
OB.JFTf-ORI ENTEI) I)ESIGN�

OF�

TOKEN RING NETWORK�

Dissertation submitted to

.JAWAHAI~LAL NEHIW UNIVERSITY�

In partial fulfilment of requirements�

for the award of the degree of�

MASTER OF TECHNOLOGY�

In�

COMPUTER SCIENCE�

BY

RAM BHAGAT

SCHOOL OF COM rUTER & SYSTEMS SCIENCES�

JAWAHARLAL NEHRU UNIVERSITY�

NEW DELI.JI-II0067�

JanU:lry - 1999.�

CERTIFICATE

This is to ce1tify that the disse1tation entitled " OB.JECT-ORIENTED

DESIGN OF TOKEN RING NETWORK " which is being submitted

by Mr. RAM BHAGAT to the School of Computer & Systems Sciences,

JA WAHARLAL NEHRU UNIVERSITY for the award of Master of

Technology in computer science is a bonafide 'work carried out by him

under my supervision .

This work is original and has not been submitted in part or

full to any university or institution for the award of any degree .

Cc~~
PROF P. C. SAXE~/ /'J

Dean

School of Computer &
Systems Sciences

Supervisor

\ •· .. ~
'

ACKNOWLEDGEMENTS

wish to convey my hea11felt gratitude and smcere

acknowledgements to my guide Prof. P. C. Saxena , School ·of

Computer & Systems Sciences for his wholehearted, tireless and

relentless efforts in helping me for the successful completion of this

project.

I would like to record my sincere thanks to my Dean, Prof. P. C. Saxena

, School of Computer & System Sciences for providing the necessary

facilities in the centre for the successful completion of this project.

I take this opportunity to thank all of my faculty members and friends for

their help and suggestions during the course of my project work.

RAM BHAGAT

ABSTRACT

The primary objective of this work is to design the Token Ring Network

using object-oriented methodology based on specialization theory. In this

work we first described object-oriented concepts which will be applied

while designing the Token Ring Network. We further described Token

Ring specification and commenced the designing process of token ring

.In the next part we have given the full code of token ring in Abstract

Syntax Notation.

Table of Contents

Topic

1. Introduction

2. Object-oriented methodology

2.1 Object-oriented themes

2.2 object-oriented modelling v/s

page no.

1

2

2

object-oriented programming 4

2.3 Object Class 6

2.4 Capsules 7

2.5 Generalisation & Specialisation 9

2.6 Specialisation Principles 14

2.7 Normalization 16

2.8 Aggregation 18

3.Specification &Design of Token Ring 22

3 .I Definitions 22

3.2 General Description 23

3.3 Formats and Facilities 24

3.4 Token Ring Protocols 33

3.5 Carving out the design of

Token Ring Network 37

4 Design in ASN.l 48

5 Conclusion 91

6 References 92

CHAPTER I

INTRODUCTION

Networks are so complex that it is imperative to describe the network in terms of a

model . The process of modelling takes the problem into the realm of the abstract

where it is easier to find the solution. The solution of abstract problem then can be

converted into concrete solutions. A good modelling technique provides a mechanism

by which a complex problem can be decomposed into parts and those parts into

further subparts. The overall model of the complex system describes not only

components which results from such a decomposition but also the relationships

among these components. The modelling technique must not only provide structure

but also suggest function. A good modelling teclmique has to make balance between

complexity and simplicity depending on the requirements of the application. Object­

oriented modelling is a technique that allows classification based not only on structure

but also on behavior. One of the reasons for the popularity of the object-oriented

techniques is the intellectual appeal of their ability to capture both structure and

function in an object. Some modelling techniques like entity-attribute modelling

describe the problem domain only in structural terms whereas others like state

transition analysis do so only in behavioral terms. The analysis of communication

networks needs both aspects . A pure structural model of a communication network

describes the nature of the elements that comprise it and their relationships with

each other but would not capture behavioral aspects in terms of protocol message and

responses. A pure behavioral model would describe their function but would not

capture their structural information.

CHAPTER2

OBJECT -ORIENTED METHODOLOGY

2.1 Object-Oriented themes

In the object-oriented model the themes of object-oriented analysis abstraction,

encapsulation, inheritance all find expression. Abstraction is a mechanism for coping

with complexity. We can concentrate only on essential details for solving a specific

problem . Abstraction draws a boundary around an object inside which are the

essential characteristics of the object from the point of view of the application

domain . Essential characteristics isolated inside the abstraction barrier must capture

the notion of both structure and function based distinctions. A correctly defined

abstraction allows the same object model to be reused in various ways.

Encapsulation consists of identifying the internal implementation of the network

element and separating those from its externally visible behaviour. Encapsulation

preserves the integrity of the object - the underlying implementation may be changed

as long as the interface visible to other objects remain consistent. Encapsulation and

abstraction are complementary to each other. Just as abstraction separates the essential

characteristics of an object from the non-essential ones, the encapsulation separates

the externally visible characteristics from the hidden ones. The process of abstraction

and encapsulation enables us to talk about network operations completely in the

abstract.

An object class is a set of objects having common structural and behavioural

properties. All objects in a class have the same purpose. The process of classification

in combination with abstraction allows us to categorise the different elements that

comprise a communication network as lines ,circuits, LAN bridges , softwares ,

services switching equipments etc. In addition to this classes. also serve as templates

with which to create new objects. The attributes of an object describe those data

values that the object possesses which could conceivably be different from the data

values possessed by other objects of the same class. When we assign an attribute to a

class we say that the attribute is-a-property of that class . Conversely the class has­

as-a-property each attribute assigned to it. The terms is-a-property-of and has-as-a­

property are called property assignment associations. Each attribute has a data type

which defines the nature and range of values the attribute can possess. The set of all

values which an attribute may possibly possess is known the domain of the attribute.

An attribute can be specified umque 1.e. each object instance will have different

values for that attribute.

Th~ function describes the behavioral properties of an object. Functions are of two

types procedural function and stream function. Procedural functions accept arguments

and produce results which are well defined data types. Stream functions have at least

one argument or one result that is not a well defined data type but is an unstructured

continuous analog or digital stream.

Inheritance provides a way of classifying classes. If we find two similar object classes

sharing a subset of their properties , we abstract their common properties into a

superclass. We thus have a categorization of classes . The inheritance hierarchy

provides a second order abstraction in which common properties and behavior can be

isolated in yet other classes . This second order abstraction is the defining

characteristic of object-oriented modelling paradigm. Inheritance is also a mechanism

for implicit property assignment i .e. by assigning a property"to an ancestral class , it

becomes available in all its descendants. The properties available in an object class

through inheritance from ancestral class are called inherited properties of that class. In

addition to inheriting characteristics from its superclass, the subclass may choose to

define additional characteristics of its own . This is called as extension . The

properties defined by subclass on its own are called original properties. The class

where a property is first defined is called originating class. Inheritance and extension

are mechanisms to express the semantics of classification and evolution . They are a

means of incorporating a formalized taxonomy within the object model itself

A paradigm that supports abstraction and encapsulation is said to be object based ,one

that ,in addition , supports classification is said to be class based and further if it also

3

supports inheritance it is said to be object-oriented. An object instance is a concrete

object which is an example of an object class. It has an identity which is different

from other instances of the same class .The process of creating object of a class is

called instantiation. A class which has direct instances is called a concrete class .

Those classes which are not instantiated are called abstract classes. Classes, which not

only themselves but whose descendants, are also abstract are called fully, abstract

classes.

Aggregation refers to the ability to construct complex objects by assembling simpler

objects together in a meaningful configuration. Decomposition is a process of

breaking down the complex system in a set of subproblems each of which we know

how to solve independently. While decomposing we must take care that each each

part should preserve encapsulation and present a well defined set of interfaces at its

boundary . An aggregation hierarchy identifies the part/whole relationships between

objects.

The modelling methodology applied here is based on specialisation theory. It is used

to organize unstructured knowledge to meaningfully represent a system . Here

emphasis lies in understanding the networks in terms of its component objects, their

attributes and the relationship they hold with each other. Object-oriented model serves

as a basis for specification, design and documentation.

2.2 Object-oriented modelling v/s object-oriented programming

Object-oriented modelling is different from object-oriented programming in various

aspects e.g. in object-oriented modelling inheritance does not necessarily mean

reusability of implementations, it simply means reusability of specifications. Here

inheritance is a mechanism of incremental improvement of the classes already

defined. In specialisation theory which is stronger form of object-oriented modelling

monotonic inheritance is applied i.e. already existing features of classes are not

allowed to be cancelled. In case of object-oriented programming we can drop the

properties(attributes or functions) of the superclass. Further multiple inheritance is

4

rarely used in object-oriented modelling . In fact it can be done away by usmg

aggregation and hierarchy redesign . While in object-oriented programming it is

encountered more frequently. In case of modelling overriding (a process by which

subclass can redefine inherited attributes and functions) is not permitted but in object­

oriented programming this feature is available and is often implemented by virtual

functions. In object-oriented modelling polymorphism does not make much sense as

here we are not concerned with implementation variations but in programming it

plays an important role. Similarly the concept of dynamic binding is not meaningful

in object-oriented modelling of networks. Again we do not use delegation which is

used in certain object-based software environments. Delegation as the name suggests

is a property by which an object can delegate its responsibility of performing certain

operations to some other object which in turn can delegate this responsibility to some

object.

Object-oriented programming provides a means of visibility control by the concept of

class and superclass but there is no such need of visibility control in object-oriented

modelling. In object-oriented programming declarative instantiation i.e. having

defined a class in a formal syntax one can then instantiate variables of the class

through declarations in the same syntax. However declarative instantiation is not

meaningful in object-oriented modelling of communication networks . The issue of

inter-object communication is very straightforward in object-oriented programming

while it is much complicated in object-oriented modelling of communication

networks. Referent and non-referent both types of classes are referred in object­

oriented programming but not in object-oriented network model. A subclass can be

arbitrarily written while overriding the original behavior of the class but in a subtype

its original has to be maintained. It can be modified only in permissible ways.ln

object-oriented network modelling as we are applying specialisation theory the

dif~erence between subclasses and subtypes is irrelevant. This difference is significant

in many object-oriented languages. Anyhow object-oriented modelling and object­

oriented programming are complementary to each other,- They both are of benefit in

different phases of system development . The programmer need no longer expend

5

effort for designing software classes for network objects as the hierarchy obtained by

object-oriented modelling can be converted into programming language.

2.3 Object Class

A meaningful object class in a network model must have a referent in the actual

system i.e. it models some entity in the actual system which is relevant to our

purposes. Object classes may be physical entities or logical entities e.g. protocol

entities, network services and sites . Every object class is modelled by identifying

attributes and functions of interest. The class is described as a modelling construct and

its attributes and functions are described as independent modelling constructs which

are associated with the class through property assignment.

There are two types of properties those which are mandatory and those which are

optional. Mandatory properties are captured by using core specification while optional

properties are captured using variant specification. Let us first describe the core

properties .Here we identify the properties which must be present in every instance of

the class i.e. if an object lacks any of the core properties then it is not an instance of

that class but while identifying the attributes and functions we must be careful that

they are orthogonal i.e. they are not functionally dependent on each other in any way.

Thus we should not be in a position to compute any attribute or function in terms of

other attributes e.g. suppose we are trying to find out three parts of a number so that

their product is maximum. In this case if we know first two parts of the number then

the third part can be computed just by subtracting the sum of the two parts from the

number. Thus if we represent this third part as also an attribute then these attributes

will not be orthogonal as a relationship exists between them. This may cause

sometimes integrity violation . An object not having any knowledge of the

dependency between the attributes may try to set them to values which ar~

inconsistent with each other. Such an attribute can be specified by formally modelling

their functional dependency on other attributes as an algorithm. While specifying

functions care must be taken to specify function arguments such a way that the

number of functions required can be minimized e.g. if there are two functions

6

fiveminuteservice and tenminuteservice then they should not be modelled as two

separate functions instead they should be modelled as a single function and an

argument duration should be provided to that function .But this can be done only if

the two functions have the same purpose. If their purpose is different then they must

be modelled as separate functions. In communication networks there are variety of

devices, protocols and services. There are different types of versions and options .. If

the core property in a superclass has been defined then it can be extended into

different subclasses using inheritance e.g. if there are two options optionfirst and

optionsecond then the subclasses can be obtained as shown in the figure .

I SUPERCLASS I

SUBCLASS SUBCLASS SUBCLASS
OPTION-1ST OPTION2ND OPTION-I ST

OPTION2ND

2.4 Capsules

In this way if we have n options then we will get 2" -1 subclasses which gets out of

hand for values like 20 or more. Therefore it complicates the whole design of the class

hierarchy. Thus it is better to provide variant property specification. There certain

properties which may be present or absent together. Such a collection of properties is

modelled by the concept of capsule which may be named. A capsule is never

instantiated independently . It is a mechanism to add flexible subsets to object classes

. A capsule can be reproduced just by a reference to an already existing capsule . The

properties of one capsule should not overlap those of others or with the core

properties defined for a given class. They also reduce the need of modelling mult\ple

7

inheritance. A capsule provides a powerful abstraction to describe variant or optional

behavior. A capsule may be mandatory or optional. In a capsule if we want to make an

attribute to be optional then the entire capsule has to be made optional. It is m

consistence with practice as almost all optional characteristics are collections of

multiple related attributes and functions which occur as an assemblage. The presence

or absence of an optional capsules is also specified using a flag attribute which

specifies which optional capsules are present in that instance. In the process of

specialisation an optional capsule can be fixed i.e. the capsule becomes mandatory in

that class and all the descendant classes. This is termed as capsule fixing . Capsules

can be nested with other capsules but not with themselves. Capsules are used as

modelling abstractions to specify and import reusable assemblages of properties in

network objects as shown in the figure. TransportBridging and sourceRoutedBridging

are two capsules. Capsules also help in avoiding multiple inheritance. This accelerates

processing in the model information base since multiple inheritance is costly to

compute. Further it maintains exactness in the taxonomical structure for assigning

instances to the class.

8

LAN BRIDGE
FORWARDING RATE
SUPPORTED MEDIA
TYPES

I

TRANSPARENT BRIDGE SOURCE ROUTED BRIDGE

TRANSPARENT SOURCE ROUTED

BRIDGING BRIDGING

TRANSPARENT BRIDGING SOURCE ROUTED
BRIDGiNG

SPANNING TREE

PROCESS -SOURCE -OUTED FRAME
FORWARDING DATABASE

BUILD SPANNING TREE () ProcessRouteDiscoveryFrame

PROCESS DA T AFRAME ()

2.5 Generalisation & Specialisation

Generalisation and specialisation are the basic themes of inheritance hierarchy . As we
go up in the inheritance hierarchy generalisation increases and as we go down the
hierarchy specialisation increases . Generalisation is the process constructing an
inheritance hierarchy in a bottom-up fashion . It is an exercise of identifying

9

similarities between object classes, abstracting them and raising them to the level of a
superclass . The classes at the top of the hierarchy are simpler and the classes at the
bottom of the hierarchy are more complicated in terms of the structure and advanced
in terms of the functioning. The construction of the hierarchy in top-down fashion by
providing more attributes and functions to the superclass is specialisation. Its purpose
is to focus on more specific aspects of the problem domain. While creating the
hierarchy we first apply the principle of generalisation and once a hierarchy is
constructed specialisation is useful for assigning new object classes a place in the
existing hierarchy. As we go up higher in the inheritance tree there comes a point
from where no further abstraction is possible . This is known as the root of the
inheritance hierarchy . We call it by the special name generic object. It captures the
only common properties of every possible object module in the application domain .
There is a specialises-into association between a superclass and its subclass. It is
transitive from a class to all its descendant classes e.g. if the ethernet class derives
from localnetwork class and fastethernet derives from ethernet class i.e. localnetwork
class specialises into ethernet class which in turn specialises fastethernet class . Then
localnetwork class also specialises into fastethernet class . The complement
association is specialises from . That is we can say that ethernet class specialises from
localnetwork class . These are shown in the figure as below .

Specializes into
from

LocalNetwork

Sped,lizos ;n~ i
Ethernet

Sped,lize' ;J
..

FastEthernet

...
~

specializes from

specializes

specializes from

These associations are transitive but not symmetric e.g. ethernet class specialises from

localnetwork class but localnetwork class does not specialises from ethernet class. All

object classes can be enumerated from the root class by traversing the transitive

closure of its specialises into association . It means determining all nodes on the graph

which are reachable using the starting node. There are corresponding associations of

generalisation as well . There are two associations generalises-from and generalises­

into . A superclass generalises from a subclass and a subclass generalises into a

10

superclass . These associations are also transitive but not symmetric. They can be

shown as below.

..
""

LocalN etwork

Ge"ec;l;m fm~ i generalizes into

Generalizes from

I I
generalizes

into Ethernet

Generalizes fro~ i generalizes into

~I FastEthemet

I

It is a good modelling practice to take care that concrete classes are leaf level classes
in the hierarchy as much as possible. It is possible that some non-leaf classes also
have instances . It is possible when a new subclass is added making the already
existing class

a non-leaf class. In specialisation theory generalisation and specialisation are formally
described in terms of a basis property i.e. when we have to specialise a new object
class from an existing class we must choose a basis of specialisation. It acts as a
distinguishing factor between different subclasses. Generally this basis property is an
attribute of the superclass . However it can be some function based property also . As
a subclass is more specialised form it has more capabilities than its supercl~ss.

Actually it operates in a narrower range of the overall problem space . The basis
property which has more domain in the superclass is restricted in domain in the
subclass . Then there are two kinds of basis of specialisation Quantitative and
Qualitative .If the basis property is a numerical attribute of the superclass
specialisation is done by restricting the domain of the values that the attribute is
permitted to take in the subclass . This is known as quantitative basis of specialisation
. If the basis of property is an enumerable attribute of the superclass, specialisation is
done by restricting the set of enumerated values this attribute can have in the subclass.
This is called qualitative basis of specialisation

II

ETHERNET

PortS peed>= 10 mbps PortS peed <1 0 mbps

FastEthernet SlowEthernet

Consider a superclass ethernet which is specialised into two subclasses fastethernet

and slowethernet depending on the portspeed. Thus it is an example of quantitative

basis of specialisation . Here portspeed attribute has been restricted in domain for

subclass.

NetworkObject

Network Type

I
Ethernet

I
TokenRing

I
FDDI

As shown in the figure there are three types of network object ethernet, tokenRing and
fddi depending on the value of the attribute network type. This networktype is here
basis of specialisation . When specialisation is done by restricting the domain of an
attribute of the superclass the mode of specialisation is known as specialisation. by
Attribute domain restriction There are two notions associated with specialisation
disjointness and completeness. A disjoint specialisation means that all the subclasses
of a superclass must form non-intersecting sets of objects i.e. an object which is a
member of a superclass can be a member a member of only one subclass. An object
can not be a member of more than one class i.e. two classes can not have any object in
common e.g. consider the example in which we considered ethernet superclass and
specialised it on the basis of portspeed . If we take ports peed >= 10 mbps for
fastethernet and portspeed<= 10 mbps for slowethernet then we have overlapping i.e.
these two subclasses are not disjoint . For portspeed = 10 mbps objects belong to both

12

I

subclasses .A complete specialisation implies that every object of the superclass has to
be a member of some subclass . Considering the same example an object of ethernet
class has to be a member of fastethernet or a member of slowethernet subclass as by
the definition its portspeed has to be either >= 10 mbps or <1 0 mbps . The notions of
disjointness and completeness are also useful when basis of specialisation is
qualitative . In network modelling it is better to have subclassing disjoint and
complete as far as possible . It improves the richness of the taxonomical structure by
removing any ambiguity and confusion with regard to where instances can be
assigned in the hierarchy . Furthermore completeness assures ~s that each instance can
be assigned to at least one class. Sometimes we need to choose more than one basis
property for the same specialisation . Then it is called compound specialisation . For
example if two different basis attributes undergo domain restriction simultaneously as
part of the same specialisation as shown in the figure .

MULTIPLEXER

PORTSPEED
BRAND NAME

Narrowband IBM Broadband IBM Narrowband Broadband
Multiplexer Multiplexer Microsoft Microsoft

Multiplexer Multiplexer

Compound specialisation can be replaced by simple specialisation at more than one
levels. There is no harm in using compound specialisation if it makes sense for the
application- domain and number of subclasses at each level are manageable. Another
mode of specialisation is known as specialisation by argument contravariance. Instead
of restricting the domain here we relax the domain of the arguments of the function.
Thus the function possesses now more versatility. They can handle more situations.
This is known as contravariance. It is named so because as subclasses become
specialised and restricted in their basis properties the arguments that their function can
handle actually become weaker and relaxed. As all the subclasses are actually
subtypes here therefore contravariance works. We may specialise by tightening
function results. In fact finding an attribute's value may be internally implemented as
the result returned by a function computation. So as we can restrict domain of an
attribute to specialise. Similarly we can do the same thing with result of a function.
Consider the figure

13

ETHERNET

PortS peed
A veragePortSpeed()

A veragePortSpeed() <1 Ombps A veragePortSpeed() >=1Om bps

I I
Slow EtherNet FastEtherNet

Thus if the return value of the function averageportspeed () is less than 10 mbps then

it is specialised into slowethernet otherwise fastethernet .Here the basis of

specialisation is the result of the function averageportspeed(). Function results can be

restricted for specialisation like attribute domain . Thus function res_ults are said to be

covariant with specialisation . We can also do specialisation by the capsule fixing i.e.

if we create a subclass from an existing object class in which a capsule is optional we

make that capsule mandatory . All instances of the subclass and the classes further

derived will now possess this capsule . Now we describe certain specialisation

principles. A specialisation principle is a rule which states how a subclass can. be

legally derived from a superclass .

2.6 Specialisation Principles

Specialisation principle of attribute addition:- A descendant class may add an

attribute as new property .

Specialisation principle of Function Addition:- A subclass may add a function as a

new property .

14

Specialisation principle of capsule addition :- A subclass may add a capsule as a
new property
Specialisation principle of attribute domain restriction :- A subclass may restrict
the domain of an attribute inherited from an ancestral class.
Specialisation principle of argument contravariance :- A subclass may expand the
domain of an argument of a function inherited from a superclass .
Specialisation principle of result covariance :-A subclass may restrict the domain of
the result of a function inherited from a superclass .
Specialisation principle of capsule fixing :- A subclass may mandate the use of an
optional capsule inherited from a superclass .

After describing specialisation principles lets refer to multiple inheritance . It is the
capability of an object class to inherit properties from more than one superclass . It is
generally suitable when an ancestral class has been specialised at different times using
different bases of specialisation . In multiple inheritance specialisation proceeding
from the same superclass at two different times we have two different bases. of
specialisation . Consider the example as shown in the figure

Price >= $ 20000

Costly Equipment

/

NETWORKDEVICE

VendorName
Device Type
Price

15

Price < $ 20000

CheapEquipment

NETWORKDEVICE
VendorName
Device Type
Price

VendorName= IBM VendorName = MICROSOF T

I l
IBMdevice MicrosoftDevice

Costly Equipment IBM device

VendorNam, =IBM Price >= $20000 I

I
IB Mcostl y Equipment

.

In this multiple derivation that basis of specialisaion which is not used earlier is

applied from each superclass. From the costlyequipment class the vendorName basis

is being used while from the IBMdevice class the price basis is being used . In

specialisation theory we permit the use of multiple inheritance when required .

However as far as possible when subclassing only one basis property should be

selected .

2.7· Normalization

Normalization is the technique used to avoid selective inheritance . It helps us find out

the most appropriate class in which a particular property must be placed . The

16

normalization of a class hierarchy may occur either at architecture time or at

operations time . However at operations time unrestricted redefinition of classes may

cause instances to lose their instantiation associations with existing classes . So there

are some restrictions with respect to normalizing a class hierarchy e.g. we can not

change name of any concrete class . The extent of a concrete class can not chang~ .

The name of any ancestral class of a concrete class can not change . The membership

of any ancestral class of a concrete class can not change and the set of properties

accumulating in every concrete class through inheritance can not decrease . An

advantage of normalization is that concrete classes tend to move to the bottom of the

hierarchy and intermediate classes tend to stay abstract classes . It helps us in

designing better hierarchies . The following are certain guidelines to design well

structured object class hierarchies .

l.Use capsules to model minor variations of a class and specialisation to model major

variations .

2. A void free specialisation .A formal basis of specialisation should be chosen at

each level of subclassing .

3. Select only one basis of specialisation as far as possible

4. Ensure that each specialisation is disjoint.

5. Ensure that each specialisation is complete

6. push all concrete classes as far down in the hierarchy as possible.

?.Ensure that the hierarchy is normalized . By this it can be ensured that there is no

need to apply selective inheritance.

8. Avoid multiple inheritance as far as possible . Try to find other ways to deal with

the situation.

17

2.8 Aggregation

Aggregation is an important mechanism in object-oriented designing . It is a way of

breaking down information in order to create complex objects by making an

assembly of smaller objects . In object-oriented modelling this breakdown process is

called decomposition . The reverse process i.e. assembling objects to create complex

objects is called composition. The object formed on such a way is called aggregate

object . The simpler objects which together form the aggregate are known. as

component objects. The aggregate is taken as a single object. Aggregation provides a

powerful abstraction that facilitates the description_ and manipulation of all component

objects . Aggregation specifies part-whole relationship between between object

classes The components are considered to be part and aggregate is whole .

Aggregation relationships can be represented by aggregation hierarchies . An

aggregation hierarchy is rooted at the aggregate object and proceeds downward to

show its first order components . There may need of more than one aggregation

hierarchy to describe the complete model of a single network.

Sometimes confusion occurs between inheritance hierarchy and aggregate hierarchy.

The inheritance hierarchy describes the specializes from association between classes .

Its goal is to describe taxonomies so that we can categorize objects . The

categorisation of an object does not affect the operation of the object itself. But

aggregation hierarchy defines the compositions so that we can assemble the objects to

propagate the effects of operations on one object to another·. It actually affects the

operations of the objects. The same object class may appear twice in the aggregation

hierarchy but every object class can occur exactly once in the inheritance hierarchy .

These two hierarchies are complementary to each other . None of them is sufficient .

They are both required together . An aggregation hierarchy is like an assembly

blueprint which tells us how to put them together .The inheritance hierarchy helps us

in finding the parts we need .The definition of aggregation is not cncerned with

individual properties of the components.

There are two types of aggregation exclusion aggregation and inclusive aggregation .

In exclusion aggregation each specific component instance can belong to only one

18

aggregation instance while in inclusive aggregation some component may belong to

more than one aggregate instance e.g. when we say that a hubcard component is a

part of a wiringhub aggregate we imply that no other wiringhub object may possess

the same hubcard component . This is an example of an exclusive aggregation . On

the other hand suppose that a digitalvideoclip component object is a part of

multimediadocument aggregate object . This does not prevent the same

digitalvideoclip object from also being a component of a different

multimediadocument object . This is an example of inclusive aggregation . There

exists some confusion aggregation and capsules . It should be kept in mind that

capsules are never instantiated whereas component objects are . Further a class may

contain more than one instance of the same component whereas it can contain each

capsule only once.

In order to describe how many times a component is required to form an aggregate ,

the· concept of component multiplicity is introduced . It allows us to specify the

number of components which may be contained in the aggregate . Component

multiplicity is shown in the form of an interval [N,M] where N and M are non­

negative integers . This interval infers that there are at least N and at most M instances

of the component to form the aggregate . Component multiplicity may also be

specified by a discrete set of enumerated integers . It is also possible to define

component multiplicity in terms of attribute-defined expressions . In fact attribute­

defined expression is actually the most general and most satisfactory way of

specifying the component multiplicity . If the aggregate class has been specified

correctly , it is usually possible to select one its capacity related attributes to spe<;ify

component multiplicity . In every multiplicity specification where the network model

seems to require a non-trivial integer constant for a limit it is better to look closely for

an~ capacity related attribute of the aggregate class and examine it for possible use in

an attribute defined expression for the component multiplicity.

An aggregate class and its component classes both have a place in the inheritance

hierarchy . Therefore each can specialise into a number of descendants classes .

Further the descendants of the component object classes have inherited its

19

composition relationship with the aggregate object class and the descendants of the

aggregate object class have inherited its decomposition relationship with the

component object class 0 There are certain aggregation principles 0

Aggregation principle of composition inheritance :- A descendant of a component

class inherits the composition relationship of an ancestral withothe aggregate class 0

Aggregation principle of decomposition inheritance :- A descendant of an

aggregate class inherits the decomposition relationship of an ancestral class with the

component class 0

Aggregation principle of monotonic aggregation inheritance :- A descendant class

may not cancel any composition or decomposition relationship defined for an

ancestral class 0

Aggregation principle of component multiplicity inheritance :- A descendant of an

aggregate class inherits by default the component multiplicity of each decomposition

relationship inherited from an ancestral class that it may modify in permissible ways 0

Specialisation principle of component addition :- A descendant class may ad~ a

decomposition relationship with a new component class 0

Specialisation principle of aggregate addition :- a descendant class may add a

composition relationship with a new aggregate class 0

Specialisation principle of component multiplicity restriction :- A descendant

class may restrict the multiplicity domain of a decomposition relationship inherited

from an ancestral class 0

Aggregation principle of component multiplicity inheritance :- A descendant of

an aggregate class inherits by default the component multiplicity of each

decomposition relationship inherited from an ancestral class, which it may restrict 0

Specialisation principle of component specialisation :- A descendant of an

aggregate class may restrict an inherited decomposition relationship to selected

descendants of the component class 0

Specialisation principle of aggregate specialisation A descendant of a

component class may restrict an inherited composition relationship to selected

descendants of the aggregate class 0

20

Aggregation principle of specalized component inheritance :- A descendant of an

aggregate class has-as-a part at least one descendant of a mandatory component class ,

if any specialisation of the component class is complete .

Aggregation principle of specialised aggregate inheritance :- A descendant of a

component class is-a-part-of at least one descendant of a mandatory aggregate class if

any specialisation of the aggregate class is complete .

21

CHAPTER3

TOKEN RING SPECIFICATION & DESIGN

3.1 Definitions

Abort sequence:- A sequence that terminates the transmission of a frame

prematurely.

fill. A bit sequence which may be either 0 bits, 1 bits, or any combination thereof.

frame. A transmission unit that carries a protocol data unit (PDU) on the ring.

logical link control (LLC). That part of the data link layer that supports media

independent data link functions, and uses the services of the medium access control

sublayer to provide services to the network layer.

medium. The material on which the data may be represented. Twisted pairs, coaxial

cables, and optical fibers are examples of media.

medium access control (MAC). The portion of the IEEE 802 data station that

controls and mediates the access to the ring.

medium interface connector (MIC). The connector between the station and trunk

coupling unit (TCU) at which all transmitted and received signals are specified.

monitor. The monitor fs that function that recovers from various error situations. It is

contained in each ring station; however, only the monitor in one of the stations on a

ring is the active monitor at any point in time. The monitor function in all other

stations on the ring is in standby mode.

multiple frame transmission. A transmission where more than one frame 1s

transmitted when a token is captured.

network management (NMT). The conceptual control element of a station which

interfaces with all of the layers of the station and is responsible for the setting and

resetting of control parameters, obtaining reports of error conditions and determining

if the station should be connected to or disconnected from the medium.

repeater. A device used to extend the length, topology, or interconnectivity of the

transmission medium beyond that imposed by a single transmission segment.

ring latency. In a token ring medium access control system, the time required for a

22

signal to propagate once around the ring. The ring latency time includes the signal

propagation delay through the ring medium plus the sum of the propagation delays

through each station connected to the token ring.

service data unit (SDU). Information delivered as a unit between adjacent entities

which may also contain a PDU of the upper layer.

Station (or data station). A physical device that may be attached to a shared medium

local area network for the purpose of transmitting and receiving information on that

shared medium. A data station is identified by a destination address.

Token. The symbol of authority that is passed between stations using a token access

method to indicate which station is currently in control of the medium.

Transmit. The action of a station generating a frame, token, abort sequence, or fill

and placing it on the medium to the next station. In use, this term contrasts with

repeat.

Trunk cable. The transmission cable that interconnects two trunk coupling units.

trunk coupling unit (TCU). A physical device that enables a station to connect to a

trm~k cable. The trunk coupling unit contains the means for inserting the station into

the ring or. Conversely bypassing the station.

3.2 General Description

A token nng consists of a set of stations serially connected by a transmission

medium. Information is transferred sequentially, bit by bit, from one active station to

the next. Each station generally regenerates and repeats each bit and serves as the

means for attaching one or more devices (terminals, work-stations) to the ring for .the

purpose of communicating with other devices on the network. A given station (the

one that has access to the medium) transfers information onto the ring, where the
0 0

information circulates from one station to the next. The addressed destination

station(s) copies the information as it passes. Finally, the station that transmitted the

information effectively removes the information from the ring. A station gains the

right to transmit its information onto the medium when it detects a token passing on

the medium. The token is a control signal comprised of a unique signaling sequence

23

that circulates on the medium following each information transfer. Any station, upon

detection of an appropriate token, mar capture the token by modifying it to a start-of­

frame sequence and appending appropriate control and status fields, address fields,

information field, frame-check sequence and the end-of-frame sequence. At the

completion of its information transfer and after appropriate checking for proper

operation, the station initiates a new token, which provides other stations the

opportunity to gain access to the ring. A token holding timer controls the maximum

period of time a station shall use (occupy) the medium before passing the token.

Multiple levels of priority are available for independent and dynamic assignment

depending upon the relative class of service required for any given message. for

example, synchronous real-time voice), asynchronous (interactive), immediate

(network recovery). The allocation of priorities shall be by mutual agreement among

users of the network. Error detection and recovery mechanisms are provided to

restore network operation in the event that transmission errors or medium transients

(for example, those resulting from station insertion or removal) cause the access

method to deviate from normal operation. Detection and recovery for these cases

utilize a network monitoring function that is performed in a specific station with

back-up capability in all other stations that are attached to the ring.

3. 3 Formats and Facilities

Formats. There are two basic formats used in token rings: tokens and frames. In the

following discussion, the figures depict the formats of the fields in the sequence they

are transmitted on the medium, with the left-most bit or symbol transmitted first.

Token Format

SD AC ED

SD =Starting Delimiter (1 octet)

24

AC =Access Control (1 octet)

ED= Ending Delimiter (1 octet)

Frame Format

SD : Starting Delimiter (1 octet)

FCS

AC : Access Control (1 octet)

FC : Frame Control (1 octet) DA : Destination Address (2 or 6 octets)

INFO Information (0 or more octets) FCS :Frame Check Sequence (4 octets)

EFS End-of-Frame Sequence

SA = Source Address (2 or 6 octets)

ED : Ending Delimiter (1 octet)

FS : Frame Status (1 octet)

The frame format shall be used for transmitting both medium access control (MAC)

and logical link control (LLC) messages to the destination station. It may or may not

have an information INFO field.

ABORT -SEQUENCE

SD ED

25

This sequence shall be used for the purpose of terminating the transmission of a

frame prematurely. The abort sequence may occur any-where in the bit stream; that

is, receiving stations shall be able to detect an abort sequence even if it does not

occur on octet boundaries.

Fill. When a station is transmitting (as opposed to repeating), it shall transmit fill

preceding or following frames, tokens, or abort sequences to avoid what would

otherwise be an inactive or indeterminate transmitter state.

Fill may be either 0 or 1 bits or any combination thereof and may be any number of

bits in length, within the constraints of the token holding timer.

Field Descriptions. The following is a detailed description of the individual fields

in the tokens and frames.

Starting Delimiter (SD)

J = non-data-J

K = non-data-K

0 = binary zero

Access Control (AC)

PPP = priority bits T

R R R

token hit

26

M = monitor bit RRR reservation bits

Priority Bits. The priority bits shall indicate the priority of a token and, therefore,

which stations are allowed to use the token In a multiple-priority system, stations use

different priorities depending on the priority of the PDU to be transmitted. The eight

levels of priority increase from the lowest (000) to the highest (111) priority. For

purposes of comparing priority values, the priority shall be transmitted most

significant bit first; for example, 110 has higher priority than 011 (left-most bit

transmitted first).

Token Bit. The token bit is a 0 in a token and a 1 in a frame. When a station with a

PDU to transmit detects a token which has a priority equal to or less than the PDU to

be transmitted, it may change the token to a start-of-frame sequence and transmit the

PDU.

Monitor Bit. The monitor bit is used to prevent a token whose priority is greater than

0 or any frame from continuously circulating on the ring. If an active monitor detects

a frame or a high priority token with the monitor bit equal to 1, the frame or token is

aborted. This bit shall be transmitted as 0 in all frames and tokens. The active monitor

inspects and modifies this bit. All other stations shall repeat this bit as received.

Reservation Bits. The reservation bits allow stations with high priority PDUs to

request (in frames or tokens as they are repeated) that the next token be issued at the

requested priority. The eight levels of reservation increase from 000 to 111. For

purposes of comparing reservation values, the reservation shall be transmitted most

significant bit first; for example, 110 has higher priority than 011 (left-most. bit

transmitted first).

Frame Control (FC)

z z z z z z

27

The FC field defines the type of the frame and certain MAC and information frame

functions.

Frame-Type Bits. The frame-type hits shall indicate the type Of the frame as follows:

00;, MAC frame (contains an MAC PDU)

01 = LLC frame (contains an LLC PDU)

lx= undefined format (reserved for future use)

Medium Access Control (MAC) Frames. If the frame-type bits indicate a MAC

frame, all stations on the ring shall interpret and, based on the finite state of the

station, act on the ZZZZZZ control bits.

Logical Link Control (LLC) Frames. If the frame-type bits indicate an LLC frame,

the ZZZZZZ bits are designated as rrrYYY. The rrr bits are reserved and shall· be

transmitted as O's in all transmitted frames and ignored upon reception. The YYY bits

may be used to carry the priority (Pm) of the PDU from the s_ource LLC entity to the

target LLC entity or entities. Note that P (the priority in the access control [AC] field

of a frame) is less than or equal to Pm when the frame is transmitted onto the ring.

Destination and Source Address (DA and SA) Fields- Each frame shall contain two

address fields: the destination (station) address and the source (station) address, in that

order. Addresses may be either 2 or 6 octets in length; however, all stations of a

specific LAN shall have addresses of equal length.

Information (INFO) Field. The information field contains 0. 1, or more octets that

are intended for MAC, NMT, or LLC. Although there is no maximum length

specified for the information field, the time required to transmit a frame may be no

greater than the token holding period that has been established for the station.

28

The format of the information field is indicated in the frame-type bits of the FC field.

The frame types defined are MAC frame and LLC frame.

Frame-Check Sequence (FCS). The FCS shall be a 32-bit sequence .The FCS shall

be transmitted commencing with the coefficient of the highest term

Ending Delimiter (ED)

J = non-data-J

1 = binary one

E =error-detected bit

I I
E

K = non-data-K

I = intermediate frame bit

The transmitting station shall transmit the delimiter as shown. Receiving stations shall

consider the ending delimiter (ED) valid if the first six symbols J K 1 J K 1 are

received correctly.

Intermediate Frame Bit (I Bit). To indicate that this is an intermediate (or first)

frame of a multiple frame transmission, the I bit shall be transmitted as 1. An I bit of 0

indicates the last or only frame of the transmission.

Error-Detected Bit (E Bit). The error-detected bit (E) shall be transmitted as 0 by the

station that originates the token, abort sequence; or frame. All stations on the ring

check tokens and frames for errors (for example, FCS error, non-data symbols: see

4.2.1). The E bit of tokens and frames that are repeated shall be set to 1 when a frame

with error is detected; otherwise theE bit is repeated as received.

29

Frame Status (FS).

A= address-recognized bits

r = reserved bits

C = frame-copied bits

reserved bits. These bits are reserved for future standardization. They shall be

transmitted as O's; however, their value shall be ignored by the receivers.

Address-Recognized (A) Bits and Frame-Copied (C) Bits. The A and C bits shall

be transmitted as 0 by the station originating the frame. If another station recognizes

the destination address as its own address or relevant group address, it shall set the A

bits to 1. If it copies the frame (into its receive buffer), it shall also set the C bits to 1.

This allows the originating station to differentiate among three conditions:

1. Station non-existent/non-active on this ring

2. Station exists but frame not copied

3. Frame copied

Claim Token MAC Frame (CL_TK). When a station determines that there is' no

active monitor operating on the ring, it shall send claim token frames and inspect the

source address of the claim token MAC frames it receives. If the SA matches its own

(MA) address it has claimed the token and shall enter active monitor mode and

generate a new token.

Duplicate Address Test MAC Frame (DAT). This frame is transmitted with DA =

MA as part of the initialization process. If the frame returns with the A bits set to 1, it

indicates that there is another station on the ring with the same address. If such an

30

event occurs, the station's network manager is notified and the station returns to

bypass state. A station that copies a DA T frame will ignore it.

Active Monitor Present MAC Frame (AMP). This frame is transmitted by the

active monitor. It shall be queued for transmission following the successful purging of

the· ring or following the expiration of the TAM. Any station that receives this frame

shall reset its TSM whose A and C bits equal 0, the TQP is reset. When timer TQP

expires, an SMP PDU shall be queued for transmission. ·

Beacon MAC Frame (BCN). This frame shall be sent as a result of serious ring

failure (for example, broken cable, jabbering station, etc). It is useful in localizing the

fault.).The immediate upstream station is part of the failure domain about which the

beacon is reporting. Therefore the address of the upstream station that was previously

recorded is included in the MAC INFO field.

Purge MAC Frame (PRG). This frame is transmitted by the active monitor. It shall

1 be transmitted following claiming the token or to perform relnitialization of the ring

following the detection of an M bit set to I or the expiration of timer TVX.

Timer, Return to Repeat (TRR). Each station shall have a timer TRR to ensure that

the station shall return to Repeat State. TRR shall have a value greater than the

maximum ring latency. The maximum ring latency consists of the signal propagation

delay around a maximum-length ring plus the sum of all station latencies.

Timer, Holding Token (THT). Each station shall have a timer THT to control the

maximum period of time the station may transmit frames after capturing a token. A

station may initiate transmission of a frame if such transmission can be completed

before timer THT expires.

Timer, Queue PDU(TQP):- Each station shall have a timer TQP for the purpose of

timing the enqueueing of an SMP PDU after reception of an AMP or SMP frame in

which the A and C bits were equal to 0. The default time-out value of TQP is 10 ins.

31

Timer, Valid Transmission (TVX). Each station shall have a timer TVX ,which is

used by the active monitor to detect the absence of valid transmissions. The time-out

value of TVX shall be the sum of the time-out value of THT plus the time-out value

ofTRR.

Timer, No Token (TNT). Each station shall have a timer TNT to recover from

various token-related error situations. TNT shall have a time-out value equal to TRR

plu~ n times THT (where n is the maximum number of stations on the ring).

Timer, Active Monitor (TAM). Each station shall have a timer TAM which is used

by the active monitor to stimulate the enqueuing of an AMP PDU for transmission.

The default time-out value of timer TAM shall be 3 s.

Timer, Standby Monitor (TSM). Each station shall have a timer TSM which is used

by the stand-by monitor(s) to assure that there is an active monitor on the ring and to

detect a continuous stream of tokens. The default time-out value of timer TSM shall

be 7 s.

Flags. Flags are used to remember the occurrence of a particular event. They shall be

set when the event occurs. The flags used are:

I Flag: A flag which is set upon receiving an ED with the I bit equal to 0.

SFS FLAG :A flag which is set upon receiving an SFS sequence.

MA Flag: A flag which is set upon receiving an SA which is equal to the station's

address.

Latency Buffer. The latency buffer serves two purposes. The first is to ensure that

there are at least 24 bits of latency in the ring. The second is to provide phase jitter

compensation. The token management is structured so that only one latency buffer

32

shall be active in a normally functioning ring and is provided by the active monitor in

the ring.

3.4 Token Ring Protocols

Frame Transmission. Access to the physical medium (the ring) is controlled by

passing a token around the ring. The token gives the downstream (receiving) station

(relative to the station passing the token) the opportunity to transmit a frame qr a

sequence of frames. Upon request for transmission of an LLC PDU or NMT PDU,

MAC prefixes the PDU with the appropriate FC, DA, and SA fields and enqueues it

to await the reception of a token that may be used for transmission.

Such a token has a priority less than or equal to the priority of the PDU(s) that is to

be sent. Upon queuing the PDU for transmission and prior to receiving a usable

token, if a frame or an unusable token is repeated on the ring, the station requests a

token of appropriate priority in the RRR bits of the repeated AC field. Upon receipt

of a usable token, it is changed to a start-of-frame sequence by setting the token bit.

At this time, the station stops repeating the incoming signal and begins transmitting

a frame. During transmission, the FCS for the frame is accumulated and appended

to the end of the information field.

Token Transmission. After transmission of the frames has been completed, the

station checks to see if the station's address has returned in the SA field, as

indicated by the MA_FLAG. If it has not been seen, the station transmits fill until

the MA _FLAG is set, at which time the station transmits a token.

Stripping. After transmission of the token, the station will remain in transmit state

until all of the frames that the station originated are removed from the ring. This is

done to avoid unnecessary recovery action that would be caused if a frame were

allowed to continuously circulate on the ring.

33

Frame Reception. Stations, while repeating the incoming signal stream, check it

for frames they should copy or act upon. If the frame-type bits indicate a MAC

frame, the control bits are interpreted by all stations on the· ring. In addition, if the

frame's DA field matches the station's individual address, relevant group address,

or broadcast address, the FC, DA. SA, INFO, and FS fields are copied into a receive

buffer and subsequently forwarded to the appropriate sublayer.

Priority Operation. The priority bits (PPP) and the reservation bits (RRR)

contained in the access control (AC) field work together in an attempt to match the

service priority of the ring to the highest priority PDU that is ready for transmission

on the ring. These values are stored in registers as Pr and Rr. The current ring

service priority is indicated by the priority bits in the AC field, which is circulated

on the ring. The priority mechanism operates in such a way that fairness (equal

access to the ring) is maintained for all stations within a priority level. This is

accomplished by having the same station that raised the ser~ice priority level of the

ring (the stacking station) return the ring to the original service priority. The priority

operation is explained as follows: When a station has a priority (a value greater than

zero) PDU (or EDU' s) ready to transmit, it requests a priority token. This is done by

changing the reservation bits (RRR) as the station repeats the AC field. If the

priority level (Pm) of the PDU that is ready for transmission is greater than the RRR

bits, the station increases the value of RRR field to the value Pm. If the value of the

ERR bits is equal to or greater than Pm, the reservation bits (RRR) are repeated

unchanged. After a station has claimed the token, the station transmits PDUs that

are at or above the present ring service priority level until it has completed

transmission of those PDUs or until the transmission of another frame could not be

completed before timer TNT expires). The priority of all of the PDUs that are

transmitted should be at the present ring service priority value. The station will then

generate a new token for transmission on the ring. If the station does not have

additional PDUs to transmit that have a priority (Pm) or does not have a reservation

request (as contained in register Rr) neither of which is greater than the present ring

service priority (as contained in register Pr), the token is transmitted with its priority

at the present ring service priority and the reservation bits RRR) at the greater of Rr

34

or Pm and no further action taken. However, if the station has a PDI ready for

transmission or a reservation request (Er), either of which is greater than the present

ring service priority, the token is generated with its priority at the greater of Pm or

Rr and its reservation bits (RRR) as 0. Since the station has raised the service

priority level of the ring, the station becomes a stacking station and, as such, st<:?res

the value of the old ring service priority as Sr and the new ring service priority as

Sx. (These values will be used later to lower the service priority of the ring when

there are no PDUs ready to transmit on the ring whose Pm is equal to or greater than

the stacked Sx.)Having become a stacking station, the station claims every token

that it receives that has a priority (PPP) equal to its highest stacked transmitted

priority (Sx) in order to examine the RRR bits of the AC field for the purpose of

raising, maintaining, or lowering the service priority of the ring. The new token is

transmitted with its PPP bits equal to the value of the reservation bits (RRR) but no

lower than the value of the highest stacked received priority (Sr), which was the

original ring priority service level. If the value of the new ring service priority (PPP

equal toRr) is greater than Sr the HER bits are transmitted as 0, the old ring service

priority contained in Sx is replaced with a new value Sx equal to Rr , and the

station continues its role as a stacking station. However, if the Rr value is equai to

or less than the value of the highest stacked received priority (Sr) the new token is

transmitted at a priority value of the Sr, both Sx and Sr are removed (popped) from

the stack, and if no other values of Sx and Sr are stacked, the station discontinues its

role as a stacking station. The frames that are transmitted to initialize the ring have a

PPP field that is equal to 0. The receipt of a PPP field whose value is less than a

stacked Sx will cause any Sx or Sr values that may be stacked to be cleared in all

stations on the ring.

Beaconing and Neighbor Notification. When a hard failure is detected in a token

ring, its cause must be isolated to the proper failure domain so that recovery actions

can take place. The failure domain consists of

1. the station reporting the failure (the beaconing station)

2. the station upstream of the beaconing station

3. the ring medium between them

35

To do accurate problem determination, all elements of the failure domain must be

known at the time that the failure is detected. This implies that at any given time, each

station should know the identity of its upstream neighbor station. A process for

obtaining this identity known as Neighbor Notification is described below. Neighbor

Notification has its basis in the address~recognized and frame-copied bits(the A and

C bits) of the FS field. These bits are transmitted as O's . If a station recognizes the

destination address of the frame as one of its own , the station sets the A bits to I in

the passing frame. If a station also copies the frame, then the C bits are also set t"o a

1. When a frame is broadcast to all stations on a ring, the first station downstream of

the broadcaster will see that the A and C bits are all O's. Since a broadcast frame will

have its destination address recognized by all of the stations on the ring, the first

station downstream will, in particular, set the A bits to 1. All stations further

downstream will, therefore. not see the A and C bits as all O's. This process continues

in a circular, daisy-chained fashion to let eves' station know the identity of its

upstream neighbor The monitor begins Neighbor Notification by broadcasting the

active monitor present (AMP) MAC frame. The station immediately downstream

from it takes the following actions:

l.resets its timer TSM, based on seeing the AMP value in the FC field;

2. if possible, copies the broadcast AMP MAC frame and stores the up

streamstation's identity in an upstream neighbor's address (UNA) memory location;

3. sets the A bits (and C bits if the frame was copied) of the passing frame to l's

4. at a suitable transmit opportunity, broadcasts a similar standby monitor present

(SMP) MAC frame.

One by one, each station receives an SMP frame with the A and C bits set to O's,

stores its UNA, and continues the process by broadcasting such a frame itself. Since

the AMP frame must pass each station on a regular basis (the active monitor present

MAC frame sent by the monitor), the continuous transmission of tokens onto a ring

can be detected. In addition to the timer TAM in the active monitor, each standby

36

station has a timer TSM that is reset each time an AMP MAC frame passes. If timer

TSM expires, that standby monitor station begins transmitting claim token frames.

From the received symbols MAC detects various types of input data, such as tokens,

MAC frames, and LLC information frames. In turn, MAC stores values, sets flags,

and performs certain internal actions as well as generating tokens, frames, or fill, or

flipping bits and delivering them to the PHY layer in the form of a serial stream of

the 0, 1, J. and K symbols. For the purpose of accumulating the FCS and storing the

contents of a frame, J and K symbols that are not part of the SD or ED shall be

interpreted as 1 and 0 bits, respectively.

3.5 Carving out the design of token ring network

The token ring Network consists of the following distinguished components.

Token Ring as a whole, stations, transmission cable, transmission control unit ,

~edium interface cable , medium interface connector , network management and

network administrator .

37

AGGREGATION:- Considering Token Ring Network as a whole, the stations are

its main components . For a network the number of stations may be at least two or

more but less than a fixed number . Corresponding to a station there is a medium

interface cable and TCU (Transmission control unit). Therefore they will be shown

as part of station class. The medium interface cable consists of medium interface

connector, tcu-mic-cable and physical-layer-mic-cable. The working of station is

layered in physical-layer, macSublayer and nmtElement. The aggregation hierarchy

c~m be shown as follows

[2, N]I TOKEN RING

I
[2, N]

I
T

I
STATION

I
TRANSMISSION

CABLE

I I I I I I

I~ACI~I PHYSICAL I EJ NMT- EJ ELEMENT

I I I
TCU-MIC- MEDIUM PHY-MIC-
CABLE INTERFACE CABLE

CONNECTOR

AGGREGATION HIERARCHY OF TOKEN RING

INHERITANCE :- Token and frame are two important components which are
transmitted over the network. In the access-control if the token-bit is zero it means it

38

is token otherwise it is a frame. So the token bit is chosen as a basis of specialization.
A generic-token is the abstract class from which token and frame classes are derived
using token bit as a basis of specialization . There is another sequence termed as
abort-sequence consisting of start-delimiter and ending-delimiter only . An abstract
class called as generic-sequence is created for the purpose of specification reuse.
There are different types of frames known as mac-frame and llc-frame These are
differentiated on the basis of frame-type-bits. So it is used as a basis of specialization.
The specialization principle of attribute domain restriction is applied here .The
inheritance tree created for the token and frames is as shown below.

GENERIC-SEQUENCE

ABORT-SEQUENCE GENERIC-TOKEN

TOKEN FRAME

I
MAC-FRAME LLC-FRAME

Identifying the attributes and behavior:- The abort-sequence , token and frame all

contain the start-delimiter and ending-delimiter . The start-delimiter and ending­

delimiter are sequence of bits . They have no actual instance and they are not

independently instantiated . So they are treated as capsules . Further access-control is

also not instantiated independently so it is also treated as capsule . Generic-sequence

is developed as an abstract class for the purpose of specification reuse. This class will

have the functionality of checking start and ending-delimiter Another abstract class

called generic-token class is required to be created as the capsule access-control is

added providing the access and set functions .The frame class needs to have source

and destination address, frame-check-sequence and info part. In addition it will have

39

frame-control and frame-status. The class abort-sequence IS meant to stop the

transmission so it will have a function abort-transmission.

NMT
LLC N M

LOGICAL LINK CONTROL E A
T N
w A

MAC 0 G
MEDIUM ACCESS CONTROL R E

K M
PHY E

N
PHYSICAL T

PHY /MIC CABLE
MEDIUM

INTERFACE MIC Medium Interface Connector

CABLE

<1111 TCU I MIC CABLE

,
TCU

TRUNK CABLE TRUNK COUPLING UNIT RUNK CABLE

Layering:- The .functioning of the station class is decomposed into layers viz.

Physical-layer, mac-sublayer, llc-sublayer and nmtElement. Access and transmiss"ion

is controlled by the mac-sublayer.These layers are arranged on the basis of layer

principles i.e. lower layers provide services to upper layers- through service access

points . The arrangement of layers is as shown in the figure .

40

The logical link control layer accesses services from medium access control sublayer

in order to services to higher layers which are not shown in the figure . In this

dissertation layering is kept limited upto the llc sublayer . Medium access control

sublayer accesses services provided by physical layer and interacts with nmtElement

class for proper network management . It provides all information like status changes

to nmtElement . Physical layer also interacts with nmtElement so that functions like

insertion or removal of a station can be controlled automatically by network

mapagement without human intervention.

SERVICES :- The following are the interactions between logical link control layer

and medium access control sublayer

MA-DATA-request.

MA-DAT A-indication

MA-DATA-confirmation

MA-DA TA-request:- This primitive is used by llc-sublayer to request macSublayer to

send a service data unit to another llc-sublayer.

MA-DATA-indication :-It will be used by macSublayer to send a macSublayer frame

to llc-sublayer to indicate the arrival of an llc frame at the local macSublayer entity .

MA-DATA-confirmation :- This primitive is used to provide an appropriate response

to the llc-sublayer signifying the success or failure of the request

PHY to MAC Service. The services provided by the PHY layer allow the local MAC

sublayer entity to exchange MAC data units with peer MAC sub-layer entities.

Interactions. The following primitives are defined for the MAC sub-layer to request

service from the PHY layer:

PH-DATA-request

PH-DATA-indication

PH-DATA-confirmation

41

PH-DATA-request. This primitive defines the transfer of data from a local MAC

sublayer entity to the station's PHY layer. The MAC sublayer shall send the PHY

layer a PH-DATA-request every time the MAC sublayer has a symbol to output.

PH-DATA-indication. This primitive defines the transfer of data from the PHY layer

to the MAC sublayer entity. The PHY layer shall use this primitive to send the MAC

sublayer a PH-DATA-indication every time the PHY layer decodes a symbol.

PH-DA TA.confirmation. This primitive will be used by physical layer to provide

an appropriate response to the MAC sublayer PH-DATA-request signifying the

acceptance of a symbol specified by the PH-DATA-request and willingness to accept

another symbol.

MAC-NMT Services:- This interface is used by NMT to monitor and control

operations of the MAC sub layer. The following primitives are defined for the NMT to

request service from the MACsublayer.

MA-INITIALIZE-PROTOCOL-request

MA-INITIALIZE-PROTOCOL-confirmation

MA-CONTROL-request

MA-STATUS-indication

MA-NMT-DATA-request

MA-NMT-DATA-indication

MA-NMT-DATA-confirmation.

MA-INITIALIZE-PROTOCOL-reguest:-This primitive is used by NMT to reset

the MAC sublayer and optionally to change the operational parameters of the MAC

sublayer.

42

MA-INITIALIZE-PROTOCOL-confirmation:-This primitive is used by the MAC

sublayer to inform NMT that the MA-INITIALIZE-PROTOCOL-request primitive is

complete.

MA-ST ATUS-indication:-This primitive is used by the MAC sublayer to inform

NMT of errors and significant status changes.

MA-NMT-DATA-reguest:-This primitive shall be generated by the NMT entity

whenever data must be transferred to one or more NMT entities.

MA-NMT -DATA-indication:-This primitive defines the transfer of data from the

MAC sublayer entity.The MA-NMT-DATA-indication primitive shall be generated

by the MAC sublayer entity to the NMT entity to indicate the arrival of a MAC fr(\me

at the local MAC sublayer entity.

MA-NMT -DATA-confirmation:-This primitive shall provide an appropriate

response to the NMT's MA-NMT-DATA-request primitive signifying the success or

failure of the request.

PHY-NMT SERVICES :-The following primitives are defined for the NMT to

request services from the physical layer.

PH -CONTROL-request

PH-STATUS-indication

PH-CONTROL-request :- This primitive shall be generated by NMT to request the

physical layer to insert or remove itself to/from the ring.

PH-STATUS-indication:-This primitive is used by the physic:allayer to inform NMT

of errors and significant status changes.

TRUNK-CABLE:-The function of the trunk cable medium is to transport data signals

between successive stations of a baseband ring local area network. This

communication medium consists of a set of TCU's interconnected sequentially by

43

trunk cable links. Each TCU is connected to a TCU/MIC cable to which a station may

be connected . The relationship between these embodiments and the LAN model is as

shown in the figure. Repeaters may be used where required to extend the length of a

trunk link beyond limits imposed by normal signal degradation due to link

impairments. These repeaters serve to restore the amplitude,shape and timing of

signals passing through them. The repeater's regenerative functions have the same

characteristics as a repeating station on the ring and must be included in the count of

the number of stations supported by the ring.

Ring Access Control:- Station insertion into the ring is controlled by the station. The

mechan!sm for effecting the insertion or bypass of the station resides in the TCU. The

staion exercises control of the mechanism via the media interface cable .

SERVICE I

BASIS I =OPERATIVE-LAYER

I I
PHYSICAL EJ ~ EJ

44

0
I

INDICATION

PHYSICAL

CONTROL­
REQUEST

I

PHYSICAL

I
CONFIRMATION

NMT

I

c:0J
I
I

STATUS-INDICATION

0
I

I I
DATA- PROTOCOL- CONTROL
REQUEST REQUEST -REQUEST

45

I

I
MAC

I

I
I I

I LLC J PHYSICAL I l
l

I J
INDICATION

II
CONFIRMATI I INDICATION
ON

I
PROTOCOL
CONFIRMATION

I NMT I
I

STATUS-
INDICATION

LLC

EJ
I

REQUEST

I
CONFIRMATION

NMT' J

l
INDICATION

The services are classified on the basis of operative layer , receiving layer and the type

of services . The inheritance tree of service class is shown. A service abstract class is

created which has the common attributes and functions of all services . Choosing

operative layer as the basis of specialisation. It is derived into four subclasses viz.

Physical ,mac,nmtElement and llcSublayer . Specialisation is done using the

46

specialisation principle of attribute domain restriction . as in case of each of these

sublayers domain of the attribute operative layer has been restricted . These service

classes are further derived into other services based on the value of the attribute

receiving layer . This attribute specifies the layer using that service . In the inheritance

tree downward derivation is again done on the basis of service-type .

Identifying attributes and functions of the layerS__!_: The mac sublayer is

responsible for controlling access to the medium . so it needs certain timer by virtue

of which it may control the access. These timers are timer-holding-token ,timer­

return-to-repeat, timer-valid-transmission, timer-no-token, timer-queue-PDU, timer­

standby-monitor and timer-active-monitor. These attributes have certain fixed values

when the timers are reset. The mac-sublayer informs the nmtElement success or

failure of the requests made by it so it needs to have an attribute status . The layer has

to check frame condition and its report has to be sent to nmt so another attribute

required is status-report. This layer needs the functions to check frame condition ,

reset timers TNT and TSM , enqueue the SMP-PDU, check for presence of active

monitor , duplicate address , transmit sdu, append various fields to a frame , hold and

regenerate the token on the ring . The physical layer carries out its operation with the

aid of trunk-coupling-unit and medium-interface-cable . The trunk-coupling-unit has

two state repeat and transmit so it has an attribute state which can have the values

repeat and transmit and corresponding functions. The medium-interface-cable consists

of physical-mic-cable, tcu-mic-cable and medium interface connector. The

nmtElement class has to take actions in error conditions so it has parameters for

different error conditions like beacon-state, active-monitor-not-present ,duplication­

of-address ,insertion and removal of station from the ring and corresponding

functions.

47

CHAPTER4

DESIGN IN ASN.l

-- The following is the definition of the aggregation modeling construct

AGGREGATION
{

}

&aggregateClass
&componentClass
&componentM ul ti plici ty
&aggregationLabel

WITH SYNTAX
{

}

AGGREGATE
WITH MULTIPLICITY
HAS-AS-A-PART
COMPONENT
WITH MULTIPLICITY
IDENTIFIED BY

stationPhysical_layer
{

}

AGGREGATE
HAS-AS-A-PART
COMPONENT
IDENTIFIED BY

CLASS

OBJECT-CLASS
OBJECT-CLASS
Multiplicity
OBJECT IDENTIFIER UNIQUE

&aggreagteCJass
&aggreagteMultiplicity

&componentClass
&componentMultiplicity
&aggreagtionLabel

AGGREGATION::=

station

physical _layer
stationPhysical_layerLbl

-- Physical Layer is a component of station class

stationLlc _layer
{

}

AGGREGATE
HAS-AS-A-PART
COMPONENT
IDENTIFIED BY

-- Llc is a component of station class

stationMac _sub layer
{

AGGREGATE
HAS-AS-A-PART

AGGREGATION::=

station

llc_layer
stationLlc _layerLbl

AGGREGATION 00

station

48

}

COMPONENT
IDENTIFIED BY

mac_ sub layer
stationMac _ sublayerLbl

-- Mac Layer is a component class of station class

stationNmt element
{

}

AGGREGATE
HAS-AS-A-PART
COMPONENT
IDENTIFIED BY

AGGREGATION -

station

nmt element
stationNmt elementLbl

-- Nmt_element is the network manager and controls the overall operation

stationTcu
{

}

AGGREGATE
HAS-AS-A-PART
COMPONENT
IDENTIFIED BY

AGGREGATION ..

station

tcu
stationTcuLbl

-- Tcu stands for Transmission control unit

stationMic
{

}

AGGREGATE
HAS-AS-A-PART
COMPONENT
IDENTIFIED BY

AGGREGATION ..

station

mlC

stationMicLbl

-- Mic stands for medium interface cable

tokenringStation
{

}

AGGREGATE
HAS-AS-A-PART
COMPONENT
WITH MULTIPLICITY

IDENTIFIED BY

AGGREGATION ..

tokenring

station

}

{
the Range With :
{ lowerBound { constant : 2};

upper Bound { ade : {
numberOfStationsLbl} }
}

tokenringStationLbl

-- Token Ring contains at least two stations but the maximum number of stations
-- depends on the attribute numberofStations.

49

micMediuminterfaceConnector
{

}

AGGREGATE
HAS-AS-A-PART
COMPONENT
IDENTIFIED BY

micPhy/micCable
{

}

AGGREGATE
HAS-AS-A-PART.

COMPONENT
IDENTIFIED BY

micTcu/micCable
{

}

AGGREGATE
HAS-AS-A-PART
COMPONENT
IDENTIFIED BY

AGGREAGTION ::=

mic

mediuminterfaceConnector
micMedsiuminterfaceConnectorLbl

AGGREGATION ..

m1c

phy/micCable
micPhy/micCableLbl

AGGREGATION ::=

m1c

tcu/micCable
micTcu/micCableLbl

-- The following is the definition of the capsule modeling construct

CAPSULE :: = CLASS
{

}

&Attributes
&Functions
&Capsules

&capsuleLabel

WITH SYNTAX
{

}

[ATTRIBUTES
[FUNCTIONS
[CAPSULES
IDENTIFIED BY

start-delimiter
{

ATTRIBUTES
{

ATTRIBUTE OPTIONAL
FUNCTION OPTIONAL
CAPSULE OPTIONAL

OBJECT IDENTIFIER UNIQUE

&Attributes
&Functions
&Capsules
&capsuleLabel

CAPSULE ..

symbol_J _one,

50

]
]
]

}

}
IDENTIFIED BY

access-control
{

}

ATTRIBUTES
{

}
IDENTIFIED BY

ending -delimiter
{

}

ATTRIBUTES
{

}
IDENTIFIED BY

symbol_K_one,
symbol_ zero_ one,
symbol_J_two,
symbol_K_two,
symbol_ zero_ two,
sym bo 1_ zero_ three,
symbol_zero_four

start-delimiterLbl

CAPSULE 00

priority,
token-bit,
monitor-bit,
reserved-priority

access-controlLbl

CAPSULE Oo

symbol-J-one,
symbol-K-one,
symbol-one-one,
symbol-J-two,
symbol-K-two,

symbol-one-two,
symbol-I,
symbol-E

ending-delimiterLbl

--generic sequence is the abstract class from which abort-sequence class is derived

genenc-sequence OBJECT-CLASS 00

{
MANDATORY CAPSULES

{

}
FUNCTIONS {

.. 51

start-delimiter,
ending-delimiter,

}
IDENTIFIED BY

}

check-start-delimiter,-- checks starting delimiter
check -ending -delimiter,

generic-sequenceLbl

abort -sequence OBJECT-CLASS ..
{

SPECIALIZES-FROM

{{

}}

superclass generic-sequenceLbl,
basisOfSpecialization
{ simplePredicate :

{functionAdded: abort-
transmissionLbl }

}

IDENTIFIED BY abort-sequenceLbl }

--abort-sequence is the class used for aborting the transmission

generic-token OBJECT -CLASS
{

SPECIALIZES-FROM

{{
superclass generic-sequenceLbl,

FUNCTIONS
{

}

IDENTIFIED BY
}

basisOfSpecialization
{ simplePredicate :

}

}}

get-priority,
get-token-bit,
get-monitor-bit,
get-reserved-priority,
set-priority,
set-token-bit,
set -monitor-bit,
set -reserved-priority

generic-tokenLbl

-- generic token is also an abstract class
-- get function returns the value of that attribute

52

{ capsuleAdded :
access-controlLbl}

-- set function modifies the value of that attribute

token
{

the

} .

frame
{

OBJECT -CLASS

SPECIALIZES-FROM

{{
superclass generic-tokenLbl,
basisOfSpecialization
{ simplePredicate :
{ attributeDomainRestricted :

}
}

{

}

newValueOf:
{attribute

IS

value
}

token-bit,
equalTo,

0

} }-token is derived from the generic-token class on

}-token-bit attribute with 0 value
IDENTIFIED BY tokenLbl

OBJECT-CLASS ..

SPECIALIZES-FROM
{{

ATTRIBUTES
{

}

}}

superclass generic-tokenLbl,
basisOfSpecialization
{ simplePredicate :
{ attributeDomainRestricted :

{ newValueOf:
{ attribute token-bit,

IS equalTo,
value 1

}
}

}}

destination-address,
source-address,
frame-check -sequence,
info OPTIONAL

53

}

CAPSULES
{

}
IDENTIFIED BY

frame-control,
frame-status

frameLbl

-- frame class is also derived from generic-token class with token-bit = 1

frameLbl : :=frame.&objectClassLabel

frame-control CAPSULE
{

}

ATTRIBUTES
{

}
IDENTIFIED BY

frame-type-bits,
control-type-bits,

frame-controlLbl

mac frame OBJECT-CLASS ..
{

}

SPECIALIZES-FROM

{{

}}

superclass frameLbl,
basisOfSpecialization
{ simplePredicate :
{ attributeDomainRestricted:
{newValueOf: ·
{attribute frame-type-bits,

1s equalTo,
value 0

}
}}}

-- macframe is derived from the frame class with frame-type-bit =0

llcframe OBJECT -CLASS
{

SPECIALIZES-FROM

{{
superclass frameLbl,
basisOfSpecialization
{ simplePredicate :
{ attributeDomainRestricted:
{newValueOf:

54

{attribute
IS

frame-type-bits,
equalTo,

}}
}

value
}
}}}

1

-- llcframe is derived from the frame class with frame-type-bit= 1

OBJECT-CLASS
{

CLASS

&SpecializesFrom Specialization OPTIONAL,
&Attributes ATTRJBUTE OPTIONAL,
&Functions FUNCTION OPTIONAL,
&MandatoryCapsules CAPSULE OPTIONAL,
&OptionalCapsules CAPSULE OPTIONAL,
&ObjectClassLabel OBJECT IDENTIFIER UNIQUE

}
WITH SYNTAX
{

[SPECIALIZES-FROM &Specialization
[ATTRIBUTES &Attributes
[FUNCTIONS &Functions
[MANDATORY CAPSULES &MandatoryCapsules
[OPTIONAL CAPSULES &OptionalCapsules
IDENTIFIED BY &objectClassLabel

}
--The following is the definition of the attribute modelling construct

ATTRIBUTE
{

}

&Attribute Type,
&attributeDomain
&attributeLabel

WITH SYNTAX
{

}

A TTRJBUTE-TYPE
[ATTRIBUTE-DOMAIN
IDENTIFIED BY

CLASS

Domain{ &Attribute Type }OPTIONAL,
OBJECT IDENTIFIER UNIQUE

&Attribute Type
&attributeDomain]
&attributeLabel

--The following is the definition of the function modelling construct

FUNCTION
{

&Arguments
&Results
&Exceptions

55

CLASS

ARGUMENT
RESULT
EXCEPTION

OPTIONAL,
OPTIONAL,
OPTIONAL,

&Specification

&functionLabel
}
WITH SYNTAX
{

}

[ARGUMENTS
[RESULTS
[EXCEPTIONS
[SPECIFI CATION
IDENTIFIED BY

SET OF SEQUENCE OF
formalSpecification OPTIONAL,
OBJECT IDENTIFIER UNIQUE

&Arguments
&Results
&Exceptions
&Specification
&functionLabel

]
]
]

-- The following is the definition of the argument modelling construct

ARGUMENT
{

}

&ArgumentType,
&argumentDomain
&argumentLabel

Wr:I'H SYNTAX
{

}

ARGUMENT-TYPE
[ARGUMENT-DOMAIN
IDENTIFIED BY

CLASS

Domain {&Argument Type}
OBJECT IDENTIFIER UNIQUE

&Argument Type
&argumentDomain
argumentLabel

--The following is the definition of the result modelling construct

RESULT
{

}
WITH
{

}

&Result Type,
&ResultDomain
&resultLabel

SYNTAX

RESULT-TYPE
[RESULT-DOMAIN
IDENTIFIED BY

CLASS

Domain {&Result Type}
OBJECT IDENTIFIER UNIQUE

&Result Type
&ResultDomain
&resultLabel

--The following is the definition ofthe exception modelling construct
EXCEPTION 0 0 CLASS
{

56

OPTIONAL &ExceptionParam Type
&exceptionParamDomain
&exceptionLabel

Domain { &ExceptionParam Type}
OBJECT IDENTIFIER UNIQUE

}
WITH SYNTAX
{
[EXCEPTION-PARAMETER-TYPE
[EXCEPTION-PARAMTETER-DOMAIN
IDENTIFIED BY

&ExceptionParam Type
&exceptionParamDomain
&exceptionLabel.

} .

Bit INTEGER(O .. l)

symbol-J-one
{

}

ATTRIBUTE-TYPE
IDENTIFIED BY

ATTRIBUTE ::=

Bit,
symbol-J-oneLbl

symbol-J-oneLbl ::= symbol-J-one.&objectClassLabel

symbol-K-one
{

}

ATTRIBUTE-TYPE
IDENTIFIED BY

ATTRIBUTE ::=

Bit,
symbol-K-oneLbl

symbol-K-oneLbl ::=symbol-K-one.&objectClassLabel

symbol-zero-one
{

}

ATTRIBUTE-TYPE
IDENTIFIED BY

ATTRIBUTE ::=

Bit,
symbol-zero-oneLbl

symbol-zero-oneLbl : := symbol-zero-one.&objectClassLabel

symbol-J-two
{

}

ATTRIBUTE-TYPE
IDENTIFIED BY

ATTRIBUTE ::=

Bit,
symbol-J-twoLbl

symbol-J-twoLbl ::= symbol-J-two.&objectClassLabel

symbol-K-two ATTRIBUTE ::=
{

ATTRIBUTE-TYPE Bit,

57

]

IDENTIFIED BY symbol-K-twoLbl
}

symbol-K-twoLbl ::= symbol-K-two.&objectClassLabel

symbol-zero-two
{

}

ATTRIBUTE-TYPE
IDENTIFIED BY

ATTRIBUTE ::=

Bit,
symbol-zero-twoLbl

symbol-zero-twoLbl : := symbol-zero-two.&objectClassLabel

symbol-zero-three
{

}

ATTRIBUTE-TYPE
IDENTIFIED BY

ATTRIBUTE ::=

Bit,
symbol-zero-threeLbl

symbol-zero-threeLbl : := symbol-zero-three.&obj ectClassLabel

symbol-zero-four
{

}

ATTRIBUTE-TYPE
IDENTIFIED BY

ATTRIBUTE ::=

Bit,
symbol-zero-fourLbl

symbol-zero-fourLbl ::= symbol-zero-four.&objectClassLabel

Priority

priority
{

}

ATTRIBUTE-TYPE
IDENTIFIED BY

ENUMERATED{0,1,2,3,4,5,6,7}

ATTRIBUTE ::=

Priority,
priorityLbl

priorityLbl : :=pri01;ity.&objectClassLabel

token-bit ATTRIBUTE ::=
{

ATTRIBUTE-TYPE
IDENTIFIED BY

Bit,
token-bitLbl

} token-bitLbl .. token-bit.&objectClassLabel

monitor-bit ATTRIBUTE ::=
{

ATTRIBUTE-TYPE Bit,

58

IDENTIFIED BY monitor-bitLbl
}
monitor-bitLbl: := monitor-bit.&objectClassLabel

reserved-priority
{

}

ATTRIBUTE-TYPE
IDENTIFIED BY

ATTRIBUTE ::=

Priority,
reserved-priorityLbl

reserved-priority Lbl ::=reserved-priority .&obj ectClassLabel

symbol-one-one
{

}

ATTRIBUTE-TYPE
IDENTIFIED BY

ATTRIBUTE ::=

Bit,
symbol-one-oneLbl

symbol-one-oneLbl : := symbol-one-one.&objectClassLabel

symbol-one-two
{

} .

ATTRIBUTE-TYPE
IDENTIFIED BY

ATTRIBUTE ::=

Bit,
symbol-one-twoLbl

symbol-one-twoLbl : := symbol-one-two.&objectClassLabel

symbol-!
{

}

ATTRIBUTE-TYPE
IDENTIFIED BY

ATTRIBUTE ::=

Bit,
symbol-ILbl

symbol-ILbl ::= symbol-I.&objectClassLabel

symbol-E
{

}

ATTRIBUTE-TYPE
IDENTIFIED BY

ATTRIBUTE ::=

Bit,
symbol-ELbl

symbol-ELbl ::= symbol-E.&objectClassLabel

source-address
{

}

ATTRIBUTE-TYPE
IDENTIFIED BY

source-addressLbl

destination-address

ATTRIBUTE ::=

Address,
source-addressLbl

source-address. &o bj ectClassLabel

ATTRIBUTE ::=

59

{
ATTRIBUTE-TYPE
IDENTIFIED BY

}
destination-addressLbl

info
{

} .

infoLbl

ATTRIBUTE-TYPE
IDENTIFIED BY

INFO
STRING(SIZE(NUMBER))
NUMBER

Frame-check -sequence
{

ATTRIBUTE-TYPE
IDENTIFIED BY

}
frame-check -sequenceL bl

frame-type-bits
{

ATTRIBUTE-TYPE
IDENTIFIED BY

}
frame-type-bitsLbl

control-type-bits
{

ATTRIBUTE-TYPE
IDENTIFIED BY

}
control-type-bitsLbl

check -start-delimiter
{

ARGUMENTS
RESULTS
IDENTIFIED BY

}
check-start-delimiterLbl

start -delimiter

-..

-..

-..

-..

Address,
destination-addressLbl

destination -address .&o bj ectClassLabel

ATTRIBUTE ::=

INFO,
infoLbl

info .&obj ectClassLabel

SEQUENCE OF OCTET

ENUMERATED {2,6}

ATTRIBUTE : :=

INTEGER32,
frame-check -sequenceL bl

frame-check -sequence. &o bj ectClassLabel

ATTRIBUTE ::=

Bit,
frame-type-bitsLbl

frame-type-bits.&objectClassLabel

ATTRIBUTE ::=

Bit,
control-type-bitsLbl

control-type-bits.&obj ectClassLabel

FUNCTION ::=

start-delimiter
result
check-start-delimiterLbl

check -start -delimiter. &o bj ectClassLabel

ARGUMENT : :=

60

{
ARGUMENT-TYPE
IDENTIFIED BY

}
start-delimiterLbl

result
{

RESULT-TYPE
IDENTIFIED BY

}
resultLbl

check -ending -delimiter
{

ARGUMENTS
RESULTS
IDENTIFIED BY

}
check-ending-delimiterLbl

ending -delimiter
{

ARGUMENT-TYPE
IDENTIFIED BY

}
ending -delimiter L b 1

get-priority
{

RESULTS
IDENTIFIED BY

}
get-priorityLbl

get.:.token-bit
{

RESULTS
IDENTIFIED BY

}
get-token-bitLbl

token-bit
{

RESULT-TYPE
IDENTIFIED BY

}
token-bitLbl

-
00

-
00

-
00

-
00

-
00

-
00

-
00

CAPSULE,
start-delimiterLbl

start -delimiter o&o bj ectClassLabel

RESULT

Bit,
resultLbl

result.&objectClassLabel

FUNCTION ::=

ending-delimiter
result
check-ending-delimiterLbl

check -ending-delimiter o&o bj ectClassLabel

ARGUMENT::=

CAPSULE,
ending-delimiterLbl

ending -delimiter 0 &o bj ectClassLabel

FUNCTION 00

priority,
get-priorityLbl

getpriorityo&objectClass~abel

FUNCTION 00

token-bit,
get-token-bitLbl

get-token-bit.&objectClassLabel

RESULT

Bit,
token-bitLbl

token-bit.&objectClassLabel

61

get-monitor-bit
{

RESULTS
IDENTIFIED BY

}
get-monitor-bitLbl

monitor-bit
{

RESULT-TYPE
IDENTIFIED BY

}
monitor-bitLbl

get-reserved-priority
{

RESULTS
IDENTIFIED BY

}
get-reserved-priorityLbl

reserved-priority
{

RESULT-TYPE
IDENTIFIED BY

}
reserved-priorityLbl

set-priority
{

ARGUMENTS
RESULTS
IDENTIFIED BY

}
set-priorityLbl

priority
{

ARGUMENT-TYPE
IDENTIFIED BY

}
priorityLbl

priority
{

RESULT-TYPE
IDENTIFIED BY

-

-..

-..

-..

-..

-..

FUNCTION

monitor-bit,
get-monitor-bitLbl

get-monitor-bit.&objectClassLabel

RESULT

Bit,
monitor-bitLbl

monitor-bit.&objectClassLabel

FUNCTION ::=

reserved-priority,
get-reserved-priorityLbl

get-reserved-priority.&o~jectClassLabel

RESULT

Priority,
reserved-priorityLbl

reserved -priority .&objectClassLabel

FUNCTION ..

priority,
priority,
set-priorityLbl

setpriority .&o bj ectClassLabel

ARGUMENT::=

Priority,
priorityLbl

priority.&objectClassLabel

RESULT

Priority,
priorityLbl

62

}
priorityLbl

set-monitor-bit
{

} 0

ARGUMENTS
RESULTS
IDENTIFIED BY

set-monitor-bitLbl

monitor-bit
{

ARGUMENT-TYPE
IDENTIFIED BY

}
monitor-bitLbl

set-reserved-priority
{

}

ARGUMENT
RESULTS
IDENTIFIED BY

set-reserved-priorityLbl

reserved-priority
{ 0

}

ARGUMENT-TYPE
IDENTIFIED BY

reserved-priorityLbl

frame-status
{

}

ATTRIBUTES
{

}
0 IDENTIFIED BY

priority o&o bj ectClassLabel

FUNCTION ..

monitor-bit,
monitor-bit,
set -monitor-bitLbl

set-monitor-bit. &o bj ectClassLabel

ARGUMENT::=

Bit,
monitor-bitLbl

monitor-bit.&objectClassLabel

FUNCTION ::=

reserved-priority,
reserved-priority,
set-reserved-priorityLbl

set -reserved-priority o&obj ectClassLabel

ARGUMENT : :=

Priority,
reserved-priorityLbl

reserved-priority o&o bj ectClassLabel

CAPSULE

first-A-bit,
first -C-bit,
first -r-bit,
second-r-bit,
second-A-bit,
second-C-bit,
third-r-bit,
fourth-r-bit

frane-statusLbl

63

frame-statusLbl ..

first -A-bit
{

ATTRIBUTE-TYPE
IDENTIFIED BY

}
first-A-bitLbl ..

first -C-bit
{

ATTRIBUTE-TYPE
IDENTIFIED BY

}
first -C-bitLbl ..

first-r-bit
{

ATTRIBUTE-TYPE
IDENTIFIED BY

}
first-r-bitLbl ..

second-A-bit
{

ATTRIBUTE-TYPE
IDENTIFIED BY

}
second-A-bitLbl ..

second-C-bit
{

ATTRIBUTE-TYPE
IDENTIFIED BY

}
second-C-bitLbl ..

second-r-bit
{

ATTRIBUTE-TYPE
IDENTIFIED BY

}
second-r-bitLbl ..

third-r-bit

-

-

-

-

-

-

-

frame-status .&o bj ectClassLabel

ATTRIBUTE ::=

Bit,
first-A-bitLbl

first-A-bit.&objectClassLabel

ATTRIBUTE ::=

Bit,
first -C-bi tL b 1

first -C-bit. &o bj ectClassLabel

ATTRIBUTE ::=

Bit,
first-r-bitLbl

first-r-bit.&objectClassLabel

ATTRIBUTE ::=

Bit,
second-A-bitLbl

second-A-bit.&objectClassLabel

ATTRIBUTE ::=

Bit,
second-C-bitLbl

second -C-bi t.&o bj ectClassLabel

ATTRIBUTE ::=

Bit,
second-r-bitLbl

second-r-bit.&objectClassLabel

ATTRIBUTE ::=

64

{
ATTRIBUTE-TYPE
IDENTIFIED BY

}
thiid-r-bitLbl

forth-r-bit
{

ATTRIBUTE-TYPE
IDENTIFIED BY

}
fourth-r-bitLbl

Specialization
{

}

superclass
basisOfSpecialization

abort-transmission
{

}

RESULTS
IDENTIFIED BY

abort-transmissionLbl ::=

status
{

}

RESULT-TYPE
IDENTIFIED BY

statusLbl

service
{

}

ATTRIBUTES
{

-}
IDENTIFIED BY

serviceLbl

physical-LayerService

Bit,
third-r-bitLbl

third-r-bit.&objectClassLabel

ATTRIBUTE ::=

Bit,
forth-r-bitLbl

fourth-r-bit.&objectClassLabel

SEQUENCE

ObjectClassLabel,
LogicalPredicate

FUNCTION ..

status,
abort-tarnsmissionLbl

abort-transmi ssi on.&o bj ectClassLabel

RESULT

Bit,
statusLbl

status.&objectClassLabel

OBJECT-CLASS

serviceN arne,
service Type,
serviceEntity,
operativeLayer,
receivingLayer

serviceLbl

service.&objectClassLabel

OBJECT-CLASS

65

{
SPECIALIZES-FROM { {

}}

ph-data-indication
{

SPECIALIZES-FROM

IDENTIFIED BY
}
ph-data-indicationLbl ::=

ph-data-confirmation
{

SPECIALIZES-FROM

Superclass serviceLbl,
BasisOfSpecialization
{ simplePredicate:
{ attributeDomainRestricted:
{ newValueOf:
{attribute operativeLayerLbl,

1s equalTo, ·
value physical-Layer,

}}}}

OBJECT-CLASS

{{
superclass physiacal-LayerLbl,
basisOfSpecialization { compoundPredicate:

{ connectBy and,
predicates

{ simplePredicate:
{ attributeDomainRestricted:
{newValueOf:
{attribute

lS

value

}}}}
{ simplePredicate:

service Type,
equal To,
indication

{ attributeDomainRestricted:
{newValueOf:
{attribute

lS

value

}}}}

}}
ph-data-indicationLbl

receivingLayer,
equalTo,
macSublayer

ph-data-indication. &o bj ectClassLabel

OBJECT-CLASS

{{
superclass physiacal-LayerLbl,
basisOfSpecialization { compoundPredicate:

{ connectBy and,
predicates

66

IDENTIFIED BY
}
ph-data-confirmationLbl

ph-status-indication
{

}

SPECIALIZES-FROM
superclass

IDENTIFIED BY

ph- status-indication Lbl

rna-status-indication
{

{ simplePredicate:
{ attributeDomainRestricted:
{ newValueOf:
{attribute

IS

value
}}}}
{ simplePredicate:

service Type,
equal To,
confirmation

{ attributeDomainRestricted:
{ newValueOf:
{attribute

IS

value

}}

}}}}

receivingLayer,
equal To,
macSublayer

ph-data-confirmationLbl

ph-data-confirmation.&objectClassLabel

OBJECT-CLASS

{{
macSublayerLbl,
basisOfSpecialization { compoundPredicate:

{ connectBy and,
predicates

{ simplePredicate:
{ attributeDomainRestricted:
{ newValueOf:
{attribute

IS

value
}}}}
{ simplePredicate:

service Type,
equal To,
status-indication

{ attributeDomainRestricted:
{ newValueOf:
{attribute

IS

value
}}}}
}}

receivingLayer,
equal To,
nmtElement

ph- status-indication Lbl

ph- status-indication .&objectClassLabel

OBJECT -CLASS

67

}

SPECIALIZES-FROM { {
superclass rnacSublayerLbl,
basisOfSpecialization { cornpoundPredicate:

{ connectBy and,
predicates
{ sirnplePredicate:
{ attributeDornainRestricted:
{ newValueOf:
{attribute service Type,

1s equalTo,
value status-indication

}}}}
{ sirnplePredicate:
{ attributeDornainRestricted:
{new Val ueOf:
{attribute

lS

value
}}}}

}}

receivingLayer,
equal To,
nrntElernent

IDENTIFIED BY rna- status-indication Lbl

rna- status-indication Lbl rna- status-indication .&objectClassLabel

rnacSublayerService OBJECT-CLASS
{

SPECIALIZES-FROM { {

}

ph-data-request
{

Superclass serviceLbl,
BasisOfSpecialization
{ sirnplePredicate:
{ attributeDornainRestricted:
{new Val ueOf:
{attribute operativeLayerLbl,

1s equalTo,
value rnacSublayer,

}}}}
}}

OBJECT-CLASS

SPECIALIZES-FROM {{
superclass rnacSublayerLbl,
basisOfSpecialization { cornpoundPredicate:

{ connectBy and,
predicates
{ sirnplePredicate:

68

ma-nmt~data-indication

{

{ attributeDomainRestricted:
{ newValueOf:
{attribute

IS

value

service Type,
equalTo,
request

}}}}
{ simplePredicate:
{ attributeDomainRestricted:
{newValueOf:
{attribute

IS

value
}}}}

OBJECT -CLASS

receivingLayer,
equal To,
physical-Layer

SPECIALIZES-FROM {{

/

rna-data-indication
{

SPECIALIZES-FROM

superclass macSublayerLbl,
basisOfSpecialization { compoundPredicate:

{ connectBy and,
predicates
{ simplePredicate:
{ attributeDomainRestricted:
{newValueOf:
{attribute

IS

value
}}}}
{ simplePredicate:

service Type,
equalTo,
indication

{ attributeDomainRestricted:
{new Val ueOf:
{attribute

IS

value
}}}}

OBJECT-CLASS

{{

receivingLayer,
equal To,
nmtElement

superclass macSublayerLbl,
basisOfSpecialization { compoundPredicate:

{ connectBy and,
predicates
{ simplePredicate:
{ attributeDomainRestric~ed:
{ newValueOf:
{attribute

IS

69

service Type,
equalTo,

ma-nmt-data-confirmation
{

SPECIALIZES-FROM

}}
IDENTIFIED BY

} .
ma-nmt-data-confirmationLbl: :=

rna-data-confirmation
{

SPECIALIZES-FROM

value indication
}}}}
{ simplePredicate:
{ attributeDomainRestricted:
{new Val ueOf:
{attribute

IS

value
}}}}

OBJECT-CLASS

{{

receivingLayer,
equal To,
llcSublayer

superclass macSublayerLbl,
basisOfSpecialization { compoundPredicate:

{ connecti3y and,
predicates
{ simplePredicate:
{ attributeDomainRestricted:
{ newValueOf:
{attribute

IS

value
}}}}
{ simplePredicate:

service Type,
equal To,
confirmation

{ attributeDomainRestricted:
{new Val ueOf:
{attribute

IS

value
}}}}

receivingLayer,
equal To,
nmtElement

ma-nmt-data-confirmationLbl

rna-nmt -data-confirmation.&o bj ectClassLabel

OBJECT-CLASS

{{
superclass macSublayerLbl,
basisOfSpecialization { compoundPredicate:

{ connectBy and,
predicates
{ simplePredicate:
{ attributeDomainRestricted:
{ newValueOf:
{attribute service Type,

70

}}
IDENTIFIED BY

}
ma-data-confirmationLbl

IS

value

}}}}
{ simplePredicate:

equal To,
confirmation

{ attributeDomainRestricted:
{ newValueOf:
{attribute

IS

value

}}}}

receivingLayer,
equal To,
llcSublayer

ma-data-confirmationLbl

ma-data-confirmation.&objectClassLabel

rna-initialize-protocol-confirmation OBJECT-CLASS
{ SPECIALIZES-FROM { {

}}
IDENTIFIED BY

}

superclass macSublayerLbl,
basisOfSpecialization { compoundPredicate:

{ connectBy and, ·
predicates
{ simplePredicate:
{ attributeDomainRestricted:
{ newValueOf:
{attribute

IS

value

}}}}
{ simplePredicate:

service Type,
equal To,
procol-confirmation

{ attributeDomainRestricted:
{ newValueOf:
{attribute

IS

value

}}}}

receivingLayer,
equal To,
nmtElement

ma-initialize-protocol-confirmationLbl

ma-initialize-protocol-confirmationLbl
corifirmation.&o bj ectClassLabel

rna-initialize-protocol-

rna-data-request
{

SPECIALIZES-FROM

OBJECT-CLASS

{{
superclass llcSublayerLbl,
basisOfSpecialization { compoundPredicate:

{ connectBy and,

71

ma-nmt-data-request
{

SPECIALIZES-FROM

rna-initialize-protocol-request
{

SPECIALIZES-FROM

predicates
{ simplePredicate:
{ attributeDomainRestricted:
{ newValueOf:
{attribute

lS

value
}}}}
{ simplePredicate:

service Type,
equal To,
request

{ attributeDomainRestricted:
{ newValueOf:
{attribute

lS

value
}}}}

OBJECT-CLASS

{{

receivingLayer,
equal To,
macSublayer

superclass nmtElementLbl,
basisOfSpecialization { compoundPredicate:

{ connectBy and,
predicates
{ simplePredicate:
{ attributeDomainRestricted:
{newValueOf:
{attribute

lS

value
}}}}
{ simplePredicate:

service Type,
equal To,
request

{ attributeDomainRestricted:
{ newValueOf:
{attribute

lS

value
}}}}

OBJECT-CLASS

{{

receivingLayer,
equal To,
macSublayer

superclass nmtElementLbl,
basisOfSpecialization { compoundPredicate:

{ connectBy and,
predicates
{ simplePredicate:
{ attri buteDomainRestri cted:

72

}

ma:control-request
{

SPECIALIZES-FROM

}

PROTOCOL-LAYERING
{

}

&upper Protocol
&lower Protocol
&demultiplexPoint
&layeringLabel

WITH SYNTAX
{

PROTOCOL

{newValueOf:
{attribute

IS

value

}}}}
{ simplePredicate:

service Type,
equalTo,­
protocol-request

{ attributeDomainRestricted:
{ newValueOf:
{attribute

IS

value

}}}}

OBJECT-CLASS

{{

receivingLayer,
equal To,
macSublayer

superclass nmtElementLbl,
basisOfSpecialization { compoundPredicate:

{ connectBy and,
predicates
{ simplePredicate:
{ attributeDomainRestricted:
{newValueOf:
{attribute

IS

value

}}}}
{ simplePredicate:

service Type,
equal To,
contol-request

{ attributeDomainRestricted:
{newValueOf:
{attribute receivingLayer,

equal To,
macSublayer

IS

73

value
}}}}

CLASS

ProtocolLabel,
ProtocolLabel,
INTEGER OPTIONAL,
OBJECT IDENTIFIER UNIQUE

&upper Protocol

}

LAYERS-ABOVE
PROTOCOL
[DEMULTIPLEX POINT
IDENTIFIED BY

llcSublayer-macSublayer
{

}

PROTOCOL
LAYERS-ABOVE
PROTOCOL
IDENTIFIED BY

llcSublayer-macSublayerLbl 0 0

macSublayero&objectClassLabel

macSublayer-physicalLayer
{

}

PROTOCOL
LAYERS-ABOVE
PROTOCOL
IDENTIFIED BY

macSublayer-physicalLayerLbl
physicalLayero&objectClassLabel

nmtElement-physicalLayer
{

}

PROTOCOL
LAYERS-ABOVE
PROTOCOL
IDENTIFIED BY

nmtElement-physicalLayerLbl
physicalLayer o&o bj ectClassLabel

nmtElement-macSublayer
{ 0

}

PROTOCOL
LAYERS-ABOVE
PROTOCOL
IDENTIFIED BY

nmtElement-macSublayerLbl ::=

&lower Protocol
&demultiplexPoint
&layer Label

PROTOCOL-LAYERING

llcSublayer

macSublayer
llcSublayer-macSublayerLbl

llcSublayer-

PROTOCOL-LAYERING

macSublayer

physicalLayer
macSublayer-physicalLayerLbl

macSublayer-

PROTOCOL-LAYERING

nmtElement

physicalLayer
nmtElement-physicalLayerLbl

nmtElement-

PROTOCOL-LAYERING

nmtElement

macSublayer
nmtElement-macSublayerLbl

nmtElement-macSublayero&objectClassLabel

74

serviceN arne
{

ATTRIBUTE-TYPE
IDENTIFIED BY

}
serviceN ameLbl

PrintableString

Service Type
{

ATTRIBUTE-TYPE
IDENTIFIED BY

}
serviceTypeLbl

operati veLayer
{

ATTRIBUTE-TYPE
IDENTIFIED BY

}
operativeLayerLbl

LAYER
{

physicalLayer(O),
macSublayer(l),
llcSublayer(2),
nmtElement(3)

}

receivingLayer
{

ATTRIBUTE-TYPE
IDENTIFIED BY

}
receivingLayerLbl

macSublayer
{

ATTRIBUTES
{

-

-..

-..

-..

-

ATTRIBUTE ::=

PrintableString
serviceNameLbl

serviceName.&objectClassLabel

SEQUENCE OF OCTET STRING

ATTRIBUTE ::=

PrintableString,
serviceTypeLbl

serviceType.&objectClassLabel

ATTRIBUTE ::=

Layer
operativeLayerLbl

operati veLayer. &o bj ectC lassLabel

ENUMERATED

ATTRIBUTE ..

Layer
receivingLayerLbl

receivingLayer.&objectClassLabel

OBJECT-CLASS

individual-mac-address,
group-mac-address,
tht-value,
trr-value,
tvx-value,
tnt-value,

75

}

}
FUNCTIONS

{

}
IDENTIFIED BY

macSublayerLbl

nmtElement
{

ATTRIBUTES
{

}
FUNCTIONS

{

tqp-value,
tsm-value,
tam-value,
priority-Amp-Data-Unit,
status,
m-sdu,
status-report,
frame-control,
reception-status,
transmission-status,
provided-service-class,
symbol

report-transmission-status,
receive-frame-control,
receive-m-sdu-identification,
receive-requested-service-class,
master-reset,
insert,
check-frame-condition,
check-for-active-monitor,
set -parameters,
reset-TNT,
reset-TSM,
enqueue-SMP-PDU,
set-flag,
append-D A-to-msd u,
transmit-msdu-macSublayer,

macSublayerLbl

macSublayer.&objectClassLabel

OBJECT-CLASS

control-action,
frame-control,
destination-address,
m-sdu,
requested-service-class,
status,

76

}

}
IDENTIFIED BY

nmtElementLbl

status-report
{

}

ATTRIBUTE-TYPE
IDENTIFIED BY

status-reportL bl

transmission-status
{

}

ATTRIBUTE-TYPE
IDENTIFIED BY

transmission-statusLbl

get-symbol
{

RESULTS
IDENTIFIED BY

}
get-symbolLbl

symbol
{

RESULT-TYPE
IDENTIFIED BY

}
symbolLbl

symbol-decoded
{

ARGUMENTS
RESULTS

reporting-frame-condition,
report-transmission-status,
report -activemonitor-not -present,
report -beacon-state,
report-provided-service-class,
report-frame-control,
report-destination-address,
report -source-address,
report-m-sdu,
report-reception-status,

nmtElementLbl

nmtElement.&objectClassLabel

ATTRIBUTE ::=

PrintableString,
status-reportLbl

status-report. &o bj ectC lassLabel

ATTRIBUTE ..

Bit,
transmission-statusLbl

transmission-status.&objectClassLabel

FUNCTION ..

symbol,
get -symbolLbl

get-symbol.&objectClassLabel

RESULT

Bit,
symbolLbl

symbol.&objectClassLabel

FUNCTION ..

stream,
symbol,

77

IDENTIFIED BY
}
symbol-decodedLbl

stream
{

ARGUMENT-TYPE
IDENTIFIED BY

}
streamLbl

burst -correction-start
{

RESULTS
IDENTIFIED BY

}
burst -correction-startLbl

burst -correction -end
{

}

ARGUMENTS
IDENTIFIED BY

burst-correction-endLbl

latency-buffer-overflow
{

}

RESULTS
IDENTIFIED BY

latency-buffer-overflowLbl

status-report
{

}

RESULT-TYPE
IDENTIFIED BY

latency-buffer-underflow
{

}

RESULTS
IDENTIFIED BY

..

..

..

latency-buffer-underflowLbl ..

tht-value

-

-

-

symbol-decodedLbl

symbol-decoded.&objectClassLabel

ARGUMENT : :=

Stream,
streamLbl

stream.&objectClassLabel

FUNCTION ..

symbol
burst-correction-startLbl

burst -correction -start.&o bj ectClassLabel

FUNCTION ..

transition,
burst-correction-endLbl

burst-correction -end.&o bj ectClassLabel

FUNCTION ..

status-report,
latency-buffer-overflowLbl

latency-buffer -overflow .&o bj ectClassLabel

RESULT

PrintableString,
status-report.&objectClassLabel

FUNCTION ..

status-report,
latency-buffer-underflowLbl

latency-buffer-underflow.&o bj ectClassLabel

ATTRIBUTE ..

78

{
ATTRIBUTE-TYPE TimeStamp,
IDENTIFIED BY tht-valueLbl

}
tht-valueLbl .. - tht-value.&objectClassLabel

trr-value ATTRIBUTE ::=
{

ATTRIBUTE-TYPE TimeStamp,
IDENTIFIED BY trr-valueLbl

}
trr-valueLbl .. - trr-value.&objectClassLabel

tvx-value ATTRIBUTE ::=
{

ATTRIBUTE-TYPE TimeStamp,
IDENTIFIED BY tvx-valueLbl

}
tvx-valueLbl .. - tvx-value .&o bj ectClassLabel

tnt-value ATTRIBUTE ::=
{

ATTRIBUTE-TYPE TimeStamp,
IDENTIFIED BY tnt-valueLbl

}
tnt-valueLbl .. - tnt-value.&objectClassLabel

tqp-value ATTRIBUTE ::=
{

ATTRIBUTE-TYPE TimeStamp,
IDENTIFIED BY tqp-valueLbl

}
tqp-valueLbl .. - tqp-value.&objectClassLabel

tsm-value ATTRIBUTE ::=
{

ATTRIBUTE-TYPE TimeStamp,
IDENTIFIED BY tsm-valueLbl

}
tsm-valueLbl .. - tsm-value.&objectClassLabel

tam-value ATTRIBUTE ::=
{

ATTRIBUTE-TYPE TimeStamp,
IDENTIFIED BY tam-valueLbl

}
tam-valueLbl .. - tam-value.&objectClassLabel

79

individual-mac-address
{

ATTRIBUTE-TYPE
IDENTIFIED BY

}
individual-mac-addressLbl

group-mac-address
{

ATTRIBUTE-TYPE
IDENTIFIED BY

}
group-mac-addressLbl

Address Set

priority-Amp-Data-Unit
{

ATTRIBUTE-TYPE
IDENTIFIED BY

}
priority-Amp-Data-UnitLbl

status
{

ATTRIBUTE-TYPE
IDENTIFIED BY

}
statusLbl

reception-status
{

ATTRIBUTE-TYPE
IDENTIFIED BY

}
reception-statusLbl

m-sdu
{

ATTRIBUTE-TYPE
IDENTIFIED BY

}
m-sduLbl

transmission-status
{

ATTRIBUTE-TYPE
IDENTIFIED BY

-
00

-
00

-..

-
00

-
00

-..

ATTRIBUTE ::=

Address,
individual-mac-addressLbl

individual-mac-address. &o bj ectClassLabel

ATTRIBUTE ::=

Address Set,
group-mac-addressL bl

group-mac-address.&objectClassLabel

SET OF Address

ATTRIBUTE ::=

Priority
priority-Amp-Data-UnitLbl

priority-Amp-Data-Unit.&objectCiassLabel

ATTRIBUTE ::=

Bit,
statusLbl

status.&objectClassLabel

ATTRIBUTE ::=

Bit,
reception -statusL bl

reception-status.&objectClassLabel

ATTRIBUTE ::=

INFO,
m-sduLbl

m-sdu.&objectClassLabel

ATTRIBUTE ::=

Bit,
transmission-statusLbl

80

}
transmission-statusLbl

provided-service-class
{

ATTRIBUTE-TYPE
IDENTIFIED BY

}
provided-service-classLbl

check-frame-conditio
{

ARGUMENT
RESULTS
IDENTIFIED BY

}
check-frame-conditionLbl

input-frame
{

ARGUMENT-TYPE
IDENTIFIED BY

}
input-frameLbl

check-for-active-monitor
{

RESULTS
IDENTIFIED BY

}
check-for-active-monitorLbl

value
{

RESULT-TYPE
IDENTIFIED BY

}
valueLbl

set-parameters
{

RESULTS
IDENTIFIED BY

}
set-parameterLbl

result -status
{

-..

-..

-..

-..

-..

-..

transmission-status.&objectClassLabel

ATTRIBUTE ..

Priority,
provide-service-classLbl

provided-service-class.&.objectClassLabel

FUNCTION ..

input-frame,
status-report,
check-frame-conditionLbl

check-frame-condition. &o bj ectClassLabel

ARGUMENT : :=

Frame,
input-frameLbl

input-frame.&objectClassLabel

FUNCTION ..

value,
check-for-active-monitorLbl

check-for-active-monitor. &o bj ectClassLabel

RESULT

Bit,
valueLbl,

value.&objectClassLabel

FUNCTION ..

result -status
set -parameterLbl

set-parameter. &o bj ectClassLabel

RESULT

81

RESULT-TYPE
IDENTIFIED BY

}
result-statusLbl

reset-TNT
{

ARGUMENTS
RESULTS
IDENTIFIED BY

}
reset-TNTLbl

tnt-value
{

ARGUMENT-TYPE
IDENTIFIED BY

}
tnt-valueLbl

tnt-value
{

RESULT-TYPE
IDENTIFIED BY

}
tnt-valueLbl

reset-TSM
{

}

ARGUMENTS
RESULTS
IDENTIFIED BY

reset-TSMLbl

tsm-value
{

}

· ARGUMENT-TYPE
IDENTIFIED BY

tsm-valueLbl

tsm-value
{

}

RESULT-TYPE
IDENTIFIED BY

-..

-..

-..

-..

Bit,
result -statusL b 1

result -status .&o bj ectClassLabel

FUNCTION .. -

tnt-value,
tnt-value,
reset-TNTLbl

reset-TNT.&objectClassLabel

ARGUMENT::=

TimeStamp,
tnt-valueLbl

tnt-value.&objectClassLabel

RESULT .. -

TimeStamp,
tnt-valueLbl

tnt-value.&objectClassLabel

FUNCTION ..

tsm-value,
tsm-value,
reset-TSMLbl

reset-TSM.&objectClassLabel

ARGUMENT : :=

TimeStamp,
tsm-valueLbl

tsm-value.&objectClassLabel

RESULT

TimeStamp,
tsm-valueLbl

82

tsm-valueLbl

enqueue-S.MP-PDU
{

ARGUMENTS
RESULTS
IDENTIFIED BY

}
enqueue-SMP-PDULbl

pdu
{

}
pduLbl

ARGUMENT-TYPE
IDENTIFIED BY

position-in-queue
{

}

RESULT-TYPE
IDENTIFIED BY

position-in-queueLbl

set-flag
{

ARGUMENTS
RESULTS
IDENTIFIED BY

}
set-flagLbl

flag
{

}
flagLbl

flag
{

}
flagLbl

ARGUMENT-TYPE
IDENTIFIED BY

RESULT-TYPE
IDENTIFIED BY

append -source-address-to-m -sdu
{

tsm-value.&objectClassLabel

FUNCTION ..

pdu,
position-in-queue,
enqueue-SMP-PDULbl

enqueue-SMP-PDU.&objectClassLabel

ARGUMENT ::=

INFO,
pduLbl,

pdu.&objecClassLabel

RESULT

INTEGER,
position-in-queueLbl,

position-in-queue.&objectClassLabel

FUNCTION .. -

flag,
flag,
set-flagLbl

set-flag.&objectClassLabel

ARGUMENT ::=

Bit,
flagLbl

flag.&objectClassLabel

RESULT

Bit,
flagLbl

flag.&objectClassLabel

FUNCTION .. -

83

}

ARGUMENTS
RESULTS
IDENTIFIED BY

m-sdu,
m-sdu,
append-source-address-to-m-sduLbl

append -source-address-to-m -sduL b l ::=append-source-address-to-m­
sdu. &o bj ectClassLabel

m-sdu
{

ARGUMENT-TYPE
IDENTIFIED BY

}
m-sduLbl

m-sdu
{

}

RESULT-TYPE
IDENTIFIED BY

append-DA-to-m-sdu
{

}

ARGUMENTS
RESULTS
IDENTIFIED BY

append-DA-to-m-sduLbl

transmit-sdu-macSublayer
{

}

ARGUMENTS
RESULTS
IDENTIFIED BY

transmit-sdu-macSublayerLbl: :=

transmission-status
{

}

RESULT-TYPE
IDENTIFIED BY

transmission-statusLbl

report-transmission-status
{

} .

RESULTS
IDENTIFIED BY

ARGUMENT : :=

INFO,
m-sduLbl

m-sdu.&objectClassLabel

RESULT

INFO,
m-sduLbl

FUNCTION ..

m-sdu,
m-sdu,
append-DA-to-m-sduLbl

append-DA-to-m-sdu.&objectClassLabel

FUNCTION ..

frame,
transmission-status,
transmit-sdu-macSublayerLbl

transmit-sdu-macSublayer.&objectClassLabel

RESULT

Bit,
transmission-statusLbl

transmission-status .&obj ecClassLabel

FUNCTION ::=

transmission-status
report-transmission-statusLbl

84

report-transmission-statusLbl : :=

receive-frame-control
{

}

ARGUMENTS
IDENTIFIED BY

receive-frame-controlLbl

frame-control
{

}

ARGUMENT-TYPE
IDENTIFIED BY

frame-controlLbl

rec~ive-destination-address

{

}

ARGUMENTS
IDENTIFIED BY

receive-destination-addressLbl
address.&objectClassLabel

destination-address
{

}

ARGUMENT-TYPE
IDENTIFIED BY

destination-addressLbl

receive-m-sdu-identification
{

} .

ARGUMENTS
IDENTIFIED BY

receive-m-sdu-identificationLbl
identification.&objectClassLabel

m-sdu
{

}

ARGUMENT-TYPE
IDENTIFIED BY

receive-requested-service-class
{

ARGUMENTS

report-transmission-status.&objecClassLabel

FUNCTION ..

frame-control,
receive-frame-contra lL bl

receive-frame-control.&o bjecClassLabel

ARGUMENT : :=

Frame-control,
frame-controlLbl

frame-control.&objectClassLabel

FUNCTION ::=

destination-address,
receive-destination-addressLbl

receive-destination-

ARGUMENT::=

Address,
destination -addressL b 1

destination -address .&o bj ectClassLabel

FUNCTION ..

m-sdu,
receive-m-sdu-identificationLbl

receive-m-sdu-

ARGUMENT ::=

INFO,
m-sduLbl

FUNCTION ::=

requested-service-class,

85

, IDENTIFIED BY

}
receive-requested-service-classLbl
cla~s.&o bj ectClassLabel

requested-service-class
{

}

ARGUMENT-TYPE
IDENTIFIED BY

master-reset
{

}

ARGUMENTS
RESULTS
IDENTIFIED BY

master-resetLbl

parameters
{

ARGUMENT-TYPE
IDENTIFIED BY

}
parametersLbl

parameters
{

RESULT-TYPE
IDENTIFIED BY

}

insert
{

RESULTS
IDENTIFIED BY

}
insertLbl

control-action
{

ATTRIBUTE-TYPE
IDENTIFIED BY

}
control-actionLbl

destination-address
{

-..

-..

-..

receive-requested-service-classLbl

receive-requested'-service-

ARGUMENT::=

Priority,
requested-service-classLbl

FUNCTION ..

parameters,
parameters,
master-resetLbl

master-reset.&objectClassLabel

ARGUMENT : :=

Parameters,
parametersLbl

parameters.&objectClassLabel

RESULT

Parameters,
parametersL b 1

FUNCTION ..

status,
insertLbl

insert.&o bj ectClassLabel

ATTRIBUTE ::=

Bit,
control -actionLbl

control -action. &o bj ectClassLabel

ATTRIBUTE ::=

86

}

ATTRIBUTE-TYPE
IDENTIFIED BY

destination-addressLbl

reporting-frame-condition
{

}

ARGUMENTS
RESULTS
IDENTIFIED BY

Address,
destination.:address Lbl

destination -address .&o bj ectClassLabeJ

FUNCTION ..

input-frame,
status-report,
reporting-frame-conditionLbl

reporting-frame-conditionLbl : := reporting-frame-condition.&objectClassLabel

report-active-monitor-not-present FUNCTION ..
{

RESULTS status,
IDENTIFIED BY report-active-monitor-not-presentLbl

}
report-active-monitor-not-presentLbl ::=report-active-monitor-not­
present.&o bj ectClassLabel

report -beacon-state
{

}

ARGUMENTS
RESULTS
IDENTIFIED BY

report-beacon-stateLbl

report-provided-service-class
{

}

RESULTS
IDENTIFIED BY

report-provided-service-classLbl
class.&o bj ectClassLabel

provided-service-class
{

}

RESULT-TYPE
IDENTIFIED BY

report-frame-control
{

}

RESULTS
IDENTIFIED BY

FUNCTION ..

tnt-value,
result -status,
report-beacon-stateLbl

report-beacon -state .&o bj ectClassLabel

FUNCTION ::=

provided-service-class,
report-provided-service-classLbl

report-provided -service-

RESULT

Priority,
provided-service-classLbl,

FUNCTION ..

frame-contro 1,
report-frame-controlLbl,

87

report-frame-controlLbl

frame-control
{

}

RESULT-TYPE
IDENTIFIED BY

report-destination -address
{

} .

ARGUMENTS
RESULTS
IDENTIFIED BY

report-destination-addressLbl: :=

destination-address
{

}

RESULT-TYPE
IDENTIFIED BY

report -source-address
{

}

ARGUMENTS
RESULTS
IDENTIFIED BY

report -source-addressL bl

source-address
{

}

RESULT-TYPE
IDENTIFIED BY

report-m-sdu
{

}

ARGUMENTS
RESULTS
IDENTIFIED BY

report-m-sduLbl

m-sdu
{

}

RESULT-TYPE
IDENTIFIED BY

report-frame-control.&o bj ectClassLabel

RESULT

Frame-control,
frame-controlLbl

FUNCTION ..

frame,
destination-address,
report -destination -addres·ssL bl

report-destination-addresss.&objectClassLabel

RESULT

Address,
destination-addressLbl

FUNCTION ..

frame,
source-address,
report -source-addressL bl

report -source-adress .&o bj ectClassLabel

RESULT

Address,
source-addressLbl

FUNCTION ..

frame,
m-sdu,
report-m-sduLbl

report-m-sdu.&objectClassLabel

RESULT

INFO,
m-sduLbl

88

report-reception-status FUNCTION .. -
{

ARGUMENTS input-frame,
RESULTS reception-status,
IDENTIFIED BY report-reception-statusLbl

}
report-reception-statusLbl .. - report-reception-status.&objectClassLabel

reception-status RESULT .. -
{

RESULT-TYPE Bit,
IDENTIFIED BY reception-statusLbl

}

tcu OBJECT -CLASS .. -
{

ATTRIBUTES
{ state,
}

FUNCTIONS
{

insert,
repeat,
transmit,
loopbacktest,

}
IDENTIFIED BY tcuLbl

}
tcuLbl .. - tcu.&obj ectClassLabel

state ATTRIBUTE ::=
{

ATTRIBUTE-TYPE State,
IDENTIFIED BY stateLbl

}
stateLbl .. - state.&o bj ectClasslabel

State .. - ENUMERATED
{

repeat(O),
transmit(l)

}

insert FUNCTION .. -
{

RESULTS output,
IDENTIFIED BY insertLbl

89

}
insertLbl

output
{

} .

RESULT-TYPE
IDENTIFIED BY

outputLbl

remove
{

}

RESULTS
IDENTIFIED BY

removeLbl

repeat
{

}

ARGUMENTS
RESULTS
IDENTIFIED BY

insert.&o bj ectClassLabel

RESULT

Bit,
outputLbl

output.&objectClassLabel

FUNCTION ..

output,
removeLbl

remove.&objectClassLabel

FUNCTION ..

input-frame,
output,
repeatLbl

90

5. CONCLUSION

Object-oriented methodology described in chapter 2 is a powerful

modelling technique to design communication networks . It is applied

for designing Token Ring Network . It can be equally applied for

designing other communication networks like Token Bus and FDDI. The

work here included the design upto the Medium Access control Layer. It

can be further enhanced by including the full design of Logical Link

Control Sublayer.

91

6. REFERENCES

1. Chappel David, "Abstract Syntax Notation(ASN.1)",Journal of

Data and Computer Communications, spring 1989.

2.Ungaro C.B. " The Local Network handbook edition II", McGraw

Hill publication, Data Communication book series .

3.George C. Sachet," IBM's Token Ring Networking handbook", MC­

Graw Hill Publication, 1993.

4. Comer Douglas E., " Computer Networks and Internets", Prentice

Hall Publication .

5. Tanenbaum Andrew S., " Computer Networks Third Edition",

Prentice Hall India Publication.

6. Stephen Saunders, " Building a Better Token Ring Network ", Data

Communication, May 1994.

7. Wolfgang Guenther and Gerd Wackerbarth, "Object-Oriented

Design of ISDN, Call processing Software", IEEE Communication

Magazine, April 1993.

8. Booch G., " Object Oriented Analysis & Design", Benjamin

Cummings Publishinh 1994.

9. Coad P. and Yourdon F., " Object Oriented Analysis", Yourdon

Press, 1991.

92

10. Rambaugh J.,Blaha M.,Premerlani W., Eddy F. and Lorensen W:,"

Object Oriented Modeling and Design", Prentice Hall of India

Private Ltd 1997.

93

	TH78890001
	TH78890002
	TH78890003
	TH78890004
	TH78890005
	TH78890006
	TH78890007
	TH78890008
	TH78890009
	TH78890010
	TH78890011
	TH78890012
	TH78890013
	TH78890014
	TH78890015
	TH78890016
	TH78890017
	TH78890018
	TH78890019
	TH78890020
	TH78890021
	TH78890022
	TH78890023
	TH78890024
	TH78890025
	TH78890026
	TH78890027
	TH78890028
	TH78890029
	TH78890030
	TH78890031
	TH78890032
	TH78890033
	TH78890034
	TH78890035
	TH78890036
	TH78890037
	TH78890038
	TH78890039
	TH78890040
	TH78890041
	TH78890042
	TH78890043
	TH78890044
	TH78890045
	TH78890046
	TH78890047
	TH78890048
	TH78890049
	TH78890050
	TH78890051
	TH78890052
	TH78890053
	TH78890054
	TH78890055
	TH78890056
	TH78890057
	TH78890058
	TH78890059
	TH78890060
	TH78890061
	TH78890062
	TH78890063
	TH78890064
	TH78890065
	TH78890066
	TH78890067
	TH78890068
	TH78890069
	TH78890070
	TH78890071
	TH78890072
	TH78890073
	TH78890074
	TH78890075
	TH78890076
	TH78890077
	TH78890078
	TH78890079
	TH78890080
	TH78890081
	TH78890082
	TH78890083
	TH78890084
	TH78890085
	TH78890086
	TH78890087
	TH78890088
	TH78890089
	TH78890090
	TH78890091
	TH78890092
	TH78890093
	TH78890094
	TH78890095
	TH78890096
	TH78890097
	TH78890098
	TH78890099

