
@
CASETOOL FOR OBJECT O~TENTED

MODELING (if:'-,

JAWAHARLAL NEHRU UNIVERSITY

1Jtssertation Suu,uaed io

JA WAHARLAL NEHRU UNIVERSITY

in partial fulfilment of requirements

for the award of the degree of

Master of Technology

in

Computer Science

ANKEM HANU

SCHOOL OF COMPUTER & SYSTEMS SCIENCES
JAW AHARLAL NEHRU UNIVERSITY

NEW DELHI- 110 067
JANUARY 1999

SCHOOL OF COMPUTER & SYSTEMS SCIENCES
JAW AHARLAL NEHRU UNIVERSITY,
NEW DELHI- 110 067

CERTIFICATE

This is to certify that the dissertation entitled

"CASETOOL FOR OBJECT ORIENTED MODELING" developed .in VC++,

submitted by Mr.A.Hanu to the School of computer and system

sciences, Jawaharlal Nehru University, for the award of Master

of Technology in Computer Science is a bonafied work carried

out by him.

The results embodied in this project report have not been

submitted to any other university or institute for the award of

any degree.

~{}p~~
Prof.P.C.Saxena~1vq/

J
l o..y.._..,_· ~ ~ .

Dr.N.Parirnala

(Dean SC&SS) (Supervisor)

DECLARATION

This is to certify that the dissertation entitled "Case

tool for Object Oriented Modeling" which is being submitted to

the school of Computer and systems sciences, Jawaharlal Nehru

University, for the award of Master of Technology in Computer

Science, is a record of bonafied work carried out by me.

This work has not been submitted in part or full to any

university or institution for the a~ard of any degree.

ACKNOWLEDGEMENTS

.
I express my deep gratitude to my guide Dr.N.Parimala for

her guidance and great patience at all stages of my project.

I would like to express my thanks to Dean, Prof. P. C.

Saxena, School of Computer & Systems Sciences, JNU for

providing the necessary facilities in the centre for the

successful completion of the project.

I take this opportunity to thank my colleagues Nagamani

and Shachi for their critical comments during course of the

project.

Last but not the least I would like to thank my

classmates and the entire SC&SS staff who helped me directly or

indirectly in making my project a success.

\

ANKEM HANU

CONTENTS

Abstract

1.Introduction

1.1 Problem
1.2 Case tool
1.3 Organization of the report

2.0bject Oriented Concepts

2.1 Object Oriented Methodology
2.2 The Object Model
2.3 The Dynamic Model
2.4 The Functional Model
2.5 Diagrams

3.Problem Description

1

1
3
3

5

5
6
7
7
8

10

3.1 University Admission System 10
3.2 Augmented State Transition Diagram 14
3.3 Integrated Diagram 16
3.4 Integrated Diagram for Univ Admission
system 17

4.Implementing Class Diagrams 21

S.Generating Event Trace Diagram 26

6.Implementation Issues 30

6.1 Class Diagram 30
6.2 Inheritance Relationship 32
6.3 Deletion of Relations and Class Icons 34
6.4 Implementing drag and drop option 35
6.5 Event Trace Diagram 35
6.6 Programming Language Issues 37

7.Annexes 39

7.1 Source Code 39
7.2 Sample screens 83

References 86

ABSTRACT

The case tool is a user-friendly application developed in

VC++ which helps system analyst in object-oriented modeling and

design. The case tool can handle modifications in the static

and dynamic behaviour of the system.

To make design as flexible as possible, we have to take

into account several requirements, specifications and

interaction of the system in the real world. Current object

oriented systems deal with static and dynamic behaviour of the

objects. If we consider particularly the dynamic aspect several

structures exist to represent this behaviour. However there is

no method, which incorporates consistency in the dynamic

behaviour when modifications are done. As dynamic model

consists of multiple state transition diagrams, any change in

the system implies a change in one or more state transition

diagrams. Which may lead to set of state transition diagrams in

an inconsistent state.

checking through the

diagrams. The current

The application introduces consistency

help of integrated state transition

project includes implementing Class

diagrams and generating Event trace diagram from State

transition diagram.

The case tool accepts the static behaviour of the system

through the help of a GUI. The system analyst will be able to

input information about the class, attributes, methods,

inheritance relationship among the classes directly without

programming. It allows him to draw the Integrated State

Transition diagram (ISTD) by accepting state and event

information. Besides this the case tool draws event trace

diagram from the ISTD and finally generates the c++ source code

for the system.

!.INTRODUCTION

The main purpose of object oriented development is to build

the real world models, using an object oriented view of the

world. The fundamental building blocks of object oriented

development includes objects and classes. Object oriented

analysis include understanding the structure of the classes,

inheritance mechanism, individual behaviour of the objects

and so on. It is very difficult to capture all details of the

complex system in just one view. Thus we go along with the

analysis in two dimensions:

1. Static structure of the system.

2. Dynamic behaviour of the system.

The static nature include identifying the classes,

identifying the attributes, methods that belong to a class,

identifying the inheritance relationship between the classes

etc. The dynamic behaviour include the state transition that

an object undergoes, the events that cause these transitions,

the order in which the events are occurring etc.

1.1 Problem

It is possible that the requirements of the system may

change during design stage of the software lifecycle. Object

oriented systems are flexible enough to handle changes in the

requirements. The impact of change is supposed to be easily

I. INTRODUCTION 2

identified, bounded and assessed. The main issue is to

identify the changes that may take place in the requirements

and study how easily these changes can be incorporated in the

object oriented analysis of the system. The change itself can

be in the static or in the dynamic nature of the system.

The rr.: j or aspects that are dealt with are the class

diagrams, the state transition diagrams, the event trace

diagrams. The state transition diagrams show the different

states of objects of a given class, the events that cause the

transition from one state to another and the actions that are

to be performed.

Whenever there are multiple diagrams, then any change in

the system may imply that many diagrams will have to undergo

modifications, in such a situation there is a possibility

that partial modifications may take place leaving the set of

diagrams in an inconsistent state.

We postulate that when analyzing the dynamic behaviour

of an object the different aspects of this behaviour must not

be segregated and analyzed separately but all aspects must be

considered together[Par 95]. The dynamic requirement analysis

must consider the intra as well as inter object behaviour

together. That is the analysis must deal with an integrated

behaviour of objects covering state transitions that an

object undergoes and the events that are sent and received by

an object. If this were to be done, then any change to be

made will be in one place. This would eliminate partial

modifications, which leads to inconsistent diagrams.

I. INTRODUCTION 3

1.2 Case tool

If we look back at the brief history of programming we

notice that programming used to be done in machine language

with minimum tools available, later on assemblers, compilers

have been developed.

displays the code

Further advances brought editors,

in different colours, source

which

level

debuggers etc., which made programming easier. Trying to

build a large software system with a minimal tool is a

Herculean task. Traditional software development tools embody

knowledge only about source code, but since object oriented

analysis and design highlight key abstractions and mechanisms

we need tools that can focus on richer semantics. Great

designs come from great designers, not from great tools.

Tools help the designer complete his job quickly.and easily.

The case tool developed helps the designer in drawing class

diagrams, Integrated diagrams. It can handle consistency

checking in the static and dynamic behaviour of the system.

It also generates event trace diagram from the Integrated

State transition diagram.

1.3 Organization of the report

Chapter 2 Object oriented concepts: The chapter explains in

briefs the 00 methodology, it discusses 00 Models.

Chapter 3 Problem Description: It explains in detail the

partial modification problem with a University Admission

system example. The chapter also gives the approach to tackle

the problem.

I. INTRODUCTION

Chapter 4 Implementing Class Diagrams: The chapter gives the

complete picture about how the end user has to use the

casetool to draw class diagrams.

Chapter 5 Generating Event Trace Diagrams: This chapter

explains how the end user can get the event trace diagram

using the casetool. It also gives the advantages of object

interaction diagram.

Chapter 6 Implementation Issues: This chapter explains in

detail the data structures, functions, methodology used in

the development of the casetool. Finally it gives the

features of the programming language used.

Chapter 7 Annexes: Annexes include the source code for the

case tool and sample screens.

2.0BJECT ORIENTED CONCEPTS

2.1 Object Oriented Methodology

Object oriented methodology consists of building a model

of an application domain and then adding implementation

details to it during the design of a system. We call this

approach Object Modeling Technique (OMT).

The methodology includes:

1. Analysis:

builds a

From the statement of the problem, the analyst

model of real world situation showing its

important properties. The analysis model is a concise,

precise abstraction of what the desired system must do,

not how it will be done. The objects in the model must be

application domain

concepts such as

and

data

not computer

structures. The

implementation

analysis model

should not contain any implementation decisions.

2. System Design: The system design makes high level

decisions about the overall architecture. During system

design, the target system is organized into subsystems

based on analysis, structure and the proposed

architecture. The system designer must decide what

performance characteristics to optimise, choose a strategy

of attacking the problem and make tentative resource

allocations.

5

2. OBJECT ORIENTED CONCEPTS 6

3. Object Design: The object designer builds the design model

based on the analysis model but containing implementation

details. The designer adds details to the design model in

accordance with the strategy established during system

design. The focus of object design is the data structures

and algorithms needed to implement each class.

4. Implementation: The objects and their relationships

developed during object design are finally translated into

a particular programming language, database or hardware

implementation. Programming should not be tedious; it must

be more mechanical since major decisions are made in the

design stage. The design should not depend upon the

implementation details rather programming language must be

selected which can support (Help the implementation of)

the design property.

Object oriented concepts can be applied through out the

system development life cycle, from analysis through design

to implementation. The three 00 Models include the object

model, the dynamic model and the functional model.

2.2 The Object Model

The object-oriented model is based on objects, which are

structures that combine related code and data. The

description

declaration.

of

The

an object is contained

basic properties of objects

encapsulation, inheritance and polymorphism.

its

are

class

called

2. OBJECT ORIENTED CONCEPTS

2.3 The Dynamic Model

7

The dynamic model describes those aspects of a system

concerned with time and sequencing of operations. The dynamic

model captures cvntrol. Control is that aspect of a system

that describes the sequences of operations that occur in

response to external stimuli, without consideration ot what

the operations do, what they operate on, or how they are

implemented. The dynamic model consists of multiple state

diagrams, one state diagram for each class with important

dynamic behaviour and shows the pattern of activity for an

entire system.

2.4 The Functional Model

The functional model describes those aspects of a system

concerned with transformations of values, functions,

mappings, constraints and functional dependencies. The

functional model captures what a system does, without regard

for how or when it is done. The functional model consists of

multiple data flow diagrams, which show the flow of values

from external inputs, through operations and internal data

stores, to external outputs. The functional model specifies

the meaning of the operations in the object model and the

actions in the dynamic model, as well as any constraints in

the object model.

Relationship among the models

Each model views the system in a different perspective to

give the complete picture of the system. The object model

describes data structure that the dynamic and functional

models depend on. The operations ln the object model

2. OBJECT ORIENTED CONCEPTS 8

correspond to events in dynamic model and functions in the

functional model. The functional model specifies what

happens, the dynamic model specifies when it happens and the

object model specifies what it happens to.

2.5 Diagrams

Class Diagrams: A class diagram is used to show the existence

of classes and their relationships in the logical view of a

system. A single class diagram represents a view of class

structure of a system. The class diagram consists of a

rectangle with a maximum of three horizontal divisions, the

first division contains the name of the class, the second

division contains the attributes and the third division

contains methods that belong to the class. During analysis we

use class diagrams to indicate the common roles and

responsibilities of the entities that provide the systems

behaviour. During design we use class diagrams to capture the

structure of classes that form the systems architecture.

Object Diagram: The object diagram is similar to the class

diagram with the ends of the rectangle rounded. There are

however no partitions in the rectangle the rounded rectangle

contains the values of the attributes.

The two diagrams we have introduced thus far are largely

static. However, events happen dynamically in all s/w

intensive systems, Objects are created and destroyed, objects

send messages to one another in an orderly fashion, and 1n

some systems external events trigger operations upon certain

2. OBJECT ORIENTED CONCEPTS 9

objects. In object oriented development, we express the

dynamic semantics of a problem or its implementation through

two additional diagrams. They are State transition diagrams,

Event trace diagrams.

State transition diagrams: A state transition diagram(STD) is

used to show the static space of a given class, the events

that cause a transition from one state to another, and the

actions that result from a state change. A single state

transition diagram represents a view of the dynamic model of

a single class or of the entire system. STDs show the event

ordered behaviour of the system as a whole. During analysis

we use STDs to indicate the dynamic behaviour of the system.

During design we use state transition diagrams to capture the

dynamic behaviour of individual classes or of collaborations

of classes.

Interaction Diagram: An interaction diagram is used to trace

the execution of a scenario in the same context as an object

diagram. Indeed to a large degree, an interaction diagram is

simply another way of representing an object diagram.

3.PROBLEM DESCRIPTION

Whenever there are multiple state transition diagrams

representing the dynamic behaviour of the system, then any

change in the system may imply that many diagrams will have

to undergo modifications. In such a situation, there is a

possibility that partial modification may take place leaving

the set of diagrams in an inconsistent state.

In this chapter we perform analysis of an example system and

arrive at the different diagrams of the analysis document,

later, we assume that requirements undergo a change and show

how partial modifications can take place.

3.1 University Admission System

Consider a University Admission system where a person

takes admission into a school. If he is not a local student,

he can apply for hostel accommodation. The student can be

relieved from the university in two ways either by submitting

the thesis or by applying for course cancellation. In either

case if he is a resident he has to vacate the room to get his

dues cleared. The class diagrams for the University Admission

system can be shown in fig: 3.1.

Fig: 3.l.Class Diagrams

Person
School Office Hostel Office Room

Admit
Allot Submit_App Submit H A Allot

Cancel Cancel_App Check Dues Vacate
Vacate Submit thesis Cancel H A

Complete No Dues

10

3. PROBLEM DESCRIPTION

The state transition diagrams for the

Hostel Office, Room are given in the

notation of Rumbaugh.

(Non Studen)

Vacate Allot

II

Person, School Office,

fig 3. 2. Using the

Fig:3.2(a) State Transition Diagram of Person.

(Initial)

No Dues

(On No Due

Fig:3.2(b) State Transition Diagram of School Office.

3. PROBLEM DESCRIPTION 12

Initial

Submit_H_App

Fig:3.2(c) State Transition Diagram of Hostel Office.

Vacant

Allot Vacate

Fig:3.2(d) State Transition Diagram of Room.

Person School Office Hostel Office Room

Submit App
....

Admit

Subm·t H App ..
..... A 11 nt A 1 1 nt

CancEl Hostel
Vacaie Vacate

Cancel Course .. Check Dues .. - ..
....

No Dues
-

Cancel

Submit thesis Check Dues - ... -......
....

No Dues ... -....
Complete

Fig: 3.3.Event Trace Diagram.

3. PROBLEM DESCRIPTION 13

The event trace for the system is shown in the fig 3.3.

Let us now assume that there is a change in the policy

of Admission policy. The new rule is that no cancellation is

allowed. Notice that the change is to be incorporated then

modifications to different diagrams has to be made to reflect

the situation. In particular, the state transition diagram·of

School Office has to be modified. Here the On cancel State

has to be absent. Similarly in the class Person transition

from student to non student should be removed. The event

trace for the scenario of cancel will have to be removed.

If it happens that only the state transition diagram of

School Office is modified to the one in fig 3.4. Then we see

that the set of state transition diagrams for the University

Admission system will be in an inconsistent state. There is

nothing in the system to prevent this situation. Clearly if

the changes were to be made in just
0

one place then there

would be no inconsistency.

(Initial)

Submit

No Dues

Fig: 3.4.State Transition of School Office

3. PROBLEM DESCRIPTION 14

We propose to augment the state transition diagram to

include not only the state transition of objects of a given

class cl but also the states of objects of class c2 ... en

which cause the state transitions of objects of cl. [Par 95]

To achieve this, first we define the augment state transition

diagram (ASTD) then the Scenario State transition diagram

(SSTD) and finally integrated diagram (ID).

3.2 Augmented State Transition Diagram

Let an object ol belonging to class cl in the state osl

make a transition to state os2 when the event evl takes

place. Let evl be an event caused by an object o2 belonging

to class c2 in state os. Then, a dotted line with the label

el is drawn from OS to 02 to the transition of 01 from OSl to

OS2 as shown in the fig 3.5.

Cl C2

OSI

OS

Fig: 3.5.

The above augmented state transition diagram specifies:

1. The state transition of an object of a class Cl.

2. The class C2, an object of which causes the event and

3. The state in which it can cause the event.

3. PROBLEM DESCRIPTION 15

It may be possible that objects belonging to more that one

class can cause the event evl. In such a situation the ASTD

consists of

1. The state transition of an object of a class cl,

2. All the classes, an object of each of which cause the

event and

3. The state in which each of these objects can cause the

event.

Consider the University Admission example defined in

earlier section, The ASTD for the Admission into the school

is shown in fig 3.6. Person in state Non Student causes the

when the School Office is in initial event 'Submit_App'

state. The counter then moves to On_Submit, this state causes

the event 'Admit' which transforms person from Non Student

state to Student state.

Person School Office

Initial

Submit
Non Stude

Fig: 3.6. Augmented State Transition Diagram

3. PROBLEM DESCRIPTION 16

Scenario State Transition Diagram:

An event scenario is a sequence of events occurring

during one particular execution of the system. It gives the

event trace. The scenario state transition diagram is drawn

as follows: Start with the first event of the event trace and

draw the ASTD for the object, which goes through a state

transition when this event occurred. Pick up the next event

and extend the existing state transition diagrams with

states, transitions and events to include the ASTD for the

state transition caused by the new event. Continue till all

the events in the event trace are exhausted.

For the library system, consider the event trace shown

in fig. 3.3. The first event is 'Submit_App'. This causes a

state transition in School Office. The ASTD for Admission

will be shown in fig 3. 6. The next event is Admit. This

causes a state transition in Person from the state

Non Student to Student. Similarly we can trace the sequence

of events for the complete system.

3.3 Integrated Diagram

An Integrated Diagram consists of all the scenario state

transition diagrams of a given system. That is, it includes

the scenario state transition diagrams for all the event

traces of the system.

Graphical Notation: A state is denoted by a rounded rectangle

with its name in it. The class name to which the object

belongs is written above the ASTD of the object. Each objects

3. PROBLEM DESCRIPTION 17 .
state transition is in a vertical line. State transitions are

denoted as solid lines with an arrowhead. The head points to

the new state of the object. The events are denoted as dashed

lines with an arrowhead. The line originates from the state

of the object, which undergoes the particular transition as a

result of the event.

Solution to the partial modification problem:

The integrated diagram gives the complete specification

of the dynamic behaviour of the system, which includes the

state transition of objects of various classes and the states

of objects of other classes causing the event. When the

system undergoes a change in its dynamic behaviour then all

the changes to be made in the analysis diagrams is in one

place. Thus any change can be reflected without giving rise

to any partial modification.

3.4 Integrated Diagram for the University Admission System

In this section we consider the University Admission

example again draw an integrated diagram for the dynamic

behaviour. The static analysis remains the same. Therefore,

we have the object classes Person, School_ Office,

Hostel Office, Room. The Integrated diagram is shown in

Fig.3.7.

The School Office is in Initial State, which receives an

event submit_ App from the person in the Non Student State.

The School Office then moves to the next state On Submit.

Which causes the event Admit. This event Admit causes a

transition in person from Non Student State to Student State.

The student may submit Hostel_App, which causes a transition

3. PROBLEM DESCRIPTION 18

in the Hostel Office from Initial to On Submit. The student

and the room receive event Allot from the On Submit state of

the hostel, with the event the Person moves from Vacant state

to Full State. Rest of the events can be explained similarly.

If the new policy is introduced, then the On cancel

State for the School Office will be removed and the events

Cancel App will be deleted. Applying the changes to the

fig.3.7 will give the fig.3.8.

3. PROBLEM DESCRIPTION 19

Person School Office Hostel Office Room

(Initial

Submit Apo... l Non_Studen J ...
.---t..J.~~ • r

... ~ Admit · t On_Submit] l Initial J

,, 1 CancelAp" / Submit_H_App

-• Submit_Thes.1.::; / ... \

[Student I . I

~~ ~ ~~--~
.. ... [Vacant J

{ OnCanc }--- [OnSThe }-
Allot

14~1-----.1u,..,._-r=_.t,0td---+--,>---4---+------l[On Submit]1------l~ ...

Check No Dues r
rhPrk- N{) nnPc: ... ,r ...

l 1 Cancel Hostel
Residen t----------lc----------+-------------------+--1~~

,r

.... No_Dues

Cancel l OnCanc

.___ _____________ c_o_m...:.p_l_e_t_e ____ --IJ On Thes J

l On_Du

I
J

,

,,
l Full

A•

~

J

~--~V~a~c~a~t~e--1 0 C Vacate l n_ an J

Fig 3.7

J. PROBLEM DESCRIPTION 20

Person School Office Hostel Office Room

(Initial .)

Submit ApJJ...
Non_Studen J ..

_ _.,!~ ," [Initial 1 ..
...... Admit (On_Submit l

Submit
_TheSL> ~·\ ,, I

Submit_H_App
[l Student ~

(Vacant) ~
~

f OnSThe ~ ~ra ,,
Allot

~ f On_Submit l ..
~ ~ ru . .Lo-c r

Check No Dues ~ ,, ,,
(J [Residen l Cancel Hostel Full -

,lr
No Dues

r On_Du) -

"""No Dues T
Cane- ·1

Complete f OnThes)

,.
Vacate

"' [On_Can j
Vacate

fig 3. 8

4.IMPLEMENTING CLASS DIAGRAMS

The first step in implementing an object-oriented

design is to declare object classes. Each attribute and

operation in an object diagram must be declared as part of

its corresponding class. The classes and their relationships

gives the top level logical architecture of the system.

In the current project the system analyst must first

enter the model name to start his design and a class diagram

window is opened for him. The tool is very easy to use, he

has to just select class from the draw menu i tern or just

click on the class icon of the tool bar, then he has to click

on the client area to create a new class with the · default

class name. The default class names will be classl, class2 ...

etc. The class icon has three portions in t he first portion

the default class name is written. The other two portions are

for entering variables, and methods, which belong to the

class. These portions are initially empty and they have

scroll bars attached to them. If the number of attributes or

methods is more then the scroll bars can be used to view

them. See fig 4 .1. Inorder to enter the name of the class,

the mouse cursor should be positioned on the class icon and

its right button is clicked. The tool opens a dialog box

which has a number of edit boxes which include class name,

position (XO, YO) the left corner co-ordinates of the icon,

the height and width edit boxes gives the default size of the

icon. Besides this it has two edit-boxes to enter the

attribute names and the method names. See Fig 4.2.

21

4. IMPLEMENTING CLASS DIAGRAMS 22

The cursor is brought to the class name editbox and the

required class name is typed.

colour
line w

fill_p
revers

x2

delete
save

Fig 4.1 Class Diagrams

If there are more than one, class icons in the client area

then the tool checks the current name with the name typed. It

doesn't allow duplicate class names. Changing the XO, YO

values can change the position of the class icon. The size of

the icon can be increased or decreased by changing the height

and width values. However any value smaller than 50 and any

value greater than 400 will not be accepted. For every

invalid input corresponding warning is messagebox is opened

displaying the problem/valid input that must be entered. Next

in the sequence is the attribute edit box. Here the attribute

name along with the datatype is typed and the next attribute

button is clicked the contents of the editbox will get

cleared if the attribute name is not given earlier for that

4. IMPLEMENTING CLASS DIAGRAMS 23

class indicating the user to enter next attribute. If the

same attribute name is typed then a messagebox indicating

Fig 4.2 Class Properties Dialog Box

that duplicate attribute name is shown. After entering the

last attribute next attribute button must be clicked to

accept the value. Similarly method names are also entered in

the corresponding edit box. Finally OK button is clicked to

accept the values entered. If cancel button is clicked then

the dialogbox is closed and no modifications are made to the

classname, XO, YO, height, width values. However the values

entered for the attributes and methods will be accepted, thus

care must be taken while entering these values. After the

dialogbox is closed the class icon is available with the

entire modifications name, position, size etc. The attributes

and methods will be displayed in the second and third

portions of the icon. If the numbers of attributes/methods

4. IMPLEMENTING CLASS DIAGRAMS 24

are more then the scroll bars can be used to vlew them. If

the class name, attribute name or method names are long to

fit into the class icon

displayed in the icon.

then these names are truncated and

The actual names however will be

available and can also be·seen either by increasing the width

of the icon or by right clicking the icon and viewing the

nam(·s in the properties. Repeating the above procedure

required class icons could be drawn in the client area of the

window.

The icons can also be moved using drag and drop method.

The mouse cursor is brought over the icon, its left button

clicked without releasing and the mouse is moved to the

required location and the button is released to place the

icon over there. If the icon is dragged and dropped over

another icon then the icon will move back to its previous

position.

After drawing all the class icons, the next step in the

design is to link the classes if there is any inheritance

relationship between the classes. This can be done by

selecting the inheritance menu item from the links menu from

the menu bar or by selecting directly from the tool bar and

clicking on the classes consecutively". The first click must

be on the base class and the second must be on the derived

class. An arrow is drawn from the base class to the derived

class. However, if there is any class icon between the base

class and the derived class then the arrow is drawn over the

icon. Proper positioning of the icons can eliminate the links

over a class. The casetool doesn't allow the user to enter an

inheritance relationship if it is already existing between

the classes. It also checks illegal inheritance relationships

-1. IMPLEMENTING CLASS DIAGRAMS 25

between the classes and displays the same when the user tries

to do so. If classl is the base class of class2 and class2 is

the base class· of class3 then class3 is indirectly is a

derived class of classl. If the user tries to add an

inheritance relation from class3 to classl then the casetool

does not allow him, thus avoiding incorrect relationships

entered accidentally. The drag and drop option still work

after the inheritance relationships are added to the class

icon. As the icons are moved the links move automatically in

effect to the change. Deleting the class icons is the option,

which is necessary if a class is created by mistake or which

has no significance. This option is also available for the

user in the casetool. The user has to get the mouse cursor

over the class icon and double click over it to select the

class. The class icon along with all the links to other class

icons will turn blue showing the effect of selection. To

delete the highlighted part cut toolbar option or delete

class menu item is clicked and a Messagebox warning the user

that the highlighted part will get deleted is displayed. The

user can delete the highlighted part by clicking cancel.

Deleting the links is also provided in a similar fashion.

However no class icons will get deleted while deleting the

links. The class properties can be modified at any time by

right clicking the class icon and modifying the values in the

edit box.

Finally class diagrams can be saved by clicking on save

option of the toolbar or from the save menu item. The class

icons along with links are saved in a file with the default

name modelname.cls this name can be changed by the user. The

user can get back the class diagram from such a file. After

completing class diagram he can switch over to ISO part of

the casetool through the menu.

5. GENERATING EVENT TRACE DIAGRAM

An interaction diagram also known as event trace diagram

is used to trace the execution of a scenario in the same

context as an object diagram. An interaction diagram is

simply another way of representing an object diagram. The

advantage of using an interaction diagram is that it is

easier to read the passing of messages in the relative order.

A useful Object oriented design methodology must provide the

designer with the means to handle complex situations

effectively. Inter object relationships are not always as

simple as they are presented in some rather trivial examples

of object oriented design. To handle complex situations

effectively we use the concept of object interaction diagram.

In the interaction diagram there are no icons. The

object names are written horizontally across the top of the

diagram. A dashed vertical line is drawn below each object.

Message or events are shown horizontally using horizontal

arrows. The endpoints of the message icons connect with the

vertical lines that connect with the entities at the top of

the diagram and are drawn from the client to the supplier.

Ordering is indicated by vertical position, thus the first

message is at the top of the diagram and the last message is

at the bottom of the diagram.

In the case tool after drawing the integrated diagram it is

saved and in order to obtain the event trace click on the

event trace menu item from the menu bar. The case tool opens

26

5. GENERATING EVENT TRACE DIAGRAM 27

another document containing the event trace, which is

obtained through the use of threads along each object in the

integrated diagram. The designer can just view the event

trace equivalent to the previous drawn integrated diagram no

modifications to the event trace is allowed. The event trace

for the example-Integrated diagram {Fig 5.1) will be shown in

the fig S.2.

CLASSl CLASS2 CLASS3

S2

Sl S4

Fig 5.1

CLASSl CLASS2 CLASS3

El ...

E2

Fig 5.2

The implementation details will be dealt in the next chapter.

5. GENERATING EVENT TRACE DIAGRAM 28

The advantages of the use of the object interaction model in

system development are:

1. Consistency with the object model, since

possible paths of interaction between

defined in the object model.

it describes the

objects that are

2. Determination of dependencies among the objects. OIDs

depict those services of cooperating oblects that an

object calls, in order to succeed in offering its

services. This fact inherently creates dependencies among

the objects that may be either strong or weak. In any

case, we immediately know the list of cooperating objects

and their specific relations.

1. 3. The OI D provides

enabling the easy

the whole

design of

set of object operations,

state diagrams. The state

diagram requires the whole set of object

order to be completely defined. We

interactions, in

can take this

information from the relevant OID. We must state at this

point that using object expansion, we arrive at simple

primitive objects that offer a very specific and

constrained set of services and that usually have very

simple state diagrams. A complex primitive object is

usually one that has already been designed and is reused in

the current design; consequently we are not interested in

redesigning it again. Our interest shifts from the internal

aspect of the object and how it exhibits its behaviour to

its external interface and its cooperation with the other

objects within the system.

5. GENERATING EVENT TRACE DIAGRAM 29

3. Immediate view of what roles each object plays in the

system according to the mechanism it participates in and

of the surrounding context of the object.

4. In large real time systems things are not ideal and design

cannot always be constrained by the general directions and

tactics given by the Object oriented community.

groups of objects that are related are

overlapped. The created complex structures

recognized through the use of OIDs and thus

appropriately.

Sometimes,

partially

can be

designed

5. Documents the effects that an event can cause within the

system.

6. If we consider the maintenance or extension of the system

by people who have not been involved during the initial

development, we find that OIDs facilitate the study of

already developed systems.

6.IMPLEMENTATION ISSUES

6.1 Class diagram

As the number of classes in an application is a variable

a linked list data structure is selected to store class

information. Whenever a class icon is drawn in the client

area a new node is created and added to the linked list. Each

class has two scrollbars, hence two pointers to the scroll

bar objects are declared. Each class has different number of

attributes/methods to handle them two linked lists are

defined in the class data structure. The overall data

structure for the class icon is shown in fig 6.1.

Head
Classname

*scrl
*scr2
*alink --+---~
*mlink
*next

Classname

*scrl
*scr2
*alink --+---~
*mlink
*next

null

Fig: 6.1

null

null

30

The icon further has variables xO, yO to store the top left

co-ordinates of the icon and Width, height to store the size

of the icon. Whenever a class icon is created on the client

area the global count value is incremented (initially zero)

and default name for the class icon is set with the count

value. The default class names will be classl, class2 ... etc.

As the attributes and methods are added to the class, new

nodes are created and added to the linked list. As the scroll

bars are created with their position fixed the movement of

the icon requires deletion of the scrollbar objects and

recreating them in the new position. Whenever the class name

is changed the new class name is accepted if and only if it

does not match with any of the other class names. Similar

checking is done for the attributes and methods also.

Depending upon the size of the icon the number of characters

that can fit into the icon is calculated. If the class

name/attribute names/method names are longer then they are

truncated and displayed over the icon. Whenever the user

clicks on the arrows of the scrollbars the current contents

are cleared and the new contents are printed depending on the

button clicked. In the program Head is the pointer which

always points to the starting node of the linked list, while

the variables like move, temp are used to traverse the list.

In-order to change the properties of the class icon a

dialogbox object is created whenever the user right clicks

the icon. This dialogbox uses DDX (Do Data Exchange) function

to accept the values from the user and DDV (Do Data

Validation) function to do validation checking on the data.

6. IMPLEMENTATION ISSUES 32

6.2 Inheritance relationship

The number of inheritance links is a variable hence

linked list data structure is used to store the information.

Each node contains variables classl, class2, clpos, c2pos.

Classl corresponds to the base class while class2 corresponds

to the derived class, clpos is the position value on the

classl from where the arrow has to be drawn and c2pos is the

position value on the class2 where the arrow ends. The clpos,

c2pos are calculated as follows:

1 8 7

2 cl 6

3 4 5

Fig: 6.2

Assume that class icon is present in the closed region of the

fig 6. 2. The rest of the region can be divided into eight

regions with respect to the class icon. If the class2 is

completely in the regionl then clpos will be 1 and the arrow

is drawn as shown in fig 6.3.

Fig 6.3

6. IMPLEMENTATION ISSUES 33

If the class2 is partially in regionl and partially in

region2 then c1pos will be 2 and the arrow is drawn as shown

in the fig: 6.4.

Fig 6. 4

If the class is completely in the region2 then c1pos will be

3 and the arrow is drawn as shown in fig 6.5.

[}-{]
Fig 6.5.

Similarly the boundary of a class icon has 16 positions,

which is assigned to c1pos depending upon the relative

position of the class2. The function coordinates ()

calculates the absolute co-ordinates from the class and the

c1pos.

Whenever a new inheritance relation is drawn a new node

for the relation is created and added to the linked list.

Before doing so the following validations are done.

1. If there is already a relation existing between the

classes: This is verified be checking the class1 and

class2 values in all the existing nodes.

2. If the new relation forms a circular link: This is

verified by the checkrelation() function, which checks

the existing, links in recursive fashion eliminating the

links one by one.

6. IMPLEMENTATION ISSUES 34

A

~B
X req ~c

Fig 6.6 0

Consider the fig 6. 6. Let A, B, C, 0, X be the classes and

the arrows represent the relations. If the user tried to draw

relation from 0 to A then checkrelation function is called

with A,O as p .. rameters. From A there are paths to B and X, So

the function recursively calls itself with B, D and X, D as

parameters. From X there are no links so the function

terminates. The function called with B,D will recursively

call with .C,D as parameters followed by call with D,O

parameters which implies that this is a case of cycle

formation hence the new link is not accepted.

6.3 Deletion of relations and C1ass icons

When the mouse button is double clicked over a link

findrelation () is used to get the link number of the link.

From the link number the link is deleted from the linked list

and the arrow on the client area is erased. When the mouse

button is double clicked on the class icon, the icon along

with all relations towards the class and from the class are

highlighted representing the selection. If delete option is

selected then the highlighted part gets deleted.

6. IMPLEMENTATION ISSUES 35

6.4 Implementing drag and drop option

As the mouse cursor is moved within the view window, the

OnMouseMove function is called in frequent intervals when the

drag operation is in progress {if m_dragging=l,mouse is

clicke-j on the icon and moved) OnMouseMove first creates a

device context object associated with the view window. It

then calls the CDC::SetROP2 function to create a drawing mode

in which lines are drawn by inverting {reversing) the current

colour on the screen. Under this mode, when a line is first

drawn at a particular position, it's visible; however, when a

line is drawn a second time at the same position, it becomes

invisible. The mouse message handlers are thus able to easily

draw and erase a series of temporary rectangles. The

rectangles are drawn using CDC::MoveTo and CDC::LineTo

functions. When the button is released OnLButtonUp function

is called which ends the drag operation {m_dragging set to 0)

and the new co-ordinates are noted. If the new position for

the icon overlaps any other icon then the icon is not drawn

at the new position. If it doesn't overlap any icons then the

icon is drawn at the new location. If the icon is linked to

other icons through inheritance relationships the

find clear relation function finds all the links from &

towards the icon and clears them on the screen. After moving

the icon to new position the relations are redrawn.

6.5 Event Trace Diagram

In the application after the Integrated diagram is drawn

clicking corresponding menu i tern draws its equivalent event

6. IMPLEMENTATION ISSUES 36

trace. For this threads equivalent to the number of classes

in the system are created. Consider the fig 6.7.

Cl C2

El

El E2

E2 Sl r--.- S4
S3 SI
S4 S2

Fig 6.7

Here tl.and t2 are the threads created. Each thread calls the

functions as follows:

starting_state=getstate();
While(stating_state!=Laststate)
{

enable_event();
wait for event();
update(starting_state);
l

starting state is initially assigned to first state of the

class through the getstate function. Here sl is the starting

state of tl and s3 is the starting state of t2. Each event

node has informat,ion about three states; the first is the

state, which enables the event. The third state is reached

from the second state as a result of the event. Now from each

state enable event function is called which checks the event

nodes to match the starting state with the first state of the

event node, If it matches then corresponding event is

enabled. In the example tl enables el while t2 doesn't enable

any event. Each thread next calls wait for event function,

this function matches with the second state of the event

nodes. If it rna tches then it checks whether the event has

6. IMPLEMENTATION ISSUES 37

been enabled. If it is enabled it moves to the next state

else wait for the event. In the example there is a match for

s 1 in the second position of the e2 event, but e2 event is

not enabled so tl has starting state as sl. For s3 there is a

ma~ch in the el. El event is enabled earlier by the tl thread

so the start state variable is set to s4 for the thread t2.

Now enable event is again called which enables e2 event, tl

thread finds this event and updates its starting state to s2.

As there are no transitions from s2 and s4 the thread

functions will stop execution. Through the use of threads the

sequence in which the events occur is found and event trace

diagram is drawn as show in fig: 6. 8.

cl c2

El ..
r-

.... E2
~

Fig 6.8

6.6 Programming Language Issues

Main Features provided by VC++

1. It is object oriented programming language.

2. The user need not do low level windows programming. VC++

exploits

functions,

API

MFC

(Application

(Microsoft

Programming Interface)

Foundation Classes), DLL

(Dynamic Link Libraries) to achieve its effect.

3. It is available with Microsoft Developer Studio, which

provides application wizards, class wizards that make

programming easier.

6. IMPLEMENTATION ISSUES 38

4. It supports document-view architecture, where document

handles the data and view handles visual display.

5. The applications developed using VC++ are device

independent. All drawing calls are made through the

device context object, which encapsulates the windows API

to draw on the device.

6. It supports multi-threading.

7. Finally it is easy to switch over from C++ to VC++.

Microsoft Developer Studio for VC++:

The Developer studio is the core of the VC++ product.

It's. an integrated application that provides a complete set

of programming tools. The Developer Studio includes a project

manager for keeping track of your programs, source files and

build options. A text editor for entering program source

code, a set of resource editors for designing program

resources such as menus, dialog boxes and icons. It also

provides programming wizards (App Wizard and Class Wizard)

which help in generating the basic source code, define C++

classes, handle window messages and perform other tasks.

Programs can be build and executed from within the Developer

Studio, which automatically runs the optimizing compiler, the

incremental linker and any other required build tools.

Debugging programs can be done using the integrated debugger.

Finally VC++ online help can be had from the help menu of the

Developer Studio.

7.1 Source Code

//classdecl.h

#include<afxwin.h>
#include<math.h>
#include "resource.h"

7.ANNEXES

11

II The relation class contain information about the
II inhertance relat~on between the classes
II ie. classname-1 1 classname-2 1 clpos 1 c2pos-position
II classl & class2 to draw a relation
II count is a unique value distinguishing one relation
II from·another
II status is used to reposition the links
II next link is used to implement linked list structure.

struct relation

} ;

IICString name;
int classl;
int clpos;
int class2;
int c2pos;
int s:;ount;
int status;
relation *next;

11

II this structure stores information about the
II variable names & method names both variables &
II methods use the same attrib stucture.
II next is used to implement a linked list data structure

struct attrib

} ;

CString name;
int type;
struct attrib *next;

39

7. ANNEXES

!ll!!/ll/!!lll/1/////!l/l!!l////l////ll!!!l/!!!1/!1111111

II classdiagramar stores information about each class icon
II that is displayed on the screen. name-contains the
II name of the class, cno contains the unique class number
II xO,yO contajns the initial position(left corner) of
II the diagram & width, height will give its corresponding
II values alink is a link to the attribute linked list
II mlink is a link to the method linked list
II scrl & scr2 will point to scrollbar objects of the
II class. next is used to give it a linked list structure

struct classdiagramar
{

CString name;
int cno;

IIStruct to store object information

} ;

int xO,yO;
int width;
int height;
struct attrib *alink;
struct attrib *mlink;
CScrollBar *scrl,*scr2;
classdiagramar *next;

II pointer to variables
II pointer to methods

40

11

struct classsave

} ;

char name[20);
int cno;
int xO,yO;
int width;
int height;

7. ANN&¥ES

111

II classdiagramar stores information about each class icon
II that is displayed on the screen. name-contains the
II name of the class, cno contains the unique class number
II xO,yO contains the initial position(left corner) of
II the diagram & width, height will give its corresponding
II values alink is a link to the attribute linked list
II mlink is a link to the method linked list
II scrl & scr2 hill point to scrollbar objects of the
II class. next is used to give it a linked list structure

struct classdiagramar
{

CString name;
int cno;

IIStruct to store object information

} i

int xO,yO;
int width;
int height;
struct attrib *alink;
struct attrib *mlink;
CScrollBar *scrl,*scr2;
classdiagramar *next;

II pointer to variables
II pointer to methods

40

11

struct classsave

} ;

char name[20];
int cno;
int xO,yO;
int width;
int height;

7. ANNEXES 41

II MainFrm.h : interface of the CMainFrame class
/lll/1111!111/lll//ll//ll/ll/1/llllll//l//!llllll/ll/1111111111111!11/lll!

class CMainFrame public CMDIFrameWnd

private:
DECLARE DYNAMIC(CMainFrame)

public:
CMainFrame();

II Attributes
public:

II Operations
public:

II Overrides
II ClassWizard generated virtual function overrides
II{{AFX_VIRTUAL(CMainFrame)
virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
I I} }AFX _VIRTUAL

II Implementation
public:

virtual -CMainFrame();
#ifdef DEBUG

virtual void AssertValid() const;
virtual void Dump(CDumpContext& de) const;

#endif

protected: II control bar embedded members
CStatusBar m wndStatusBar;
CToolBar m wndToolBar;

II Generated message map functions
protected:

II{{AFX MSG(CMainFrame)
afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
II NOTE- the ClassWizard will add and remove member functions here.
II DO NOT EDIT what you see in these blocks of generated code'
I I} }AFX_MSG
DECLARE_MESSAGE_MAP()

} ;

111/llllllllllllllllllllllllllll

7. ANNEXES

I I MainFrm. cpp

#include "stdafx.h"
#include "green.h"

#include "MainFrm.h"
#ifdef DEBUG

implementation of the CMainFrame class

#define new DEBUG NEW
#undef THIS FILE
static char THIS FILE [] FILE
#endif

42

l//l//l/l/////ll/ll/l/l///lll//lll/l///ll//ll//l/11////ll////l/ll//ll/////
II CMainFrame

IMPLEMENT DYNAMIC(CMainFrame, CMDIFrameWnd)

BEGIN_MESSAGE_MAP(CMainFrame, CMDIFrameWnd)

//{{AFX_MSG_MAP(CMainFrame)

II NOTE- the ClassWizard will add and remove mapping macros here.
II DO NOT EDIT what you see in these blocks of generated code !

ON WM _CREATE ()

I I } } AFX _ MSG _MAP

END MESSAGE_MAP()

static UINT indicators[]
{

} ;

ID_SEPARATOR,
ID_INDICATOR_CAPS,
ID_INDICATOR_NUM,
ID_INDICATOR_SCRL,

II status line indicator

/l/1/lll/lll//ll///l///l//////l///l///ll//l/////ll/ll//l/1/ll//l//////////
II CMainFrame construction/destruction

CMainFrame::CMainFrame()
{

II TODO: add member initialization code here

CMainFrame::-CMainFrame()
{

}

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)

if (CMDIFrameWnd::OnCreate(lpCreateStruct) == -l)

7. ANNEXES

return -1;

if (!m wndToolBar.Create(this) I I
!m wndToolBar.LoadToolBar(IDR MAINFRAME))

TRACEO("Failed to create toolbar\n");
return -1; II fail to create

if (!m_wndStatusBar.Create (this) II
!m_wndStatusBar.Setindicators(indicators,

sizeof(indicators)lsizeol (UINT)))

TRACEO("Failed to create status bar\n");
return -1; II fail to create

43

II TODD: Remove this if you don't want tool tips or a resizeable toolbar

m_wndToolBar.SetBarStyle(m_wndToolBar.GetBarStyle()
CBRS TOOLTIPS I CBRS_FLYBY I CBRS_SIZE_DYNAMIC);

II TODD: Delete these three lines if you don't want the toolbar to
II be dockable
m_wndToolBar.EnableDocking(CBRS_ALIGN_ANY);
EnableDocking(CBRS_ALIGN_ANY);
DockControlBar(&m_wndToolBar);

return 0;

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{

II TODO: Modify the Window class or styles here by modifying
II the CREATESTRUCT cs

return CMDIFrameWnd::PreCreateWindow(cs);

11
Ill
II CMainFrame diagnostics

#ifdef DEBUG
void CMainFrame::AssertValid() canst

CMDIFrameWnd::AssertValid();

void CMainFrame::Dump(CDumpContext& de) canst

CMDIFrameWnd::Dump(dc);

#endif II DEBUG

7. ANNEXES

II green.h main header file for the GREEN application

#ifndef AFXWIN H
#error include 'stdafx.h' before including this file for PCH

#endif

#include ~resource.h~ II main symbols

44

lllll!lll!llllllllll!/lll/11
II CGreenApp:
II See green.cpp for the implementation of this class
II
void DrawArrow(CPoint &st,CPoint &en,CDC *pdc);
CRect GenerateRect(CPoint &p);
int checkside(CPoint &pl,CPoint &p2,CPoint &p3);

CString get_dir();
class CGreenApp : public CWinApp
{

publi'c:
CGreenApp () ;
void temporaryfile();

II Overrides
II ClassWizard generated virtual function overrides
II{{AFX_VIRTUAL(CGreenApp)
public:
virtual BOOL Initinstance();
I I} }AFX_VIRTUAL

II Implementation

} ;

II{{AFX_MSG(CGreenApp)
afx_msg void OnAppAbout();
afx_msg void OnNewmodel();
afx_msg void Onisd();
afx_msg void OnEt();
afx_msg void OnFileNew();
afx_msg void OnFileOpenisd();
I I} }AFX MSG
DECLARE_MESSAGE_MAP()

lllllll!!ll!llllllllllllllllll/lllllllllllllll!llll!!lllllll/lllllll/11/11

7. ANNEXES

II green.cpp Defines the class behaviors

#include "stdafx.h"
#include "green.h"
#include "newdoc.h"
#include "etdoc.h"
#include "etview.h"
#include "cmoddlg.h"
#include "newview.h"
#include "MainFrm.h"
#include "ChildFrm.h"
#include "greenDoc.h"
#include "greenView.h"
#include "moddlg.h"
#include "direct.h"
#ifdef DEBUG
#define new DEBUG NEW
#undef THIS FILE
static char THIS FILE [] FILE
#endif

45

11
II CGreenApp
CString dire;
BEGIN MESSAGE MAP(CGreenApp, CWinApp)

II!{AFX_MSG_MAP(CGreenApp)
ON_COMMAND(ID_APP_ABOUT, OnAppAbout)
ON_COMMAND(ID_NEWMODEL, OnNewmodel)
ON_COMMAND(ID_ISD, Onisd)
ON_COMMAND(ID_ET, OnEt)
ON_COMMAND(ID_FILE_NEW, OnFileNew)
ON_COMMAND(ID_FILE_NEW_ISD, Onisd)
ON_COMMAND(ID_FILE_OPEN ISO, OnFileOpenisd)
I I } } AFX _ MSG _MAP
II Standard file based document commands
ON_COMMAND(ID_FILE_OPEN, CWinApp: :OnFileOpen)
II Standard print setup command
ON_COMMAND(ID_FILE PRINT SETUP, CWinApp: :OnFilePrintSetup)

END MESSAGE MAP()

11
Ill
II CGreenApp construction

void CGreenApp::temporaryfile()

CWinApp::OnFileNew();

CGreenApp: :CGreenApp()
{

/1 TODO: add construction code here,
II Place all significant initialization in Initinstance

7. ANN£\ES 46

lllllllllllll/11
II The one and only CGreenApp object

CGreenApp theApp;

lllllllll!lllllll/lll//11111111111/llllllllllllllllll/11111111111/11111111
II CGreenApp initialization

BOOL CGreenApp: :Initlnstance()
{

II Standard initialization
II
II
II

If you are not using these features and wish to reduce the size
of your final executable, you should remove from the following
the specific initialization routines you do not need.

#ifdef AFXDLL
Enable3dControls(); II Call this when using MFC in a shared DLL

#else
Enable3dControlsStatic();

II Call this when linking to MFC statically

#endif

LoadStdProfileSettings();
II Load std IN! file options (including MRU)

II Register the application's document templates. Documenttemplates
II serve as the connection between documents, frame windows and views.

CMultiDocTemplate* pDocTemplate;
pDocTemplate =new CMultiDocTemplate(

IDR_GREENTYPE,
RUNTIME_CLASS(CGreenDoc),
RUNTIME_CLASS(CChildFrame), /1 custom MDI child frame
RUNTIME_CLASS(CGreenView));

AddDocTemplate(pDocTemplate);

CMultiDocTemplate* pl;
pl =new CMultiDocTemplate(

IDR_MENUl,
RUNTIME_CLASS(newdoc),
RUNTIME_CLASS(CChildFrame), /1 custom MDI child frame
RUNTIME_CLASS(newview));

AddDocTemplate(pl);

CMultiDocTemplate* pet;
pet =new CMultiDocTemplate(

IDR_MENU3,
RUNTIME_CLASS(etdoc),
RUNTIME_CLASS(CChildFrame), II custom MDI child frame
RUNTIME_CLASS(etview));

AddDocTemplate(pet);

7. ANNEXES

II create main MDI Frame window

CMainFrame* pMainFrame = new CMainFrame;

if (!pMainFrame->LoadFrame(IDR_MAINFRAME))
return FALSE;

m_pMainWnd = pMainFrame;

II ·arse command line for standard shell commands, ODE, file open
II CCommandLineinfo cmdinfo;
II ParseCommandLine(cmdinfo);

II Dispatch commands specified on the command line
II if (!ProcessShellCommand(cmdinfo))
II return FALSE;

II The main window has been initialized, so show and update it.

pMainFrame->ShowWindow(m_nCmdShow);
pMainFrame->UpdateWindow();
return TRUE;

47

11
II CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{

public:
CAboutDlg ();

II Dialog Data
II{{AFX_DATA(CAboutDlg)
enum { IDD = IDD ABOUTBOX };
II} }AFX_DATA

II ClassWizard generated virtual function overrides
II{{AFX_VIRTUAL(CAboutDlg)
protected:
virtual void DoDataExchange(CDataExchange* pOX); II DDXIDDV support
I/} }AFX VIRTUAL

II Implementation
protected:

) ;

II{{AFX_MSG(CAboutDlg)
II No message handlers

I I}} AFX MSG
DECLARE_MESSAGE_MAP()

7. ANNEXES

CAboutDlg: :CAboutDlg() : CDialog(CAboutDlg: :IDD)
{

II{{AFX DATA_INIT(CAboutDlg)
II))AFX DATA_INIT

void CAboutDlg::DoDataExchange(CDataExchange* pDX)

CDialog::DoDataExchange(pDX);
II{{AFX_DATA_MAP(CAboutDlg)
I I) }AFX DATA_MAP

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
II{{AFX_MSG_MAP(CAboutDlg)

II No message handlers
I I} }AFX _MSG_ MAP

END_MESSAGE_MAP()

II App command to run the dialog
void CGreenApp::OnAppAbout()

CAboutDlg aboutDlg;
aboutDlg.DoModal();

48

11
II CGreenApp commands

void CGreenApp::OnNewmodel(}

moddlg d;
if(d.DoModal()==IDOK)

{

CString name;
CDocTemplate *pl;
dire=d.m model;
POSITION pos=GetFirstDocTemplatePosition();
pl=(CDocTemplate *)GetNextDocTemplate(pos);
ASSERT(pl->IsKindOf(RUNTIME_CLASS(CDocTemplate)));
pl->GetDocString(name,CDocTemplate: :docName);
if(_mkdir(d.m_model)==O)
{

pl->OpenDocumentFile(NULL);

else

pl->OpenDocumentFile("test.cls");

II TODO: Add your command handler code here

7. ANN&YES

void CGreenApp: :Onisd()

CString name;
CDocTemplate *pl;
POSITION pos=GetFirstDocTernplatePosition();
GetNextDocTernplate(pos);

pl=(CDocTernplate *)GetNextDocTernplate(pos);
ASSERT(pl->IsKindOf(RUNTIME_CLASS(CDocTernplate)));
pl->GetDocString(narne,CDocTernplate: :docNarne);

pl->OpenDocumentFile(NULL);

CRect GenerateRect(CPoint &p)
{

CRect temp(p.x-35,p.y-15,p.x+35,p.y+l5);
return ·temp;

void DrawArrow(CPoint &st,CPoint &en,CDC *pdc)
{

if(st.x==en.x)
{

if(st.y>en.y)
{

else

pdc->MoveTo(en.x,en.y);
pdc->LineTo(en.x-5,en.y+5);
pdc->MoveTo(en.x,en.y);
pdc->LineTo(en.x+5,en.y+5);

pdc->MoveTo(en.x,en.y);
pdc->LineTo(en.x-5,en.y-5);
pdc->MoveTo(en.x,en.y);
pdc->LineTo(en.x+S,en.y-5);

return;

if(st.y==en.y)
{

if(st.x>en.x)
{

else

pdc->MoveTo(en.x,en.y);
pdc->LineTo(en.x+5,en.y-5);
pdc->MoveTo(en.x,en.y);
pdc->LineTo(en.x+5,en.y+5);

pdc->MoveTo(en.x,en.y);
pdc->LineTo(en.x-5,en.y-5);
pdc->MoveTo(en.x,en.y);
pdc->LineTo(en.x-5,en.y+5);

49

7. ANNEXES

return;

int checkside(CPoint &pl,CPoint &p2,CPoint &p3)

if(pl.x>p2.x && pl.x>p3.x)
return 1;

else
return 0;

void CGreenApp::OnEt()

CString name;
CDocTemplate *pl;
POSITION pos=GetFirstDocTemplatePosition(};
GetNextDocTemplate(pos);
GetNextDocTemplate(pos);
pl=(CDocTemplate *)GetNextDocTemplate(pos);
ASSERT(pl->IsKindOf(RUNTIME_CLASS(CDocTemplate}));
pl->GetDocString(name,CDocTemplate: :docName);

pl->OpenDocumentFile(NULL);
II TODO: Add your command handler code here

void CGreenApp::OnFileNew()

void CGreenApp::OnFileOpenisd()

char *str="AllFiles(*.*) I*.*ICFiles(*.isd*) l*.isd*ll";
CFileDialog dl(TRUE,"isd",O,O,str);
if(dl.DoModal()==IDOK)
{

CString name;
CDocTemplate *pl;
POSITION pos=GetFirstDocTemplatePosition();
GetNextDocTemplate(pos);
pl=(CDocTemplate *)GetNextDocTemplate(pos);
ASSERT(pl->IsKindOf(RUNTIME_CLASS(CDocTemplate)));
pl->GetDocString(name,CDocTemplate: :docName);
pl->OpenDocumentFile(dl.GetPathName());

CString get dir()
{

return dire;

50

7. ANNEXES

II greenDoc.h interface of the CGreenDoc class

class CGreenDoc : public CDocument
{

protected: II create from serialization only
CGreenDoc();
DECLARE DYNCREATE(CGreenDoc)

II Attributes
public:

II Operations
public:

II Overrides
II ClassWizard generated virtual function overrides
II{{AFX_VIRTUAL(CGreenDoc)
public:
virtual BOOL OnNewDocument();
virtual void Serialize(CArchive& ar);
I/} }AFX_VIRTUAL

II Implementation
public:

virtual -CGreenDoc();
#ifdef DEBUG

virtual void AssertValid() canst;
virtual void Dump(CDumpContext& de) const;

#endif

protected:

II Generated message map functions
protected:

II{{AFX_MSG(CGreenDoc)

51

II NOTE- the ClassWizard will add and remove member functions here.
II DO NOT EDIT what you see in these blocks of generated code '
II}}AFX_MSG
DECLARE MESSAGE MAP()

} ;

11
Ill

7. ANNEXES

II greenDoc.cpp

#include "stdafx.h"
#include "green.h"
#include "greenDoc.h"

#ifdef DEBUG
#define new DEBUG NEW
#undef THIS FILE

implementation of the CGreenDoc class

static char THIS FILE [] FILE
#endif

52

11
II CGreenDoc

IMPLEMENT DYNCREATE(CGreenDoc, CDocument)

BEG~N_MESSAGE_MAP(CGreenDoc, CDocument)

II{{AFX_MSG_MAP(CGreenDoc)
II NOTE- the ClassWizard will add and remove mapping macros here.
II DO NOT EDIT what you see in these blocks of generated code!
I I} }AFX_MSG_MAP

END MESSAGE MAP() - -

lllllllllllllllllllll/ll/l////llllllll//lllllllllll/lll!/llll/lll//l/1!111
II CGreenDoc construction/destruction

CGreenDoc::CGreenDoc()
{

II TODO: add one-time construction code here

CGreenDoc::-CGreenDoc()
{

}

BOOL CGreenDoc::OnNewDocument(}
{

if (!CDocument::OnNewDocument())
return FALSE;

II TODO: add reinitialization code here
II (SDI documents will reuse this document)

return TRUE;

7. ANNEXES 53

IIIIIIIIIIIIIIIIJIIIIIIIIIIIII!IIIIIIII/II/1/I!II/IIIIIIIIIIIII!/I//I/1111
II CGreenDoc serialization

void CGreenDoc::Serialize(CArchive& ar)

if (ar.IsStoring())
{

II TODO: add storing code here

else

II TODO: add loading code here

lllllllllllllll!ll/lllllllllllllllllllllllllll/111111111111/l/111111111111
II CGreenDoc diagnostics

#ifdef DEBUG
void CGreenDoc::AssertValid() const

CDocument::AssertValid();

void CGreenDoc::Dump(CDumpContext& de) const

CDocument::Dump(dc);

#endif II DEBUG

l/1111111111111!1/lllllllllllllllllllllllll/llll!lllllllll!ll/111111111111
II CGreenDoc commands

I. ANN£){£S

II greenView.h interface of the CGreenView class

class CGreenView : public CView
{

protected: // create from serialization only
CGreenView () ;
DECLARE DYNCREATE(CGreenView)

private:

int classcount;
int linkcount;
classdiagramar *head; //classdiagramar[20];
relation *rel;
int link,drawnew;
int classl,class2;
int Jelrelation;
int delclass;
int delcsel;
CFile fpcls,fplnk,fpatb;

CPoint m_PointOrigin;
CPoint m PointOld;
int m_Dragging,m_Draggingl,dx,dy,mmclass;
HCURSOR m HCross;
public:

void logout(void); //Exit option
void newc(void);
void newclass(CPoint pt); //For Creating a new object
void OnPaint();
void myroundrect(int xO,int yO,int width,int height,

int count,int clr);
void cleardiagram(classdiagramar *prev);
void redraw(int count);
int findclass(CPoint pt);
int findrelation(CPoint pt);

void OnRButtonDown(UINT flag,CPoint pt);
void redrawrelation(void);
void
void
void

find clear relation(int - -
help (void);
association(void);

classcount,int whattodo);

int iposition(int classl,int class2);
int position(classdiagramar •p,classdiagramar *q);
void seldelclass(void);
void seldelrel(void);
void deleteclass(int count);
void deleterelationstatus2(void);
void deleterelation(int lcount);
void OnLButtonDown(UINT flag,CPoint pt);
void OnMouseMove(UINT nFlags, CPoint point);
void OnLButtonUp(UINT nflags, CPoint point);
void OnLButtonDblClk(UINT flay,CPoint pt);
void newrelation(int classl,int class2);

54

7. ANNEXES

int checkrelation(int classl,int class2);
int checkpath(int cl,int c2);
void drawrelation(relation *r,int clr);
void coordinates(int count,int pos,int *x,int *y);
int findlenll(attrib *mov);
void OnVScroll(UINT code,UINT pos,CScrollBar *scroll);
void writedata();
void clearall();
void readdata();
void OnDestroy();

II Attributes
public:

CGreenDoc* GetDocument();

II Operations
public:

II Overrides
II Cla~sWizard generated virtual function overrides
II{{AFX_VIRTUAL(CGreenView)
public:
virtual void OnDraw(CDC* pDC); II overridden to draw this view
virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
protected:
virtual BOOL OnPreparePrinting(CPrintinfo* pinfo);
virtual void OnBeginPrinting(CDC* pDC, CPrintinfo* pinfo);
virtual void OnEndPrinting(CDC* pDC, CPrintinfo* pinfo);
I/})AFX VIRTUAL

II Implementation
public:

virtual -CGreenView();
#ifdef DEBUG

virtual void AssertValid() const;
virtual void Durnp(CDumpContext& de) const;

#endif

protected:

II Generated message map functions
protected:

} ;

II{{AFX MSG(CGreenView)
afx_msg void OnNewmodel();
I I} }AFX_MSG
DECLARE MESSAGE MAP()

- -

#ifndef DEBUG II debug version in greenView.cpp
inline CGreenDoc* CGreenView::GetDocument()

{ return (CGreenDoc*)m_pDocument; }
#8ndif

55

7. ANNEXES

II greenView.cpp

#include "stdafx.h"
#include "green.h"
#include "cmoddlg.h"

#include "greenDoc.h"
#incl,!'"ie "greenView.h"

implementation of the CGreenView class

#include"reldialog.h"
#include"classdialog.h"
#include"mydialog.h"

#ifdef DEBUG
#define new DEBUG NEW
#undef THIS FILE
static char THIS_FILE[] FILE
#endif

56

11
II CGreenView

IMPLEMENT DYNCREATE(CGreenView, CView)

BEGIN_MESSAGE_MAP(CGreenView, CView)

ON WM VSCROLL ()
ON COMMAND(l03,readdata)
ON COMMAND(l04,writedata)

ON WM PAINT ()
ON WM RBUTTONDOWN()
ON WM LBUTTONDOWN()
ON WM MOUSEMOVE()
ON_WM_LBUTTONUP()
ON WM LBUTTONDBLCLK()

ON COMMAND(402,association)
ON_COMMAND(50l,help)
ON COMMAND(l02,newc)
ON_COMMAND(l06,logout)
ON_COMMAND(70l,seldelrel)
ON COMMAND(60l,seldelclass)
ON COMMAND(ID_FILE_NEW, OnNewmodel)

II Standard printing commands
ON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint)
ON_COMMAND(ID_FILE_PRINT_DIRECT, CView: :OnFilePrint)
ON_ COMMAND (ID _FILE_ PRINT_ PREVIEW, CView: : OnFilePr int Previe1-i)

END MESSAGE_MAP{)

7. ANNEXES 57

l/lll/1///ll////ll/ll/ll//l///l/l///l//1/1/l!l/1/l/ll/////l/l//111/l//l///
II CGreenView construction/destruction

CGreenView: :CGreenView()
{

head=NULL;
rel=NULL;
m_Dragging=O;
m_Draggingl=O;
mmclass=O; II for mouse move funtion
delrelation=O;
delclass=O;
delcsel=O;
linkcount=O;drawnew=O;
link=classl=class2=0;
classcount=O;

CGreenView::-CGreenView()
{

}

BOOL CGreenView::PreCreateWindow(CREATESTRUCT& cs)
{

II TODO: Modify the Window class or styles here by modifying
II the CREATESTRUCT cs
return CView::PreCreateWindow(cs);

l/1//l//////l////l////llllllll/1/lll/11/ll/ll/l//lll/l/l/1/l/l/////l//ll/l
II CGreenView drawing

void CGreenView::OnDraw(CDC* pDC)

CGreenDoc* pDoc = GetDocument();
ASSERT VALID(pDoc);

II TODO: add draw code for native data here

///!ll/lll/l//l//lll/l/1/l/l/1/l/ll/l//ll!ll/11/llllllll/////l/1//////ll/l
II CGreenView printing

BOOL CGreenView::OnPreparePrinting(CPrintinfo* pinfo)
{

II default preparation
return DoPreparePrinting(pinfo);

void CGreenView: :OnBeginPrinting(CDC* /*pDC*/, CPrintinfo* l*pinfo*/)

II TODO: add extra initialization before printing

-;ANNEXES 58

void CGreenView: :OnEndPrinting(CDC* /*pDC*/, CPrintinfo* /*pinfo*/)

II TODO: add cleanup after printing

11//ll/ll///l/l/////////////l///l////l/////l/ll//l//ll/ll//l////l/1///l/1/
II CGreenView diagnostics

#ifdef DEBUG
void CGreenView::AssertValid{) canst

CView::AssertValid{);

void CGreenView::Dump{CDumpContext& de) canst

CView::Dump{dc);

CGreenDoc* CGreenView::GetDocument{) II non-debug version is inline

}

ASSERT{m_pDocument->IsKindOf(RUNTIME_CLASS{CGreenDoc)));
return {CGreenDoc*)m_pDocument;

#endif II DEBUG

//ll/lllllll/l/l/l/llllllllll/l//////lllllll//l/1/ll/ll////l/11/1//l/1////
II CGreenView message handlers

void CGreenView:: OnNewmodel {)

cmoddlg d;
d.DoModal{);
II TODO: Add your command handler code here

?oid CGreenView::logout{void) //Exit option

exit (0);

?oid CGreenView: :newc{void)

drawnew=l; //for drawing a new class

void CGreenView::newclass(CPoint pt) //For Creating a new object

CClientDC d(this);
classdiagramar *temp;
temp=new classdiagramar;

CString a;
char b[20);

7. ANNEXES

classcount++;
sprintf(b,"%d",classcount);
a="Class";
a+=b; //Assigning default class name.

temp->name=a;
temp->cno=classcount;

if((temp->xO=pt.x-37)<0) temp->xO=O;

if((temp->yO=pt.y-50)<0) temp->yO=O;

temp->width=75;
temp->height=100;

temp->alink=NULL;
temp->mlink=NULL;

temp->next=head;

head=temp;

59

myroundrect(temp->xO,temp->yO,temp->width,temp->height.,classcount,O);

void CGreenView::OnPaint()

CPaintDC d(this);
int clr=O;

CString a;
classdiagramar *temp=head;

CBrush mybrush;
CPen mypen;
if(clr==O) // black colour
mypen.CreatePen(PS_SOLID,1,RGB(0,0,0));
if(clr==1) II white colour

mypen.CreatePen(PS_SOLID,1,RGB(255,255,255));

d.SelectObject(&mypen);
mybrush.CreateSolidBrush(RGB(255,255,255));

int xleft,xright,yleft,yright;
int ymid;

while(temp!=NULL)
{

xleft=temp->x0+1;
yleft=temp->y0+1;
xright=temp->xO+temp->width-1;
yright=temp->yO+temp->height-1;

ymid=int((yright+yleft+18)*0.5);

-ANNEXES

d.Rectangle(xleft,yleft,xright,yright);

d.MoveTo(xleft,yleft+l8);
d.LineTo(xright,yleft+l8);

d.MoveTo(xleft,ymid);
d.LineTo(xright,ymid);

unsigned int stringlength={temp->widthl8)-l;

II Truncating the strings to display on the icon

()()

if(strlen(temp->nai)<stringlength) stringlength=strlen(temp->name);
d.Text0ut(xleft+8,yleft+2,temp->name,stringlength);

temp=temp->next;

void CGreenView::myroundrect(int xO,int yO,int width,

CString a;
classdiagramar *temp=head;
CClientDC d(this);

CBrush mybrush;
CPen mypen;

int height,int count,int clr)

if(clr==O) II black colour
mypen.CreatePen(PS_SOLID,l,RGB(O,O,O));
if(clr==l) II white colour
mypen.CreatePen(PS SOLID,l,RGB(255,255,255));

if(clr==2)11 blue colour
mypen.CreatePen(PS SOLID,l,RGB(0,0,255));

d.SelectObject(&mypen);

mybrush.CreateSolidBrush(RGB(255,255,255));

int xleft,xright,yleft,yright;
int ymid;

xleft=xO+l;
yleft=yO+l;
xright=xO+width-1;
yright=yO+height-1;
ymid=int((yright+yleft+l8)*0.5);

d.Rectangle(xleft,yleft,xright,yrightJ;

d.MoveTo(xleft,yleft+l8);
d.LineTo(xright,ylefttlB);

d.MoveTo(xleft,ymid);
d.LineTo(xright,yrnid);

7. ANNEXES

if(clr==O I I clr==2)
{

while(temp!=NULL)
{

} ;

if(temp->cno==count) break;
temp=temp->next;

temp->scr1=new CScrollBar;
temp->scr1->Create(SBS_VERTIWS CHILDIWS_VISIBLE,

CRect(xright-15,yleft+19,xright-1,ymid),
this,temp->cno);

temp->scr1->SetScrollRange(0,3);
temp->scr1->SetScrollPos(O);

temp->scr2=new CScrollBar;

temp->scr2->Create(SBS_VERTIWS_CHILDIWS_VISIBLE,
CRect(xright-15,ymid+1,xright-1,yright-1),
this,temp->cno);

temp->scr2->SetScrollRange(0,3);
temp->scr2->SetScrollPos(0);

unsigned int stringlength=(width/8)-1;

61

if(strlen(temp->name)<stringlength) stringlength=strlen(temp->name);
d.Text0ut(xleft+8,yleft+2,temp->name,stringlength);

OnVScroll(SB LINEUP,1,temp->scr1);

OnVScroll(SB LINEUP,1,temp->scr2);

//To Clear the diagram

void CGreenView::cleardiagram(classdiagramar *prev)

myroundrect(prev->xO,prev->yO,prev->width,prev->height,prev->cno,1);

//For Changing the position of the Class
void CGreenView: :redraw(int count)

struct classdiagramar •temp=head;

7. ANNEXES

while(temp'=NULL)
{

} ;

if(temp->cno==count) break;
temp=temp->next;

delete temp-'scrl;
delete temp->scr2;

myroundrect(temp->xO,temp->yO,temp->width,
temp->height,count,O);

//Function returns the object number from the coordinates of pt

int CGreenView::findclass(CPoint pt\

classdiagramar *move;// nead;
int xleft,yleft,xright,yright;

move=head;

while(move!=NULL)
{

xleft=move->xO;
yleft=move->yO;
xright=xleft+move->width;
yright=yleft+move->height;

if(pt.x > xleft && pt.x < xright
&& pt.y >yleft && ot.y<yright)

return move->cno;

move=move->next;

return 0;

int CGreenView: :findrelation(CPoint pt)

int ss=4;
for(relation *move=rel;move 1 =NULL;move=move->next)

int xl,yl,x2,y2;

~oordinates(move->ciassl,move-~clpos,&xl,&yl);

coordi na trc:s (move- >class<', movr::- >c2pos, & x2, &y2) ;

()2

- .·INNDES

while(temp!=NULL)
{

if(temp->cno==count) break;
temp=temp->next;

mydialog d(IDX DIALOGl,count,head,
temp->name,
temp->xO,
temp->yO,
temp->width,
temp->height);

().j

find clear relation(temp->cno,O);//O(whattodo)to redraw the rel

//To store prev values

prev-~cno=temp->cno;

prev- xO=temp->xO;
prev->yO=temp->yO;
prev->width=temp->width;
prev->height=temp->height;
prev->name=temp->name;

d.DoModal(); //to display dialog box

if((temp->name=d.return classname()) 1=prev->name)
change=l;

if((temp->xO=d.return xO()) 1=prev-->x0)
change=l;

~f((temp->yO=d.return yO() 1 1=prev->y0)
change= I;

if ((t:emp->width=d. return v1idth ()) 1 =9rev->width)
change= I;

if ((temp->height=d. return height () 1
1 =prev->height)

cha~1ge=l;

I I •_0 clear prev r'"ct_;:,nql,,

r:le:ardiagram (prev);

rr·r;raw(counr:);

7. ANNEXES

else

OnVScroll(SB LINEUP,l,temp->scrl);

OnVScroll(SB LINEUP,l,temp->scr2);

}

II redrawing the relations
redrawrelation();

delete(prev);

II redraws the relations whose status is zero
II relations which are connected to the class moved

void CGreenView::redrawrelation(void)

relation *move=rel;

while(move!=NULL)

if(move->status==O)
{

move->clpos=iposition(move->classl,move->class2);
move->c2pos=iposition(move->class2,move->classl);
drawrelation(move,l);
move->status=l;

move=move->next;

65

II this function just clears the relations that are linked to count class

void CGreenView::find clear relation(int classcount,int whattodo)

relation *move=rel;
while(move 1 =NULL)
{

if (move- >class 1 ==classcount I I move- :.-.r.:lass2 ==cl asscount)

drawrelation(rnove,whattodo);
rnove->status=whattodo;

rnove=move->next;

7. ANNEXES

void CGreenView: :help(void)

MessageBox("copy rights reserveci ver 4.0", "OOD");

void CGreenView: :association(void)

link=l;

int CGreenView::iposition(int classl,int class2)

classdiagramar *templ,*temp2;

templ=head;
temp2=head;

while(templ!=NULL)
{

} ;

if(templ->cno==classl) break;
templ=templ~>next;

while(temp2!=NULL)
{

} ;

if(temp2->cno==class2) break;
temp2=temp2->next;

return(position(templ,temp2));

int CGreenView::position(classdiagramar *p,classdiagramar *g)

int pxO=p->xO,pyO=p->yO,gxO=g->xO,gyO=g->yO;
int pxl=p->xO+p->width;
int pyl=p->yO+p->height;
int gx1=g->x0+g->width;
int gyl=g->yO+g->height;

if (pyO>gyl l
{

if(px0>gx1) return 1;
if(pxl<qxO) return 13;
if(px1>gx1)

if(pxO<gxO) return 15;
else return 16;

else
if(pxO<qxO) r''t.urn 1.1);

return 15;

66

- ANNEXES

if (pyl<qyO)
(

if(pxO>qxl) return ':J;
if(pxl<qxO) return 9;
if (pxl>qxl)

if(pxO<qxO) return 7;
else return 6;

else
if(pxl<qxl) return 8;

return 7;

if (pxO>qx1)
{

if(qy1<py1)
if(pyO<qyO) return 3;

else return 2;
else

if(pyO<qyO) return 3;
return 3;

if(pxl<qxO)
{

if(qy1<py1)
if(pyO>qyO) return 12;

else return 11;
else

if(pyO<qyO) return 10;
return 11;

return 0;

//Function which calls a dialog box to verify class deletion

void CGreenView: :seldelclass(void)

if(delclass==O) retur~;

classdialog d2(IDX DIALOG2);

if(d2.DoModal()==IDOK)
deleteclass(delclass);

else

redraw!delclass);
find clear relation(delclass, l);
delclass=O;

67

7 ANNEXES

void CGreenView: :seldelrel(void}

clelrelation=l;

111
II DELETE CLASS

void CGreenView::deleteclass(int count)

classdiagramar *cmove=head;

delcsel=O;

while(cmove!=NULL)
{

if(cmove->cno==count)
{

cmove->scrl->ShowScrollBar(FALSE};
delete cmove->scrl;

cmove->scr2->ShowScrollBar(FALSE);
delete cmove->scr2;

cleardiagram(cmove);

delclass=O;

deleterelationstatus2();

cmove->cno=O;

return;

cmove=cmove->next;

void CGreenView: :deleterelationstatus2(void)

if(rel==NULL} return;

r~lation *rmove=rel->nezt;
relation *prev=rel;

while(rmove'=NULL}
{

if (rrno';e-/status~~;;}

dri.:!wrelation(rrnovc,O};II ':l(c!ars relation

68

7. ANNEXES

else

prev->next=rmove->next;
delete rmove;
if(prev->next==NULL) break;
rmove=prev->next;

rmove=rmove->next;
prev=prev->next;

relation *start=rel;
if(start->status==2)
{

drawrelation(start,O);
rel=rel->next;
delete start;

II DELETES THE RELATION from the linked list as well as
II clears the relation(erases from the screen)
II by accepting the link count

void CGreenView::deleterelation(int lcount)

relation *move=rel;

if(move->count==lcount)
{

drawrelation(move,O);
rel=rel->next;
delete move;
return;

relation *prev=move;
move=move->next;

while(move 1 =NULL)
{

if(move->count==lcount)
{

drawrelation(move,O);
prev->next=move->next;
delete move;
return;

move=move->next;
prev=prev->next;

69

7. ANN£YES 70

//ll//ll//1/l//l///l//ll//l//ll//l//ll//l///l////!l//l///l/////l//////l//
II LEFT BUTTON DOWN

void CGreenView: :OnLButtonDown(UIN~ flag,CPoint pt)

/lint xO,yO,width,height,change=O;

if (drawnew==l)
{

newclass(r.;c);
drawnew=O;
return;

if(delrelation==l)
{

int lcount=findrelation(pt);

if(lcount==O)
{

MessageBox("No Relation selected","Select Again");
delrelation=O;
return;

reldialog d3(IDX DIALOG3);

if(d3.DoModal{)==IDOK)
deleterelation(lcount);

delrelation=O;
return;

int count;

count=findclass(pt);

if(count!=O && link==O)//Initialization for drag and drop option
{

mmclass=count;

classdiagramar *mmc=head;
while(mmc->cno!=mmclass)

mmc=mmc->next;

dx=pt.x-mmc->xO;
dy=pt.y-mmc->yO;

7. ANNEXES

m_PointOrigin=pt;
m_PointOld=pt;
SetCapture();

m _ Dragging=l;

RECT Rect;
GetClientRect(&Rect);
ClientToScreen(&Rect);
::ClipCursor(&Rect);

if(link==O) return; //No link selected

if(count==O) //No class selected to draw link
{

MessageBox("Select again","Error");
classl=O;
link=O;
return;

if(classl==O) //First class selected for the link
{

classl=count;
return;

if(classl==count)
{

MessageBox("Same Class Selected","Error");
classl=O;
link=O;
return;

else II Link created

class2=count;

if(checkrelation(classl,class2))
newrelation(classl,class2);

link=O; // Giving them initial values
classl=O; II Indicating no selection
class2=0;

7. ANNEXES

void CGreenView: :OnMouseMove(UINT nFlags, CPoint point)

II TODO: Add your message handler code here and/or call default
: :SetCursor(m_HCross);

if(m Dragging)
{

classdiagramar *mmc=head;
while(mmc->cno!=mmclass)

mmc=mmc->next;

CClientDC ClientDC(this);
ClientDC.SetROP2(R2_NOT);

ClientDC.MoveTo(m_PointOld.x-dx+l,m_PointOld.y-dy+l);
ClientDC.LineTo(m_PointOld.x-dx+l,m_PointOld.y-dy+mmc->height-2);
ClientDC.MoveTo(m_PointOld.x-dx+l,m_PointOld.y-dy+mmc->height-2);
Client DC. Line To (m_PointOld. x-dx+:··:nc->width-2,

m_PointOld.y-dy+mmc->height-~);

ClientDC.MoveTo(m_PointOld.x-dx+mmc->width-2,
m_PointOld.y-dy+mmc->height-2);

ClientDC.LineTo(m_Point0ld.x-dx+mmc->width-2,m_Point0ld.y-dy+l);
ClientDC.MoveTo(m_Point0ld.x-dx+mmc->width-2,m_Point0ld.y-dy+l);
ClientDC.LineTo(m_PointOld.x-dx+l,m_PointOld.y-dy+l);

ClientDC.MoveTo(point.x-dx+l,point.y-dy+l);
ClientDC.LineTo(point.x-dx+l,point.y-dy+mmc->height-2);
ClientDC.MoveTo(point.x-dx+l,point.y-dy+mmc->height-2);
ClientDC.LineTo(point.x-dx+mmc->width-2,

point.y-dy+mmc->height-2);
ClientDC.MoveTo(point.x-dx+mmc->width-2,

point.y-dy+mmc->height-2);
ClientDC.LineTo(point.x-dx+mmc->width-2,point.y-dy+l);
ClientDC.MoveTo(point.x-dx+mmc->width-2,point.y-dy+l);
ClientDC.LineTo(point.x-dx+l,point.y-dy+l);

m PointOld=point;

IICView::OnMouseMove(nFlags, point);

lllll/ll/111/ll/ll//llll//l/////llllll/ll////llll//l///11/

void CGreenView::OnLButtonUp(UINT nFlags, CPoint point)

II TODO: Add your message handler code here and/or call default
if(m_Dragging)
{

classdiagrarnar *mmc=head;
while(mmc->cno!=mmclass)

mmc=mmc->next;

7. ANN£)(£S

m_Dragging=O;
: :ReleaseCapture();
: :ClipCursor(NULL);
CClientDC ClientDC(this);
ClientDC.SetROP2(R2 NOT);

ClientDC.MoveTo(m PointOld.x-dx+l,m PointOld.y-dy+l);
ClientDC.LineTo(m_PointOld.x-dx+l,
m_PointOld.y-dy+mmc->height-2);
ClientDC.MoveTo(m_PointOld.x-dx+l,
m_PointOld.y-dy+mmc->height-2);
ClientDC.LineTo(m_PointOld.x-dx+rr@c->width-2,
m_PointOld.y-dy+mmc->height-2);
ClientDC.MoveTo(m_PointOld.x-dx+mmc->width-2,
m_PointOld.y-dy+mmc->height-2);
ClientDC.LineTo(m_PointOld.x-dx+mmc->width-2,
m_PointOld.y-dy+l);
ClientDC.MoveTo(m_PointOld.x-dx+mmc->width-2,
m_PointOld.y-dy+l);
ClientDC.LineTo(m_PointOld.x-dx+l,m_PointOld.y-dy+l);

73

find_clear_relation(mmc->cno,O);IIO(whattodo)to redraw the rel

cleardiagram(mmc);

II to redraw the rectangle (class)

mmc->xO=point.x-dx;
mmc->yO=point.y-dy;
if(mmc->xO<O) mmc->xO=O;
if(mmc->yO<O) mmc->yO=O;

int overlapstatus=O;

clcssdiagramar *overlap;

for(overlap=head;overlap!=NULL;overlap=overlap->next)
if(overlap->cno!=mmc->cno && overlap->cno!=O)
{

if(mmc->xO>overlap->xO+overlap->width) continue;
if(mmc->xO+mmc->width<overlap->xO) continue;

if(mmc->yO>overlap->yO+overlap->height) continue;
if(mmc->yO+mmc->height<overlap->yO) continue;

overlapstatus=l;
break;

if(overlapstatus==l)
{

mmc->xO=m_PointOrigin.x-dx;
mmc->yO=m PointOrigin.y-dy;
overlapstatus=O;

•

7. ANNEXES

redraw(mmc->cno);
redrawrelation();

II ClientDC.SetROP2(R2 COPYPEN);

IICView::OnLButtonUp(nFlags, point);

74

1111///////////1/ll/ll///////11/ll/l//l//11/ll/l//l//l//ll/lll/111/ll!l/1/
II LEFT BUTTON DOUBLE CLICK

void CGreenView: :OnLButtonDblClk(UINT flag,CPoint pt)

int count;
count=findclass(pt);
if(count==O)

return;

if(delcsel!=O)
{

redraw(delcsel);
find clear relation(delcsel,l); - -
delcsel=O;

classdiagramar *temp;
temp=head;
while(temp!=NULL)
{

} ;

if(temp->cno==count) break;
temp=temp->next;

delclass=count;
//highlighting the class

delete temp->scrl;
delete temp->scr2;

delcsel=count;

myroundrect(temp->xO,temp->yO,temp->width,temp->height,count,2);
find_clear relation(count,2);

:-.ANNEXES

//Creates relation by accepting two class nos

void CGreenView: :newrelation(int classl,int class2)
{

classdiagramar *templ,*temp2;

templ=head;
temp2=head;

while(templ!=NULL)
{

) ;

if(templ->cno==classl) break;
templ=templ->next;

while(temp2!=NULL)
{

) ;

if(temp?->cno==class2) break;
temp2=temp2->next;

relation *temprel;
temprel= new relation;

temprel->classl=classl;
temprel->class2=class2;

temprel->clpos position(templ,temp2);

temprel->c2pos position(temp2,templ);

temprel->count=++linkcount;
temprel->status=l;

temprel->next=rel;

rel=temprel;

drawrelation(~emprel,l);

II returns 1 if there is an e~ror in the link

int CGreenView: :checkrelation(int classl,int class2)
{

relation •mave=rel;
while(move 1 =NULL)
{

if(mo?e->classl==classl &&
move->class2==class2)

M~ssage8ox("Relation dlready
~r~sent", "Error");

rc::turn 0;

75

7. ANNEXES

if(checkpath(class2,classl)==O)
{

76

MessageBox{"Illegal inheritance","Error");
return 0;

move=move->next;

return 1;

int CGreenView::checkpath(int cl,int c2)

if(cl==c2) return 0;// return 0 if there is a loop
int a=l;
relation *move=rel;

while(move!=NULL)
{

if(move->classl==cl)
a*=checkpath(move->class2,c2);

move=move->next;

return a;

//Draws the relation by taking the pointer to rel struct and clr

void CGreenView::drawrelation(relation *r,int clr)

CClientDC d(this);
in~ xl,yl,x2,y2;
int dd=l0,ss=5;
int xr,yr;

CBrush mybrush;
CPen mypen;

if(clr==l) //black colour
mypen.CreatePen(PS_SOLID,l,RGB(0,0,0));

if{clr==O) // white colour
mypen.CreatePen(PS SOLID,l,RGB(255,255,255));

if(clr==2) //blue colour
mypen.CreatePen(PS_SOLID,l,RGB(0,0,255));

d.SelectObject(&mypen);

mybrush.CreateSolidBrush(RGB(255,255,255));

coordinates(r->classl,r->clpos,&xl,&yl);
coordinates(r->class2,r->c2oos,&x2,&y2);

7. ANNEXES

double len=sqrt((xl-x2)*(x1-x2)+(y1-y2)*(y1-y2));

xr=x2-(int) (((dd*(x2-x1)+ss*(y2-y1))1len)+0.5);
yr=y2- (int) (((dd* (y2-yl) -ss* (x2-xl)) !len) +0. 5);

d.MoveTo(x2,y2); II Drawing line
d.LineTo(xr,yr);

xr=x2- (int) (((dd* (x2-x1) -ss* (y2-y1)) /len) +0. 5);
yr=y2-(int) (((dd*(y2-y1)+ss*(x2-x1))1len)+0.5);

d.~oveTo(x2,y2); II Drawing arrow mark
d.LineTo(xr,yr);

d.MoveTo(x1,y1);
d.LineTo(x2,y2);

void CGreenView::coordinates(int count,int pos,int *x,int *y)
{

classdiagrarnar *temp=head;
while(ternp!=NULL)

} ;

if(temp->cno=rcount) break;
temp=ternp->next;

*x=temp->xO;
*y=temp->yO;
int ht=temp->height;
int wd=temp->width;

int yinc=htl4;
int xinc=wdl 4;

switch(pos)
{

case 1: *x--;*y--;break;
case 2: *x--;*y+=yinc; break;
case 3: *x--;*y+=2*yinc; break;
case 4: *x--;*y+=3*yinc;break;
case 5: *x--;*y+=ht+1;break;
case 6: (*y)+=ht+1; (*x)+=xinc; break;
case 7: (*y)+=ht+1; (*x)+=2*xinc; break;
case 8: (*y)+=ht+1; (*x)+=3*xinc; break;
case 9: (*y) +=ht+1; (*x) +=wd+1; break;
case 10: (*y)+=3*yinc; (*x)+=wd+1; break;
case 11: (*y)+=2*yinc; (*x)+=wd+1; break;
case 12: (*y)+=yinc; (*x)+=wd+1; break;
case 13: *y--; (*x)+=wd+1; break;
case 14: *y--; (*x)+=3*xinc;break;
case 15: *y--; (*x)+=2*xinc;break;
case 16: *y--; (*x)+=xinc;break;

77

7. ANNEXES 78

int CGreenView: :findlenll(attrib *mov)

for(int len=O;mov!=NULL;len++,mov=mov->next);
return len;

void CGreenView: :OnVScroll(UINT code,UINT pos,CScrollBar *scroll)

classdiagramar *move=head;
int charht=l8; //ht of the characters

static int red=O; static int green=O;
//red and green variables give the positions of the scroll bars

CClientDC d(this);

CPen mypen;
mypen.CreatePen(PS_SOLID,l,RGB(255,2~5,255));

d.SelectObject(&mypen);

while(move!=NULL)
{

int csize=(move->height-18)/40;
attrib *amove=move->alink;
attrib *mmove=move->mlink;

int attlen=findlenll(amove);
if(scroll==move->scrl)
{

if(code==SB THUMBTRACK)
red=(int)pos;

if(code==SB LINEDOWN)
if(red+csize!=attlen) red++;

if(code==SB LINEUP)
if(red!=O) red--;

int xpos=move->x0+4,ypos=move->y0+2+char~t;

for(int imov=O;imov<red && amove!=NULL;imov++,
amove=amove->next);

d.Rectangle(xpos,ypos,xpos+move->width-20,
move->y0+((move->height+l8)/2));

for(int pint=O;amove!=NULL && pint<csize;pint++,
amove=amove->next,ypos+=charht)

unsigned int stringlenqth=(move->width/8)-3;

if(strlen(amove->name)<stringlenqth)

7. ANNEXES

stringlength=strlen(amove->name};
d.TextOut(xpos,ypos,amove->name,stringlength};

move->scrl->SetScrollPos(red,move->cno};

if(scroll==move->scr2}
{

if(code==SB_THUMBTRACK}
green=(int}pos;

if(code==SB LINEDOWN}
if(green+csize!=attlen} green++;

if(code==SB LINEUP}
if(green!=O} green--;

int xpos=move->x0+4,
ypos=move->y0+2+(int) ((move->height+l8)/2);

for(int imov=O;imov<green && mmove!=NULL;
imov++,mmove=mmove->next);

CPen mypen;
mypen.CreatePen(PS_SOLID,l,RGB(255,255,255));
d.SelectObject(&mypen);
d.Rectangle(xpos,ypos,xpos+move->width-20,

move->yO+move->height-2);

for(int pint=O;mmove!=NULL && pint<csize;pint++,
mmove=mmove->next,ypos+=charht)

unsigned int stringlength=(move->width/8)-3;

if(strlen(mmove->name}<stringlength)
stringlength=strlen(mmove->name};

d.TextOut(xpos,ypos,mmove->name,stringlength};

move->scr2->SetScrollPos(green,move->cno);

move=move->next;

79

7. ANNEXES

void CGreenView: :writedata()

//Saving the classes

CString fname;
fname="c:\\green\\"+get dir()+"\\test.cls";
fpcls.Open(fname,CFile::modeCreateiCFile::modeReadWrite);
fname="c:\\green\\"+get_dir()+"\\test.lnk";
fplnk.Open(fname,CFile::modeCreateiCFile::modeReadWrite);

classdiagramar *cmove=head;
fpcls.SeekToBegin();
classsave temp;

while(cmove!=NULL)
{

if(cmove->cno!=O)
{

}

strcpy(temp.name,cmove->name);
temp.cno=cmove->cno;
temp.xO=cmove->xO;
temp.yO=cmove->yO;
temp.height=cmove->height;
temp.width=cmove->width;
fpcls.Write{&temp,sizeof(temp));

cmove=cmove->next;

II Saving the relations

relation *rmove=rel,temps;

fplnk.SeekToBegin();
while(rmove!=NULL)
{

temps.classl=rmove->classl;
temps.class2=rmove->class2;
temps.clpos=rmove->clpos;
temps.c2pos=rmove->c2pos;
temps.count=rmove->count;
temps.status=rmove->status;
fplnk.Write(&temps,sizeof(temps));
rmove->status=2;
rmove=rmove->next;

MessageBox("Save done","writedata");

deleterelationstatus2();

80

clearall(); //clearing the contents of the screen
fplnk.Close();
fpcls.Close();

7. A /V N E;'r."ES

void CGreenView: :clearall()

classdiagramar *temp=~ead;

while(temp!=NULL)
{

if(temp->cno!=O)
{

temp->scr2->ShowScrollBar(FALSE);
delete(temp->scr2);

temp->scrl->ShowScrollBar(FALSE);
delete(temp->scrl);

II to clear prev rectangle
cleardiagram(temp);

temp=temp->next;

I !Invalidate ();

void CGreenView: :readdata()

classsave rtemp;
classdiagramar *cmove;
int maxcount=O;
CString fname;
fname="c:\\green\\"+get dir()+"\\test.cls";
fpcls.Open(fname,CFile::modeRead);
fname="c:\\green\\"+get dir()+"\\test.lnk";
fplnk.Open(fname,CFile::modeReadJ;

head=NULL;

fpcls.SeekToBegin();

if(fpcls.GetLength()==O)
MessageBox("Class File is empty","Read Record ... ");

fp~ls.SeekToBegin();

while (fpcls. Read (& rtemp, si zeof (classsave)) 1 =0)
{

cmove=new classdiagramar;
cmove->name=rtemp.name;
cmove->~no=rtemp.cno;

if(maxcount<rtemp.cn0) maxcount=rtemp.cno;
cmove->xO=rtemp.xO;
cmove->yO=rtemp.yO;

8/

7. ANN£'{£S

. cmove->height=rtemp.height;
cmove->width=rtemp.width;
cmove->alink=NULL;
cmove->mlink=NULL;
cmove->next=head;
head=cmove;

82

myroundrect(rtemp.xO,rtemp.yO,rtemp.width,rtemp.height,rtemp.cno,O);

classcount=maxcount;//considering the counc value

maxcount=O;

relation *rmove,newtemp;

rel=NULL;

if(fplnk.GetLength()==O)
: JessageBox ("Link File is empty", "Read Record ... ") ;

fplnk.SeekToBegin();
while(fplnk.Read(&newtemp,sizeof(newtemp)) !=0)
{

rmove=new relation;

rmove->classl=newtemp.classl;
rmove->class2=newtemp.class2;
rmove->clpos=newtemp.clpos;
rmove->c2pos=newtemp.c2pos;
rmove->count=newtemp.count;

if(maxcount<rmove->count) maxcount=rmove->count;

rmove->status=l;
rmove->next=rel;
rel=rmove;

linkcount=maxcount;

relation *temps=rel;
while(temps!=NULL)
{

drawrelation(temps,l);
temps=temps->next;

fplnk.Close();
fpcls.Close();

7. ANNEXES 83

7.2 Sample Screens

Initial screen

MODEL ~

Dialog Box to enter a model

7. ANNEXES 84

~1-: green - [test. cis) e~ EJ

Ready

Class2

etdoc.CPI=
It) etview.cp

ffil event. CPI= •
ID. extdlg. cp~
ffil green. CPI= ,,.
[!) green. rc '

· ffil greenDoc -
[LJ I greenViev ·

ffil MainFrm.c
ffil moddlg.q
[hl mydialog.l

Class Diagram

1nt (GreenView : :posit1on(classdiagramar *p . classdia~
{

int pxO=p->xO . pyO=p->yO.qxO=q->xO.qyO=q->yO :
int pxl=p->xO+p->width:
int pyl=p->yO+p->height :
int qxl=q->xO+q- >width :
int qyl=q- >yO +q- >height :

if(py0 >qy1)
{

if(px0 >qx1) return 1 ;
if(px1 <qx0) return 13 :
lf (px1 >qx1)

lf(pxO <qxO) return 15 :

Microsoft Developer Studio

B.CONCLUSION

In the project a GUI based casetool is developed

which can handle modifications in the static and dynamic

behaviour of the object oriented system. The casetool

allows the system analyst to draw the Class diagram,

Integrated State transition diagram by accepting state and

event information. Besides this the casetool draws event

trace diagram from the ISTD and finally generates the C++

code.

Indeed,

li fecycle, as

implementation.

maintenance.

the

the

It

casetool can be

design evolves

can also be

85

used throughout the

into a production

used during systems

(Boo 94]

[Rum 91]

[Par 95]

[Bja 97]

[Yas 98]

[Krugli]

[Rog 97]

REFERENCES

Booch G., Object Oriented analysis and design with
applications. Addison-Wesley 2"d edition.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and
Lorenson, W.l997.0bject Oriented Modeling and Design,
Prentice Hall.

Dr.N.Parimala, Handling Changes in Dynamic
Specifications in Object Oriented Systems. 1995.

Bjame Stroustrup.The C++ Programming Language.1997.
Addison-Wesley 3rd edition.

Yashavant.P.Kanetkar. VC++ Programming.1998, 1st
Edition. BPB publications.

David.J.Kruglinski. Inside VC++. 4th Edition. Microsoft
Press.

Roger.S.Pressman Software Engineering, A Practitioners
approach.l997, 4th Edition. McGraw Hill International
Edition.

86

	TH76450001
	TH76450002
	TH76450003
	TH76450004
	TH76450005
	TH76450006
	TH76450007
	TH76450008
	TH76450009
	TH76450010
	TH76450011
	TH76450012
	TH76450013
	TH76450014
	TH76450015
	TH76450016
	TH76450017
	TH76450018
	TH76450019
	TH76450020
	TH76450021
	TH76450022
	TH76450023
	TH76450024
	TH76450025
	TH76450026
	TH76450027
	TH76450028
	TH76450029
	TH76450030
	TH76450031
	TH76450032
	TH76450033
	TH76450034
	TH76450035
	TH76450036
	TH76450037
	TH76450038
	TH76450039
	TH76450040
	TH76450041
	TH76450042
	TH76450043
	TH76450044
	TH76450045
	TH76450046
	TH76450047
	TH76450048
	TH76450049
	TH76450050
	TH76450051
	TH76450052
	TH76450053
	TH76450054
	TH76450055
	TH76450056
	TH76450057
	TH76450058
	TH76450059
	TH76450060
	TH76450061
	TH76450062
	TH76450063
	TH76450064
	TH76450065
	TH76450066
	TH76450067
	TH76450068
	TH76450069
	TH76450070
	TH76450071
	TH76450072
	TH76450073
	TH76450074
	TH76450075
	TH76450076
	TH76450077
	TH76450078
	TH76450079
	TH76450080
	TH76450081
	TH76450082
	TH76450083
	TH76450084
	TH76450085
	TH76450086
	TH76450087
	TH76450088
	TH76450089
	TH76450090
	TH76450091
	TH76450092

