
J)ES!G·I~ING OF APPLET FOR·CLIENT
SERVER INFORMATION & CHAT . '

SERVER PROTOCOL

D~ssertatfon submitted in partial fulfillment of the requirerhen,s for the
award of the degree of

MASTER. OF TECHNOLOGY
in

COMPUTER SCIENCE

by '

DEBENDRA KUMAR DHIR
'I'

SCHOOL OF COMPUTER AND SYSTEM SCIENCES
JAW AHARLAL NEHRU UNIVERSITY

NEW DELHI -110 067
JANUARY, 1998

005.758 TH

=0537 · ·De ·

. Ill lr!IIIIIJII· 11111111111 · . ·
. TH6665' ·

. _,IL _ J

CERTIFICATE

This is to certify that the dessertation entiled Designing of APPLET for client

server application a,d chat server protocol being submitted by Debendra Kumar

Dhir to the school of computer and system sciences, Jawaharlal Nehru . University ,

New Delhi, in partial fulfilment of the requirments for the award of degree of Master

of technology in Computer science is a bonafied work carried by him under the

guidance and supervision of Prof R.C. Phoha .

The matter embodied in the dissertation has not been submitted for the award of

any other degree or diploma.

~
Prof R.C. Phoha
SC&SS
Jawaharlal Nehru University
New Delhi 110067

Q{'~~
ffi/7· Prof P.C.Saxena \

Dean SC&SS
JAW AHARLAL NEHRU UNIVERSITY
New Delhi 110067

Debendra kumar Dhir

ACKNO\\'I..~EDGEMENT

The succes of this ·project has largely been due to the invaluable guidance of

Prof R.C Phoha , my superviser. My profound thanks to him for his helpful

suggestions and motivation through out my work. I would like to thank Prof P.C.

Saxena Dean SC&SS, for provinding the necessary facilities to complete this project.

I sincerly thank all my friends and faculty for thair insightful comments and

help.

~~~~~"' ~~e>v-.r ~~ 
DEBE~RA KUMAR- DHIR 

2 



CONTENTS 
CHAPTER I. 

INTRODUCTION 

1.1 Servers 

1.2 Clients 

1.2.1 Operators 

1.3 Channels 

1.3.1 Channel Operators 

1.4 The IRC Specification. 

1.4.1 Overview 

1.4.2 Character codes 

1.4.3 Messages 

1.4 .. 3.1 Messages format in pseudo BNF 

1.4.4 Numeric replies 

1.5 IRC Concepts 

1.5.1 One-to-One Communication 

1.5.2 ·one to many Communication 

1.5.2.1 To a list 

1.5.2.2 To a group (channel) 

1.5.2.3 To a host/server mask 

1.5.3 One to all 

1.5.3.1 Client to Client 

1.5.3.2 Clients to Server 

1.5.3.3 Server to Server 

1.6 What is an applet ? Difference between applets and application. 

1. 7 Out line for rest of the report 

CHAPTER-2 

BASIC CONCEPT FOR DESIGNING AN APPLET 

2.1 Applet overview 

4 



2.2 The essential Applet methods. 

2.3' Applet Parameters 

2.4 Communication between the Applet and the Browser 

2.5 Using the Threads in Applets. 

2.6 Inter Applet communications within the Browser. 

2. 7 Graphics class concepts. in appletes 

2.8 Class and interface necessary for developing an Applet. 

CHAPTER-3 55-68 

THEORITICAL CONCEPT OF NETWORKING AND CLLIENT SERVER 

3.1 Client server applilcations 

3.2 Connection oriented protocol 

3.3 Connectionless protocol 

3.4. · Sockets 

3.5 Classes and Interface for developing netwrok application using java. 

CHAPTER-4 68-111 
. . 

4.1 Detail Analysis Design and implementation for Client Server information 

4.11. Building applet 

4.12. How the applet works 

4.2. Detail Analysis Design and implementation for Chat Sever protocol.. 

4.2.1 Understanding Chat Areas 

4.2.2 Creating Our Own Chat Prtocol 

4.2.3 Building a Chat Applet 

4.2.4 Handling the Chat Applet 

4.2.5 Processing Messages Recived From a Chat Server. 

4.2.6 How a Chat Server Accept Clients. 

4.2.7 Creating a Chat Server's client Thread. 

4.2.8 Implementing Chat Server Methods. 

CHAPTERS 

5.1 Conclusion. 
5.2 References 

4 

112-113 



FIGURES WITHIN THIS PROJECT REPORT 

1.1 Format OfiRC Server Network 

1.2 Sample Small IRC Network 

2.1 The Applet Class Hierarchy 

2.2 Sequence Oflnit Start, Stop And Destroy Class For An Applet 

2.3 Pathways Of Data E.xchange Between The Applet, Applet Context And Applet 
Stub Object 

2.4 Class Diagram For The Graphics Class 

2.5 ·Class Diagram Of The Applet Class 

· 3.1 A Client Server Communication Scenario 

3.2 Distribution Of Hosts Among Different Subnets Over The Internet 

3.3. Conceptual Representation Of Internet Addressing 

3.4 Class Diagram For Inet Address Class. 

3.5 Class Diagram.For Server Socket Class.· 

4.1 Sequence of Actions in the Client-Server Information 

5 



ABSTRACT 

Everybody uses e-mail, and most Intem~t users have been on Usenet news groups 

or visited the forums in compuServe or AOL. But despite the strengths of these 

technologies, they share one major limitation: They're not real-time. E-mail and Usenet 

are messaging systems, and although they can approximate the feel of conversion at 

times, ·they lack the true spontaneity of live interaction. In some ways, that can be an 

advantage people can compose and read messages as their schedules allow - but we all 

know that sitting around a table talking with one another has a lot of advantages too. So 

in this report I have developed real time interactive and dynamic Applet so that a group 

of people can talk by typirig message. Also I have developed client server information 

applet to get the client server information which is used in chat server. 



CHAPTER! 

INTRODUCTION 

Chat means basically we spend our time in one or more windows, each 

representing a different channel or user. The window in split into two panes : the viewing 

area and the composing area. We read the incoming messages in the viewing area, and 

we type our own messages in the composing area. . What we type doesn't appear until 

you press the Enter key or click the Send button, so you have a chance to edit what you'll 

send. In practice, however, users dash off comment, question, or reply, then send it 

quickly for the sake of staying with the conversation. 

Running a Chat server on an existing intranet or extranet server allows companies 

to offer live interaction among employees and associates, and public chat areas let 

. . 
ortganizations host discussions across the Internet. 

Internet Relay Chat Protocol 

The IRC protocol was developed over the last 4 years since it was first 

implemented as a means for users on a BBS to chat amongst themselves. Now it supports 

a world-wide network of servers and clients, and is stringing to cope with growth. Over 

the past 2 years, . the average number of users connected to the main IRC network has 

grown by a factor of 10. 



TI1e IRC proto'col is a text-based protocol, with the simplest client being any 

socket program capable of connecting to the server. The IRC (Internet Relay Chat) 

protocol has been designed over a number of years for use with text based conferencing. 

The IRC protocol has been developed on systems using the TCP/IP network 

protocol, although there is ·no requirement that this remain the only sphere in which it 

operates. 

IRC itself is a teleconferencing system, which (through the use of the client­

server model) is well-suited to running on many machines in a distributed fashion. A 

typical setup involves a single process (the serVer) forming a central point for clients (or 

other servers) to connect to, performing the required message delivery/multiplexing and 

other functions. 

1.1 Servers 

The server forms the backbone of IRC, providing a point to which clients may 

connect to to talk to each other, and a point for other servers to connect to, forming an 

IRC network. The only network configuration allowed for IRC servers is that of a 

spanning tree [see Fig 1.1] where each server acts as a central node for the rest oi the net 

it sees. 



[ Server IS..] [ Server 13 ] [ Server I4] 
I \ t.. ' 
I \ I 

[ Server II ] ------ [ Server I ] [Server 12] 
I \ I 
I \ I 

[Server 2] [ Server'J] 
I. \ 

I \ 
[Server 4] 
I I ,~_, 

I I \ ~ 

[Server 5] 
I 
I 

I I \ "-__ 
'· 

I I \ ""' I 

\ "'--. 

\ 
I Server 6] 

I 

[ Server 7 ] [ Server 8-] [ Server 9 ] [Server IO] 

[etc.] 

[ Fig.l.l. Format ofiRC server network] 

1.2 Clients 

A client is anything connecting to a server that is not another server. Each client 

is distinguished from .other clients by a unique nickname having a maximum length of 

nine (9) characters. See the protocol grammar rules for what may and may not be used in 

a nickn~e. In addition to the nickname, all servers must have the following information 

about all clients: the real name of the :host that the client is running on, the usemame of 

the client on that host, and the server to ~hich the client is connected. 

1.2.1 Operators 

To allow a reasonable amount of order to be kept within the IRC network, a 

special class of clients (operators) is allowed to perform general maintenance functions 



on the network. Although the powers granted to an operator can be considered as 

'dangerous', they are nonetheless required. Operators should be able to perform basic 

network tasks such as ·disconnecting and reconnecting servers as needed to prevent long-

term use of bad network routing. In recognition of this need, the protocol discussed 

herein provides for operators only to be able to perform such functions. 

. . 
A more controversial power of operators is the ability to remove user from the 

connected network by 'force', i.e. operators are able to close the connection between any 

client and server. The justification for this is delicate since its abuse is . both 

destructive and annoying. 

1.3 Channels 

A channel is a named group of one or more clients which will all receive messages 

addressed to that channel. The channel is created implicitly when the first client joins it, 

and the channel ceases to exist when the last client leaves it. While channel exists, an 

client can reference the channel u~ing the name of the channel. 

Channels names are strings (beginning with a '&' or '#' character) of length up to 

200 characters. Apart from the the requirement that the first character being either '&' or 

'#'; the only restriction on a channel name is that it may not contain any spaces (' '), a 

control G ("G or ASCII 7); or a comma(',' which is used as a list item\ separator by the 

protocol). 

There are two types or-channels allow~d by this protocol. One is a distributed 

channel which is known to all the servers that are connected to the network. These 



chrumels are marked by the first character being a only clients on the server where it 

exists may join it. These are distinguished by a leading'&' character. On top of these two 

types, there are the various channel modes available to alter the characteristics of 

individual channels. 

To create a new channel or become part of an existing channel, a user is required 

to JOIN the channel. If the channel doesn't exist prio to joining, the channel is created 

and the creating user becomes a channel operator. If the channel already exists, whether 

or not your request to ~OIN that chann~l is honoured depends on the current modes of the 

channel. For example, if the channel is invite-only, (+1), then you may only join if invited. 

As part of the protocol, a user may be a part of several channels at once, but a limit of ten 

( 1 0) channels is recommended as being ample for both experienced an novice users. If 

the IRC network be~omes disjoint because of a split between two servers, the channel on 

each side is only composed of those clients · which are connected to servers on the 

respective sides of the split, possibly ceasing to exist on one side of the split. When the 

split is healed, the connecting servers announce to each other who they think is in each 

channel and the mode of that channel. 'If the c}lannel exists on both sides, the JOINs and 

MODEs are interpreted in an inclusive manner so that both sides of the new connection 

will agree about which clients are in the channel and what modes the channel has. 

1.3.1 Channel Operators 

The channel operator (also referred to as a "chop" or. "chanop") on a gtven 

channel is considered to 'own' that channel. In recognition of this status, channel 

operators are endowed with certain powers which enable them to keep control and some 



sort of sanity in their channel. As an owner of a channel, a channel operator is not 

required to hav reasons for their actions, although if their actions are generally antisocial 

or otherwise abusive, it might be reasonable to ask an IRC operator to intervene, or for 

the users just leave and go elsewhere and form their own channel. 

The commands which may only be used by channel operators are: 

KICK - Eject a Client from the channel 

MODE - Change the channel's mode 

INVITE -Invite a client to an invite-only channel (mode +i) 

. . 
TOPIC -Change the channel topic in a mode +t channel 

A channel operator is identified by the '@' symbol next to their nickname whenever it 

is associated with a channel (ie replies to the NAMES, WHO and WHOIS commands). · 



1.4 The IRC Specification 

1.4.1 Overview 

The protocol as described herein is for use both with server to server and client to 

server connections. There are, however, more restrictions on client connections (which 

are considered to be untrustworthy) than on server connections. 

1.4.2 Character codes 

No specific character set is specified. The protocol is based on a set of codes 

which are composed of eight (8) bits, making up an octet. Each message may be 

composed of any number of these octets; however, some octet values are used for control 

codes which act as message delimiters. 

Regardless of ~eing an 8-bit protocol, the delimiters and keywords are such that 

protocol is mostly usable from USASCII terminal and a telnet connection. 

Because ofiRC's scandanavian origin, the ch~cters {}I are considered to be the 

lower case equivalents of the characters []\, respectively. This is a critical issue when 

determining the equivalence of1wo nicknames. 

1.4.3 Messages 

Servers and clients send eachother messages which may or may not generate a reply. If 

the message contains a valid command, as described in later sections, the client should 



expect a reply as specified but it is not advised to wait forever for the reply; client to 

server and server to server communication is essentially asynchronous in nature. 

Each IRC message may consist of up to three main parts: the prefix (optional), the 

command, and the command parameters (of which there may be up to 15). The prefix, 

command, and all parameters are separated by one (or p1ore) ASCII space character( s) 

(Ox20). 

The presence of a prefix is indicated with a single leading ASCII colon character 

(':', Ox3b ), which must be the first character of the message itself. There must be no gap 

(whitespace) between the colon and the prefix. The prefix is used by servers to indicate 

the true origin of the message. If the prefix is missing from the message, it is assumed to 

have originated from the connection from which it was received. Clients should not use 

prefix when sending a message from themselves; if they use a prefix, the only valid prefix 

is the registered nickname associated with the client. If the source identified by the prefix 

cannot be found from the server's internal database, or if the source is registered from a 

different link than from which the message arrived, the server must ignore the message 

silently. 

The command must either be a valid IRC command or a three· (3) digit number 

represented in ASCII text. 



IRC messages are always lines of characters terminated with a CR-LF (Carriage Return 

- Line Feed) pair, and these messages shaH not exceed 512 characters in length, counting 

all characters including the trailing CR-LF. Thus, there are 510 characters maximum 

allowed for the command and its parameters. There is no provision for continuation 

message lines. 

1.4.3.1 Message format in ··pseudo' BNF 

The protocol messages must be extracted from the contiguous stream of octets. 

The current solution is to designate two characters, CR and mLF, as message separators. 

Empty messages are silently ignored, which permits use of the sequence CR-LF 

between messages without extra problems. 

The extracted message is parsed into the components <prefix>, <command> and 

list of parameters matched either by <middle> or <trailing> components. 

The B"NF representation for this is: 

<message> ::= [':' <prefix><SPACE>] <command> <params> <crlt> 

<prefix> ::= <servemame> I <nick> ['!'<user>] [ i@' <host>] 

<command> ::=<letter> {<letter>} !.<number> <number> <number> 

<SPACE> ::=" {II} 

<params> ::=<SPACE> [':'<trailing> I <middle> <params>] 

<middle> : := <Any *non-empty* sequence of octets not including SPACE 



or NUL or CR or LF, the first of which may not be ':'> 

<trailing> ::= <Any, possibly *empty*, sequence of octets not including 

NUL or CR or LF> 

<crlf.> : := CR LF 

NOTES: 

I) <SPACE> is consists only of SPACE character(s) (Ox20). Specially notice that 

TABULATION, and all other control characters are considered NON-WHITE-SPACE. 

2) After extracting the parameter list, all parameters are equal, whether matched by 

<middle> or <trailing>. <Trailing> is just a syntactic trick to allow SPACE within 

parameter. 

3) The fact that CR and LF cannot appear in parameter strings is just artifact of the 

message framing. This might change later. 

4) The NUL character is not special in message framing, and basically could end \lP 

inside a parameter, but as it would cause extra complexities in normal C string handling. 

Therefore NUL is not allowed within messages. 

5) The last parameter may be an empty string. 

6) Use of the extended prefix(['!' <user>]['@' <host>]) must not be used in server to 

server communications and is only intended for server to client messages in order to 



provide clients with more useful infom1ation about who a message is from without the 

need for additional queries. 

Most protocol messages specify additional semantics and syntax for the extracted 

parameter strings dictated. by their position in the list. For example, many server 

commands will assurrie that the first parameter after the command is the list of targets, 

which can be described with: 

<target> : := <to> [ "," <target> ] 

<to> ::= <charuiel> I <user>'@''<servemame> I <nick> I <mask> 

<mask> : := ('#' I '$') <chstring> 

<chstring> ::=<any 8bit code except SPACE, BELL, NUL, CR, LF and 

comma (' ,')> 

Other parameter syntaxes are: 

~user> : := <nonwhite> { <nonwhite> } 

<letter> · ·= 'a' 'z' I 'A' 'Z' ... .... . .. 

<number> ::='0' ... '9' 

<special> ::='-'I '£'.1 T I'\' I,., I'"' I'{' I'}' 

<nonwhite> : := <any 8bit code except SPACE (Ox20), NUL (OxO), CR 

(Oxd), and LF (Oxa)> 



1.4.4 Numeric replies 

Most of the messages sent to the server generate a reply of some sort. The most 

common reply is the numeric reply, used for both errors and normal replies. The 

numeric reply must be sent as one message consisting of the sender prefix, the three digit 

numeric, and the target of the reply. A numeric reply is not allowed to originate from a 

client; any such messages received by a server are silently 

dropped. In all other respects, a numeric reply is just like a normal message, except that 

the keyword is made up of 3 numeric digits rather than a string of letters. 

1.5. IRC .COncepts. 

This section is devoted to describing the actual concepts behind the organization 

of the IRC protocol and how the current implementations deliver different classes of 

messages. 

1--\ 
A D---4 

2--/ \ I 
B----C 

I \ 
3 E 

Servers: A, B, C, D, E Clients: 1, 2, 3, 4 

[ Fig.l. 2 Sample small IRC network] 



1.5.1 One-to-one communication · 

Communication on a one-to-one basis is usually only performed by clients, since 

most server-server traffic is not a result of servers talking only to each other. To provide 

a secure means for clients to talk to each other, it is required that all servers be able to 

send a message in exactly one direction along the spanning tree in order t9 reach any 

client. The path of a message being delivered is the shortest path between any two points 

on the spanning tree. The following examples all refer to Figure 1.2 above. 

Example 1: 

A message between clients 1 and 2 is only seen by server A, which sends it 

. straight to client 2. 

Example2: 

A message between clients 1 and j is seen .by servers A & B, and client 3. No other 

clients or servers are allowed see the message. 

Example3: 

A message between clients 2 and 4 is seen by servers A, B, C & D and client 4 only.· 

1.5.2 One-to-many 



The main goal of IRC is to provide a forum which allows easy and efficient 

conferencing (one to many conversations). IRC offers several means to achieve this, 

each serving its own purpose. 

1.5.2.1 To a list 

The least efficient style of one-to-many conversation is through clients talking to 

a 'list' of users. How this is done is almost self explanatory: the client gives a list of 

destinations to which the message is to be delivered and the server breaks it up and 

dispatches a separate copy of the message to each given destination. This isn't as efficient 

as using a group since the destination list is broken up and the dispatch sent without 

checking to make sure duplicates aren't sent down each path. 

1.5.2.2 To a group (channel) 

In IRC the channel has a role equivalent to that of the multicast group; their 

existence is dynamic (coming and going as people join and leave channels) and the 

· actual conversation carried out on a channel is only sent to servers which are supporting 

users on a given channel. If there are multiple users on a server in the same channel, the 

message text is sent only once to that server and then sent to each client on the channel. 

This action is then repeated for each cJient-server combination until the original message 

has fanned out and reached each member of the channel. 



21 

The following exa.111ples all refer to Figure 1.2 

Example 4: 

Any channel with I client in it. Messages· to the channel go to the server and then 

nowhere else. 

Example 5: 

2 clients in a channel. 'All messages traverse a path as if they were private messages 

between the two clients outside a channel. 

Example6: 

Clients I, 2 and 3 irt a channel. AU messages to the channel are sent to all clients and 

only those servers which must be traversed by the message if it were a private message to 

a single client. If client 1 sends a message, it goes back to client 2 and then via server B 

to client 3. 

1.5.2.3 To a host/server mask TH- 66£5 

To provide IRC operators with some mechanism to send messages to a ·large body of 

related users, host and serv~r mask messages are provided. These messages are sent to 

users whose host or server information match that of the mask. The messages are only 

sent to locations where users are, in a fashion similar to that of channels. 



1.5.3 One-to-all 

The one-to-all ~pe of message is better ·described as a broadcast message, sent to 

all clients or servers or both. On a large network of users and servers, a single message 

can result in a lot of traffic being sent over the network in an effort to reach all of the 

desired destinations. . 

For some messages, there is no option but to broadcast it to all servers so that the 

state information held by each server is reasonably consistent between servers. 

1.5.3.1 Client-to-Client 

There is no class of message which, from a single message, results in a message being 

sent to every other client. 

1.5.3.2 Client-to-Server 

Most of the commands which result in a change of state information (such as 

. . 
channel membership, channel mode, user status, etc) must be sent to all servers by 

default, and this distribution may not be changed by the client. 

1.5.3.3 Server-to-Server. 

While most messages between servers are distributed to all 'other' servers, this is 

only required for any message that affects either a user, channel or server. Since these are 

the basic items found in IR~, nearly all messages originating from a server are broadcast 

to all other connected servers. 



1. 6 WHAT IS AN APPLET? DIFFERENCE BETWEEN JAVA. APPLET 
AND APPLICATION 

Java programs come in two flavours: applet and application simply speaking . a 

Java applet ts a progran1 that appears embedded in a web document; Java 

application is the term applied to all other kinds of java programs , such as those 

found in network servers and consmer electronics. 

Traditionally, the word applet has come to mean any small 

application . In java , an applet is any Java program that is lunched from a Web 

document; that is from an HTML file. Java applications, on the other hand, are programs 

that run from a command line, independent if a Web browser. There is no limit to the size 

or complexity of a Java applet. Java applets are in some ways more powerful than java 

applications. However, with the Internet where communication speed is limited and 
. . 

downlodad times are long, ,most Java applets ae necessarily small. 

The technical differences between applets and applications stem from the context 

in which they run. A j~va applications, runs in the simplest possible environment-its only 

input from the outside world is a list of command-line parameters. On the other hand, a 

Java applets receive'S a lot of information from the Web browser:it needs to know when it 

is initialized, when and where to draw itself in the browser window, and when it is 

activated or deactivated. As a consequence of these two very different execution 

environments, applets and applications have different minimum requirements. 

The decision to write a program as an applet versus an application depends on the 

context of the program and its delivery mechanism. Because Java applets are always 



presented in the context of a Web browser's graphical user interface, Java applications are 

preferred over applets when graphical displays are unnecessary. For example, A 

Hypertext Transfer Protocol(HTTP) server written in Java needs no graphical display; it 

requires only file and network access. 

Differences between Java Applets and Applications 

Java Application 

Uses graphics optional 

Memory requirements Minimal Java Application 
requirements 

Java Applet 

Inherently graphical 

Java application requirements plus Web 
browser requirements 

Distribution Loaded from the file system or by Linked via HTML and transported via 

a custom class loading process 

Environmental input Command line parameters 

Method expected by main-startup method 
the Virtual Machine 

1. 7 Out line for Rest of the report 

HTTP 

Browser client location and size; parameters 
embedded in the host HTML document 

init-initialization method 
start-startup method 
stop-pause/deactive method 
destroy-termination method 
paint-drawing method 

In the Chapter 2 describes for procedure for designing an applet like . 

1. essential applet method 

2. applet parameter 



3. using the threads in applets 

4. communication between the applet and browser 

Chapter 3 describes the theoretical concept of networking, client server socket, 

internet address. 

Chapter 4 describes the Detail analysis,Desig~ implementation in Java for client server 

inform_ation and chat server protocol applet. 

Chapter -5 is for conclusion and reference 



CHAPTER-2 
BASIC CONCEPT FOR DESIGNING AN APPLET 

2.1 Applet Overview 

Packaging interactive content in small, easily distributed objects was a design 

feature that had high priority to the developers of Java. To meet this design goal, they 

created the Applet class, along with several objects and interfaces designed to simplify 

image and audio processing. 

An Applet is a custom interface component object, similar in concept to a Windows 

custom control, or an X-Windows width. Applet-aware applications (or "applet brows~rs") 

can load and construct Applet objects from URLs pointing to Class files anywhere on a 

network, including the Internet, the largest network of them all. The Java Developer Kit's 

(JDK) Hot Java World Wide Wab browser is an example of an applet-aware application. 

Using it, we can access interactive Applets from anywhere on the Internet, or Applets 

developed on the local file system. Security features of the Java language ensure distributed 

applets cannot damage .or compromise tP.e security of a local system. 

Using the graphical capabilities of Java, applets are visually exciting multimedia 

elements. Through objects of the class java.awt, Graphics applets can create graphical on -

screen content. The graphics class is included in this chapter because of the need for applets 

to display exciting visuals. 

Because of all these features, applets have become the preferred method for 

distributing interactive content on the World Wide Web, A library of reusable, extensible 

Applets is one of the cornerstones of an Internet content creator's tool it. 



Object 

Applets 

All objects inherit 
from object 

Component Windows visual 
function 

Container Able to manage 
multiple components 

Panel Simple non-abstract 
container 

Applet 

· Figure 2.1 The Apple~ class hierarchy 

The above Figure above illustrates the Applet class hierarchy. Most ancestors of 

Applet in this hierarchy are Abstract windows Tool kit (AWT) classes. Throughout them, 

the Applet class inherits windowing capabilities. Specifically, the Applets display, surface 

drawing, and mouse and keyboard event handling functionalities are gained through these 

ancestors. All examples and discussions in this chapter stop short of utilizing A WT 

methods other than those that provides applets with their graphical capabilities. But keep 

in mind the rich set of facilities the A WT classes have when designing your own custom 

Applet classes. 

Applet objects are created and controlled by a container application called an 

Applet browser. The applet browser arranges applet objects visually on the screen and 

dedicates a rectangle of screen space for the applet to display itself. Most applet browsers 

can manage more than a single Applet object at a time, and actually provide and interface 

for a Applet instance to communicate with each other. 



2.2 The Essential Applet Methods 

The actions of a custom Applet object are ruled by four essential methods 

Applet.init, Applet.start, Applet.stop, and Applet.destrory. The browser itself invokes 

these methods at specific points during the applet's lifetime. The java.applet.applet calls 

declares these methods and provides default. implementations for them. The default 

implementations do nothing. Custom applets override one or more of these methods to 

perform specific tasks during the lifetime of the custom Applet object. Table following 

four methods, details when each is called by the browser, and whose what a custom 

applet's overriding implementation should do. 

Descriptions of the essential applet methods 

Method Description 

in it 

destroy 

start 

stop 

Called once and only once when the applet is first loaded. Custom 

implementations allocate resources that will be required thorough the 

lifetime.of the Applet object. 

Called once and only once just before the Applet object is to be 

destroyed. Custom implementations release allocated resources, 

especially Native resources, which were loaded during init or during 

the lifetime of the Applet object. 

called each time the applet is displayed or brought into the user's 

view on-screen. Custom implementations begin active processing or 

create processing threads. 

Called each time the applet is removed from the user's view. Custom 

implementations end all active processing. Background processing 

threads should either be destroyed in stop, or put to sleep and 

destroyed in the destroy method. 



'The proper place to allocate objects or load data required by the applet throughout 

its lifetime is in it. This method is called only once dming the lifetime of the applet, right 

after the object is created by the browser. Most custom Applets allocate resources 

required through the lifetime of the Applet object in this method. Another very common 

operation performed during init is to resize the applet' s on-screen display surface using 

the inherited method component.resize. Some browsers display applets correctly only if 

the applet calls resize() in init(). The component class is described. 

When the applet drops from view, for example because it is scrolled off the screen 

in the browser or the ~ser opens a different document in the browser, the applet's stop 

method is called. This is the proper time for a custom Applet to cease any processing. 

• Every call to start has a matching subsequent call to stop. 

• The start/stop, for example if the applet is scrolled from the user's view and then 

scrolled back. When it is scrolled from the user's view, stop will be invoked. When it 

is scrolled back, start will be involved for the second time. 

When the applet is finally and definitely to be unloaded from memory, destroy() 

IS invoked. This is the appropriate time to delete any resomces loaded during init(). The 

call to destroy is guaranteed to occm after the last call to stop. Note that while any 

resources allocated by an applet will automatically be cleaned up by Java's garbage 

collection facilities, it is more efficient to remove references to any allocated objects in 

destroy. Also note that resources allocated by "native" methods will not be cleaned up 

any the garbage collection facilities. Native resources must be explicitly released in . 
destroy. (Native methods are platform-specific, dynamically loadable libraries accessible 

from within Java code. For the most part, Applet classes do not use native methods 

because of the severe security constraints placed on Applet objects. 

2.3 Applet Parameters 

Similar to Java applications, applets can receive a process parameters. 
. . 

Applications receive parameters in the argv[] argument to the main method. The elements 



of argv[] are the command line arguments to the application. Analogous to argv[], applet 

parameters are accessed within the applet code by the Applet. get Parameter method. 

Applet is created "'-~------.. .-----~/ 
'v-' 

Potentially start/stop 
call pairs 

Applet is destroyed Times 

Figure 2.2 Sequence of init, start, stop, and destroy calls for an Applet 

Conceptually, the browse maintains an internal listing of all the parameters passed 

on an embedded Applet object. The getParameter method access this internal list and 

retrieves the values specified for a uniquely named parameter. Our new listing uses the 

getParamaeter method. to look up the value for the parameter banned "Paarameter name". 

If no such parameter was passed, getParameter would return null. 

There is a method defined so that Applet so that Applet objects can publish a list 

of valid parameter names, valid values, , and a destruction of getParameterlnfo ·simply 
. . 

returns null, but an overriding implementation should return a String[n][3] 2-dimens~onal 

array where n is the number of unique parameters undertook by members of the Applet 

class. Each row of three strings in this array should be of the format : 

{"parameter name", "valid value rang", "text description"} 

There is no strict requirement on the format of an one of these strings. Each one 

should be suitable for textual display so that someone can read it. For example, the "valid 



value range" string could be "0.-5, meaning the parameter s should be an integer between 

0 and 5. This Apptet class uses its Applet Context to access other active Applet 

instances. A detailed description of the Apple context interface and methods follows this 

discussion of Applet parameters. 

· Different types of browsers use different methods for passing parameters to 

applets. For example, applet-aware World Wide Web browsers generally use the HTML 

(APPLET> container tag to refer to applet code and parameter. Between the <APPLET> 

and </ APPLET> name = [param-name] value = [param-val>]. No matter how parameters , 

are passed into a particular browser, a loaded applet always uses getParameter to retrieve 

parameter values. 

2.4. Communication Between the Applet and the Browser 

Applets obtain information about the state of the browser, what other Applet 

object are currently active, what is the current document opened by the browser, and so 

on, through the java.applet.Applet Context interface. The browser is abstracted by an 

object implementing this interface. 

The browser also exposes some functionalities that an applet can use through this 

interface. For example, the loading of image and audio files into Java objects is handled 

transparently through the Applet context interface. 

BetWeen the Apllet Context and the Applet is an AppletStub object. Its purpose is 

to provide pathway for the .exchange of applet-specific data between the AppletContext 

and the Applet. For example, the parameters for a specific Applet object are accessed by 

the Aplet through AppletStub.getParameter. AppletStub methods are translated into 

native or custom AppletContext method calls (the implementation of the completely up to 

the browser developers). An applet's ApletStub is tightly wrapped by the 

java.applet.Applet implementation. So many so much so that all AappletStub 

funcationalities are exposed as wrapper methods in the java.applet.Applet class. 

Therefore, a custom applet should never need to use its AppletStub directly. Figure 2.3 



illustrates the pathways of data exchange between the Applet, the browser (abstracted by 

the AppletContext interface), and the AppletStub (the Applet's representative to the 

browser). 

Applet Contelt 

The AppletContext Unknown interface 
interface (it really does not matter) 

/,~ 

Applet Stub 

The AppletStub 
interface 

'\ 1/ /I"' 
Applet 

Fig. 2.3 Path ways of data exchange between. the Applet, Applet context and Applet 
stub object · 

2.5 USING THREADS IN APPLETS 

Much the same. as applications,. applets can create Threads to carry on background 

processing. A typical use of this would be an. animation applet. To perform animation, 

the applet creates a new thread and starts it running in start. The animation Thread acts as 

a timer. Every so often, _it wakes and draws a new frame in the animation sequence, then 

suspends itself until the next frame is to be drawn. In the applet' s stop method, the 

animation thread is shutdown. Two versions of this simple animation technique are 

described in greater detaii in the section on the Graphics class and methods. The 

important point here is that Threads generally are made to begin background processing 

an applet's start implementation and either suspended or destroyed in the applet's stop 

implementation. 

We might assume that Threads created by an applet would be automatically halted 

by the browser when the applet is destroyed, so you wouldn't really need to suspend or 



destroy a Thread object explicitly in stop. Instead, you could just leave it to Java's 

garbage collection facilities to destroy our Thread when the Applet object is destroyed. 

Many browsers, however, do not properly halt secondary applet threads, even after the 

applet has been destroyed, so the thread continues to execute after the applet has been 

destroyed. This is a result of applets relying on the Java garbage collection facility to 

destroy their threads. To ensure our custom applets he have as you want them to, include 

ceasing when you want them to cease, suspend any secondary threads in Applet.stop, and 

drop references to them in destroys. 

2.6 INTER-APPLET COMMUNICATIONS WITHIN THE BROWSER 

You can coord~ate the activiti~s of several applets by accessing and manipulating 

other Applet objects from Within Applet code. 

To obtain references to external Applets from within an applet you use the 

Appletcontext getApplet and getApplets methods. The AppletNames Applet 

demonstrates this technique. Once a reference to another Applet is retrieved, your applet 

code can access any public member variable or method of the external Applet object. This 

code snippet retrieves an applet named "My Applet" and calls one of its custom methods. 

Applet applet = getAppletcontext().getApplet("MyApplet"); 

if ( ! (applet instance of MyAppletClass)) return; 

MyApletClass myapplet = (MyAppletClass)applet; 

myapplet.CustomFuncO 

GetApplet takes an applet "name" and returns a reference to the associated Applet 

9bject. This usage model implies the browser internally stores a unique String name 

associated with each applet, which can be used to look up the Applet in the internal 

browser storage. 



GRAPHICS 

Applets are capable of displaying exciting and complex graphics and multimedia 

visuals All graphical drawing operations in Java are performed through objects derived 

from the Graphics class. Whether you are drawing images downloaded from the lntemet, 

drawing graphical primitives such as rectangles and arcs, or rendering text, all graphical 
. . 

operations are done using a Graphics class instance. 

2. 7 The Graphics Class Concept in Applet 

Each Graphics object is associated with two-dimensional "drawing surface," 

analogous to the piece of paper on the drafting table. For example, the drawing surface 

can be a rectangle of a user's on-screen desktop, as is the case when dealing with Applets 

or Windows. Oth~ drawing surface types could also be associated with a Graphics 

object. The drawing source could be a binary image, stored in memory and never directly 

displays to the user. It could also be a page in a printer, or fax machine, or even a 
. . 

PostScript or other graphics-format file stored on a disk. 

The "tools" of a Graphics object, the methods of the Graphics class are to draw 

onto the associated drawing surface. Rectangles, ovals, arcs, polygons, lines, text, and 

images can also be drawn onto the drawing surface using the various Graphics class 

methods. 

The internal state of a Graphics object can be described by eight state variable, 

which can be modified using Graphics class methods. 

• The foreground color 

• The background color 

• The current font · 

• The painting mode 

• The origin of the Graphics object 

• The horizontal and vertical scaling factors 

• The "clipping" rectangle 

34 



• The drawing surface the Graphics object has been associated with 

The Coordinate System of the Drawing Surface 

All drawing surfaces use the same two-dimensional coordinate system. The X axis 

is in the horizontal direction of.the drawing surface, and increases from left to right on the 

drawing surface. The Y axis is in the vertical direction, and increases from top to bottom. 

The Graphics object origin defines where its X and Y axes cross, and is identified 

by the point (0,0). A scaling factor is 'assigned to both axes, which defines how quickly 

the coordinated increase along with axis. By default, when the Graphics object is first 

created, the origin lies in the upper-left comer of the drawing surface, and the scaling 

factor along both axes is one. 

The Graphics object's X and Y axes stretch to what is essentially an infinite 

distance in all four directions. However, only coordinates within the Graphics object 

"clipping rectangle" are of any interest. That's because graphical operations cannot be 

performed outside this rectangle. Such operations will not result in any sort of error, but 

neither will they have may effect on the drawing surface. 

The clipping rectangle of a Graphics object represents the physical boundaries of 

the associated drawing surface. For example, .a Graphics object associated with a 100 

pixel by 100 and a height of 100. For on-screen desktop and in-memory image drawing 

surfaces, each Graphics coordinate represents a single pixel of the drawing surface. 

Hence, a 100 pixel by 100 pixel rectangle is represented by a 1 00 by 1 00 clipping 

rectangle in the associated Graphics object. 

Obtaining Graphics Objects 

A program cannot cr.eate its Own Graphics objects, but instead must ask the Java 

runtime system to create them for specific display surfaces. Without using custom classes 

implementing native methods, only two types of display surfaces can be accessed through 

Graphics objects. 

35 



• Sections of the on-screen desktop surface are accessed through Graphics objects 

passed to the update and paint methods. 

• In-memory Image objects are accessed through Graphics objects created by Image 

create Graphics. 

Applets inherit the update and paint methods from the Component class, which 

the Applet class extends. Both of these methods are called automatically by the Java 

runtime system when .it is time to display information to the user on the desktop. This 

code snippet shows how a .custom applet would override the default implementation of 

paint to control its display surface: 

Public void paint( Graphics g) { 

II Draw on the display surface here 

} 

} ... 

A graphics object is automatically created by the Java runtime system and passed 

to paint. This Graphics object has a clipping rectangle set to the exact dimension of the 

Applet's display surface. In the case where only a portion of the Applet must be redrawn, 

such as when another window temporarily covers part of the Applet's display surface, the 

dimensions may be sinaller. 

The only other method (or obtaining a Graphics object is using 

Image.createGraphics. An applet or application calls this method directly. The Graphics 

object that is returned is capable of rendering geometric primitives, text, and other Image 

object onto the Image. This is useful for the so-called "double-buffered" drawing 

technique, used widely to effect a smooth transition between animation frames. You'll 

learn more about this technique in the upcoming discussion of animation. 

The Geometric Primitives 

36 



All Graphics pbjects are able to render several different types of geometric 

primitive drawing objects on a drawing surface. 

Geometric Primitives 

Primitive 

Rectangle 

Representation Through Rendering Methods 

The point of the upper-left comer of rectangle relative to the Graphics 

origin, the rectangle's width and height. 

Rounded The point of the upper-left comer of the rectangle relative to. the 

rectangle Graphics origin, the rectangle's width and height 

The point.· of the upper-left comer of the rectangle relative to the 

3D rectangle Graphics origin, the rectangle's width, height, and the raising or 

depressing implication of the beveled edges. 

Oval 

Arc 

Polygon 

A bounding rectable defines the s1ze and shape of the oval. This 

rectangle is described the same way as a rectangle geometric primitive. 

An arc is a section, or pie edge, or an oval. an arc is described by the 

bounding _rectangle of an oval, the starting angle of the arc, and the 

angul_ar length of the arc. 

An ordered a set of points defines the vertices of a polygon to Graphics 

rendering methods. Alternatively, a Polygon object can be used, through 

Polygons are essentially just on ordered set of vertices. Points are all 

relative to the Graphics object's origin. 

Line segment Two points defining the two end points of the line segment. Both points 

are relative to the Graphics object's origin. 

37 -



All primitive can be rendered in either outlined or filled form, except the Line 

primitive, which cannot be filled. The outlined version of a primitive is rendered using 

the primitive's "draw" method. For example, Graphics.drawRect will render a rectangle 

as two sets of parallel lines using the Graphics objects current foreground color. The "fill" 

method is used to render a filled geometric primitive. Graphics.fillRect will render a solid 

rectangular block on the display surface using the current foreground color. 

The Painting Mode 

The painting mode of a Graphics object is, default, set to "overwrite" mode. In this 

modern all graphics are rendered by overwriting the pixels of the display surface using the 

graphics object's current foreground color. We can force the Graphics object into overwrite 

-mode using Grpahics.setPaintMode. When called, this parameter less method places the 

Graphics into overwrite mode. Expressed pseudo-mathematically, the color of destination 

pixels after rendering is 

colorDest(*x,y) = graphics.foregroundColor 

The other method of modifying a Graphics object's painting mode is 

Graphics.setXORMode. When called, the Graphics object uses XOR mode for rendering 

geometric primitives, text, or Images on the drawing surface. Three colors are combined 

mathematically to determine the color of determine the color of destination pixels after 

rendering, as follows, 

colorAfterRendering(x;y) =colorBeforeRendering(x,y) * graphics.foregroundColor * 
_ graphics.alternateColor 

where the * symbol represents a bit wise XOR operation. The alternate color of a 

Graphics object is specified as the only parameter to Graphics.stXORMode 

38 



2.8 Class and interface necesary for developing an Applet ·· 

The following classes and interface necessary for developing custom Applet object 

in Java. 

Class/Interface 

AppletContext 

Graphics 

Applet 

Description 

Exposes services implemented by the applet browser for user by 

Applet objects. Conceptually, all active Applet object have access to 

the same AppletContext. 

Encapsulates a drawing surface, and exposes tools for drawing 

graphics and rendering text on that drawing surface. A drawing surface 

may be a rectangle of the desktop, on in-memory image, or even a 

page in the printer. 

Represents on emendable Applet object. 

APPLET CONTEXT 

Purpose 

Syntax 

Description 

An interface which abstracts the browser to an Applet. Methods for 

testing and modifying the ~urren~ state of the browser are provided as 

public members of this interface. 

interface AppletContext 

Applet gets its AppletContext using Applet.getAppletContext. Using 

this interface, the Applet can get and set ~some parameters of the 

browser's current state. An Applet can get and set some parameters of 

the browser's current state. An Applet can get references to other 

39 



Package Name 

Imports 

Applcts currently running in the browser, download images and auto 

clips, and load a new document into the browser through the 

AppletContext interface. · 

java.applet 

java.awt.Image, java.awt.Graphics, java.awt.image.ColorModel, 

java.net. URL, java.util.enumeration 

Constructors None 

Parameters None 

GETAPPLET 

Interface AppletContext 

Purpose Used to facilitate inter-applet communications within a browser. 

Syntax public Applet getApplet (String srtName ); 

Parameters None 

String SrtName This interface methods implies the browser stores, with each loaded 

Description 

. . 

applet, ·a unique string to identify that applet. It passes to getApplet 

one of these unique applet identifiers to gain access to the associated 

Applet object. 

Multiple Applet objects can be simultaneously loaded and run by the 

40 



Imports 

Returns 

GETAPPLETS 

Interface 

Purpose 

Syntax 

I 

Parameters I 

Di 
Imports 

same browser. Each applet runes within itc; own Thread. Use this 

method to access other applets running concunently. It is completely 

up to a particular browser how to associate a particular string with an 

Applet object. For example, most commercial-grade World Wide 

Web browsers which applet-aware use the NAME tag in the 

<APPLET> container tag to associate a name string with a particular 

applet, as in the HTML snippet below. 

None 

The Applet object associated with the unique String StrName. If no 

applet is associated with strName, null is returned or if the applet 

browser does not provide facilities for inter-applet communications. 

AppletContext 

Used to facilitate inter-applet communications within a browser. 

public. Enumeration getApplets(); 

None; 

This method allows you to look up all appl~ts currently running in 

the browser. The browser which implements this method will give 

your access to all Applet objects currently running in the browser. 

None 

41 



Returns 

GETAUDIOCLIP 

Interface 

Purpose 

Syntax 

Parameters 

(URL uri) 

Description 

An Enumeration object is returned. Each element in the 

Enumeration's is an Applet currently active in the browser. Note 

that an empty Enumeration, or a return of null, could be interpreted 

in two ways : Either getApplets() is not fully implemented by the 

browser, or no other applets are active in the browser. 

No exact specification currently exists describing what getApplets 

should return in either of these situations .. 

AppletContext 

Loads an audio file and reades it to be played by the browser. 

Public. audioClip getAudioClip(URL uri); 

Points to an audio file to be loaded by the browsers 

Commercial-grade browsers, especially World Wide Web browsers, 

have built-in facilities for loading and playing audio files. Appletes 

used the getAudioClip method to load audio files from any URL the 

browser can understand. Applets should use one of the overloaded 

Applet.getAudioClip methods to access AudioClips instead of 

AppletContext.getAudioCiip. This method is rarely called by an 

Applet directly. 

42 



Imports 

Returns 

GETIMAGE 

Interface 

Purpose 

· java.net. URL 

The object returned by this function implements the AudioClip 

interface. If the URL is no understood by the browser, null will be 

returned or if the browser does not provide this functionality to 

applets. 

AppletContext 

To load an image from a URL and prepare it for rendering on a display 

surfac~. 

Syntax Public Image getlmage(URL uri); 

Parameters Points to an image file to be loaded by the browser. 

URLurl 

Description Java applic~tions must implement methods for reading and interpreting 

image files, and converting the image data into Image objects. Applets 

may have this functionality exposed to them by the browser through the 

AppletContext.getlmage method. Browsers that can load and interpret 

various image formats, such as GIF, JPEF or TIFF, can provide that 

capability to applets. Applets simply provide a URL pointing to an image 

file in a recognized format. No methods are provided for an applet to 

query which image formats are supported by a browser. Therefore, it is 

usually a good idea to only try to load images in very common graphics 

43 



Imports 

Returns 

fonnats, such as GJF or JPEG .. 

java.awt.Image 

An Image object will be returned by this object, or null if this facility is 

not supported by the browser. The reaction of this methods when the 

URL reforest an unsupported protocol, or when the image file format is 

unrecognized, is unspecified. Generally, it can be assumed that null will , 

be returned if these capability it not provided by the browser. 

SHOWDOCUMENT 

Interface 

Purpose 

AppletCoritext 

Opens a new document in the browser. An overloaded version exists to 

specify the name of the target browser frame. 

. . 
Syntax public void showDocument {URL,url); 

public id showDocument {URL uri, String target); 

Parameters Points to the document to be opened by the browser. If the protocol 

URL uri referred to by the URL is not recognized by the browser, this call will be 

ignored. If the document format implied by the URL' s field name is not 

recognized by the browser, this call will be ignored. 

Description In the abstract, Applets are seen as being embedded in distributed 

"documents," such as World Wide Web pages. When implemented, 

this ·method allows the applet to force the browser to open a particular 

document pointed to by a URL. Like all other methods in this 

44 



Imports 

Returns 

Example 

interface, a particular browser may not implement this method, m 

which case the bt'owser will simply ignore a call to this method. 

If the second overloaded version of this method is used, then the 

document will be opened in a browser frame with the same name as 

the target parameter. 

java.net.URL 

The Applet object associated with the unique Starting strName. If no 

applet is associated with srtName, null is returned or if the applet 

browser does not provide facilities for inter-applet communications. 

This applet asks the browser to reload the current document whenever 

the Applet's stop method is invoked. 

public class RestartingApplet extends Applet { . 

public void stop() { 

Appletcontext ac = getAppletContext(); 

if(null !=ac) 

ac. showDocument(getDocumentBase() ); 

} 

} 

GRAPHICS 

Purpose 

Syntax 

Description 

An A WT Component (such as an Applet) uses a Graphics object 

to draw on display surface. 

public class Graphics 

A Graphics object is always associated with a "display surface." 

The display surface can be a rectangle of the on-screen desktop, 

an Image in memory, or potentially ai_IY rectangular area that can 

be drawn on. You use the Graphics class methods to render 

graphics and text on the display surface associated with the 

Graphics object. Figure 2.4 shows the class diagram for the 

45 . 



Graphics class 

Package Name java.awt 

Imports · java.awt *, java.image.ImageObserver 

java.IQ.ng.Object 

java.awt.Graphics 

2.4 Cla~s diagram for the Graphics Class 

CLEARECT 

Class Name Graphics 

Purpose To erase the specified rectangle using the background color of the display 

surface associated with the Graphics object. 

Syntax public abstract void clear Rect(int x, int y, int width, int height); 

Parameters These four parameters define the rectangle to be erased on the display 

int x surface. 

inty 

int width 

int height 

46 



Description This method is used to erase a rectangle from the display surface. The 

associated display surface's background color is used to fill the specified 

rectangle. This is a legacy method which was never removed from the 

alpha release of Java. Use of .this method is not advised. Instead, use 

Graphics. fill Rect, specifying the color you want to use to erase the 

rectangle. It is an unfortunate but true fact that the Java API does not 

specify an overloaded version of this method which takes Rect object as a 

param~ter. The origi~ and extent of the rectangle must be explicitly 

provided in the four parameters· to this method. 

Imports None. 

Return None 

APPLET 

Purpose An embeded interactive component, suitable for embedded in World 
Wide Web pages using special HTML tags. 

Syntax public class Applet extends Panel 

Description A java Applet is an interactive Component special designed for use 
across the World Wide Web. The Applet class defines methods for· 
controlling the lifetime of an Applet object, for which your applets 
provide custom implementations. Each applet running in an applet-aware 
browser has its own Thread, which uses the Applet methods init, start, 
stop and . destroy to control the applet' s lifetime. the Applet 
communicates with the browse~ through Applet context and Applet stub 
objects. 

47 



I java.outPanel ·1 
"~' 

java.applet.Applet 

Fig. 2.5 Class Diagram of The Applet Class 

ISACTIVE 

Class Name Applet 

Purpose Indicates whether or not the Applet has been started. 

Syntax publilc boolean isActive(); 

Parameters None. 

Description Just before the before the Applet's start method is called, the Applet is 
marked as "active". At that point, shall calls to this method return true. 
Before that.time and just before destroy is called, the Applet is marked as 
not active. 

GETDOCUMENTBASE 

Class Name Applet 

. . 
Purpose Gets the URL fo'r the document this Applet is embedded in. 

Syntax public URL getDocumentBase(); 

Parameters None. 

Description The URL for the document this Applet is embedded in is returned. This· 
method is shallow wrapper around AppletStub.getDocumentBase, so if 
the AppletStub is not implemented then, a call to this method will cause 
a NullPointerException to be throw. 

48 



GETCODEBASE 

Class Name Applet 

Purpose Gets the URL for this Applet's.CLASS file. 

Syntax public· URL getCodeBase(); 

Parameters None. 

Description The URL for the this Applet's.CLASS file is returned. This method is a 
shallow wrapper around AppletStub.getCodeBase, so if the AppletStub is 
not implemented, then a call to this method will cause . a 
NullPointerException to be thrown. 

GETPARAMETER 

Class Name Applet 

Purpose Gets the string value of a particular Applet parameter. 

Syntax public String getParameter (String name); 

Parameters Name of the parameter to retrieve. This is the value of the "name" tag 
String name within the HTML <P ARAM> field which defines the Applet. 

Description This method returns one of the parameters to this Applet. Parameter are 
declared between the <APPLET> tag has two possible field :"name" and. 
"value". By indicating one of the valid names for this Applet, the 
corresponding "value" field string will be returned. 

GETAPPLETCONTEXT 

Class Name Applet 

Purpose Retrieve the Appletconext for this Applet. 

Syntax public AppletContext getAppletContext(); 

Parameters None 
String name 

49 



. Description The AppletContext represents the browser this Applet is being displayed 
on. To retrieve a reference to an Applet's AppletContext, use this 
method. 

SHOWSTATUS 

Class Name Applet 

Purpose Displays a message on the browser's status bar. 

Syntax public void showStatus(string ~sg); 

Parameters 
String msg Message to be displayed on the browser's status bar. 

Description Browsers generally have a status bar below the main display window. 

GETIMAGE 

Use this method to place a message within that status bar. This method is 
an shallow wrapper around AppletContext.showSatus. It the Applet is not 
created within the context of a browser which implements 
AppletContext, then a call to this method will throw a 
NuiiPointerException. 

Class Name Applet 

Purpose Creates an Image object from a URL pointing to a graphics-format file. 

Synta~ public Image getlmage (URL url); 
public Image getlmage(URL uri, String str); 

Parameters 
URL uri URL of the graphics-format file containing the Image's data. 

Description This method creates an Image object from a URL pointing to a graphics 
format file. The Image data is not downloaded until it is accessed at some 
point later in the Applet's execution. To force the Image to be loaded, use 
a Media Tracker object. The second overloaded version allows you to 
specify a base and relative URL to the graphics-format file. This method 
is a shallow wrapper around AppletContext.getlmage. 

50 



GETAUDIOCLIP 

Class Name 

Purpose 

Syntax 

Parameters 
URLurl 

Description 

Applet 

Creates an AudioClip object from a URL pointing to an audio data file. 

public AudiClip getAudioClip(URL uri); 

public AudioClip getAudioClip(URL uri, String str); 
URL of the· audio data file containing the AudioClip's data. 

This method creates a AudioClip object from a URL pointing to an audio 
data file. The AudioClip' s data is not downloaded until it is accessed at 
some point later in the Applet' s execution. The second overloaded 
version allows you to specify a base and relative URL to the audio data 
file. This method is a shallow wrapper around 
ApppletContext.getAudioClip. 

GETAPPLETINFO 

Class Name Applet 

Purpose Custom implementations return a text String describing this Applet. 

Syntax public. String getAppletlnfor(); 

Parameters None. 

Description Your custom applets should implement this method to return an 
info~ation string ,about the applet. "rhis string may include 
copyright information, or information about where to downloaded the applet 
from, etc. 

GETP~TERINFO 

Class Name Applet 

Purpose Custom applets can expose text information about the parameters this 
applet understands by implementing this method. 

Syntax public String {} {} getParameterlnfor(); 

51 



Parameters None 

Descr·iption It is easy to make your applet self-describing by implementing this 
method. Have your implementation return a set of arrays of Strings. Each 
array of String should contain exactly three elements. The first String of 
each ·array is the mime of a parameter the Applet understands. The 
second is a textual description of valid values for that parameter, such as 
"1-1 0 or "uri". The third is a textual description of how the parameter is 
used, such as "URL for the background image". 

GETPARAMETERINFO 

Class Name 

Purpose 

Syntax 

Parameters 
URL uri 

Description 

INTO . 

Applet 

Downloads and plays an AudioCiip from an audio data file. 

public void play (URL uri, String str); 

URL or base of a relative URL to the audio data file for the AudioClip 
and want toplay. · 

Relative URL to the URL you want to play 

This method is a simple shorthand for getting an AudioClip and playing 
it. Use of this method saves about three lines of explicit coding. 

Class Name Applet 

Purpose Called by the Applet's Thread to start it running. 

Syntax public void start it running. 

Parameters public void start(); 
None 

Description 
The start() method is one of the four methods which define an Applet's 
action during its lifetime. In our custom applet, implement this method to 
actually perform the applet's behavior. The start() method is potentially 
called several times during the lifetime of the applet. Each call to start() is 
matched by exactly one subsequent call to stop(), sometime in the future. 

52 



A typical operation performed in the start() method is kick-starting the 
applet's background Threads. 

START() 

Class Name Applet 

Purpose Called by the Applet's Thread to start it running. 

Syntax public v_oid start(); 

Parameters None 

Description The start() method is one of the four methods which define an Applet's 
action runiling its lifetime. In your custom applet, implement this method 
to actually perform the applet's behavior. The start() method is 
potentially called several times during the lifetime of the applet. Each call 
to start() is matched by exactly one subsequent call to stop(), sometime in 
the future. A typical operation performed in the start() method is kick­
starting the applet's background Threads. 

STOP 

Class Name Applet 

Purpose Called by the Applet's thread to stop it running. 

Syntax public void stop(); 

Parameters None 

Description The stop() method is one of the four methods which define an Applet's 
action during its lifetime. In your custom applet. implement this method 
to gracefully shut down the applet. The stop() method is potentially called 
severai times during · the lifetime of the applet. Each call to stop() is 
match by exactly one prior call to start(). Stop any background Treads 
from processing before returning from you custom implementation of this 
method. 

53 . 



DESTROY() 

Class Name Applet 

Purpose Called by the Applet's Thread to allow it to perform initial clean-up. 

Syntax public void destroy(); 

Parameters None. 

Description The destroy() method is one of the four methods which define an applet's 
action during its lifetime. In your custom applet, implement this method 
to deallocate any resources allocated during the applet's lifetime. The 
destroy() method is called exactly once, just before the Applet object is 
destroyed. 

54 



CHAPTER-3 

THEORETICAL CONCEPT OF NEWTWORKING AND CLIENT 
SERVER 

The computer network is a communication system for connecting two or more 

hosts. Hosts can be anything from microcomputers to super-computers, which makes 

establishing communication among them an involved task for programmers. The goal of 

java's internet working facilities is to hide the details of different physical networks from 

programmers. This allows the programmer not to worry about the more romantic pursuits 

of network programming and not to be bogged down by the trivial details of many 

. . 
different systems. However, this grand achievement of hiding details was no ·walk in the 

park for the java designers. Hosts can have vastly different physical attributes and may be 

dedicated to widely varying tasks. What is needed to make all these different species of 

system happy and able to communicate with each other is a common protocol. A 

protocol is a set of rules and conventions between the communicating participants. Using 

the higher-level protocol abstractions, the programmer can create Java programs quickly 

and with increased productivity. They need not build special version of application 

software to move and translate data between different type so machines. 

This chapter introduces the basic concepts of networking. It discusses client-

server applications, tells you how to identify a host using an Internet address, and 

explains what sockets are. The project I will develop in the chapter is a client-server 

application. The client sends messages to the server requesting it to send the contents of a 

55 



file. The server process the request and sends the contents of the file line-by-line. On 

reviving the file's contents from the server, the client displays it on a window. 

3.1 Client-Server Applications 

There are several models for building network applications. The most widely used 

model is the client-seryer model which involves two types of processes: a server process 

and a client process. When you start a server process on a host, it waits for a client to 

contact it. A client process, started on the some host or a different one, sends a request to 

the server over the network. The server responds to the request by sending a reply. 

The communicatio~ between a server and a client can be accomplished in two 

ways: connection-oriented or connectionless. In a connection-oriented transfer, a 

dedicated connection is established between a server and a client. They use this 

connection to exchange information. Given that the other type is called connectionless, it 

doesn't seem like a lot of communication actually happens between them. Then how do 

they communicate? The client sends the request by specifying the server's address. This 

is received by the server, who is waiting for a message from some client. The server 

obtains the client address form the massage to which it may then respond. 

a) Host A, as a client sends a request for service to server located on host B 

(b) After processing the request, the server sends a reply to the client 

56 



Network Link 

Client Server 

HOSTA · HOSTB 

Network Link 

Server Server 

HOST A HOSTB 

Fig. 3.1 A client-server communication scenario 

3.2 Connection-Oriented Protocol 

In a connection-oriented communication, the client and the server have a 

dedicated link established between them. It is similar to the telephone communication 

system. When you call someone and the called phone number exist, there is a dedicated 

line for you to converse. Whatever you speak is guaranteed to be heard on the other side, 

which probably an element of delay. Also the words you speak are heard in the exact 

order in which they were spoken. Also connection-oriented protocol is a reliable protocol. 

57 



The messages sent between. any two processes are guaranteed to be delivered and in the 

proper sequence. Most of the networking applications are connection oriented, as they 

require reliable communication protocol. TCP (Transfer Control Prot~col) is a connection 

-oriented protocol in the TCP/IP family. 

3.2 Connectionless Protocol 

In a connectionless protocol, there is no dedicated link between the clierit and the 

server. They send me~sages as datagram packets, each of which contains the destination 

address. The underlying network will targeted destination address from a packet and 

routes the packet to the destination. In this sense, each packet is self-contained. They have 

the information about the sender and the intended receiver, apart from hecore message. 

We can consider such a communication to be similar to the Indian Postal service. Each 

letter we send has its destination address contained in it and the postal department takes 

the necessary steps to route the mail to the destination. But we should note that the postal 

department guarantees neither the delivery not the sequence of delivery. Similarly, in the 

connectionless protocol, the packets are not guaranteed to be delivered, and even it they 

are delivered, the order of delivery is not guaranteed. Then the obvious question is : 

Where will you ever use the connectionless protocol for communication ? You can use 

this protocol where the order of messages is. not critical. For example, consider a time 

server application. The server can keep sending the updated time to the client. The client 

need not assume any order of delivery. As it receives message, logic can be built in the 

client application to sense the sequence of received messages. In this application, missing 

58 



packets will not create any adhoc. In the TCP/IP family, the UDP is the connectionless 

protocol. 

3.3 IntcrnetAddress 

To identify a particular host in the_ Internet we need an Internet address. Using 

Internet addressing, a host can communicate with another host located in the same 

physical network or subnet, or in a different physical network, where both networks are 

linked by the Internet. Hence, hosts separated geographically can communicate effectively 

by addressing each other by their Internet. Hence, hosts separated geographically can 

communicate effectively by addresss in each other by their Internet address. 

An Internet address is usually written as four decimal numbers, which are 

separated by decimal points. Each decimal digit in this address encodes one byte of the 32 

-bit Internet address. The Internet address maps to a unique host and the host can be 

addressed by a unique combination of the host and the name of the particular network the 

host is a part of (i.e., domain name). 

In the Internet address representation, Internet ID identifies a network in the 

Internet. Subnet ID represents local area network(subnet) and Host ld is the identifier for 

a given host in the subnet. The combination of these three identifiers represents a unique 

host in the Internet. Here 128.230.32.66 is the Internet address that maps to 

ratnam.cat.syr.edu, w~ere ratenam is .the machine name and is a part of cat.syr.edu 

network domain. In this example, host ld is 66, subnet ld is 32 and the Internet ld is 

59 



. . 
128.230. The InetAddress Class in Java encapsulates the methods required to manipulate 

with an Intenet address in a networking application. 

Fig. 3.3 Distribution of hosts among different subnets over the Internet 

Internet ID Subnet/D Host/D 

12.8.230 32 66 

Fig. 3.3 Conceptual representation of Internet addrej·sing 

60 



3.4 Sockets 

To provide an interface between our application and the network we need a 

socket. Most of the communication in a client-server application is point-to-point, where 

the endpoint of such communication is an application (client or server). A socket acts as 

an endpoint for communication between processes on a single system or on different 

system. The applications communication between processes on a signal system or on 

different system. The applications communicate between themselves by sending 

messages to one another. These messages are sent as sequence of packets at the network 

level. For each packet that is sent, there has to be a receiving end. Sockets from such an 

end point to receive packets, as well as to send messages. Application programs request 

the operating system to create a socket when in need. The system returns a socket 
' 

identifier, in the form of a small integer that the application program uses to reference the 

newly created socket. A networking application can be identified by a <host, socket> pair 

(the host on which it is running and the socket at which it is listening for messages). 

Java provides ~eparate classes which encapsulate the functionality of client and 

sever sockets. The Socket class is used to represent sockets on the client side, while the 

server side sockets are represented by the ServerSocket class. The Socket and 

ServerSocket form the client and server side sockets in a connection oriented protocol. 

Once a link is established between the client and the server, can exchange messages until 

one of them closes the connection. Whereas, the sockets, in the case of connectionless 

protocol, are represented by the Datagram Socket class .. In this case, both the client and 

the server are associated to a datagram socket. Every time a message is to be sent, they 

61 



create a DatagramPacket containing ihe destination address and port number along with 

message to be sent. This packet gets delivered (if to does get delivered) to the targeted 

application. To implement various such policies for communication between a client and 

a server, Java provides Socketlmpl Class SocketlmplFactory is an Interface that can be 

used to generate more instances of the Socketlmpl Class for use in our applications. 

3.5 Classes And Interface Necessary For Developing Network Application using java 

Class and interface description 

Class/Interface Description 

Inet Address 

Server Socket 

Socket 

Represents Internet addresses. 

This class represents the server socket. It uses a Socketimpl 

class to implement the actual policies regarding socket 

operations. 

this class represents the client socket. It uses a socketlmpl 

class to implement the actual socket policies for its 

operations. 

Datagram Socket This class represents a datagram socket, which is an 

implementation ofthe connectionless protocol. 

62 



Datagram Packet This class represents a datagram packet, which is self-

contained, with the details of the destination host and the 

data to be sent. 

Sacketlmpl This should be subclassed to provide actual 

implementation. This class ·implements the actual socket .. 
policies for ServerSocket classes. 

Sacketlmpl Factory A Factory for creating actual instances of socketlmpl is 

Purpose 

Syntax 

Description 

defined in this interface. 

Use InetAddress to represent Internet addresses. 

Public final class InetAddress extends Object 

The InetAddress class represents the Internet Address. The 

methods of InetAddress provide functionality to gain 

information about raw IP address, hostname, and network 

address of a host machine, and hash code of the Internet 

address in the hashtable. 

java.long.Object 

I 
java.net. InetAddress 

Final 

Fig. 3.4 Class diagram for InetAddress class 

63 



EQUALS (OBJECT). 

Class Name InetAddress 

Purpose Compares the specified object with the object on which the method is 
invoked. 

Syntax public Boolean equals (Object object) 
Parameters 
object 

Description The object with which the invoked object is to be compared. 
the method compares the Internet address of the specified object with that 
of the object on which the method is invoked. The objects are considered 
equal i~ their Internet a~dresses are the same. 

GETADDRESSO 

Class Name InetAddress 

Purpose This method returns the raw n> address of the object in network byte 
order. 

Syntax public byte[] getAddress() 

Parameters None. 

Description This method returns the raw IP address representation of the Internet 
address in 32-bit format in network byte order. It returns the addr[] byte 
array, member ofthe InetAddress. addr[O] contains the highest order byte 
position addr[] is an array of bytes so that this method is extendable for 
64-bit IP addresses also. 

64 



GETALLBYNAME(String) 

Class Name InetAddress 

Purpose Returns an array of all lnetAddresses that correspond to the specified 
hostname. 

Syntax public static synchronized InetAddress[] getAIIByName(String 
host_name) throw UnknownHostException 

Parameters _The hostname of the machine, the InetAddresses which you are trying to 
host name obtain. 

Description A host can have multiple InetAddresses (mapping). to access all of those 
InetAddresses, the hostname is passed to the getAilByName method. The 
method finds out the Internet addresses of the given host and returns all of 
them as an array of InetAddress objects. 

GETBYNAME (String) 

Class Name InetAddress 

Purpose This m~thod gets the In~tAddress of the specified host. 

Syntax public static synchronized InetAddress getByName (String host_name) 
throws UnknownHostException 

Parameters The hostanarne of the machine whose InetAddress is returned by this 
host name method. 

Description This method returns the InetAddres of a specified host. The lnetAddress 
class does not have public on structure. You can use this method to create 
an instance of the InetAddress for a particular host. 

65 



GETBYNAME(String) 

Class Name InetAddress 

Purpose This method gets the InetAddress of the specified host. 

Syntax public static synchronized InetAddress getByName (String host_ name) 
throws UnknownHostExcetpion · 

Parameters 
host name The hostname of the machine whose IneAddress IS returned by this 

method. 

Description 1l1is method returns the InetAddress of a specified host. The InetAddress 
class does not have public const~ctors. You can use this method to create 
an instance of the lnetAddress for a particular host. 

GETHOSTNAMEQ 

Class Name InetAddress 

Purpose this method returns the hostname for this InetAddress. 

Syntax public String getHostNameO 

Parameters None . 

Description The method returns the hostname of a machine with the same address as 
this InetAddress. so if you know the IP address of a machine, you can find 
out its hostname by using this method on they InetAddress object of that 
address. 

GETLOCALHOSTQ 

Class Name InetAddress .. 

Purpose This method gets the InetAddress of the local host. 

Syntax public static InetAddress getLocalHost() throws UnknownHostExecetpion 

66 



Parameters None 

Description This method finds the Internet address of the local machine executing this 
program. It creates ari instance of InetAddress with this address and 
returns the InetAddress object. getLocalHost() can be used to create an 
instance of InetAddress for the local machine. 

HASHCODEO 

Class Name lnetAddress 

Purpose Returns the hash code of this InetAddress object. 

Syntax public int hashCode() 

Parameters None 

Description The method returns the hash code, to be used as index into the hashtable 
to access this lnetAddres object. All the InetAddresses accessed during 
the program execution are cached in a hashtable. This is done for faster 
access of previously accessed Internet address. 

TOSTINGO 

ClassName InetAddress 

Purpose This method converts the InetAddress to a string 

Syntax public String toString() 

Parameters None 

Description This method converts the InetAddress to a String by overriding the 
toString() method of the Object Class. Raw IP address, host name can 
also be obtained by manipulating with the returned String. 

67 



SERVERSOCKET 

. Purpose Use ServerSocket to implement a server. 

Syntax public final class ServerSocket extends Object 

Description The ~erverSocket c'ass represents the server in a client-server 
application. This class implements the actual socket policies that go along 
with a server. It uses a default Socketlmp class to implement its server 
policies. These polices can be changed by implementing a concrete 
subclass of the abstract Socketlmpl class. This change in policies can be 
made effective by set the SocketlmplFactory, using the setSocketFactory 
method. The methods of ServerSocket class provide functionality to 
create server socket, accept connection from a client and get the specific 
of the parti~ular ServerSocket object (namely the port to which the server 
is connected), and the string form of implementation address, file 
descriptor, and port. A ServerSocket object is bound to the local machine 
on which it_ is create. A port number is specified for the ServerSocket to 
bind and listen for connection. 

java.lo.ng.Object 

java.net.ServerSocket 
final 

Fig. 3.5 Server Socket Class 

68 



CHAPTER-4 

4.1 Detail Analysis Design & Implementation for A Client-Server 

Information Applet Information 

In the Client-S~rver Information applet, a client will contact an existing server and 

obtain details We should provide three buttons : clientinfo, setverinfo, and fileinfo. On 

clicking the clientinfo button, the client will print out its details, the host it is running, on, 

and the port on which it is connected. It should be able to gather the information about 

the server and print the details when the serverinfo button is pressed. When the fileinfo 

button is pressed, the client will send a request to the server to obtain the contents of a file 

residing on the server's side. 

The apph< should also be a stand-alone application, so that you can run it from a 

Java environment using the Java interpreter or it can also be launched from a Web 

browser, supporting Java. The scenario for this applet is illustrated in Figure 4.1. The 

steps involved are as follows 

1. The server connects to a port on the host, to which it is initialized, and listens for 

connections from clients. 

2. A client will connect to the server'by specifying the hostname and the port on which 

the server is listening. 

3. The client retrieves the details about itself and displays the information. 

4. The client obtains the information about the server and displays it. 

5. The client sends a request to the server asking for the contents of a file on the servers side. 

6. The server, o receiving the request, opens the relevant file, if it exists, and sends the 

contents to the client over the socket streams. 

7. The client receives the file contents from the server and displays them. 

69 



:····················-··---------------------··· 
: Sen·er : Client . . . . . . . . 
: create ServerSockct object : 
. . 

Client Socket Created with 
scrnrHost and Port . . . . 

~· 

create uboyt and output streams 

for communication 
Connection established 

' ' 1/ 
get client detail using 

JnetAddress class 

' I/ send Request for contents of a 
file 

Request a file 

r--------=--.,__. .... -~· 
receive request 

Reaply file contents 

. ~---- .. 

· .. · ...... : · · ........ ; ....... -<::1~.-, ___ •r•ec•i!llve•R-ep•l•y---•' 

~ 
disply results 

Fig . ..4.1 Sequence of actions in the Client-Server Information 

8. Once the necessary processing is completed, the steams and sockets and are closed 
appropriately 

70 



We must now be above to implement the applet using the APPI. As we know, any 

applet for a given specification can be implemented in different ways. Once such 

implementation is provided here. In this implementation, Threads are used on the 

server's side to process multiple clients. In the given applet, the Server is started on a 

given machine. The Client can either be run as a stand-alone application using the Java 

interpreter or launched from a Web browser supporting Java. In either case, the server 

hostname and port number are passed as arguments to the executable. 

APPLET VIEWER : SERVER APPLET CLASS 

Applet 

.1 Client Info I I Server hifo File Info I' 

·4.1.1 Building Our Applet 

I. First create a Sever class which should accept connection from client. Make it public 

class and the filename should be Server. java. This class should contain the following 

members 

71 



Modifier Type Variable-name 

Static ServerSocket ServSock 

Static Socket the Socket 

Static int Port 

static ServerThread client[] 

72 

Purpose 

An instance of ServerSocket is 

created to enable the server to 

accept connections from 

client. 

An instance of Socket that will 

be created on theServe side 

when Serversock is 

instantiated. 

Port number on which the 

sever connects and creates 

SverSock 

An array of ServerThread 

objects which will ·act as 

server for every client that 

connects to the server, so that 

there is one SeverThread for 

one client. 



After the addition of these member our file Server.java should contain the 

following. 

//import the necessary classes relevant to the class Server 

import java. net. Socket; 

import java.net.ServerSocket; 

. . . * Import Java. to. ; 

/** 

public class Server { 

private static Socket theSocket; 

private static ServerSocket ServSock; 

private static ServerThread client[] = new ServerThread[l 0]; 

private static int port= 80; 

2. Having created the class, now define (he main method for the claSs. Create an 

instance of ServerSocket after specifying the port number, Then the sever waits in 

a loop for connections from clients. This is done using the accept() method of 

ServerSocket. After accepting connection from a client. a server thread is spawned 

for each client. This enables exclusive service to the client by a corresponding 

73 



server Thread. The start() method of Thread will start the servicing of the serve 

Thread to the client. Adding these functions to our Server class will make the 

Server.java file. 

import java. net. Socket; 

import java.net.ServerScoket; 

. . . * Import Java. to. ; 

public class Server { 

static Socket theSocket; 

static ServerSocket ServSock; 

static ServerThread clientO =new ServerThread[lO]; 

DatalnputStream detain; 

DataOutputStrea, dataout; 

static int port = 80; 

public static void main( String srgs[] { 

int g=O 

try { 

SerSock =new SeverSocket(port); 

System.out.println("Server started"); 

74 



} 

} 

} 

While (tme){ 

theSocket = ServSock.accept(); 

for (g-0; g<IO;g++) 

if((client[g] =null) II (!client[g].isALive())) 

break; 

if(g<IO){ 

} 

} 

client[g] =new SrverT~ead(the .Socket,g); 

client[g] .start(); 

else 

System.out.printLn("Rejected a connection"); 

} catch (IOException ioe ){ 

System.out.print("Server error"); 

3. Now we have _the necessary code for a. Server to run. Next we should write the 

necessary code for implementing the ServerThread the Server spawns for every 

75 



Client. Create a public class Server Thread. It should be a subclass for Thread class 

in Java and should contain the following members. 

Type Variable name 

Socket mySocket 

int myld 

DatalnputSTream detain 

DataOutputStream dataout 

Purpose 

This Socket object will be the socket 

instance on Server side for a connected 

Client. This IS passed on to this 

ServerThread using the constructor. 

Every Server Thread has on id associated 

with it, which also identifies the Client. 

There can be only one ServerThread with a 

given ld, at a given instance. 

DatalnputStream associated with every 

ServerThread (which will be the Client's 

OutputStream) to receive messages for the 

Client. 

DataOutputSttream associated with every 

ServerThread (which will be the Client's 

imputStream) to send messages to the Client 

With these data members and the constructor of the ServerThread class, our 

ServerThread.java should now contain the following. 

76 



import java. net. Socket; 

. . . * ImportJava. 10. ; 

. . * 1m port Java.awt. ; 

public class Server Thread extends Thread { 

private Socket mySocket; 

private DatalnputSteam datain; 

private DataOutSteam dataout; 

private int myld; 

public ServerThread(Socket m, int ld) throws IOException { 

mySocket = m; 

myld = Id; 

datain =new DatalnputSteam(new 

B ufferedlnputStream( mySocket.getlnputSteam()) ); 

dataout =new DataOutputStream(new 

BufferedOutputStream( myScoket.getOutputStream()) ); 

} 

} 

4. Now we should override the run() method of Thread class in ServerThread class 

Assuming you have a function processsRequiests() in this class, the run method 

77 



will call the process Requests() while there are more requests from theClient. In 

the meantime, after processing evety requires, the Thread should yield to the other 

ServerThreads to process their respective Client request. After all the request are 

. processed we should dose the sockets and streams that are open. Enter the 

following method into the ServerThread.class. 

public void run() { 

try { 

while (processRequests()) 

yield(); II yield to other threads too! 

cleanUp(); 

} catch (IOException e} { 

System.out.println ("Eror in processing request"); 

} 

} 

void CleanUp() { 

try{ 

detain. close(); 

dataour.clsoe(); 

78 



} 

mySockct.clsoe(); 

catch (IOException io ){ 

printOut( io.getMessage() ); 

} 

5. Let retrieving he contents of a requested file be a service provided by the 

ServerThread. When the ServerThread receives a message "File" from a Client 

throughout the DatalnputStream, it understands that the Client is requesting a file 

to be retrieves and it expects another message from the Client indicating the name 

of the file to be retrieve. The ServerThread then reads the file and sends its 

contents using the DataOutputStream. If the message is "By", the Server Thread 

understands that the Client intends to close the session and so the method returns. 

false. This makes the Server Thread's run() method terminate and so the 

ServerThreads gets disposed. To achieve the described effect, include the 

following processRequests( method, whose return type is boolean. This method 

assumes the existence of a GetFile() method in this class. 

private Boolean processRequests() theows IOException { 

try 

79 



} 

String req = datain.rcadUTF(); 

if (req.equals("File")){ 

String file= datain.readUTF(): 

GetFile (file); 

return true; 

} 

else if (req.equals("Bye") 

return false; 

else { 

} 

System:out.println("Unknown service requested"); 

return false; , 

} catch(IOExcetpion ioe) { 

} 

System.out.println(Error in input from Client"); 

return false; 

6. As a final part of our ServerThread class, we should now implement the GetFile() 

method. Given a filename, this method will first check to see if the file exists and 

if it does, whether it is readable. Then using the file, the method creates a 

DatalnputStream by passing the FilelnputStream as a parameter. Next the method 

80 



read the file line-by-line and sends the line contents to the Client using the 

DataOutputStream object named dataout. It follows the file contents with an End 

Of file message to the Client. Add the following code into theServerThread class. 

private void GetFilc(String file_ name) { 

II buffer to get all the Lines in the file 

StringBuffer buff= new StringBuffer(); 

file f= new File (file_name); 

boolean b = (f.exists() II f.canRead()); 

if(!b) 

try { 

printour("File either doesn't exists or is unreadable"); 

DatalnputStreamf_in =new SatalnputSteam(new 

BufferedlnputSteam(new 

FilelnputStream (file_name))); 

While (f_in.available() !=0) { 

} 

String line= f_in.readLine(); 

buff.append(line + "\n"); 

dataout.flush(); 

81 



} 

} 

dataout.writeUTF(EndofFile"); 

dataout.flush()(); 

} catch (IOExeception ioe) { 

System.out.print(Error in handling file"); 

7. The Client class is the next one to be created Client is the class that will be 

launched as an applet from the Web browser. So it extends the applet and in this 

implementation, implements the Runable interface. It acts as a client requesting 

service from an existing Server. According to the specification, this should also as 

a stand-alone application. It has instances of Socket, DatalnputStream, 

DataOutputStream, and Thread as its members. It should also implement user 

interface with three buttons: clientinfor, serverfo and fileninfor. 

8. Time implement this as a stand-alone application you need to write a method 

main(). the fol.lowing code li~ting implements this method, which obtains the 

server name and port number from the command line. An instance of Client is 

created and a method myinit() is invoked to pass the parameters to the Client 

object. Then the Client Thread is started and a Frame is initialized to contain the 

82 



three buttons to be crea~ed Enter the following code in the client class to extend it 

as a stand-alone application .. 

Public static void main(String args[ ] ) throws IOException { 

Frame f= new frame (Client-Server Information"); 

II obtain the port number from second parameter on command line. 

int port =(new Integer (args[l])). intValue(); 

II convert it to an inter from its string value 

Client Clnt = new Client(); II initialize and start it 

client.start(); 

f.add("Center", Clnt); . I I create the frame 

f.resize (600, 800); 

f. show(); 

} 

9. Now that we have Buttons in the Panel, we have to override the action() method 

so that appropriate action is taking when a button is pressed. The following code 

achieves this. Enter the code in the class Client. Also include two variable, count 

. . 
will keep track of the lines printed out to the canvass. 

83 



String InpStr[ ]; 

int count; 

public Boolean action (Event evt, object arg) { 

if(~vt. target instanceofButton) { //if a Button is pressed 

count = 0; 

if ("clientinfor".equals(arg)) { II if client button is selected 

int port_ num = sock.getPort(); 

printOut("Client has connected to a Server listening at the port number" +port_ num); 

Clienetlnfor(); 

printOut("\n \n"); 

} 

else if("serverinfor".equals(arg)) { //if serverinfo is requested 

Serverlnfo(); 

printOut("/nln"); 

} 

else if("fileinfor". equals(arg)) { II if fileinfo~ is requested 

try{ 

//Wr requesting the contents of file by name /etc/motd String file_name =new · 

String("/eetc/motd"); 

MakeRequests( file_ name); 

84 



} catch (ArraylndexOutOfBoundsException a) { 

printOut ("For accessing remove file \n\tUsage :java client <filename>"); 

} 

printOut(\n \n"); II a pretty print method available within this class 

} 

} 

return true; 

} 

10. Information about the Client is to be retrieved when the clientinfo button id 

pressed. Including the following method in Client class will make this happen. If 

the Inet address of the local host is made available, then more details can be 

obtained from the InetAddress instance that will reflect the client machine 

information. 

I** Method to obtain information about the client host *I 

public void clentlnfo( ) { 

try { 

InetAddress c_inet; 

String c _name;. 

c _inet = InetAddress.getLocal (Host ( ); I I InetAddress of the Local host 

c _ name=inet.getHostname ( ); 

printOut("Clent Host Details "); 

II Get the host name of the client 

85 



printOut(" HostName : " + c_name); 

I I get the string form. of the inet address and extract th~· IP address part of it . 

String c_str = c_inet.toSting ( ); 

int intex = c str.indexOf (' I ' ) ; 

String c _ipaddr = c _ str.substring (index+ I); 

printOut (" IP address : " + c _ipaddr ); 

}catch (IOException IOE); 

} 

II. Server details ean be obtained from the server's InetA.ddress in a similar manner 

as from the Client's: To get the InetAddress of the server, the Socket instance is 

used. The getinetAddress () method of Socket class is ;used. Include the following 

code in the Client class. 

I** Method to obtain information about the server *I 

public void Serverlnfo(). { · 

InetAddress s inet = sock.getlnetAddress(); 

String s _name +inet.getHostName (); 

printOut (" Server Host Details "); 

printOut ("HostName : " + s _name); 

\ 

86 



String s_str = S_inet.toSring(); 

int index= s _ str.indexOf (' I '); 

String S _ipaddr = s _ str.substring (index+ I); 

printOut(" IP Address : " + s _ipaddr ): 

12. The following Make requests 0 method is used to send the file name to the server 

and request the contents of the file. The client then reads the reply from the server 

and prints it on the screen untii the end· of file is reached. The datain and dataout 

members of type Datalnput Stream and DataOutputStream are used by the Client 

to communicate with the Server. 

public void MakeRequests(Stringfil_ n) { 

printOut( "File requested by the client : "+file_n); 

printout ("\n \n"); 

printOut( The file contains the following : "); 

printOut("\n \n); 

try { 

dataout. writeUTF(File"); 

dataout.flush(); 

dataout. writeUTF(fil_ n); 

II informa the server that youare requesting a file 

I I send the· filename to the server 

II always a use flush() after using write() method of 

I I outputstream 

87 



String file_ contents = datain.readUTF(); 

while (!file_ contents.eqauls("EndofFile")) { 

printOut( file_ contents); 

file_ contents = datain.readUTF(); 

dataout. writeUTF("Bye"); 

data out.flush(); II transaction is complete 

dataout. flush(); 

} catch (IOException ioE){ 

II catch the i/o exception 

System.out.pri~tln("Oops! file prob");}; 

13. Include the following methods in the class client, To print the strings on the 

canvas in an orderly manner, write the printOut() method, which is used by other 

methods to print on the canvas. The paint() method is overridden here to write to 

the exact locations the canvas. 

public. void printOut(Sting str) { 

InpStr[ count] == new String(str )~ 

count++; 

repaint(); 

try{ 

mythread.sleep( 500); 

88 



} catch (lnterruptcdException ie) {}; 

} 

public void paint(Graphics g) { 

dimension d = size(); 

g.setColor( color. black); II write the contents in black 

for (int y=60, i = 0; i <count; i++ { 

y +=20; II between each line leave 20 pixels gap 

II draw the string at 40th columns and specified line 'y' g.drawString(lnpStr[i],40,y); 

} 

} 

. . 
14. We should take necessary care to close any open files, steams, or sockets. This 

can be done in the stop() method of the Applet, which is called when is called 

when the Applet is terminated. 

public void stop() { 

System.out.println('4inside Client.stop()"); 

if (mytheread != null) { 

mythread.stop(); 

mythread.stop(); 

mythread=null; 

89 



} 

} 

try { 

dataout.close(); 

datain.close(); 

sock. close(); 

} catch (IOException E); 

1 5 The above three file are compiled using javac. The serve is ececutedd using the 

Java interpreter. Use 

java Server 

Aat the command prompt to run the Server. 

16. The client Applet can be launched from the Web using the following HTML file, 

csr.html. 

<title> Client-Server Infonnation </title> 

<hr> 

<applet code = Client. class width= 600 height = 400> 

<param name = servPort value= 80> 

</Applet> 

<hr> 

90 



The applet, when launched, using the command applet viwever csr. html, will 

create Panel what will appear as in Figure . When you press any of the three keys, 

appropriate actions taken and details are printedout canvas. This applet implements the 

Client-Server information exchange of information between the Client and the Server. 

APPLET VIEWER : SERVER APPLET CLASS 

Applet 

I Client Info I I_ Server Info File Info 

Clinet has connncted to server listening at the port No. 80 

Client host Detail 

Host Name: 
IP Address: 

scss.stpn.soft.net 
202.41.10.67 

4.1.2 How the The Applet Works 

The server is a stand-alone application. First, start the server on the host you want 

to run the server. After starting the server, run the client applet. When the applet comes 

up, it displays a window with three buttons : clientinfor, serverinfo, fileinfor. If you click 

the clientinfor button, the details of the host, on which the client applet is executed, is 

displayed on the canvas. If you click the serverinfo button, the details of the server host, 

host on which the server is running, is displayed on the window. Where as if you click 

on the fileinfor button, the contents of the etc/motd file (in case of Unix system) is 

displayed on the screen. If you are interested in any other file, changes the filename in the 

code to the desired filename. 

91 



~4.2. DEATAILS ANALYSIS DESIGN AND IMPLIMENTATION IN JAVA FOR· 
CHAT SERVER PROTOCOL 

4.2.1 UNDERSTANDING CHAT AREAS 

Ever since the first computres were connected , people have been using them to 

talk. A chat area is an interface that lets a group of people talk by typing messages Like 

all Internet based program s, chat program must follow a specific protocol. Specifically, 

chat programs rely on the · internet chat (IRC) protocol. However ,chatting on a Web 

page has been ad-hoc at best until Java. With java , a web page can have fully 

featured chat areas. Features such as instant messages and membership rooms are not 

difficult to implement.Due to the applet restrictions, chat applet on the same page will 

have to communicate through a server on the computer where they reside. 

4.2.2 CREATING OWN CHAT PROTOCOL 

To create own chat area using java, we must have to define protocol. Protocol 

allows a· client and ser,ver to communicate across a network. To write our own protocol 

we must have to defme the infomation that the client and server will exchange. For a 

chat area , the client must be able to send its name , receive the names of the people in 

the client , send mess~ges that apperu: on the chat areas message board . The server 

must be able to update the client list when someone enters or leaves the room, or 

92 



when there is a new message. Following table sho\vs a simple protocol for a chat area 

client-server application. 

'Protocol Client Server Description 

Hi name yes no connect to a chat server. 

TAKEN no yes connection refused because 

name is taken. 

PEOPLE:name:name: ........... no yes list of every one in the 

chat area. 

MSG: message yes 

QUfJ: Yes 

yes 

yes 

Message to be placed on 

the chat area board. 

close the connection nicely. 

4.2.3 BUILDING A'CHAT APPLET'S INTERFACE 

A· minimum chat applet has two text areas, a text field, a list, and three buttons. 

The text field and one button are used to create a name and connect to the chat server. 

One of the text areas and another button are used to send messages to the chat server 

the other text area is used to display messages that are received from the chat server . 

The last button is used to disconnect from the server The interface also has a list to 

show all the people chat that are connect to the server. 

93 



To implement m Java for the chat interface we have to use event handaling 

concept. 

. . 

Applet Viewer Server. Class · 
' . . 

Applet 

Name .,~.-s_cs_s ____ ____JIIconnect I Disconnect 

JJ 
............ .................................................. --f 

Message 

I~ II II~~ 
Applet Started 

First of all define a chat applet class like 

public class chatapplet extends Applet{ 

public void init() 

Qd 



I 
J 

4.2.4 HANDLING THE CHAT APPLET'S EVENTS 

The chat applet is an event driven program. we must implement the applet's 

action method to capture the button - down evel)tS . When the user clicks on the 

connect button , the chat applet tries to connect to the chat server After the applet 

establishes a socket connection, the chat applet sends its name to the server. when the 

user clicks on the disconnect button , the chat applet closes the connection. 

In addition , if the chat applet is connected to a server , the user's selection of the 

send button causes the applet to send the contents of the message-text area to ·the chat 

server. The following code demonstrates how to process a chat apple! events. 

public boolean action(Event evt,Object obj) 

{ 

if( evt.target instanceof Button) 

{ 

String Iebel= (String) obj; 

{ 

if (label. equals( connect))· 

{ 

if (soc==null) 

95 



{ 

try 

{ 

soc= new Socket(lnterAddress.getLocalHost(), no ); 

ps= new printStream( soc.getoutputStream() ); 

ps.println(name-text.getText()); 

ps.flush(); 

listen=new Listen(this ,name-txt.getText(),soc); 

listen. start(); 

} 

catch(Ioexception e) 

{ 

System. out. println("Error:"+e ); 

disconnect(); 

} 

} 

} 

else if (label.equals(DISCONNECT)) 
. . 

{ 

disconnect(); 

} 

else if (label.equals(SEND)) 

96 



{if (socket!=null) 

StringBuffer msg=new StringBuffer("MSg: "): 

ps.println(msg.append(msg-txt.getText())); 

ps.tlush(); 

·l 
i 

1 
f 

return true; 

public void stop() 

disconnect(); 

} 

public void disconnect() 

if (soc!=null) 

try 

{ 

listen.suspend(); 

ps.println("QUIT"); 

ps.flush(): 

97 



soc.close(); 

catch(IOException e) 

system.out.println(Error:" +e); 

finally 

{ 

listen.stop(); 

listen=null; 

soc=null; 

list.clear(); 

} 

} 

} 

In the above code Listen class within the code. · 

The listen class is a thread that listens to the chat server. 

4.2.5 PROCESSING MESSAGE RECORD FROM A CHAT SERVER 

An event- driven program can also receive events from other programs. For 

chat applet program, we must handle messages received from the chat server. There are 

three messages that the chat applet might receive from the chat server. 

98 



When someone enters or leaves the chat area . the chat server sends the PEOPLE 

keyword followed by a list of names . When client sends a message to the chat area . the 

chat server sends a MSG keyword followed by the message. Finally. v.:hen the chat 

server is going to disconnect , it sends the QUIT keyword. The folioing classes 

demonstrates how to handle messagesreceivcd from a chat server. 

class listen extends Thread { 

public Listen(chatapplet p,String n, sockets) 

try{ 

} 

catch (IOException e) 

{ 

} 

} 

public void run() 

99 



vlhile (true) 

try{ 

msg= dis.readLine(); 

} 

catch (IOException e) 

{ 

} 

if(mg=null) 

{ 

} 

if(keyword.equals( "PEOPLE"); 

{ 

chatApplet.list.clear(); 

while(st.hasMoreTokens())· 

} 

else if (keyword.equals("MSG")) 

100 



} 

else if (keyword.equals("QUIT") 

{-

} 

} 

The Listen class extends to simplify the design of the chat applet also improves 

the response to user input Using threads , the chat applet can detect new messages 

being sent from the server and take input from the user at the same time . 

4.2.6 HOW A CHAT SERVER ACCEPTS A CLIENT 

The first task of a chat server is to creat a server socket on a specific port . Then 

the chat server must wait for clients to connect. When a client request a connection , 

the chat server creats a thread for that client , saves the client with a client list , and 

then waits for the next clients The following code demonstrates a chat server main 

method , where a chat server waits for a new client. 

public class chatserver extends Frame { 

101 



static Vector clients= new Vector(l 0); 

static server Socket server =null; 

static int active - connects =0; 

static Socket socket =null; 

public boolean handle eventEvent(Event evt) 

{ 

if(evt.id ==Event.WINDOW-DESTROY) 

{ 

sendClients(new stringBuffer("Quit"); 

closeAll(); 

System.exit(O); 

} 

return super .handleEvent(evt); 

} 

public static void main (string args[ ]) 

{ 

Frame .f= New chatServer(); 

f.resize(200,200); 

f. show(); 

try{ 

server=new serversocket(2523); 

102 



} 

catch(IOException e) 

J 
l 

System.out.println(11Error11 
II e); 

while (true) 

{ 

if( clients. size()< I 0) 

{ 

try{ 

socket=server.saccept(); 

} 

catch(IOexception e) 

{ 

System.out.println(11Error: 11 +e); 

} 

for (int i=O; i<chatserver.client.size();i++ 

{ 

client c= new client(socket); 

clients.elementAt(i)=c; 

if checkName(c)) 

103 



c.start; 

notifyroom(); 

} 

else { 

c.ps.println("TAKEN"); 

dosconnect( c); . 

break; 

} 

} 

else 

{ 

try{ . 

Thread.sleep(200); 

} 

catch(InterruptedException e) {} 

} 

} 

} 

} 

104 



4.2.7 CREATING A CHAT SERVER 'S CLIENT THREAD 

How to create chat server that lets multiple clients make a connection.· For 

each of these clients , the chat server must be able to accept messages. Tht best way 

to do this in java is to create a separate thread per client The folioing class 

demonstrates how to connect multiple clients. 

clac;s Clients extends Thread { 

public void send (String buffer msg) 

{ 

ps.println (msg); 

ps.flush(); 

} 

public clients (socket s,int i) 

{ 

socket =s 

try{ 

dis= new Datalnput Stream(s.getlnputSream()); 

ps= new printstream(s.getOutputStream()); 

ps= new printstream( s.getoutputStream() ); 

name= dis.readLine( ); 

} 

catch (IOException e) 

IO.'i 



f 
l 

System.out. println("error:" e): 

} 

} 

public void mn( ) 

{ 

while(tme) 

{ 

String line =null; 

try 

{ 

line= dis .readLine( ) ; 

} 

catch ( IOException e) 

{ 

System.out.println("error: "+e) 

chatserver .dissconnect(this ); 

chatserver.notify.RoomO; 

return; 

} 

if (I ine=null) 

{ 

106 



chatserver .disconnect( this); 

chat.server.notif)'Room(); . 

return; 

} 

string T okenizer st=new String Tokenizer(line," : "); 

String keyword= st.nextToken(); 

if (keyword=equals("MSG")) 

{ 

stringBuffer msg= new string Buffer ("msg: "); 

msg.append(name ); 

msg.append( st.nexttoken("\0"); 

chatserver.sendclients(msg); 

} 

else if (keyward.equals("QUIT"); 

chatserver.disconnect(this); 

chatserver.notif)'Room(); 

this.stop(); 

} 

107 



} 

} 

4.2.8 JMPELEMENTING CHAT SERVER METHODS 

Some of the requests requir the server to send the· messages to all other 

clients that are connected to the chat server. For example if a client sends a 

QUIT message , chat server must notify all other clients th'lt one of the client 

has left. Likewise , if a client sends a MSG , the chat server must send all other 

clients that message . 

When a chat server gets a connection request from a new clients , the chat 

server must make sure that the name is not taken away by another clients 

The following code illustrates the processing the server must perform 

public static void notifyRoom( ) 

String Buffer people = new String Buffer ("PEOPLE"); 

for(int i=O; i<clients.size();i++ ); 

{ 

clients c =clients .eleruentAt(i); 

people.append(":" c.name); · 

} 

sendClients(people ); 

} 

public static synchronised void send Clients (StringBuffer msg) 

{ 

108 



for (int i=O; i<clients.size(); i++) 

{ 

clients c= clients .elementAt(i); 

c.send(msg); 

} 

} 

public static void closeall() 

{ 

while ( clients.size()) 

{ 

client c= clients firstElement(); 

try{ 

c. socket.close(); 

} 

catch(IOException e) 

{ 

system.out.println("Error: "+e); 

} 

finally{ 

clients. removalElement(c) 

} 

109 



} 

public static boolean checkname(Client newclients) 

{ 

for ( int i=O ; i<clients.size(); i++) 

client c= client.elementAt(i); 

if((c !=new clients)&&c.equals(newclient.name)) 

return( false); 

} 

return( true); 

} 

public static synchronised void disconnect( Client c) 

{ 

try{ 

c.send(new stringBuffer("QUIT"); 

c.socket.close(); 

} 

catch(IOException e) 

{ 

system.out println("Error:" +e); 

} 

finally 

{ 

110. 



clients.remova!Element( c); 

) 

f 

~ \ . . ,, \ 

\, 

Applet Viewer Chat Applet Class ·:·: 
' I 

' ' 

Applet 

Name . ._lsi_·s ____ ___.llconnect I Disconnect 

,,,,,,,,,,, .. .,,,,,,, ............................. , .. +---f 
<= => 

Message world speaks the language java EJ 
=> 

Applet Started 

Ill 



·CHAPTERS 

5.1 CONCLUSION 

A Chat Server has developed using JDK- 1.1. In the Chat area a group of people 

can talk by typing messages. The Developed Applet is interactive , dynamic and all also 

real time for any message. The Applet is to be accessed through Internet. Audio & Video 

can be included for real-time face to face talking. 

Futures such as instant messages and membership rooms are also implemented. 

Due to the applet restrictions chart applets on the same page. will have to communicate 

through a server on the ~omputer where they reside. 

' ' 

Running a Chat server OJ) an existing intranet or extranet server allows companies 

to offer live interaction among employees and associates, and public chat areas let 

organizations host discussions across the Internet. 

112 



5.2 REFERENCES 

1) www.micr.co.uk 

2) www. bcpl.lib.md. vs-frappa/pirch.html. 

3) AS. Tanenbaum, Computer Networks (Third Edn.), (PHI) 1997 

4) Subhodh Bapat, Object Oriented Networks, PTR Prentice Hall, 1994 

5) PC Magazine, Can we chat? May 27, 1997 

6) IEEE Communications, Vol 35, no. 5 (May issue), no. 6(June issue), no. 10 (Oct. 
issue), 1997 (Complete issue) 

7) Michale Morrison, Unleashed Java (Samsnet), 1995 

8) P. Naughton, Herbert Schildt, The complet references Java (TMH), 1997 

113 


	TH66650001
	TH66650002
	TH66650003
	TH66650004
	TH66650005
	TH66650006
	TH66650007
	TH66650008
	TH66650009
	TH66650010
	TH66650011
	TH66650012
	TH66650013
	TH66650014
	TH66650015
	TH66650016
	TH66650017
	TH66650018
	TH66650019
	TH66650020
	TH66650021
	TH66650022
	TH66650023
	TH66650024
	TH66650025
	TH66650026
	TH66650027
	TH66650028
	TH66650029
	TH66650030
	TH66650031
	TH66650032
	TH66650033
	TH66650034
	TH66650035
	TH66650036
	TH66650037
	TH66650038
	TH66650039
	TH66650040
	TH66650041
	TH66650042
	TH66650043
	TH66650044
	TH66650045
	TH66650046
	TH66650047
	TH66650048
	TH66650049
	TH66650050
	TH66650051
	TH66650052
	TH66650053
	TH66650054
	TH66650055
	TH66650056
	TH66650057
	TH66650058
	TH66650059
	TH66650060
	TH66650061
	TH66650062
	TH66650063
	TH66650064
	TH66650065
	TH66650066
	TH66650067
	TH66650068
	TH66650069
	TH66650070
	TH66650071
	TH66650072
	TH66650073
	TH66650074
	TH66650075
	TH66650076
	TH66650077
	TH66650078
	TH66650079
	TH66650080
	TH66650081
	TH66650082
	TH66650083
	TH66650084
	TH66650085
	TH66650086
	TH66650087
	TH66650088
	TH66650089
	TH66650090
	TH66650091
	TH66650092
	TH66650093
	TH66650094
	TH66650095
	TH66650096
	TH66650097
	TH66650098
	TH66650099
	TH66650100
	TH66650101
	TH66650102
	TH66650103
	TH66650104
	TH66650105
	TH66650106
	TH66650107
	TH66650108
	TH66650109
	TH66650110
	TH66650111
	TH66650112
	TH66650113
	TH66650114

