
PROCESS MONITORING
IN UNIX

Dissertation submitted to Jawaltarlal Nehru University in partial fulfillment of the

requirements for the award of the dj!gree of

005.42 TH

0491 Pr

II I II II II \Ill I I II I IIIII\ I I IIIII
TH10246 ·

Master of Technology
in

Computer Science and Technology

By

SRUJAN DEEP DEV ARA

SCHOOL OF COMPUTER & SYSTEMS SCIENCES
JAW AHARLAL NEHRU UNIVERSITY

NEW DELID-110067

JANUARY 2001

\i'IQitHMIM ~ fcf~C4~lllti1Q
JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI-110067
SCHOOL OF COMPUTER & SYSTEMS SCIENCES

CERTIFICATE

This is to certify that the dissertation entitled "PROCESS MONITORING

JN UNIX" submitted by Srujan Deep Devara to the School of Computer and

Systems Sciences, Jawaharlal Nehru University, New Delhi in partial fulfillment of

the requirements for the award of the .degree of Master of Technology in Computer

Science is a bonafide work carried out by him under the guidance and supetvision of

Asstt-Prof R.C. Phoha.

The matter embodied in the dissettation has not been submitted for the award

of any other degree or diploma.

Prof C.P.Katti,
Dean, SC&SS,
Jawaharlal Nehru University,
New Delhi- 110067

J(vi~~
SRUJAN DEEP DEVARA

«~ (r;, ~-2=1
AsePnif R. C. Phoha
SC&SS,
Jawaharlal Neluu University,
New Delhi- 110067

G~AM : JAYENU TEL. : 667676, 667557 TELEX: 031-73167 JNU IN FAX: 91-011-6865886

ACKNOWLEDGEMENTS

I would like to pay obeisance at the feet of my beloved parents for their

blessings are always with me in all my aspirations including my academics.

I would like to sincerely thank my supervisor, Asst. Prof R. C. PHOHA,

School of Computer and Systems Sciences, Jawaharlal N.ehru University for his help,

encouragement and support extended in completion of this project.

I would like to record my sincere thanks to my dean Prof C. P. Katti,

Jmvaharlal Nehru University for providing the necessary coniputing facilities.

I take this opportunity to thank all of my faculty members and friends for their

help and suggestions during the course of my project work.

SRUJAN DEEP DEVARA

TABLE OF CONTENTS

l.INTRODUCTION 1

2. CONCEPTS OF PROCESS MONITORING 3

2.1 Process 3

2.2 Client-Server interaction 3

2.2.1 Client-Server model 4

2.2.2 Making contact 4

2.2.3 Direction of data flow 4

2.2.4 Transport protocol and client-server interaction 4

2.2.5 Identifying a particular service 5

2.2.6 Connection oriented and connectionless transport 6

2.2.7 UDP client-server 7

2.2.8 Overhead required for opening a TCP connection 9

2.3 Socket interface 10

2.3.1 Application program interface 10

2.3.2 Socket library 10

2.3.3 Socket communication and UNIX J/0 10

2.3.4 Procedures that implement the socket API 11

3. FUNCTIONAL SPECIFICATIONS

3.1 Process Monitoring

3.1.1 Overview

3.1.2 A high level view of the architecture

3.2 Functional requirements

3.2.1 Functional specification

4. HIGH LEVEL DESIGN

4.1 The monitor server

4.1.1 Design basic

4.1.2 The pacl\:ets

17

17

17

19

19

20

20

20

21

4.1.3 Information maintained by the server

4.1.4 Processing done by the server

4.1.5 Use cases

4.2 The library design

4.2.1 · The requirements from the library

4.2.2 Outline of the functions

5. LOW LEVEL DESIGN

5.1 The server

6.

5.2 The watcher

5.3 The library

5.4 Implementation details

5.4.1 The packets

5.4.2 The timer setting

5.4.3 Getting the process name and machine name

5.5 File and functional details

5.5.1 The files

5.5.2 The functions and declaration

5.6 Pseudo code

Interface control

6.1 The server process interface

6.1.1 Introduction

6.1.2 Context diagram

6.1.3 Packet structures

6.2 Server watcher interface

6.3 Conclusion

7. Test plan

7.1 Sever testing

7.1.1 Maintenance of the process structu,re

22

23

24

24

24

25

26

26

29

29

30

30

31

31

32

32

34

35

55

55

56

57

57

58

58

59

7.1.2 Maintenance of the time list struct)lre

7 .1.3 Resetting of the timer

7.2 Library testing

7.2.1 Signal testing

7.2.2 Checking the end monitoring packet

7.3 Testing the watcher

7.4 Testing the interfaces

CONCLUSION

REFERENCES

59

60

60

60

61

61

61

62

63

ABSTRACT

The dissertation deals with Process monitoring m Unix networking

environment. UNIX is a networking operating system tightly integrated with TCP/IP

protocols. The status of the processes on a Unix machine can be known by process

monitoring commands (ps, time). But these utilities will give the status of the

processes only on the current machine. In larger networks there are number of

processes mnning on different machines at a time and these processes are critical and

need to be monitored. Process monitoring can be defmed as the procedure of taking

care ofthe state of the different processes over a network individually, as per the user

and the process requirements and specifications. This is an essential component of

network monitoring and so network health management system, as monitoring of the

processes helps to gain more knowledge about the mnning of the processes and hence

the network. By getting the statistical distribution of the behavior of the processes it

can help efficient utilization of the resources of the network. The design is based on

Client - Server architecture and the client and setver applications use TCP/IP protocol

suite to communicate over the network.

CHAPTER!

INTRODUCTION

The 11 information super highway 11 has received a lot of attention recently. Much

of this 11network of the future11 is with us today. The Globe is shrinking and coming

closer day by day as the networks kept ·expanding for example internet which is a

collection of networks allows to connect ~nes computer to hundreds and thousands of

computers world wide and thus has redefined communication. In such a scenario network

health management is of paramount import~nce which is based on network monitoring.

The main purpose ofthe monitoring. is for efficient utilization of the resources, for

traffic management and to check unauthorized access attempts i.e. intmsion detection etc.

Network monitoring in it's various forms ~involves monitoring at process level, traffic

monitming, resource monitoring and intmsion monitoring etc. In this process monitoring

plays a very impmtant role, as it is useful for efficient utilization of CPU i.e. to know

how to make large, but not time- critical, tasks takes less of CPU time, to learn how to

shutdown programs that have gone astray which helps in efficient use of resources, and to

leam how to improve the performance of the machine.

Basically it is the UNIX software that connect hundreds of thousands of machines

together in the INTERNET and USENET as Unix is a network operating system tightly

integrated with TCP/IP networking protocols . We use processes on Unix every time we

want to get some thing done. Each command (that isn't built into shell) that is mn willmn

one or more new processes to perfonn the desired task. To get the most benefit out of

Unix machine we need to monitor the proc~sses that are mnning on it.

Unix is a multi-user, multitasking i.e. time sharing operating system. Many

processes can be activated at any given time (the goal of tll,ne sharing system). Processes

1

have to share system resources (CPU, memory, and so on). In this CPU is switched

rapidly between the processes to give an illusion of multiprocessing system and hence

processes have to be monitored for efficient utilisation of system resources. The fiTst step

in controlling processes is to learn how to monitor them. By using the process monitoring

commands in Unix , we will be able to find what programs are using CPU time , find

jobs that are not completing , and generally explore what is happening to the machine.

Any process at a given time can be in differen~ states like sleeping, waiting,

running etc. This information can be obtained using the process monitoring commands

(ps, time, which) .But this gives at a time only the information about the processes on

the cuuent machine. When processes over a network need to be monitored

simultaneously ,then we need to use better methods.

In a larger network there are number of processes mnning on different machines

at a time. A lot of these processes are critical and they need to be monitored. By

monitming it is meant that the state ofthe process at any point of time like mnning,

sleeping, waiting, etc. needs to be known. Sometimes there are long processes which

have critical sections and need to be monitored whenever those sections are mnning.

The project 11 Process Monitoring in Unix 11 addresses these requirements.

The dissertation is divided into seven chapters: the first chapter gives a brief

introduction to process monitming. Chapter two explains the conceptual basis which

includes an introduction to the concept ofProcess, Client- Setver architecture and Socket

interface. Third chapter is the functional specifications defined for process monitoring.

Fomth chapter describes the high level design of the architecture in line with the

functional requirements. Fifth chapter describes the low-level design of the library and

the setver in line with the high level design. Sixth chapter deals with three different

entities, which interface with each other i.e., the setver-process interface and the setver­

watcher interface. Finally the seventh chapter describes .. the test plan for the process

monitming software developed.

2

2.1 Process

Chapter 2

CONCEPTS OF PROCESS

MONITORING

A fundamental entity in a computer network is a process. A process is a program

that is being executed by the computer's operating system. When we say that two

computers are communicating with each other, we mean that two processes, one muning

on each computer, are in communication with each other.

2.2 Client - Server Interaction

The primary pattem of interaction among co-operating applications is known as the

Client-Server paradigm Client server interaction forms the basis of most network

communication.

2.2.1 CLIENT -SERVER MODEL

The tenn server applies to any program that offers· a setvice that can be reached

over a network. A setver accepts a request over the network, perfonns its setvice, and

retums the result to the requester. An executing program becomes a client when it sends a

request to a setver and waits for a response. Usually setvers are implemented as

application programs. The advantage of implementing smvers as application programs is

that they can execute on any computing system that suppmts TCP/IP communication.

Thus, the setver for a pmticular setvice can execute on a timesharing system along with

other programs. or it can execute on a personal computer. Multiple setvers can offer the

same setvice, and can execute on the same machine or on multiple machines.

3

Two impmtaut points that are generally tme about Clieut-Setver interaction.

The first concerns the difference between the lifetime of severs clients:

A server statts execution before interaction begins and continues to accept

requests and sends responses without ever terminating. A client is any program that

makes a request and awaits a response; it (usually) terminates after using a setver a finite

number oftimes.

The second point, which is more technical, concerns the use of reserved and non­

reserved port identifiers

A server waits for requests at a well-known pmt that has been reserved for the

setvice it offers. A client allocates an arbitrary, unused, non-reserved pmt for its

communication.

, 2.2.2 Maldng Contact

Instead of waiting for an arbitrary message to ani.ve, an application that expects

communication must interact with protocol software before an extemal source attempts to

communicate. The application informs the local protocol software that a specific message

is expected, and then the application waits. When an incoming message matches exactly

what the application has specified , protocol software passes the message to the

application.

2.2.3 Direction of data flow

Information can pass in either or both direction between a client and a server

.Typically, a client sends a request to a se1ver, and the setver retums a response to the

client. In some cases a clients sends a series of requests and the setver issues a series of

responses (e.g., a database client might allow a user to look up more than one item at a

time). In other cases, the se1ver provides continuous output without any request as soon

as the client contacts the setver, the setver begins sending data.

4

2.2.4 Transport protocols and client -server interaction

A client and se1ver use a transpmt protocol to communicate. For example, fig

below illustrates a client and setver using the TCP\IP stack,

As the figure shows, a client or setver application interacts directly with a transpmt-layer

protocol to establish communication and to send or receive information. The transpmt

protocol then uses lower layer protocols to send and receive individual messages.

Client Setver

Transpmt Transpmt

Intemet Intemet

Network interface Network interface

internet

Fig A client and se1ver using TCP/IP protocols to commun~cate across an intemet.

2.2.5 Identifying a particular service

Transpmt protocols provide a mechanism that allows a client to specify unambiguously

which service is desired. The mechanism assigns each setvice a unique identifier , and

requires both the client and the sc1ver to use the identifier. When a se1ver begins

execution, it registers with local protocol software by specifying the identifier for the

5

setvice it offers. When a client contacts a remote setver , the client specifies the

identifier for the desired se1vice. Transpott protocol software on the clien:'s machine

sends the identifier to the setver 's machine when making a request. Transp01t protocol

software on the seiVer's machine uses the identifier to determine which se1ver program

should handle the request.

As an example of setvice identification ,TCP uses 16-bit integer values known as

protocol pott numbers to identify se1vices, and assigns a unique protocol port number to

each setvice. A server specifies the protocol p01t number for the setvice it offers , and

then waits passively for communication. A client specifies the protocol p01t number of

the desired setvice when sending a request.

2.2.6 Connection - Oriented and Connectionless Transport

Transpott protocols suppott two basic forms of communi~ation: connection-oriented or

connectionless. To use a connection-otiented transpott protocol, two applications must

establish a connection, and then send data across the connection. For example, TCP

provided a connection-oriented interface to application. When it uses TCP, an

application must first request TCP to open a connection to another application. Once the

connection is in place, the two applications can exchange data. When the applications

fmish communicating, the connection must be closed.

The altemative to connection-oriented communication is a conuectionless interface that

permits an application to send a message to any destination at any time. When using a

connectionless transpott protocol, the sending application must specify a destination with

each message it sends. For example, in the TCP/IP protocol suite, the User Datagram

Protocol (UDP) provides conuectionless transp01t. An application using UDP can send a

sequence of messages, where each message is send to a different destination.

Clients and setvers can use either connection-oriented or cmmectionless transpott

protocols to communicate. When using a connection-oriented transpmt, a client first

6

forms a connection to a specific server. The connection then stays in place while the

client sends requests and receives responses. When it finishes using the se1vice, the

client closes the c01mection.

Clients and se1vers that use connectionless protocols exchange individual messages. For

example, many se1vices that use connectionless transport, require a client to send each ·

request in a single message, and the server to return each response in a single message.

2.2.7 UDP Client- Server

TI1e client sends a request to the server, the server processes the request and sends back a

reply.

Client

Function Kernel

socket

send to

recvfi:om - sleep

retum ... wakeup

network

UDP data am
(r y)

/

Se1ver

kernel

sleep

wakeup

Fig Time line of UDP client- server transaction

7

function

socket

bind

recvfrom

retum

Process
request

send to

If we watch the packets that are exchanged when a client sents the setver a request, we

have the time line shown in fig above. Time increases down the page. The setver is

sta1ted first, shown in right side ofthe diagram, and the client is statted sometime later.

We distinguish between the function call performed by the client and setver, and the

action performed by the conesponding kemel. We use two closely spaced anows, as iii

the two calls to socket, to show that the kernel perfmms the requested action and returns

immediately. In the call to sendto, although the kernel retums immediately to the calling

process, a UDP datagram is sent. For simplicity we assume that the sizes of the resulting

IP data grams generated by the client's request and the server's reply are both less than t~e

network's MTU (maximum transmission unit), avoiding fi:agmentation of the lP

datagram.

In this figure we also show that the two calls to recvfrorm put the process to sleep until a

datagram anives. We denote the kernel routines as sleep and wakeup.

Finally, we show the times associated with the transaction. On the left side of fig aboye

we show the transaction time as measured by the client: the time to send a request to the

setver and receive a reply. The values that comprise this transaction time are shown on

the right side of the figure: RTT + SPT, where RTT is the network roundtrip time, and

STP is the setver processing time for the request. The transaction time for the UDP

client-setver, RTT +SPT, is the minimum possible.

Since UDP is an unreliable protocol, datagrams can be lost, reordered, or duplicated, and

a real application needs to handle these problems. This nmmally involves retransmitting

the request. If a timeout is going to be used, the client must measure the R TT and update

it dynamically, since RTTs on an internet can vary widely and change dramatically o\1er

time. But if the reply was lost, instead of the request, the se1ver will process the same

request a second time, which can lead to problems for some types of setvices. One way. to

handle this is for the se1ver to save the reply for each client's latest request, and retransmit

that reply instead of processing the request another time. Finally, the client typically

8

sends an identifier with each request, and the se1ver echoes this identifier, allowing the

client to match responses with requests.

While many UDP applications add reliability by performing aU of these additional steps ·

(timeouts, RTT measurements, request identifier, etc.), these steps are continually being

reinvented as new UDP applications are developed.

2.2.8 Overhead required for opening a TCP connection

First we need to go through several steps of opening a connection. This takes quite a bit

of time. once the connection is open, sending and receiving data each involve several

steps. Each of these steps adds some time and data overhead to the transaction. lfwe are

sending large amounts of data that must absolutely anive at its destination, we use the

TCP protocol. However, if all we want to do is quickly send a simple, sh'mt message, all

of this work may not be wmthwhile.

Over an IP network such as the intemet. a protocol called UDP(the umeliable Datagram

Protocol)is used to transmit fixed-length datagrams.

Datagrams have a couple of Advantages.

Speed :

UDP involves low overhead. With TCP you want to go through the hassle of setting up

and tea1ing down a connection which takes time. For small amounts of data, it may not be

wmth it. the overhead time for setting up a connection may be greater than the amount of

time it takes to send a small chunk of data. In many cases we could send and retry to s

end a datagram several times before a TCP connection could be opened

Message Oriented Instead Of Stream Oriented

If we have a simple data structure such as a database record with fixed length fields, it

might be easier to simply send the chunk ofbytes.

9

2.3 THE SOCKET INTERFACE

The chapter considers how an application uses protocol software to communicate,

and explains an example set ofprocedmes that an application uses to become a client or a

se1ver, to contact a remote destination, or to transfer data.

2.3.1 Application Program Interface

Client and setver applications use transpmt protocols to communicate. When it

interacts with protocol software, an application must specify details such as whether it is

a se1ver or a client (i.e., whether it will wait passively or actively initiate

communication). In addition, applications that communicate must specify fiuther details

(e.g., the sender must specify the data to be sent, and the receiver must specify where

incoming data should be placed). The interface an application uses when it interacts with

transport protocol software is known as a1;1 Application Program Interface (API). An API

defines a set of operations that an application can perform when it interacts with protocol

software. Thus, the API determines the functionality that is available to an application as

well as the difficulty of creating a program to use that functionality. Usually, an API

contains a separate procedme for each basic operation. For example, an API might

contain one procedure that is used to establish that is used to establish communication

and another procedure that is used to send data.

2.3.2 Socket Library

A socket library can provide applications with a socket API on a computer system

that does not provide native sockets. When an application calls one of the socket

procedures, control passes to a library -routine that makes one or more calls to the

underlying operating system to implement the socket function.

2.3.3 Socket communication and UNIX 110

Sockets are integrated with UO - an application communicates through a socket

similar to the way the application transfers data to or fi:om a file. Thus, understanding

sockets requires one to understand UNIX UO facilities. UNIX uses an open-read-Wiite -

close paradigm for all UO; the name is derived from the basic UO operations that apply to

10

both devices and files. For example, an application must first call open to prepare a file

for access. The application then calls read or write to retrieve data fi:om the file or store

data in the file. Finally, the application calls close to sper.ify that it has finished using the

file. When an application opens a file or device, the call to open retums a descriptor, a

small integer that identifies the file~ the application must specify the descriptor when

requesting data transfer (i.e., the descriptor is an argument to the read or write procedure).

Socket communication also uses descriptor approach. The system retums a small integer

descriptor that identifies the socket. The application then passes the descriptor as an

argument when it calls procedures to transfer 'data across the network; the application

does not need to specify details about the remote destination each time it transfers data.

2.3.4 Procedures that Implement The Socket API

The socket procedure creates a socket ~nd retums an integer descriptor:

Descriptor= socket (protofamily, type, protocol)

Argument protofamily specifies the protocol family to be used with the socket. For

example, the value PF _ INET is used to specify the TCP/IP protocol suite. Argument type

specifies the type of communication the socket will use. The two most common types are

a connection-oriented stream transfer (specified with the value SOCK_ STREAM) and a

connectionless message-oriented transfer (specified with the value SOCK_ DGRAM).

Argument protocol specifies· a particular transport protocol used with the socket. Having

a protocol argument in addition to a type argument, pennits a single protocol suite to

include two or more protocols that provide the same service.

The Close Procedure

The close procedure tells the system to tenninate use of a socket. It has the form:

Close(socket)

11

Where socket is the descriptor for a socket being closed. If the socket is usmg a

connection-oriented transpmt protocol, close terminates the connection before closing the

socket. Closing a socket immediately terminates use - the descriptor is released,

presenting the application fi:om sending more data, and the transport protocol stops

accepting incoming messages directed to the socket, preventing the application fi:om

receiving more data.

The Bind Procedure

When created, a socket has neither a local address nor a remote address. A se1ver

uses the bind procedure to supply a protocol p01t number ai which the server will wait for

contact. Bind takes three arguments:

Bind(socket, Iocaladdr, addrlen)

Argument socket is the descriptor of a socket that has been created but not previously

' bound; the call is a request that the socket be assigned a particular protocol p01t number.

Argument localaddr is a structure that specifies the local address to be assigned to the

socket, and argument addrlen is an integer that specifies the length of the address.

The Listen Procedure

After specifying a protocol p01t, a server must instmct the operating system to

place a socket in passive mode so it can be used to wait for contact fiom clients. To do

so, a seiVer calls the listen procedure, which takes two arguments:

Listen(socket, queuesize)

Argument socket is the descriptor of a socket that has been created and bound to a

local address, and argument queuesize specifies a length for the socket1s request queue.

The operating system builds a separate request queue for each socket. Initially, the queue

is empty. As requests anive fi:om clients, each is placed in the queue; when the setver

asks to retiieve an incoming request from the socket, the system retums the next request

from the queue. Ifthe queue is full when a request anives, the system rejects the request.

Having a queue of requests allows the system to hold new requests that anive while the

setver is busy handling a previous request.

12

The Accept Procedure

All servers begin by calling socket to create a socket and bind to specify a

protocol p01t number. After executing the two calls, a server that uses a connectionless

transp01t protocol is ready to accept messages. However, a setver that uses a connection­

oriented transp01t protocol requires additional steps before it can receive messages: the

setver must call listen to place the socket in passive mode, and must then accept a

connection request. Once a connection has been accepted, the setver can use the

connection to communicate with a client.

The Connect Procedure

Clients use procedure connect to establish connection with a specific se1ver. The

form is:

Connect(socket, saddress, saddresslen)

Argument socket is the descriptor of a socket on the client's computer to use for

the connection. Argument saddress is a sockaddr stmcture that specifies the server's

address and protocol p01t number. Argument saddresslen specifies the length of the

se1ver's address measured in octets. The connect procedure, which is called by clients,

has two uses. When used with connection-oriented transport, connect establishes a

transp01t connection to a specified setver. When used with connectionless transp011,

connect records the setver's address in the socket, allowing the client to send many

messages to the same setver without requiring the client to specify the destination address

with each message.

The Send, Send to, And Sendmsg Procedures

Both clients and setvers need to send information. Usually, a client sends a

request, and a setver sends a response. Ifthe socket is connected, procedure send can be

used to transfer data. Send has four arguments:

Send(socket, data, length, flags)

Argument socket is the descriptor of a socket to use, argument data is the address in

memory of the data to send, argument length is an integer that specifies the number of

octets of data, and argument flags contains bits that request special options

13

Procedures sendto and sendmsg allow a client or server to send a message using

an unconnected socket; both require the called to specify a destination. Sendto, takes the

destination address as an argument. It has the form:

Sendto(socket, data, length, flags, destaddress, addresslen)

The first four arguments conespond to the four arguments of the send procedure. The

fmal two arguments specify the address of a destination and the length of that address.

The sendmsg procedure performs the same operation as sendto, but abbreviates the

arguments by defming a stmcture. The shorter argument list can make programs that use

sendmsg easier to read:

Sendmsg(socket, msgstmct, flags)

Argument msgstmct is a stmcture that contains information about the destination address,

the length of the addresss, the message to be sent, and the length of the message.

The Recv, Recvfrom, and Recvmsg Procedures

A client and a se1ver each need to receive data sent-by the other. The socket API

provides several procedures that can be used. For example, an application can call recv

to receive data from a connected socket. The procedure has the fmm:

Recv(socket, buffer, length, flags)

Argument socket is the descriptor of a socket from which data is to be received.

Argument buffer specifies the address in memory in which the incoming message should

be placed, and argument length specifies the size of the buffer. Finally, argument flags

allows the caller to control details (e.g., to allow an application to extract a copy of an

incoming message without removing the message from the socket). If a socket is not

connected it can be used to receive messages from an arbitrary set of clients. In such

cases the system retums the address of the sender along with each incoming message.

Applications use procedure recvfrom to receive both a message and the address of the

sender:

Recvfiom(socket, buffer, length, flags, sndaddr, saddrlen) .
The first four arguments conespond to the arguments of recv; the two additional

arguments, sndraddr and saddrlen, are used to record the sender's IP address. Argument

sndaddr is a pointer to a sockaddr stmcture into which the system writes the sender's

14

address, and argument saddrlen is a pointer to an integer that the system uses to record

the length of the address. Recvfrom records the sender's address in exactly the same fonn

that sendto expects. Procedure recvmsg operates like recvfrom , but requires fewer

argument. It has the form:

Recvmsg(socket, msgstmct, flags)

Where argument msgstruct gives the address of a stmcture that holds the address for an

incoming message as well as locations for the sender's IP address.

Server
(connectionless protocol)

I Socket() l

Blocks until data
Received from a client

., Process request

Sendto()

Data (request)

data (reply)

Fig Socket system calls for connectionless protocol
15

Client

Socket()

Sendto()

For a client setver using a collllectionless protocol the client does not establish a

connection a with a server . fustead , the client just sends a datagram to the setver using

the sendto system call, which requires the address ofthe destination(the setver) as a

parameter . similarly , the se1ver does not have to accept a collllection fi:om a client .

Instead, the setver just issues a recvfrom system call that waits until data anives fi:om

some client. The recvfrom returns the network address of the client process along with

the datagram, so the server can send its response to the conect process.

16

CHAPTER3

FUNCTIONAL SPECIFICATIONS

3.1 Process Monitoring

3.1.1 Overview

In a large network there are many processes mnning on different systems at a time. Any

process at a given time can be in any of the many different states like sleeping, waiting,

mnning etc. This information can be obtained using the ps utility of Unix. But this gives

at a time only the information about the processes on the cunent machine. When

processes over a network need to be monitored simultaneously then we need to use better

methods. Thus for effective management over a network and to take care of the various

critical systems we design this process monitming software.

Thus we can define process monitoring as " the procedure of taking care of the state of

the different processes over a network individually as per the user and the process

requirements and specifications".

The keywords in the above definition are "individually" and "user and process

requirements and specifications."

3.1.2 A High Level View of the Architecture

The architecture consists of a monitming setver which ru;1s at a specific place over the

network. The processes that want to be monitored intimate the same to this process

monitor setver. This intimation consists of other information about the process like the

process ID and the time slice etc. Now the monitor se1ver maintains the list of processes

17

being monitored and expects a signal by each of these processes at the specified

times(indicated by the time slice for each process and the statting time) failing to receive

which it changes the process status fi:om UP to DOWN in the maintained table.

s
E
R
·v
E
R

Basic Architecture

18

Client 1

Network 1
Client 2

Client 3

Network 2

Client 4

3.2 Functional Requirements

3.2.1 Functional Specifications

~ A library which can be used by the application programs to tell the process monitor

se1ver that it wants to get monitored and also about its state. The states can be

RUNNING I STOPPED.

~ The library updates the process monitor se1ver about its state using a custom protocol

after a fixed inte1val oftime.

~ The different processes should be differentiated on the basis of some unique name.

Each process has a unique identification number, but two processes on different

n'1achines can have same identification number, therefore to differentiate each process

machine number is also taken into acco:unt

~ The process monitor se1ver should also be monitored. For this to be canied out a

monitor se1ver watcher process is also run, which keeps track of the monitor se1ver.

~ At any point of time the monitor se1ver could also go down, therefore the cunent

status ofthe se1ver should also be stored in text file.

~ The process to be monitored must be defined in some configuration file.

19

The Design

Introduction

CHAPTER4

HIGH LEVEL DESIGN

The software can be basically divided into two pa1ts :-

1. The Process Monitor Server Design

2. The Library Routine Design(the functions used by processes to communicate with the

setver)

4.1 The Monitor Server

4.1.1 Design Basic

This is the setver which tuns on a fixed machine and actually monitors all the

processes. It maintains the details of all the processes that are being monitored or that

have been monitored. It is this server which receives packets fi:om the various processes

and handles them. The various processes connect to this server through the provided

Library Routines. The se1ver is assumed to be 1Ulllliug by the processes which are using it

to get themselves monitored.

The setver needs information about the processes it needs to monitor. This

information is provided to the server by two methods :

• A configuration file that is read by the setver whenever it is switched on. TI1is fHe

contains the list of the processes with their machine names which it is supposed to

monitor.

• The processes which want to get themselves monitored send a UDP packet to the

se1ver having necessary information.

20

The setver maintains the information of all the processes it 1s mouitoting or has

monitored and constantly updates it depending on

• the various packets it receives

• packets which it expects but does not receive.

Thus the setver needs to maintain information of two kinds- one about the processes

which are being currently monitored and the other about all the processes. This is

maintained in a list data stmcture by the setver.

The se1ver also needs to keep information in a file which is read by the user. This file

is called the process file and is updated by the server from time to time. The information

in this file is not as exhaustive as that maintained in the stmcture as it is used only to

\.J) know the state of the processes while the stmcture also keeps data for monitoring .
...,.._

.......;

~
·'\:)

I
~

(---

4.1.2 The Packets

There are three types of packets. Whenever the setver receives any of these packets it

updates the stmcture and the files according to type o~ packet and the information

received in that packet.

• information Packet : This is the packet which is sent by the a process which wants

itself to be monitored. The se1ver creates an entry of that process in its stmcture and

the file it maintains and starts monitming it also. This packet contains information

like the process name, machine name, the time slice of the process, the ending criteria

of the process and the process state.

• Message Packet : This is the packet which the processes send fi:om time to time

informing the setver about their state. This is the packet which the setver expects

from the processes time to time depending on the time slice set by the process. The

server updates information at various places according to the information

received. This packet contains the process name, machme name and the proces state.

• End Monitoring : This packet is sent by a process when it wants the se1ver to stop

monitming it. The seiVer again updates the information. This packet contain the

process name, machine name and the final process state.

21

4.1.3 In(ormation Maintained by tlte Server

As stated in the basic design the se1ver maintains information in the structure and

the process file. Following are the details of what are the various fields maintained and

when are they updated.

The Structure

The fields which data structure conatins alongwith when they are updated is given below

• TI1e Process Name

This field is created whenever information packet IS received or when the

configuration file is read. It is not changed thereafter.

• The Machine Name .

This field is create.d along with the proces name and is not changed thereafter.

• The Time Slice

This field is updated with every message packet received.

• The Time to Receive Next Packet

TI1is is updated fi~m time to time whenever a packet is received and is set to the

cunent time plus the time slice. This is also updated whenever there is a timeout and

packet is missed and more misses are allowed.

• The State ofthe Process

This is updated whenever packet is received as every packet contains the state of

the process.

• Number ofPacket Misses still allowed

This is updated whenever there is a packet miss or whenever a packet is received

setting it to the ending criteria.

• Ending Criteria for the Process

This is received n;· the information packet and not changed hence fmth.

The File Maintained

The file contains the following fields for every process :

• The Process Name

• The Machine Name

22

• The Time Slice

• The Time last packet received

• The State ofthe Process
I

Updating in the file is done whenever there i~ any change in any of these fields.

I

4.1.4 Processing done by the Server !
I

Except fi:om maintaining all this jnJormation m the structures and files and
I ,

receiving the UDP packets the server doesl a lot of processing which not only includes
I
I

parsing these packets but also keeping: track of any packet misses to update the
I

information it maintains. For keeping tra<;lk of any packet misses the server sot1s the
I

structure it maintains with respect to the fime it should expect the ~ext packet fi"om a
I

process. This helps the setver keep trac~ of when to assume that .a packet has been
I

missed. Thus the se1ver sets a timer whicli times out at the required time and signals the
I

se1ver to make the necessary updations.

Many issues arise here. Following ar~ the requirements or issues and their solution
I

from this timer which is being used by the setver for detecting packet misses.
I ,

• This timer needs to time out at the ea¥est expected packet.
I

The structure maintained ~y the setver is kept smted according to the time
I

when the next packet is expected and the timer is always set to the value for the
I
I

header ofthe list. '

• The timer needs to be reset whenever there is new process to be monitored with small
I

time slice.
I

Whenever a new process is added tq the list the timer is reset to the header time.
I

• The timer needs to be reset whene\rer the packet is received in due time. The new
I
I

time at which the timer is to be set ~'leeds to be known.
I

Whenever a packet is received the next expected time for that' process changes
I

and so does its position in the list. J:be resetting of the timer to the time value of the

header again solves the problem. :
'

• As packets can be received at unexpected times the timer setting depends on the
I

actual time rather than the elapse~ time.
I

This is handled in the same w$y as the last case.
I

23

Thus the timer efficiently ta~es care of any packet misses and the server is able to keep
I

the various information updat~d.

4.1.5 Use Cases I
I

Following· is a listing of the v~rious situatons that may arise while mnning of the setver
I

and how are they being handle4.

Use Case I
' I

Pre-Condition : Since the prod~ss file contains only the process recognition information
I

how does the setver start monitdring it.
I

Handling : The se1ver does n~t assume these processes to be up unless it receives a
I

packet fiom them. These process¢s are till then kept in a default state. The setver assumes
. I

some default values for the differ~nt fields.
. I

Use Case II I
I
I

Pre-Condition : The se1ver while \running crashes due to some unforseen circumstances.
I

Handling : To handle such a cas~ there is a monitor watcher which which is a process
. I

I
monitoring the server. Whenever tpe server crashes the watcher dumps all the previous

I

information and exits.

Sub Case I
I

Pre-Condition : The server ~rashes and the data that was being maintained by the
I

setver in its stmcture is lost. 1
,

'
Handling : The stmcture ~as being maintained by the se1ver for efficient

I

pt:ocessing. The relevant data 1s being constantly updated in the process file. Thus
I

that stmcture is anyway not ndeded once the setver crashes.
I

..
4.2 The Library Design

' I
The following sections give a basic des~gn ofthe Library and the functions in it.

I

4.2.1 The Requirements (rom th~\ Library
I

The Library will have functions that shd,uld be able to do the following:

24

• When the process wants itself to be monitored then 1t sends a check packet to the

monitor setver. This packet just contains the process recognition information.

• The process sends its monitoring information to the setver through an information

packet. 1l1is packet contains information like the time slice etc.

• The process needs to send a message packet to the seiVer every time after a time slice

has lapsed. This is done by setting a timer which times out to send a signal to the·

process to send a message packet to the setver.

• The process sends a end packet when it wants the setver to end monitoring.

4.2.2 Outline o(tlte Functions

Thus library will contain the following functions which will -perform the following

actions:

• CONNECTION

It will open a socket and bind a address to it.

• INFORMATION PACKET

This function will prepare a information packet about the process (process name, .·

machine name, time slice, etc.) and will send this packet to the setver.

• MESSAGE PACKET

This function will prepare a message packet like the information packet and send it to

the se1ver fiom time to time on receiving a signal fi:om !he kemel.

• ALARM SIGNAL

This function will set an alarm clock for the number of seconds specified by the

process after that much seconds it will receive a signal from the kemel and call the

message packet function.

• END MONITOR PACKET

If the process in between does not want itself to get monitored then it will send a

message to the setver to ends monitoring.

25

CHAPTERS

LOW LEVEL DESIGN

The Low Level Description

5.1 The Server

Introduction

First an outline of the control flow of the setver is given. This is followed by the

details of each step through the different struuctures used and processing done. Here all

the various functions which the setver performs have l]een finally integrated and a

complete design has been given.

Control Flow

The setver basically does the following three things in order :

1. Open a socket and binds it to a universally identified p01t. This is done to receive

packets fi:om processes which are to be monitored.

2. Read the configuration file and construct the structure for the processes listed there.

3. Wait for the packets at the binded pmt and handle them by updating the stmcture.

This was the basic control flow ofthe setver. A detailed description of the structure

which the setver maintain follows. The handling of the various packets will be described

after that.

The Structure

Requirements

• The stmcture should be dynamically allocated as it keeps the details of all the

processes it has been monitoring. Thus the stmcture will be a pointer maintained list

structure.

• The structure needs to keep all the information about every process it has been

monitoring since a down process can also go up.

26

• The structure needs to keep a sorted list of message expecting time. This will be used

to detect any messages missed.

Thus a list of all the processes which are being monitored need to be maintained. The

process may be up or down. Another list of processes fi:om which packets are expected

needs to be manitained. This excludes processes which are down. This list· needs to be

smted according to when the next packet is expected fi:om the process. The process state

determines whether to expect packets from the process.

Details

Hence two lists will be needed. The processes which are down are kept differently from

those which are sending packets. But this will necessaite keeping onle list smted always

and also moving all information from one list to other again and again. Thus the

f{)llowing stmcture is proposed.

Ma\Header
~ UNSORTED LIST OF ALL PROCESSES

~~P~ro~c.=.::es.=_s -~~~t--.,.t-:1 ~::...:.·o.::...::c.=.::es.=_s --f'IIJ~r---• e ~

Seco\Header ~ ~ .----~_....____:\=,=';...;:,~ ... ":=-==-~-"=ii:.&.J__}

Process •

Process ID info ... Process ID info ... Process ID info ••
Time next

...
Time next

... Time next
packet expected packet expected packet expected

SORTED LIST OF ALL PROCESSES BEING CURRENTLY MONITORED

The second list is sotted depending on the nexi expected packet receive time. The first list

contains all processes which have been monitored. Thus the blocks having information

about processes which are down are not pointed to by from the second list. Also since all

information about a process may not be available hence there is a default value for every

field. The first block in the second list has the least or the nearest time when to expect

27

packet fiom any process. A timer which times out at this t.ime actually informs the se1ver

about any missed packets. The timer has to be updated whenever there is a change in the

first block in this list.

The Packets and their Handling

After reading the configuration file the server updates the S!mcture. As of now since there

is not much information about the processes thus the default values are kept. The process

state is given default values till packets are received from them. Their information is also

updated in the process file.

The stmcture of the different types ofpackets and their handling follows:-

Information Packet : This is the packet which a process sends when it wants itself to get

monitored. A process which has not sent this is not considered to have gone up.

This packet contains the following fields:

• Process Name

• Machine Name

• Process State

• Process Ending Criteria

• Time Slice

After receiving this packet the processes in the first list is searched. If it exists then its

information is updated and according to the updated information various actions are

performed. If up dation had occurred in the fli"st element of the second list then timer is

reset, if there is a state change then the process file is updated. All these updations are

done.

If the process is not present in the fli"st list then a new block is added. Depending on the

process state the various updations are performed. Like additions in both the lists and

up dation of the timer, process file.

Message Packet : This is the packet sent by the processes time to time to keep the se1ver

informed about their states.

This packet contains the following fields

• The Process Name

• The Machine Name

• The State of the Process

28

Whenever this packet is received the process it comes fi:om is searched in the second list.

If not found it is searched in the first list. If not found then the packet is ignored.

If found the process info is updated. This includes :

• Resetting the state of the process

• Resetting the time values

• Changing the number of misses allowed to the maximum allowed.

• Adjusting the place of the process block in the second list due to change in time.

• Resetting the timer when required

• Updating the process file if there is a state change.

End Monitoring : This packet is received when a process wants its monitoring to end. The

process state is changed to ''Ended" and it is removed from the second list. This is again

followed by updations like the timer.

5.2 The Watcher

1l1is Watcher has its own code. It does not share code with the server. This watcher is

basically a monitoring process like the server but it has the following specifications also :

• It monitors only one process at a time - the se1ver.

• It only takes care if that process(the se1ver) is up or down. This is done by receiving

packets in the same way as the se1ver receives packets fi"om the processes it monitors.

This is done to take care if setver crashes. A fixed time slice is set and the sends message

to the watcher whenever that time slice elapses. If continuously some number of

messages do not come(a default setting) then watcher considers the setver to have

crashed and proceeds.

5.3 The Library

The library which can be used by the application programs to tell the process

monitor setver that it want to get monitored and also about its state. 1l1e states can be up

state or the process can send a message to the setver that it wants to end its monitoring.

For these things to cany out the process first sends a information packet to the setver

containing all the information and after that sets an alarm for a specified number of

29

seconds so that the process can send message to the setver about its status. And

whenever the process wants to ends it monitoring it will kill the previous alarm and sends

a end monitoring packet to the setver.

5.4 Implementation Details

Introduction

This chapter gives details ofwhat are the standard functions which will be used to

carry out the processings listed in the last chapter. The implemantations issues have also

been addressed. The implementation is being done in C.

5.4.1 The Packets

The packets are sent by the different processses to the setver. The packets are sent

after packaging them into a stmcture which is defined in the header. There are three types

ofpackets as discussed earlier.

The information packet conatins the maximum information. It contains the time

slice and the ending criteria which is used by the server for initializing the process details

and monitoring it. But these two parameters are a global constant for any process. Once

specified they remain fixed. Moreover they are only intergers and increase the size of the

packet by only a small amount. All these put together and the fact that handling two

different types of packets increases the complexity ofthe setver by a large amount leads

to the conclusion that only one type ofpacket may be kept. This packet will contain the

same fields as the information packet. The message packets will also contain that extra

information but since that information is anyway a global constant for the process it will

not be difficult for the processes to send it again.

With this the processing on the setver becomes quite easy. This also gives the

processes an added flexibility. The processes can change their time slice and ending

critetia from time to time. Thus this change makes things easier but better.

To fmther reduce complexity the end-monitoting packet also can be sent in the

same structure as the other packet. Only the state can be made "Ended" to let the setver

30

understand the type of the packet. As this packet is expected to be rarely used hence the

extra information does not make a difference(which still is !he same two integers).

5.4.2 The Timer Setting

In order to keep track of the packets missed the seiVer is using a timer as ah·eady

discussed. This timer should have the following prope1ties :

• It should be non-blocking

• It should be asynchronous i.e. the timer should signal the process on timeout at arbit

intervals as required.

• It should .be possible to reset the timer whenever required cancelling the previous

setting.

All the above requirements are satisfied by the alarm and si_gnal function calls.

The alarm function takes as input an integer and timesout after the number of seconds

sending a SIGALRM signal to the process it was called fi:om. The signal function call

handles any signal coming to the process asynchronously and calls a function specified in

its arguments whenever the specified signal is received. The signal call takes the types of

signal and the conesponding function to be called as input. The alarm gets automatically

reset if called again before time out.

5.4.3 Getting the Process and Machine N arne

The Library functions used by processes need to send the process and the machine name

to the Monitor Se1ver. This information needs to be extracted by the Library functions

themselves. The following two standard C functions are used:-

gethostbvname : This function takes in a register pointer in which it retums the name of

the process fi:om which it called.

gethostname : It gives the name of the machine on which it is running into the stling

parameters it takes.

Using these two functions the library routines send the required packets to the se1ver.

The time slice and the process ending criteria are to be provided by the process.

31

5.5 File and Function Details

Introduction

This chapter describes all the files in which the co,de will be stmctured and the

functions that will be implemented along with the details of their functionality. The

details of which file will have which function is also given.

The Pseudocode given in the next chapter completely describes each file and its

function. The main code will be exactly in line with this Pseudocode.

5.5.1 The Files

The Header Files

The header files should be able to provide enough functions to the the main server such

that it does not need t~ code any functions which deal with a specific type of processing.

The processing and declarations done are as follows:

1. Global declarations for the seiVer port, address, sizes ~f different strings like process

name etc.

2. Global declarations of different stmctures like the packet, the process_info stmcture,

the time list stmcture etc.

3. The processing to be done on the list stmctures like creating new blocks fiom

information received, inserting them into the stmcture, checking for existence etc.

4. The processing that need to be done on the file that maintains the records of the

processes.

5. The processing that needs to be done with respect to the timer setting and time

manipulation.

6. The declaration of the various library functions that are used by the processes.

There needs to be a file for each of the above. The first two declarations can be done in

one file as they will be needed by all the source fUes. The names of the files will be as

follows

1. pm.h (all major declaration for process monitoring)

2. process.h (for processing on process_info)

32

3. pfile.h (for file manipulation)

4. lib.h (functions for the processes)

5. timeval.h (for processing on time)

The include stmcture of the files will be as follows :

The Source Files

There will be one source file which will be the setver.c file,containing all the setver

processing and maintaining of the data. This file will compile into the main setver which

will receive all the packets and monitor the processes.

The other source file will contain the watcher code which monitors the setver.

The Executables

There will be one executable of the setver. This will not take any command line

arguments and willmn on a previously defined fixed machine.

There will be another executable of the watcher. This will be mn whenever the setver is

mn and will monitor the setver.

33

5.5.2 The Functions and Declarations

The pm.h File

The following need to be declared

• The global p01t and IP address

• The various string lengths

• The process_ info, time list and the packet stmctme

The process.h file

TI1is file contains the functions for all the processing ofthe,stmcture which includes

• Existence of a given process in the Process List

• Existence of a given process in the Time List

• Creating new process block fi:om the packet infonnation

• Creating new time block fi:om the packet information

• Insetting a time block into the time list

• lnse1ting a process block into the process list

• Inse1ting both blocks together(this needs adjustment'ofpointers between them)

• Displaying the process list

• Displaying the time list

The pfile.h file

This is the file having the functions used for all the file manipulations and

updations by the se1ver. There will basically be one function which takes as input a

process and its state and updates the file which includes adding the process if it is already

not present.

The lib.h file

This is the main library file included by the process. It ~as the following functions.

• Opening a socket and binding the socket.

• Sending the information packet to the se1ver.

34

~ Setting an alarm for specified number of seconds and handling the signals fi:om the

kemel.

• Sending a message packet to the se1ver fi:om time to time.

• Sending an end monitoring packet to the se1ver.

The server.c file

This is the main se1ver source file. This will have the following functions:

• Opening and binding the socket

• Waiting for Packet

• Handling a Packet

• Handling a signal

• Updating the time list for resetting the alarm

• Read the configuration file

• The main

5.6 Pseudo Code

Introduction

This chapter gives the pseudo code of all the major files. The actual code will be in line

with this pseudo code.

The Main Header File(pm.h)

Declarations

#define Process Name Size

#define Machine Name Size

#define The Global Se1ver Pmt

#define The Process State Size

#define Maximum Packet Size

struct process info

{ Process Name

Machine Name

35

};

State

Time Slice

Process Ending Criteria

Allowed Misses

Other pointers

stmct time _proc

{ Process Name

Machine Name

Next Packet Time

Other Pointers

};

stmct mes _pack

{ Process Name

Machine Name

State

Time Slice

Process Ending Criteria

}

The Time Header File(timeval.h)

my alarm

Function Prototype

void myalarm(int tt);

Arguments

Tt [IN]

Description

Number of seconds for which the alarm is to be set

This function sets an alarm for the specified number of seconds

Pseudo Code

void myalarm(int tt)

36

{

set an alarm for tt seconds.

}

get cur time

Function Prototype

long get_ cur_ time();

Description

This function retums the cunent time time in seconds elapsed as retumed by the

gettimeofday function.

Pseudo Code

long get_ cur_ time()

{

get cunent time using gettimeofday in a timeval stmcture

retum the tv_ sec part of the stmcture as the cunent time

}

The File Manipulation Header (pfile.h)

update process~(ile

Function Prototype

void update _process_ file(process name,machine name, state);

Arguments

Process name [IN] The process to update

Machine name [IN] The machine oii which process is miming

State [IN] The cunent state of the process

Description

This function updates the state of the input process to the input state in the process file. If

the process does not exist then makes a new entty.

Pseudo Code

void update _process_ file(process name,machine name,state.){

open the process file for reading

open a temporary for writing

37

}

while (not end offile)

{

}

read the file contents of process file line by line

if the input process found then copy it into temporary file

with the new state othe1wise copy as it is

if process not found then copy it into temporary file as a new entry

remove the process file and copy temporary into it

The Main Library Header(lib.h file)

This chapter describes all the function defined in lib.h file. These are all the functions

included by the processes being monitored.

connection

Function Prototype

collllection()

Arguments

No Arguments

l>escription

This function opens a UDP socket and assigns a address.

Pseudo Code

collllection()

{

}

get the process name using the gethostbyname function

copy process name into packet field

use gethostname to get the machine name directly in to packet field

open a UDP socket using AF _ INET family and SOCk _DGRAM as parameters;

fill in cli_addr stmcture with AF_INET family, SERV _ADDRESS, pmt 0;

bind the above socket;

fill in the stmcture serv _address with AF _ INET, setver address and the setver

p011

38

information yacket

Function Prototype

information _packet (int

Arguments

time_ slice_ in, int proc_end_crit_in);

Time slice [IN] Identifies the number of second after which the next packet is to -

be send.

Proc end crit in [IN] - - - Identifies the number of packets after which to assume the

process is down

Description

This function prepares a information packet with the state "tostatt" and sends it to the

setver.

Pseudo Code

information_packet (int time_slice_in, int proc_end_crit_in)

{

assign time_ slice_ in to the packet field

assign proc _end_ crit _in to packet field;

copy ''tostatt" in packet state;

send the packet to setver using sendto call

}

alarm signal

Function Prototype

alarm_ signal()

Arguments

No arguments

Description

This function sets an alarm for the number of seconds specified by the process in packets

time slice. Also this function handles the SIGALRM signal fi·om the kemel and call the

message _packet function.

Pseudo Code

alarm_ signal()

{

39

}

call the signal system call using SIGALRM and message _packet as parameters.

(message _packet is function called when SIGALRM signal is generated)

set the alarm using alarm for the specified time slice in the packet

message packet

Function Prototype

message_packet()

Arguments

No Arguments

Description

This function prepares a message packet with the message "up" and sends it to the setver

Pseudo Code

message _packet(')

{

copy state as ''up" in the packet state field

send this packet to the setver

}

end monitoring

Function Prototype

end _monitoring()

Arguments

No Arguments

Description

This function sets an another alarm for zero seconds and handles the signal fiom the

kemel and then calls the function end _packet

Pseudo Code

end_ monitoring()

{

call the signal system call to handle SIGALRM and call the function end _packet

set an alarm for one second. }

40

endyacket

Function Prototype

end __packet()

Arguments

No Arguments

Description

This function prepares an end monitoring packet and sends-it to the setver.

Pseudo Code

end _packet()

{

copy the state "to end" in the packet state variable

send this packet to the setver.

}

The process.h file

This chapter describes all the functions defined in process.h file which are used for

processing on the stmctures maintained by the setver.

disp proc test

Function Prototvpe

void disp _proc _test(

stmct process_info *pro_hd;

);

Arguments

\ pro_hd [IN] \ Contains all the information

Description

This function displays the process_info stmcture.

Pseudo Code

void disp _proc _test(pro_ hd)

stmct process _info *pro _hd;

{

while (not end of list){ display all the process list fields }

41

}

canst proc block

Function Prototype

tmct process_ info* const_proc_block(

Arguments

pro_nm [IN]

Mach nm [IN] -
Time sl [IN] -

pro_st [IN]

pro_ end_ mon [IN]

Description

char *pro_ nm;

char *mach_ nm;

long time_ sl;

char *pro_ sl;

int pro_ end_ mon;

);

This c~mtains the process name

This contains the machine name

.This is the time slice after which next packet will come

This contains the process status
'

This contains the process end criteria

This function makes the process block fiom the packet·data.

Pseudo Code

stmct process_ info* const _proc _block(

{

)

char *pro_ nm;

char *mach nm;

long time_ sl;

char *pro_sl;

int pro_end_mon;

struct process_ info *temp _proc _ hd;

malloc memory for temp_proc_hd;

copy process name into temp _proc _ hd->process _name;

copy machine name into temp _proc _hd->machine _name;

42

}

copy process state into temp _proc _ hd->state;

assign time_sl to temp_proc_hd->time_slice;

assign pro_end_mon to temp_proc_hd->alwd_misses;

retum the temp _proc _ hd pointer

const time block

Function Prototype

struct time_proc* const_time_block(

);

char pro_ run[];

char mach _nm[];

long time_ sl;

Arguments

pro_nm [IN] This contains the pro'cess name.

Mach nm [IN] This contains the machine name. -

Time sl [IN] This is the time after which the next slice is coming.
-

Description

This function creates the block of the time list given the information

Pseudo Code

struct time_proc* const_time_block(

{

);

char pro_ run[];

char mach_ nm[];

long time_ sl;

stmct time_proc *temp_time_hd

allocate the memory for temp _time_ hd

copy process name into temp_time_hd->process_name

copy machine name into temp_time_hd->machine_~ame

get cunent time in cur_time using gettimeofday

assign temp _time _hd->time _next the cunent time added to the time slice}

43

insert into time

Function Prototvpe

void inse1t_into _time(

Arguments

Time hd hd · [IN] - -

Timeblk [IN]

Description

stmct time_proc** time_hd_hd;

stmct time_proc* time_blk;

);

Address of the time list head

Address of the time block to be inserted

This function inse1ts into the time list a block containing all the information about the

process. This function uses insertion sort.

Pseudo Code

void inse1tjnto_time(

{

stmct time __proc** time_ hd _ hd;

stmct time _proc* time_ blk;

);

stmct time _proc *time _prev _ hd, *time_ hd;

if(new time list)

{

}

else

{

make this block as the time list

if (block time <header time)

f
\.

}

else

inse1t block at the head of the list

44

}

}

}

take time header into time_hd;

take previous header into time __prev _ hd

while (time_hd !=NULL)

{

}

ifcunent time header's time> time block's time then inse1t

time block here

if time block still not inserted then inse1t at end;

insert into proc

Function Prototype

void inse1t _into _proc(

Arguments

pro_hd_hd [IN]

pro_blk [IN]

Description

stmct process_info** pro_hd_hd;

stmct process_info* pro_blk;

);

Address of the process list head ,

Address ofthe process block to be insetted

This function inse1ts into the process list a block containing all the information about the

process.

Pseudo Code

void inse1t_ into _proc(

stmct process_info** pro_hd_hd;

stmct process_ info* pro_ blk;

);

45

{

if(new process list)

{

make process block the process list;

}

else

{

inse1t process block at the process list header

}

}

insert blocks

Function prototype

void inse1t _blocks(

Arguments

pro_hd_hd

pro_blk

Time hd hd - -
Time_proc

Description

[IN]

[IN]

stmct process_ info** pro_hd_hd;

stmct process_ info** pro_blk;

suucttime_proc** time_hd_hd;

stmct time _proc* time_ blk;

);

Address of the process list head

Address of the process block

[IN] Address ofthe time list head

[IN] Address of the time block '

This function inse1ts a given time block and its conesponding process block into their

respective lists.

Pseudo Code

void inse1t_blocks(

stmct process_ info** pro_hd_hd;

stmct process_ info** pro_blk;

46

{

}

stmct time _proc** time hd hd;

stmct time _proc* time_ blk;

);

adjusts pointers between time and process block;

call inse1t_ into _proc(pro _ hd _ hd, pro_ blk);

call inse1t_ into _proc(time_hd_ hd,time_ blk);

exists proc

Function Prototype

stmct process_ info *exists _proc(

stmct process_ info* proc _ hd;

Arguments

Proc hd
-

Proc name
-

mh name -

Description

[IN]

[IN]

[IN]

char

char

proc _name[];

mh_name[];

);

Address of the process list header

This contains the process name '

This contains the machine name

This function checks for the existence of a given process in the process list

Pseudo Code

stmct process_ info *exists_proc(

stmct process info* proc _ hd;

{

char

char

);

while ((not end of list) and (not found))

{

47

proc _name[];

mh_name[];

match cunent machine and process name with given

if matched then found else move to next block in the list

}

if not found then retum NULL else retum the cunent pointer.

}

exists time

Function Prototype

stmct time_proc* exists_time(

Arguments

Time hd ' -

Proc name -

Mh name -

Description

[IN]

[IN]

[IN]

stmct time _proc* time hd; ,

char

char

);

proc_name[];

mh name[];

Address ofthe time list header.

This contains the process name.

This contains the machine name.

This function checks for the existence of a given process in the time list

Pseudo Code

stmct time _proc* exists_ time(

{

stmct time_proc* time_hd;

char

char

);

proc _name[];

mh_name[];

while ((not end of list) and (not found))

{

match cunent machine and process name with given

if matched then found else move to next block in the list

}

if not found then retum NULL else retum the cunent pointer.}

48

The Main Server Code(server.c)

open=bind

Function Prototype

void open_ bind()

Arguments

No arguments

Descriptions

This function opens a UDP socket and binds it to a

Pseudo Code

void open_ bind()

{

open a UDP socket using AF_INET family and SOCK_DGRAM as parameters

fill in cli_addr stmcture with AF _INET family, SERV _ADDRESS, pmt 0

bind the above socket;

}

update time list

Function Prototype

void update_time_list()

Arguments

No arguments

Descriptions

This function updates the time list by considering all those processes which have timed

out.

Pseudo Code

void update _time_list()

{

get the cunent time in time cunent.

while (not end of list & alarm not set)

{

if(header process timed out)

49

{

}

else

{

}

}

updates its time_ nex.'t field.

remove and reinse1t in time list.

set alarm for the header process

if (end of time list reached)

{

prompt "no process is being monitored".

}

}

handle pack

Function Prototype

void handle _pack(

stmct mes_pack* recv_pack;

);

Arguments

Recv _pack [IN] Address ofthe received packet

Descriptions

This function handlesthe packet that are coming.

Pseudo Code

void handle _pack(

stiuct mes_pack* recv_pack;

)

{

if (received process exists in time list)

{

update process fields according to the received packet

50

}

else

{

ending criteria = received ending criteria

allowed misses = ending criteria

time slice = time slice received

nex.i time = cunent time + time slice

if state changed then update process file also

now remove and reinse1t in the time list.

update time list

if (received process exists in the process list)

{

}

else

{

update the process fields according to the received packet

ending criteria = received ending criteria

allowed misses = ending criteria

time slice = time slice received

process state ='received state

if (received state not "down" or "ended")

{

}

create new time block according to received packet

adjust pointers with the conesponding process

insert into the time list

update time list

consider the received packet as an information packet

create new process mid time blocks

inse1t them into the lists

update the time list

51

}

}

}

receive pack

Function Prototype

void receive _pack()

Arguments

No arguments

Descriptions

This function receives a UDPpacket at the server port.

Pseudo Code

void receive _pack()

{

for()

{

receive a UDP packet in the stmcture form at the SERVER_PORT

call the handle _pack function to handle this packet

}

}

handle signal

Function Prototype

void handle_ signal()

Arguments

No arguments

Descriptions

This function handles the time out of a process· and does th~ necessary updating in the

time and process list

Pseudo Code

void handle_ signal()

{

get cunent time into time_ cunent

52

}

while (list not ended and alarm not set)

{

}

if(header process timed out)

{

}

else

{

if(no misses allowed)

{

}

else

{

}

update the time fields

change state to down

remove the process fi:om the time list

decrease allowed misses by one

update the time_next field

remove and reinsert in the time list

reset alarm to the time list header value

}

if(end oflist reached)

{

prompt "no process being monitored"

}

signal(S I GALRM,handle _signal)

call receive_pack for more packets

53

read config file
=

Function Prootype

void read_ config_file(

char *fu

);

Arguments

. [IN] \·This contains the file name

Descriptions

This function read the process and machine name fi:om the .configuration file and set

defaults values of other fields of the structure.

Pseudo Code

void read_ config_ file(

{

}

char *fu

);

open the config file

while (end of file not reached)

{

}

read the process and machine name fi:om the file

set default values of other fields as specified in header

create new blocks and insert in the lists

update the time

54

CHAPTER6

INTERFACE CONTROL

The Interface

Introduction

The process monitming software contains three different entities which interface with

each other. These are:-

• The Monitor Setver

• 1l1e Watcher

• The processes being monitored.

The setver communicates with the other two while the watcher and the processes

monitored do not· communicate. The following sections describe both the interfaces in

detail.

6.1 The Server-Process Interface

6.1.1 Introduction

Every process which is monitored inerfaces with the same setver. This is the mam

interface of the software. The following communication is to take place between the

setver and the monitored process :-

• The process sends packets to the seiVer when itwants the setver to sta1t monitming it

• The processes being monitored send a packet from time to time to the se1ver

• The setver receives these packets and processes them

The server does not send any packet to the processes. 1l1e processes assume the se1ver to

be always up. 1l1e conte)\..1: diagram of the interface is given in the next section.

6.1.2 Context Diagram

The context diagram is given on the next page. The process which is being monitored

sends the different types of packets to the monitor se1ver. Thus the interface is simple and

55

direct. Since the same packet can be considered to be a message or a information packet

or a end-monitoring packet (as explained in the Low Le~el Design) hence the order in

which the packets anive does not matter to the se1ver(the context diagram just shows the

expected orde1ing of the packets). Moreover though the diagram shows se1ver inteface

with only one packet there are many processes interfacing with the se1ver at a time.

Server Client

Information packet

.... Message packet
....

~-·····-················-··························--···-·················--······················· ,

...

... Message packet

....

.... End Monitoring
....

Ports Used

The pmt used by the server to listen is as defined in the main header file. The client uses

any arbitrary pmt to send its message. The se1ver is bind to a fixed machine which is

defined in the main header file.

6.1.3 Packet Structures

Following is the structure of the packet which the processes send to the se1ver.

56

Process name

Machine name

State ofthe process

Time slice

Process end criteria

The above information is packed into a structure and sent to the the setver.

6.2 The Server-Watcher Interface

The setver and watcher communicate in the same way as the processes and the setver

only that the role being palyed by the server in the setver-process interface is now playes

by the watcher and the role of the process is played by the setver.

6.3 Conclusion

This concludes the interface detail of the software. Both these interfaces are controlled by

the setver making it the major interface control process of the software. The processing

being done both on the setver and the watcher side is such that any packet misses are

taken care of.

57

CHAPTER 7

THE TEST PLAN

Introduction

The test plan can be divided into the different types of test cases as follows:

• Testing the Se1ver
• Testing the Library
• Testing Watcher
• Testing the Interfaces

Since the software is integrated in such a way that functiolling is not possible without the
all the different modules running hence most of the testcases come under the Integrated
Testing section.

7.1 Server Testing

Introduction

The se1ver needs to be rigorously tested broadly for the following sections :

./ Maintenance ofthe Process List Structure

./ Maintenance ofthe Time List Structure

./ Resetting ofthe Timer

7.1.1 Maintenance of the Process List Structure

Purpose
To check whether a process state in the list is changed whenever a process sends a
different state.

Procedure
1. Make the setver sta1t monitoring a process which is rulllling and sending packets.
2. Now make the process send a packet with a different state

Expected Result
The process state should change in the process list.

58

7.1.2 Maintenance of the Time List Structure

Purpose

To check whether a new process is added at the 1ight place in the list

Procedure

1. Make the se1ver monitor a process of small time slice

2. Now sta1t a process with a small time slice

3. Now sta1t a process with a modearate time slice such that it times out after the second

but before the fil'st process

Expected Result

At step 2 the new process should be added at the sta1t of the time list. At the step 3 the

~ew process should be added in the middle of the time list

7 .1.3 Resetting of the Timer

Test Case 1

Purpose

To test whether the timer is reset when a new process sends packet with small time slice

Procedure

1. Make the se1ver monitor one mnning process with a large time slice

2. Sta1t a new monitoring process with a small time slice with early time out.

Expected Result

The timer should be reset for the new process

Test Case 2

Purpose

To test whether the timer is set to next timeout rather than time slices

Procedure

Keep two processes having co-p1ime time slices being monitored by the server

59

Expected Result

The alarm setting should be for the next elapsing of the time slice.

Test Case 3

Purpose

Check whether the time list is updated correctly when two processes time slice at the

same time

Procedure

1. Sta1t two processes at the same time(least count ofseco)lds) which have time slices

which are multiples.

2. Now stop both the processes

Expected Result

Everytime the alarm times out at a common mutiple both packets should have reduction

in their allowed misses.

7.2 Library Testing

7.2.1 Signal Testing

Purpose

To ~erify that the signal is received by the process on time

Procedure

1. Include this functions in program which has a infinite loop

2. Print all the packet stmcture values on standard screen and check the time value

3. Run the program

Expected Result

Each time the value should be printed after the time intetval set.

7.2.2 Checking the End Monitoring Packet

Purpose

To verify that after sending the end monitming packet that no more packet is being sent

60

Procedure

1. Include these functions in a program which has a infinite loop.

2. In the infinite loop get a patticular character fi:om the user after getting that character

call end_ monitoring function.

3. Check the standard screen

Expected Result

After pressing the desired character no more packet data should be printed on the screen.

7.3 Testing the Watcher

Purpose

To check whether the watcher behaves conTectly when server crashes.

Procedure

Just make the server crash in between ofnonnal processing

Expected Result

The watcher should dump all the information in the process file into another file and exit

after creating another file which gives information about the time of crash.

7.4 Testing the Interfaces

Purpose

To check whether packets are being received from different machines on the network

Procedure

Statt different monitored processes on different machines

Expected Result

The setver receives packets fi·om all the processes at the right time intetvals

61

CONCLUSION

The project involved the creation of process monitor server which monitors the

processes over the network individually, as per the user and the process requirements and

specifications. The project code was successfully tested according to the test plan. As the

cunent testing was done using dummy clients further testing can be canied out to check

the robustness ofthe server.

This approach helps the network manager to remotely log on to the machine on

which the process monitor setver is mnning and collects the data about the behavior of

the various processes. These statistics help in restiicting the processes using the system

resources massively.

Fmther enhancements can be done on the setver side by adding mutual exclusion

as signals can time out between list processing. Similarly enhancements caR be canied

out in the API by using better methods for re-sending packets rather than SIGALRM

signal as it can be used only once and processes which are ah·eady using that signal

Qannot use the API in the present form

An altemative approach to the work done in this dissettation is instead of using a

single setver to monitor the processes in the network we can connect servers of the

different local area networks to the process monitor setver. This approach could help in

reducing the load on the single process monitor se1ver.

62

References

1. Andrew S. Tanenbaum, "Computer Networks," Third Edition, Prentice Hall of India,

1999.

2. B. Kernighan and R. Pike, "UNIX Programming Environment," Prentic~ Hall of

India, 1998.

3. Douglas E. Comer, ''Computer Networks and Internet,': Second Edition, Prentice Hall

of India, 2000.

4. Douglas E. Comer, "Internetworking With TCP/IP," Vol 1: Principles, Protocols, and

Architectme, Third Edition, Prentice Hall oflndia, 1999.

5. Douglas E. Comer and David L. Stevens, "Internetworking With TCP/IP," Vol 2:

Design, Implementation, and Internals, Prentice Hall International Editions, 1991.

6. Gray. R. Wright and W. Richard Stevens, "TCP/IP illustrated, Volume 2 The

Implementation," First ISE 1999.

7. M. Schulze and Craig, "Network Monitoring and Visualization Tools, "

http://coa&t.cs.pmdue.edu/pub/tools/unix/netmon/netman.

8. Paul M. Sittler, "A Web based UNIX network monitming and notification system.,"

February 1997.

9. R. Stevens," UNIX Network Programming," Prentice Hall oflndia, 1999.

10. W. Richard Stevens, "TCP/IP illustrated," Volume 3: TCP for transaction, HTTP,

NNTP, and the UNIX domain protocols, Addison Wesley, 1999.

63

	TH102460001
	TH102460002
	TH102460003
	TH102460004
	TH102460005
	TH102460006
	TH102460007
	TH102460008
	TH102460009
	TH102460010
	TH102460011
	TH102460012
	TH102460014
	TH102460015
	TH102460016
	TH102460017
	TH102460018
	TH102460019
	TH102460020
	TH102460021
	TH102460022
	TH102460023
	TH102460024
	TH102460025
	TH102460026
	TH102460027
	TH102460028
	TH102460029
	TH102460030
	TH102460031
	TH102460032
	TH102460033
	TH102460034
	TH102460035
	TH102460036
	TH102460037
	TH102460038
	TH102460039
	TH102460040
	TH102460041
	TH102460042
	TH102460043
	TH102460044
	TH102460045
	TH102460046
	TH102460047
	TH102460048
	TH102460049
	TH102460050
	TH102460051
	TH102460052
	TH102460053
	TH102460054
	TH102460055
	TH102460056
	TH102460057
	TH102460058
	TH102460059
	TH102460060
	TH102460061
	TH102460062
	TH102460063
	TH102460064
	TH102460065
	TH102460066
	TH102460067
	TH102460068
	TH102460069
	TH102460070
	TH102460071

