friends who have been a constant

source of support throughout my thesis.

~
Sudesh~ingh Chandel

iii

ABSTRACT

Data m1n1ng is the nontrivial extraction of implicit, previously unknown and

potentially useful information from data. As one of the most important

background knowledge, hierarchy plays a fundamentally important role in data

mining. It is the purpose of this thesis to study some aspects of hierarchy and the

automatic generation of hierarchical structures.

Concept hierarchies organize data and concepts in hierarchical forms or in

certain partial order, which helps expressing knowledge and data relationships in

databases in concise, high level terms and thus plays an important role in

knowledge discovery processes. Concept hierarchies could be provided by

knowledge engineers, domain expert, users or embedded in some data relations.

However, it is sometimes desirable to automatically generate some concept

hierarchies or adjust some given hierarchies for particular learning tasks.

As the number of rules becomes significant, they are not comprehensible to

people as meaningful knowledge from which they can gain insight into the basis

of decision making. The Hierarchical Production Rule (HPR) is a technique for

restructuring production rules to generate comprehensible knowledge structure.

An algorithm is developed that organizes , the standard production rules into

hierarchical structure that can further be used to generate Hierarchical

Production Rules and also an algorithm for automatic generation of hierarchical

structure from database is proposed. In the present work proposed algorithms is

included and results are presented.

iv

CONTENTS

1.1ntroduction

1.1 DM: On what kind of data

1.2 Data Mining Functionality- What kind
of patterns can be mined

2. Hierarchical Censored Production Rules I
Hierarchical Production Rules

2.1 Introduction

2.2 Hierarchical Censored Production Rules

2.3 HCPR-tree

2.4 Inference rules

3. Automatic Generation of Hierarchical Structure

3.1 Introduction

3.2 Concept hierarchy and its role in knowledge
discovery in databases

3.3 Concept hierarchy generation

3.3.1 Generation of concept hierarchy for
numerical data

3.3.2 Concept hierarchy generation for
categorical data

3.4 Algorithm (Generation Of HPRs)

3.5 Algorithm (Automatic generation of
hierarchical structure)

4.1mplementation and Results

4.1 Introduction

4.2 Generation of HPRs

Page No.

1

6

10

12

14

17

20

21

23

28

32

44

48

48

v

4.3 Automatic generation of
hierarchical structure

5. Conclusion

Bibliography

Page No.

50

54

55

vi

CHAPTER 1

INTRODUCTION

The work presented in this dissertation includes, an algorithm that

organizes the standard production rules into hierarchical structure that

can further be used to generate Hierarchical Production Rules and also

an algorithm for automatic generation of hierarchical structures from

databases.

In the present work proposed algorithms is included and results are

presented. Chapter 1 introduces to the data-mining,On what data data

mining is applicable and what are the types of patterns that can be

generated. The concept of Hierarchical Censored Production Rules

(HCPRs) are explained in Chapter 2. Chapter 3 discusses the concept

of auotmatic generation of hierarchical structures from databases, Both

proposed algorithms are presented and explained in the chapter.

lmplementaion of the algorithm and results obtained are presented in

the chapter 4. Thesis ends with ·conclusion in Chapter 5.

1.1 DM: On what kind of data

Data mining is the nontrivial extraction of implicit previously unknown

.and potentially useful information from data. [2]

The fast-growing , tremendous amount of data , collected and stored in

large and numerous databases, has far exceeded our human ability for

comprehension without powerful tools . As a result, data collected in

large databases become "data-tombs" data archives that are seldom

visited. Consequently, important decision are often made based not on

the information-rich data stored in databases but rather on a decision

makers intuition, simply because the decision maker does not have the

tools to extract the valuable knowledge embedded in the vast amounts

of data. In addition, consider current expert system technologies, which

typically rely on users or domain experts to manually input knowledge

into knowledge bases. Unfortunately, this procedure is prone to biases

and errors, and is extremely time consuming and costly. Data mining

tools perform data analysis and may uncover important data patterns,

contributing greatly to business strategies, knowledge bases, and

scientific and medical research. The widening gap between data and

information calls for a systematic development of data mining tools that

will turn data tombs into "golden nuggets" of knowledge.

Data mining should be applicable to any kind of information

repository.This includes relational databases, data warehouses,

trasactional databases, advanced database systems, flat files and the

WWW_,_i\dy~f!ce<:l database system includes Object oriented and object

relational databases, and specific application oriented databases, such

as spatial databases, text databases and multimedia databases. The

challenges and techniques of mining may differ for each of the

repository systems.

Relational Databases

A relational databases is a collection of tables, each of which is

assigned a unique name. Each table consist of a set of attributes

(columns or fields) and usually stores a large set of tuples(records or

rows). Each tuple in a relational table represents an object identified by

a unique key and described by a set of attribute values. A semantic

data model , such as an entity-relationship (ER) data model, which

models the database as a set of entities and their relationships, is often

constructed for relational databases.

Data Warehouses

A data warehouse is a repository of information collected from

multiple sources, stored under a unified schema, and which usually

resides at a single site. Data warehouses are constructed via a

process of data cleaning, data transformation, data integration , data

loading , and periodic data refreshing.ln order to facilitate decision

making , the data in a warehouse are organized around major subjects,

such as customer, item, supplier, and activity. The data are stored to

2

provide information from a historical perspective (such as from the

past 5-10 years) and are typically summarized. For example, rather

than storing the details of each sales transaction, the data warehouse

may store a summary of the transactions per item type for each store

or summarized to a higher level, for each sales region.

Transactional Databases

In general, a transactional databases consists of a file where each

record represents a transaction. A transaction typically includes a

unique transaction identity number (trans_id), and a list of the items

making up the transaction (such as items purchased in a store). The

transactional database may have additional tables associated with it,

which contain other information regarding the salary, such as the data

type of the transaction, the customer ID number of the sales person

and of the branch at which the sale occurred, and so on.

The transactional database is usually stored in a flat file in a format

similar to that of the table in fig 1.1.

sales
Trans ID List of item IDs
T100 11,13,18,116
... ...

Fig 1.1 Sales transaction

Advanced Database Systems and Advanced Database

Applications

Relational database systems have been widely used in business

applications. With the advances of database technology, various kinds

of advanced database systems have emerged and are undergoing

development to address the requirements of new database

applications.

3

Object-Oriented Databases

Object oriented databases are based on the object oriented

programming paradigm, where in general terms, each entity is

considered as an object. Data and code relating to an object are

encapsulated into a single unit. Each object has associated with it the

following:

• A set of variables that describes the objects. These correspond to

attributes in the entity-relationship and relational models.

• A set of messages that the object can use to communicate with the

other objects or with the rest of the databases system.

• A set of methods, Where each method holds the code to implement

a message.

• Upon receiving a message, the method returns a value in response.

For instance, the method for the message get_photo(employee) will

retrieve and return a photo of the given employee object.

Object-Relational Databases

Object-relational databases are constructed based on an object

relational data model. This model extends the relational model by

providing a rich data type for handling complex objects and object

orientation. In addition, special constructs for relational query

languages are included to manage the added data types .The object

relational model extends the basic relational data model by adding

the power to handle complex data type,s, class hierarchies, and

object inheritance as described above. Object-relational databases

are becoming increasingly popular in industry and applications.

Spatial Databases

Spatial databases contain spatial related information. Such

databases include geographic (map) databases, VLSI chip design

databases, and medical and satellite image databases. Spatial data

may be represented in raster format, consisting of n-dimensional bit

maps or pixel maps. For example, a 2-D satellite image may be

4

represented as raster data, where each pixel registers the rainfall in a

given area. Maps can be represented in a vector format, where roads,

bridges, buildings, and lakes are represented as unions of basic

geometric constructs, such as points, lines, polygons, and the partitions

and networks formed by these shapes.

Geographic databases have a number of applications, ranging from

forestry and ecology planning, to providing public service information

regarding the location of telephone and electric cables, pipes, and

sewage systems. In addition geographic databases are used in vehicle

navigation and dispatching systems. An example of such a system for

taxis would store a city map with information regarding one-way

streets, suggested routes for moving from region A to region 8 during

rush hour, the location of restaurants and hospitals, as well as the

current location of each driver.

Temporal Databases and Time-Series Databases

Temporal databases and time-series database both store time related

data. A temporal database usually stores relational data that include

time-related attributes. These attributes may involve several

timestamps, each having different semantics. A time-series database

stores sequences of values that change with time, such as data

collected regarding the stock exchange.

Text Databases and Multimedia Databases

Text databases are databases that contain word description for

objects. These word descriptions are usually not simple keywords but

rather long sentences or paragraphs, such as product specifications,

error or bug reports, warning messages, summary reports, notes, or

other documents. Text databases may be highly unstructured (such as

some Web pages on the WWW). Some text databases may be

somewhat structured (such as library databases). Text databases with

highly regular structures typically can be implemented using relational

database systems.

5

Multimedia databases store image, audio, and video data. They are

used in applications such as picture content-based retrieval, voice-mail

systems, video-on-demand systems, the WWW and speech based

user interfaces that recognize spoken commands. Multimedia

databases must support large objects, since data objects such as video

can require gigabytes of storage. Specialized storage and search

techniques are also required. Since video and audio data require real

time retrieval at a steady and predetermined rate in order to avoid

picture or sound gaps and system buffer overflows, such data are

referred to as continuous media data.

The World Wide Web

The WWW and its associated distributed information services,

such as American Online, Yahoo!, AltaVista, and Prodigy, provide

rich, world-wide, on-line information services, where data objects are

linked together to facilitate interactive access. Users seeking

information provide ample opportunities and challenges for data

mining. For example, understanding user access patterns will not only

help improve system design (by providing efficient access between

highly correlated objects}, but also leads to better marketing decisions

(e.g., by placing advertisements in frequently visited documents, or by

providing better customer/user classification and behavior analysis).

Capturing user access patterns in such distributed information

environments is called mining path traversal patterns.

1.2 Data Mining Functionality- What kind of patterns can
be mined

Data mining functionality are used to specify the kind of patterns to be

found in data mining tasks. In general , data mining tasks can be

classified into two categories: Descriptive and Predictive. Descriptive

mining tasks characterize the general properties of the data in the

database. Predictive mining tasks perform inferences on the current

data in order to make predictions.

6

Concept I Class Description: Characterization and Discrimination

Data Characterization is a summarization of the general

characteristics or features of a target class(data of the class under

study) of data. The data corresponding to the user-specified class are

typically collected by a database query. For example, to study the

characteristics of software products whose sales increased by 10 % in

the last year, the data related to such products can be collected by

executing an SQL query.

Data discrimination is a comparison of the general features of target

class data objects with the general features of objects from one or a

set of contrasting classes. The target and contrasting classes can be

specified by the user, and the corresponding data objects retrieved

through database queries. For e;g the user may like to compare the

general features of software products whose sales increased by 10 %

in the last year with those whose sales decreased by at least 30 %

during the same period. The methods used for data discrimination are

similar to those used for data characterization.

Association Analysis

Association analysis is the discovery of association rules showing

attribute-value conditions that occur frequently together in a given set

of data. Association analysis is widely used for market basket or

tranasaction data analysis. [2][3][5]

More formally, association rules are of the form X=> Y, that is,

"A1A ... AAm~B1 A ... A Bn", where Ai(for i8 {1, ... ,m}) and Bj(for

j8{1, ... ,n}) are attribute-value pairs. The association rule X=>Y is

interpreted as "database tuples that satisfy the conditions in X are also

likely to satisfy the condition in Y".

Suppose , as a marketing manager of ALLEiectronics , you would like

to determine which items are frequently purchased together within the

7

same transactions. A example of such a rule is

contains(T,"computer") => contains(T,"software")

[support= 1%, confidence= 50 %]

meaning that if a transaction, T, contains "computer'', there is a 50%

chance that it contains "software" as well , and 1% of all the

transactions contains both. This association rule involves a single

attribute or predicate (i.e., contains) that repeats. Association rules

that contain a single predicate are referred to as single dimensional

association rules. Dropping the predicate notation, the above rule can

be written simply as "computer=>software[1%, 50%].

Classification and Prediction

Classification is the process of finding a set of models(or functions) that

describe and distinguish data classes or concepts, for the purpose of

being able to use the model to predict the class of objects whose class

label is unkown . The derived model is based on the analysis of a set of

training data(i.e., data objects whose class label is known).

Classification can be used for predicting the class label of data objects .

. However in many applications, users may wish to predict some

missing or unavailable data values rather than class labels. This is

usually the case when the predicted values are numerical data and is

often specifically referred to as prediction.Aithough prediction may refer

to both data value prediction and class label prediction, it is usually

confined to data value prediction and thus is distinct from classification. ,

Prediction also encompasses the identification of distributed trends

based on the available data.

Cluster Analysis

Unlike classification and prediction, which analyze class-labeled data

objects, clustering analyzes data objects without consulting a known

class label. In general, the class labels are not present in the training

data simply because they are not known to begin with. Clustering can

be use to generate such labels. The objects are clustered or grouped

8

based on the principal of maximizing the intraclass similarity and

minimizing the interclass similarity. That is , clusters of objects are

formed so that objects within a cluster have high similarity in

comparison to one another, but are very dissimilar to objects in other

clusters. Each cluster that is formed can be viewed as a class of

objects, from which rules. can be derived. Clustering can also facilitate

taxonomy formation, that is, the organization of observations into a

hierarchy of classes that group similar events together.

Outlier Analysis

A database may contain data objects that do not comply with the

general behavior or model of the data. These data objects are outliers.

Most data mining methods discard outliers as noise or exceptions.

However, in some applications such as fraud detection, the rare events

can be more interesting than the more regularly occurring ones. The

analysis of outlier data is referred to as outlier mining.

For e.g., outlier analysis may uncover fraudulent usage of credit cards

by detecting purchases of extremely large amounts for a given account

number in comparison to regular charges incurred by the same

account.

9

CHAPTER 2

HIERARCHICAL CENSORED PRODUCTION
RULES I HIERARCHICAL PRODUCTION
RULES

2.1 Introduction

To an ordinary logic based reasoning system you cannot tell much about the way

you want it to perform its task, for example you cannot give the following

instructions:

• Give me a reasonable answer immediately even if it is somewhat general and

if there is enough time then give me a more specific answer.

• Give me a reasonable answer immediately. If there is enough time then tell

me you are more confident in the answer or change your mind and give me

another better answer

• Give me a reasonable answer immediately even if it is somewhat less certain

and if you have enough time then give me a more specific answer.[?]

A system having represented real word knowledge should also be capable of

handling these types of requirements for natural and efficient, reasoning. In the

real world both human and computer often has to reason using insufficient,

incomplete or tentative premises. Moreover both are subject to constraints of

time and memory. \(ariable precision logic is concerned with problems of

reasoning with incomplete information and constraints on resources. It offers

mechanism for handling trade-off between the precision of inferences and

computational efficiency of deriving them. The certainty and specificity are the

two aspect of precision.Follwing Michalski and Winston , a system that gives

more specific answer given more time is called 'variable specific system'. A

system that gives more certain answer given more time is called 'variable

certainty system'. There can be various combination of the two systems, reflecting

the fact specificity and certainty are inversely related. We can gain specificity at

10

the expense of certainty, or vice-versa. Consider a query 'What is John doing?'

given that it is sunday, the quickest possible answer to this query may be that

'probably John is working in the yard'.A more certain answer taking into account

the nice weather is that. Certainly John is working in the yard rather reading.

·-
Michalski and Winston have suggested the censored Production Rule as an

underlying representational and computational mechanism to enable logic-based

systems to exhibit variable precision in which certainty varies while specificity

remains constant. The extension of CPR is Hierarchical Censor Production Rules

system of knowledge representation which exhibits both the variable certainty as

well as the variable specificity.

At any state of the reasoning system, it is valuable for a reasoning process to

have the information about a set of applicable rules because then it need not find

them using exhaustive search of the whole rule-base. For example consider the

query 'what is John doing?' issued to the reasoning system. Having found by the

reasoning process that 'John is working in the yard'. The next line of action taken

might be to get a more specific answer if there are enough resources available.

At this state of the reasoning process the next set of rules selected by an

intelligent reasoning system should give decision of the following type:

• John is raking leaves

• John is watering

• John is shaping plants

Rather than the rules which give decision of the type:

• John is eating fruits

• John is reading a story book

• John is watching a movie

These later decisions are totally unrelated to the previous inferred decision, i.e,

'John is working in the yard'. A reasoning system should avoid a trial of out of

11

context rules, because it might request some irrelevant information which the

user might not like. Intelligent systems should also be able to quickly discard

most of the task irrelevant information and rather concentrate on main line of

reasoning. To certain extent the HCPRs system will be able to incorporate the

above requirements on the reasoning system.

2.2 Hierarchical Censored Production Rules

A production Rule has the following form

<If precondition Then action>

Where precondition is left part of the rule sometimes called antecedent which

when satisfied leads to take the action denoted by right side of the rule

sometimes called consequent. A production rules system can capture much of

the simple human problem solving capability effectively. However not all human

problem solving methods are easily representable in the production rules system,

because

(i) For each rule information has to exist in the system somewhere as to its

context of use. This can result in overlarge rule antecedents or in implicit

knowledge such as that contained in rule order. Either way control

knowledge is often not clear.

(ii) Sets of rules in production rules system have no intrinsic structure which

makes maintains of large knowledge base difficult.

(iii) The matchipg involved in the match select-fire is an inherently inefficient

process.

(iv) The relatively simple syntax of a production rule is unable to capture the

inherent uncertainty present in the real world knowledge.

To capture the uncertain and imprecise knowledge about the real world Michalski

and Winston have introduced the concept of Censor Production Rule (CPR).A

CPR is a production rule augmented with exception conditions to the rule. A CPR

has the following syntax:

12

<If precondition Then action Unless censor: y,8 >

i.e., 8 =>A L C: y,8

where '8' is antecedent part,' A' is consequent and 'C' is censor part of the rule.

Symbols 'y' and '8' represent the 0-level and 1-level strength of implication

respectively CPR is unable to capture the structure inherent in the knowledge

about real world and hence would not impart control over the specificity part of

precision in decision making.

A HCPR is a CPR augmented with specificity information which can be made to

exhibit variable precision in the reasoning such that both certainty of belief in a

conclusion and its specificity. may be controlled by the reasoning process.

A HCPR has the following form:

<Decision (If precondition)

(Unless censor_conditions)

(Generality general_information)

(Specificity specific_information)

: y,8>

i.e., A(:- B)(LC)(G% G)($ S) : y,8

Where the symbols':-', 'l', 'G %',and'$' are used for 'IF' ,'Unless','Generality'

and 'Specificity' operators respectively and symbols 'B','C','G', and'S' denote the

corresponding information relegated with them.

From a control viewpoint HCPRs are intended for situations in which the

condition 'A (:-8)' holds frequently and the assertion 'C' holds rarely. Systems

using HCPRs are free to ignore the exception conditions when resources are

tight. Given more time, the exception conditions are examined lending credibility

to high-speed answer or changing them. From a logical viewpoint the 'Unless

operator between 'A' and 'C' acts as the 'xor' operator. From an expository

viewpoint the A(:-8)' part of a HCPR expresses important information while the

'(LC)' part acts only as a switch that changes the polarity of 'A' to 'Not A' when 'C'

holds.

13

The specificity information 'S' in a HCPR is the clue about the next set of more

specific concepts (goals, decision, consequents or actions) in a knowledge

base which are the most relevant and which are the most likely to be satisfied

after successful execution of that HCPR. Under backward chaining of reasoning
-~

the information relegated with 'specificity' operator may not be so useful, and

hence may not be used by the reasoning process.

The general information 'G' in a HCPR , is the clue abut the next general concept

related to the concept 'A' in hierarchy. Under forward chaining of reasoning the

information relegated with 'Generality ' operator could be neglected by the

reasoning process completely.

2.3 HCPR-tree

A HCPR-tree is a collective and systematical representation of all the related

HCPRs about a given problem domain. Here 'collective' is the set of all rules or

definitions related to a most generalized concept in the rule-base. A HCPR in the

HCPR-tree is the smallest and simplest chunk of knowledge that may be created,

modified, or removed without directly affecting the other HCPRs in the HCPR

tree(because of its declarative nature of representation).

The general concepts in a HCPR-tree are represented at relatively lower level of

specifi~ity and the specific concepts are represented at relatively higher level of

specificity. Thus a HCPR-tree is a systematical representation of all the HCPRs

for related problem domain.

In a HCPR-tree all the sub concepts of an immediate general concepts will be

called siblings. These sibling concepts are assumed to be related to each other

by mutually exclusive property and this relationship would be made explicit by

using the logical operator 'xor' between the siblings in the specificity information

part of the rule.

14

Consider a particular example of a HCPR-tree as shown in fig 2.1 ,for daily life

queries which represent

A plan to find answers to the queries of the type 'What is X doing?' when

supplied with relevant input data. The rule-base for the HCPR-tree might be

represented as follows:

I~ level 0 *I

ls_in_city(X,Y)

Lives_in_city(X,Y)

L
ls_on_tour(X)

$

ls_at_home(X) xor ls_outside_home(X)

/*level1 *I

ls_at_home(X)

Time(night)

L
ls_doing_overtime(X) or Works_in_night_shift(X)

G%

ls_in_city{X,Y)

ls_outside_home(X)

Time(day)

L
ls_iii(X) or ls_atching_world_cup(X) or Bad_ weather or

Disturbances_in_city

G%

15

/*level 2*/

ls_in_city(X,Y)

$

Is_ working_ outdoor xor Is_ entertaining_ outdoor(X)

Is_ working_ outdoor(X)

Day(working)

L
National_holiday or ls_unemployed(X)

G%

ls_outside_home(X)

Is_ entertaining_ outdoor(X)

Day(Sunday)

L
Met_ an_ accident(X)

G%

Is_ outs ide _home(X)

To see how a system based on HCPRs system of representation concentrate on

main line of reasoning consider the above HCPR-tree for answering queries of

the type 'What is X doing?'. The reasoning system would first ask the query

'Which city does person X lives in ?', from the user. Having got the reply that 'X

lives in city Y'(variable 'Y' would be initialized to the name of the city) the system

may conclude that ' X is in the city Y'. In order to strengthen this conclusion

further the reasoning system may try to find 'Is X on tour?'. If it is found to be true

then the system would stop with the conclusion, 'X is on tour'. Otherwise this

censor condition found false then system may proceed to get a more specific

16

answer of the type ' X is at home' or 'X is outside home' by asking or checking

whether it is night or day time. Similarly depending upon the previously inferred

general conclusion, say, 'X is outside home', the system could attempt for a more

specific decision like 'X is working outdoor' or ' X is entertaining outdoor'.

X is_in_city Y

/ \
X is_at_home X is_ outside_ home

I.~
X is_ working_ outdoor X is_ entertaining_ outdoor

Fig 2.1 A HCPR-tree for daily life queries.

2.4 Inference Rules

The information relegated with the previous operators (i.e., ' If, Unless,

Specificity, generality) in a HCPR is optional, and hence som,e or all of these

information may be incomplete or even totally absent.

Consider a HCPRs system in which censor condition is totally absent in the

HCPR and which has only two levels of certainty factor (0 for false and 1 for true

). A rule in such a HCPRs system may be called Hierarchical Production Rule

(HPR) which is a HCPR without 'Unless ' operator.

As an example the HCPR-tree "R" in fig 2.2 showing the general concept of

'Excitement' may be represented in a rule-base as follows.

17

R:

Excitement : - state of agitation

$ (Distress xor Delight)

Distress extreme pain

G% Excitement

$ (Fear xor Shame xor Anger)

Delight great pleasure

Fear

Shame

Anger

Affection

G% Excitement

$ (Affection xor Joy xor Elation)

danger

G% Distress

guilt feeling

G% Distress

real or fancied injury

G% Distress

Kindness or love

G% Delight

Joy gladness

Elation

Fear

G% Delight

pride from success

G% Delight

Excitement

Dis/ ~Delight
Shame Anger Affection Joy Elation

Fig 2.2 A HCPR-tree to represent different feelings of a person.

18

The rule-base for 'R' may be used to find an appropriate word required to

describe the feeling of a person. In this system only most specialized knowledge

about an object or action is required to be observed and stored in the fact-base

whereas the generalized facts about the same object or action may be inferred

using the fact-base and the rule-base about the world.

For example, using (i) the facts that 'John is in the state of agitation' and 'John

is having extreme pain' in the fact base and (ii) the HCPR-tree 'R' in the rule

base a reasoning process will infer that 'John is distressed' and 'John is

excited'. Similarly using the single fact that 'Mary is in joy' in the fact-base it will

infer that 'Mary is excited' and 'Mary is delighted'. Also using the same fact in the

fact-base the queries of the type 'Did Mary feel distressed?'. 'Did Mary feel

ashamed?', "Did Mary feel elated?', etc., could be answered in the negative.

19

3.1 Introduction

CHAPTER3

AUTOMATIC GENERATION OF
HIERARCHICAL STRUCTURES

Concept hierarchies organize data and concepts in hierarchical forms or in

certain partial order, which helps expressing knowledge and data relationships in

databases in concise, high level terms and thus plays an important role in

knowledge discovery processes. Concept hierarchies could be provided by

knowledge engineers, domain experts, users or embedded in some data

relations, However, it is sometimes desirable to automatically generate some

concept hierarchies or adjust some given hierarchies for particular learning tasks.

With the rapid growth in size and number of available databases in commercial,

industrial, administrative and other applications ,it is necessary and interesting to

examine how to extract knowledge automatically from huge amounts of data. By

extraction of knowledge in databases, la_rge databases will serve as a

rich, reliable source for knowledge generation and verification and the discovered

knowledge can be applied to information management, query processing,

decision making, process control and many other applications.

Therefore, knowledge discovery in databases or data mining has been

considered as one of the most important research topics in 1990s by both

machine learning and database researchers.[1][6]

20

3.2 Concept Hierarchy And Its Role In Knowledge

Discovery In Databases

A concept hierarchy defines a sequence of mappings from a set of lower-level

concepts to their higher-level correspondences. Such mappings may organize

the set of concepts in partial order, such as in the shape of a tree (a hierarchy, a

taxonomy), a lattice, a directed acyclic graph, etc., although they are still called

"hierarchies" for convenience.

A concept hierarchy can be defined on one or a set of attribute domains.

Suppose a hierarchy H is defined on a set of domains Di, ,Dk, in which

different levels of concepts are organized into a hierarchy. The concept hierarchy

is usually partially ordered according to a general-to-specific ordering. The most

general concept is the null description (described by a reserved word "ANY"); ~ ;,_f;;j

whereas the most specific concepts correspond to the specific values of~;J' 'A.~~$\
attributes in the database. 1, ro. \ -~-:5·

\ ..-lol"' .. =-~ .,.. .. /
\ t-:• '·

Formally, we have H1 : Di x ... xDk => Hi-1=> ... =>Ho ,where H1 represents the set \.·~:;:.~;:-::f.r
-...... . ' .. { --

of concepts at the primitive level, H1.1 represents the concepts at one level higher --~-----

than those at H1, etc., and Ho. the highest level hierarchy, may contain solely the

most general concept, "ANY". Since concept hierarchies define mapping rules

between dierent levels of concepts, they are in general data or application

specific. Many concept hierarchies, such as birthplace(city, province, country),

are actually stored implicitly in the database, such as in different attributes or

dierent relations, which can be made explicit by specifying certain attribute

mapping rules. Moreover, some concept mapping rules can be specified by

deduction rules or methods (such as in object oriented databases) and be

derived by deduction or computation. For example, the floor area of a house can

be computed from the dimensions of each segment in the house by a spatial

computation algorithm, and then mapped to a high level concept, such as

small, large, etc. defined by deduction rules.

21

•

The mappings of a concept hierarchy or a portion of it may also be provided

explicitly by a knowledge engineer or a domain expert. For example "status: {

freshman, sophomore, junior, senior} --) undergraduate", "annual income:{1,000,

... , 25,000}--) low income", etc., can be specified by domain experts.

This is often reasonable even for large databases since a concept hierarchy

registers only the distinct discrete attribute values or ranges of numerical values

for an attribute which are, in general not very large and can be specified by

domain experts. Furthermore, some concept hierarchies can be discovered

automatically.

Different concept hierarchies can be constructed on the same attribute(s) based

on dierent viewpoints or preferences. For example, the birthplace could be

organized according to administrative regions, geographic locations, size of

cities, etc. Usually a commonly referenced concept hierarchy is associated with

an attribute as the default one. Other hierarchies can be chosen explicitly by

preferred users in a learning process. Also, it is sometimes preferable to perform

induction in parallel along more than one concept hierarchy and determine

an appropriate representation based on later generalization results.

3.3 Concept Hierarchy Generation

Discertization techniques can be used to redu~e the number of values for a given

continuous attribute, by dividing the range of the attribute into intervals. Interval

labels can then be used to replace actual data values . Reducing the number of

values for an attribute is especially beneficial if decision-tree-based methods of

classification mining are to be applied to the preprocessed data. These methods

are typically recursive, where a large amount of time is spent on sorting the data

at each step. Hence , the smaller the number of distinct values to sort, the faster

these methods should be. Many dicretization techniques can be applied

22

recursively in order to provide a hierarchical or multiresolution partitoning of the

attribute values, known as concept hierarchy.

A concept hierarchy for a given numeric attribute defines a discretization of the

attribute. Concept hierarchies can be used to reduce the data by collecting and

replacing low-level concepts (such as numeric values for the attribute age) by

higher level concepts(such as young, middle-aged, or senior).Aithough details is

lost by such data generalization, the generalized data may be more meaningful

and easier to interpret, and will require less space than the original data. Mining

on a reduced data set will require fewer input/output operations and be more

efficient than mining on a large, ungeneralized data set.

3.3.1 Generation Of Concept Hierarchy For Numerical Data

It is difficult and laborious to specify concept hierarchies for numeric attributes

due to the wide diversity of possible data ranges and the frequent updates of

data values. Such manual specification can also be quite arbitrary.

Concept hierarchies for numeric attributes can be constructed automatically

based on data distribution analysis. Five methods for numeric concept hierarchy

generation are discussed: binning, histogram analysis, cluster analysis, entropy

based discretization and data segmentation by "natural partitioning".

Binning

Binning methods smooth a sorted data value by consulting its

"neighborhood", that is , the values around it. The sorted values are distributed

into a number of "buckets", or "bins". Because binning methods consult the

neighborhood of values, they perform local smoothing. fig 3.1 illustrates some

binning techniques. In this example, the data for price are first sorted and then

partioned into equidepth bins of depth 3(i.e., each bin contains ,three values). In

smoothing by bin means, each value in a bin is replaced by the mean value of

the bin. For example ,the mean values 4,8 and 15 in Bin 1 is 9. Therefore, each

23

original value in this bean is replaced by the value 9. Similarly, smoothing by bin

medians can be employed , in which each bin value is replaced by the bin

median. In smoothing by bin boundaries , the minimum and maximum values in a

given bin are identified as the bin boundaries. Each bin value is then replaced by

the closet boundary value. In general , the larger the width, the greater the effect
·-

of the smoothing. Alternatively, bins may be eqiwidth, where the interval range of

values in each bin is constant.

Sorted data for price (in dollars):4,8, 15,21,21 ,24,25,28,34

Partition into (equidepth) bins:

Bin 1 : 4,8, 15

Bin 2 : 21 ,21 ,24

BIN 3 : 25,28,34

Smoothing by bin means:

Bin 1 : 9,9,9

Bin 2 : 22,22,22

Bin 3 : 29,29,29

Smoothing by bin bounadaries:

Bin 1 : 4,4, 15

Bin 2 : 21 ,21 ,24

Bin 3 : 25,25,34

Fig 3.1 Binning methods for data smoothing

Histogram Analysis

Histogram can also be used for discretization. Fig 3.2 presents a histogram

showing the data distribution of the attribute price for a given data set. For

example, the most frequent price range is roughly $300-$325. Partitioning rules

24

...... s:: ::s
0 u

can be used to define the ranges of values. For instance, in an equiwidth

histogram, the values are partitioned into equal-sized portions or ranges (eg., ($0

... $100],($1 00 ... $200], ... ,($900 ... $1 000]). With an equiwidth histogram, the

values are partitioned so that, ideally, each partition contains the same number of

data samples. The histogram analysis algorithm can be applied recursively to

each partition in order to automatically gen·erate a multilevel concept hierarchy,

with the procedure terminating once a prespecified number of concept levels has

been reached. A minimum interval size can also be used per level to control the

recursive procedure. This specifies the minimum width of a partition, or the

minimum number of values for each partition at each level.

4,000

3,500

3,000

2,500

2,000

1,500

1000

500

$100 $200 $300 $400 $500

Price

$600 $700 $800 $900 $1,000

Fig 3.2 Histogram showing the distribution of values for the

attribute price

25

Cluster Analysis

A clustering algorithm can be applied to partition data into clusters or groups.

Each cluster forms a node of a concept hierarchy, Where all nodes are at the

same concept level. Each cluster can be further decomposed into several sub

clusters, forming a lower level of the hierarchy. Clusters may also be grouped

together in order to form a higher conceptual level of the hierarchy.

Entropy based Discretization

An information-based measure called entropy can be used to recursively

partition the values of a numeric attribute A, resulting in a hierarchical

discretization. Such a discretization forms a numerical concept hierarchy for the

attributes. Given a set of data tuples , S, the basic method for entropy-based

discretization of A is as follows:

Each value of A can be considered a potential interval boundary or threshold T.

For Example, a value v of A can partition the samples inS into two subsets

satisfying the conditions A <v and A'?.v, respectively, thereby creating a binary

discretization.

GivenS, the threshold value selected is the one that maximizes the information

gain resulting from the subsequent partitioning. The information gain is

Where 81 and 82 correspond to the samples in S satisfying the conditions

A<T and A'?. T, Respectively. The entropy function Ent for a given set is calculated

based on the class distribution of the samples in the set. For example, given m

classes, the entropy of 81 is

Ent(S1)=- LPi log2(Pi),

26

Where Pi is the probability of class i in s1 I determined by dividing the number of

samples of class i in S1 by the total number of samples in S1. The value of

Ent(S2) can be computed similarly.

The process of determining a threshold value is recursively applied to each

partitioned obtained, until some stopping criterion is met, such as

Ent(S)- I(S,T)>8.

Entropy-based discretization can reduce data size. Unlike the other methods

mentioned here so far, entropy-based discretization uses class information.

This makes it more likely that the interval boundaries are defined to occur in

places that may help improve classification accuracy. The information gain and

entropy measures described here are also used for decision tree induction.

Segmentation by Natural Partitioning

Although binning , histogram analysis , clustering , and entropy -based

discretization are useful in the generation of numerical hierarchies, many users

would like to see numerical ranges partitioned into relatively uniform , easy-to

read intervals that appear intuitive or "natural." For example, annual salaries

broken into ranges like ($50,000, $60,000) are often more desirable than ranges

like ($51 ,263.98,$60,872.34), obtained by some sophisticated clustering

analysis.

The 3-4-5 rule can be used to segment numeric data into relatively

uniform,"natural" intervals. In general, the rule partitions a given range of data

into 3,4, or 5 relatively eqiwidth intervals , recursively and level by level , based

on the value range at the most significant digit. The rule is as follows:

27

• If an interval covers 3,6,7, or 9 distinct values at the most significant digit,

then partitioned the range into 3 intervals (3 equiwidth intervals for 3,6,9, and

3 intervals in the grouping of 2-3-2 for 7).

• If it covers 2,4,8 distinct values at the most significant digit, then partition the

range into 4 equiwidth intervals.

• If it covers 1 ,5, or 10 distinct values at the most significant digit, then partition

the range into 5 equiwidth intervals.

The rule can be recursively applied to each interval, creating a concept hierarchy

for the given numeric attribute. Since there could be some dramatically large

positive or negative values in a data set, the top-level segmentation, based

merely on the minimum and maximum values, may derive distorted results. For

example the assets of a few people could be several orders of magnitude higher

than those of others in a data set. Segmentation based on the maximal asset

values may lead to a highly biased hierarchy. Thus the top-lev&l segmentation

can be performed based on the range of data values representing the majority(

e.g., 5th percentile to 95th percentile) of the given data. The extremely high or

low values beyond the top-level segmentation will form distinct interval(s) that

can be handeled separately, but in a similar manner.

3.3.2 Concept Hierarchy Generation for Categorical Data

Categorical data are discrete data. Categorical attribute have a finite (but

possibly large) number of distinct values, with no ordering among the values.

Examples include geographic location, job category, and item type. There are

several methods for the Generation of concept hierarchy for categorical data.

Specification of a partial ordering of attributes explicitly at the schema level

by users or experts:

Concept hierarchies for categorical attributes or dimension typically involve group

of attributes user or a group can easily define a concept hierarchy by specifying

28

a partial or total ordering of the attributes at the schema level. For example, a

relational database or a dimension location of a data warehouse may contain the

following group of attributes: street, city, province_or_state, country. A hierarchy

can be defined by specifying the total ordering among these attribures at the

schema level, such as street< city< province_or_state <country.

Specification of a portion of a hierarchy by explicit data grouping:

This is essentially the manual definition of a portion of a concept hierarchy. In a

large database, it is unrealistic to define an entire concept hierarchy by explicit

value enumeration. However it is realistic to specify explicit grouping for a small

portion of intermediate-level data. For example, after specifying that province and

country form a hierarchy at the schema level, one may like to add some

intermediate levels manually, such as defining explicitly"{

Alberta,Saskatchewan,Manitoba}cprairies_Canada" and "{British Columbia,

prairies_ Canada} c western_ Canada".

Specification of a set of attributes, but not of their partaial ordering:

A user specify a set of attributes forming a concept hierarchy, but omit to explicit

state their partial ordering. The system can then try to automatically generate the

attribute ordering so as to construct a meaningful concept hierarchy.

Example 3.1

Suppose a user selects a set of attributes, street, country, province_or_state, and

city, for a dimension location from the database AIIEiectronics, but doesn't

specify the hierarchical ordering among the attributes.

The concept hierarchy for location can be generated automatically as follows.

First, sort the attributes in ascending order based on the number of distinct

29

values in each attribute. This results in the following (where the number of

distinct values per attribute is shown in parentheses)" country (15),

province_or_state(365),city(3567),and street (9674,339). Second , generate the

hierarchy from the top down according to the sorted order, with the first attribute

at the top level and the last attribute at the bottom level. The resulting hierarchy

is shown in fig 3.3, finally the user can examine the generated hierarchy, and

when necessary, modify it to reflect desired semantics relationships among the

attributes. In this example, it is obvious that there is no need to modify the

generated hierarchy.

Note that this heuristic rule cannot be pushed to the extreme since there are

obvious cases that do not follow such a heuristic. For example, a time dimension

in a database may contain 20 distinct years, 12 distinct months, and 7 distinct

days of the week. However, this doesn't suggest that the time hierarchy should

be "year<month<days_of the week", with days_of_the_week at the top of the

hierarchy.

Specification of only a partial set of attributes: Sometimes a user can be sloppy

when defining a hierarchy, or may have only a vague idea about what should be

included in a hierarchy. Consequently, the user may have included only a small

subset of the relevant attributes in a hierarchy specification. For example, instead

of including all the hierarchically relevant attributes for location, the user may

have specified only street and city. To handle such partially specified hierarchies,

it is important to embed data semantics in the database schema so those

attributes with tight semantic connection can be pinned together. In this way, the

specification of one attribute may trigger a whole group of semantically tightly

linked attributes to be "dragged in" to form a complete hierarchy. Users, however,

should have the option to override this feature, as necessary.

30

Example 3.2

Suppose that a database system has pinned together the five attributes

number, street, city, province_or_state and country because they are closely

linked semantically, regarding the notion of location. If a user were to specify only

the attribute City for a hierarchy defining location, the system may automatically

drag in all of the above five semantically related attributes to form a hierarchy.

The user may choose to drop any of these attributes, such as number and street,

from the hierarchy, keeping city as the lowest conceptual level in the hierarchy.

15 distinct values

Province or state
365 distinct values

city 3,567 distinct values

street
674,339 distinct values

Fig 3.3 Automatic generation of a schema concept hierarchy based on the
number of distinct attribute values

31

3.4 Algorithm (Generation Of HPRs)

Algorithm 3.1

Input : Given a table 'T' with tuples and attributes denoting decision and

premises.

Output : HPR Tree

Step 1 : tag=1 1 R=NULL

Step 2 : Find all unmark tuples in the table 'T' with minimum count and place

in the set Di

Step 3: if (Di=<)>) then GOTO Step 7

Step 4: if (tag==1) then GOTO Step 6

Step 5: In set Di 1 find tuples (elements) with common premises

(sub-elements) say p

make p as root and participating element of set Di as children

if(non participating element in set Di)

{

}

Make R=root node with p and nonparticipating

element as children;

else R=p;

mark elements of set Di 1tag=O

GOTO Step 7

Step 6 : Make elements of set Di children of R. Mark elements of set Di

32

Step 7: For each element tj in set Di. Find unmark element that have tj as

subset, say D _ T set.

Replace T with D _ T set.

Step 8 : If (j<=number of elements in Di) then R=tj , GOTO Step2

else GOTO Step 9

Step 9 : if any unmark tuple left GOTO step 2

step1 0: stop

The algorithm is explained below

Example 3.3

Consider the following production rules

1. D1 IF P1 P2 P3
2. D2 IF P1 P8 P9 P14
3. D31F P1 P2
4. D4 IF P1 PS P8 P9
5. DS IF P1 P2 P6
6. D61F P1 P4
7. D7 IF P1 P2 P6 P7
8. D8 IF P1 P8 P9
9. D9 IF P1 P8 P9 P12 P13 P14
10. 010 IF P1
11. D11 IF P1 P8 P9 P11 P14
12. D12 IF P1 P2 P6 P10
13. D13 IF P1 P15

where 01 is Decision and Pi are premises.

Following is the representation of production rules in the form of Table 3.1 .In the

Table, Tuples and Attributes represents decisions and premises respectively .For

example rule 1. with decision 01 has three premises P1 ,P2 and P3. These 3

premises are mark in the first tuple, that corresponds to decision 01

33

Table 3 1
Coun Decisio p1 p2 p3 p4 pS p6
t n
3 01 ..J ..J- ..J
4 02 ..J
2 03 ..J ..J
4 04 ..J ..J
3 OS ..J ..J ·..J
2 06 ..J ..J
4 07 ..J ..J ..J
3 08 ..J
6 09 ..J
1 010 ..J
5 011 ..J
4 012 ..J ..J ..J
2 013 ..J

following is the execution algorithm

Step 1 : tag=1, R=NULL
Step 2 : Oi={01 0}

p7

..J

Step 3 : Cndition is false GOTO Step 4
Step 4 : tag== 1 , GOTO Step 5

pB p9 p10 p11 p12 p13

..J ..J

..J ..J

..J ..J

..J ..J ..J ..J

..J ..J ..J
..J

Step 5 : Oi contains one element so make it root (p=root }, there is no
non-particpating element hence assign R=p; mark 010, tag=O,
GOTO Step 7

Step 7 : for t1 =01 0 do,
T=O-T={01 ,02,03,04,05,06,07,08,09,011 ,012,013}

Step 8 : R=t1, GOTO Step 2

Following tree is Created After above steps

R ~. DIO

In the Table 010 tuple is marked.
2"d Iteration

Step 2: Oi={03,06,013}
Step 3 : Condition is false GOTO Step 4
Step 4 : Condition is false GOTO Step 6

p14

..J

..J

..J

Step 6: Make 03,06 and 013 children of 010. Mark tuples 03,06 and 013

p15

..J

34

Step 7: for tj=03106 and 013. take t1=031 T=O-T={ 01 1051071012}
Step 8 : R=t1 I GOTO Step 2

Following tree is obtained after 2nd Iteration

. _11\DIO

R_..
D3 D6 D13

The status of original Table is as follows where tuples 010103106 and 013 are
marked.

Table 3.2
Coun Decisio p1 p2 p3 p4 pS p6 p7 pB p9 p10 p11 p12 p13 p14 p15
t n
3 01 v v v
4 02 v
2 v 03 v v
4 04 v v
3 05 ..J ..J ..J
2 vos ..J ..J
4 07 ..J ..J ..J ..J
3 08 ..J
6 09 v
1 vo1o v
5 011 ..J
4 012 ..J ..J ..J
2 ..Jo13 v

Iteration 3rd

Step 2: Oi={01 105}
Step 3 : condition is false GOTO Step 4
Step 4 : condition is false GOTO Step 6

v v

v v

..J ..J

..J ..J

..J ..J
..J

Step 6: make 01 and 05 children of 03. Mark 01 and 05
Step 7: for tj=01and 05 take t1=01 ~T=O-T={<I>}
Step 8 : R=t1 I GOTO Step 2

v

..J ..J ..J

v ..J

v

35

In Step 7 0-T is empty as there is no element (tuple) in the table that has 01 as
subset.

Following tree is obtained after 3rd Iteration

R-.

;!\ •••
/"'\ ~ 011

•-Dl
D5

The status of original Table is as follows where tuples 010,03,06, 013, 01 and
05 are marked.

Table 3 3
Coun Decisio p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15
t n
3 --JD1 -1 -1 -1
4 02 -1 -1 -1 -1
2 "03 -1 -1
4 04 -1 -1 -1 -1
3 --Jos -1 -1 -1
2 --JOG -1 -1
4 07 -1 -1 -1 -1
3 08 -1 -1 -1
6 09 -1 -1 -1 -1 -1 .,)

1 --JD10 -1
5 011 -1 ~ ~ ~ ~
4 012 -1 -1 ~ ~
2 --JD13 ~ ~

Iteration 41
h

Step 2 : Oi={O}
Step 3 : condition is true GOTO Step 7
Step 7: for tj=01and 05 take t2=05, T=O-T={07,012}
Step 8 : R=t2, GOTO Step 2

36

Iteration 5th

Step 2: Oi={07,012}
Step 3 : condition is false GOTO Step 4
Step 4 : condition is false GOTO Step 6
Step 6: make 07 and 012 children of 05. Mark 07 and 012
Step 7: fortj=07 and 012 take f1=07 ,0-T={~}
Step 8 : R=t1, GOTO Step 2

In Step 7 0-T is empty as there is no element (tuple) in the table that has 07 as
subset.

Iteration 6th

Step 2 : Oi={O}
Step 3 : condition is true GOTO Step 7
Step 7: for tj=07 and 012 take t2=012 ,0-T={~}
Step 8 : R=t2, GOTO Step 2

In Step 7 0-T is empty as there is no element (tuple) in the table that has 012 as
subset.

Following tree is obtained after 6th Iteration

Dl

D7 D12

37

The status of original Table is as follows where tuples 010,03,06,013,01 ,05,07
and 012 are marked.

Table 3.4
Coun Decisio p1 p2 p3 p4 p5 p& p7 pS p9 p10 p11 p12 p13 p14 p15
t n
3 vo1 v v v
4 02 v v v v
2 v 03 v v
4 04 v v v v
3 vDS v v v
2 vDG v v
4 vo1 v v v v
3 08 v v v
6 09 v v v v v v
1 vo1o v
5 011 v v v v v
4 vo12 v v v " 2 vo13 v "
After 6th Iteration R points to 5th node ,as 5th node is last item in for loop of

iteration 4th R further moves one level up and points to node 3rd . Control returns

to Step 7 of 2"d Iteration .

Step 2:
Step 3:
Step 4:
Step 6:
Step 7:
Step 8:

Di={03,06,013}
Condition is false GOTO Step 4
Condition is false GOTO Step 6
Make 03,06 and 013 children of 010. Mark tuples 03,06 and 013

for tj=03,06 and 013. take t2=06, T=D-T={<i>}
R=t2, GOTO Step 2

In Step 7 0-T is empty as there is no element (tuple) in the table that has 06 as
subset,similarly for 013.Control return to 1st iteration and R=010.

Iteration 1st

Step 1 : tag=1, R=NULL
Step 2 : Oi={01 0}

38

Step 3 : Condition is false GOTO Step 4
Step 4: tag==1, GOTO Step 5
Step 5 : Oi contains one element so make it root (p=root), there is no

non-particpating element hence assign R=p; mark 010, tag=O,
GOTO Step 7

Step 7: for tj=010 do, t2=0
T=O-T={01,02,03,04,05,06,07,08,09,011,012,013}

Step 8 : j> number GOTO Step 9
Step 9: Unmark tuple are present in the table GOTO Step 2

At this iteration R is pointing to 010 (root of HPRs tree)

ih Iteration

Step 2 : Oi={08}
Step 3 : Condition is false · GOTO Step 4
Step 4 : Condition is false GOTO Step 6
Step 6 : Make 08 child of 010. Mark tuples 08
Step 7: for tj=08. take t1 =08, T=O-T={ 02,04,09,011}
Step 8 : R=t1, GOTO Step 2

Following tree is obtained after ih Iteration

/
/DJ~ ~

Dl

IDS\
D7 Dl2

D8

._R

The status of original Table is as follows where tuples 010,03,06,013,01,05,07
and 012 are marked.

39

Table 3.5
Coun Decisio p1 p2 p3 p4 p5 p6 p7
t n

3 ..J01 ..J ..J ..J
4 02 ..J
2 ..J 03 ..J ..J
4 04 ..J ..J
3 ..Jos ..J ..J - ..J
2 ..JOG ..J ..J
4 ..JD7 ..J ..J ..J ..J
3 ..Jos ..J
6 09 ..J
1 ..J010 ..J
5 011 ..J
4 ..JD12 ..J ..J ..J
2 ..J013 ..J

81
h Iteration

Step 2: Oi={02,04}
Step 3:
Step 4:

Condition is false GOTO Step 4
Condition is false GOTO Step 6

p8 p9 p10 p11 p12

..J ..J

..J ..J

..J ..J

..J ..J ..J

..J ..J ..J
..J

Step 6:
Step 7:

Make 02 and 04 children of 08. Mark tuples 02 and 04
for tj=02and 04 take t1 =02 T=O-T={ 011 ,09}

Step 8: R=t1, GOTO Step 2

gth Iteration

Step 2:
Step 3:
Step 4:
Step 6:
Step 7:
Step 8:

Oi={011}
Condition is false GOTO Step 4
Condition is false GOTO Step 6
Make 011 child of 02 Mark tuples 011

for tj=011. take t1 =011 T=O-T={<!>}
R=t1, GOTO Step 2

p13 p14 p15

..J

..J ..J

..J

..J

In Step 7 0-T is empty as there is no element (tuple) in the table that has 011 as
subset.
j in tj becoms 2.

40

1oth Iteration

Step 2 : Oi={<!>}
Step 3 : Condition is true GOTO Step 7
Step 7 : for tj=011. Now j is 2
Step 8: Condition is false i.e., GOTO Step 9:
Step 9 : unmark tuple is present GOTO Step 2

lin Step 9 Table consist of two tuples i.e., 011 and 09. Not the original Table

11th Iteration

Step 2:
Step 3:
Step 4:
Step 6:
Step 7:
Step 8:

Oi={09}
Condition is false GOTO Step 4
Condition is false GOTO Step 6
Make 09 child of 02. Mark tuples 09

for tj=09. take t1 =09 T=O-T={<!>}
R=t1, GOTO Step 2

In Step 7 0-T is empty as there is no element (tuple) in the table that has 09 as
subset. So, control returns to Step 7 of 81h Iteration

Step 2:
Step 3:
Step 4:
Step 6:
Step 7:
Step 8:

Oi={02,04}
Condition is false GOTO Step 4
Condition is false GOTO Step 6
Make 02 and 04 children of 08. Mark tuples 02 and 04

for tj=02and 04 take t2=04, T=O-T={ <!>}
R=t1, GOTO Step 2

1 ih Iteration

Step 2 : Oi={O}
Step 3 : condition is true GOTO Step 7
Step 7: Now j is 2 ,0-T={<!>}
Step 8: condition is false i.e., GOTO Step 9:
Step 9 : No unmark tuple is present GOTO Step1 0
Step 10: Stop

41

Final tree obtained is shown below.

DIO ~R

• 04

D7 012 011 09

The status of original Table is as follows where all the tuples are marked

Table 3 6
Coun Decisio p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15
t n

3 vo1 " " " 4 vo2 " " " " 2 "03 " " 4 vo4 " " " " 3 vDS " " " 2 vos " " 4 vo1 " " " " 3 vos " " " 6 .Jog " " " " " " 1 VD10 " 5 v011 " " " " " 4 VD12 " " " " 2 .Jo13 " "

42

Based on the tree generated. Following Hierarchical Production Rules can be
formed

Hierarchical Production Rules

Rule 1 : D 10 IF [P 1]
GENERALITY [NULL]
SPECIFICITY [D3 D6 DB D8]

Rule 3 :D 1 IF [P3]
GENERALITY [D3]
SPECIFICITY [NULL]

Rule 5: D7 IF [P7]
GENERALITY [D5]
SPECIFICITY [NULL]

Rule 7: D6 IF [P4]
GENERALITY [D 10]
SPECIFICITY [NULL]

Rule 9: D8 IF [P8 P9]
GENERALITY [D 10]
SPECIFICITY [D2 D4]

Rule 11: Dll IF [Pll]
GENERALITY [D2]
SPECIFICITY [NULL]

Rule 13: D4 IF [P5]
GENERALITY [D8]
SPECIFICITY [NULL]

Rule 2: D3 IF [P2]
GENERALITY [D10]
SPECIFICITY [D1 D5]

Rule 4:D5 IF [P6]
GENERALITY [D3]

SPECIFICITY [D7 D12

Rule 6:D12 IF [PlO]
GENERALITY [D5]
SPECIFICITY [NULL]

Rule 8: DB IF [P15]
GENERALITY [D 10]
SPECIFICITY [NULL]

Rule 10: D2 IF [Pl4]
GENERALITY [D8]
SPECIFICITY [D 11 D9]

Rule 12: D'9 IF [P12 P13]
GENERALITY [D2]
SPECIFICITY [NULL]

43

3.5 Algorithm (Automatic Generation Of Hierarchical Structure)

Algorithm 3.2

INPUT : A relational table with hierarchical information in the attributes.

OUTPUT: Hierarchical structure of attribute values

Step1 : Form all combination of attributes in the table.

Step2: Pick up any one new combination of attribute (A, B)

Step3: Check hypothesis (A low level, B high level i.e., A<B)

For each value of B say Bi

For every value of A say Aj

If (Bi occurs with more than one Aj) then

Hypothesis is wrong i.e., B<A

If successful hypothesis is correct (A<B)

Step 4: Store the relation between attribute A and B. No combination left go to

Step S,else go to step2

Step 5: The pairs of attributes obtained from above Steps form the precedence

graph

Step 6:Using topological sorting find order among attributes

Step 7: Scan the table and find the attribute value of attribute at level 1+1 that

Occurs together with attribute value of attribute at level I in the table,

where 1=1, ... max_att.

44

Consider the example 3.4 below[4]

Example 3.4

FOOD
Bar code Category Brand Content ..
452192 Milk Foremost 3%
324091 Milk Amul 3.5%
209649 Milk Daii}'Jand 3%
120097 Milk Foremost 3%
213905 Milk Paras 3.5%
908745 Milk Dairyland 3%
249844 Milk Paras 3.5%
356371 Bread Wonder 0.32
120980 Bread Safal 1.8%
567843 Bread Britania 0.32%
289054 Bread Motherdairy 1.8%
107922 Bread Safal 1.8
128903 Bread Wonder 0.32

Table 3.7

The algorithm will generate hierarchical structure of fig 3.4 for the given table

food

bread
mi

/ \ 3/ ~35% 1.8% 0.32%

1\ 1\ 1\ I \
foremost dairy land Paras Amul motherdairy safal wonder Britiania

Fig 3.4 Hierarchical structure for table 3. 7

45

Explanation of Algorithm

Step1 produces the following pairs of attributes { category,brand},{category,

content},{brand ,content}

Choose {brand,content} and assuming brand< content, since 3% occurs with

foremost and dairyland so our assumption is wrong and correct order is

(content<brand.)

Similarly the correct order for other pairs

are(category<brand)and(category<content).

Topological sort on these partial order will produce category<brand<content.

Table 1 implies concept tree of fig 1 where root is the name of the table.

Limitation of the algorithm

1. Hierarchy must exist in the table

2. A node must contain exactly one parent node.

The example 3.1 would not produce the correct hierarchy, if the same fat

content is present in more than one food category.

In practical above situation is common to occur in the food industry.

To extend the algorithm to cater the above mentioned restriction requires, a

preprocess step that eliminates the noise and generate hierarchical structure with

threshold support factor .

For example

Table 3.8 contains the extended table

46

•

1. In 4 tuples 3% and milk occurs together, and in a tuple 3% and bread

appears together. So, we can take 3% and milk together with threshold

support of 4/5.eliminate tuple with 3% and bread.

2. Dairyland appears twice with 3% and once with 3.5 %. So eliminate tuple with

dairyland and 3.5% .Take Dairyland and 3% with threshold support of 2/3.

3. Wonder appears once with 1.8% and twice with 0.32%.So, threshold Support

factor of 0.32% with wonder is 2/3.

Removing the tuples will give a relation that exhibits hierarchical structure with

support factor of 2/3=min(4/5,2/3,2/3).

The obtained hierarchy is same as in fig 4.1 with support factor of 2/3.

Bar code Category Brand Content
290876 Bread Foremost 3
209872 Milk Dairyland. 3.5%
100922 Bread Wonder 1.8%

Table 3.8 Extended table

47

CHAPTER4

IMPLEMENTATION AND RESULTS

4.1 Introduction

In this chapter implementation and results of the algorithms for generation of

HPR and automatic generation of hierarchical structure from large databases

are presented. These two algorithms are discussed in the previous Chapter.

4.2 Generation of HPRs

Implementation

The table used in the algorithm is organised in the primary memory by a two

dimensional array. Mark or unmark of a cell is represented as 1 or O.The table

is initialized to 0. The information about the premises of a rule is stored by

assigning 1 to the corresponding cell in the table.

A structure with two fields count and mark is taken. Count field stores the

number of 1 's in a tuple in the table. Mark field is used to keep track of the

tuples that has been processed. '1' and '0' in the mark field indicates

processed and unprocessed respectively. As the tuples are processed a node

for it is created in the primary memory, the general tree grows as the tuples

are processed.

Finally using the tree formed in the memory, hierarchical production rules are

generated.

Results

consider following set of production rules for different geometrical figure

Rules1: If2-dim, closed_fig Then Plane_fig

Rule 2 : If 2-dim, closed_fig ,at_least_one_edge_is_not_a_straight_line Then

non _polygon

48

Rule 3 : If 2-dim, closed_ fig, each_edge_is_a_straight_line Then polygon

Rule 4: If 2-dim, closed_ fig, each_edge_is_a_straight_line, 3-vertices
Then triangle

Rule 5: If 2-dim, closed_fig, each_edge_is_a_straight_line, 4_vertices,all_edges
_equal,all_angles_equal Then square

When these 5 rules are provided as input to the algorithm 3.1, fig 4.1 is

obtained.Further HPRs of fig 4.2 is obtained from fig 4.1.

Plane_fig

[2-dim,closed_fig J

/ ~
non _polygon

[

at_Ieast_one_edge l
is not_a _straight_ tin.:.)

polygon

[

each_edge_is_a J
_straight _line

triangle
square

[3-vertices]
l.vertices,all edges J
L_2qual,all_ angles_ equal

Fig 4_1 HPRs tree for plane figure

Plane_figure IF[2-dim,closed_fig]
GENERALITY[]
SPECIFICITY[non_polygon,polygon]

Non_polygon IF[at_least_one_edge_is_not_a_straight_line

Polygon

Triangle

Square

GENERALITY[plane_fig]
SPECIFICITY[]

IF [each_ edge _is_ a_ straight_line]
G EN ERALITY[plane_fig]
SPECIFICITY[triangle,square]

IF [3-vertices]
G ENERALITY[polygon]
SPECIFICITY[]

IF[4vertices,all_edges_equal,all_angles_equal]
GENERALITY[polygon]
SPECIFICITY[]

Fig 4.2 HPRs for fig 4.1

4.3 Automatic Generation Of Hierarchical Structure

Implementation

Large database is divided into number of small fixed size of data that can be

accomodated in the primary memeory at a time. All possible combination of

attribute are taken , by processing table within two for loops

for(att=1 ;att<max_att;att++)
for(att_1 =1 ;att_1 <=max_att;att_1 ++)

{
//body

}

Partail order between pairs of attributes are generated using the propsed

algorithm. opological sorting is performed on the set of partial order. This

gives partial order among the attributes.

50

After obtaing partial order among attributes database is scaned once

more to find the attribute value of attribute at level 1+1 that Occurs together

with attribute value of attribute at Ieveii in the table, where 1=1, ... max_att.

Topological sorting is implemented by an algorithm given below.[9]

The algorithm goes as follows.

The algorithm uses a sequential table x[1],x[2], ... ,x[n], and each node x[k]

has the form

I + I 0 I count[k] I top[k]

here count[k] is the number of direct predecessors of object k (i.e., the

number of pairs j<k which have appeared in the input), and top[k] is a link to

the beginning of the list of direct successors of object k. The latter list

contains entries in the format

I + I 0 I sue I next

where sue is a direct successor of k and next is the next item in the list. As an

example of these convention, Fig 4.3 shows the schematic content of memory

corresponding to the input

9<2, 3<7, 7<5,
5<8, 8<6, 4<6,
1 <3, 7 <4, 9<5,
2<8.

(4.1)

51

Fig 4.3 The schematic content of memory corresponding to the input 4.1

It is matter of outputting the nodes whose count field is zero I then decreasing

the count fields of all successors of those nodes by one. The trick is to avoid

doing any "searching" for nodes whose count field is zero, and this can be

done by maintaining a queue containing those nodes whose count field has

been reduced to zero but which have not yet been output. The links for this

queue are kept in the count field , which by now has served its previous

purpose.

Result
Here an example is provided.

consider the following data in fig 4.4. There is an inherent structure present in

the data, When the data in fig 4.4 is provided as input to the algorithm 3.2 fig

4.5 is obtained.

5'1.

!:..!lQ

1. A2 84 C8
2. A1 82 C4
3. A1 81 C2
4. A1 81 C1
5. A1 82 C3
6. A2 84 C8
7. A1 82 C3
8. A2 83 C6
9. A2 83 C5
10. A2 84 C7
11. A1 81 C2
12. A2 83 C6
13. A1 81 C1
14. A3 85 C11
15. A3 85 C12
16. A3 85 C11
17. A3 86 C9
18. A3 86 C9
19. A3 86 C10

Fig 4.4

A

AI A2 A3

! \B2 1\ I \B6 B4 B3

1\ 1\ 1\ I \ 1\ 1\
Cl C2 C3 C4 C7 C8 C6 C5 Cll Cl2 C9 CIO

Fig 4.5 Hierarchical structure for data in fig 4.4

53

CHAPTERS

CONCLUSION

As an attempt towards automatic generation of hierarchical structure an

algorithm is developed that organizes the standard production rules into

hierarchical structure that can further be used to generate Hierarchical

Production Rules. Also an algorithm for automatic generation of hierarchical

structures from large databases is proposed. Experimental results are

presented to demonstrate working of the proposed algorithm.

An important extension of this work would be automatic generation of

Hierarchical Censored Production Rules (HCPRs) from large databases.[7][8]

BIBLIOGRAPHY

[1) J.Han and Y.Fu "Dyanmic generation and Refinement of Concept
Hierarchies for Knowledge Discovery in Databases".ln Proc MAl' 94
workshop on knowledge discovery in databases(KDD' 94). Seattle .
WA, 157-168,1994

[2] Text Book , Data Mining: Concepts and Techniques by, Jiawei han,
Micheline Kamber© 2001 by Academic Press,ISBN 81-7867-023-2.

[3] Agrawal, R; lmielinski, T.; and swami. A 1993."Mining Association rules
between set of items in large databases" . In Proc of the ACM SIGMOD
conference on management of dta,207-216.

[4] R. Srikant, Q. Vu, and R. Agrawal, "Mining Association Rules with Item
Constraints," Proceedings of the KDD, Newport Beach, CA, August 1997,
pp. 67-73. 135

[5] R.Agrawal and R. Srikant. "Fast algorithm for mining association rules". In
proc. 1997 Int. conf.Very large databases,PP 487-499,
stantiago,chile,sept
1994.

[6] Han,J. And Fu Y 1995. "Discovery of multiple level association rules from
large databases".ln Proc.of the 21st lnt'l conference on very large
databases.

[7] K. K. Bharadwaj and N. K. Jain "Hierarchical censored production
rules(HCPRs) system". Data and Knowledge Engineering,8, 19-34(1992)

[8] N. K. Jain ahd K.K Bharadwaj "Some Learning Techniques in Hierarchical
Censored Production Rules(HCPRs) System. lnt'l Journal of intelligent
systems, Vol. 13, 319-344(1998)

[9) Art of Computer Programming, Volume 1: Fundamental Algorithms, 3/E, by
Donald E. Knuth,© 1997 by Addison Wesley Professional, ISBN: 0-201-
89683-4

55

	TH112790001
	TH112790002
	TH112790003
	TH112790004
	TH112790005
	TH112790006
	TH112790007
	TH112790008
	TH112790009
	TH112790010
	TH112790011
	TH112790012
	TH112790013
	TH112790014
	TH112790015
	TH112790016
	TH112790017
	TH112790018
	TH112790019
	TH112790020
	TH112790021
	TH112790022
	TH112790023
	TH112790024
	TH112790025
	TH112790026
	TH112790027
	TH112790028
	TH112790029
	TH112790030
	TH112790031
	TH112790032
	TH112790033
	TH112790034
	TH112790035
	TH112790036
	TH112790037
	TH112790038
	TH112790039
	TH112790040
	TH112790041
	TH112790042
	TH112790043
	TH112790044
	TH112790045
	TH112790046
	TH112790047
	TH112790048
	TH112790049
	TH112790050
	TH112790051
	TH112790052
	TH112790053
	TH112790054
	TH112790055
	TH112790056
	TH112790057
	TH112790058
	TH112790059
	TH112790060
	TH112790061

