
CONTEXT BASED QUERYING

FOR

OODBMS

A dissertation submitted to Jawaharlal Nehru University
in partial fulfillment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY
IN

COMPUTER SCIENCE & TECHNOLOGY

By

Akkuluru Venkata Subbaiah

Under the guidance of

Prof. Parimala. N

SCHOOL OF COMPUTER & SYSTEMS SCIENCES
JA WAHARLAL NEHRU UNIVERSITY

NEW DELHI 110067

JULY 2003

005.757 TH

Su14 Co

. lllllllllllllllllllllllllllllll
_ · TH11276 .

liD
~ q I i5 '<~II ~I fi fcrRCI ~ €11 ~ltl

SCHOOL OF COMPUTER & SYSTEMS SCIENCES
JAW AHARLALNEHRU UNIVERSITY

NEW DELHI -110067 (INDIA)

CERTIFICATE

This is to certify that the dissertation titled "Context Based Querying for

OODBMS" which is being submitted by Mr. Akkuluru Venkata Subbaiah to the

School of Computer & Systems Sciences, Jawaharlal Nehru University, New Delhi,

in partial fulfillment of the requirements for the award of Master of Technology in

Computer Science & Technology is a bonafide work carried out by him under the

supervision of Prof. Pari mala ·.N. The matter embodied in the dissertation has not been

submitted for the award of any other degree or diploma.

~fl:__ ,V~~
~\~o

Prof K.K. Bharadwaj
Dean, SC &SS
Jawaharlal Nehru University
New Delhi 11 0067

Po.v:~ N . .

Prof. Parimala. N ~6 I 6 f o3.
SC&SS
Jawaharlal Nehru University
New Delhi 110067

ACKNOWLEDGEMENTS

I am thankful to my guide, Prof. Parimala N. for suggesting me to do the work in Context

Based Querying for OODBMS and being there to direct me all the time.

I would like to thank Prof. K.K. Bharadwaj, Dean, School of Computers and Systems

Sciences (SC&SS), JNU for providing excellent lab facilities.

I would also like to thank my classmate Mr. V. Mallikarjuna Chetty and all my batch

mates for their cooperation and advice.

A. Venkata Subbaiah

II

ABSTRACT

Object oriented databases are getting more and more popular day by day. To retrieve the

data, object oriented query languages expect the user to formulate the requirements in

terms of the query language. In order to lessen the burden of the user we propose a

system wherein the user expresses the query without any explicit path expressions. The

context for each query is maintained by the system. This context is used to translate the

user query to a system query, which references the nested structures explicitly. If multiple

system queries can be generated for the user query; then the closeness criterion is used to

order these queries. These queries are rephrased using English like syntax. The user

selects one or more, which are executed and the result is presented to the user. This query

forms the context for subsequent queries.

III

1.

2.

CONTENTS

CERTIFICATE

ACKNOWLEDGEMENTS

ABSRACT

INTRODUCTION

1.1. Object Oriented Database System

1.1.1. Object Oriented Features

1.1.2. Database Features

1.2. Query Languages for OODBMS

1.2.1. Object Query Language (OQL)

1.2.2. Object Oriented SQL (SQL3)

1.3. Problems in Existing Approaches

I .4. The Proposed Approach

QUERY RESOLUTION

2. I. Finding Out Classes

2.2. Resolving the Paths

2.3. Preparing Queries

2.4. Handling Conditions

2.5. Resolving Complex Structures
..

2.6. Query Resolution Order

2.7. Query Rephrasing

2.8. Context

2.9. Displaying Results

3. GRAPHICAL USER INTERFACE

3. I. The Query Interface

3.2. Path Resolution

IV

I

II

III

1

2

4

5

5

6

7

8

IO

I2

13

14

15

15

16

21

22

. 25

27

27

29

3.3. Resolving References

3.4. Handling Nested Tables
,

3.5. Handling Relationships

3.6. Transparency

4. DESIGN

4.1. Overview of System Architecture

4.2. The Design

4.3. Structure Chart for Query Processing

4.4. Structure Chart for Query Resolution

4.5. Structure Chart for Displaying Results

5. IMPLEMENTATION

5.1. Query Processing

5.2. Displaying Results

5.3. The Platform

6. CONCLUSION

REFERENCES

v

31

32

33

34

35

35

37

38

39

41

42

42

46

47

49

51

CHAPTERl

INTRODUCTION

Object-oriented databases (OODBs) represent the latest generation of database

systems technology. Object-oriented databases (OODBs) evolved from a need to

support object-oriented programming and to reap the benefits, such as system

maintainability, from applying object orientation to developing complex software

systems. OODBs are based on the object model and use the same conceptual models

as Object-oriented analysi~, object-oriented design and object-oriented programming

Languages. OODBs are designed for the purpose of storing and sharing objects; they

are a solution for persistent object handling. Persistent data are data that remain after a

process is terminated.

Object-oriented database management system adds database functionality to

object oriented programming languages. They bring much more than persistent

storage of programming language objects. Object -oriented DBMS extend the

semantics of the C++, Small talk and Java object programming languages to provide

full-featured database programming capability, while retaining native language

compatibility. A major benefit of this approach is the unification of the application

and database development into a seamless datc:t model and language environment. As

a result, applications require less code, use more natural data modeling, and code

bases are ·easier to maintain. Object developers can write complete database

applications with a modest amount of additional effort.

1.1 Object Oriented Database System:

A database management system consists of a collection of interrelated data

and a set of programs to access that data. The collection of data is called database.

The main aim of the database system is to provide an efficient and convenient access

to the data stored.

Object-oriented database systems are new software systems integrating

techniques from databases, object-oriented languages, programming environments

and user interfaces. Objects in object-oriented programming languages exist only

during program execution, but an OODatabase has capabilities for objects to be stored

· pennanently and shared.

An object oriented database system should be

1. A database management system (DBMS), that is, it should have persistence,

secondary storage management, concurrency, recovery and an ad hoc query

facility.

2. An object -oriented system, that is, it should have complex objects, object

identity, encapsulation, types or classes, inheritance, overloading and late

binding, extensibility and computational completeness.

1.1.1 Object Oriented Features:

All the above features beginning with the object-oriented system are briefly

explained below:

Complex objects can be built from simpler ones by applying constructors to

them. An object-oriented database should support sets, tuples and lists. Sets are a

natural way of expressing collections from the real world. Tuples are natural way of

representing properties of an entity. Lists or arrays capture the order that occurs in the

real world.

Object identity is the intrinsic property of an object, which distinguishes it

from all other objects. Two different objects with the same values for all their

members are not identical. Hence because of object identity, an object has existence,

which is independent of its value.

E~tcapsulatiolt hides the implementation leading to the behavior of the object.

An object has an interface and implementation. The interface is the specification of

2

the set of operations that can be perfonned on the object. It is the only visible part of

the object. The implementation has a data part, which is the representation or the state

of the object, and a procedure part, which describes the implementation of each

operation. Encapsulation distinguishes the specification of each operation from its .
implementation and thus leads to 'logical data independence' i.e. the implementation

of an operation can be changed without changing the programs using that operation.

Object types and classes both summarise the common features of a set of

objects with the same characteristics, but they are employed in different ways. A type

corresponds to the notion of an abstract data type. It has two parts, the interface and

the implementation. The specification of the class is same as that of a type but it is

more of a run-time notion. Since it is used for the creation of objects it can be

considered as an object factory.

btheritance is a relationship among classes having common properties. With

inheritance, each class (super or base class) can be specialized into a more specific

class (sub or derived class) which inherits the methods and structure of the super class

and in addition it contains some other members. Inheritance provides a means of

avoiding the explicit and repeated storage of data which can be inferred, and helps

code reusability. When two types tl and t2 have features (attributes and operations) in

common, those features can be abstracted out into a single subsuming type T, with tl

and t2 being declared as subtypes of T so that they automatically gain the common

features without each having to respecify them.

Overloadiug and Late biudiug occur due to Polymorphism.

Having two or more types use the same name for related but distinct attributes or

operations is called overloading the name. The system can select the appropriate

binding for the name at run-time by examining type of the object to which it is being

·applied (this is called late binding).

Computational comp/ete11ess means that any computable function can be

programmed using the system. Either the database description and manipulation

3

language should itself ~e able to express ahy computable function (not the case for
. .

the RDBMS query language SQL, for example), or it should provide an application

programmer's interface (API) to a standard programming language.

Extensibility means that the system comes with a set of predefined types or

classes which can be extended i.e. there is a means to define new types and there is no

distinction between system-defined and user-defined types.

1.1.2. Database Features:

All the features of database are briefly explained below:

Persistence is the ability of data to survive the execution of a process and to be

eventually reusable in another process. This should happen implicitly - save and load

operations etc. should not be required.

Efficient Secondary Storage Management is a classical feature of database

system. It should be provided for fast and efficient manipulation of very large

databases. Allocation of disk storage and transfer of data to and from main memory

should be invisible to the application.

Concurrency means multiple users should be able to work concurrently ~n a

database, viewing and updating shared data without affecting its integrity. The system

should lock objects when they are read or written to prevent simultaneous access, and

execute atomic operation sequences, which cannot be interrupted leaving the database

partially updated.

Recovery means that, in case of hardware or software failure, the system

should recover, that is, brought back to some coherent state of the data.

The system should also provide functionality of an ad /toe query facility to

the user. The service consists of allowing the user to ask simple queries to the

database simply. The query facility should be

4

High Level: The query facility should be reasonably declarative concentrating

on what rather than on how.

Efficient: The fonnulation of queries should lend itself to some fonn of

optimization . .
Application Independent: The query facility should work on any possible

database.

All the above mentioned topics are described in detail in [1] and [2].

1.2 Query Languages for OODBMS:

Database management systems support many interfaces so that the user

can retrieve data from the database. A query language is the most commonly used and

easy to use interface. Many query languages have been developed for retrieving data

from objects stored in database. OQL and SQL3 are two more popular object oriented

query languages. It explains how object oriented query languages, OQL and SQL3,

facilitate the retrieval of data using examples from the objects stored in the database.

1.2.1 Object Query Language (OQL):

OQL is an object-oriented SQL-Iike query language. OQL is the query

language of the Object Data Management Group (ODMG)-93 standard. It can be used

in two different ways either as an embedded function in a programming language or

as an ad hoc query language. It has special features for dealing with complex objects

and methods in the object-oriented database 02. The examples given below illustrate

the queries in OQL for retrieving data.

Consider the following schema

Ch1ss Placc_to_go

Type tuple (Name: string,

Address: tuple (Street: string,

City: string,

State: string)

Details: string,

5

Phone: integer,

Things_to_do: set (Thing_to_do))

Class Thing_ to_ do

Type tuple (Name: string,

Description: string,

Closing_ days: string,

Fee: integer)

Example]:

In order to know what things can one do in Paris for less the fee 50 rupees",

the reuired query is

select x.name

from yin Place_to_go

x in y.Things_to_do

where y.address.city ="paris" ans x.fee < 50

Example 2:

Similarly in order .to know the price of a visit to Tajmahal the query required

IS

Select x.fee

From x in Tajmahal.Things_to_do

Where x.name= "visit"

More information about OQL can be obtained from [3] and [4]. The section

below gives similar queries in SQL3.

1.2.2 Object Oriented SQL (SQL3):

SQL3 is an extension ofSQL, the Structured Query Language, which includes

the object-oriented concepts.· As in· the case of relational databases, the database

supporting SQL3 also contains tables. The tuples of these tables are called 'row types'

and the columns are the different 'types' that constitute a 'row type'. These 'row

6

types' are similar to complex objects. More infonnation about SQL3 can be obtained

from [5] and [6].

Consider the schema containing tables Address with tuples of 'row type'

AddressType, MovieS tar with tuples of 'row type' StarType. The structure of these

RowTypes is given below

Example 3:

Create row type AddressType (

Street char (50),

City char (20));

Create row type StarType (

Name char (30),

Address AddressType);

Create table Address of type Address Type;

Create table MovieS tar of type StarType;

To find the names and street of those MovieStars who stay in the city "Columbus",

the required query is

Select MovieStar.name, MovieStar.address.street

From MovieStar

Where MovieStar.address.city ="Columbus";

1.3 Problems in Existing Approaches:

The above section (section 1.2) gives an introduction to the two query

languages that are most commonly used. From the examples given in that section we

can infer that in order to retrieve data even using an ease to use interface such as a

query language the user must have knowledge about

1. The syntax of the query language: If the user doesn't know the query language,

he cannot prepare correct queries and the difficult part for a casual user is the

7

framing of the query involved path expression and also the join information. That

is, the complete nested structures have to be expressed while framing the query to

retrieve the data needed by him.

2. The schema of the database: The user must know the different classes that

comprise the schema of the database. The user must also know the relationships

that exist between classes. For example in order to generate the query given in

example 3, (section 1.2.2), the user must know that 'address' in MovieStar is an

object of type AddressType.

3. Object Oriented Concepts: In order to understand the schema of the database and

the relationships that exist between different classes in the database the user must

have knowledge about the object-oriented concepts.

The main aim of this implementation is to provide the user with the data

needed by him without expecting any such prior knowledge from the user.

1.4 The Proposed Approach:

In our approach the user will be provided with Graphical User Interface (GUI)

for building the query. This interface allows the user to select the data needed by him

and impose conditions, if any, on the data selected by him.

Every query is interpreted in its context. If the user chooses to execute the

query in a new context, then the user query is translated into one or more system

queries, which reference the nested structures explicitly. In general, there can be

multiple queries that can be generated for the user query. The 'closeness' criterion is

used to order the generated queries with the ones more closes higher in the order.

If the user chooses to execute the query in the old context, then the context

left behind by the previous queries is taken into account to translate the user query

into system query. If more than one such query can be generated, then these are, as

before, ordered according to the 'closeness' criterion.

8

In either case the system queries are rephrased using English like syntax. Th~

rephrased queries are presented to the user. The user selects one or more, which are

executed and the result is presented to the user.

This interface hides the complexity that exists in retrieving data from

different kinds of constructs that are supported by the object oriented database

systems. This interface is not restricted either to a particular application or a database.

This is open for all object oriented databases i.e. the same interface can be used to

retrieve data from different object oriented databases. This interface is designed in

Java and oracle is used as the backend to store data and respond to the queries sent.

9

CHAPTER2

QUERY RESOLUTION

In this chapter we discuss about how the user request is transfonned into

system queries. Here the user will be provided with graphical user interface for

building the query. In this system the user need not be aware of what infonnation that

exists in each database. Even user need not to specify explicitly the databases while

submitting query. The Query interface allows the user to select the data needed by

him and impose any conditions, if any, on the data selected by him. It also provides

the interface to display the results, that is, the data retrieved by the user query. After

submission of query, every query is interpreted in its context.

In this chapter and in the chapters to come objects of the following schema

assumed to exist in the database.

create type address_ type as object

(street varchar2(1 0),

city · varchar2(15),

state varchar2(1 0),

pincode number(7));

create type details_type as object

(condate date,

closingday varchar2(1 0),

entryfee number(4),

architect person_ type);

create type person_type as object

(firstname varchar2(1 0),

lastname varchar2(1 0),

age number(3),

nationality varchar2(1 0),

10

address address_type);

create type phone_varray as varray(S) ofnumber(lO);

create type monument_type as object

(name varchar2(20),

address address_ type,

phone phone_ varray,

details details_type);

I* Object table to be used for REF from Tour table *I

create table Monuments of monument_ type;

create type hotel_ type as object

(name varchar2(15),

address address_type,

stars number(3),

details varchar2(60));

create table Tour

(city varchar2(15),

details varchar2(60),

what_to_see REF monument_type,

where_ to_ stay varchar2(15)

foreign key (where_to_stay) references HotelChain);

I* Nested table to be used with HotelChain */

create type Hotel_table as table ofhotel_type;

create table HotelChain

(name varchar2(15) primary key,

headoffice varchar2(15),

Hotels Hotel_table)

II

\

nested table Hotels store as Hotel_:_table_tab;

create table Archeology

(name varchar2(l5),

description varchar2(20),

address address_type);

In the above schema, the term 'REF' indicates that a member of an object

points to some other object. For example, 'what_to_see', the member of object of

'Tour' type points to an object oftype 'monument_type'.

A 'nested table' means collection of variable number of objects or members of

a type. 'Hotels' in 'HotelChain' is a collection of objects that is nested table. A

'varray' is a collection of strings. 'Phone' in 'Monument_typc' is a collection of

strings.

Let the user query be

Select name, street

Where city contains 'New Delhi'

The system doesn't let the user know the structure of the data stored. When the

user indicates the completion of selection to the system, it begins processing the user

request by finding out classes, resolving the paths, preparing queries, handling

conditions and resolving complex structures. All these stages are explained in detail

below.

2.1 Finding Out Classes:

The schema of the database is maintained in a separate data structure. This can

be easily updated to accommodate changes to the database schema. This structure can

be as complex as B-Trees and Balanced trees to facilitate efficient searching in the

12

case of large databases. In this implementation, schema is stored in a file and a linear

search method is used.

. The, database schema is searched to find out the classes in which the selected

attributes are members. This search yields a set of classes for each of the selected

attributes such that each attribute is a member of each class in the set corresponding to

that attribute. If a 1, a2 and a3 are the attributes selected by the user then s 1, s2 and s3

are the sets of classes such that al is a member of each class (or one of its component)

in s1 and so on.

For the above user query, the attribute 'name' is mentioned in 'Monuments',

'Archeology', and 'HotelChain' say set sl, the attribute 'street' is mentioned in

'Monuments', 'Archeology', and 'HotelChain' say set s2 and the attribute 'city' is

mentioned in 'Monuments', 'Archeology', 'HotelChain' and 'Tour', say set s3.

2.2 Resolving the Paths:

In the previous stage, a set of classes is identified for each attribute. Let C be

an element in the set of classes for an attribute A. A may be a member of C or a

member of a component class of C or a member of a component class of component

class of C and so on. In this context, path of the attribute A describes the location of

A in C. Recognizing this path is necessary to generate the query to retrieve the -

attribute A. This process can be termed as "Path resolution".

Let o 1 be an object of 'Monument', o2 be an object of 'Archeology', o3 be

an object 'Hote!Chain' and o4 be an object of 'Tour'. The paths generated for 'name'

are: o l.name

o2.name

o3.name

o3 .Hotels.name

13

The paths generated for 'street' are:

o I .address.street

o l.details.architect.address.street

o2.address.street

o3 .address.street

The paths generated for 'city' are:

o l.address.city

o l.details.architect.address.city

o2.address.city

o3.address.city

o4.city

In this stage we have to develop two lists on scanning the schema. One list

contains the resolved paths for the selected attributes and the other list contains the

corresponding class for each of the paths. These lists are later used to generate

quenes.

2.3 Preparing Queries:

Using the lists generated in the previous stage queries are formed in this stage.·

As in SQL, the query language supported by oracle to retrieve data from the objects

contains a "Select" clause, a "From" clause and a "Where" clause. Each of these

clauses is stored in a separate ordered list. The use of three ordered lists makes the

resolution of complex structures such as nested tables and references is easier. Hence

if n queries are generated, then each query is split into 3 parts. Query no i, i<=n, is

represented by the i'th element in each of these lists. For the given user query a few

generated queries are

I. Select o l.name , o l.address.street from Monuments o 1

2. Select o l.name, o l.details.architect.address.street from Monuments o 1

3. Select o2.name, o2.address.street from Archeology o2.

14

2.4 Handling Conditions:

In this stage the condition imposed by the user is incorporated into the queries

generated in the previous stage. For the user query given above the following queries

will be generated.

1. Select oO.name, oO.address.street from Monuments oO where

oO.address.city like '%New Delhi%'.

2. Select oO;name, oO.details.architect.address.street from Monuments oO

where oO.address.city like '%New Delhi%'.

3. Select oO.name, oO.details.architect.address.street from Monuments oO

. where oO.details.architect.address.city like '%New Delhi%'.

4. Select ol.name, ol.address.street from Archeology ol where

o l.address.city like '%New Delhi%'.

2.5 Resolving Complex Structures:

The queries generated in the earlier stages are not able to retrieve data from

complex structures such as nested tables, references, etc. While generating the queries,

we doesn't check whether the attribute being retrieved is a nested table or a reference·

or any other complex structure. In this stage, we parses the queries generated and

updates them, if required, thus making them capable of handling complex structures.

Let us consider the query given below

Select oO.city, oO.what_to_see from Tour oO.

The member 'what_to_see' of 'Tour' refers to a 'monument_ type' object. By

usmg the list that contains the attributes which are references, identifies that

'what_to_see' refers to a 'Tour' object and updates the query. The modified query is

given below:

15

Select oO.city, bO.name, bO.address.street, bO.address.state,

bO.address.city, bO.address.pincode as what_to_see from Tour oO,

Monuments bO where ref(bO) = oO.MonUemnts.

Let us consider the following queries

Select oO.name from HotelChain oO.

Select o l.address.street from Hotels o 1.

Here we observes that 'Hotels' is a nested table within HotelChain and

modifies the above to generate the queries given below:

Select oO.'name from HotelChainoO.

Select ol.address.street from HotelChain a, table (a.Hotels) ol.

This ensures the execution of second query whenever the first query is

executed, by ~aintaining an ordered list. With this stage the mapping of user requests

into queries is completed and these queries are used in the later stages to retrieve data.

2.6 Query Resolution Order:

In this stage the queries formed in previous stages are ordered using the

closeness criterion. As mentioned earlier, there can be multiple queries that can be

generated for the user query. We believe, that theusers prefer certain resolutions over

others. If all the names are resolved to a single structure at the same level of a schema,

then that resolution is the most preferred one. If that is not possible, then the next

'close' resolution is the one where all the names are in the same structure but at

different levels. Within these, the resolution with lesser level difference is to be

preferred over that resolution where the level difference is more. If it is not possible to

resolve all the names within a single structure, then the next preference is where two

or more structures have to be joined. Within these, the query resolution with lesser

number of joins is more 'close' than the one with more joins. This desirability is

expressed using three principles - density, level and relationship. While doing so, we

distinguish between simple attributes and stmctured attributes. Simple attributes are

16

those which are of basic type. The rest are structured attributes. The three principles

are explained below.

Density: ,

The 'density' principle states that the most 'close' resolution for a selected

field is that structure in the resolution which has been referred to maximum number of

times. As an example, consider the query where the user selects

city, name, phone, details

Let us assume that 'n.ame' and 'phone' have been resolved to 'Monuments' and

city has been resolved to 'Tour'. The field 'details' can be resolved to either

'Monuments' or 'Tour'. Tour has been referred to once in this query resolution whereas

Monuments has been referred to twice. Therefore, resolution of details to Monuments

is closer than resolution to Tour.

Level:

The 'level' principle states that if a selected field has multiple definitions then

the resolution of a name to a structure in the query which gives rise to minimum

difference in levels is more close than that structure where the level difference

increases. As an example, consider the query where the user selects

name, street

Let name be resolved as Monuments.name. street can be resolved as ~either
Monuments.address.street or Monuments.details.architect.address.street. The level

difference in the fom1er between name and street is I whereas in the latter is 3.

Therefore, the resolution where the level difference is. l is more close than the other.

Relation:

The 'relationship' principle states that for resolving any name in the user

query, minimum number of joins between classes is more close than the resolution

where the number of joins are more. The join is performed only in those cases where a

foreign key is defined.

17

In order to incorporate 'closeness', we define three tenns - Weighted count,

Height, Distance. Weighted count, WC, is a value associated with every query and it

incorporates the 'density' principle. Height incorporates the 'level' principle and

Distance incorporates the 'relationship' principle. These tenns are explained below.

The user query can have names which refer to simple attributes or structured

attributes whose types can be REF, Varray, Nested table or OBJECT. The name can

also refer to a table. When a corresponding query is generated, all the names in the

user query which are attributes are prefixed with the names of structures to which they

belong. Prefixing the name of the en~losing structure rule is repeatedly applied till a

table name is encountered. That is, the complete path for accessing an attribute is

identified.

Weighted count:

In order to find the weighted count, we use a 'reference count' associated with

each unique table. The reference count gives the number of times a table S has been

referred to in the generated query. Weighted Count (WC) is computed as follows:

Let the user query be of the form

SELECT name!, name2 namet

WHERE namei+ I = ' ' AND namen = ' '

Here, the number of names in the user query is n. Let the structures which are

referenced in the query resolution as detailed above be S I, S2 . . . Sm. Let their

reference counts be Cl, C2 ... Cm ordered in the descending order of reference

counts. Then,

. "m (n-i+I)Ci
Weighted Count WC = .i.Ji=J

we gives a measure of the density.

Height:

In order to find the height of a query we have to construct a forest of trees for

each of the generated query. The procedure to construct a forest oftrees is

18

1. Start with the first name in the user query. If the name in a user query is the

name of a structure S, then there are two possibilities. The first is where it

refers to a table name. In this case create a node S and this shall be the root of

the tree.

2. If it is an attribute which is a simple type then create a node S for the structure

S to which it belongs and make the attribute a child of S. If it is the name of a

.structured attribute, then the structure can be a row, REF, a nested table etc.

Refer to this as S 1. Create a node S for the enclosing structure S and add a

node S 1 and make it a child of S.

3. In both the cases above if S is itself embedded, then recursively create a node

as detailed above for the enclosing structure. The process stops when we reach

a structure which is not embedded in any other structure.

4. Repeat the above process for each name in the user query.

For example, if the generated query is

select Tour.what_to_see.name, Tour.what_to_see.address

from Tour

where Tour.city like '%New Delhi%'

Then the height for name is 3, for address is 3 and for city is 2.

For each tree the depth of the tree is the height of the tree. Now, the height for a

generated query is the difference between the heights of the trees and is given as

Height = Maximum height - Minimum height

Height represents the 'level' principle.

Distance:

The distance for a generated query is equal to the number of joins. Distance

incorporates 'relationship' principle.

By using the principles of density, level and relationship, the queries are

ordered in terms of 'closeness'. The ones which are more 'close' will be higher in the

order. The resolutions which have minimum number of relationships (joins) are

higher in the order of 'closeness'. Within resolutions which have the same number of

19

joins, the lesser the difference in levels, more higher are these resolutions in the order

of' closeness'. Among those at the same level, the ones in which density is maximized

are more close than others.

In terms of Weighted Count, Height and Distance, this can be translated as follows:

1 First order the generated queries according to Distance starting with minimum

Distance.

2 Within queries having equal Distance, order the queries according to Height

starting with minimum Height.

3 withiQ. queries with equal Height, order the queries in the descending order of

Weighted Count.

In the above ordering, the query with minimal Distance and Height, and maximum

we is the most 'close' query.

I

Generated Query Distance Height
Weighted

Count

Select o l.name, o l.address.street
From Monuments o 1 0 1 8
Where o l.address.city like '%New Delhi %'

Select o l.name, o l.details.architect.address.strret
From Monuments o 1 0 3 6
Where o l.address.city like '%New Delhi%'

Select o l.name, o l.details.architect.address.strret
From Monuments o 1

0 3 8 Where o l.details.architect.address.city like '%New
Delhi%'

Select o2.name, o2.address.strret
From Archeology o2 0 1 8
Where o2.address.city like '%New Delhi%'

Select o3.name, bO.address.strret
From HotelChain o3, ~able(o3.Hotels) bO 0 2 6
Where bO.address.citylike '%New Delhi%'

select o4. what_ to_ see. name, a. what_ to_ see .. address
from Tour a
where 04.city like '%New Delhi%' 0 1 8

Fig 2.1 20

Here figure 2.1. gives the Weighted Count, Height and Distance for the queries

generated in section 2.4. The values of density, height and relationship are used to

order the queries in tenns of'closeness'.

2. 7 Query Rephrasing:

In this stage we rephrase the generated SQL queries into simple English

queries. The manner in which this is done is explained below.

The rephrased query is constructed in Englishquery which is initialized to "You are

requesting". Thereafter, the procedure given below is executed.

For each name in the user query for which a tree is built as given by the procedure in

section 2.6 do the following

Start with the leaf of the tree.

While (root not reached)

Add name to Englishquery.

If the leaf node is simple attribute, then concatenate 'of the' followed

by the name of the attribute to Englishquery.
.... ...

If it is a table name then concatenate 'all the fields of followed qy the

name of the table to Englishquery.

If the name is part of the condition, concatenate appropriate

comparison operator. Follow this with the value itself.

Pick up the parent node.

End while

Concatenate ' and ' to Englishquery if a name is still remaining in the select clause or

in the conditional part and 'where' if the condition is to be taken up for the first time.

006.767 TH

Su14 Co

1111111111111111111111111111111
TH11276

- -- .. - -- ---~_.)

21

Let us consider the query

select o l.name, o 1. address.strret

from Monuments ol

where o l.address.city like '%New Delhi%'

Then this query is rephrased. as

'You are fetching the name of the Monuments and the street of the address of

the Monuments where the city of the address of the Monuments is New Delhi'.

If another generated query is

select o3.name, bO.address.street

from HotelChain o3, table(o3.Hotels) bO

where bO.address.city like '%New Delhi%'

The rephrased query is

'You are fetching the name of the Hotel Chain and the street of the address of

the Hotels of the HotelChain where the city of the address of the Hotels of the

HotelChain contains New Delhi':

This process is executed when the user chooses to execute the query in new context.

2.8 Context:

When a user chooses a query, then the user may desire that the system

maintain the structures chosen by him and use this information for reordering the

generated queries of the subsequent query. If the user chooses to execute the query in

old context, then the context left behind by the previous queries is taken into account

to translate the user query into system query. We will order the queries using two

principles - 'commonality' and 'closeness'. For a new query, the 'commonality'

factor between each generated. query and the previous query is computed. These are

then ordered according to the commonality value with the ones with larger value

higher in the order.

For example, if a query selects

name, street

22

And of all the generated queries

Select name, address.street from Monuments

is picked up, then a subsequent query which selects 'details' is likely to be the details

of monum~nts rather than the details of Hotels. If the old context is to be used, then

the user clicks on the old context from context list of the GUI interface of section 3.1.

Every query is executed in a context. The first query is executed in the

database. context which consists of all the tables with all the objects. When each

generated query is executed then the context is updated which forms the context for

the subsequent query. When a context is to be updated two cases arise. When a

structure is referred to in the select clause or in the condition, it is added to the

context. The structure may have different kinds of attributes. The types of the

attributes can be

a) Simple

b) Structured

c) Varray

d) REF to a structure

e) Nested table

In the case of (a), (b) and (c) aU the fields of the selected attributes are added

to the context and marked as Direct. For example, if address which is of address_type

is chosen then all the fields in the adrress_type are part of the context. In the case of

(d) and (e), the referenced object/nested table is added to the context but marked as

Indirect. The structure it self may be embedded in some other structure. The

embedded structure is also added to the context but is flagged as Indirect. The rule is

applied recursively till no more structures can be added.

Consider, now, the tuples that form part of the context. Two cases arise

a) There is no condition. In this case all the tuples of the direct structure and

all the tuples of the indirect structure form part of the context.

b) A condition exists. The selected tuples of the direct structure form part of

the context.

23

If the structure contains other structures then all the object/tuples of the

indirect structure referenced from the direct structure are in context. If it is contained

in some other structure which is an indirect structure, then all the tuples of the indirect

structure wpich contain the selected tuples of the direct structure are in context.

Let the set of structures selected in a query Qi be Si = DS u IDS, where DS =

{DSI, DS2 ... DSn} and IDS ={IDSI, !DS2 ... IDSm}. In the subsequent user query,

let the queries that are generated be Qjl, Qj2 ... Qjp. Let the structures referenced in

these queries be Sjl = {DSjll, DSj12 ... DSjln}u{IDSjll, IDSj12 ... IDSjlm},

Sj21, Sj22 ... Sj2p and so on. Then, commonality, C [Qi Qjl], between query Qi and

Qjl is 1

C [Qi Qjl]= 2* (DSi n DSjl) + (IDSi n IDSjl).

The generated queries are ordered using the commonality with the one having

higher commonality higher in the order. The principle of commonality has to be

juxtaposed with the closeness criterion defined in section 2.6.

Let the queries that are generated be Qj I, Qj2 . . . Qjp. Let the commonality
\..

computed as given above be C [Qi Qjl], C [Qi Qj2], ... C [QiQjp], respecHvely. The

following situations arise: All queries have distinct commonalties. Reorder these

according to the commonality factor. The query with maximum commonality now is

the first in the list. Some queries have identical commonality. Order these according

to the algorithm of section 2.6. That is, the WC, height and relationship are the

criterion for ordering the~~ queries with identical commonality.

For example if the user selects 'details' from the select list and chooses to

execute the query in old context the queries generated are shown in figure 2.2 below.

24

Commonality Distance Height
Weighted

Count

Select bO.details

From Hotel Chain o2, 0 0 0 I

table(o2.Hotels) bO

Select o l.details
2 0 0 I

From Monument o 1

Fig 2.2

Both the queries have the same 'closeness'. However, since the second query has

commonality 2, it will be the first in the order of the generated queries.

2.9. Displaying Results:

This stage involves two stages namely retrieving data and displaying data.

These two stages are explained below.

Retrieving Data:

In this stage, the queries formed in the previous stages arc used to retrieve t~ata
I

from the database. First we will establish the connection with the database arld~s_tores

the retrieved data. Initially, the interface requests the database server for connection.

Once the connection is established the queries formed are used to retrieve the data

from the database. The retrieved data is stored in a data structure. In this

implementation the data retrieved is stored in an ordered list (array).

Displaying Data:

In this stage, the data retrieved is displayed in a user-friendly format. Let us

consider the query

Select o l.name, o l.address.street from Monuments o I

Where ol.address.eity like '%New Delhi%'.

25

By scanning this query, we will prepare an ordered list of strings whose

contents are given below:

Monuments

address (2-5)

name, street

This list determines the way in which the data displayed should be labeled.

Each element in the. list represents a row on the screen. The first row contains the label

'Monuments', the second row contains 'address' from column 2 to column 5 and the

third row contains the attributes whose values are being displayed. This format

resembles the actual structure of the data in the database.

The queries containing Sets and references are also dealt in a similar fashion.

Chapter 3 pictorially depicts the way the data is displayed for different types of

quenes.

26

CHAPTER3

GRAPHICAL USER INTERFACE

In this chapter we discuss about GUI Query Interface design. The Query

interface allows the user to select the data needed by him and impose any conditions,

if any, on the data selected by him. It also provides the interface to display the results,

that is, the data retrieved by the user query.

3.1 The Query Interface:

The system provides the user a graphical user-friendly interface for building

the query. This interface allows the user to retrieve the data that is needed by him.

This chapter explains the way the user interacts with the interface. It also explains

how the retrieved data is displayed to the user.

In the figure 3.1, the Select box is a list, which displays the schema of the

database without its structure. Here the users need not to remember all the attributes

of the schema. The user will not know that 'architect' is an object and the address

'address' of the 'architect' is another object within that 'architect' object. The

members with same names are not repeated in the select box to avoid confusion for

the user. For example, though 'name' is the name of a member in 'monument_ type'

and 'hotel_type', it is listed only once. No distinction is made either for references or

nested tables. Hence the user will not know that 'phone' is a varray and 'what_ to_ see'

refers to some other object.

The Condition fields box is a list that displays the conditional attributes used

to impose a condition on the data he wants to retrieve. To build the condition, operator

box provides the relational operators like less than (<), greater than (>),,less than or

equal to (< =), greater than or equal to (>=), and logical operators like AND and

OR operators.

27

Fig 3.1

. -
The context box is a list that is used to choose the context of the query, i.e. old

context or new context. The selected data fields box is a text area used to display the

selected data fields. The condition box is a text area used to display the condition.

At the bottom of the screen the user will be provided several buttons. The

purpose of each button is explained below.

Clear condition: This buttons helps the user to clear the condition specified.

Clear query: The user can use this button to clear the query i.e. selected data

fields.

Exit: This button helps the user to exit from the system.

28

Save: This button will be used to save the selected data fields and the

condition specified by the user that is the query, in a local system .

Help: This button helps the user to understand the controls of the screen.

Submit: This button is used to submit the query for further processing.

Ope11: This is a button. The saved query with condition specification store in

file is opened. The data is fetch from the file and is displayed in attribute textbox and

condition textbox. data is fetch from the file and is displayed in attribute textbox and

condition textbox.

When the user clicks on 'Submit' button after specifying the condition the

system starts processing the user requests. As mentioned before the system maps the

user requests into one or more system queries, which reference the nested structures

explicitly. The system uses these queries to retrieve data from the database.

The remaining part of this section, through some examples, illustrates how the

system displays data retrieved when the user requests include complex structures such

as sets, nested objects etc.

3.2 Path Resolution:

Let us consider the case when the user selects 'name' and 'address'. The

database used in this implementation is Oracle. The queries to retrieve ' name' and

'address' in the query language supported by Oracle are given below.

1. Select oO.name, oO.address.street, oO.address.city, oO.address.state,

oO.address.pincode from Monuments oO

2. Select oO.name, oO.details.architect.address.street,

oO.details.architect.address.city, oO.details.architect.address.state,

oO.details.architect.address.pincode from Monuments oO

3. Select o l.name, o l.address.street, o l.address.city, o l.address.state,

ol.address.pincode from Archeology ol.

29

From the above queries it can be seen how the nesting of objects is made

transparent to the user. The user doesn't have to mention the path

'oO.details.architect.address.street' for retrieving the 'street' where the architect of the

monument lives. Just a click on the 'street' will serve the purpose for the user. The

user even need not know about the existence of 'monument' objects in the database.

Thus the schema of the existing database is made transparent to the user.

The result for the query number. 1 given above is displayed in the following

manner.

Results

Monuments

Address

Name Street City State Pincode

~::.#.ttl iiitl. lt..'f':~·t ':\ Ct ,YJf.iil '"'!'I ": - I! ~! ~·;.
. '

Fig3 .2

The format, in which the data is displayed, represents the structure of the data.

In figure 3.2 the label "Monuments" indicates that 'name' and 'address' are members

of 'Monuments' object. Similarly the label "address" indicates that ' street', ' city ' ,

'state' and 'pincode' are members of 'address' object.

At the bottom of the screen there arc six buttons. The user uses these buttons to

interact with the system. The purpose of each of these buttons is explained below:

30

Previous & Next: If the user query retrieve a large amount of data, it will not be

possible to display the entire data at a time. These buttons help the user to go through

the retrieved data.

Exit: The user can use this button to exit the application.

Maiu: On clicking this button the user will encounter the initial screen depicted

in Fig.l so that he can form the query again.

Other Data: This button will be used to display data retrieved by the execution

of the next query in the set of queries generated.

Help: This button helps the user understand the format in which the data is

displayed.

3.3 Resolving References:

Let us consider the case when the user selects 'what_to_see' and 'details' in

'Tour'. The member 'what_to_see' of'Tour' refers to a 'Monument' object. The

query generated in this case are given below:

Select bO.name, bO.address.street, bO.address.city, bO.address.state,

bO.address.pincode, oO.details from Tour oO, Monuments bO where ref (bO) =

oO.what to see.

The data retrieved by this query is displayed in figure 3.3.

31

Results

Tour

What to see

Address

Name Street City State Pincode Details

- ;,.\' • 4 { ·P :\.~1 .\.1! •.. ,,, - .. •t·)J• .

Fig 3.3

In the above figure 3.3 the structure of the data describes ' name' and 'address'

are the members of the 'Monument' object to which the member 'What to see' of

'Tour' points.

3.4 Handling Nested Tables:

Let us consider the case where the user selects the members 'name' ,

'headoffice', and 'Hotels' of 'HotelChain'. The member 'Hotels' in 'Hote!Chain' is a

set of objects (considered as nested table). The queries generated to retrieve the data

are given below:

1. Select oO.name, oO.headoffice from HotelChain oO.

2. Select o l.name, o l.address.street, o l.address.city, o l.address.state,

o l.address.pincode, o I. stars, o l.details from Hotel Chain a, table (a. Hotels) o 1.

The data retrieved by these two queries is displayed in the following manner.

32

Results

Hotel Chain

Name Hcadofficc Hotels

Name address Stars Details

Street city state pin code

.

~~.: :.,,. ji . :tt~~· .\!('7ir · : . '~qt. -~:!; .. ::. !' :IJ.c
• !.~ -- - ... ·-

Fig 3.4

In the above figure 3.4, 'name', 'headoffice' and 'Hotels' arc the members or
'Hotels ' . Each HotelChain has a number of Hotels.

3.5 Handling Relationships:

Let 'name', 'address' and 'details' be the attributes selected by the user.

'name' and 'address' are members of 'Monuments' and 'details' is the member of

'Tour'. The system explores the relationship between these two objects by generating

the following query

select oO.name, oO.address.street, oO.address.city, oO.address .state,

oO.address.pincode, o l.details from Monuments oO, Tour o 1

where oO.address.citry=o !.city.

The data retrieved will be displayed in the following manner:

33

Results

Monuments Tour

Name Address Details

Street City State pin code

,_.. ~~ : .. ·; ',llo• ,. "

Fig 3.5

As in previous cases, the correspondence between data requested and data

retrieved is apparent. In figure 3.5 'name' and 'address' are members of 'Monuments'

and 'details ' is the member of 'Tour'. This is similar to 'join' in relational databases.

3.6. Transparency:

The transparency achieved through this interface is described below:

1. The user doesn' t have to know about the schema of the database.

2. In object oriented databases objects may contain other objects. To retrieve data

from these component objects the user should have knowledge about their

container objects. This interface doesn't expect the user to have such knowledge

and provides him with the required data.

3. The complex structures such as nested tables, varrays etc. and references to other

objects are made transparent to the user.

4. The user need not have knowledge even about the object-oriented concepts to

retrieve data from the database using this interface.

34

CHAPTER 4

DESIGN

In this chapter we discuss the Overall System Architecture and design of the

project using structural charts.

4.1 Overview of System Architecture:

The system is based on a two-tier architecture. In this architecture there will be

one or more clients and a server, which responds to the queries of those clients.

The figure 4.1 shows the architecture of the system.

Fig 4.1

35

In the system designed, a front-end application acts as client. It generates

queriel), which correspond to the user requests and send them to the back-end database

server.,' The database server sends the retrieved data to the client, which then displays

it to the user. Concurrency, one of the features of object oriented database systems,

enable many users (clients) to simultaneously access the database.

The design details are explained in the following sections.

GUI for Query Specification is a user friendly GUI is provided for the user to

develop the query for the system. Here the users need not to remember the schema of

the database. The user can form complex queries using logical connective like AND

and OR. Condition using arithmetic comparisons greater than (>), less than (<), equals

to (=) can also be performed. The submitted query would be given to the query

processing and rephrasing system to get the required data.

In Query Processing and Rephrasing System query gtven by the user

through GUI will be interpreted in its context. It the user chooses to execute the query .,

in a new context, then the user query is translated into one or more system queries,

which references the nested structures explicitly. In general there can be multiple

queries that can be generated for the user query. The closeness criterion is used to

order the generated queries with the one more c.loser higher in the order.

If the user chooses to execute the query in old context, then the context left

behind by the previous queries is taken into account to translate the user query into

system query. If more than one such query can be generated, then these are, as before

ordered according to the closeness criterion.

In either case the system queries are rephrased using English like syntax. The

rephrased queries are presented to the user. The user selects one or more for

execution. The results are displayed to the user.

36

In Displaying Results, results obtained from the query processing system are

presented to the user, which represents the structure of the data.

4.2 The Design:

This interface is implemented in Java. Oracle is used as the backend. There are

two main modules in this implementation namely "Project" module and ''Database

connection". The detailed design of this system is given in this section.

"Project" module controls the interaction between the user and the interface.

The interface allows the user to perform some actions such as selecting the data

needed by him and imposing conditions, if any, on the data selected by him. The

system interprets the user query into one or more queries, which reference the nested

structures explicitly. In general there can be multiple queries generated for the user

query. The closeness criterion is used to order the generated queries with the ones

more closer higher in the order. These queries are rephrased using English like syntax.

The rephrased queries are presented to the user. The user selects one or more, which

handed over to "Database connection" module for further processing.

"Database connection" module establishes a connection with the database. It

then sends the queries generated by project to retrieve data from the database. It also

presents the data retrieved to the user in an orderly and desirable marmer.

The figure 4.2 is the structure chart depicting the overall system design. The

module "Main" coordinates the execution of "Project" module and "Database

connection" module.

37

User
Requests

Project

Rephrased
Queries

Main

Rephrased '1:
Queries

Fig 4.2

Database
connection

The detailed design of each of these modules given through structure charts is

shown below.

4.3 Structure Chart for Query Processing:

The "Project" module prepares the interface so that the user can interact with it

and loads the schema on to the interface in a user-friendly format. The figure 4.3

represents the structure chart for Query processing that consists of three sub modules

in it namely, "GUI for Building Query", "Query · Resolution" and "Query

Rephrasing".

38

Project

~ .

selected b '1.,
Attribute Queries

selected
Attributes

GUI for
Building Query

Query
Resolution

Fig 4.3

Queries

Queries in
English
statements

Query
Rephrasing

The module "GUI for Building Q1,1ery" gives the user-friendly interface to

select the required information from the select list and condition specification from

the condition attribute list.

The module "Query Resolution" finds the classes of the selected attributes,

resolves their paths, prepares the queries, handles the complex structures and order the

queries using the closeness criterion. The module "Query Rephrasing" accepts the

ordered queries and rephrased using English like syntax.

4.4 Structure Chart for Query Resolution:

The figure 4.4 represents the structure chart for Query Resolution, which

consists offive sub modules namely "Finding Classes", "Resolving Paths", "Preparing

Queries", "Handling Complex Structures", and "Ordering Queries". These are

discussed in detail below.

39

Query Resolution

?.(J
S.a

Finding
Classes

S.c,
R.p

Resolving
Paths

S.c,
R.p

Queries

Queries

b
'\, Queries

Queries

Preparing
Queries

Fig 4.4

Handling
Complex
Structures

Ordering
Queries

In the above structure 'S.a' stands for set of selected attributes, 'S.c, S.a' stands

for set of classes corresponding to the selected set of attributes and 'S.c, R.p' stands for

set of classes with the resolved paths for each of the selected attributes.

The module "Finding Classes" accepts the set of attributes selected by the user

and finds out one or more classes to which each of these attributes belongs. The

module "Resolving Paths" performs the path resolution. ·The module "Preparing

Queries" prepares the query statements. The module "Handling Complex Structures"

resolves the complex structures in queries. The module "Ordering Queries" order the

generated queries using closeness criterion with ones more closer higher in the order.

40

4.5 Structure Chart for Displaying Results:

The figure 4.5 represents the structure chart for displaying results that consist

of two sub modules namely "Get Data" and "Display". These are discussed in detail

below.

Database
Connection

Queries ~

{1 Data

Get Data

Fig 4.5

Display

The module "Get Data" is used to retrieve the data from the

database. The module "Display" displays the data retrieved. All these modules are

explained in chapter 5.

41

CHAPTERS

IMPLEMENTATION

This chapter explains how the input given by the user is transformed into the

output that the user finally views. In our implementation we used Java to provide a

user friendly environment and oraCle is used as the backend to store data and respond

to the queries sent. The various stages involved in this process are

query resolution, query resolution order, query rephrasing and displaying results.

5.1 Query Processing:

This stage involves various modules namely Finding out classes, Resolving

the paths, Preparing queries, Handling conditions and resolving complex structures.

All these modules are explained in detail below.

The module "Finding Classes" searches the database schema to find out the

classes in which the selected attributes are members. This search yields a set of classes

for each of the selected attributes such that each attribute is a member of each class in

the set corresponding to that attribute. If al, a2 and a3 are the attributes selected by

the user then sl, s2 and s3 are the sets of classes such that al is a member of each

class (or one of its component) in sl and so on. Let 'name' and 'city' be the attributes

selected by the user. The module "Finding Classes" on searching the schema, finds

that the attribute 'name' is mentioned in 'monuments', 'archeology', and 'Hote!Chain'

say set sl, and the attribute 'city' is mentioned in 'monuments', 'archeology',

'Hotel Chain' and 'Tour', say set s2.

In the previous module, a set of classes is identified for each attribute. Let C

be an element in the set of classes for an attribute A. A may be a member of C or a

member of a component cla5s of C or a member of a component class of component

class of C and so on. In this context, path of the attribute A describes the location of

42

A in C. Recognizing this path is necessary to generate the query to retrieve the

attribute A. This process can be termed as "Path resolution".

Let us consider 'name' and 'city' as the attributes selected by the user. The

module "Resolving Paths" performs the path resolution. Let o 1 be an object of

'Monument', o2 be an object of 'HotelChain', o3 be an object 'Archeology' and o4

be an object of 'Tour'. The paths generated for 'name' are: o l.name, o2.name,

o3.name,o3.Hotels.name and the paths generated for 'city' are: ol.address.city,

o l.details.architect.address.city, o2.address.city, o3.address.city, o4.city

The module "Resolving Paths" on scanning the schema outputs two lists. One

list contains the resolved paths for the selected attributes and the other list contains the

corresponding class for each of the paths. These lists are later used to generate

qucnes.

The module "Preparing Queries" using the lists generated by the module

"Resolving Paths" queries is fom1ed in this stage. As in SQL, the query language

supported by oracle to retrieve data from the objects contains a "Select" clause, a

"From" clause and a "Where" clause. Each of these clauses is stored in a separate

ordered list. The use of three ordered lists makes the resolution of complex structures

such as nested tables and references is easier. Hence if n queries are generated, then

each query is split into 3 parts. Query no i, i<91, is represented by the i'th element in

each of these lists.

Let the 'name' and 'city' as the selected attributes, then the few generated

queries are

1. Select o l.name , o l.address.city from Monuments o 1

2. Select o 1.name, o l.details.architect.address.city from Monuments o 1

3. Select o2.name, o2.address.city from Archeology o2.

In this stage the condition imposed by the user is incorporated into the queries

generated. The process of finding the classes and resolving paths is same for these

43

attributes. The module "Handle Condition" handles the condition imposed by the

user. The interface doesn't impose any restriction on the number of conditions that the

user can impose.

Let 'name' and 'street' be the attributes selected by the user. Let city contains

'New Delhi' be the condition imposed by the user. The module "Handle Condition"
,;.·'

generates the following queries to satisfy these requests · .· · .

1. Select oO.name, oO.address.street from Monuments oO where oO.address.city

like '%New Delhi%'.

2. Select oO.name, oO.details.architect.address.street from Monuments oO

where oO.address.city like '%New Delhi%'.

3. Select oO.name, oO.details.architect.address.street from Monuments oO

where oO.details.architect.address.city like '%New Delhi%'.

4. Select ol.name, ol.address.street from archeology ol where ol.address.city

like '%New Delhi%'.

The queries generated in the earlier stages are not able to retrieve data from

complex structures such as nested tables, references, etc. While generating the queries,

the module "Preparing Queries" doesn't check whether the attribute being retrieved is

a nested table or a reference or any other complex structure. In this stage the module

"Resolve Complex Structures" parses the queries generated and updates them, if

required, thus making them capable of handling complex structures.

Let us consider the query given below

Select oO.city, oO.what_to_see from tour oO. ·

The member 'what_to_see' of 'tour' refers to a 'monument_ type' object. The

module "Resolve Complex Structures", uses the list that contains the attributes which

are references, identifies that 'what_to_see' refers to a 'tour' object and updates the

query. The modified query is given below:

Select oO.city, bO.name, bO.address.street, bO.address.state,

44

· bO.address.city, bO.address.pincode as what_to_see from tour oO,

Monuments bO where ref(bO) = oO.Monuemnts.

Let us consider the following queries

Select oO.name from Hotel Chain oO.

Select o l.address.street from Hotels o I.

The module "Resolve Complex Structures" observes that 'Hotels' is a nested

table within Hotel Chain and modifies the above to generate the queries given below:

Select oO.name from HotelChainoO.

Select ol.address.street from HotelChain a, table (a.Hotels) ol.

The module "Resolve Complex Structures" ensures the execution of second

query whenever the first query is executed, by maintaining an ordered list. With this

stage the mapping of user requests into queries is completed and these queries are

used in the later stages to retrieve data.

The module "Ordering Queriesu ordered the quenes formed in prevwus

module using the closeness criterion. The procedure for ordering queries is explained

below.

First order the generated queries according to Distance starting with minimum

Distance.

2 Within queries having equal Distance, order the queries according to Height

starting with minimum Height.

3 Within queries with equal Height, order the qu~ries in the descending order of

Weighted Count.

In the above ordering, the query with minimal Distance and Height, and

maximum we is the most 'close' query.

The module 'Query Rephrasing' rephrase the generated SQL queries into

simple English queries. The manner in which this is done is explained in section 2.7.

45

If the generated query is

select a. name, a. address

from Monuments a

where a. address. city like '%New Delhi%'.

Then the query is rephrased as

'You are fetching the name of the Monuments and the address of the

Monuments where the city of the address of the Monuments is New Delhi'

5.2. Displaying Results:

Th~s stage involves two modules namely Get Data and Display. These two

modules are explained below.

The module 'Get Data' establishes the connection with the database and stores

the retrieved data. Initially, the interface requests the database server for connection.

Once the connection is established the queries fonned are used to retrieve the data

from the database. The retrieved data is stored in a data structure. In this

implementation the data retrieved is stored in an ordered list (array).

The module 'Display' scans the query and prepares the image of the screen that

should be displayed to the user. Let us consider the query

Select oO.name, oO.address.street, oO.address.city, oO.address.state,

oO.address.pincode from Monuments oO.

By scanning this query, the module 'Display' prepares an ordered list of

strings whose contents are given below:

Monuments

address (2-5)

name, street, city, state, pincode

This list detennines the way in which the data displayed should be labeled.

Each clement in the list represents a row on the screen. The first row contains the label

'Monuments', the second row contains 'address' from column 2 to column 5 and the

46

third row contains the attributes whose values are being displayed. This format

resembles the actual structure of the data in the database.

The queries containing Sets and references are also dealt in a similar fashion.

Chapter 3 pictorially depicts the way the data is displayed for different types of

queries.

5.3. The Platform:

Java is used in designing the graphical user interface and Oracle is used to

store the data and respond to the queries sent. Windows 2000 Professional is the

operating system on which this application is developed.

Java language is created by Sun Microsystems by adapting essential features

of C++ and removing the complexities like pointers in it. The Java programming

language platform provides a portable, interpreted, high-performance, simple, object

oriented programming language .and supporting run-time environment. The main

reason for choosing Java is its built in support for designing graphical user interfaces.

Java consists of advanced swing packages, which provides complex structures like

table structure views and Abstract Window Toolkit (A WT) for designing graphical

user interface. It provides net connectivity to access and retrieve the data. It provides

iconified buttons and many widgets for user friendly to use. This also provides good

look and feel of Java components. Apart from these the execution time of the

programs is very less on this platform.

Java is an object oriented programming language and hence carries all the

advantages of object oriented programming such as Encapsulation, Polymorphism and

Inheritance. The unique feature of Java is its portability. Programs written in Java are

platform independent because of the 'bytecode' concept introduced by the Sun

Microsystems. Java programs on compilation will be converted into bytecodes. These

bytecodes will then be executed by the Java Virtual Machine (JVM). The JVM can be

47

implemented either in the hardware or software on a particular machine. Hence the

statement 'compile one~. run any where'.

Oracle is not a complete object oriented database. But it allows the creation of

complex objects and the existence of complex structures such as references and nested

tables. It also supports a query language, which can be used to retrieve data from the

objects stored. Hence Oracle is used in this implementation to store the data.

48

CHAPTER6

CONCLUSION

In this thesis we developed a user-friendly query interface for object oriented

databases. Here the user will be provided with graphical user interface for building

the query. In this system the user need not be aware of what information that exists in

each database. Even user need not to specify explicitly the databases while submitting

query. After submission of query, every query is interpreted in its context.

If the user chooses to execute the query in a new context, this application

begins processing by finding out for each attribute the set of classes in which it is a

member. It then performs the path resolution that involves finding out the location or

the depth of each attribute in the class. After that queries are prepared. The queries

formed at this stage are modified to make them capable of retrieving data from

complex structures. After that these queries are ordered using the closeness criterion

with the ones more close higher in .the order.

If the user chooses to execute the query in old context, then the context left

behind by the previous queries is taken into account to translate the user query into

system query. For a new query, the 'commonality' factor between each generated

query and the previous query is computed. These are then ordered according to the

commonality value with the ones with larger value higher in the order. Then these

queries are rephrased using English like syntax. The rephrased queries are presented

to the user. The interface uses these queries to retrieve the data and the retrieved data

is displayed to the user.

Unlike the query language, this interface doesn't require the user to have prior

knowledge of the syntax of the language, object oriented concepts and database

schema. Hence this interface will be extremely useful to the users who don't have

knowledge about databases and object oriented concepts. By encapsulating the

49

functionality of the query language this interface make various intricacies associated

with the query language transparent.

The main purpose of this implementation is to provide the user an easy way to

retrieve the data from the database. The scope for extending this application lies in

adding the capability to modify and update the database.

50

REFERENCES··

[1].. BUILDING AN OBJECT ORIENTED DATABASE SYSTEM- THE STORY
OF 02 --Francois Bancilhon, Claude Delobel, Paris Kanellakis(eds.)

[2]. The following URLs give introductory infonnation about object oriented
databases.

http://misdb.bpa.arizona.edu/-mis696g/Reports/ObjectDB/oodb.html

http://www.aiai.ed.ac.uk/project/plinth/oodb/what.html

[3]. The user manual for OQL can be obtained from the web site

http://www.cis.upenn.edu/-cis550/oql.pdf

[4]. The URL given below give infonnation about OQL tutorial

http://www .db .ucsd.edu/People/michalis/ notes/02/0QL Tutorial.htm

[5]. SQL-3 Implementing the Object Relational Database
Dr. Paul J. Fortier

[6]. The URL given below give infonnation about SQL3

http://www.objs.com/x3h7/sgl3.html

(7]. Java 2 platfonn- Jamie Jaworski

51

	TH112760001
	TH112760002
	TH112760003
	TH112760004
	TH112760005
	TH112760006
	TH112760007
	TH112760008
	TH112760009
	TH112760010
	TH112760011
	TH112760012
	TH112760013
	TH112760014
	TH112760015
	TH112760016
	TH112760017
	TH112760018
	TH112760019
	TH112760020
	TH112760021
	TH112760022
	TH112760023
	TH112760024
	TH112760025
	TH112760026
	TH112760027
	TH112760028
	TH112760029
	TH112760030
	TH112760031
	TH112760032
	TH112760033
	TH112760034
	TH112760035
	TH112760036
	TH112760037
	TH112760038
	TH112760039
	TH112760040
	TH112760041
	TH112760042
	TH112760043
	TH112760044
	TH112760045
	TH112760046
	TH112760047
	TH112760048
	TH112760049
	TH112760050
	TH112760051
	TH112760052
	TH112760053
	TH112760054
	TH112760055
	TH112760056
	TH112760057

