L ézrcvg/ Céf@"

% 774§

 BES"GMING OF APPLET FOR CLIENT
'SERVER INFORMATION & CEAT
SERVER PROTOCOL

Dissertation submitted in partial fulfillment o] the requirethen:s for the
- award of the degree of

MASTER OF TECHNOLOGY
in
COM?UTER SCIENCE

by
g.

DEBENDRA KUMAR DHIR

SCHOOL OF COMPUTER AND SYSTEM SCIENCES
JAWAHARLAL NEHRU UNIVERSITY

" NEW DELHI - 110 067
i, /4% .. JANUARY, 1998
- i gséﬁ/ l |

005.758 TH
D537 -De :

CERTIFICATE

This is to certify that the dessertation entiled Designing of APPLET for client
server application and chat server protocol being submitted by Debendra Kumar
Dhir to the school of computer and system sciences, Jawaharlal __Nehru _University ,
New Delhi, in partial fulfilment of the requirments for the award of degree -of Master
of technology in Computer science is a bonafied work carried by him under the

guidance and supervision of Prof R.C. Phoha .

The matter embodie& in the dissertation has not been submitted for the award of

any other degree or diploma.

@Wﬁ ﬁe/&:@w@)\“‘ﬂ\ - Ao

Prof R.C. Phoha Debendra kumar Dhir

SC&SS
Jawaharlal Nehru University
New Delhi 110067

AR

Prof P.C.Saxena
Dean SC&SS =
JAWAHARLAL NEHRU UNIVERSITY
New Delhi 110067

g\iw

ACKNOWLEDGEMENT

The succes of this project has largely been due to the invaluable guidance of
Prof R.C Phoha , my superviser. My profound thanks to him for his helpful
suggestions and motivation through out my work. I would like to thank Prof P.C.

Saxena Dean SC&SS, for provinding the necessary facilities to complete this project.

1 sincerly thank all my friends and faculty for thair insightful comments and

help.

ot
DEBENDRA KUMAR' DHIR

CONTENTS

CHAPTER 1.
" INTRODUCTION
1.1 Serveré
1.2 Clients |
1.2.1 Operators
1.3 Channels
1.3.1 Channel Operators
1.4 The IRC Specification.
1.4.1 Overview
1.42 Character codes
1.4.3 Messages
1.4..3.1 Messages format in pseudo BNF
1.4.4 Numeric replies
1.5 IRC Cohcepts V
1.5.1 One-to-One Communication
1.5.2 'One to many Communication
1.5.2.1 To a list
1.5.2.2 To a group (channel)
1.5.2.3 To a host/server mask
1.53 Onetoall ‘
1.5.3.1 Client to Client
1.5.3.2 Clients to Server
1.5.3.3 Server to Server
1.6 What is an applet ? Difference between applets and application.
1.7 Out line for rest of the report
CHAPTER -2
BASIC CONCEPT FOR DESIGNING AN APPLET
2.1 Applet overview

The essential Applei methods.

2.2
2.3 Applet Parameters |
24 Communication between the Applet and the Browser
25 Using the Threads in Applets.
2.6 Inter Applet communications within the Browser.
2.7 Graphics class.concepts. in apIA)Ietes'
2.8 Class and interface necessary for developing an Applet.
CHAPTER -3 ' 55-68
THEORITICAL CONCEPT OF NETWORKING AND CLLIENT SERVER
3.1 Client server applilcations | |
3.2 Connection oriented protocol
3.3 Connectionless protocol |
3.4. Sockets
3.5 Classes and Interface for developing netwrok application using java.
CHAPTER - 4 68 - 111
4.1 Detail Analysié Design and imf)lementation for Client Server information
4.11. Building applet
4.12. How the applet works
4.2. . Detail Analysis Design and implementation for Chaf Sever protocol.,
4.2.1 Understanding Chat Areas '
4.2.2 Creating Our Own Chat Prtocol
4.2.3 Building a Chat Applet '
- 4.2.4 Handling the Chat Applet
4.2.5 Processing Messages Recived From a Chat Server.
4.2.6 How a Chat Server Accept Clients.
4.2.7 Creating a Chat Server’s client Thread.
4.2.8 Implementing Chat Server Methods.
CHAPTER 5 112 -113
5.1 Conclusion.
52 References

1.1
1.2
2.1
22

23

32

3.3.

3.4
35

4.1

FIGURES WITHIN THIS PROJECT REPORT

Format Of IRC Server Network

Sample Small IRC Network

The Applet Class Hierarchy

Sequence Of Init Stén, Stop And Destroy Class For An Applet

Pathways Of Data Exchange Between The Applet, Applet Context And Applet
Stub Object

Class Diagram For The Graphics Class

“Class Diagram Of The Applet Class

A Client Server Communication Scenario

Distribution Of Hosts Among Different Subnets Over The Internet
Conceptual Representation Of Internet Addressing

Class Diagram For Inet Address Class.

Class Diagram For Server Socket Class.’

Sequence of Actions in the Client-Server Information

ABSTRACT

Everybody uses e;mail, and most Internet users have been on Usenet news groups
or visited the forums in compuServe or AOL. But despite the strengths of these
technologies, they share one major limitation: They’re not real-time. E-mail and Usenet
are messaging systems, and although they can approximate the feel of conversion at
times, they lack the true spontaneity of live interaction. In some ways, that can be an
advantage people can\ compose and read messages as their schedﬁ]es allow - but we all
know that sitting around a table talking with one another has a lot of advantages too. So
in this report I have developed real time interactive and dynamic Applet so that a group
of people can talk by .typin'g messagel Also I have developed client server information

applet to get the client server information which is used in chat server.

CHAPTER 1

INTRODUCTION

Chat means basiéally we spend our time in one or more windows, each
representing a different channel or user. The wipdow in split into two panes : the viewing
area and the composing area. We read the incoming messages in the viewing area, and
we type our own messages in the composing area. . What we type doesn’t appear until
you press the Enter key or click the Send button, so you have a chance to edit what you’ll
send. In preictice, however, users dash off comment, question, or reply, then send it
quickly for the sake of staying with the conversétion.

Running a Chat servér on an existing intranet or extranet server allows companies
to offer live interaction among employees and associates, and public chat areas let
ortganizations host discussions across the Internet.

Internet Relay Chat Protocol

The IRC protocol was developed over the last 4 years since it was first
“implemented as a means for users on a BBS to chat amongst themselves. Now it supports
a world-wide network of servers and clients, and is stringing to cope with growth. Over

the past 2 years, the averaige number of users connected to the main IRC network has

grown by a factor of 10.

The IRC protocol is a text-based protocol, with the simplest client being any
socket program capable of connecting to the server. The IRC (lntefnet Relay Chat)
protocql has been designed over a number of years for use with text based conferencing.

The IRC protocol has been developed on systems using the TCP/IP network
protocol, although there is no requirement that this remain the only sphere in which it
operates.

IRC itself is a teleconferencing system, which (through the use of the client-
server model) is well-suited to running on many machines in a distributed fashion. A
typical setup involves ;1 single procéss .(the server) forming a central point for clients (or
other servers) to connect to, performing the required message delivery/multiplexing and

other functions.

1.1 Servers

The server forms the backbone of IRC, providing a point to which clients may
connect to to talk to each other, and a point for other servers to connect to, forming an
IRC network. The only network configuration allowed for IRC servers is that of a

spanning tree [see Fig 1.1] where each server acts as a central node for the rest of the net

it sees.

[Server 15.] | Server 13]| Server 14]

/ \ I
/ \

[Server 11] ------ [Server1] [Server 12]
/N /
/N

[Server2] [Server3
/o VT
/ \ \ NG
[Server4] [Server$] [Server 6]
7]\l / ¢ ,
/] . / ‘
A R / :
/] Vo

[Server 7] [Server 8] [Server 9] [Server 10]

[etc.]
[Fig.1.1. Format of IRC server neﬁvork]

1.2 Clients

A client is anything connecting to a server that is not another server. | Each clieﬁt
is distinguished from other clients by a unique nickname having a maximum length of
ni.ne (9) characters. See the protocol grammar rules for what may and may not be used in
a nickname. In addition to the nickname, all servers must have the following information
abouf all clients: the real name of the host tha(the client is running on, the username of
the client on that host, and the server to which the client is connected.
1.2.1 Operators

To allow a reasonable amount of order to be kept within the IRC network, a

special class of clients (operators) is allowed to perform general maintenance functions

on the network. Although the powers granted to an operator can be considered as
'danéerous’, they are nonetheless required. Operators should be able to perform basic
network tasks such as disconnecting and reconﬁecting servers as needed to prevent long-
term use of bad network r;mting. In recognition of this need, the protocol discussed
herein provides for operators only to be able t§ perform such functions.

A more controversial power of operators is the ability to remove user from the
connected network by 'force’, 1.e. operators are able to close the connection between any
client and server. The ju;tiﬁcatioﬂ for this is delicate since its abuse is both

destructive and annoying.

1.3 Channels
A channel is a named group ;)f one or more clients which will all receive messages
addressed to that channel. The channel is created implicitly when the first client joins it,
“and the channel ceases to exist when the last élient leaves it. While channel exists, an
client can reference the channel ﬁs_ing the name of the channel.
Channels names are strings (beginning with a '&' or '# character) of length up to
200 characters. Apart from the the requirement that the first character being either '&' ér
'#'; the only restriction on a channel name is that it may not contain any spaces (' '), a
control G (G or ASCII 7), or a w@a (', which is used as a lis;,t item\ separator by the
p;otocol).
There are two types of channels allowed by this protocol. One is a distributed

channel which is known to all the servers that are connected to the network. These

channe}s are marked i)y the first cha;acter being a only clients on the server where it
exists may join 1t These are distinguished by a leading '&' character. On top of these two
types, there are the various' channel modes available to alter the characteristics of
individual channels. |

To create a new chénnel or become part of an existing channel, a user is required
to JOIN the channel. If the channel doesn't exist prio to joining, the channel is created
and the creating user becomes a channel operator. If the channel already exists, whether
or not your request to JOIN that channgl is honoured depends on the current modes of the
channel. For example, if the channel is invite-orllly, (+I), then you may only join if invited.
As part of the protocoi, a user may be a part of several channels at once, but a limit of ten
(10) channels is recommended as being ample for both experienced an novi_ce users. If
the IRC network becomes disjoint because of a split between two servers, the channel on
each side is only composed of those clients which are connected to servers on the
respective sides of the split, possibly ceasing to exist on one side of the split. When the
split is healed, the connecting servers announce to each other who they think is in each
channel and the mode of that channel. :If the channel exists on both sides, the JOINs and
MODE: are interpreted in an inclusive manner so that both sides of the new connection
will agree about which clients are in the channel and what modes the channel has.
1.3.1 Channel Operators

The channel operator (also referred to as a "chop" or "chanop”) on a given
channel is cbnsidered to 'own' that channel. | In recognition of this status, channel

operators are endowed with certain powers which enable them to keep control and some

sort of sanity in their channel. As an owner of a channel, a channel operator is not
required to hav reasons for their actions, although if their actions are generally antisocial
or otherwise abusive, it might be reasonable to ask an IRC operator to intervene, or for

the users just leave and go elsewhere and form their own channel.
The commands which may only be used by channel operators are:

KICK - Eject a client from the channel
MODE - Change the channel's mode
INVITE - Invite a client to an invite-only channel (mode +i)

TOPIC - Changé the channel toﬁic in a mode +t channel

A channel operator is identified by the '@' symbol next to their nickname whenever it

is associated with a channel (ie replies to the NAMES, WHO and WHOIS commands). -

1.4 The IRC Specification
1.4.1 Overview |

The protocol as desclribed herein is for use both with server to server and client to
server connections. There are, however, more restrictions on client connections (which

are considered to be untrustworthy) than on server connections.
1.4.2 Character codes

No specific character set is specified. The protocol is based on a set of codes
which are composed of eight (8) bits, making up an dctet. Each message may be
composed of any number of these octets; however, some octet values are used for control
codes which act as message delimiters.

Regardless of being an 8-bit protocol, the delimiters and keywords are such that -
protocol is mostly usable frém USASCII termin'aI and a telnet connection.

Because of IRC's scandanavian origin, the characters {}| are considered to be the
lower case equivalents of the characters []\, respectively. This is a critical issue whgn

determining the equivalence of‘two nicknames.
1.4.3 Messages

Servers and clients send eachother messages which may or may not generate a reply. If

the message contains a valid command, as described in later sections, the client should

expect a reply as specified but it is not advised to wait forever for the reply; client to

server and server te server communication is essentially asynchronous in nature.

Each IRC message may consist of up to three main parts: the prefix (optional), the
command, and the command parameters (of vwhich there may be up to 15). The prefix,
command, and all parameters are separated by one (or more) ASCII space character(s)
(0x20).

The presence of a prefix is indicated with a single leading ASCII colon character
("', 0x3b), which must be the first charactér of the message itself. There fnust be no gap
(whitespace) between the colon and the prefix. The prefix is used by servers to indicate
the true origin of the message. If the prefix is missing from the message, it is assumed to
have originated from the connection from which it was received. Clients should not use
prefix when sending a'message from themselveé; if they use a prefix, the only valid prefix
is the registered nickname a;sociated with the client. If the source identified by the breﬁx
cannot be found from the server's internal database, or if the source is registered from a

different link than from which the méssage arrived, the server must ignore the message

silently.

The command must either be a valid IRC command or a three(3) digit number

represented in ASCII text. |

IRC messages are always iines of characters terminated with a CR-LF (Carriage Return
- Line Feed) pair, and thése messages shall not exceed 512 characters in length, counting
all characters including the trailing CR-LF. Thus, there are 510 characters maximum
allowed for the command and its parameters. There is no provision for continuation

message lines.

1.4.3.1 Message format in 'pseudo’ BNF

The protocol xﬁessa_ges must be extracted from the contiguous stream of octets.
;l"he current solution is to designate two characters, CR and mLF, as message separators.
Empty messages are silently ignored, which permits use of the sequence CR-LF
betwee;l messages witilout extra probl;ems.

The extracted message is‘parsed into the components <prefix>, <command> and

list of parameters matched either by <middle> or <trailing> components.

The BNF representation f;)r this is:

<message> ::= ["" <prefix><SPACE>] <command> <params> <crlf>
<prefix> ::= <servername> | <nick> ['!' <user>] [‘@' <host>]
<command> ::= <letter> { <letter> } | <number> <number> <number>
<SPACE> :=="'{"'} |

<params> ::= <SPACE> ["' <trailing> | <middle> <params>]

<middle> ::= <Any *non-empty* sequence of octets not including SPACE

or NUL or CR or LF, the first of which may not be ">
<trailing> ::= <Any, possibiy *empty*, sequence of octets not including

NUL or CR or LF>
<crlf> :=CRLF
NOTES:

1) <SPACE> is consi;ts (;nly of SPACE character(s) (0x20). Specially notice th;at
TABULATION, and all other control characters are considered NON-WHITE-SPACE.

2) After extracting the parameter list, all parameters are equal, whether matched by
<middle> or <trailing>. <Trailing> is just a syntactic trick to allow SPACE within
parameter.

3) The fact that CR and LF cannot appear in parameter strings is just artifact of the
message framing. This might change later.

4) The NUL character is not special in message framing, and basically»could end up
inside a parameter, but as it would cause extra complexities i normal C string héndling.
" Therefore NUL is not allowed within messages.

5) The last parameter me¥y be an empty stﬁng.
6) Use of the extended prefix (['!' <user>] ['@' <host>]) must not be used in server to

server communications and is only intended for server to client messages in order to

provide clients with more useful information about who a message is from without the
need for additional q;Jeries.

Most protocol messages specify additional semantics and syntax for the extracted
parameter strings dictated by their position in the list. For example, many server
commands will assumie that the first parametef after the command is the list of targets,
which can be described with:

<target§ = <to> ["," <target> |
<to> = <channel> | <user>'@' <servername> | <nick> | <mask>

<channel> :=(#'|'&") <chstring>

| A
<servername> ::= <host> e
2 s‘-‘fx_.a.y——/ﬂu D~ \,/-\..../ < ’;:a:, P f?:sv? —:;—-.?-s ﬁh'ﬁ?; .. e T,
?7&3_"“ "-k:-y_.__. ‘.’A- S e T T e 'jw..::“:“‘f R
\\W’q*d ";?»“' e e = (v\—?""‘“ B '\"m
<nick> := <letter> { <letter> | <number> | <spe01al> }
<mask> = ('#' | '$') <chstring>

<chstring> ::= <any 8bit code except SPACE, BELL, NUL, CR, LF and

comma (',')>
Other parameter synt;axes are:
suser> u= <nonwhite> { <nonwhite> }
<letter> ::="a'...'Z'|'A'..."Z
<pumber> :='0"..'9'
<special> ="' |T V[N (Y

»

<nonwhite> ::= <any 8bit code except SPACE (0x20), NUL (0x0), CR

(0xd), and LF (0Oxa)>

1.4.4 Numeric replies
Most of the méssages sent to the server generate a reply of some sort. The most
common reply is the numeric reply, used for both errors and normal replies.. The
numeric reply must be sent as one message consisting of the sender prefix, the three digit
numeric, and the target of the reply. A numeric reply is not allowed to originate from a
client; any such messages féceived by a server are silently
dropped. In all other respects, a numeric reply is just like a normal message, except that

the keyword is made up of 3 numeric digits rather than a string of letters.

1.5, IRC Concepts.
This section is devoted to describing the actual concepts behind the organization

of the IRC protocol and how the current implementations deliver different classes of

messages.
1--\
A D4
2l \]
B----C
I\

Servers: A,B,C, D, E Clients: 1,2, 3,4

[Fig.1. 2 Sample small IRC network |

1.5.1 One-to-one communication -

Communication on a one-to-one basis is usually only performed by clients, since
most server-server traffic is not a result of servers talking only to each other. To provide
a secure méans for clients to talk to each other, it is required that all servers bé able to
send a message in exactly Aone direction along the spanning tree in order to reach any
client. The path of a message being delivered is the shortest path between any two points
on the spanning tree. The following examples all refer to Figurel.2 above.

Example 1:
A message between ciients 1 and 2 is only seen by server A, which sendé it
 straight to client 2.
Example 2:
A message between clients 1 and 3 is seen by servers A & B, and client 3. No other
clients or servers are allowed see the message.
Example 3:

A message between clients 2 and 4 is seen by servers A, B, C & D and client 4 only.-

1.5.2 One-to-many

The main goal of IRC is to provide a forum which allows easy and efficient
conferencing (one to many conversations). IRC offers several means to achieve this,

each serving its own purpose.
1.5.2.1 To a list

The least efficient style of one-to-many conversation is through clients talking to
la 'list' of users. How this is done is almost self explanatory: the client gives a list of
destinations to which the message is to be delivered and the server breaks it up and
dispatches a separate copy of the message to each given destination. This isn't as efficient
as using a group since the destination list is broken up and the dispatch sent without

checking to make sure duplicates aren't sent down each path.

1.5.2.2 To a group (channel)

In IRC the channel has a role equivalent to that of the multicast group; their
existence is dynanﬁc (coming and going as ;;eople join and leave channels) and the
“ actual conversation carried out on a channel is only sent to servers which are supporting
users on a given channel. If there are multiple users on a server in the same channel, the
message text is sent only once to that server and then sent to each client on @e channel.
This action is then repeated for each client-server combination until the original message

\ has fannedout and reached each member of the channel.

21

The following examples all refer to Figurel.2
Example 4:
'Any channel with' 1 client in it. Messages‘ to the channel go to the server and then
nowhere else.
Example 5:
2 clients in a channel. ‘All messages traverse a path as if they were privéte messagés

between the two client_s outside a channel.

Example 6:

Clients 1,2and 3 ina channel.v All messages to the channel are sent to all clients and
only those servers which mﬁst be traversed by the message if it were a private message to
a single client. If client 1 sends a message, it goes back to client 2 and then via server B

to client 3.

1.5.2.3 To a host/server mask

7H- 6665

To provide IRC operators with some mechanism to send messages to a large body of
related users, host and server mask messages are provided. These messages are sent to
users whose host or server information match that of the mask. The messages are only

sent to locations where users are, in a fashion similar to that of channels.

1.5.3 One-to-all
The one-to-all type of message is better described as a broadcast message, sent to
all clients or servers or both. On a large network of users and sefvers, a single message
can result in a lot of traffic being sent over the network in an effort to reach all of the
desired destinations. -
For some messages, there is no option but to broadcast it to all servers so that the
state information held by each server is reasonably consistent between servers.
1.5.3.1 Client-to-Client |
Tﬁere is no class of message which, from a single message, results in a message being
sent to every other client.
1.5.3.2 Client-to-Server
Most of the commands which result in a change of state information (such as
channel membership, channel mode, ‘user status, etc) must be sent to all servers by
default, and this distribution may not be changed by the client.
1.5.3.3 Server-to-Server.
While most messages between servers are distributed to all 'other’ servers, this is
only required for any rriessdge that affects either_ a user, channel or server. Since these are
the basic items found i'n IRC, nearly all messages originating from a server are broadcast

to all other connected servers.

1.6 WHAT IS AN APPLET ? DIFFERENCE BETWEEN JAVA " APPLET
AND APPLICATION
Java programs come in two flavours: applet and application simply speaking .a
java applet is a program that appears embedded in a web document; Java
application is the term applied to all other i(inds of java programs , such as those
found in network servers and consmer electronics.

Traditionally, the word applet has come to mean any small
application . In java ,’an applet is z;.ny Java program that is lunched from a Web
document ; that is from an HTML file. Java applications, on the other hand, are programs
that run from a command line, independent if a Web browser. There is no limit to the size
or complexity of a Java applet. Java applets are in some ways more powerﬁll than java
applications. Howeve;, w1th tht? Internet where communication speed is limited and
downlodad times are long, ,most Java applets ae necessarily small.

* The technical differences between applets and applications stem from the context
in which they run. A java applica;ionst runs in the simplest possible environment-its only
input from the outside worid is a list of comm‘and-line parameters. On the other hand, a
Java applets receives a lot of information from the Web browser:it needs to know when it
is initialized, when and where to draw itself in the browser window, and when it is
activated or deactivated. As a consequence of these two very different execution
environments, applets and applications have different minimum requirements.

The decision to write a program as an épplet versus an application depends on the

context of the program and its delivery mechanism. Because Java applets are always

presented in the context of a Web browser's graphical user interface, Java applications are

preferred over applets when graphical displays are unnecessary. For example, A

Hypertext Transfer Protocol(HTTP) server wriften in Java needs no graphical display; it

requires only file and network access.

Differences between Java Applets and Applications

Java Application Java Applet

Uses graphics optional Inherently graphical

Memory requirements Minimal Java Application Java application requirements plus Web
requirements - browser requirements

Distribution Loaded from the file system or by Linked via HTML and transported via

a custom class loading process

Environmental input Command line parameters |

Method expected by main-startup method
the Virtual Machine

1.7 Out line for Rest of the report

HTTP

Browser client location and size; parameters
embedded in the host HTML document

init-initialization method
start-startup method
stop-pause/deactive method
destroy-termination method
paint-drawing method

In the Chapter 2 describes for procedure for designing an applet like .

1. essential applet method

2. applet parameter

3. using the threads in ‘applets
4. communication between the applet and browser
Chapter 3 describes the theoretical concept of networking, client server socket,
internet address.
Chapter 4 describes the Detail analysis,Design implementation in Java for client server
information and chat server protocol applet.

Chapter -5 is for conclusion and reference

CHAPTER -2

BASIC CONCEPT FOR DESIGNING AN APPLET

2.1 Applet Overview

Packaging interactive content in small, easily distributed objects was a design
feature that had high priority to the developers of Java. To meet this 'design goal, they
created the Applet class, alvong with several objects and interfaces designed to simplify
image and audio processing.

An Applet is a custom interface component object, similar in concept to a Windows
custom control, or an X-Windows width. Applet-aware applications (or "applet browsers")
can load and construct Applet objects from URLs pointing to Class files anywhere on a
network, including the Internet, the largest network of them all. The Java Developer Kit's
(JDK) Hot Java World Wide Wab browser is an example of an applet-aware application.
Using it, we can access interactive Applets from anywhere on the Internet, or Applets
developed on the local file system. Security features of the Java language ensure distributed
applets cannot damage or compromise the security of a local system.

Using the graphical 'capabil.ities of Javé, applets are visually exciting multimedia
elements. Through objects of the class java.awt, Graphics applets can create graphical on -
screen content. The graphics class is includea in this chapter because of the need for applets
to display exciting visuals. _

Because of all these features, applets have become the preferred method fbr
distributing interactive content on the World Wide Web, A library of reusable, extensible

Applets is one of the cornerstones of an Internet content creator's tool it.

All objects inherit

Object from object
Windows visual
Component function
Container Able to manage
multiple components

Panel Simple non-abstract
container

Applet

* Figure 2.1 The Applet class hierarchy

Applets

The above Figure above illustrates the Applét class hierarchy. Most ancestors of
Applet in this hierarchy are Abstract windows Tool kit (AWT) classes. Throﬁghout them,
the Applet class inherits windowing capabilities. Specifically, the Applets display, surface
drawing, and mouse and keyboard event handliﬁg functionalities are gained through these
ancestors. All examples and discussions in this chapter stop short of utilizing AWT
methods other than those that provides applets with their graphical capabi]ities. But keep
in mind the rich set of facilities the AWT classes have when designing your own custom
Applet classes. ‘ ‘

Applet objects are created and controlled by a container application called an
Applet browser. The applet browser arranges applet objects visually on the screen and
dedicates a rectanglc;, of screen space for the applet to display itself. Most applet browsers
can manage more than a single Applet object at a time, and actually provide and interface

for a Applet instance to communicate with each other.

2.2 The Essential Applet Methods

The actions of a custom Applet object are ruled by four essential methods :

Applet.init, Applet.start, Applet.stop, and Applet.deétrory. The browser itself invokes

these methods at specific points during the applet’s lifetime. The java.applet.applet calls

declares these methods and provides default. implementations for them. The default

implementations do nothing. Custom applets override one or more of these methods to

perform specific tasks during the lifetime of the custom Applet object. Table following

four methods, details when each is called by the browser, and whose what a custom

applet’s overriding implementation should do.

Descriptions of the essential applet methods

Method

init

destroy

start

stop .

Description

| Called once and only once when the applet is first loaded. Custom

implementations allocate resources that will be required thorough the

lifetime of the Applet object.

Called once and only once just before the Applet object is to be
destroyed. Custom implementations release allocated resources,
especially Native resources, which were loaded during init or during

the lifetime of the Applet object.

called each time the applet is displayed or brought into the user’s
view on-screen. Custom implementations begin active processing or

create processing threads.

Called each time the applet is removed from the user’s view. Custom
implementations end all active processing. Background processing
threads should either be destroyed in stop, or put to sleep and

destroyed in the destroy method.

The proper place to allocéte objects or load data required by the applet throughout
its lifetime is init. This method is called only once during the lifetime of the applet, right
after the object is created by the browser. Most custom Applets allocate resources
required through the lifetime of the Applet object in this method. Another very common
operation performed during init is to vresize the applet’s on-screen display surface using
the inherited method éomponent.resize. Some browsers display applets correctly only if
the applet calls resize() in ir{it(). The component class is described.

When the applet drops from view, for example because it is scrolled off the screen
in the browser or the psér opens a different document in the browser, the applet’s stop

method is called. This is the proper time for a custom Applet to cease any processing.

Every call to start has a matching subsequent call to stop.
M The start/stop, for example if the applet is scrolled from the user’s view and then
scrolled back. When it is scrolled from the user’s view, stop will be invoked. When it
is scrolled back, start will be involved for thg: second time. 4
When the applet is finally and definitely to be unloaded from memory, destroy()
is invoked. This is the appropriate time to delete any resources loaded during init(). The
call to destroy is guaranteed to occur after the last call to stop. Note that while any
resources allocated by an applet will automatically be cleaned up by Java’s garbage
collection facilities, it ‘is more efﬁcier;t to remove references to any allocated objects in
destroy. Also note that resources allocated by “native” methods will not be cleaned up
any the garbage collection facilities. Native resources must be explicitly released in
destroy. (Native methods areaplatform-speciﬁc, dynamically loadable libraries accessible
from within Java code. For the most part, Applet classes do not use native methods

because of the severe secuﬁty constraints placed on Applet objects.
2.3 Applet Parametérs

Similar to Java applications, applets can receive a process parameters.

Applications receive pérameters in the argv[] argument to the main method. The elements

of argv(] are the command line arguments to the application. Analogous to argv{}], app}et

parameters are accessed within the applet code by the Applet. get Parameter method.

init start stop start stop destroy

||

|

|

Agplet iscreated \ /
- \/

Potentially start/stop
call pairs

Applet is destroyed Times

Figure 2.2 Sequence of init, start, stop, and destroy calls for an Applet

Conceptually, the browse maintains an internal listing of all the parameters passed

on an embedded Applet object. The getParameter method access this internal list and

retrieves the values specified for a uniquely named parameter. Our new listing uses the
getParamaeter method to look up the value for the parameter banned “Paarameter name”.
If no such parameter was passed, getParameter would return nuil.

There is a method defined so that Applet so that Applet objects can publish a list
of valid parameter names, valid values, , and a destruction of getParameterInfo simply
returns null, but an ovérriding impleméntation should return a String[n][3] 2-dimensional
array where n is the number of unique parameters undertook by members of the Applet

class. Each row of three strings in this array should be of the format :
{“parameter name”, “valid value rang”, “text description”} A

There is no strict requirement on the format of an one of these strings. Each one

should be suitable for textual display so that someone can read it. For example, the “valid

value range” string could be “0.-5, meaning the parameter s should be an integer between
0 and 5. This Applet class uses its Applet. Context to access other active Applet
instances. A detailed description of the Apple context interface and methods follows this
discussion of Applet parameters.

‘Different types of browsers use different methods for passing parameters to
applets. For example, applet-aware World Wide Web browsers generally use the HTML
(APPLET> cohtainer tag to refer .to applet code and parameter. Between the <APPLET>
and </APPLET> name = [param-name] value = [param-val>]. No matter how parameters -
are passed into a particular browser, a loaded applet always uses getParameter to retrieve

parameter vélqes. -
2.4. Communication Between the Applet and the Browser

Applets obtain information about the state of the browser, what other Applet
object are éurrently active, what is the current document opened by the browser, and so
on, through the java.applet.Applet Context interface. The browser is abstracted by an

object implementing this interface.

The browser also exposes some functionalities that an applet can use through this
interface. For example, the loading of image and audio files into Java objects is handled
transparently through the Applet context interface.

Between the Apllet Context and the Applet is an AppletStub object. Its purpose is
to provide pathway for the exchange of applet-specific data between the AppletContext
and the Applet. For example , the parameters for a specific Applet object are accessed by
the Aplet through AppletStub.getParameter. AppletStub methods are translated into
native or custom AppletContext method calls (the implementation bf the completely up to
the browser developers). An applet’s ApletStub is tightly wrapped by the
java.applet.Applet implementation. So many so much so that all AappletStub
funcationalities are exposed as wrapper methods in the java.applet.Applet class.

Therefore, a custom applet should never need to use its AppletStub directly. Figure 2.3

illustrates the pathways of data exchange between the Applet, the browser (abstracted by
the AppletContext interface), and the AppletStub (the Applet’s representative to the

browser).

Applet Context
The AppletContext Unknown interface
interface (it really does not matter)

Applet Stub

The AppletStub
interface
‘ Applet I

Fig. 2.3 Path ways of data exchange between the Applet, Applet context and Applet
stub object

25 USING THREADS IN APPLETS

Much the same as applications,: applets can create Threads to carry on background
processing. A typical use of this would be an animation applet. To perform animatibn,
the applet creates a new thread and starts it running in start. The animation Thread acts as
a ﬁmer. Every so often, (it wakes and _draws:a new frame in the animation sequence, then
suspends itself until the next frame is to be drawn. In the applet’s stop method, the
animation thread is shutdown. Two versions of this simple animation technique are
described in greater detail in the section on the Graphics class and methods. The
important point here is that Threads generally are made to begin background processing
an applet’s start implementation and either suspended or destroyed in the applet’s stop
implementation. | _ |

We might assume that Threads created by an applet would be automatically halted

by the browser when the applet is deétroyed, so you wouldn’t really need to suspend or

destroy a Thrcad object explicitly in stop. Instead, you could just leave it to Java’s
garbage collection facilities to .destroy our Thread when the Applet object is destroyed.
Many browsers, however, do not properly hal'; secondary applet threads, even after the
applet has been destroyed, so the thread continues to execute after the applét has been
destroyed. This is a result of applets relying on the Java garbage collection facility to
destroy their threads. To ensure our custom applets he have as you want them to, include
ceasing when you want them to cease, suspend any secondary threads in Applet.stop, and

drop references to them in destroys.
2.6 INTER-APPLET COMMUNICATIONS WITHIN THE BROWSER

You can coordinate the activities of several applets by accessing and manipulating
other Applet objects from within Applét code.

To obtain references to external Applets from within an applet you use the
Appletcontext getApplet and getApplets methods. The AppletNames Applet
demonstrates this technique. Once a reference to another Applet is retrieved, your applet
code can access any public member variable or method of the external Applet. object. This
code snippet retrieves an applet named “MyApplet” and calls one of its custom methods.
Applet applet = getAppletcontext().getApplet(“MyApplet”);
if (! (applet instance of MyAppletClass)) return;

MyApletClass myapplet = (MyAppletClass)applet;

myapplet.CustomFuncO

GetApplet takes an applet “name” and returns a reference to the associated Applet
object. This usage model implies the browser internally stores a unique String name
associated with each applet, which can be used to look up the Applet in the internal

browser storage.

GRAPHICS

Applets are cabable of displaying exciting and complex graphics and multimedia
visuals All graphical drawing operations in Java are performed through objects derived
from the Graphics class. Whether you are drawing images downloaded from the Iritemet,
drawing graphical primitives such as rectangles and arcs, or rendering text, all graphical

operations are done using a Graphics class instance.
2.7 The Graphics Class Concept in Applet

Each Graphics object is associated with two-dimensional “drawing surface,”
analogous to the piece of paper on the drafting table. For example, the dréwing surface
can be a rectangle of a user’s on-screen desktop; as is the case when dealing with Applets
or Windows. Other drawing surface types could also be associated with a Graphics
object. The drawing source could be a binary image, stored in memory and never directly
displays to the user. It could also be a page in a printer, or fax machine, or even a
PostScript or other graphics-fonnat file stored on a disk.

The “tools” of a Graphics object, the methods of the Graphics class are to draw |
onto the associated drawing surface. Rectangles, ovals, arcs, polygons, lines, text, and
images can also be drawn onto the drawing surface using the various Graphics class
methods.

The internal state of a Graphics object can be described by eight state variable,

which can be modified using Graphics class methods.

 The foreground color

o The background color

e The current font

o .'The painting mode

e The origin of the Graphics object

e The horizontal and vertical scaling factors

e The “clipping” rectangle

o The drawing surface the Graphics object has been associated with
The Coordinate System of the Drawing Surface

All drawing suifaces use the same two-dimensional coordinate system. The X axis
is in the horizontal direction of the drawing surface, and increases from left to right on the
drawing surface. The Y axis is in the vertical direction, and increases from top to bottom.

The Graphics object origin defines where its X and Y axes cross, and is identified |
by the point (0,0). A scaling factor is assigned to both axes, which defines how quickly
the coordinated increase along with axis. By default, when the Graphics object is first
created, the origin lies in the upper-left corner of the drawing surface, and the scaling
factor along both axes is one.

The Graphics object’s X and Y axes stretch to what is essentially an infinite
distance in all four directions. However, only coordinates within the Graphics object
“clipping rectangle” are of any interest. That’s because graphical operations cannot be
performed outside this rectangle. Such operations will not result in any sort of error, but
neither will they have may effect on the dréwing surface.

The clipping rectangle of a Graphics object represents the physical boundaries of
the associated drawing surface. For example, a Graphics object associated with a 100
pixel by 100 and a height of 100. For on-screen desktop and in-memory image drawing
surfaces, each Graphics coordinate represents a single pixel of the drawing surface.
Hence, a 100 pixel by 100 pixel rectangle is represented by a 100 by 100 clipping

rectangle in the associated Graphics object.

Obtaining Graphics Objects

A prog}arn cannot create its Own Graphics objects, but instead must ask the Java
runtime system to create them for specific display surfaces. Without using custom classes
implementing native methods, only two types of display surfaces can be accessed through

Graphics objects.

35

e Sections of the on-screen desktop surface are accessed through Graphics objects
passed to the update and paint methods.
¢ In-memory Image objects are accessed through Graphics objects created by Image

create Graphics.

Applets inherit the update and paint methods from the Component class, which
the Applet class extends. Both of these methods are called automatically by the Java
runtime system when it is time to display information to the user on the desktop. This
code snippet shows how a custom applet would override the default implementation of

paint to control its display surface:

Public void paint(Graphics g) {
// Draw on the display surface here

A graphics object ig automatically created by the Java runtime system and passed
to paint. This Graphics object has a clipping rectangle set to the exact dimension of the
Applet’s display surface. In the case where only a portion of the Applet must be redrawn,
such as when another window temporarily covers part of the Applet’s display surface, the
dimensions may be smaller.

The only other method for obtaining a Graphics object is using
Image.createGraphics. An applet dr applicatiori calls this method directly. The Graphics
object that is returned is capable of rendering geometric primitives, text, and other Image
~ object onto the Image. This is useful for the so-called “double-buffered” drawing
technique, used widely to effect a smooth transition between animation frames. You’ll

learn more about this technique in the upcoming discussion of animation.

The Geometric Primitives

36

All Graphics objects are able to render several different types of geometric

primitive drawing objects on a drawing surface.

Geometric Primitives

Primitive

Rectangle

Rounded

rectangle
3D rectangle
Oval

Arc

Polygon

Line segment

Representation Through Rendering Methods

The point of the upper-left corner of rectangle relative to the Graphics

origin, the rectangle’s width and height.

The point of the upper-left comer of the rectangle relative to-the

Graphics origin, the rectangle’s width and height

The point. of the upper-left corner of the rectangle relative to the
Graphics origin, the rectangle’s width, height, and the raising or

depressing implication of the beveled edges.

A bounding rectable defines the size and shape of the oval. This

rectangle is described the same way as a rectangle geometric primitive.

An arc is a section, or pie edge, or an oval. an arc is described by the
bounding rectangle of an oval, the starting angle of the arc, and the
angular length of the arc.

An ordered a set of points defines the vertices of a polygon to Graphics
rendering methods. Alternatively, a Polygon object can be used, through
Polygons are essentiaily just on ordered set of vertices. Points are all

relative to the Graphics object’s origin.

Two points defining the two end points of the line segment. Both points

are relative to the Graphics object’s origin.

All primitive can be rendered in either outlined or filled form, except the Line
primitive, which cannot be filled. The outlined version of a primitive is rendered using
the primitive’s “draw” method. For example, Graphics.drawRect will render a rectangle
as two sets of parallel lines ﬁsing the Graphics objects current foreground color. The “fill”
method is used to render a filled geometric primitive. Graphics.fillRect will render a solid

rectangular block on the display surface using the current foreground color.

The Painting Mode

The painting mode of a Graphics object is, default, set to "overwrite" mode. In this
modern all graphics are rendered by overwriting the pixels of the display surface using the
graphics object's current foreground color. We can force the Graphics object into overwrite

‘mode using Grpahics.setPaintMode. When called, this parameter less method places the
Graphics into overwrite mode. Expressed pseudo-mathematically, the color of destination

pixels after rendering is
colorDest(*x,y) = graphics.foregroundColor

The other method of modifying a Graphics object's painting mode is
Graphics.setXORMode. When called, the Graphics object uses XOR mode for rendering
géometric primitives, text, or Images on the drawing surface. Three colofs are combined
mathematically to determine the color of determine the color of destination pixels after

rendering, as follows,

colorAfterRendering(x;y) =colorBeforeRendeﬁhg(x,y) * graphics.foregroundColor *

_graphics.alternateColor

where the * symbol represents a bit wise XOR operation. The alternate color of a

V Graphics object is specified as the only parameter to Graphics.stXORMode

38

2.8 Class and interfacc necesary for developing an Applet

The following classes and interface necessary for developing custom Applet object

in Java.
Description
Class/Interface

AppletContext Exposes services implemented by the applet browser for user by
‘Applet objects. Conceptually, all active Applet object have access to
the same AppletContext.

Graphics Encapsulates a drawing surface, and exposes tools for drawing
graphics and rendering text on that drawing surface. A drawing surface
may be a rectangle of the desktop, on in-memory image, or even a
page in the printer. '

Applet Represents on emendable Applet object.

APPLET CONTEXT A

Purpose An interface which abstracts the browser to an Applet. Methods for
testing and modifying the current state of the browser are provided as
public members of this interface.

Syntax interface AppletContext :

Description Applet gets its AppletContext using Aﬁplet.gemppletContext. Using

this interface, the Applet can get and set some parameters of the
browser’s current state. An Applet can get and set some parameters of

the browser’s current state. An Applet can get references to other

39 -

Package Name

Imports

Constructors

Parameters

GETAPPLET
Interface

Purpose
Syntax
Parameters

String SrtName

Description

Applets currently running in the browser, download images and auto
clips, and load a new document into the browser through the

AppletContext interface. -

java.applet

java.awt.Image, java.awt.Graphics, java.awt.image.ColorModel,

java.net.URL, java.util.enumeration
None

None

AppletContext

Used to facilitate inter-applet communications within a browser.

public ‘Applet getApplet (String srtName);
None |

This interface methods implies the browser stores, with each loaded
applet, a unique string to identify that applet. It passes to getApplet

one of these unique applet identifiers to gain access to the associated

Applet object.

Multiple Applet objects can be simultaneously loaded and run by the

40

Imports

Returns

GETAPPLETS
Interface
Purpose
Syntax v
Parameters

Description

Imports

same browser. Each applet runes within its own Thread. Use this
method to access other applets running concurrently. It is completely
up to a particular browser how to associate a particular string with an
Applef object. For example, most commercial-grade World Wide
Web browsers which applet-aware use the NAME tag in the
<APPLET> container tag to associate a name string with a particular

applet, as in the HTML snippet below.

None

The Applet object associated with the unique String StrName. If no
applet is as_éociated with strName, null is returned or if the applet

browser does not provide facilities for inter-applet communications.

AppletConfext |

Used to facilitate inter-applet communications within a browser.
public.Enuineration getApplets();

None:

This method allows you to look up all applets currently running in

the browser. The browser which implements this method will give

your access to all Applet objects currently running in the browser.

-None

41

Returns

GETAUDIOCLIP

Interface

Purpose

Syntax

Parameters

(URL url)

Description

An Enumeration object is returned. Each element in the
Enumeration’s is an Applet currently active in the browser. Note
that an empty Enumeration, or a return of null, could be interpreted
in two ways : Either getApplets() is not fully implemented by the

browser, or no other applets are active in the browser.

No exact specification currently exists describing what getApplets

should return in either of these situations..

AppletContext

Loads an audio file and reades 1t to be played by the browser.

Public audioClip getAudioClip(URL url);

Points to an audio file to be loaded by the browsers
Commercial-grade browsers, especially World Wide Web browsers, -
have built-in facilities for loading and playing audio files. Appletes

used the getAudioClip method to load audio files from any URL the

browser can understand. Applets should use one of the overloaded

| Applet.getAudioClip methods to access AudioClips instead of

AppletContext.getAudioClip. This method is rarely called by an
Applet directly.

42

Imports " java.net. URL
Returns " The object returned by this function implements the AudioClip
interface. If the URL is no understood by the browser, null will be

returned or if the browser does not provide this functionality to

applets.

GETIMAGE

Interface AppletContext

Purpose To load an image from a URL and prepare it for rendering on a display
surface.
Syntax Public Image getImage(URL url);

Parameters Points to an image file to be loaded by the browser.

URL url

Description Java épplicqtions must implement methods for reading and interpreting
image ﬁles,. and converting the image data into Image objects. Applets
may have this functionality exposed to them by the browser through the
AppletContext.getimage method. Browsers that‘ can load and interpret
variou§ image forfnaté, such as GIF, JPEF or TIFF, can provide that
capability to applets. Applets simply provide a URL pointing to an image

* file in a recognized format. No methods are provided for an applet to
query which image formats are supported by a browser. Therefore, it is

usually a good idea to only try to load images in very common graphics

43

formats, such as GIF or JPEG. .

Imports java.awt.Image

Returns An Image object will be returned by this object, or null if this facility is
not supported by the browser. The reaction of this methods when the
URL reforest an unsupported protocol, or when the image file format is
unrecognized, is unspecified. Generally, it can be assumed that null will .
be returned if these capability it not provided by the browser.

- SHOWDOCUMENT

Interface AppletContext

Purpose Opens a new document in the browser. An overloaded version exists to
specify the name of the target browser frame.

Syntax public void showDocument (URL,url);
public id showDocument (URL url, String target);

Parameters Points to the document to be opened by the browser. If the protocol

URL url referred to by the URL is not recognized by the browser, this call will be
ignored. If the document format implied by the URL’s field name is not
recognized by the browser, this call will be ignored.

Description In the abstract, Applets are seen as being embedded in distributed

“documents,” such as World Wide Web pages. When implemented,
this'method allows the applet to force the browser to open a particular

document pointed to by a URL. Like all other methods in this

44

Imports

Returns

Example

interface, a particular browser may not implement this method, in
which case the browser will simply ignore a call to this method.

If the second overloaded version of this method is used, then the
document will be opened in a browser frame with the same name as
the target parameter.

java.net. URL

The Applet object associated with the unique Starting sttName. If no
applet is associated with srtName, null is returned or if the applet
browser does not provide facilities for inter-applet communications.
This applet asks the browser to reload the current document whenever

the Applet’s stop method is invoked.

public class RestartingApplet extends Applet { .

public void stop() {

Appletcontext ac = getAppletContext();

if (null != ac)

ac. showDocument(getDocumentBase());

}

;
GRAPHICS

Purpose

Syntax

Description

An AWT Component (such as an Applet) uses a Graphics object

to draw on display surface.
public class Graphics

A Graphics object is always associated with a “display surface.”
The display surface can be a rectangle of the on-screen desktop,
an Image in memory, or potentially any rectangular area that can
~ be drawn on. You use the Graphics class methods to render
graphics and text on the display surface associated with the

Graphics object. Figure 2.4 shows the class diagram for the

45

Graphics class

Package Name java.awt

Imports - java.awt *, java.image.ImageObserver

java.long.Object

I java.awt.Graphics I

2.4 Class diagram for the Graphics Class

CLEARECT
Class Name Graphics

Purpose To erase the specified rectangle using the background color of the display

surface associated with the Graphics object.
Syntax public abstréct void clear Rect(int X, int y, int width, int height);

Parameters These four parameters define the rectangle to be erased on the display
int x surfacé. |

inty

int width

int height

46

Description

Imports

Return

 APPLET

Purpose

Syntax

Description

This method is used to erase a rectangle from the display surface. The
associated display surface’s background color is used to fill the specified
rectangle. This is a legacy method which was never removed from the
alpha relea&e of Java. Use of this method is not advised. Instead, use
Graphics. fill Rect, specifying the color you want to use to erase the
rectangle. I£ is an unfortunate but true fact that the Java API does not
specify an overloaded version of this method which takes Rect object as a
parameter. The origiq and extent of the rectangle must be explicitly

provided in the four parameters to this method.

None.

None

 An embeded interactive component, suitable for embedded in World

Wide Web pages using special HTML tags.
public class Applet extends Panel

A java Applet is an interactive Component special designed for use

‘across the World Wide Web. The Applet class defines methods for '

controlling the lifetime of an Applet object, for which your applets
provide custom implementations. Each applet running in an applet-aware
browser has its own Thread, which uses the Applet methods init, start,
stop and destroy to control the applet’s lifetime. the Applet
communicates with the browser through Applet context and Applet stub
objects.

47

ISACTIVE

Class Name Applet

Purpose Indicates whether or not the Applet has been started.

Syntax publilc boolean isActive();

Parameters None.

Description Just before the _Sefore the Applet’s start method is called, the Applet is
marked as “active”. At that point, shall calls to this method return true.
Before that time and just before destroy is called, the Applet is marked as
not active.

GETDOCUMENTBASE |

Class Name Applet

Purpose Gets the URL for the document this Applet is embedded in.

Syntax public URL getDocumentBase();

Parameters None.

Description The URL for the document this Applet is embedded in is returned. This

java.outPanel

java.applet.Applet

[_.{

Fig. 2.5 Class Diagram of The Applet Class

method is shallow wrapper around AppletStub.getDocumentBase, so if
the AppletStub is not implemented then, a call to this method w111 cause
a NullPointerException to be throw.

48 -

GETCODEBASE

Class Name Applet

Purpose Gets the URL for this Applet’s.CLASS file.

Syntax public' URL getCodeBase();

Parameters None.

Description The URL for the this Applet’s.CLASS file is returned. This method is a
shallow wrapper around AppletStub.getCodeBase, so if the AppletStub is

not implemented, then a call to this method will cause .a
NullPointerException to be thrown.

GETPARAMETER

Class Name Applet

Purpose Gets the string value of a paﬂicplar Applet parameter.
Syntax public String getParameter (String name);

Parameters Name of the parameter to retrieve. This is the value of the “name” tag
String name within the HTML <PARAM> field which defines the Applet.

Description This method returns one of the parameters to this Applet. Parameter are
declared between the <APPLET> tag has two possible field :”name” and

“value”. By indicating one of the valid names for this Applet, the
corresponding “value” field string will be returned.

GETAPPLETCONTEXT

Class Name Applef

Purpose Retrieve the Appletc;)nexf for this Applet.
Syntax public AppletCéntext getAppletContext();
Parameters None

String name

49

_ Description The AppletContext represents the browser this Applet is being displayed
on. To retrieve a reference to an Applet’s AppletContext, use this
method. '

SHOWSTATUS

Class Name Applet

Purpose Displays a message on the browser’s status bar.

Syntax public void showStatus(string msg);

Parameters

String msg Message to be displayed on the browser’s status bar.

Description Browsers generally have a status bar below the main display window.
Use this method to place a message within that status bar. This method is
an shallow wrapper around AppletContext.showSatus. It the Applet is not
created within the context of a browser which implements
AppletContext, then a call to this method will throw a
NullPointerException.

GETIMAGE

Class Name Applet

Purpose Creates an Image object from a URL pointing to a graphics-format file.

Syntax public Image getlmage (URL url);
public Image getlmage(URL url, String str);

Parameters '

URL url URL of the graphics-format file containing the Image’s data.

Description This methdd creates an Image object from a URL pointing to a graphics

format file. The Image data is not downloaded until it is accessed at some
point later in the Applet’s execution. To force the Image to be loaded, use
a Media Tracker object. The second overloaded version allows you to -
specify a base and relative URL to the graphics-format file. This method
is a shallow wrapper around AppletContext.getlmage.

50

GETAUDIOCLIP

Class Name Applet

Purpose Creates an AudioClip object from é URL pointing to an audio data file.
Syntax ~ public AudiClip getAudioClip(URL url);

Parameters public AudioClip getAudioClip(URL url, String str);
URL url URL of the audio data file containing the AudioClip’s data.

Description This method creates a AudioClip object from a URL pointing to an audio
data file. The AudioClip’s data is not downloaded until it is accessed at
some point later in the Applet’s execution. The second overloaded
version allows you to specify a base and relative URL to the audio data
filee. This method is a shallow wrapper around
ApppletContext.getAudioClip.

GETAPPLETINFO

Class Name Applet

| Purpose Custom implementations return a text String describing this Applet.

Syntax public String getAppletInfor();

Parameters None.

Description Your custom applets should implement this method to return an
information string about the applet. This string may include

copyright information, or information about where to downloaded the applet
from, etc.

GETPARAMETERINFO
| Class Name Applet

Purpose Custom applets can expose text information about the parameters this
applet understands by implementing this method. -

Syntax public String{}{} getParameterinfor();

51 -

Parameters None

Description It is easy to make your applet self-describing by implementing this
method. Have your implementation return a set of arrays of Strings. Each
array of String should contain exactly three elements. The first String of
each ‘array is the name of a parameter the Applet understands. The

. second is a textual description of valid values for that parameter, such as

“1-10 or “url”. The third is a textual description of how the parameter is
used, such as “URL for the background image”.

GETPARAMETERINFO

Class Name Applet

Purl')Aose Downloads and plays an AudioClip from an audio data file.

Syntax public void play (URL url, String str);

Parameters '

URL url URL or base of a relative URL to the audio data file for the AudioClip
and want to play.

Description Relative URL to the URL you want to play
This method is a simple shorthand for getting an AudioClip and playing
it. Use of this method saves about three lines of explicit coding.

INT()

Class Name Applet

Purpose Called by the Applet’s Thread to start it running.

Syntax public void start it running.

Parameters public. void start(); - _-
None '

Description

The start() method is one of the four methods which define an Applet’s
action during its lifetime. In our custom applet, implement this method to
actually perform the applet’s behavior. The start() method is potentially
called several times during the lifetime of the applet. Each call to start() is
matched by exactly one subsequent call to stop(), sometime in the future.

52

START()
Class Name
Purpose
Syntax
Parameters

Description

STOP
Class Name
Purpose
Syntax
Parameters

Description

A typical operation performed in the start() method is kick-starting the
applet’s background Threads.

Applet

Called by the Applet’s Thread to start it running.
public .vpid start();

None

The start() method is one of the four methods which define an Applet’s
action running its lifetime. In your custom applet, implement this method
to actually perform the applet’s behavior. The start() method is
potentially called several times during the lifetime of the applet. Each call
to start() is matched by exactly one subsequent call to stop(), sometime in
the future. ‘A typical operation performed in the start() method is kick-
starting the applet’s background Threads.

Applet

Called.by the Applet’s:thread to stop it runmng
public void stop();

None

The stop() method is one of the four methods which define an Applet’s
action during its lifetime. In your custom applet. implement this method
to gracefully shut down the applet. The stop() method is potentially called
several times during the lifetime of the applet. Each call to stop() is
match by exactly one prior call to start(). Stop any background Treads
from processing before returmng from you custom implementation of this
method.

53 .

DESTROY()

Class Name Applet

Purpose Called by the Applet’s Thread to allow it to perform initial clean-up.

Syntax public void destroy();

Parameters None.

Description The destroy() method is one of the four methods which define an applet’s
action during its lifetime. In your custom applet, implement this method
to deallocate any resources allocated during the applet’s lifetime. The

destroy() method is called exactly once, just before the Applet object is
destroyed.

54

CHAPTER -3

THEORETICAL CONCEPT OF NEWTWORKING AND CLIENT
SERVER

The comi)uter network is a communication system for connecting two or more
hosts. Hosts can be anything from microcompuferé to super-computers, which makes
establishing communication among them an involved task for programmers. The goal of
java’s internet working facilities is to hide the &etails of different physical networks from
programmers. This allows 'tHe programmer not to worry about the more romantic pursuits
of network programming and not to b<; bogged down by the trivial details of many
different systems. However, this granci achievement of hiding details was no walk in the
park for the java designers. Hosts can have vastly different physical attributes and may be
dedicated to widely varying tasks. What is needed to make all these different species of
system happy and able to communicate with each other is a common protocol. A
protocol is a set of rules ;md conventions between the communicating participants. Using
the higher-level protoc;ol abstractions, the programmer can create Java programs quickly
and with increased productivity. They need not build special version of application
software to move and Franslate data between different type so machines.

This chapter introduces the basic con;:epts of networking. It discusses client-
server applications, tells you how to identify a host using an Internet address, and
explains what sockets are. The project I will devélop in the chapter is a client-server

application. The client sends messages to the server requesting it to send the contents of a

35

file. The server process the request and sends the contents of the file line-by-line. On

reviving the file’s contents from the server, the client displays it on a window.

3.1 Client-Server Applications

There are several models for building network applications. The most widely used
model is the client-server model which involves two types of processes: a serverf process
and a client process. When. you start a server process on a host, it waits for a client to
contact it. A client process, started on the some host or a different one, sends a request to
the server over the network. The server responds to the request by sendir;g areply.

The communication between a server and a client ﬁan be accomplished in two
ways: connection-oriénted or connectionless. In a connection-oriented transfer, a
dedicated connection is established between a server and a client. They use this
connection to exchange information. Given that the other type is called connectionless, it
doesn’t seem like a lot of communication actually happens between them. Then how do
they communicate? The client sends the request by specifying the server’s address. This
is received by the server, who is waiting fof a messagé from some client. The server
obtains the client address form the massage to which it may then respond.

a) Host A, as a client sends a requesf for service to server located on host B

(b) After processing the request, the server sends a reply to the client

56

Netwerk Link

send reguiest receives requies
- Client Server I

HOST A - ' HOSTB

Network Link

recei\v?ly " sends rep
: I Server I | Server I

HOST A HOST B

Fig. 3.1 A client-server communication scenario

3.2 Connection-Oriented Protocol

In a connection-oriented communication, the client and the server have a
dedicated link established between them. It is similar to the telephone communication
system. When you call someone and the called phone number exist, there is a dedicated
line for you to converse. Whatever you speak is guarénteed to be heard on the other side,
which probably an elc;,ment_‘ of delay. Also the words you speak are heard in the exact

order in which they were spoken. Also connection-oriented protocol is a reliable protocol.

57

The messages sent between any two processes are guaranteed to be delivered and in the
proper sequence. Most of the networking applications are connection oriented, as they
require reliable communication protocol. TCP (Transfer Control Protocol) is a connection

-oriented protocol in the TCP/IP family.

3.2 Connectionless Protocol

In a connectionless protocol, there is no dedicated-link between the ciierit and tﬂe
server. They send messages as datagram packets, each of which contains the destination
addreés. The underlying network' will targeted aestination address from a packet and
routes the packet to the destination. In this sense, each packet is self-contained. They have
the information about the sender and the intepded receiver, apart from hecore message.
We can consider such a communication to be similar to the Indian Postal service. Each
letter we send has its destination address contained in it and the postal department takes
the necessary steps to route the mail to the destination. But we should note that the postal
department guarantees neither the delivery not the sequence of delivery. Similarly, in the
connectionless protocol, the packets are not guélranteed to be delivered, and even it they
are delivered, the order of "delivery is not guaranteed. Then the obvious question is :
Where will you ever use the connectionl_ess protocol for communication ? You can use
this protocol where the order of messages is.not critical. For example, consider a time
server application. The server can keep sending the updated time to the client. The client
need not assume any order of delivery. As it receives message, logic can be built in the

client application to sense the sequence of received messages. In this application, missing

58

- packets will not create any adhoc. In the TCP/IP family, the UDP is the connectionless

protocol.
33 Internet Address

To identify a particular host in the Internet we need an Internet address. Using
Internet addressing, a host can communicate with another host located in the same
physical network or subnet, or in a different physical network, where both networks are
linked by the Internet. Hence, hosts separated .ge'ographically can communicate effectively
by addressing each other by their Internet. Hence, hosts separated geographically can
communicate effectivély by addresss in each other by their Internet address.

An Internet address is usually written as four decimal numbers, which are -
separated by decimal points. Each decimal digit in this address encodes one byte of the 32
-bit Internet address. "fhe Internet ad;iress_ma'ps to a unique host and the host can be
addressed by a unique combination of the host and the name of the particular network the
host is a part of (i.e., domain name).

In the Internet address representation, Internet ID identifies a nefwork in the
Internet. Subnet ID represeﬁts local area network(sﬁbnet) and Host Id is the identifier for
a given host in the subnet. The combination of these three identifiers represents a unique
hbst in the Internet. Here 128.230.32.66 is the Internet address that maps to
ratnam.cat.syr.edu, where ratenam is the machine name and is a part of cat.syr.edu

network domain. In this example, host Id is 66, subnet Id is 32 and the Internet Id is

59

128.230. The InetAddress Class in Java encapsulates the methods required to manipulate

with an Intenet address in a networking application.

W.‘
L~ m

AW

1\
——— 3 >

[JL e
Jh =

Fig. 3.3 Distribution of hosts among different subnets over the Internet

Internet ID Subnet ID Host ID

12823 . 32 66

Fig. 3.3 Conceptual representation of Internet addressing

60

3.4 Sockets

To provide an interface between our application and the network we need a
socket. Most of the communication in a client-server application is point-tb-point, where
the endpoint of such communication is an application (client or server). A socket acts as
an endpoint for communication between processes on a single system o? on different
system. The applications communication between processes on a signal system or on
different system. The applications commuqicate between themselves by sending
messages to one anotﬁer. These messages are sent as sequence of packets< at the network
level. For each packet that is sent, there has to be a receiving end. Sockets from such an
end point to receive packets, as well as to send messages. Application programs request
the operating system to create a. soc;ket when in need. The system returns a socket
identifier, in the form of a small integer that the application program uses to reference the
newly created socket. A networking application can be identified by a <host, socket> pair
(the host on which it is running and the socket at which it is listening for meséages).

Java provides separate classes which encapsulate the functionality of client and
sever sockets. The Socket class is used to represent sockets on the client side, while the
server side sockets are represented by the ServerSocket class. The Socket a;ld
ServerSocket form the client and server side §ockets in a connection oriented protocol.
Once a link is established between the client and thé server, can exchange messages until
one of them. closes the connection. Whereas, the sockets, in the case of connectionless
protocol, are represented by the DatagramSocket class.. In this case, both the client and

the server are associated to a datagram socket. Every time a message is to be sent, they

6l

create a DatagramPacket containing the destination address and port number along with

message to be sent. This packet gets delivered (if to does get delivered) to the targeted

application. To implement various such policies for communication between a client and

a server, Java provides Soéketlmpl Class SocketImplFactory is an Interface that can be

used to generate more instances of the SocketImpl Class for use in our applications.

3.5 Classes And Interface Necessary For Developing Network Application using java

Class and interface description

Class/Interface
Inet Address

Server Socket

Socket

Datagram Socket

Description
Represents Internet addresses.

This class represents the server socket. It uses a Socketimpl

~classto implemexit the actual policies regarding socket

operations.
this class represents the client socket. It uses a socketlmpl
class to implement the actual socket policies for its

operations.

- This class represents a datagram socket, which is an

implementation of the connectionless protocol.

62

Datagram Paci&et * This clas;s represents a datagram packet, which is self-
contained, with the details of the destination host and the
data to be sent.

Sacketlmpl This should be subclassed to provide actual
implementation. This class implements the actual socket

. policies for ServerSocket classes.
Sacketlmpl Factory | A Factory for creating actual instances of socketlmpl is

defined in this interface.

Purpose Use InetAddress to represent Internet addresses.
Syntax Public final class InetAddress extends Object
Description The InetAddress class represents the Internet Address. The

methods of InetAddress provide functionality to gain
information about raw IP address, hostname, and network

“ “address of a host machine, and hash code of the Internet

address in the hashtable.

java.long.Object

java.net. InetAddress
Final

Fig. 3.4 Class diagram for InetAddress class

63

EQUALS (OBJECT).

Class Name InetAddress

Purpose Compares the specified object with the object on which the method is
invoked.

Syntax public Boolean equals (Object object)

Parameters :

object

Description The object with which the invoked object is to be compared.
the method compares the Internet address of the specified object with that
of the object on which the method is invoked. The objects are considered
equal if their Internet addresses are the same.

GETADDRESS()

Class Name InetAd'dress.

Purpose - This method returns the raw IP address of the object in network byte
order.

Syntax public byte[] getAddress()

Parameters None.

Description This method returns the raw IP address representation of the Internet

address in 32-bit format in network byte order. It returns the addr[] byte
array, member of the InetAddress. addr[0] contains the highest order byte
position addr[] is an array of bytes so that this method is extendable for
64-bit IP addresses also.

64

GETALLBYNAME(String)

Class Name InetAddress’

Purpose Returné an array of all InetAddresses that correspond to the specified
hostname.

Syntax public static synchronized InetAddress[] getAllIByName(String
host_name) throw UnknownHostException

Parameters _The hostname of the machine, the InetAddresses which you are trying to

host_name obtain.

Description A host can have multiple InetAddresses (mapping). to access all of those
InetAddresses, the hostname is passed to the getAliByName method. The
method finds out the Internet addresses of the given host and returns all of
them as an array of InetAddress objects.

GETBYNAME (String)

Class Name InetAddress

Purpose This method gets the InetAddress of the specified host.

Syntax public. static synchronized InetAddress getByName (String host_name)
throws UnknownHostException

Parameters The hostaname of the machine whose InetAddress is returned by this

host name method.

Description This method returns the InetAddres of a specified host. The InetAddress

class does not have public on structure. You can use this method to create
an instance of the InetAddress for a particular host.

65

GETBYNAME(String)

Class Name InetAddress

Purpose This method gets the InetAddress of the specified host.

‘Syntax public static synchronized InetAddress getByName (String host_name)
throws UnknownHostExcetpion

Parameters

host name The hostname of the machine whose IneAddress is returned by this
method.

Description This method returns the InetAddress of a specified host. The InetAddress
class does not have public constructors. You can use this method to create
an instance of the InetAddress for a particular host. :

GETHOSTNAME()

Class Name InetAddress

Purpose this method returns the hostname for this InetAddress.

Syntax public String getHostName()

Parameters None .

Description The method returns the hostname of a machine with the same address as
this InetAddress. so if you know the IP address of a machine, you can find
out its hostname by using this method on they InetAddress object of that
address.

'GETLOCALHOST()

Class Name InetAddress .

Purpose

Syntax

This method gets the InetAddress of the local host.

public static InetAddress getLocalHost() throws UnknownHostExecetpion

66

Parameters None

Description

This method finds the Internet address of the local machine executing this
program. It creates an instance of InetAddress with this address and
returns the InetAddress object. getLocalHost() can be used to create an
instance of InetAddress for the local machine.

HASHCODE()

Class Name InetAdciress)

Purpose Returns the hash code of fhis InetAddress object.

Syntax public int hashCode()

Parameters None -

Description The method returns the hash code, to be used as index into the hashtable
to access this InetAddres object. All the InetAddresses accessed during
the program execution are cached in a hashtable. This is done for faster
access of previously accessed Internet address.

TOSTING()

ClassName InetAddress

Purpose This method converts the InetAddress to a string

Syntax public String toString()

Parameters None

Description This method converts the InetAddress to a String by overriding the

toString() method of the Object Class. Raw IP address, host name can
also be obtained by manipulating with the returned String.

67

SERVERSOCKET

- Purpose .
Syntax

Description

Use ServerSocket to implement a server.
public final class ServerSocket extends Object

The ServerSocket class represents the server in a client-server
application. This class implements the actual socket policies that go along
with a server. It uses a default Socketlmp class to implement its server
policies. These polices can be changed by implementing a concrete
subclass of the abstract Socketlmpl class. This change in policies can be
made effective by set the SocketimplFactory, using the setSocketFactory
method. The methods of ServerSocket class provide functionality to
create server socket, accept connection from a client and get the specific
of the particular ServerSocket object (namely the port to which the server
is connected), and the string form of implementation address, file
descriptor, and port. A ServerSocket object is bound to the local machine
on which it is create. A port number is specified for the ServerSocket to
bind and listen for connection.

| java.long.Object I

java.net.ServerSocket
final

Fig. 3.5 Server Socket Class

68

CHAPTER - 4

4.1 Detail Analysis Design & Implementation for A Client-Server

Information Applet Information

In the Client-Server Information applet, a client will contact an existing server and
obtain details We should provide three buttons : clientinfo, serverinfo, and fileinfo. On
clicking the clientinfo button, the client will print out its details, the host it is running, on,
and the port on which it is connected. It should be able to gather the information about
the server and print the details when the serverinfo button is pressed. When the fileinfo
button is pressed, the client will send a request fo the server to obtain the contents of a file
residing on the server’s side.

The applet’should also be a stand-alone application, so that you can run it from a
Java environment using the Java interpreter or it can also be launched from a Web
browser, supporting Java. The scenario for this applet is illustrated in Figure 4.1. The

steps involved are as follows .

1. The server connects to ..a port on the host, to which it is initialized, and listens for
connections from clients.

2. A client will connect to the ser.ver"'by specifying the hostname and the port on which
the server is listening. |

3. The client retrieves tile details about itself and displays the information.

4. The client obtains the information about the server and displays it.

5. The client sends a request to the server askiqg for the contents of a file on the servers side.

6. The server, o rece&ivinglthe request, opens.the relevant file, if it exists, and sends the
contents to the client over the socket streams.

7. The client receives the file contents from the server and displays them.

69

Server : : Client

Client Socket Created with

create ServerSocket object
serverHost and Port

; p : create uboyt and output streams
wait for connection from j B ! for CO unication

client : . .
- : Connection established !
L N2
create input and outpur get client detail using
streams for communication T . : InetAddress class
Request a file send Request for contents of a
HINO file

I receive request I
process request I
R

L/ Reaply file contents

send Reply b
------------- I recive Reply I

disply results

“

l close connection I : : : close connection I

Fig. 4.1 Sequence of actions in the Client-Server Information

8. Once the necessary processing is completed, the steams and sockets and are closed -
appropriately

70

We must now be above to implement the applet using the APPIL. As we know, ahy
applet for a given speciﬁcation can be implemented in different ways. Once such
‘implementation is provided here. In this implementation, Threads are used on the
server’s side to process multiple clients. In the given applet, the Server is started on a
given machine. The Client can either be run as a stand-alone application using the Java
interpreter or launched frorﬁ a Web browser supporting Java. In either case, the server

hostname and port number are passed as arguments to the executable.

APPLET VIEWER : SERVER APPLET CLASS
Applet

Client Info Server Info File Info

‘4.1.1 Building Our Applet
1. First create a Sever class which should accept connection from client. Make it public

class and the filename should be Server. java. This class should contain the following

members

71

Modifier Type

Variable-name

‘ Purpose

Static ServerSocket

Static _ Socket

Static int

static ServerThread

ServSock

tﬁeSocket'

Port

client[]

72

An instance of ServerSocket is
created to enable the server to
accept connections from
client.

An instance of Socket that will -
bev created on theServe side
when Serversock is
instantiatec_i.

Port number on which the
sever connects and creates

SverSock

An array of ServerThread
objects which will -act as
server for every client that
connecfs to the server, so th;at
there is one SeverThread for

one client.

After the addition of these member our file Server.java should contain the

following.
//import the necessary classes relevant to the class Server

import java. net.Socket;
import java.net.ServerSocket;
import java.io.*;

J¥*

public class Server {

private static Socket theSocket;
private static ServerSocket ServSock;
private static ServerThread client[] = new ServerThread[10];

private static int port = 80;

2. Having created the class, now define the main method for the class. Create an
instance of ServerSocket after specifying the port number, Then the sever waits in
a loop for connections from clients. This is done using the accept() method of
ServerSocket. After accepting connection from a client. a server thread is spawned

for each client. This enables exclusive service to the client by a corresponding

73

server Thread. The start() method of Thread will start the servicing of the serve
Thread to the client. Adding these functions to our Server class will make the

Server.java file.

import java. net.Socket;
import java.net.ServerScoket;

import java.io.*;

public class Server {
static Socket theSocket;
static ServerSocket ServSock;

static ServerThread client[] = new ServerThread[10];

DatalnputStream detain,;
DataOutputStrea, dataout;

static int port = 80;

public static vdid main(String srgs[]{
int g=0
try

SerSock = new SeverSocket(port);

System.out.printIn(“Server started”);

74

-

While (true){
theSocket = ServSock.accept();
for (g-0; g<10;g++)
if ((client[g] == null) || (!client[g].isALive()))

break:

if (g<10){
client[g] = new SrverThread(the Socket,g);

' ciient[g].start();

else
System.out.printLn(“Rejected a connection”);

LI

} catch (IOException ioe){

System.out.print(“Server error”);

Now we have the necessary code for a-Server to run. Next we should write the

necessary code for implementing the ServerThread the Server spawns for every

75

Client. Create a public class ServerThread. It should be a subclass for Thread class

in Java and should contain the fbllowing members.
Type Variable name Purpose

_Socket mySocket | This Socket object will be the socket
instance on Server side for a connected
Client. This is passed on to this
ServerThread using the constructor.

int myld ' Every ServerThread has on id associated
with it, which also identifies the Client.
There can be only one ServerThread with a
given Id, at a given instance.

DatalnputSTream detain DatalnputStream associated With evefy
ServerThread (which will be the Client’s
OutputStream) to receive messages for the
Client.

DataOutputStream dataout . DgtaOutputSttream associated with every
ServerThread (which will be the Client’s
imputStream) to send messages to the Client

With these data members and the constructor of the ServerThread class, our

ServerThread.java should now contain the following.

76

import java. net.Socket;
import java. 10.*;

import java.awt.*;

public class Server Thread extends.Thread {

private Socket mySocket;

private DatalnputSteam datain;

private DataOutSteam dataout;

private int myld;

public ServerThread(Socket m, int Id) throws IOException {

mySocket =m;

myld =1Id;

datain = new DatalnputSteam(new
BufferedInputStream(mySocket.getInputSteam()));

dataout = new DataOutputStream(new
BufferedOutputStream(myScoket.getOutputStream()));

}

4, Now we should override the rﬁn() method of Thread class in ServerThread class

Assuming you have a function processsRequiests() in this class, the run method

77

~will call the procesé Requests() while tixere are more requests from theClient. In
the meantime, after processing every requires, the Thread should yield to the other
ServerThreads to process their respective Client request. After all the .request are
_processed we should close the sockets and streams that are open. Enter the

following method into the ServerThread class.

public void run(){
try {
while (processRequests())

yield(); // yield to other threads too!

cleanUp();
} catch (IOExcéption e}{

System.out.printin (“Eror in processing request”);

void CleanUp() {

try {

detain.close();

dataour.clsoe();

78

mySocket.clsoe();
catch (IOException 10){

printOut(io.getMessage());

5. Let retrieving he contents of a requested file be a service provided by the
ServerThread. When the ServerThread receives a message “File” from a Client
throughout the .Dataln}’)utStreax;l, it understands that the Client is requesting a file
to be retrieves and it expects another message from the Cliént indicating the name
of the file to be retrieve. The ServerThread then reads the file and sends its
contents using the DataOutputStream. If the message is “By”, the SrerverThreéd
understands that thc% Client intends to close the session and so the method returns.
false. This makes the Server Thread’s run() method terminate and so the
ServerThreads gets disposed. To achieve the described effect, include the
following processRequests(method, whose return type is boolean. This method

assumes the existence of a GetFile() method in this class.

private Boolean processRequests() theows IOException {

try

79

String req = datain.readUTF();
if (req.equals(“File”)){

String file = datain.readUTF():

GetFile (file);
return true;
}
else if (req.equais(“Bye™)
return false;
else {
System:out.érintln(“Unknown service requested”);
return false; -
}

} catch(IOExcetpion ioe) {
System.out.println(Error in input from Client”);

return false;

As a final part of our ServerThread class, we should now implement the GetFile()
method. Given a filename, this method will first check to see if the file exists and
if it does, whether it is readable. Then using the file, the method creates a

DatalnputStream by passing the FileInputStream as a parameter. Next the method

80

read the file line-by-line and sends the line contents to the Client using the
DataOutputStream object named dataout. It follows the file contents with an End

Of file message to the Client. Add the following code into theServerThread class.

private void GetFile(String ﬁle_namé) {
// buffer to get all the Lines in the file

StringBuffer buff = new StringBuffer();

file f = new File (file_name),
boolean b = (f.exists() || f.canRead());
if (b)
printour(“File either doesn’t exists or is unreadable”);
try {
DataInputStr;eamf_in = new SatalnputSteam(new
BufferedInputSteam(new

FilelnputStream (file_name)));

While (f_in.available() 1=0) {
String line = {_in.readLine();
buff.append(line + “\n”);

dataout.flush();

81

dataout.writéUTF(EﬁdofF ile”);
dataout.flush()();
} catch (I0Exeception ioe) {

System.out.print(Error in handling file™);

The Client class is the next one to be created Client is the class that will be ‘
launched as an applet from the Web browser. So it extends the applet and in this
irnplementaﬁon, implements the Runable interface. It acts as a client requesting
service from an existing Serveri According to the specification, this should also as
a stand-alone application. It has instances of Socket, DatalnputStream,
| DataOutputStream, and Thread as its members. It should also implement user

interface with three buttons : clientinfor, serverfo and fileninfor.

Time implément this as a stand-alone- application you need to write a method
main(). the following code listing implements this method, which obtains the
server name and poﬁ number from thé command line. An instance of Client is
created and a method myinit() is invoked to pass the parameters to the Client

object. Then the Client Thread is started and a Frame is initialized to contain the

82

three buttons to be created Enter the following code in the client class to extend it

as a stand-alone application..

Public static void main(String args[]) throws IOException {
Frame f = new frame (Client-Server Information™);

// obtain the port number from second parameter on command line.

int port = (hew Integer (args[1])). intValue();
// convert it to an inter from its string value
Client Clnt = new Client(); // initialize and start it

client.start();

f.add(“Center”, Clnt); - // create the frame

f.resize (600, 800);

f.show();
}
9. Now that we have Buttons in the Panel, we have to override the action () method

so that appropriate action is taking when a button is pressed. The following code
achieves this. Enter the code in the class Client. Also include two variable, count

will keep track of the lines prinied out to the canvass.

83

String InpStr] 1;

int count;

public Boolean action (Evem evt, object arg) {
if(evt. target instanceof Button) { // if a Button is pressed
count =0;
if (“clientinfor”.equals(arg)) { // if client button is selected
int port_num = sock.getPort();
printOut(“Client has connected to a Server listening at the port number” + port_num);
ClienetInfor();
printOut(“\n\n");
}
else if(“sewerinfor”.equals(arg)) { Ihf serverinfo is requested

Serverlnfo(); |

printOut(“/n/n”);
-
else if(“fileinfor”. equals(arg)) { // if ﬁleinfb{ is requested
try {

" // Wr requesting the contents of file by name /etc/motd String file_name = new

String(“/eetc/motd™); |

MakeRequests(file_name);

84

} catch (ArraylndexOutOfBoundsException a) {

printOut (“For accessing remove file »\n\tUsage : java client <filename>*);
v

printOut(\n \n”); // a pretty print method available within this class

}

}

return true;

}

10. Information about the Client is to be retrieved when the clientinfo button id

pressed. Including the following method in Client class will make this happen. I
the Inet address of the local host is made available, then more details can be
obtained from the InetAddress instance that will reflect the client machine

information.

/** Method to obtain information about the client host */
public void clentInfo() {
InetAddress ¢_inet;
String ¢_name;.
try {
¢_inet = InetAddress.getLocal (Host (); // InetAddress of the Local host
¢_name=inet.getHostname (); // Get the host name of the client

printOut(*“Clent Host Details «);

85

printOut(* HostName : “ + ¢_name);

// get the string form.of the inet address and extract the: TP address part of it .
String ¢_str = c_inet.toSting ();
int intex = c_str.indexOf (*/°);
String c_ipaddr = c_str.substring kindex+l);
printOut (““ IP address : “ + ¢_ipaddr);
tcatch (IOException IOE);

}

11. Server details can be obtained from the server’s InetAddress in a similar manner
as from the Client’s. To get the InetAddress of the sexrver, the Socket instance is
used. The getlnetAddress () method of Socket class is wsed. Include the following

code in the Client class.
/** Method to obtain information about the server */

public void ServerInfo() { -
InetAddress s_inet = sock.getInetAdciress();
String s_name +inet;getI~IostName O
- printOut (“ Server Host Details “);

printOut (“HostNamie : “ + s_name);

\

86

-String s_str = S_inet.toSring();
int index = s_str.indexOf (* /);
String S_ipaddr = s_str.substring (index+1);

printOut(* IP Address : “ +s_ipaddr):

12. The following Make. requests () method is used to send the file name to the server
and request the contents of the file. The client then reads the reply from the server
and prints it on the screen until the end- of file is reached. The datain and dataout
members of type Datalnput Streém and DataOutputStream are used by the Client

to communicate with the Server.
public void MakeRequests(Stringfil n) {

printOut(“File requested by the client : “ +file_n);

printout (“\n \n”);

printOut(The file contains the folldwiﬁg R

printOut(‘“\n \n);

try {
dataout.writeUTF(File”); // informa the server that youare requesting afile
dataout.flush(); | // send the filename to the server
dataout.writeUTF(fil_n); // always a use flush() after using write() method of

// outputstream

87

String file_contents = datairi.readUTF();
while (!file_contents.eqauls(“EndofFile™)){
printOut(ﬁle_c;)ntents); |
file_contents = datain.readUTF();
dataout writeUTF(“Bye”); |
data out.flush(); // transaction is complete
dataout. flush();
} catch (IOException ioE){
// catch the i/o exception

System.out.println(“Oops! file prob”);};

13. Iﬁclude the following methods in the class client, To print the strings on the
canvas in an orderly manner, write the printOut() method, which is used by other
methods to print on the canvas. The paint() method is overridden here to write to

the exact locations the canvas.

public.void printOut(Sting str) {
InpStr{count] = new String(str);
count++;
repaint();
try{

mythread.sleep(500);

88

}catch (InterruptedException ie) {};
| .
public void paint(Graphics g) {
‘dimension d = size();
g.setColor(coior.black); // write the contents in black
for (int y=60, i = 0; i <count; i++ {

y +=20; // between each line leave 20 pixels gap

/! draw the string at 40th columns and specified line ‘y’ g.drawString(InpSti[i],40,v);
»
}

14. We should take necessary care to close any open files, steams, or sockets. This
can be done in the stop() method of the Applet, which is called when is called
when the Applet is terminated.

public void stop() {

System.out.pﬁntln(‘iinside Client.stop()”);
if (mytﬁeread '=null) {
mythread.stop();
mythread.stop();

mythread=null;

89

dataout.close();
datain.close();
sock. close();

} catch (IOException E);

15 The above three file are compiled using javac. The serve is ececutedd using the
Java interpreter. Use
java Server

Aat the command prompt to run the Server.

16. The client Applet can be launched from the Web using the following HTML file,

csr.html.

<title> Client-Server Information </title>

<hr>

<applet code = Client.class width = 600 height = 400>
<param name = servPort value = 80>

</Applet>

<hr>

90

The applet, when launched, using the command applet viwever csr. html, will
create Panel what will appear as in Figure . When you press any of the three keys,
appropriate actions taken and details are printedout canvas. This applet implements the

Client-Server information exchange of information between the Client and the Server.
APPLET VIEWER : SERVER APPLET CLASS
Applet

Client Info Server Info File Info

Clinet has connncted to server listening at the port No. 80

Client host Detail
Host Name : scss.stpn.soft.het
IP Address : 202.41.10.67

4.1.2 How the The Applet Works

The server is a stand-alone application. First, start the server on the host you want
to run the server. After starting the server, run‘ the client applet. When the applet comes
up, it displays a window w1th three buttons : clientinfor, serverinfo, fileinfor. If you click
the clientinfor button, the details of the host, on which the client applet is executed, is
displayed on the canvas. If you click the serverinfo button, the details of the server host,
host on which the server is running, is displayed on the window. Where as if you click
on the fileinfor button, the contents of the etc/motd file (in case of Unix system) is
displayed on the screen. If you are interested in any other file, changes the filename in the

code to the desired filename.

91

$.4.2. DEATAILS ANALYSIS DESIGN AND IMPLIMENTATION IN JAVA FOR
CHAT SERVER PROTOCOL

4.2.1 UNDERSTANDING CHAT AREAS

| Ever since the first computres were connected , people have been using them to
talk. A chat area is an interface that lets a group of people talk by typing messages Like
all Internet based program s, chat program must follow a specific protocol. Spgciﬁcally,
chat programs reiy on the : internet chat (IRC) protocol. However ,chatting on a Web
page has been ad-hoc; at best until Java. With java , a web page can have fully
featured chat areas . Features such as instant messages and membership rooms are not
difficult to implement.Due to the applet restrictions, chat applet on the same page will

have to communicate through a server on the computer where they reside.

4.2.2 CREATING OWN CHAT PROTOCOL

To create own chat area using java, we must have to define protdco].Protocbl
allows a client and server té communicate across a network. To write our own protocol
we must have to define the infomation that the client and server will exchange. For a
chat area , the client must be able to send its name , receive the names of the people in
the client , send méssages that appear on the .chat areas message board . The server

must be able to update the client list when someone enters or leaves the room, or

92 .

“when there is a new message.

client-server application.

Following table shows a simple protocol for a chat area

MSG: message

QUIT

Protocol Client Server Description
Hi name yes no _ connect to a chat server.
TAKEN no yes connection refused because
name is taken.
PEOPLE:name:name............ no yes list of everyone inthe
~ chat area.
yes ves Message to be placed on

the chat area board.

Yes yes close the connection nicely.

4.2.3 BUILDING A CHAT APPLET'S INTERFACE

A' minimum chat applet has two text areas, a text field, a list, and three buttons.

The text field and one button are used to create a name and connect to the chat server.

One of the text areas and dnother button are used to send messages to the chat server

the other text area is used to display messages that are received from the chat server .

The last button is used to disconnect from the server The interface also has a list to

show all the people chat that

_are connect to the server.

93

To implement in java for the chat interface we have to use event handaling

concept.

| Applet Viewer Server. Class

Applet
Name Iscss _ Connect Disconnect
— o
n Send
Message
‘ y
<= =
Applet Started |

First of all define a chat applet class like
public class chatapplet extends Applet{

public void init()

94

{

\
1
[
f
4.2.4 HANDLING THE CHAT APPLET'S EVENTS
The chat applet is an event driven program. we must implement the applet's

action method to capture the button - down events . When the user clicks on the
connect button , the chat applet tries to connect to the chat server After the applet
establishes a socket connection, the chat applet sends its name to the server. when the
user clicks on the disconnect button , the chat applet closes the connection.

In addition , if the chat applet is connected to a server , the user's selection of the

send button causes the applet to send the contents of the message-text area to the chat

server. The following code demonstrates how to process a chat applet events.

public boolean action(Event evt,Object obj)

{

if(evt.target instanceof Button)
{
String lebel= (String) obj;

{

if (label.equals(connect))

[
1

if (soc==null)

95

{

try

{

soc= new Socket(InterAddress.getLocalHost(),
ps= new pri'ntStream(soc‘getoutputStream());
ps.printin(name-text.getText());

ps.-flush();

listen=new Listen(this ;name-txt.getText(),soc);
listen.start(); |

}

catch(loexception e) |

{
System.out.printin("Error:"+e);
disconnect();

}

3

}

else if (label.equals(DISCONNECT))

{

disconnect();
}

else if (label.equals(SEND))

96

no

f1f (socket!=null)

!
3

StringBuffer msg=new StringBuffer("MSg: "):

ps.println(msg.append(msg-txt.getText()));

ps.flush();

B}
h)

3

f

!

J

return true;

public void stop()

!
t

disconnect();

b

public void disconnect()
A

if (soc!=null)

{

try

{

listen.suspend();
ps.println("QUIT");

ps.flush():

97

soc.close();

..
s

catch(IOException ¢)

{

svstem.out.printin(Error:" +e);
j

finally

{

listen.stop();

listen=null;

soc=null;

list.clear();

.

}

}

In the above code Listen class within fhe code.’

The listen class is a thread that listens to the chat server.

4.2.5 PROCESSING MESSAGE RECORD FROM A CHAT SERVER
An event - driven .program can also receive events from other programs. For
chat applet program, we must handle messages received from the chat server . There are

three messages that the chat applet might receive from the chat server.

98

When somecone enters or leaves the chat area . the chat server sends the PEOPLE
keyword followed by a list of names .When client sends a message 1o the chat area . the
chat server sends a MSG keyWord followed by the message. Finally, when the chat
server is going to disconnect , it sends the QUIT keyword. The folloing classes
demonstrates how to handle messages received from a chat server.
class listen extends Thread {

public Listen(chatapplet p,String n, socket s)

}

catch (IOException €)

{
;
}

public void run() -

99

while (true)
{
try}

msg= dis.readLine();

}

catch (IOException e)

.
1

}

if(mg=null)

{

}
if(keyword.equals("PEOPLE");
{

chatApplet.list.cleaf();

while(st.hasMoreTokens())-

{

else if (keyword.equals("MSG"))

100

}
else if (keyword.equals("QUIT")

{_

2
S

——

The Listen class extends to simplify the design of the chat applet also improves
the response to user input Using threads, the chat applet can detect new messages

being sent from the server and take input from the user at the same time .
42.6 HOW A CHAT SERVER ACCEPTS A CLIENT

The first task of a chat server is to creat a server socket on a specific port . Then
the chat server must wait for clients to connect. When a client request a connection ,
the chat server creats a thread for that client , saves the client with a client list , and
then waits for the next clients The following code demonstrates a chat server main

method , where a chat server waits for a new client.

public class chatserver extends Frame{

101

static Vector clients = new Vector(10);

static server Socket server =null;

static int active - connects =0;

static Socket socket =nuli;

public boolean handle eventEvent(Event evt)

{

if (evt.id ==Event. WINDOW-DESTROY)

{

sendClients(new stringBuffer("Quit");
closeAll();
System.exit(0);

}

return super .handleEvent(evt);
}
public static void main (string args[])

{

Frame .f= New chatSewer();
f.resize(200,200);
f.show();

try{

server=new serversocket(2523);

102

}

catch(IOException ¢)

f
§

System.out.printIn("Error" " e);
}

while (true)

{

if(clients.size()<10)

{

try{

socket=server.saccept();

}

catch(IOexception e)

{

System.out.println("Error:" +e);

}

for (int i=0; i<chatserver.client.size();i++
{

client c= new client(socket);
clients.elementAt(i)=c;

if checkName(c))

§
R

c.start;
notifyroém();

;

else {
¢.ps.printn("TAKEN");
dosconnect(c);
break;

}

} .

else

{

try{

Thread.sleep(200);

}

catch(InterruptedException e){}

}

104

4.2.7 CREATING A CHAT SERVER 'S CLIENT THREAD
How to create chat server that lets multiple clients make a connection. For
each of these clients, the chat server must be able to accept messages. The best way

to do this in java is to create a separate thread per client The folloing class

demonstrates how to connect muitiple clients.

class Clients extends Thread{

public void send (String buffer msg)
{

ps.println (msg);

ps.flush(};

}

public clients (socket s,int i)

{

socket =s

try{

dis= new Datalnput Strear.n(s. getlnputSream());
p§= new printstream(s.getOutputStream());

ps.= new printstream(s.getoutputStrearﬁ());
name= dis.readLine();

}

catch (IOException e)

105

d
System.out. println("error:". e):
}
}
public void run()
{
while(true)
{
String liﬁe =null;
try
{

| line= dis .readLine() ;

}

catch (IOException e)‘
{

System.out.printin("error: " +e)
chatserver.dissconnect(this);
chatserver.notify.Rooﬁa(); |
return;

}
if(line=null)

{

106

chatserver.disconnect(this);
chat.server.notifyRoom(); .

return,

}

stringTokénizer st=new StringTokenizer(line," :");
String keyword= st.neXtTokep();

if (keyword=equals("MSG"))

{

- stringBuffer msg= new string Buffer ("msg:");
msg.append(name);
msg.append(st.nexttoken("\0");

chatserver.sendclients(msg);

}

else if (keyward.equals("QUIT");
{

chatse‘rver.disconnect(this);
chatserver.notifyRoom();

this.stop();

}

1
1

107

N
b

[}
b

4.2.8 IMPELEMENTING CHAT SERVER METHODS

Some of the .requests requif the server to send the messages to all other
cIiehts that are connected to the chat server. For example if a client sends a
QUIT message , chat server must notify all other clients that one of the client
has left. Likewise , if a client sends a MSG, the chat server must send all other
clients that message .

When a chat éerve; gets a connection request from anew clients, the cﬁat
server must make sure that the name is not taken away by another clients .

The following code illustrates the processing the server must perform
public static void notifyRoom()
String Buffer people = new String Buffer ("PEOPLE");
for(int i=0; i<clients.size();it+);
{

clients ¢ =clients .elementAt(i);

t.n

people.append(":" c.name); -

}

sendClients(people);

}

public static synchronised void send Clients (StringBuffer msg)

{

108

for (int i=0; i<clients.size(); 1++)

{

chients c= clients .elemeant(i);

c.send(msg);
)
h
}

public static void closeall()

{

while (clients.size())

{

client c= clients firstElement();
try{

c. socket.close();

}

catch(IOException €)

{

system.out.println("Error: "+e);
}

finally{

clients . removalElement(c)

}

}

109

}

public static boolean checkname(Client newcliénts)

{

for (int i=0 ; i<clients.size(); i++)

client c= client.elementAt(i);

if((c '=new clients)&&c.eql;xals(newclieqt.name))
return(false);

}

return(true);

}

public static synchronised void disconnect(Client c)
{

try{

c.send(new stringBuffer("QUIT");

c.socket.close();

}

catch(IOException e).

{

system.out println("Error:" +e);
3
finally

{

110 -

clients.removalElement(c);

[

-

~ |Applet

NG

- _;.?'Applet Viewer Chat Applet Class

Name |Sis Connect Disconnect
= =
i S
' end
Message world speaks the language java
Y

e

Applet Started

L

"CHAPTER 5

.1 CONCLUSION:

th

A Chat Server has developed using JDK- 1.1. In the Chat area a group of people
can talk by typing messages. The Developed Applet is interactive , dynamic and all also
real time for any message. The Applet is to be accessed through Internet. Audio & Video

can be included for real-time face to face talking.

Futures such as instant messages and membership rooms are also implemented.
Due to the applet restrictions chart applets on the same page. will have to communicate

through a server on the computer where they reside.

Running a Chat server on an existing intranet or extranet server allows companies
to offer live interaction among employees and associates, and public chat areas let

organizations host discussions across the Internet.

112

52 REFERENCES

1) www.micr.co.uk

2) www.bcpl.lib.md.vs~frappa/pirch.htmi.

3) A.S. Tanenbaum, Computer Networks (Third Edn.), (PHI) 1997

4) Subhodh Bapat, Object Oriented Networks, PTR Prentice Hall, 1994 |
5) PC Magazine, Can we chat? May 27, 1997

6) IEEE Communications , Vol 35, no. 5 (May issue), no. 6(June issue), no. 10 (Oct.
issue), 1997 (Complete issue)

7) Michale Morrison, Unleashed Java (Samsnet), 1995

8) P. Naughton , Herbert Schildt, The complet references Java (TMH), 1997

	TH66650001
	TH66650002
	TH66650003
	TH66650004
	TH66650005
	TH66650006
	TH66650007
	TH66650008
	TH66650009
	TH66650010
	TH66650011
	TH66650012
	TH66650013
	TH66650014
	TH66650015
	TH66650016
	TH66650017
	TH66650018
	TH66650019
	TH66650020
	TH66650021
	TH66650022
	TH66650023
	TH66650024
	TH66650025
	TH66650026
	TH66650027
	TH66650028
	TH66650029
	TH66650030
	TH66650031
	TH66650032
	TH66650033
	TH66650034
	TH66650035
	TH66650036
	TH66650037
	TH66650038
	TH66650039
	TH66650040
	TH66650041
	TH66650042
	TH66650043
	TH66650044
	TH66650045
	TH66650046
	TH66650047
	TH66650048
	TH66650049
	TH66650050
	TH66650051
	TH66650052
	TH66650053
	TH66650054
	TH66650055
	TH66650056
	TH66650057
	TH66650058
	TH66650059
	TH66650060
	TH66650061
	TH66650062
	TH66650063
	TH66650064
	TH66650065
	TH66650066
	TH66650067
	TH66650068
	TH66650069
	TH66650070
	TH66650071
	TH66650072
	TH66650073
	TH66650074
	TH66650075
	TH66650076
	TH66650077
	TH66650078
	TH66650079
	TH66650080
	TH66650081
	TH66650082
	TH66650083
	TH66650084
	TH66650085
	TH66650086
	TH66650087
	TH66650088
	TH66650089
	TH66650090
	TH66650091
	TH66650092
	TH66650093
	TH66650094
	TH66650095
	TH66650096
	TH66650097
	TH66650098
	TH66650099
	TH66650100
	TH66650101
	TH66650102
	TH66650103
	TH66650104
	TH66650105
	TH66650106
	TH66650107
	TH66650108
	TH66650109
	TH66650110
	TH66650111
	TH66650112
	TH66650113
	TH66650114

