
A CASE TOOL 
FOR 

HANDLING MODIFICATIONS 
IN THE DYNAMIC BEHA VIOLIR OF 

AN OBJECT ORIENTED SYSTEM 

Dissertation Submitted to 
JA WAHARLAL NEHRU UNIVERSITY 

In partial fulfillment of requirements for the award of the degree of 

Master of Technology 
In 

Comp'uter Science & Technology 

By 
NUNE NAGAMANI 

SUPERVISOR 
Dr. PARIMALA N. 

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES 
JAW AHARLAL .NEHRU UNIVERSITY 

NEW DELHI - I 1 006 7 



CERTIFICATE 

It is certified that the Dissertation entitled A Case Tool For Handling Modifications In 

The Dynamic Behaviour Of An Object Oriented System, being submitted by Nune 

Nagamani, for the award of degree of Master of Technology in Computer Science & 

Technology, School Of Computer & Systems Sciences, Jawaharlal Nehru University, 

New Delhi, is a record of her own work carried out by her under my supervision and 

guidance. 

I recommend her dissertation for the above degree. 

f~~ ?-' 
Dr. Pari mala N. 

School of Computer & Systems Sciences, 

Jawaharlal Nehru University, 

New Delhi- 67 

r:=_('N»~ 
Prof. P. C. Saxena Sl '/'11 

Dean, 

School of Computer & Systems Sciences, 

Jawaharlal Nehru University, 

"!\Jew Delhi - 67 



DECLARATION 

I hereby declare that the dissertation entitled A Case Tool For Handling Modifications 

In The Dynamic Behaviour Of An Object Oriented System. is my original work and 

has not been submitted elsewhere towards the award of any degree. diploma or 

certificate. 

I take complete responsibility for the authenticity of the work. 

Dated 

Place l~e;w OFC--t+T 

ii 



ACKNOWLEDGEMENT 

It is my immense pleasure to express thanks and obligations to all those who have been 

sine qua non to this dissertation. 

I wish to begin this note of thanks by expressing my sincere gratitude to Dr. Parimala N, 

School of Computer and Systems Sciences, J.N.U., for her valuable guidance and 

inspiration given to me, without which the completion of this dissertation would have 

been impossible. 

I am also deeply indebted to Dr. P. C. Saxena, Dean, School of Computer and Systems 

Sciences, for permitting me to undertake this project and helped me with his numerous 

valuable suggestions with which I acquired a wider perspective. 

I am also extremely thankful to all the faculty members for their kind cooperation and 

needful help. 

Last but not the least, I thank all my colleagues for their kind assistance. 

iii 



CONTENTS 

Acknowledgement Ill 

Abstract VII 

Chapter 1. Introduction 1-5 

1.1 Object Oriented Modeling 

1.2 Modeling Concept, Not Implementation 2 

l.J Object Oriented Methodology 2 

1.4 Problem Definition "' -' 

1.5 Case Tool 4 

1.6 Organization of Dissertation 5 

Chapter 2. Integrated Method 6-18 

2.1 Modeling Concepts 6 

2.1.1 Static Model 6 

2.1.2 Dynamic Model 9 

2.2 Partial Modification Problem 13 

2.2.1 Augmented State Transition Diagram 14 

2.2.2 Scenario State Transition Diagram 15 

2.2.3 Integrated Diagram 16 

IV 



Chapter 3 Consistency 19-22 

3.1 Duplication ofNamcs 20 

3.2 Transitions and Events 20 

3.3 Handling Modifications 20 

Chapter 4 Software Selection 23-25 

4.1 Windows Programming 23 

4.2 Microsoft Developer Studio 23 

4.3 Visual C++ 23 

Chapter 5 Project Designing 26-31 

5.1 Data Structures Used 26 

5.2 Steps to Maintain Consistency 27 

5.2.1 Duplication ofNames 27 

5.2.2 State Check 29 

5.2.3 Transition Check 29 

5.2.4 Event Check 30 

5.3 Modifications 30 

5.4 Deletion 31 

Chapter 6 Generating Code 33-34 

6.1 Design Description 33 

6.1.1 Code for Static Part 33 

6.1.2 Reasons for choosing VC++ 33 

6.1.3 Code for Dynamic Part 34 



Chapter 7 

Chapter 8 

Annexes 

References 

The Case Tool 

7.1 How to use Case Tool 

7.1.1 Drawing Class Diagram 

7.1.2 Drawing Integrated Diagrams 

7.1.3 Handling Modifications 

7.1.4 Generating Code 

Conclusion 

Source Code 

vi 

35-41 

35 

36 

37 

39 

41 

42 



ABSTRACT 

Object-oriented technology is nowadays mature enough to provide valuable solutions to 

real life problems. The case tool is a user-friendly application developed in VC++, helps 

system analyst in object-oriented modeling and design. It can also handle modifications 

in the static and dynamic behavior of the system. 

Designing an Object oriented system includes modeling static and dynamic behavior of 

the objects in the system. Static part remains unchanged over time in contrast with 

dynamic part. If we consider particularly the dynamic aspect several structures exist to 

represent this behavior. However there is no method, which incorporates consistency 

over changes in the requirements of the system. The current project is an attempt at 

introducing concepts in behavioral model so that certain amount of consistency can be 

ensured. Further, when changes are made to the design the proposed project tries to build 

rules/checks by which every modification is consistent. 

To make design as flexible as possible, we have to take into account several 

requirements, specifications and interaction of the system in the real world. The current 

project is an attempt at introducing consistency checking through the help of integrated 

state transition diagrams. 

The case tool models the static and dynamic behavior of the system through the help of 

GUI. The system analyst can input information about the class, attributes, methods. and 

inheritance relationship among the classes and draw class diagram. It allows him to draw 

the Integrated State Transition diagram (ISTD) by accepting state and event information. 

Besides this, the case tool checks consistency of the system at each step of development. 

It even allows the analyst to modify his system as requires. Finally, It draws event trace 

diagram from the ISTD and finally obtains the Visual C++ source code for the 

implementation ofthe system. 

vii 



Cltapter 1 

Introduction 

Object oriented modeling and design is a new a way of thinking about problems using 

models organized around real world concepts .The fundamental construct is the object, 

which combines both data structure and behavior in single entity. Object oriented models 

are useful for understanding problems, communicating with application experts, 

modeling enterprises, preparing documentation, designing programs and databases. 

This report provides a methodology for object-oriented modeling and design. We also 

describe a graphical notation for representing this method. A case tool had been provided 

with detail explanation of how it helps in developing a consistent object oriented model 

over changes in the requirements of the system and source code of the case tool is also 

being presented. 

1.1 Object Oriented Modeling 

The fundamental idea behind Object-Oriented Modeling, is to combine into single unit 

the data and the operations on that data. This single unit is called an Object. Object 

oriented approach generally includes four major aspects, identity, classification, and 

inheritance. 

Identity means that data is quantified into discrete, Jistinguishable entities called objects. 

Paragraph in a document, the white queen in a chessboard are some of the examples of 

object. Objects can be concrete such as a file in file system or conceptual such as 

scheduling policy in a multiprocessing system. 

Classification means that objects with the same data structure and behavior are grouped 

into a class. Paragraph, Chess are examples of classes. A class is an abstraction that 

describes properties important to an application and ignores the rest. Each object is an 

instance of its class. 



Inheritance is the sharing of attributes and operations among classes based on a 

hierarchical relationship. A class can be broadly defined and refined successively into 

finer sub classes. Each subclass incorporates or inherits all of the properties of its super 

class and adds its own unique properties. For example, Scrolling window and Fixed 

window are sub classes of window. 

1.2 Modeling Concept, Not Jmplementatioll 

The current emphasis in the literature is on implementation rather than analysis and 

design. The real pay off comes from addressing front-end conceptual issues rather than 

back end implementation issues. The design flaws that surface during implementation are 

more costly to fix than those that are found earlier are. And focusing on implementation 

issues too early restricts design choices and often leads to an inferior product. 

Object oriented development is a conceptual process independent of programming 

languages until the final stages. Object oriented development is fundamentally a new way 

of thinking, is not a programming technique. It serves as a medium for specification, 

analysis, documentation and identifying as well as for programming. 

1.3 Object Oriented Metl1odo/ogy 

This approach has the following stages: 

1. Analysis 

Analysis, the first step of the OMT methodology, is concerned with devising a precise, 

concise, understandable, and correct model of the real world. The purpose of the object­

oriented analysis is to model the real world system so that it can be understood. To do 

this, one must examine the requirements, analyze their implications. and restate them 

rigorously. The successful analysis model states what must be done, without restricting 

how it is done, and avoids implementation decisions. The result of analysis should 

understand problem as preparation for design. 

2 



2. System Design 

During analysis, the focus is on what to be done, independent of how it is done. Durin1 

design, decisions are made about how the problem will be solved. first at a high level 

then increasingly detailed levels. System design is the first stage in which the basi' 

approach to solving the problem is selected. During system design. the overall structur1 

and style of the model will be decided. 

3. Object Design 

The object design phase determines the full definitions of the classes and association: 

used in the implementation, as well as the interfaces and algorithms of the methods use< 

to implement operations. Thus the object design phase adds internal objects fo 

implementation and optimizes data structures and algorithms. 

4. Implementation 

In this phase the classes and the relationships among them developed during objec 

design are finally translated into a programming language, database, or hardwan 

implementation. During implementation, it · is important to follow good softwart 

engineering practice so that tractability to the design is straightforward and so that tht 

implemented system remains flexible and extensible. 

1.4 Problem Definition 

For designing an object-oriented system. the analyst must a!lalyze both static anc 

dynamic behavior of the system. The static part of the system includes the identificatior 

of the classes, their structural properties and hierarchy relationship among classes. Tht 

dynamic analysis deals with the behavioral aspects of the objects. i.e. this analysi~ 

involves state transitions of the objects and events that are sent and received by objects 

These major aspects are dealt with state transition diagrams and event trace diagrams 

These different aspects are modeled using different models. But there is no method. 

3 



which can handle changes in the requirements of this dynamic behavior. Whenever there 

are multiple diagrams then any change in the system may imply that many diagrams will 

have to under go modifications. In such a situation, there is a possibility that partial 

modifications may take place leaving the set of diagrams in an inconsistent state. 

To have a flexible system over changes, we adopted a method of dealing with integrated 

behavior of objects, covering state transitions that the object under go and the events that 

are sent and received by an object and called this method as integrated method. And an 

integrated diagram is drawn to express this integrated behavior. Then the changes would 

he localized and also eliminates the partial modification problem. 

I. 5 Case tool 

Traditional software development tools embody knowledge only about source code, but 

since object oriented analysis and design highlight key abstractions and mechanisms we 

need tools that can focus on richer semantics. Tools help the designer complete his job 

quickly and easily. The case tool developed here, helps the designer in drawing class 

diagrams, Integrated diagrams. It can handle both the static and dynamic behavior of the 

system. It checks the consistency of the system at each step of the development of the 

system and also whenever the system under goes any changes. It can also generate event 

trace diagram from the integrated diagram and finally, it generates source code for the 

system designed from the integrated diagram and helps the analyst in implementing his 

system. 

This case tool is a: combined effort. My main part of the design in the case tool includes 

implementing necessary steps to maintain consistency in the system and allowing analyst 

to modifY his system at any time and then implementing necessary modifications into the 

system to retain consistency in the system. My next part is to supply source code in 

Visual C+ to the analyst for his system implementation. 

4 



1.6 Organization oftlte Report 

Chapter two addresses object oriented concepts, integrated method and presents a 

graphical notation for expressing them. 

Chapter three explains about steps to maintain consistency in an o~jcct-oricnted system. 

Chapter four expiains System's life cycle. 

Chapter five explains the selection of software for the case tool. 

Chapter six addresses project designing. 

Chapter seven explains about how to generate source code for the system and design 

ISSUe. 

Chapter eight explains about how to use the case tool. 



Cllapter 2 

Integrated Metlwd 

A model is an abstraction of something for the purpose of understanding it before 

building it. Because it omits non-essential details, and it is easier to manipulate than the 

original entity. This·chapter describes the concepts and notations involved in developing 

a flexible object oriented system. 

2.1 Modeling Concepts 

Generally, a model is designed from two different points of view, each capturing 

important aspects of the system, but both required for a complete description. They are 

static model and dynamic model. The static model presents the static, structural and data 

aspects of a system and the dynamic model represents the temporal, behavioral, and 

control aspects of a system. For the basic definitions and principles, we referred 

Rambaug method. 

2.1.1 Static Model 

The static model describes the structure of classes in the system - inheritance 'relation 

ships among them, their attributes and their methods. The static model provides the 

essential framework into which the dynamic model can be. placeJ. It captures those 

concepts from the real world that are important to an application. The major aspect of 

static model is classes. 

• Objects 

We define an object as a concept, abstraction or thing with crisp boundaries and meaning 

for the problem at hand. Object serves two purposes: promotes understanding of the real 

world and a practical basis for computer implementation. All objects have identity and 

are distinguished by their inherent existence and not by descriptive properties that may 

have. 

6 



• Classes 

A class describes a group of objects with similar properties. and common behavior. 

Person, Window are examples of classes. An object is an instance of a class. Objects in a 

class will have same attributes and behavior patterns. 

• Inherita~:ce 

Inheritance is a powerful abstraction for sharing similarities among classes. while 

preserving their differences. Inheritance is a relation ship between a class and refined 

version of it. The class being refined is called super class and the refined class is called 

subclass. Inheritance is transitive across an arbitrary number of levels. The term ancestor 

and descendent refer to inheritance of classes across multiple levels. An instance of a 

subclass is simultaneously an instance of all its ancestor classes. The state of an instance 

includes a value for every attribute of every ancestor class. Any operation on any 

ancestor class can be applied to an instance. Each subclass not only inherits all the 

features of ancestors, but adds its own specific attributes and operators as well. 

• Attribute 

An attribute of a class is a common property shared by all its objects. For example, 

Name, Age are the attributes of Person class. Each attribute has a value for each object 

instance. The attribute Age has the value 24 in object John. Different Object instances 

may have the same or different values for a given attribute. Each attribute name is unique 

with in a class. 

• Methods and Operations 

An operation is a function or transformation that may be applied to or by an object. For 

example, open, close, hide are operations on a class Window. All objects in a class share 

same operations. A method is an implementation of an operation for a class. All objects 

in the system interact with each other through these methods. An operation may apply to 

many different classes. Such an operation is polymorphic; that is. the same operation 

behaves differently on different classes. 

7 



• Class Diagrams 

Class diagrams provides a formal notation for modeling classes and their relations to one 

another. These diagrams are concise, easy to understand and arc useful for abstract 

modeling. In a class diagram, a box. which may have as many as three regions, represents 

a class. The regions contain from top to bottom: class name, a list of attributes, and a list 

methods. Each operation name may be followed by optional details such as argument list 

and result type and the attribute name may be followed by the optional details such as 

type and default value. Attributes and methods may not be shown and it depends on level 

of detail desired. Each inheritance relationship is represented in the diagram by an arrow 

from the super class to subclass. 

For example, consider the Bank system where money can be drawn and deposited. The 

object classes are Ledger, Counter, and Customer. Every Customer must have some 

minimum amount in his account always. For every Customer of the bank. bank maintains 

a ledger. He can draw, or deposil cash in the bank. The customer can close his account, as 

he desires. Let us assume that !he requirements analysis has been performed and the 

analysis document consists of the class diagram which is as shown below: 

Counter Ledger Customer 

char name; char type; char name; 
int counter.no; int ledger.no; char address; 

int acc.no; 

void submit( ) void close( ) void open() 
void open() void draw() void close( ) 
void issue( ) void save() 

void open() 

Fig.2.1 Class Diagram 

8 



Ledger, Customer, and Counter are the classes in the Banking System. The methods of 

the class Ledger are draw, save, close, and open and the attributes are type and ledger no. 

Counter class has the attributes count no., and name and the methods arc issue, open. 

Similarly, the class Customer has the attributes name, address and account no., and the 

methods are close, and open. 

2.1.2 Dynamic Model 

The aspects of the system that are concerned with time and changes are dynamic model, 

in contrast with the static model. The major aspects of dynamic model are states, and 

events. 

• Events .. 

An event is something that happens at a point in time, such as User depresses left button 

or Flight 123 departs from Delhi. An event has no duration. It is instantaneous. One event 

may logically precede or follow another. An event is one way of transmission of 

information from one object to another. That is it causes a transition 

• Transition 

State transition is defined as change of a state, which is caused by an event. Even though 

the event causing the transition is specified, it is usual to leave unspecified the object 

causing the event and the state in which it can cause the event. As suggested by 

Rambaugh, in the later stages the various diagrams have to be combined to arrive at such 

information. 

• States 

A state is an abstraction of the attribute values of an object. Set of values is grouped 

together into a state according to properties that affect the gross behavior of the o~ject. 

For example, the state of a Bank is either solvent or insolvent depending on whether its 

assets exceed its liabilities. A state specifies the response of the objects to input events. 

The response of an object to an event may include an action or a change of state by the 

object. A state corresponds to the interval between two events received by an object. 

9 



Event represents points in time and state represents intervals of time. Both events and 

states depend on the level of abstraction used. 

• Scenario and Event Trace 

A scenario is a sequence of events that occur during on particular execution of a system. 

The scope of scenario can vary, it may include all the events in the system or it may 

include only those events that are generated by certain objects in the system. For the 

Banking system, the scenario for drawing cash from the bank is, 

Customer submits the Form 

Counter verifies the Form 

Ledger debits from the Account 

Counter issues the Cash 

The sequence of events and the objects exchanging events can be shown in an augmented 

scenario called an Event trace diagram. This diagram shows each object as a vertical line 

and each event as a horizontal arrow from sender to receiver object. Time increases from 

top to down. The following figure shows the event trace diagram for drawing cash in the 

banking system 

Customer Counter Ledger 

submits .. .. 
draw .. ... 
ISSUe 

~ 

~ 

Fig~2.2 Event Trace Diagram 

Similar event traces can be drawn for closing and depositing. 

10 



• State Transition Diagrams 

A state transition diagram relates to states and events. When an event is received, the next 

state depends on the current state and as well as the event. A state diagram is a graph 

whose nodes are states and whose directed arcs arc transitions labeled by event names. A 

state is drawn as a rounded rectangle containing the optional name. A transition is drawn 

as an arrow from the receiving state to the target state; the label on the transition is the 

same of the event causing the transition. The state transition diagrams for each of the 

classes in the library system are follows: 

idle 

submit 

Fig.2.3 State Transition Diagram for class Counter 

II 



( 
idle 

1 

l J 

close open save draw 

~~ , ,, ,, 
[ frozen ) ( entering ) ( crediting ) ( debiting ) 

Fig.2.4 State Transitio11 Diagram for class Ledger 

open close 

Fig.2.5 State Transition Diag;amfor class Customer 

Combining all these state transition diagrams of each class in the system and the event 

trace diagrams gives the complete description of dynamic behavior of the system. But 

there is a problem of handling these multiple diagrams over changes. 

12 



2.2 Partial Modification Problem 

Whenever there arc multiple diagrams in the system, then any change in the system may 

in1ply that many diagrams will have to under go a change. In such a situation. there is a 

possibility that partial modification may take place leaving the set of diagrams in an 

inconsistent state. 

For example, in the above banking system. if the analyst wants to change the policy of 

the accepting_ deposits from the customer. Suppose the new rule is that no customer is 

aliowed to deposit less than 10.000 rupees. To reflect this change in the system. the state 

transition diagram of Ledger is to be modified. and in the class Counter a new transition 

'd~posit' and a state 'counting' has to be present. 

If it happens that only the state transition diagram of Ledger is modified to the one as 

shown below. then we see that the set of state transition diagrams are in inconsistent 

state. Clearly if the changes were to he made at one place then there would be no 

inconsistency. 

idle 

close open save draw 

can_ accept 

Fig.2.6 Modified State Transition Diagmm for class Ledger 

13 



Hence, we postulate that the different aspects of dynamic behavior must not be 

segregated and analyzed separately but all the aspects must be considered together. That 

is the analysis must deal with an integrated behavior of objects covering the state 

transitions that an object undergoes and the events that are sent and received by objects. 

If this were to be done, then any change to be effected would be in one place and also 

eliminates the partial modification problem. 

To achieve this, the state- transition diagram should include not only the states under 

going transition but also the states of objects that are causing the state transitions. For this 

purpose we first define the augment state transition diagram (ASTD), then the scenario 

state transition diagram (SSTD), and lastly the Integrated diagram (ID). We have called 

this method as integrated method. 

2.2.1 Augme11ted State Transitio11 Diagram 

This diagram specifies 

state transition of an object 

class, an object of which causes the event 

state in which it can cause the event 

If the event is caused by object belonging to more than one class, than ASTD consists of 

state transition of an object 

all the classes, an object of which cause the event 

state in which each of these objects cause the event 

For example, in the Banking system, the ASTD for the state transition of Counter is as 

shown below. Customer in state can draw state causes the event submit when the 

Counter is in idle state. The Counter then moves to checking state. 

1-t 



Counter Customer 

idle ( can draw J 

suhm it 

Fig.2.7 Augmented S/(1/e Transition Diagmm 

2.2.2 Scenario State Transition Diagram 

This diagram is drawn as follows 

Start with the first event of the event trace and draw the ASTD for the object for which 

goes through a state transition when this event taken place. Pick up the next event and 

extend the existing state transition diagram with states. transitions and events to include 

the ASTD for the state transition caused by the new event. Continue till the events in the 

event trace is exhausted. 

For the banking system, consider the event trace for drawing cash as shown in figure 8. 

The corresponding SSTD is as shown below: 

Customer Counter Ledger 

can draw ) idle idle 

Submit draw 
i-············ ~-····-···--·······-·················· .... 

Fig.2.8 Scenario State Transition Diagram . 

15 



For ihe banking system, consider the event trace for drawing cash from the bank shown 

in fig.2.2. The first event is submit. This causes a transition in Counter. The ASTD for 

Counter will be as shown in fig.2.7 above. The next event is checkin~. This causes a 

transition in Ledger from idle state to dehiting state. This implies that a new class 

Counter has to be added and the ASTD for Counter has to be included in our earlier 

diagram. The SSTD is as shown in fig.2.8. 

2.2.3 Integrated Diagram 

An integrated diagram consists of all the Scenario State Transition Diagram of a given 

system. That is, it includes the scenario state transition diagrams for all the event traces of 

the system. In this diagram, the states and the transitions arc represented as they arc 

represented in state transition diagrams. The class name to which the object belongs is 

written above the ASTD of the object. The events are denoted as dotted lines with an 

arrowhead from the state, which causes the event to the transition. caused by the event. 

For the library system, the integrated diagram is as shown in the fig.2.9. Assume now. as 

before that there is a change in depositing procedure. Here. we trace the sequence of 

events and the state changes for deposit. All events in this sequence are dropped. And the 

modified integrated diagram is as shown in fig.2.1 0. · 

Thus, the integrated diagram gives complete specification of the dynamic behavior of the 

system, which includes all different behaviors of all objects of all clasSes in the system. 

When the system undergoes a change in its dynamic behavior then the changes to be 

done will be at only one place, the integrated diagram. Thus, any change can be reflected 

without giving rise to any partial modification. 

16 



Customer Counter Ledger 

iJic idle 

submit draw 

debiting 

ISSUC 

save 

crediting 

close 

close 
frozen 

open 

open 

open creating 

Fig.2.9 1/ltegrated Diagmmfor Bank !))stem 

17 



Customer Counter Ledger 

idle idle 

submit draw 

checking debiting 

............ ) ........ .:... ISSUe 

save 

..................................................... 9.~PQ$.iL amt check 
'---------' 

··············•························································---····· .....•.•....•................... ···················!·································· frozen 

: ................................ open. .................................................. . 

entering 

··········-·····-·-······1 .. <:.~.~-~-~<:.~P.! ....................... . 
··-·-···-······-·················------·-····~·--·····-···--··J 

open 

crediting 

creating 

.counting .............. . 

Fig.2./0 Modified Integrated Diagramfo~ Bank System 

18 



Chapter 3 

Consistency 

Consistency is one of the main aspect to be considered in Object oriented analysis of a 

system. Without consistency, how well the system is designed, it becomes irrelevant. 

Consistency should be maintained while developing the system and as well as when the 

system undergoes some modifications. All systems are susceptible to change, and object 

oriented systems are no exception. However, object oriented systems are to provide 

stability over changes in the requirements. The impact of change is supposed to be easily 

identified, bounded and assessed. Even though different methods of o~ject oriented 

analysis has been studied and compared, the study does not include the efficiency with 

which these methods handle changes in the requirements. The main work has been to 

identifY the changes that may take place in the requirements and study how ea<>ily these 

changes can be incorporated in the system. The change can be in static part or in the 

dynamic part. However, this chapter explains what are the main steps to be taken while 

developing an object oriented system in the integrated method described in the previous 

chapter. 

The consistency of object-oriented models can be judged by considering relations among 

entities in the model. An inconsistent model has the representation in one part that is not 

correctly reflected in the other portions of the model. To assess the consistency in the 

static part of the model, each class and its inheritance relation with other classes should 

be examined. The class diagram can be used to facilitate this activity. 

-

To represent the dynamic behavior of a system, integrated method proposes an integrated 

diagram, which combines all different behavioral aspects of all objects at one place, 

which eliminated partial modification problem and changes are localized. To assess 

consistency in the dynamic part of the system, this diagram must be examined. 

To design a flexible and consistent system in this integrated method, the main aspects to 

be considered in designing are the following: 

19 



3.1 Duplication of Names 

For clear understanding and for well maintenance of the system. the duplication of class 

names. state names, and event names should be avoided. 

3.2 Transitions and Events 

As the analyst is given freedom to consider as many states as he desires, it may happen 

that he might consider an irrelevant event or transition. To avoid this we restricted the 

transitions and the events that the analyst draws in the integrated diagram. The analyst 

can include in the diagram only the transitions that come from a state, which is either 

starting state of the class to which it belongs, or a member of some transition. which is 

already included in the diagram. Similarly, the analyst can include only those events into 

the diagram whose causing state is either starting state of the class to which it belongs, or 

a member of some transition which is already included in the diagram. As the analyst 

knows well the real world problem for which he is modeling, this way of implementing 

the design is always possible. This way of designing helps in considering the transitions 

and events in systematic way and eliminates many invalid attempts. Transition included 

in the diagram must be a valid transition, i.e. it must take place between two states 

belonging to same class and there should be only one transition in each direction. 

Similarly, an event should be such that, causing state of the event must belong to a 

different class from the class the transition states of the event belongs to. Every event in 

the diagram must be a possible event to occ~r; i.e. it must be one of the methods in the 

class to which the transition states of the event belong. 

3.3 Handling Modifications 

• Change of Names 

For the convenience, the analyst may change state name. class name and event name. !n 

such a case. before changing the name, the new name to which the object name has to 

change must be checked for duplication of names and if event name has to he changed. 

then the modified event also should he possible event to occur. 

20 



• Deletion 

For neat design and reduce complexity in the system. analyst may delete some state or an 

event or a transition. Greater care should be taken to retain the consistency in the system 

after deletion. 

Whenever, a state is deleted 

All those events and transitions that are having this state as a member should be deleted 

All those states that are effected by the deletion of events and transitions in the previous 

step 

Repeat the same for each state deleted in previous step 

For example in the following system the part in the rectangle should be deleted on 

deletion of state S2 in class C3, i.e. the states S2 in C2. S2 in C3. the event E2. and the 

transition from S3 to S2 in c3 must be deleted. 

Cl C2 C3 

( SI ) 

SI 

Fig.3.l Integrated Diagram of an Arbitrary System 

21 



Whenever, an event or a transition is deleted, 

If the direction of the transition caused by the event is not towards the starting state of the 

class it belongs. resulting state of the transition is deleted 

All the steps of deleting state should be repeated for the state deleted 

Thus, the integrated diagram and class diagrams can be used to examine the consistency 

in the system. 



Cltapter4 

Software Selection 

The software world has changed a lot in recent years. The programming in windows has 

brought a revolution in the software field. Visual C++ is one such tool for programming 

in Windows. Microsoft Visual C++ is now an established mainstream product. 

4. 1 Windows Programming 

Programming for Windows is different from old-style batch-oriented or transaction­

oriented programming. It has many new features such as better message passing method. 

effective memory management. It also focuses on Resource Based Programming. The 

program in Windows, processes user input via messages from the operating system and 

not like in DOS where the program calls the operating system to get the user input. 

4.2 Microsoft Developer Studio 

The developer studio is a Windows-hosted integrated development environment that's 

shared by Visual C++, Microsoft FORTRAN. and some other products. In this a project 

is a collection of interrelated source files that are compiled and linked to make up an 

executable Windows based program or a DLL. 

. ·- 4.3 Visual-C++ 

Microsoft Visual C++ is two complete Windows application development in one product. 

It helps to add today's technology to the applications. Many features are there in Visual 

C++ that makes programming much easier. 

Visual C++ version 4.0 adds extensive debug support to the C run-time library. letting 

you step directly into run-time functions when debugging an application. The library also 

,~ 

-·' 



provides a variety of tools to keep track of heap allocations, locate memory leaks, and 

track down other memory-related problems. This new architecture: 

Offers run-time developers full access to the debugging environment. 

Provides MFC developers with a smooth transition to both new and existing C++/MFC­

specific features. 

The various features are: 

1. AppWizard 

App Wizard is a code generator that creates a working skeleton of Windows application 

with features, class names, and source code filenames that you specify through dialog 

boxes. App Wizard code is minimalist code; the functionality is inside the application 

framework base classes. Its purpose is to get started quickly with a new application. It is 

capable of generating an OLE control project. 

2. ClassWizard 

Class Wizard is a program that's accessible from the Developer Studio's View Menu. 

Class Wizard takes the drudgery out of maintaining Visual C++ class code. Class Wizard 

writes the prototypes, the function bodies, and the code for new class, new virtual 

function, or a new message handler function to link the Windows message to the 

function. It can update the class code that you write, so that maintenance problem is 

avoided. 

3. Component Gallery 

The component gallery is a new feature that lets you share sofh·are components among 

ditTerent projects. It manages three types of modules. OLE ControL C++ Source 

modules, Wizard modules. All component gallery items can be imported from and 

exported to OGX files. These files are new distribution and sharing medium for Visual 

C++ components. 

14 



4. OLE Control 

MFC now integrates the OLE Controls Development Kit (CDK) with the rest of MFC 

and supplies complete OLE control container support. 

With the new OLE controls container. you need not understand all the details of using 

OLE controls in container applications. Support is now based on the CWnd class, which 

lets you create both the container and the control sides. In MFC version 4.0. an OLE 

control in a window is seen as a special kind of child window with CWnd functions. 

including CWnd::CreateControl, which dynamically creates an OLE control rather than 

an ordinary window. 

Other OLE controls support includes creation from a dialog template. preloaded OLE 

control files for better perfom1ance, and transparent keyboard translation in 

IsDialogMessage. 

The Visual C++ dialog editor supports placing OLE controls m a dialog template 

resource. 

OLE controls now use the same run-time library and debug heap as the core of MFC. 

5. Microsoft Foundatio11 Class (MFC) 

With the latest version ofMFC: 

You can create full-featured Windows 95 and Windows NT applications that meet the 

Windows 95 logo requirements. 

You get Windows Sockets and MAPI support for connectivity to networking and e-mail. 

Fast-integrated data access lets you create .. powerful. database applications and 

components. 

25 



Cltapter 5 

Project Designing 

Designing encompasses the disciplined approach to invent a solution for some problem, 

, thus, providing a path from requirements to implementation. The requirements of the 

. problem here are to develop a case tool, which helps in designing a flexible and 

consistent object-oriented system. This chapter explains how the case tool does the 

consistency checks while developing the system and how it retains consistency when 

system under goes a change. 

5.1 Data Structures Used 

In developing this case tool, mainly four classes had been defined. They are CCiass, 

CState, CSevent, and CEventx. The class CClass gives the class information. i.e., this 

gives class name, starting state name of that class, attributes and methods. The class 

CState contains state information i.e., state name, class name to which the state belongs 

to, and the rectangle drawn for the state. The class CEventx contains transition 

information, i.e. event id, name of the state which is under going transition, name of 

resulting state, and class name to which these states belongs to. The class CSevent 

contains event information i.e. event name, name of the state causing an event and name 

of the states under going transition. 

We have maintained four lists one for each of the above classes. 

Consider an example of a system of three classes Cl, ·c2, and c3, contains two states say 

s 1 , and s2 belonging to class c I, one state say s I belonging to class c2, and one state say 

sl belonging to class c3. Suppose that in this system, the state sl in c2 causing an event 

e I which intern causing a transition from s 1 to s2 in c I. The integrated diagram of this 

system is given below. This example will be considered in the further sections of this 

chapter. 

26 



C3 

0 

Fig.5./ An Integrated System 

5.2 Steps to Mai11tain Consistency 

A system becomes meaning less if there IS no consistency m the system. Hence 

consistency is one of the important factor to be considered while designing. 

5.2.1 Duplication of Names 

State name must be unique with in a class. Hence, whenever user attempts to draw a state 

and enters state information, the case tool checks whether that name is duplicated in the 

class chosen or not through a function calls. If the name is repeated in that class, the user 

will be prompted with an error message through a message box without drawing the state. 

Otherwise, a rounded rectangle is drawn with state name at the center of the rectangle. 

Similarly, as the user enters event name and clicks on the dialog box which accepts the 

_ event information, again an input of duplicated name will be warned through a message 

box without drawing the event. Otherwise. the event will be drawn as described above. 

For example, the following figure shows how the error message is displayed when the 

_ user tries to create state s I in the class c 1. in which already such state exist. 



green £i 

Fig.5.2 An error message for Duplication of State Name 

The following are functions used to implement this check: 

/. CheckSname: 

This function takes a CString, and a CPoint members as arguments and returns null or 

CState node. The first argument is the name of the state about which information is 

required and the second argument is a point in the where the state supposed to be located 

in the client area. This function checks the state list and returns null if there is no state 

with that name at that point on the client area else returns the particular node whose 

information matches with the given arguments. Since a point in the client area is unique, 

when it returns null, it means that there is no state with that name in that class. If it 

returns a node, it means that the name is a repeated one. 

2. CheckC11ame 

This function takes a CString members as an argument and returns nuJI or CClass node. 

The argument is the name of the class for which the test has to be done. It checks the 

class list and returns null if there is no class with that name and returns the particular 

node whose name matches with the given name. When it returns null, it means that there 

is no class with that name. If it returns a node. it means that the name is a repeated one. 

3. CheckEname 

This function takes a CString members as an argument and returns null or CEvent node. 

The argument is the name ofthc event about which the test has to be done. It checks the 

event list and returns null if there is no event with that name and returns the particular 

:28 



node whose name matches with the given name. When it returns null, it means that there 

is no event with that name. If it returns a node. it means that the name is a repeated one. 

5.2.2 Stale Check 

This is done whenever the analyst tries to draw a transition or an event. This check 

checks whether a state is a starting state of the class to which it belongs. or a member of 

some transition. 

This is implemented in this case tool through a function transcheck, which takes CState 

ncde as an argument and returns one or zero. This function first checks the class list to 

verify for the starting state and if it fails then searches the transition list and returns one if 

the state is a member of some transition or else returns zero. 

5.2.3 Transition Check 

Transition must take place between two states belonging to same class. So. when the 

analyst attempts to draw an automatic transition and chooses two states. the case tool 

checks the following: 

Does state check for the state first clicked through the function transcheck 

checks whether the two states selected belongs to same class or not 

checks whether there already exist a transition or not between those two states 

On failing of any of the above checks, the case tool alerts the user with an error message 

through a message box while canceling the option chosen. Otherwise, transition is drawn 

as described above. For example, the following figure shows the error message box, 

which appears when user tries to draw a transition between s 1 of c 1 and s 1 

29 



green £1 

Fi:.:. 5.3 A 11 error message when 1111 lnl'ttfitl Tmnsition is attempted 

5.2.4 Event Check 

In this. a check is done whether an event is valid or not. That is. it checks whether the 

class of the state causing the event is different from the class of the states undergoing 

transitions, and state check is done to the causing state. This check is done when the user 

chooses event option and clicks on three states. This is implemented through a function 

calltranscheck with the causing state as an argument. Then it checks whether the event is 

possible to occur or not which is done through the function call possihleevenl. This 

function takes event name as argument and then checks the methods of the class to which 

the transition belongs. Depending on the result of this check either it g1ves an error 

message or draws an event. 

Thus. this case tool <I . oids invalid states. events, and transitions at the first stage it self 

and makes the analyst to develop a consistent system. 

5.3 Modification 

To modify a state name, the analyst has to select a state and then select the option modify 

from the edit menu of the integrated diagram. Then. the case tool takes the new name and 

dm:s duplicated name check for that name and depending on the result of the check either 

it modifies the system and redraws ·whole system or shows unmoditied original system by 

giving an error message box. If it moditics the state. then the case 1t1ol chL·cks the event 

30 



list and modifies all those events and transitions' information, which contain this state as 

a member. To keep track each class's starting state, I have considered one member in the 

class which contains starting state name. If the state being modified is the starting state of 

some class, Then simultaneously, this information is also modified. 

Whenever a class modified, the case tool automatically changes the class information 

stored in states and events to make the system consistent. 

5.4 Deletion 

Whenever, an entity is selected for deletion from the integrated diagram. then the case 

tool creates three lists. one for states. one for events. and one for transitions. Then it 

examines all the events, states. and transitions in the diagram through the old lists and 

inserts all effected states, events and transition into the corresponding new lists. Then it 

highlights all those members that are inserted into the new lists and gives a dialog box 

which, as shown below, warns that all the highlighted part of the integrated diagram will 

be deleted. Then, depending on user's interest case tool responds. Whenever a class is 

deleted from class diagram. then the related information, i.e. related states. events, and 

the transitions will be deleted automatically and displays the modified system. The 

function calls for deleting state, transition, event, and class are deletes/ate, deletetrans, 

deleteevent, and deleteclass respectively. 

Insertion of state or event or transition is same as drawing that particular object. 

Thus, the case tool allows analyst to modify his system according to his interest and also 

takes required steps to maintain consistency in the system. 

3 1 



Fig.5.4 A warning message before Deletion 

32 



Clzapter6 

Ge11erating Code 

Writing code is an extension of the design process. Writing code should be straight 

forward, almost mechanical because all the difiicult decisions should already have been 

made during design. The code should be a simple translation of the design decision into 

peculiarities of a particular language. Decisions do have to be made while writing code. 

but each one should effect only a small part of the program so they can be changed easily. 

Nevertheless the program code is the ultimate embodiment of the solution to the problem. 

so the way in which it is written is important for maintainability and extensibility.Thc 

case tool developed also generates source code in VC++ for the system designed. This 

helps the analyst in implementing the system and in verifying the correctness of the 

system, so that he can modify his system design accordingly. 

The code generated must represent both the static part as well as the dynamic part of the 

system. 

6.1 Design Description 

6.1.1 Code for Static Part 

For generating code for the static part of the system, the class list created while 

developing class diagram is used. Each nnde in the list is processed and the class 

information is coded, i.e. class name, attributes and methods of each class, which is same 

as C+ + code for a class definition. 

6.1.2 Reaso11s for cltoosi11g VC++ 

To implement the dynamic behavior, the sequence of events taking place in the system 

and states causing these events should be considered and represented sequentially. As the 

each event is nothing but a method in some class. there should be a way. to make an 

object of one class to signal an event or method of some other object and also to make 

some object to wait for an event to occur. But there is neither a suitable a data structure 



nor a direct/indirect method to implement this using C++. But in VC++ there are two 

predefined data structure called CWinThread and CEvent classes makes our work easy. 

Each instance of CWinThread class is called thread, which is nothing but an execution 

path. The objects of CEvent can be used to make two threads communicate with each 

other. In addition to this the case tool is itself developed in VC++ so the obvious choice 

has become VC++. 

6.1.3 Code for Dynamic Part 

For each class in the system, a thread is created and a list of CEvent objects is also 

maintained. For each event in the event list created while developing integrated diagram, 

one corresponding CEvent member is created and inserted into the list. The threads 

created are used to make the objects communicate each other. The first event drawn in 

integrated diagram is taken as the first event to take place in the system. The first thread 

is made to wait for this first event by making it to wait for the corresponding CEvent 

object to signal. Then from the integrated diagram the sequence of events is taken into 

consideration and the threads are made to wait and signal to execute using corresponding 

CEvent objects. As execution of these threads describes the dynamic behavior of the 

system, the code of these threads is also generated. Generating source code using case 

tool is explained in the next chapter. 

34 



Chapter 7 

The Case Tool 

The case tool is a graphical user interface; helps in analyst in object oriented modeling a 

design. This can handle both static and dynamic behavior of the system. It designs static 

model of the system by allowing system analyst to draw class diagram hy specifying the 

class attributes, and class methods. It designs the dynamic behavior of the system by 

allowing system analyst to draw integrated diagram of the system hy giving states, 

events, and transitions information. At each step of the development of an object oriented 

system necessary checks have been done to maintain the consistency of the system. 

Whenever the system is modified, this case tool does all required consistency checks and 

retains the consistency of the system. 

7.1 How to use the Case Tool 

This section explains how an analyst avail this case tool for drawing class diagram and 

integrated diagrams by designing the same Bank System described in chapter 2. When an 

analyst runs this application, a menu appears which is as shown below, has the options to 

create a new model or open an existing model. On choosing open model option, it opens 

an existing model and prompts the analyst to open either class diagram or integrated 

diagram by showing a dialog box. On choosing class diagram or integrated diagram, it 

opens corresponding diagrams. Then according to his interest the system can be 

modified. On choosing new model option, the case tool prompts the user to enter model 

name by showing a dialog box which is as shown below. As he enters the model name, 

and clicks ok, the case tool creates a directory on that name and opens menu for class · 

diagram. 

35 



MODEL E3 

Fig.7.1 Dialog Box used to create a model 

7.1.1 Drawing Class Diagram 

• Class 

To draw a class, first 

Choose class option from draw menu 

l. Click left mouse button on the desired place of the client area 

2. Right click on the rectangle appeared when the left mouse button is clicked 

Enter the class information in the dialog box displayed when right mouse button 

is clicked 

3. Click on ok of dialog box 

This way all the classes participating in the bank system can be drawn. 

• lnlteritance 

For drawing an inheritance relationship between two classes 

I. choose inheritance option from links menu 

2. Click on the super class and then on the subclass 

36 



Por every invalid input and every attempt of creating an invalid inheritance relation, the 

case tool warns the user through an error message displayed on a message box. The 

analyst is given an option for deleting or modifying a class in his class diagram. lie is 

also provided with an option of saving his class diagram to a file. 

7.1.2 Drawing Integrated Diagram 

Aller creating and saving the class diagram. menu for integrated diagram can be opened 

choosing the lSD option from the window menu of the class diagram. Following the 

procedures given below can draw all states. events and the required transitions for 

representing dynamic behavior of the system: 

• State 

To draw a state: 

choose stale option from draw menu 

2 click left mouse button on any where on the client area 

enter the state name and select class name in the dialog box displayed on left 

mouse button click 

3 Click on ok button of dialog box 

Then, a rounded rectangle will be drawn with the state name at the center. 

• Eve11t 

To draw an event: 

choose event option from draw menu 

2 click on the state which is causing the event 

3 click on the state which is undergoing transition 

4 click on the resulting state of the transition 

Enter the event intormation in the dialog box displayed that appears alter clicking 

on the resulting state. and click on ok button of dialog box. 

37 



Then, first transition is drawn and an arrow from state causing event to the transition is 

drawn. 

• Transition 

To draw a transition: 

Choose automatic transition from draw menu 

click on the state, which is undergoing transition 

Click on the resulting state of the transition 

Then, an arrow is drawn from first state to second state chosen. 

For example, the SSTD for issuing money is drawn using case tool is as follows: 

-~ g1een · (Unlllled( AQEJ 

submit 

Issue 

Fig.7.2 SSTD for Bank System using Case Tool 

38 



Thus, class diagram and integrated diagram can be drawn using the case tool. 

7.1.3 Handling Modifications 

After the analyst designs his system, it may always happen that he may modify his 

system. In which case, the system should be flexible enough to adapt these changes. This 

case tool even allows the analyst to modify his system at all times. 

I. Modification 

The analyst can modify or change any state/event name. 

To change state/event name: 

double click left mouse button on the state/event to be deleted, which highlights 

(draws with red color) the state/event selected which is shown below when the 

state s2 is chosen. 

Choose modify option from edit menu, 

Enter the name to which the state/event name has to be changed in the dialog box 

appeared on choosing modify option. 

2 Click on ok of dialog box. 

Then the case tool takes the new name and does duplicated name check for that name and 

depending on the result of the check either it modifies the system and redraws whole 

system or shows unmodified original system while giving an error message box. 

For example. the following shows the modified system when the state can_draw of 

customer is changed to draw 

39 



+ goeen • JUnlllledl PJr:l D 

draw el 

issue 

Fig.7.3 Modified SSTD for the Bank System 

2. Deletion 

A state or an event, or a transition in the system can be deleted by following the steps 

given below. 

double click left mouse button on the state/event/transition to be deleted, which 

highlights (draws with red color) the state/event selected 

Choose delete option from edit menu, 

Then all the events, states, and transitions that get effected due to the deletion of 

state/event/transition chosen will be highlighted and prompts the analyst that deletion of 

state/event/transition chosen will imply that all the highlighted part also will be deleted to 

maintain the consistency in the system. On clicking on ok of dialog box. deletes all the 

highlighted part shown in the above step and shows the modified system. On clicking on 

canceL it shows the original system without any modifications. 

40 



Whenever a class is deleted from class diagram. then the related information, i.e. states. 

events, and the transitions will he deleted automatically and displays the modified 

system. 

For example. the following figure shows the modified system after deleting the state 

issuing in the class Counter 

••• green • IUnlrlledl .. r:l E'J 

Fig.7.4 SSTD for Bank System after Deletion 

insertion of state or event or transition is same as drawing that particular object. Thus, the 

case tool allows analyst to modify his system according to his interest. 

7.1.4 Generating Code 

To generate source code for a system designed 

choose the option generate code from the coding menu of integrated diagram 

Then. you can see the whole source code on the client area. The analyst can also save to a 

file the code generated by selecting the option save tojile from coding menu. 

41 



Cltapter 8 

Conclusion 

As aforesaid in the previous chapter, integrated method provides a way to combines all 

different aspects of the dynamic behavior of the system. Thus, helps the analyst to 

incorporate changes in the requirements of the system by modifying only the integrated 

diagram. 

The case tool presented is a GUL helps in developing object-oriented system in the 

integrated method. It helps in representing static and dynamic behavior of the system by 

enabling an analyst to draw class diagram and integrated diagram. It develops an efficient 

system by checking consistency at every step. It also allows analyst to modify system and 

then again retains consistency in the system. It generates source code for the system 

designed and hence provides a way to implement the system. It gives a simple way of 

designing by providing an option of merging two systems designed using the case tool. 

Finally, it also provides an option of generating event trace diagrams ·from integrated 

diagram. 

42 



SOURCE CODE 

cltu.<ie.'l u.'letf For M(}(/ijiClltion 11nd deletion 

I. Clttss For Stttte 

Cltus Definition 

#include "statc.h" 
#include "stdafx.h" 
#include "project.h 
class Definition 
class CState: public CObject 
{ 
protected: 

public: 

char sname[20]; 
CState(); 
CRect rc; 

char cname[20]; 
int ar, al, br, bl, I, r, tag : 
CState ( CString n I, CString n2. CRect &r I ): 

} ; 

CString GetName(); 
Virtual -CState(); 
void Draw ( CDC *pdc ); 
estate(); 

. void SetName( CString &n ); 
CRect GetRect( ); 

Metltods Declaration 

CState :: CState ( ) 
{ } 
CState :: CS~ate ((:String n 1, CString_n2, CRect &rl )_ 
{ 

strcpy(sname, n I); 
strcpy(cname, n2); 
rc=rl; 
ar=O; 
ai=O; 
tag=O; 
br=O; 
hi=O; 
1=0: 
r=O; 

4, 
-' 



CState :: -estate() 
{ } 

CString CState :: GetName() 
{ 

return sname; 
} 
CString CState :: GetName() 

I 
f 

return sname; 

void CState :: Draw(CDC *pdc) 
{ 

CPoint pr, pr2; 
pr.x=16; 
pr.y=12;· 
pdc->RoundRect(rc, pr); 
pr=rc.TopLeft(); 
pr.x=pr.x+6; 
pr.y=pr.y+6; 
pr2=rc.BottomRight(); 
pr2.x=pr2.x-6; 
pr2.y=pr2.y-6; 
pdc->DrawText(sname,-1 ,&CRect(pr.x,pr.y,pr2.x,pr2.y).DT _CENTER); 

} 
CRect CState :: GetRect() 
{ 

return rc; 
} 
void CState :: SetName(CString &n) 
{ 

strcpy( sname,n ); 
} 

2. Class For Event 

Class Definition · 

class CSevent: public CObject 
{ private: 

char sename[20]; 
public: 
char s I [20],s2[20],s3 [20]; 

int el,p; 
CPoint start, end, bet I, bet2: 
CSevent(); 
CSevent( CString &n. CString n I. CString n3, CString n4. int n2, CPoint &st. CPoint 

&en, CPoint &a, CPoint &b): 
CString GetName(): 

44 



I· 
(. 

void SetName(CString &n); 
--csevent(); 
void Draw(CDC *pdc); 

Metluul\· Dec/amtion 

Csevent :: CSevent() 
{} 

Cscvent :: CSevent(CString &n, CString n I, CString n3, CString n4, int n2, CPoint &st. CPoint 
&en, CPoint &a, CPoint &b) 

} 

strcpy( sename,n ); 
strcpy(s I ,n I); 
el=n2; 
strcpy(s2,n3); 
strcpy(s3,n4 ); 
start=st; 
end=en; 
betl=a; 
bet2=b; 
if((beti .x==O && betl.y=O)&&(bet2.x==O && bet2.y==O)) 
{ P=O; 
return; 
} 
if((betl.x!=OIIbeti .y!=O) && (bet2.x==O && bet2.y==O)) 
{ 

p=I; 
return; 

} 
if((betl.x!=OIIbetl.y!=O) && (bet2.x!=OIIbet2.y!=O)) 

p=2; 

Csevent :: --csevent() 
{ } 

CString Csevent :: GetName() 
{ 

return s~.mame; 

3. Class For Transition 

Class Definition 

class CEventx: public CObject 
private: 
int ename; 
public: 
char s I [20], s2[20]; 
CPoint start, end. bet!. bet2: 
BOOL tag: 

45 



CString cname; 
int l,r,dir; 
CEventx(); 
CEvcntx(int &n,CString &n I ,CString &n2,CPoint &st, Cpoint &en, CPoint &a I ,CPoint 

&a2); 
CEventx(int &n,CString &n I ,CString &n2,CPoint &st, CPoint &en); 
int GctName(); 

I· 
{. 

void SetName(int &n); 
void Draw(CDC *pdc); 
--CEventx(); 

Metlzotl\· Declaration 

Ccventx :: CEventx() 
{ } 
Ccventx :: CEventx(int &n,CString &n I ,CString &n2,CPoint &stCPoint &en) 
{ 

} 

ename=n; 
strcpy(s I ,n I); 
strcpy(s2,n2); 
start=st; 
end=en: 
tag=FALSE; 
1=0; 
r=O; 

Ccventx :: CEventx(int &n,CString &n I ,CString &n2, CPoint &st,CPoint &en,CPoint &a I, 
Point &a2) 

} 

ename=n; 
strcpy( s I ,n 1 ); 
strcpy(s2,n2); 
start=st; 
end=en; 
betl=al; 
bet2=a2; 
tag= TRUE; 
1=0: 
r=O; 

void Ceventx :: Draw(CDC *pdc) 
{ 

if(tag=FALSE) 
{ 
pdc->Move To( start.x,start. y ); 
pdc-> Line To( end .x,end. y ); 
Draw Arrow( start,end, pdc ): 
l 
l 

else 

46 



pdc->MoveTo(start.x.start.y); 
pdc->LineTo(bet l.x,bct l.y): 
pdc->MoveTo(bct l.x,bct l.y): 
pdc->LincTo(het2.x.bct2.y): 
pdc-> MoveTo( bet2.x.bct2. y ): 
pdc->LineTo{ cnd.x.cnd.y): 
DrawArrow(bct2,end,pdc): 
} 
return; 

int Ccvcntx :: GetName() 

l 
I 

return ename; 

void Cevcntx :: SetName(int &n) 

l 
I 

ename=n: 

Ceventx :: -CEventx() 

{ } 

Classes Used For Generating Code 

1. Classes Used For Coding Dymtmic Behavior 

Cltuses Definition 

class Event : public CObject 
{ 
public: 

}: 

CString c 1, c2, s I, s2, s3; CEvent e; 
Event() 
{ } ; 

class startstate : public CObject 
{ 
public: 

CString cname,starts; 
} : 

Lists Used For Implementation 

CTypedPtrList < CObList, CCiass*> m_class: 
CTypedPtrList < CObList, CState*> m_state: 
CTypedPtrList < CObList. CState*> m_st: 
CTypedPtrList < CObList. CEvcntx*> m_cvent: 
CTypedPtrList < CObList. CSevcnt*> m_scvcnt: 
CTyped PtrList < CObList. CSevent *> m __ scvt: 



CTypedPtrList < CObList, CCJass*> m_class2; 
CTypcdPtrList < CObList, CState*> m_statc2; 
CTypcdPtrList < CObList, CEventx*> m_cvcnt2; 
CTypcdPtrList < CObList, CEventx*> m_evt; 
CTypcdPtrList < CObList, CScvent*> m_scvent2 
ON WM LBUTTONDOWN() - -

ON_ WM _ LBUTTONDBLCLK() 
ON_COMMAND(ID_MODJFY, OnModify) 
ON COMMAND(ID DELETE, OnDelcte) - -
ON_ COMMAND(IDC _GENERA TECODE, OnGcneratecodc) 
ON_COMMAND(ID_SAVECODE, OnSavecode) 

Functio11s Used For Consistency 

I.Functiom Used For DupliClltion Of Nm11es 

CState* CheckSname(CString n,CPoint pt) 

POSITION pos; 
CState *temp; 
CCiass *ct; 
for(pos = m_ class.GetHeadPosition();pos!=NULL;m_ class.GetNext(pos)) 
{ 

} 

ct=m _ class.GetAt(pos ); 
if(pt.x>=(ct->GetRect()).TopLeft().x 

&& pt.x<=( ct->GetRect()). Bottom Right().x) 
break; 

for(pos=m _ state.GetHeadPosition();pos!=NULL;m _state .GetNext( pos)) 
{ 

temp=m_state.GetAt(pos); 
if((n.CompareNoCase(temp->GetName())=O) 

&&(strcmp(temp->cname,ct->GetName())=O)} 
return temp; 

} 
temp=NULL; 
return temp; 

CState* CheckSname(CString n,CString nc) 
{ 

POSITION pos; 
estate *temp; 
for(pos=m_state.GetHeadPosition();pos!=NULL;m_state.GetNext(pos)) 
{ 

temp=m_state.GetAt(pos); 
if((n.CompareNoCasc(temp->GetName())==O) 

&&( strcmp(temp->cname,nc )==0)) 
return temp; 

temp=NULL; 

48 



return temp; 
} 
CEventx* CheckEnamc(int &n) 

CEvcntx *temp; 
POSITION pos; 
for( pos=m _ evcnt.GetllcadPosition();pos! =NUlL;) 
{ 

tcrnp=m _ cvent.GctNcxt(pos ); 
if( n==tem p->GctName()) 
return temp; 

tcmp=NULL; 
return temp; 

int startstate(CState* state) 
{ 
int t= I; 
CState* st: 
POSITION pos: 
for(pas=m_state.GetHeadPasition();pas!=NULL) 

} 

{ 
st=m _ state.GetNext(pas ); 
if( strcmp( state->cname.st->cnamc )==0) 

{ t=O; 
break; 

} 
return t: 

CCiass* CheckCname(CString n) 
{ 

} 

CCiass *temp; 
POSITION pas; 
far(pos=m _ class.GetHeadPositian();pas!=N U LL;) 
{ 

temp=m _ class.GetNext(pas ); 
CString str(temp->GetName()); 
if( str.CampareNoCase( n )==0) 
return temp; 

} 
temp=NULL; 
return temp; 

CEventx* CheckStevent(CState* s I ,CState* s2) 
{ 

POSITION pas; 
CEvcntx *temp; 
for( pos=m_ event.GetHeadPosition( ):pos!=NU LL:) 
l 

tcmp=m_ cvcnt.GctNext( pos): 

49 



1 
f 

if((strcmp(temp->sl,sl->GetName())=O)&& 
( strcmp(temp->cname,s 1->cname )==0) && 
( strcm p( tern p->s2,s2 ->Get Name() )==0)) 

return temp; 

return NULL; 

int transcheck(CState* s I) 

CCiass* cl; 
int t=O; 
ci=CheckCname( s 1->cname ); 
if( strcm p( cl->st_ state,s 1->GetName())==O) 
t=l; 
lse 
{ 
CEventx* et; 
POSITION pos; 
for(pos=m _ event.GetHeadPosition();pos!=N ULL;) 

{ et=m _ event.GetNext(pos); 
if(strcmp(et->s2,si-:>GetName())==O && 

strcm p( et ->cname,s I ->cname )=0) 
{ t= I ;break;} 

} 

return t; 

int eventcheck(CState* s I ,CState* s2) 
{ 

int t=O,i=O; 
t=transcheck( s2 ); 
if(t 0) . 
i=O; 
else 
{ 
CCiass* cl; 
c I=CheckCname( s I ->cname ); 
if( strcmp( cl->st_ state,s 1->GetName() )=0) 

i=l; 
else 

{ 
POSITION pos; 
for(pos=m _ event.GetHeadPosition();pos!=NU LL;) 
{ 

CEventx* et; 
et=m _ event.GetNext(pos ): 
if((strcmp(et->sl,s 1->GetName())==O && 

strcmp( et->cname.s 1->cname )==0) 

50 



l 

' return i: 

II (strcmp(et->s2.si->GetName())==O && 
strcmp( ct->cname.s 1->cname )==0)) 

{ i=t·brcak- 1 
' 'i 

To keep tmck of direction oftmnsition 

int dir _ cvcnt(CEventx* event) 

CState *st I, *st2; 
CCiass* cl;int i; 
st I =CheckSname( event->s I ,event->start ); 
c I=CheckCname( st 1->cname ): 
if(strcmp( event->s I ,cl->st_state )==0) 
return I: 
if( strcm p( event ->s2,cl->st_ state )==0) 
return 0; 
CEventx* et; 
et=CheckStevent( event->s2,event->s 1 ): 
if(et!=NULL) 
return 0; 
if(strcmp( event->s 1 ,cl->st_ state )!=0) 
{ 
while( (strcmp(st 1->GetName(),cl->st_state )!=O)&&(st I !=NULL) ) 

{ 

} 

POSITION pos; 
for(pos=m _ event.GetHeadPosition();pos!=NULL;) 
{ ' 

et=m _event. GetNext(pos ); . 
if((strcmp(et->s2,st1->GetName())=O) && (et->dir == I)) 
{ 

st2=CheckSname( et->sl ,et ->start); 
stl=st2; 
break; 

if( strcmp( st 1->GetName(),cl->st-'-state )=0) 
i=l; 

else i=O: 
l 
J 

return i; 



Fu11ction.\· of view cltus 

void OnLButtonDown(UINT nFiags, CPoint point) 
I 
I 

sct=O; 
if(tlag3==TRUE) 
On Deselect(); 
CCiientDC d(this); 
CDC *pdc=(CDC *)&d; 
On PrcpareDC(pdc ); 
d.DPtoLP(&point); 
switch( flag I) 

l 
case STATE :if(ChcckState(point)==NULL) 

{ 

s=NewState(point); 
if(s!=NULL) , 

I 

CReel rc=s->GctRect( ): 
m ymessage( re ); 
s->Draw(pdc ); 

} 
break; 

case EVENT : count=count+ I; 
switch( count) 
{ 
case I: 

if((temp=CheckState(point))!=NULL) 
pl=point; 
else 
{ 
AfxMessageBox("Ciick on the state undergoing transition"); 
count=O; 
} 

break: 

case 2: 
if((tempi=CheckState(point))!=NULL) 
{ if(temp->GetName()==temp 1->GetName()) 

{ 
Af.xMessageBox("transition on same state is not allowed"); 
count=O; 
break; 
} 

if(strcmp(temp->cname,tcmp 1->cnamc )!=0) 
{ 
AfxMcssagcBox("Transition is not allowed from a state of 

same class to a state of same class"): 

52 



break: 

count= I; 
break; 
}//end of same class 
if(CheckStevent(temp.temp I )!=NULL) 
I 
t 

AfxMessageBox("Transition already exist"): 
break~ 

}//end of existing transition 
if(pdoc-transcheck(temp)=l) 

e==NewTran(temp.temp I); 
Invalidate(); 
t 
I 

else 

} 

AfxMessageBox("lnvalid Transition"); 
count= I; 

else 

A(xMessageBox("Ciick on the resulting state"); 
count= I; 
l 
J 

count=O: 
break; 

case SEVENT :count=count+ I; 
switch( count) 
{ 
case 1: 

if((temp=CheckState(point))!=NULL) 
pl=point; 
else 

AfxMessageBox("Ciick On A State First"); 
count=O; 
} 
break; 

case 2: 
if{(temp I =CheckState(point))!=NULL) 

{ p2=point: 
if(strcmp(temp->GetName(), 
temp 1->GetNamc() )==0) 

if(strcmp(tcmp->cname.tcmp 1->cnarne )==0) 
{ 
AfxMcssageBox("DifTercnt State Should Be 

Selected"): 
count= I: 

53 



else 

if( strcrn p( tern p->cnarne,temp 1->cname )=0) 
{ 
AfxMcssagcBox("This event is not allowed"); 
count= I; 
break; 

AfxMessagcBox("Ciick On Second State"); 
count== I; 

break; 

case 3: 
estate* ternp2; 
if((ternp2=CheckState(point))!=NULL) 
{ 
p3=point; 
if(strcrnp(ternp 1->GetNamc(), 
tern p2->GetName() )=0) 
if(strcrnp(ternp l->cname,temp2->cnamc)==-=O) -

{ 
AfxMessageBox("Diffcrent state should be chosen"); 
count==2; 
break; 

} 
if(strcrnp(ternp2->GetName(),temp->GetNam~())=O) 
if(strcmp(temp2->cnarne,ternp->cname)=O) 
{ 
AfxMessageBox("Different state should be chosen"); 
count==2; 
break; 
} 

if(strcmp(temp J->cnarne,temp2->cname)' -=O) 
{ 
AfxMessageBox("Transition States Must Belong 

To Same Class"); 
count==2; 

break; 
} 

else 
{ 

if(CheckStevent(temp I ,temp2)!=NULL) 
{ AfxMessageBox("Event Already Exist"); 

break; 
} 

if(eventcheck(ternp,ternp I)== I) 
{ 
it( m_ scvcnt.lsEmpty()) 

54 



{ 
ifrsc I.DoModai()===IDOK) 
{ 
e==NewEvent( p l.p2.p3 ): 
sc==NcwScvcnt (pI ,p2.p3.c.sc l.m __ scnamc ): 
c->Draw(pdc): 
sc->Draw(pdc ): 
Invalidate(): 
I 
J 

)//end of if 
else 

{ 
if(se l.DoModai()====IDOK) 
{ 

if(CheckSename(se l.m_sename)!==NULL) 
AfxMessageBox("Duplicated Event Name"): 

else 

e==NewEvent(p l.p2,p3 ): 
se==NewSevent( pI ,p2.p3.c,se l.m_ sename ); 
e->Draw(pdc ): 
se->Draw (pdc): 
Invalidate(): 

}//end of else 
}//end of eventcheck if 
else 
{ AfxMessageBox("Invalid Event"); 

count==O; 
break; 

} 
count==O; 

}//end of els~ -
}//end of if 

else 
{ 

} 

AfxMessageBox("Ciick On Third State"): 
count==2; 
break; 

}//end of sevent's switch 
} I /end of flag 

CScroliView::OnLButtonDown(nFiags, point); 

Function for Selecting an object 

\·oid OnLButtonDbiCik(UINT nFiags. (Point point) 
{ sct=O: 

55 



CRect rc; 
int ss=4; 
float m,xr,yr,len; 
CPoint t I ,b I ,b2,e I; 
CPen *rpen,*oldpen,*bpen; 
CCiientDC d(this); 
CDC *pdc=(CDC *)&d; 
OnPrepareDC(pdc ); 
d.DPtoLP(&point); 
if(tlag3=TRUE) 
On Deselect(); 
for(pos=m_class.GetHeadPosition();pos!=NULL; 
m class.GetNext(pos)) 

{ 

} 

c=m_class.GetAt(pos); 
rc=c->GetRect(); 
t I =rc.TopLeft(); 
b I =rc. Bottom Right(); 
if((point.x>=tl.x && point.x<=bl.x)&& 

(point.y>=tl.y && point.y<=bl.y)) 
{ 
rpen=new CPen(PS_SOLID,l,RGB(255,0,0)); 
oldpen=pdc-> SelectObject( rpen ); 
pdc->SetTextColor(RGB(255,0.0)); 
pdc->SetBkColor(RGB(255.255,255)); 
c-> Draw(pdc ); 
rpen=pdc->SelectObject( old pen); 
delete rpen; 
pdc->SetTextColor(RGB(O,O,O)); 
flag2=CLASS; 
tlag3=TRUE; 
return; 
} 

for(pos=m _ state.GetHeadPosition();pos!=N U LL; 
m _ state.GetNext(pos)) 

{ 
s=m _state.GetAt(pos ); 

rc=s->GetRect(); 
tl=rc.TopLeft(); 
b I =rc.BottomRight(); 
if((point.x>=tl.x && point.x<=b l.x)&&(point.y>=t l.y && point.y<=b l.y)) 
{ 
rpen=new CPen(PS_SOLID,I,RGB(255,0,0)); 
oldpen=pdc->SelectObject(rpen); 
pdc->SetTextColor(RGB(255,0.0)); 
pdc->SetBkColor(RGB(255,255,255)); 
s->Draw(pdc); 
rpen=pdc->SelectObject( old pen); 
delete rpen; 
pdc->SetTextColor(RGB(O,O.O)): 

56 



flag2=ST ATE; 
flag3=TRUE; 
return; 

for( pos=m_ event.Getl-teadPosition( );pos!==N lJ LL; 
m event.GctNcxt(pos)) 

else 
{ 

e=m_ event.GetAt( pos ); 
t I =e->start; 
cl=e->end; 
st I =CheckS name( e->s l ,e->start ): 
st2=Check Sname( e->s2,e->cnd ); 
if(e->tag==FALSE) 
{ 
if(t l.y>e l.y) 
if(point.y>tl.yJipoint.y<el.y) continue; 
if(t I.y<e l.y) 
if(point.y<t l.y!lpoint.y>e l.y) continue; 
if(abs(point.x-e l.x)>ss) continue: 
if(CheckSevent( e )=0) 
{ 
rpen=new CPen(PS _SOLI D.I.RGB(255.0,0)): 
bpen=new CPen(PS _SOLID.I.RGB(0.0.255)): 
oldpen=pdc->SelectObject( rpen ); 
pdc->SetTextColor(RGB(255,0.0)): 
e-> Draw(pdc ); 
rpen=pdc->SelectObject(bpen ); 
pdc->SetTextColor(RGB(0,0,255)); 
pdc->SetBkColor(RGB(255,255,255)); 
st 1-> Draw(pdc ); 
st2->Draw(pdc); 
bpen=pdc->SelectObject( old pen); 
pdc->SetTextColor(RGB(O,O,O)); 
delete(rpen); 
delete(bpen); 
flag2=EVENT; 
flag3=TRUE; 
return; 

} 

b 1 =e->bet I ; 
b2=e->bet2; 
if((tl.x>bl.x && (point.x<=tl.x && point.x>=b l.x)) 

JJ(tl.x<b l.x && (point.x>=t l.x && point.x<=b l.x))) 
I 

' il(abs(bl.y-point.y)<=ss && CheckSevcnt(e)==O) 
{ 
rpcn=new CPcn(PS_SOL.I D.I.RGB(255.0.0)): 

57 



l 
I 

bpen=new CPen(PS _SOLID, I ,RGB(0,0,255)); 
oldpcn=pdc-> Select Object( rpen ); 
pdc->SctTextColor(RGB(255,0,0)); 
c-> Draw(pdc ); 
rpcn=pdc->SclectObject(bpen ); 
pdc->SetBkColor(RGB(255,255,255)); 
pdc->SetTextCoior(RGB(0,0,255)); 
st 1-> Draw(pdc ); 
st2->Draw(pdc ); 
bpen=pdc->SelectObject( old pen); 
pdc->SetTextColor(RGB(O,O,O)); 
delete bpen; 
delete rpen; 
tlag2=EVENT; 
flag3=TRUE; 
return; 
} 

if((bl.y>b2.y && (point.y<~bl.y && point.y>;;,b2.y))- - -
ll(b l.y<b2.y && (point.y>=b l.y && point.y<=b2.y))) 

{ 
if(abs(b2.x-point.x)<=ss && CheckSevent( e }==0) 

{ 
rpen=new CPen(PS _SOLID, I ,RGB(255,0,0)); 
bpen=new CPen(PS _SOLID, I ,RGB(0,0,255)); 

oldpen=pdc->SelectObject( rpen ); 
pdc->SetTextColor(RGB(255,0,0)); 
e-> Draw(pdc ); 
rpen=pdc->SelectObject(bpen); 
pdc->SetBkColor(RGB(255,255,255)); 
pdc->SetTextColor(RGB(0,0,255)); -
st 1-> Draw(pdc ); 
st2->Draw(pdc ); 
bpen=pdc->SelectObject( old pen); 
pdc->SetTextColor(RGB(O,O,O)); 
delete bpen; 
delete rpen; 
tlag2=EVENT; 
tlag3=TRUE; 
return; 

if((b2.x<e l.x && (point.x<=e l.x && point.x>=b2.x)) 
ji(b2.x>e l.x && (point.x>=e l.x && point.x<=b2.x))) 

{ 
if(abs(e l.y-point.y)>ss II CheckSevent(e)== I) 
continue; 

rpen=new CPen(PS_ SOLID.l.RGB(255,0,0)); 
bpen=new CPen(PS_ SOLID.I.RGB(0.0,255)); 
o ldpen=pdc->Se lectObject( rpen ): 
pdc->SetTextColor(RGB(255,0.0)): 

58 



e-> Draw( pdc ); 
rpcn=pdc->SelectObject(bpcn ); 
pdc->SctTextColor(RGB{0,0.255)): 
pdc->SctBkColor(RG B(255,255,25 5) ); 
st 1->Draw(pdc); 
st2->Draw(pdc ); 
bpen=pdc->SclectObject( old pen): 
delete rpen; 
delete bpen; 
pdc->SetTextColor(RGB{O,O,O)); 
flag2=E VENT; 
flag3=TRUE; 
return; 

for(pos=m_ sevent.GetHeadPosition():pos! ==NULL; 
m_sevent.GetNcxt{pos)) 

se=m _ sevent.GetAt(pos ); 
st I =CheckSname(se->s I ,se->start): 
st2==CheckSname( se->s2,se->end ); 
st3 =CheckSname( se->s3,sc->end): 
switch(sc->p) 
{ 
case 0: t I ==se->start; 

b I ==se->end; 
m==float(b l.y-t l.y)lfloat(b l.x-t l.x); 
if(b l.x!==t l.x) 
{ 
xr==(m*(point.y-b l.y)+m*m*b l.x+point.x)/( I +m*m); 
yr==(m*(point.x-bl.x)+m*m*point.y+b l.y)/( l+m*m); 
if(tl.x>b l.x) 
if(xr<b l.x II xr>t l.x) break; 
if(t l.x<b l.x) 
if(xr<tl.x II xr>bl.x) break; 

else 
{ 

if(t l.y>b l.y) 
if(point.y<bl.y llpoint.y>tl.y) break; 
if(tl.y<b l.y) 
if(point.y<tl.y II point.y>b l.y) break; 
} 
len==(float)(sqrt((b l.x-t l.x)*(b l.x-t l.x)+ 

(b l.y-t l.y)*(b l.y-t l.y))): 
it(abs((point.y*(b l.x-t l.x )-point.x *(b l.y-t l.y)­

(bl.x*tl.y-bl.y*tl.x)))>((int)(ss *len))) 
break; 
c=ChcckEname(se->e I); 
rpen=ncw CPen(PS_SOLID.I.RGB(255.0.0)): 

59 



case 1: 

bpen=new CPen(PS _SOLID, I ,RGB(0.0.255)); 
oldpen=pdc->SelectObject( rpen ); 
pdc->SetTextColor(RGB(255,0,0)); 
se->Draw(pdc); 
e-> Draw( pdc ); 
rpen=pdc->SelectObject(bpen ); 
pdc->SetTextColor(RGB(0,0,255)); 
pdc->SetBkColor(RGB(255,255,255)); 
st 1->Draw(pdc); 
st2->Draw(pdc ); 
st3->Draw( pdc ); 
bpen=pdc->SelectObject( old pen); 
delete rpen; 

delete bpen; 
pdc->SetTextColor(RGB(O,O,O)); 
flag2=SEVENT; 
flag3=TRUE; 
return; 
break; 

t I =se->start; 
b I =se->bet I; 
e I =se->end; 
if((tl.y>b l.y && (point.y<=tl.y && point.y>=bl.y)) 

ll(t l.y<b l.y && (point.y>=tl.y && point.y<=b l.y))) 
{ 

if(abs(bl.x-point.x)<=ss) 
{ 

e=CheckEname(se~>e I); 
rpen=new CPen(PS _SOLID, I ,RGB(255,0,0) ); 
bpen=new CPen(PS SOLID,! ,RGB(0,0,255)); 
oldpen=pdc->SelectObject( rpen ); 
pdc->SetTextColor(RGB(255,0,0)); 
se-;>Draw(pdc ); 
e->Draw(pdc); 
rpen=pdc->SelectObject(bpen); 
pdc->SetTextColor(RGB(0.0,255)); 
pdc->SetBkColor(RGB(255,255,255)); 
st 1->Draw(pdc ); 
st2->Draw(pdc ); 
st3->Draw(pdc ); 

bpen=pdc->SelectObject( old pen); 
delete rpen; 

delete bpen; 
pdc->SetTextColor(RGB(O,O,O)); 

flag2=SEVENT; 
tlag3=TRUE; 
return; 

} 

if((e l.x>b l.x && (point.x<=c l.x && point.x>=o l.x)) 

60 



case 2: 

} 

ll(el.x<bl.x && (point.x>=c l.x && point.x<=b l.x))) 

if(abs( c l.y-point.y)>ss) 
break: 

e=ChcckEnamc(sc->e I); 
rpen=ncw CPcn(PS _SOLID,I,RG8(255,0,0)); 
bpcn=new CPcn(PS_SOLID.I,RG8(0,0.255)): 
oldpen=pdc->SelectObjcct( rpen ); 
pdc->SetTextColor( RG 8(255, 0,0) ); 
se->Draw(pdc); 
e->Draw(pdc ); 
rpen=pdc->SelectObjcct( bpcn ); 
pdc->SetBkColor(RG8(255.255.255)); 
pdc->SetTextColor( RG 8(0,0,255) ); 
st 1->Draw(pdc); 
st2->Draw(pdc); 
st3->Draw(pdc ); 
bpen=pdc->SelectObjcct( old pen); 
pdc->SetTextColor(RGB(O,O.O)); 

delete bpen; 
delete rpen; 
tlag2=SEVENT; 

tlag3=TRUE; 
return; 

break; 

t 1 =se-> start; 
bl=se->betl; 
b2=se->bet2; 
el=se->end; 
if((t l.x>b l.x && (point.x<=t l.x && point.x>=b l.x)) 

ll(tl.x<b l.x && (point.x>=tl .x && point.x<=b l.x))) 
{ 
if(abs(b l.y-point.y)<=ss) 
{ 

. e=CheckEname(se->e I): 
rpen=new CPen(PS _SOLID, I ,RGB(255,0,0)); 
bpen=new CPen(PS _SOLID, I ,RGB(0,0,255)); 
oldpen=pdc->SelectObject( rpen ); 
pdc->SetTextColor(RGB(255,0,0)); 
se->Draw(pdc ); 
e->Draw(pdc); 
rpcn=pdc->SelectObject( bpen ); 
pdc->SetBkColor(RGB(255.255,255)): 
pdc->SctTextColor(RGB(0,0.255)): 
st 1->Draw(pdc): 
st2->Draw(pdc): 
st3->Draw(pdc): 
bpcn=pdc->SclectOhjcct( old pen): 

61 



} 

pdc->SetTextColor(RGB(O,O,O)); 
delete bpcn; 
delete rpen; 

flag2=S EVENT; 
flag3=TRUE; 

return; 

} 

} 
} 

if((b l.y>b2.y && (point.y<=b l.y && point.y>=b2.y)) 
li(b l.y<b2.y && (point.y>=b l.y && point.y<=b2.y))) 

if(abs(b2.x-point.x)<=ss) 
{ 
e=CheckEname(se->e I); 
rpen=new CPen(PS_SOLID,l,RGB(255,0,0)); 
bpen=new CPen(PS _SOLID, I ,RGB(0.0,255)); 
oldpen=pdc->SelectObject( rpen ); 
pdc->SetTextColor(RGB(255,0,0)); 
se->Draw(pdc); 
e->Draw(pdc); 
rpen=pdc-> SelectObject(bpen ): 
pdc->SetBkColor(RGB(255,255.255)); 
pdc->SetTextColor(RGB(0,0,255)): 
stl->Draw(pdc); 
st2->Draw(pdc); 
st3->Draw(pdc ); 
bpen=pdc->SelectObject( old pen); 
pdc->SetTextColor(RGB(O,O,O)); 
delete bpen; 
delete rpen; 
flag2=SEVENT; 
flag3=TRUE; 
return; 

if((b2.x<e l.x && (point.x<=e l.x && point.x>=b2.x)) 
ll(b2.x>e l.x && {point.x>=e l.x && point.x<=b2.x))) 

{ 
if(abs( el.y-point.y)>ss) 
break; 

e=CheckEname( se->e I); 
rpen=new CPen(PS _SOLID, I,RGB(255,0,0)); 
bpen=new CPen(PS_SOLID,I,RGB(0,0,255)); 
oldpen=pdc->SelectObject( rpen ); 
pdc->SetTextColor(RGB(255,0,0)); 
se-> Draw(pdc ); 
e->Draw(pdc); 
rpen=pdc->SelectObject(bpen ); 
pdc->SetTextColor( RGB(0,0,255) ); 
pdc->SetBkColor(RGB(255,255,255)); 
st 1->Draw(pdc ); 

62 



break; 

st2-> Draw( pdc ); 
st3 ->Draw( pdc ); 
bpcn=pdc-> Sc kct Object( old pen); 
delete rpcn; 
delete bpen; 
pdc->SctTcxtColor( RGB(O.O.O) ); 
flag2=SEVENT; 
flag3=TRUE; 
return; 

CScroiiYiew::OnU3uttonDbiCik(nFiags. point): 

Function for modifying sttlte nllme or event twme 

void OnModify() 
{ 

set=O; 
cmoddlg mod; 
switch(flag2) 
{ 
case STATE: 

CState* st; 
if( mod.DoModal()==l DOK) 
{ st=CheckSname(mod.m _ stname. 
( s->GetRect() ).CenterPoint()); 
if(st=NULL) 
{ CString name; 
name=s->GetName(); 
s->SetName(mod.m_ stname ); 
POSITION pos; 
for(pos=m_class.GetHeadPosition();pos!=NULL;) 

{ CCiass* cl=m_class.GetNext(pos); 
if( strcm p( cl->st_ state,name )=0 && 
strcmp( ci->GetName(),s->cname )==0) 

{ 

} 

strcpy( cl->st_ state,s->GetName()); 
break; 

for(pos=m_sevent.GetHeadPosition();pos!=NULL:) 

CScvent *temp=m_scvent.GctNcxt(pos): 
CState* stt=CheckSnamc( temp->s I. tcmp->star1 ): 
CEvcntx* ct=ChcckEnamc(tcmp->c I): 
it(stn.:mp(namc.temp->s I )==0 && 
str·cm p( stt->~:namc.s->cnamc )'==0) 

63 



break; 

} 

strcpy(tcmp->s I ,s->GctNamc()); 
if(strcmp(namc,temp->s2)==0 && 
strcm p( ct->cnamc.s->cnamc )==0) 
strcpy( tcm p->s2,s->GetNamc() ): 
if( strcm p( namc,tcmp->s3 )==0 && 
strcmp( ct->cnamc,s->cnamc )==0) 
strcpy( tern p->s3 ,s->GctNamc() ): 

for(pos=m _ cvcnt.GctHcadPosition();pos!=NU LL:) 
{ 

CEvcntx* ct=m_ cvcnt.GctNcxt(pos): 
if(namc.CompareNoCasc(ct->s I )==0 && 

strcm p( s->cnamc.ct->cnamc )==0) 
strcpy( et->s I ,s->GetNamc()); 
if(name:CompareNoCasc(ct->s2}==0 && 
strcm p( et->cname,s->cnamc )=0) 
strcpy( et->s2,s->GetNamc()); 
} 
SetModifiedFiag(TRUE): 
} 

else AfxMessageBox("Name Is Duplicated"): 
} 
Invalidate(); 
tlag2=-l; 
tlagl=-1; 
flag3=F ALSE; 

case SEVENT: 
CSevent* set; 
if(mod.DoModai()=IDOK) 
{ set=CheckSevent(mod.m stname); 
if(set=NULL) 

{ 
se->SetName(mod.m_ stnamc ): 
e=CheckEname(sc->e I); 
SetModifiedFiag(TRUE); 
} 
else Af.xMessageBox("Name Is Duplicated"): 
SetMod ifiedflag(TR U E): 
} 
Invalidate(); 
tlag2=-l; 
flag) =-1; 
tlag3=F ALSE: 
break: 

default:Af.'\McssageBox("lnvalid flag2 value"): 
break: 



Function for tleletion 

void ncwview::OnDclcte() 

sct=O: 
switch(llag2) 

case STATE:delctcstatc(s): 
SctModificdFiag(TRUE): 
break: 

case EV ENT:dcletctrans( c): 
SctModifiedFiag(TRUE): 
break; 

case SEVENT:dclctccvent(sc): 
SetModifiedFiag(TRUE): 
break; 

case CLASS:deleteclass(c): 
SetModifiedFiag(TRUE): 
break: 

default:AfxMessageBox("Wrong tlag2 value"): 
I 

' flag2=-1 ;flag I =-I: 
flag3=FALSE;OnDeselect( ): 

void insert(CStatc* state) 
{ 

int t=O; 
POSITION pos; 
tor(pos=m _ st.GetHeadPosition( ):pos! =NULL:) 
{ 
temp=m _ st.GetNext(pos ): 
if(strcmp(state->GetName(),temp->GetName())==O 

&& strcmp(state->cname.temp->cname)=O) 
t=l: 
I 

' if(t==O) 
m_st.AddTail(state ): 

void insertevent(CSevent* sevent) 

int t=O; 
POSITION pas; 
CSevent* set: 
for(pos=m_scvt.GetHcadPosition():pos!=NULL:) 
{ 

sct=m_ scvt.GetNext(pos): 
i f(strcmp(scvent->Get Name( ).sd->( il'!Namc( ))==0) 
t=l: 

6S 



} 
if(t=O) 
{ m_sevt.AddTail(sevcnt): 
CEventx* et: 
ct=ChcckEnamc(sevcnt->c I): 
i nserttrans( ct ); 

void inserttrans(CEventx* event) 

int t=O: 
POSITION pos: 
f9r( pos=m _ evt .GetHeadPosition():pos! =NULL:) 

C E ventx * et I =m _ evt. Get Next( pos ): 
if( event->GetName()==et 1->GetName( )) 
t=J; 
} 
if(t=O) 
m_ evt.AddTail( event); 

void decrementevent(CSevent* set) 
{ 

CState* st; 
st=CheckSname( set->s I ,set->start ): 
CRect r; 
CPoint ptl,pt2,pt3; 
if(st!=NULL) 
{ r=st->GetRect(); 
ptl=r.TopLeft(); 
pt3=r.CenterPoint(); 
pt2=r.BottomRight(); 
if((set->start.x >= pt l.x) && (sct->start.x <= pt3.x-l 0)) 

{ 

} 

if(set->start.y==pt l.y) 
(st->al)--: 
if(set->start.y=pt2.y) 
(st->bl)--; 

if((set->start.x >= pt3.x+IO) && (set->sta1t.x <= pt2.x)) 
{ 

I 
J 

if(set->start.y-ptl.y) 
( st ->ar )--; 
if(set->start.y==pt2.y) 
(st->br)--: 

if{(set->start.y >pt l.y)&&(set->staJt.y<pt2.y)) 

i I( sct->start.x==pt2.x) 

66 



( st->r)--; 
if(set->start.x=pt l.x) 

( st->1)--; 

void delstate(CState* state) 

CState* st; 
CSevent* set: 
CEventx* ct; 
int t,i,j; 
POSITION pos: 
C:String name; 
name=state->GetName(): 
for( pos=m _ sevent.Getl-leadPosition( );pos! =NULL:) 
{ t=O;i=j=O; 
set=m _ sevent.GetNext( pos ); 
et=CheckEname( set->e i ): 
st =CheckSname( set ->s I .set ·>start): 
if(strcmp(name,set->s I )==0 && strcmp( state->cname,st->cname)==O) 

t=J; 
if( strcmp( name,set->s2 )==0 && strcm p( state->cname.ct->cname )==0) 

t=2; 
if(strcmp(name,set->s3 )==0 && strcmp( state->cnamc.et->cname )==0) 
t=3: 

switch(t) 
{ 
case I: insertevent(set); 

if(et->dir=-1) 
{ st=CheckSname(set->s3,set->end); 
insert(st); 
st I =CheckSname(set->s2,set->end); 
CCiass* cl; 
cl=CheckCname( st 1->cname ): 
if(strcmp(st 1->GetName(),cl->st_ state)=O) 
break; 
POSITION posl; 
CString name I ;,st 1->GetName(): 
for(pos I =m _sevent.GetHeadPosition():pos I !=NULL:) 
{ 
se=m _ sevent.GetNext(pos I): 
CEventx* et I =CheckEname(se->e I): 
st=CheckSname( set->s I ,set->start ): 
if((strcmp(se->sl ,name I )==0 && 
strcmp( st 1->cname.st->cname )==0) 
ll(strcmp(se->s2.name I )==0 && 
strcmp( et 1->cname.st 1->cnamc )==0) 
ll(strcmp( et 1->cnamc,st 1->cnamc )==0 && 
strcmp(se->s3.namcl )==0 )) 
: POSITION pos2: 



i++; 
for(pos2=m _sevt.GctHcadPosition();pos2!=Nl J LL;) 
{ 
CSevent* scI: 
scI =m_ scvt.GctNcxt(pos2); 
if(strcmp( se 1->GctName().se->GctName( ))==0) 
{ 
j++; 
break; 
} 
} 
}//end of if 

}//end ofposl 
if(i==j) 
insert(st I): 

break; 
case 2: insertevent(set); 

if( et->dir== I) 
{ 
st=CheckSname( set->s3,set ->end); 
insert(st); 
} 
break; 

case 3: insertevent(set); 
break; 

}//end of switch 
}//end offor 

for(pos=m _ event.GetHeadPosition();pos! =NULL;) 
{ 
t=O; 
CEventx *et; 
et=m _ event.GetNext(pos ); 
if(strcmp(name,et->s I )==0 && strcmp(state->cname,et->cname )=0) 
t=l; 
if( strcmp( name,et ->s2 )=0 && strcmp( state->cname,et ->cname )==0) 
t=2; 
switch(t) 

{ 
case 1: inserttrans(et); 
if(et->dir=l) 
{ 
st=<;heckSname( et->s2,et ->end); 
insert(st); 

} 
break: 
case 2: inserttrans(et); 

break.; 
://end of switch 

://end of for 

68 



int chcckstatc(CStatc* state) 

POSITION pos I: 
CStatc* st; 
int i=O; 
for(pos l=m _ st.GctHcadPosition():pos I !=NULL;) 
{ 
st=m_st.GetNcxt(posl ): 
if( strcmp(st->GctNamc(),statc->GctNamc() )==0 && 
strcmp( state->cname,st->cnamc )==0 ) 

{ i= I; break; } 
l 
f 

return i; 

int checksevent(CSevent* sevent) 
{ 

POSITION post: 
CSevent* set; 
int i=O: 
for(posl=m_sevt.GetHeadPosition():pos I !=NULL:) 
{ 
set=m_ sevt.GetNext( pos I): 
if(strcmp(set->GetName(),sevent->GetNamc())==O) 
{ i= I; break;} 
} 
return i; 

int checkevent(CEventx* event) 
{ 

POSITION post; 
CEventx* et; 
int i=O; 
for(posl=m_evt.GetHeadPosition():posl !=NULL;) 
{ 
et=m_evt.GetNext(pos I); 
if( et->GctName()==event->GctName()) 
{ i=l; break;} 
} 

return i; 

int chcckstevent(CState* s I ,CStatc* s2) 

int i=O: 
CEventx* etl: 
ct I =CheckStcvent(s I ,s2): 
il{et I !=NULL) 



{ i++; 
et I =CheckStevent( s2,s I); 
if(et I !=NULL) 
i++; 
I 
I 

else 

' i 

et I =CheckStevent( s2.s I); 
if(et I !=NULL) 

l 
j 

i++; 

return i; 

void deleteevent(CSevent* sevent) 

POSITION pas; 
CSevent* setemp; 
C Pen *rpen, *old pen; 
CCiientDC d(this): 
CDC *pdc=(CDC *)&d; 
OnPrepareDC(pdc ); 
i nsertevent( sevent ); 
int t; 
t=checkstevent( st2,st3 ): 
deldlg dd; 
rpen=new CPen(PS _SOLID, I.RGB(O,O,O)); 
o ldpen=pdc->SelectObject( rpen ); 
sti->Draw(pdc); 
st2-> Draw(pdc ); 
st3->Draw(pdc); 
rpen=pdc->SelectObject( old pen); 
delete rpen; 
switch(t) 
{ 
case 0: break; 
case I: CEventx* et; 

et=CheckEname(sevent->e I); 
if(et->dir=l) 
insert(st3 ); 
break; 

case 2: et=CheckEname(sevent->el); 
if(et->dir=l) 
insert(st3); 
break; 

} //end of switch 
if( !m_ st.lsEmpty()) 
{ 
for(pos=m_ st.GetHeadPosition( );pos!=NU LL:m_ st.GctNcxt(pos )) 
I 
I 

temp=m_st.GctAt(pos): 

70 



rpcn=ncw CPcn(PS _ SOLID.I.RGB(255J).(l) ): 
oldpen=pdc->SclcctO~jcct( rpcn ): 
tcmp->Draw(pdc): 
rpcn=pdc-> Sc lcct Object( old pen): 
del stale( temp): 
delete rpcn: 

if{!m_ scvt.lsEmpty()) 
{ 
ft)r( pos=m_ scvt.GetllcadPosition( ):pos!=Nl J I J .: ) 
l sdcmp=m_scvt.GctNcxt(pos): 
rpcn=ncw CPcn(PS_ SOLID.I.RGI3(255.0.0)): 
oldpen=pdc->SclcctObject( rpcn ): 
setcmp->Draw( pdc ): 
rpcn=pdc->SclectObjcct( old pen}; 
delete rpen: 

' I 
if(!m_ cvt.lsEmpty()} 
{ 
for(pos=m _ evt.GetHeadPosition();pos!=NU LL:) 

rpen=new CPen(PS_ SOLID.I.RGB(255.0.0)): 
oldpen=pdc->SelectObject( rpcn ): 
CEventx* et=m_evt.GetNext(pos): 
et->Draw(pdc ): 
rpen=pdc-> SelectOb ject( old pen); 
delete rpen; 
} 
} 
if( dd.DoModal()==l DOK) 
{ POSITION pos 1; 
for(pos 1 =pos=m _ sevent.GetHeadPosition();pos!=N U LL:) 
{ 

posl=pos; 
setemp=m_sevent.GetAt(pos I); 
m_ sevent. GetNext( pos ): 
if( checksevent( set em p )=I ) 
{ decremcntevent(setemp ): 
m_ sevent.RemoveAt(pos I): 
} 
} //end of pos I 
for(pos I =pos=m_state.GetHeadPosition():pos!=NULL:) 
{ 
posl=pos: 
temp I =m_state.GetAt(pos I): 
m_ statc.GetNext(pos): 
ift checkstate(temp I)== I) 
111_ state.RemoveAt(pos I): 

71 



for(posl=pos=m_cvent.GetHeadPosition();pos!=NULL;) 
{' 
posl=pos; 
C E vcntx * ct=m _ event.GctA t(pos I ): 
111_ event. GetNext( pos); 
i I( check event( et )==I ) 
m_ event.RemoveAt(pos I); 
l 
I 

)//end of if 
m _ st.RemoveA II(); 
111_ sevt.RemoveA II(): 
m_ cvt.RemoveAII(); 
Invalidate(); 
flag I =-I ;tlag2=-l : 
flag3=F ALSE; 

void deletetrans(CEventx* et) 

POSITION pos: 
CPen *rpen,*oldpen; 
CCiientDC d(this); 
CDC *pdc=(CDC *)&d; 
CSevent* setemp; 
OnPrepareDC(pdc ); 
i nserttrans( et ); 
st I =CheckSname( et->s I ,et->start); 
st2=CheckSname( et->s2,et->end); 
int t; 
t=checkstevent( st I ,st2 ); 
deldlg dd; 
rpen=new CPen(PS_SOLID, I ,RGB(O,O,O)); 
old pen=pdc->SelectObject( rpen ); 
st 1->Draw(pdc ); 
st2:>Draw(pdc ); 
rpen=pdc->SelectObject( old pen); 
delete rpen; 
switch(t) 
{ 
case 0: break: 
case I: if(et->dir=l) 

insert(st2); 
break; 

case 2: if(et->dir=l) 
insert(st2); 

break; 
}//end of switch 
if( !m _ st.JsEmpty()) 
{ 
f(w(pos=m_ st.GetHeadPosition();pos!=NlJ LL:m_ st.GctNcxt(pos)) 



tcmp=m_st.GctAt(pos); 
rpcn=new CPen(PS _ SOLID.I.RGB(255.0,0)); 
oldpcn=pdc->SelectObject( rpen ); 
tcmp->Draw(pdc); 
rpcn=pdc->SclectObject( old pen): 
dclstatc( temp); 
delete rpcn; 

} . 
if(! m_ sevt.I sEm pty()) 

for(pos=m_ sevt.GetHeadPosition( );pos!=N U LL:) 

l 
setcmp=m_sevt.GetNext(pos); 
rpen=new CPen(PS _SOLI D.l .RGB(255,0,0)); 
oldpen=pdc->SelectObject( rpcn ); 
set em p-> Draw( pdc ); 
rpen=pdc->SelcctObject( old pen); 
delete rpen; 

if(! m _ evt.l sEm pty()) 
{ 
for(pos=m_evt.GetHeadPosition();pos!=NULL;) 
{ 
rpcn=new CPen(PS _SOLID, I ,RGB(255.0,0)); 
o ldpen=pdc->SelectObject( rpen ); 
CEventx* et=m_evt.GetNext(pos); 
et->Draw(pdc); 
rpen=pdc->SelectObject( old pen); 
delete rpen; 
} 

} 
if(dd.DoModai()=IDOK) 

{POSITION posl; 
for(pos I =pos=m _sevent.GetHeadPosition();pos!=NULL;) 
{ 
posl=pos; 
set em p=m _ sevent. GetAt( pos I ): 
m _ sevent.GetNext(pos ); 
if( checksevent(setemp )=I) 

{ 
decrementevent( set em p ); 
m_ sevent.RemoveAt(pos I): 
} 

tl/cnd ofposl 
for( pos I =pos=m_ state.GctlkadPosition( ):pos!=NU LL:) 

posl =pos: 
temp l=m_ statc.Gct!\t(pos I): 

73 



m_ state.GctNext( pos ); 
if(chcckstatc(temp I)== I) 

m_ statc.RcmovcAt(pos I); 
} 

for(pos I =pos=m_ event. Get! IcadPosition();pos!=NULL:) 
J 
I 

posl=pos; 
CEventx* et=m_event.GctAt(posl ): 
m_ event.GetNext( pas); 
if( checkcvcnt( et )==I ) , 
m_ cvcnt.RcmoveAt(pos I): 

}//end of if 
m_ st.RemovcAII(); 
m_ scvt.RemoveA II(); 
m_ cvt.RemoveAII(); 
Invalidate(): 
llag I =-I ;flag2=-I; 
flagJ=F ALSE; 

void deletestate(CState *state) 
{ 

POSITION pas; 
CSevent* setemp; 
CPe.n *rpen, *oldpen; 
CCiientDC d(this); 
CDC *pdc=(CDC *)&d; 
OnPrepareDC(pdc ); 
insert( state); 

if(!m _ st.lsEmpty()) 
{ 
for(pos=m_st.GetHeadPosition();pos!=NULL;m_st.GetNext(pos)) 

{ 

l 
J 

temp=m _ st.GetAt(pos ); 
rpen=new CPen(PS _SOL! 11.1 ,RGB(255,0,0)); 
oldpcn=pdc->SelectObject( rpen ); 
tcm p-> Draw(pdc ); 
rpen=pdc->SelectObject( old pen): 
dclstatc(temp); 
delete rpen; 

if(!m_sevt.lsEmpty()) 
{ 
for(pos=m_scvt.GetHeadPosition();pos!=NULL:) 

set em p=m _ sevt.GctNcxt(pos ); 
rpcn=new CPen(PS _SOLID, I ,RGB(255.0.0)): 
oldpen=pdc->SelcctObject( rpcn ); 
set em p-> Draw( pdc ): 

74 



rpen=pdc->SelectObjcct( old pen); 
delete rpen; 

if\! m_ cvt.lsEmpty( )) 

} 

for(pos=m_ cvt.Gctl-lcadPosition();pos!=NtJLL;) 

1 
CEvcntx* ct=m_ evt.GetNext(pos); 
rpcn=ncw CPcn(PS _SOLID, I ,RGB(255,0,0)): 
old pen=pdc->Sd ectOb jcct( rpen ); 
ct->Draw(pdc): 
rpcn=pdc->SclectObject( old pen); 
delete rpen; 

deldlg dd: 
il(dd.DoModai()=IDOK) 
{ POSITION pos I; 

if{ !m_st.lsEmpty()) 
{ 
for(pos I =pos=m_state.Getl-leadPosition():pos!=NLJ LL:) 
{ 

} 

posl=pos; 
temp I =m_ state.GetAt(pos I); 
m_ state.GetNext(pos); 
if( checkstate(temp I)== I) 
m _state.RemoveAt(pos I): 

}//end of m st 
if(! m _ sevt.lsEmpty()) 

{ 
for(pos I =pos=m _ sevent.GetHeadPosition();pos!=NU LL;) 
{ 
posl=pos; 
setemp=m_sevent.GetAt(pos I); 
m_sevent.GetNext(pos); 
if( checksevent( set em p )=I ) 
{ decrementevent(setemp); 
m_sevent.RemoveAt(pos I); 
} 

}//end ofposl 
}//end ofm sevt 

if(! m_ evt.lsEmpty()) 
{ 
for(pos I =pos=m_ event.Getl-leadPosition():pos!=N lJ LL:) 
{ 
posl=pos; 

CEvcntx* et=m_event.GctAt(pos I): 
m __ cvent.GctNext( pos ): 
if( chcckcvcnt(ct)== I) 

75 



m _event. Remove At( pos I ): 
}//end ofposl 

~//end of m_ cvt 
}//end of if 

Invalidate(); 
m _st. RcmovcA II(); 
111 _ sevt. RcmoveA II(); 
111 __ evt. RemoveA II(); 
flag I =-I ;tlag2=-1: 
tlag3=FALSE; 

void deleteclass(CCiass* cclass) 

POSITION pos; 
CSevcnt* setcmp; 
CPen *rpen, *oldpen; 
CCiientDC d(this): 
CDC *pdc=(CDC *)&d: 
OnPrepareDC(pdc ); 
for(pos=m_statc.GettJcadPosition();pos!=NULL;) 
{ 

l 

' 

tem p=m_ state. GetNext( pos ); 
if{ strcm p( cc lass->GetN ame(),tem p->cna111e )==0) 
insert( temp); 

if( !m_ st.lsEmpty()) 
{ for(pos=m _ st.GetHeadPosition();pos!=NULL;m_st.GctNext(pos)) 

{ temp=m_st.GetAt(pos); 

} 

rpen=new CPen(PS _SOLID, I ,RGB(255,0,0)); 
oldpen=pdc->SelectObject(rpen); 
temp->Draw(pdc); 
rpen=pdc->SelectObject( oldpen ); 
delete rpen; 
del state( temp); 
} 

-if(!111_sevt.lsE111pty()) 
{ for(pos=m_sevt.GetHeadPosition();pos!=NULL;) 

l 
J 

( setemp=m_sevt.GetNext(pos); 
rpen=new CPen(PS _SOLID, I ,RGB(255,0,0)); 
old pen=pdc->SelectObject( rpen ); 
setemp->Draw(pdc ); 
rpen=pdc->SelectObject( oldpen); 
delete rpen; 

i I(! m_ cvt.l sEtil pty()) 
{ for(pos=m_evt.Getl--leadPosition();pos!=NULL;) 

: CEvcntx* et=111_evt.GetNext(pos); 
rpen=ncw CPcn(PS_SOLID.I.RGB(255.0.0)): 



oldpen=pdc->SelectObject( rpcn ); 
et->Draw(pdc ): 
rpen=pdc->SelcctObject( old pen); 

delete rpcn; 

dcldlg dd; 
if( dd.DoModai(}==I DOK) 
{POSITION posl; 
i I(! m _state.! sEm pty()) 
{ 
lor(posl=pos=m_statc.GetHeadPosition();pos!=NULL;) 

} 

{ 
posl=pos; 

temp I =m _ state.GetAt(pos I); 
m_ state.GetNext(pos); 
if(checkstate(temp I )=1) 
m_ state.RemoveAt(pos I); 
l 
I 

it(! m _ sevent.IsEm pty()) 
{ 
for(posl=pos=m_sevent.GetHeadPosition();pos!=NULL;) 
{ 
posl=pos; 
setemp=m _sevent.GetAt(pos I); 
m _ sevent.GetNext(pos ); 
if( checksevent( setemp )==I) 
{ decrementevent( setemp ); 

m _ sevent.RemoveAt(pos I); 
} 

}//end of post 
}//end of if 

if(!m _ event.lsEmpty()) 
{ 
for(pos I =pos=m _ event.GetHeadPosition();pos!=NULL;) 
{ 

} 

posl=pos; 
CEventx* et=m_event.GetAt(pos I); 
m _ event.GetNext(pos ); 
if( checkevent( et)== I) 

m _ event.RemoveAt(pos 1 ); 
}//end ofposl 

}//end of if 
Invalidate(): 
m_ st. RemoveA II(): 

m_ sevt. RemoveA II(): 
m_ cvt. Remove A II(): 
flag I =-I :flag2=-1: 

77 



tlagJ=FALSE; 

void OnGeneratecode() 
{ 

set= I; 
POSITION pos; 
CCiientDC d(this); 
CDC *pdc=(CDC *)&d; 
On PrepareDC(pdc ); 
Invalidate(); 
char name I [15],name2[ 15],name3[ I5],name4[ 15];· 
CFile fpcls,fpatb,fplnk; 
strcpy(name I ,"class"); 

. strcpy(name2," {"); 
strcpy(nameJ,"} "); 
strcpy(name4,";"); 
if(!m_eventi.IsEmpty()) 

I 
I 

m_ event I.RemoveAII(); 
if( !sstate.lsEmpty()) 

sstate.RemoveAII(); 
CSevent* set; 
Event* ett; 
startstate* stt; 
i=O; 
for(pos=pdoc->m _ class.GetHeadPosition();pos!=NU LL;) 
{ CCiass* cl=pdoc->m_class.GetNext(pos); 

stt=new startstate; 
stt->cname=ci->GetName(); 
stt->starts=cl->st _state; 
stt->tag=++i; 
sstate.AddTail( stt); 

} 
if(!pdoc-->m_sevent.IsEmpty()) 
{ for(pos=pdoc->m_sevent.GetHeadPosition();pos!=NULl~:} 

{ set=pdoc->m_s.'!vent.GetNext(pos); 
ett=new Event(); 
ett->s I =set->s 1; 

ett ->s2=set ->s2; 
ett->s3=set->s3; 
ett ->event=set->GetName(); 
st I =pdoc->CheckSname(set->s I ,set->start); 
ett->c I =sti->cname; 
st I =pdoc->CheckSname(set->s2,set->end); 
ett->c2=st I->cname; 
m_eventi.AddTail(ett); 

i=IO,j=IO; 



classsave rtemp; 
atbsave atemp; 
attrib *amove, *aadd; 
classdiagramar *cmovc, *clas=NULL: 
fpcls.Opcn("test.cls" ,CFi le:: modcRcad): 
fplnk.Open{"lest.lnk ",C File: :modcRcad ): 

· fpatb.Open("tcst.atb",CFile::modcRcad): 
if( fpels.GetLcngth()=O) 
McssageBox("File is empty","Rcad Record ... "): 

else 
{ 

•. 

fpcls.SeekToBegin(); 
while( fpcls.Read( &rtemp,sizeof( classsave) )! =0) 

{ 
emove=ncw classdiagramar; 
cmove->name=rtemp.name; 
cmove->cno=rtemp.cno: 
cmove->alink=NULL: 
cmove->mlink=NULL; 
if(fpatb.GetLength()==O) 
MessageBox("Methods/attributcs file empty"."Rcad Record ... "): 
fpatb.Seek T oBegi n( ): 
while( fpatb.Read( &atemp,sizeot( a temp) )!=0) 

{ 
if(atemp.cno == cmove->cno) 

{ 

else 
{ 

aadd=new attrib; 
aadd->name=atem p.name; 
aadd->next=N U LL: 
if(atemp.type= I) 
{ 
if(cmove->alink=NULL) 
cmove->alink=aadd; 

else 

amove=cmove->alink; 
while(amove->next!=NULL) 
amove=amove->next: 
amove->next=aadd: 
} 

if( cmove->mlink=NULL) 
cmove->m I ink=aadd; 

else 

amove=cmove->mlink: 
while(amovc->next!=NULL) 
amove=amovc->next: 
amovc->ncxt=aadd: 

79 



' }//same class o~jcct (if condition) 
} //while loop reading attrib 

cmovc->next=clas; 
clas=cmovc; 

Jll while reading class info 
fplnk.Ciose(); 
fpcls.Ciosc(); 
fpatb.Ciosc(); 
cmove=clas; 
CString attrib I ,attrib2; 
attrib I ="attribute"; 
attrib2="methods"; 
while(cmove !=NULL) 
{ 

i=IO; 
pdc->TextOut(ij.name I); 
i=strlen( name I)+ 20; 
pdc-> TextOut(ij,cmove->name ): 
j+=20; 
pdc-> TextOut( ij,name2 ); 
i+=strlen( name2)+ 20; 
pdc-> TextOut(i,j,attrib I); 
j+=20; 
while(cmove->alink !=NULL) 
{ pdc-> TextOut(ij,cmove->alink->name ); 
j+=20; 
cmove->alink=cmove->alink->next; 

} 
pdc-> Text0ut(ij,attrib2 ); 
j+=20; 
while(cmove->mlink !=NULL) 

{ pdc->TextOut(ij,cmove->mlink->name); 
j+=20; 
cmove->m I ink=cmm ,·->m I ink->next: 

pdc-> TextOut(ij,cmove->mlink->name ); 
i+=20;j+=20; 
pdc-> Text0ut(i,j,name3 ); 
j+=20; 
pdc-> Text0ut(ij,name4); 
j+=20; 
crnove=cmove->next; 

CWinThread *t I =AfxBeginThread(thread I ,GetSafeHwnd()): 
CWinThread *t2=AfxBeginThread(thread2.GetSafcl-lwnd( )): 
CWinThread *t3=ACxBeginThread(thread3,GctSafcllwnd( )): 

so 



CWin Thread *t4=A fxBcgirdllrcad(thrcad4,GctSafcl-lwad() ); 
CWinThrcad *t5=AfxBcgin'rhrcad(thrcad5,GctSafcllwnd()); 

I 
j 

void ncwvicw::OnSavccodc() 

sct=O; 
CFilc file; 
POSITION pos; 
CString fi len arne: 
CCiass *ctcmp2; 
CStatc *stemp2, *slemp I; 
CScvcnt *scternp2; 
stcrnpl=NULL; 
codedlg namdlg; 
if(namdlg.DoModal()==IDCANCEL) 
return; 
fi lename=namd lg.m_ filename: 
ACxMcssageBox(filcname); 
CFileException e; 
if( !file.Open( filename, CFilc::rnodcCrcate I CFilc::rnodeWritc. &e ) ) 

{ 
#ifdef DEBUG 

afxDump <<"File could not be opened"<< e.rn_causc << "\n": 
#end if 

} 
for(pos=m_class.GetHeadPosition();pos!=NULL;) 

{ ctemp2=m_class.GetNext(pos); 
file. Write( ctemp2,sizeof(CCiass)); 
} 

for(pos=m _ state.GetHeadPosition();pos! =NULL;) 
{ 

} 

stem p2=m _state. Get Next( pos ); 
file. Write(stemp2,sizeof(CState )); 

for(pos=m _ sevent. GetHeadPosition();pos! =NULL;) 
{ 

l 
j 

set em p2=m _ sevent. Get Next( pos ); 
file. Write(setemp2,sizeof(CSevent)): 

file.Ciose(): 

CTypedPtrList<CObList.Evcnt*>m_ event I; 
CTypedPtrList<CObList.startstate*>sstate: 

CString getstate(int i) 
I 
l 

startstate* st; 
POSITION pos: 

XI 



f(x( pos=sstatc.GetHeadPosition();pos!=NU LL;) 
{ st=sstate.GetNcxt(pos); 
if(st->tag == i) 

return st->starts; 

return ""; 

CString getclass(int i) 

startstatc* st; 
POSITION pos; 
for(pos=sstate.GetHeadPosition();pos!=NULL;) 
{ st=sstate.GetNext(pos); 

if(st->tag == i) 
return st->cname; 

return ""; 

void enablcevent(CString sname,CString cname) 
{ 
POSITION pas; 
Event* et; 
for( pos=m _event 1.GetHeadPosition();pos!=N ULL;) 
{ 

et=m_ event I.GetNext(pos ); 
if( strcm p( et->s 1 ,sname )=0 && strcmp( et->c I.e name )=0 ) 
{ 
CString tempdis=et->s 1; 
et->e.SetEvent(); 

} 
} 

Event* waitforevent(CString sname,CString cname) 
{ 

POSITION pos; 
Event* et; 
1t)r(pos=m_ event I.GetHeadPosition():pos!=NU LL;) 
{ et=m_ event I.GetNext(pos ); 

i 1{ strcm p( et ->s2,sname )=0 
&& strcmp(et->c2,cname)==O) 

return et; 

return NULL; 
} 

UINT threadi(LPVOID pparam) 
{ CString sname: 
snamc=getstate( J ): 



while( I) 

C:String cnamc=getclass( I): 
cnableevcnt(snarnc,cname ): 
Event* et; 
ct=waitforevent( snamc.cname ): 

it(ct==NULL) break; 
:: W ititForSingleObject( et->e .m_hObjcct.IN FIN IT E): 
sname=et->s3; 

return 0; 

UINT thread2(LPVOID pparam) 
{ CString sname: 
sname=getstate(2); 
while( I) 
{ 

C:String cname=getclass(2): 
enableevent( sname,cname ); 
Event* et; 
et=waitforevent( sname,cname ); 
if(et==NULL) break; 
:: WaitForSingleObject( et->e.m _ hObject,IN FINITE); 
sname=et->s3; 
} 
return 0; 

} 

UINT thread3(LPVOID pparam) 
{ CString sname; 
sname=getstate(3 ); 
while( I) 
{ 
('String cname=getclass(3); 
enableevent( sname,cname ); 
Event* et; 
et=waitforevent( sname,cname ); 
iflet==NULL) break; 
::WaitForSingleObject(et->e.m_hObject.INFINITE); 
sname=et->s3; 

l. 
J 

return 0; 

UINT thread4(LPVOID pparam) 
{ CString sname: 
sname=getstate( 4 ); 
while( I) 

83 



CString cnamc=getclass( 4 ); 
cnableevent( sname,cname ); 
Event* et; 
ct=wait f orevent( sname,cname ); 
if(ct==NULL) break; 
::WaitForSingleObjcct(et->c.m_hObjcctJNFINITE); 
sname=ct->s3: 

l 
J 

return 0; 

UINT threadS{LPVOID pparam) 
{ CString sname; 
sname=getstate( 5 ); 
while( I) 
{ 
CString cname=getclass( 5 ); 
enableevent{ sname,cname ); 
Event* et; 
et=waitforevent( sname,cname ); 
if(et==NULL) break; 
::WaitForSingleObject(et->e.m_hObject,INFINITE): 
sname=et->s3; 
} 
return 0; 

X4 



Reference.\· 

I. Booch,Grady. 

Object Oriented analysis and design with applications. Grady Booch 2nd edition. 

2. Rumbaugh,J .,Biaha,M ., Premerlani, W., Eddy,F.,and Lorenson, W. I 997. 

Object Oriented Modeling and Design, Prentice Hall. 

3. Bjarne Stroustrup. 

The C++ Programming Language.l997. 

Addison-Wesley 3rd edition. 

4. David.J.Kruglinski. 

Inside VC++. 4th Edition. 

Microsoft Press. 

5. Yashavant.P.Kanetkar. 

VC++ Programming.l998, 1st Edition. 

BPB publications. 

6. Roger.S.Pressman 

Software Engineering, A Practitioners approach.l997, 

4th Edition. McGraw Hill International Edition. 

S5 


	TH76590001
	TH76590002
	TH76590003
	TH76590004
	TH76590005
	TH76590006
	TH76590007
	TH76590008
	TH76590009
	TH76590010
	TH76590011
	TH76590012
	TH76590013
	TH76590014
	TH76590015
	TH76590016
	TH76590017
	TH76590018
	TH76590019
	TH76590020
	TH76590021
	TH76590022
	TH76590023
	TH76590024
	TH76590025
	TH76590026
	TH76590027
	TH76590028
	TH76590029
	TH76590030
	TH76590031
	TH76590032
	TH76590033
	TH76590034
	TH76590035
	TH76590036
	TH76590037
	TH76590038
	TH76590039
	TH76590040
	TH76590041
	TH76590042
	TH76590043
	TH76590044
	TH76590045
	TH76590046
	TH76590047
	TH76590048
	TH76590049
	TH76590050
	TH76590051
	TH76590052
	TH76590053
	TH76590054
	TH76590055
	TH76590056
	TH76590057
	TH76590058
	TH76590059
	TH76590060
	TH76590061
	TH76590062
	TH76590063
	TH76590064
	TH76590065
	TH76590066
	TH76590067
	TH76590068
	TH76590069
	TH76590070
	TH76590071
	TH76590072
	TH76590073
	TH76590074
	TH76590075
	TH76590076
	TH76590077
	TH76590078
	TH76590079
	TH76590080
	TH76590081
	TH76590082
	TH76590083
	TH76590084
	TH76590085
	TH76590086
	TH76590087
	TH76590088
	TH76590089
	TH76590090
	TH76590091
	TH76590092
	TH76590093

