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ABSTRACT 

Spatial data consists of points, lines, regions, surfaces and volumes. 
The representation of such data is becoming important in applications suchas 
computer graphics, CAD, GIS, imag£? processing, pattern recognition and 
other areas. 

Many of the data structures currently us.ed to represent spatial data 
are hierarchical. They are based on the principle of recursive decomposi­
tion (similar to divide and conquer methods). One such data structure is the 
QUADTREE. Hierarchical datastructures are useful, because of their ability 
to focus on the interesting subsets of the data. This focussing results in an 
efficient representation and in improved execution times. Thus they are 
particular convenient for performing set operarions. These hierarchical data 
structures are attractive because of their conceptual clarity and ease of imple­
mentation. 

The most studied quadtree approach to region representation called 
a region quadtree, is based on the successive subdivion of a bounded im­
age into four equal sized quadrants. This subdivision continues till the blocks 
contains completely either black or white pixels. This region quadtree is 
more useful for simple polygons i.e. polygons does not contain holes and 
intersecting edges. Insertion, deletion, point location and overlay opera­
tions on region quadtree are discussed and implemented. 

For overcoming the deficiency of region quadtree PM (polygonal map) 
quadtrees are developed. The PM quadtree family represents regions by 
only specifying their boundaries without mentioning about their interiors. 
Based on type of PM quadtree (PM1, PM2, PM3 quadtrees) the polygonal 
map is repeatedly subdivided into four equal sized square quadrants until 
the blocks satisfies the stated condition. The PM3 quadtree is more useful 
for the regions which contains holes. Insertion, deletion, overlay and point 
location problems are discussed and implemented. 
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INTRODUCTION 

1.1 INTRODUCTION: 

Spatial data consists of points, lines, polygons, regions, sur­
faces and volumes. The representation of such data is increas­
ingly important in many application areas. Once an application 
has been specified, it is common for the spatial data types to be 
more precise. Take an example from Geographical information 
systems (GIS). In such a case line data are differentiated on the 
basis of whether the lines are isolated (e.g. earthquake faults), 
-elements of tree like structures (e.g. rivers and their tributaries) or 
elements of networks (e.g. rail and highway systems). Similarly 
region data are often in the form of polygons that are isolated (e.g. 
lakes), adjacent (e.g. nations) or nested (e.g. contours). There are 
numerous hierarchical data structuring techniques in use for repre­
senting spatial data. One commonly used technique is based on 
recursive decomposition is quadtree. 

The term quadtree is used to describe a class of hierarchical 
data structures whose common property is that they are based on 
the principle of recursive decomposition of space. They can be 
differentiated on the following criteria [SAMET8]. 

1. The type of data they are used to represent. 

2. The principle guiding the decomposition process. 

3. The resolution (variable or not). 

Currently they are used for point data, areas, curves, sur­
faces and volumes. The decomposition may be into equal parts on 
each level (i.e. regular polygons and regular decomposition) or it 
may be governed by the input. The resolution of the decomposition 
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(i.e., the number of times that the decomposition process is ap­
plied) may be fixed beforehand, or it may be governed by the input 

data. Note that for some applications we can also differentiate the 
data structures on the basis of whether they specify the bound­
aries of regions (i.e. curves and surfaces) or organise their interi­
ors (i.e. areas and volumes). 

The first example of a quadtree representation of data 
is concerned with representation of two dimensional binary data. 
The most studied quadtree approach to region-representation called · · · · 
region quadtree (often termed a quadtree) is based on successive 
sub division of a bounded image array into four equal sized quad­
rants. If the array does not cover the entirely of 1 s or Os (i.e. region 
does not cover the entire array) it is sub divided into further quad­
rants, sub quadrants and so on until blocks are obtained that con­
sists entirely of Os or entirely of 1 s. Thus each block is entirely 
contained in the region or entirely disjoint from it. The region 
quadtree can be characterized as a variable resolution data struc­
ture. 

As an example of region quadtree consider the region 
shown in figure 1 a of next page is represented by 2 3 * 23 binary 
array in figure 1.b (next page). Observe that 1 s correspond to 
picture elements (pixels) in the region and the Os correspond to 
picture elements outside region. The resulting blocks for the array 
of figure 1.b are shown in figure 1.c of next page. This is repre­
sented by a tree of degree 4 (i.e. each non leaf node has four sons). 

In the tree representation, the root node corresponds 
to the entire array. Each son of a node represents a quadrant 
(labeled in order NW, NE, SW, SE) of the region represented by 
that node. The leaf nodes of the tree correspond to these blocks 
for which to further subdivision is necessary. A leaf node is said to 
be black or white depending on whether its corresponding block is 
entirely inside (i.e., it contains entirely 1 s) or entirely outside the 
represented region (i.e. it contains only Os). All non leaf nodes are 
said to be gray (i.e. it's block contains Os and 1 s). Given a 2n * 2n 
image, the root node is said to be at level n while a node at level 0 
corresponds to a single pixel in the image. The region quadtree 
representation for figure 1.a is shown in figure 1.d (next page). 
The leaf nodes are labeled with numbers and the nonleaf nodes 
are labeled with letters, The levels of the tree are also marked. 
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At this point, it is appropriate to justify the use of a 
quadtree decomposition into squares. Of course there are many 
methods of planer decomposition. Squares are used because the 
resulting decomposition satisfies the following two properties 
[SAMET9]. 

1. It yields a partition that is an infinitely repetitive 
pattern. so that it can be usedfor image of any size. · 

2. It yields partition that is infinitely decomposable 
into increasingly finer patterns (i.e. higher resolution). 

A quadtree like decomposition into four equilateral tri­
angles also satisfies these criteria. However, unlike the decompo­
sition into squares, it does not be mapped into each other by trans­
lations of the plane that do not involve rotation or reflection. In 
contrast, a decomposition into hexagons has a uniform orienta­
tion, but it does not satisfy property2. 

The prime motivation for the development of the 
quadtree is the desire to reduce the amount of space necessary to 

' store data through the use of aggregation of homogeneous blocks. 
However a quadtree implementation does have overhead in terms 
of the non leaf nodes. For an image with 8 and W black and white 
nodes respectively, 4*((B+W)/3 nodes required. In contrast, a bi­
nary array representation of a 2" * 2" image requires only 22

" bits. 
However this quantity grows quite quickly. Further more if the 
amount of aggregation is minimal, the quadtree is not very effi­
cient. 

1.2 VARIANTS OF QUADTREES : 

The array is the most frequently used data structure for 
representing the images. For large images, however the amount of 
storage required is often deemed excessive, in a raster representa­
tion (i.e. a list of image rows). The image is processed one rows 
into one dimensional blocks of identically valued pixels (termed a 
run representation or runlength coding). The image is then repre­
sented as a list of such runs. 
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The region quadtree is a member of a class of 
representations characterized as being collection of maximal blocks, 
each of which is contained in a given region and when union is the 
entire image. In this case blocks are restricted to 1 * m rectangles. 
A more general representation treats the region as a union of maxi­
mal square blocks (orblocks of any other desired shape) that may 
possibly overlap. Usually the blocks are specified by their centers 

, ..... .and. radii. This representation. is called MAT (medial axis transfor­
mation). Of course other approaches are also possible (i.e. rectan­
gular coding etc.). 

The region quadtree is a variant of on the maximal block 
representation. It requires the block to be disjoint and have stan­
dard sizes (i.e. sides of lengths that are powers of two) and stan­
dard locations. The motivation for it's development was a desire 
the obtain a systematic way to transform the data intra region 
quadtree, a criterion must be chosen for deciding that an image is 
homogeneous (i.e. uniform). 

The region quadtree is an example of a region repre­
sentation based on a description of its' interior. One of the variant 
is representation based on exteriors i.e. boundaries of the regions. 
This is done in the more general context of hierarchical data struc­
tures for complex polygons (polygons containing holes). The em­
phasis is on regions having linear boundaries (i.e. specified by lines). 
The data are usually in the form of network of adjacent polygons 
resulting in a subdivision of space termed a polygonal map. The 
PM (polygonal map) quadtree is a term used to describe collec­
tively a number of related quadtree like data structures devised by 
Samet and Webber [SAMET9], Nelson and Samet to overcome some 
of the problems associated with some other data structures. These 
some other data structures are based on boundary representation 
named edge quadtree, line quadtree, and MX quadtree. The disad­
vantage of the above quadtree data structures are, they are sensi­
tive to shift and rotation. 

The PM quadtrees are vertex based and edge based. 
Their implementations make use of the same basic data structures. 
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All are built by applying the principle of repeatedly breaking up the 
collection of vertices and edges (forming the polygonal map) until 
obtaining a subset that is sufficiently simple that it can be organised 
by some other data structure. This is achieved by successively 

weakning the definition of what contributes a permissible leaf node. 
The goal is to avoid data degradation when fragments of line seg­
ments are subsequently recombined. The result is an exact repre­
sentation of the lines, but not an approximation. 

1.3 OPERATIONS ON IMAGES : 

Operations on images is very importa[lt aspect in many 
applications. Without some operations in mind, data structures de­
veloped may not appear worthy. Many operations can be performed 
on images using quadtrees. Some of the operations are point loca­
tion, overlay, intersection, shifting, rotation and zooming. The re­
gion quadtrees and PM quadtrees are useful in determination of 
the identity of the region i.e., in which a point lies (known as point 
location problem) and overlay of two maps (i.e. union of two maps). 
These two operations are discussed and implemented in this project. 

1.4 OVERVIEW OF THE PROJECT : 

This book is presented as follows. Chapter 1 is intro­
duction. Chapter 2 describes the various types of spatial data struc­
tures. Chapter 3 is mainly concerned with the design of the project. 
Chapter 4 deals with implementation details of project. Chapter 5 
is concerned with comparison and analysis of various spatial data 
structures. Chapter 6 is the conclusions of project, then it follows 
with bibliography and then follows with appendices. Appendix_A 
describes about description of the notations of algorithms and 
Appendix_B shows the results (output) of the project. 
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VARIOUS SPATIAL DATA STRUCTURES 

In this chapter the various spatial data representation 
techniques are going to be discussed. Generally there are two 
approaches to the representation of regions. Those that specify 
the borders of a region and those that organise the interior of a 
region. T_his corresponds to either storing region identification in­
formation only on the region's border or also storing it on parts of 
the region's interior. The following techniques are based on the 
above both approaches. 

2.1 ARRAY: 

When each cell has a unique value it takes a total of n rows 
* m columns. For example a grid having 2" rows and 2m columns 
having 2m+n bits (for binary images) required to represent the im­
age. This type of data structure is useful when image consists of 
chess-board pattern. For the image shown in figure 2.a of next 
page, it takes the 256 (cells) numbers for complete representation 
[BURROWS 6]. 

2.2. CHAIN CODES : 

The boundary of the region can be given in terms of origin 
and a sequence of unit vectors in the cardinal directions. These 
directions can be numbered (east=O, north=1, west=2, south=3). 
For example, for the figure shown in 2.a (next page), if we start at 
cell row = 10, column = 1, the boundary of the region is coded 
clockwise by 

0, 1' 0 (2), 3, 0(2), 1' 0, 3, 0, 1' 0(3), 3(2), 2, 3(3), 0(2), 1' 
0(5), 3(2), 2(2), 3, 2(3), 3, 2(3), 3, 2(3), 1' 2(2), 1' (2), 1' 2(2), 1' 
2(2), 1 (3). 

Where the number of steps in each direction is given 
by the number in brackets. Chain codes provide a very compact 
way of storing a region representation and they allow certain 
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operations such as estimation of areas and perimeters or detec­
tion of short turns and concativites to be carried out easily. On 
the other hand, overlay operations such as union and intersection 
are difficult to perform without returning to a full grid representa­
tion. Another disadvantage is redundancy introduced because all 
boundaries between regions must be stored twice [burrows 6]. 

2.3 RUN LENGTH CODES: 

Runlength codes allow the points in each mapping unit 
to be stored per row in terms from lift to right of a begin cell and an 
end cell. For the area shown in figure 2.a of previous page the 
codes would be as follows. L • 

Row 9: 2,3 6,6 8,10 

Row: 10 1' 10 

Row: 11 1' 9 

Row: 12 1' 9 

Row: 13 3,9 12,16 

Row: 14 5, 16 

Row: 15 7, 14 

Row: 16 9, 11 

In this example 69 cells have been completely coded 
by 29 numbers. thereby effecting a considerable reduction in the 
space needed to store the data. 

Clearly run length coding is a considerable improve­
ment in storage requirements over conventional methods. On the 
other hand, too much data compression may lead to increased 
processing requirements during cartographic processing and ma­
nipulation. Run length codes are also useful in reducing the vol­
ume of data that need to be input to a simple raster data base 
[BURROWS 6]. 

2.4 BLOCK CODES: 

The idea of run length codes can be extended to two 
dimensions by using square blocks to file the area to be mapped. 
Fig 2.b (previous page) shows how this can be done for the map 
of figure (previous). The data structure consists of just three num­
bers, the origin (the center or bottom left) and radius of each 
square. This is called the medial axis transformation (MAT). The 
region shown can be stored by 17 unit square +9 four squares+ 1 
sixteen square. Given that two coordinates are needed for each 
square, then the region can be stored using 57 numbers (54 for 
coordinates and 3 for cell sizes). Clearly the larger the square 
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that can be fitted in any given region and the boundary is simple, 
then the block coding becomes more efficient. Both run length and 
block codes are clearly most efficient for large simple shapes and 
least so far small complicated areas that are only a few times larger 
than the basic cell. Mat has advantage of performing union and 
intersection of regions and detecting the properties such as elon­
gation. 

2.5 QUADTRESS : 

2~5~1. REGION QUADTREE: · ·· . ~ - ' 

This method of more compact representation is based 
on successive subdivision of 2n· 2n array into quadrants. A region is 
filed by subdividing the array step by step into quadrants and not­
ing which quadrants are wholly contained with the region. The low­
est limit of division is the single pixel. Figure 2.c. (previous page) 
shows successive division of one region into quadrant blocks. This 
entire array of 2n · 2n is the root node of the tree and height is at 
most n levels. Each node has four branches, respectively the NW, 
NE, SW, SE quadrants. Leaf nodes composed to those quadrants 
for which no further subdivision is necessary. Each node in the 
quadtree can be represented by two bits, which define whether a 
node is GRAY or BLACK or WHITE [BURROWS 6]. 

2.5.2. POINT QUADTREE : 

The point quadtree, invented by FINKEL AND BENTLEY 
is a marriage of the grid method and the binary search tree that 
results in a tree-like directory with non-uniform sized cells contain­
ing one element apiece. The point quadtree shown in figure 3 of 
next page is implemented as a multidimensional generalisation of a 
binary search tree. It is referred to as a point quadtree where confu­
sion with a region quadtree is possible. Point quadtree shape is 
highly dependent on the order in which the points are added to it 
[SAMET 8]. 

2.5.3. MX QUADTREE : 

The MX quadtree is organised in a similar way to the region quadtree. 
The difference is that the leaf nodes are BLACK or WHITE corre­
sponding to the presence or absence, respectively, of a data point 
in the appropriate position in the matrix. The MX quadrants, each 
data point as if it is a black pixel in region quadtree. An alternative 
characterisation of MX quadtree is to think of the data points as 

10 



(0100) . (100,100) 

(&(), ~~-
TORONTO 

180.~1 
•BIFFALO 

.(:1,4~) 

~ DENVER • 
y 

~~~ 
OMAHA 

..... , 
~ 

(!j(),lO) F?'' 
loiOBIU 

(0,0) (100,0) ·-A 

F16l4 PR quadtree and the records it represents 

10,100) (100,100) 

(60,7~) 

TOIIONTO 

(10,6~) 

BUFFALO 
15,45) 
DENVER (3~,40) 

CHICAGO 

12~.~~ 
OWA>U 

(15,1~) 

~ 
ATLANTA 

eo 51 
WIAW!f 

IO.Ol (100,0) 

x---

CHICAGO 

F I c;; 3 A point quadtree and the records it represents 

,, 



non-elements in a square matrix, although the term MX quadtree 
would probably more appropriate. The MX quadtree is shown in 
figure 8 (in the following pages) 

[SAMET 8). 

2.5.4. PR QUADTREE : 

The MX quadtree is an adequate representation for 
points as long as the domain of the data points is discrete and fi-

'~ ~-· ---··. nite. If this- is n0tthe,case, the data points- can not be represented . , · , .... _ 
since the minimum separation between the data points is unkown. 
This leads to an alternative adaptation of the region quadtree to 
point data that associates data points (that need not be discrete) 
with quadrants. We call it as a PR quadtree (P for point and R for 
region) although aga.in the term PR quadtree is probably more ap­
propriate. The PR quadtree is organised in the same way as the 
region quadtree. The difference is that leaf nodes are either empty 
(i.e., white) or contain a data point (i.e., black) and its coordinates. 
A quadrant consists of, at most one data point. The PR quadtree 
representation can also be adapted to a region that consists of a 
collection of polygons (termed polygonal map) [SAMET 8]. The PR 
quadtree is shown in figure 4 of previous page. 

2.5.5. EDGE QUADTREE 

The edge quadtree is based on a refinement of the MX 
quadtree first suggested by WARNOCK. Although WARNOCK did 
not make use of a tree structure, he observed that the number of 
squares in the decomposition could be reduced by terminating the 
subdivision whenever the square contains at most one line of the 
polygon or the intersection of two polygons. In the edge quadtree, a 
region containing a linear feature, or part there of, it subdivided into 
four squares repeatedly until a square is obtained that contains a 
single curve that can be approximated by a single straight line. If an 
edge terminates within a node, a special flag is set, and the inter­
cept denotes the point at which the edge terminates. Applying this 
decomposition process leads to quadtress in which long edges are 
represented by large leaf nodes or a sequence of large leaf nodes. 
Small leaf nodes are required in the vicinity of corners or intersect­
ing edges. Of course, many leaf nodes will contain no edge infor­
mati9n at all (SAMET 9]. 
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2.5.6. PM QUADTREE: 

The PM quadtree is a term used to describe collec­
tively a number of related quadtree·like data structures devised by 
SAMET and WEBBER, SAMET and NELSON to overcome some 
of the problems associated with the edge quadtree, and the MX 
quadtree for representing the polygonal maps. There are three 
variants of the PM quadtrees named PM 1, PM2, PM3. These 
quadtrees are based upon either vertex or edge. Their implemen­
tation make use of the same basic data structure. All are built by 
applying the principle of repeatedly breaking up the collection of 
vertices and edges (forming polygonal map) until obtaining a sub­
set th,at is sufficiently simple that it can be organised by some 
other data structure. This is achieved by successively weakening 
the definition of what constitutes a permissible leaf node, thereby 
enabling more information to be stored at each leaf node [SAMET 
9].' 

2.5.6.1. PM1 QUADTREE : 

The PM 1 quadtree is organised in a similar way to the 
region and PR quadtrees. A region is repeatedly subdivided into 
four equal sized quadrants until we obtained blocks that do ·not 
contain more than one line. To deal with lines that intersect other 
lines, we say that if a block contains a point, say p, then we permit 
it to contain more than one line provided that p is an end point of 
each of the lines it contains. A block can never contain more than 
one end point. The definition of a PM 1 quadtree can be restated 
as satisfying the following condition [SAMET 9]. 

1 . At most, one vertex can lie in a region represented by 
quadtree leaf node. 

2. If a quadtree leaf node's region contain a vertex, it 
can contain no of edge that does not include that vertex. 

3. If a quadtree leaf node's region contain no vertices, it 
can contain, at most one of edge. 

4. Each region's quadtree leaf node is maximal. 

This definition of PM 1 quadtree is that of a PR quadtree. The dif­
ference is that we are representing edges here rather than points. 
This effects the action to be taken when the decomposition in­
duced by the PM 1 quadtree results in a vertex that lies on the 
border of a quadtree node. We could move the vertices so that 
this does not happen, but generally this requires global knowl 
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edge about the maximum depth of the quadtree point to its con­
struction. 

2.5.6.2. PM2 QUADTREE : 

As the vertex of the PM 1 quadtree moves closer to the 
quadrant boundary on its right, as shown in figure 10 (previous 
page), the minimum separation between ql edges becomes smaller 

, ·"-""and smaller-thereby resulting in· the growth of-depth to unaccept­
able values. To remedy the deficiency (number 3 condition of the 
PM1 quadtree) it is necessary to determine when it dominates the 
cost of storing a polygonal map. The analysis leads to replace the 
condition 3 .of PM 1 quadtree definition with condition 3' defined 
below [SAMET 9]. 

3' If a quadtree leaf node's region contains no vertices, then it can 
contain only ql edges that meet at a common vertex exterior to the 
region. 

The quadtree built from the above condition is termed PM2 quad­
tree. 

2.5.6.3. PM3 QUADTREE : 

The PM2 quadtree is less sensitive to shift and rota­
tion of the polygonal map than the PM 1 quadtree. This is achieved 
by removing the contribution of condition 3 of the PM 1 quadtree 
definition. The next step is to remove the contribution 2 as well. 
This brings as back full circle to the PR quadtree, in that only con­
dition 1 and 4 of the PM1 quadtree definition satisfied. The result is 
termed a PM3 quadtree and is characterised by having at most 
one vertex in a region represented by a quadtree leaf node. It should 
be clear that the number of quadtree nodes in the PR quadtree for 
the vertices of a polygonal map is equal to the number of quadtree 
nodes in the PM3 quadtree will be much greater than the amount 
of information stored in the quadtree leaf node of a PR quadtree 
[SAMET]. This is shown in figure 11 of previous page. 
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CHIAPTER 3 

DESIGN OF THE PROJECT 

This chapter is mainly concerned with the design of 
the project. In this the most important quadtree data structures 
such as region quadtree and PM3 quadtree are going to be dis­
cussed. Brief discussion of each quadtree and design of algo­
rithms are discussed in a detailed way. This chapter is broadly 
divided into two parts. One is region quadtree and it's details and 
other part is PM3 quadtree. For both types of quadtrees insertion 
(building the quadtree), deletion of image from the quadtree are 
the prime concern of the project. Not only insertion and deletion 
of quadtrees, operations on images using quadtrees are also dis­
cussed in great detail. The operations discussed are point loca­
tion and overlay. Algorithms for insertion, deletion, point location 
and overlay for both quadtrees are devised and discussed. 

3.1. REGION QUADTREE : 

As already mentioned, the planer region is recursively 
subdivide into four equal parts of square type until each part con­
tain data that is sufficiently simple so that it can be organised by 
some other data structure. The most studied quadtree is there­
gion quadtree is based on the subdivision of the array into four 
equal sized quadrants. It the array does not contain entirely of 1 s 
and entirely of Os it is subdivided into quadrants and subquadrants 
until we obtain blocks (possibly single pixels) that consists en­
tirely of 1 s or entirely of Os i.e., each block is entirely contained in 
the region or entirely disjoint from it. The algorithms are written by 
using pseudo algol. This particularly important because it gives 
maximum information with minimum code. 
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3.1.1. ALGORITHM FOR INSERTION : 

. This algorithm builds a quadtree from raster representation. 

pointer node procedure BUILD_REGION_QUADTREE (minx, 
miny, maxx, maxy); 

/*This algorithm constructs the quadtrees from the existent 
image. It is assumed that image is already exists and algorithm 
using this image for building quadtree. Node is a pointer variable 
pointing to a structure consists of 9 fields. First four fields are four 
sons of it's node. These are also pointers of type node. Fifth field is 
type integer specifying it's state i.e. whether black, white or gray. 
Leaf nodes may contain either black nodes or white nodes based 
on whether they contain image or devoid of image. Intermediate 
nodes are of gray type. Sixth field is integer type specifying corre­
sponding lower left corner of x_ coordinate of block and seventh 
field is the lower left corner y_coordinate of block. Eighth field is 
integer type specifying the length of the block. Ninth field is also 
integer type specifying the id of the node. This last field is particu­
larly important in point location problem. This procedure calls the 
another procedure named NODE_ ON which takes block's left_top 
and bottom_right corner coordinates values and return an integer 
which states that whether decomposition is necessary or not. Minx, 
miny, maxx, maxy, MAXX, MAXY, k, i are integers representing the 
coordinate values. r is a pointer variable of type node. This proce­
dure takes the four integer values as input corresponding to the 
image top left and bottom right corners and returns a pointer of 
type node which is the address of the root node ofquadtree *I 

value integer minx, miny, maxx, maxy; 

BEGIN 

k<- NODE_ON (minx, miny, maxx, maxy); 

r =new node; 

if {k = O) 

BEGIN 

son {r, 11 )<-son (r, 12)<::- son (r, 13)<-son (r, 14)<- NULL; 

state (r) <-WHITE; 

minix(r)<-minx; 
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miniy(r)<-miny; 

side( r)<-maxx-minx; 

id(r)<-num; 

return r; 

END 

if(k=1) 

BEGIN 

son(r, 11 )<-son(r, 12)<-son(r, 13)<-son(r, 14)<-NULL; 

state(r)<-BLACK; 

minix(r)<-minx; 

miniy(r)<-miny; 

side(r)<-maxx-minx; 

id(r)<-num; 

return r; 

END 

i<-maxx-minx; 

i<-i/2; 

son(r, 11 )<-BUILD_REGION_QUADTREE(minx,miny,minx+i,miny+i); 

son(r, 12)<-BUILD_REGION_QUADTREE(minx+i,miny,minxx,miny+i); 

son(r, 13)<-BUILD_REGION_QUADTREE(mix,miny+i,minx+i,minxy); 

son(r, 14)<-BUILD_REGION_QUADTREE(mix+i,miny+i,maxx,maxy); 

return r; 

END 

lnt procedure NODE_ ON (xo,yo,x1 ,y1) 

/*This procedure takes the four integer values xO,yO,x1 ,y1. 
This algorithm scans the image pixel by pixel and row by row. This 
checks whether given block (left top is xO,yO and right bottom is 
x1 ,y1) contains only Os or 1 s or both. Here Os represent off pixels 
and 1 s represent on pixels. It returns an integer value of 0 if block 
contains only white pixels (off pixels), 1 if the block contain only 
black pixels (on pixels) otherwise it returns the value of 2 stating 
that image contains both*/ 

value integer xO,yO,x1 ,y1; 
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BEGIN 

sum<-0; 

for each xO to x1 

BEGIN 

for each yO to y1 

BEGIN 

value<-get_pixel(); 

sum<-sum+value; 

END 

END 

if(sum=O) 

return 0; 

else if(sum=((x1-xO)*(y1-yO)) 

return 1; 

else 

return 2; 

END 

3.1.2. ALGORITHM DELETION: 
. 

Pointer node DELETE_REGION_QUADTREE(root1, root2); 

/*This algorithm deletes the image. It is assumed that the image 
to be deleted is exists and there is no chance to deleting the 
inexistant image. The procedure SPLIT _NODE splits the existing 
image block four sub blocks of the image. The algorithm for this 
procedure can be found in INSERTION algorithm of PM3 quadtree.*/ 

value pointer node root1 ; 

value pointer node root2; 

BEGIN 
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if ((state (root) is WHITE and state (root2) is (WHITE) or (state(root1) 
is BLACK and state (root2) is (WHITE) or (state(root1) is GRAY 
and state (root2) is WHITE)) 

return root1; 

if (state (root1) is BLACK and state (root2) is BLACK) 

BEGIN 

state (root1 )<-NUL; 

return root1; 

END 

if (state(root1) is BLACK and state(root2) is GRAY) 

BEGIN 

SPLIT _NODE (root1 ); 

son(root1, 11 )<-DELETE_REGION_QUADTREE(son(root1, 11 ), son(root2, 11 )); 

son(root1, 12)<-DELETE_REGION_QUADTREE(son(root1, 12), son(root2, 12)); 

son(root1, 13)<-DELETE_REGION_QUADTREE(son(root1, 13), son(root2, 13)); 

son(root1, 14)<-DELETE_REGION_QUADTREE(son(root1, 14), son(root2, 14)); 

return root1; 

END 

if (state(root1) is GRAY and state (root2) is GRAY) 

BEGIN 

son( root1 , 11 )<-DELETE_REGION_ QUAD TREE( son( root 1 , 11), son( root2, 11 ) ); 

son(root1, 12)<-DELETE_REGION_QUADTREE(son(root1, 12), son(root2, 12)); 

son(root1, 13)<-DELETE_REGION_QUADTREE(son(root1, 13), son(root2, 13)); 

son(root1, 14)<-DELETE_REGION_QUADTREE(son(root1, 14), son(root2, 14)); 

return root1; 

END 

if ((state(root1) is WHITE and state (root2) is BLACK) or 
(state(root1) is WHITE and state(root2) is GRAY) or (state(root1) is 
GRAY and state(root2) is BLACK)) 

print("Deletion of inexistant image area"); 

END 



3.1.3. ALGORITHM POINT LOCATION : 

Probably the simplest task to perform on image is to deter­
mine the color of a given pixel. An equivalent statement of this task 
is to determine the block associated with a given point. In tradi­
tional array representation this is achieved by exactly one array ac­
cess. In region quadtree this requires searching the quadtree struc­
ture. 

procedure POINT _LOCATE_REGION_QUADTREE(o,p); 

/*This procedure locates the block of the image in which a given 
- · -- point resides. This algorithm -calls the another algorithm 

CREATE_QUADTREE which develops a code for finding there­
quired block. This code eliminates the comparison with x andy 
coordinates. The code is available in the array a[]. K is an index 
variable and it is initialised to 0 *I 

value pointer node p; 

value pointer point c; 

BEGIN 

CREATE_QUADCODE(c); 

if(state(p) is WHITE) 

BEGIN 

print("empty root node"); 

return; 

END 

if(state(p) is BLACK) 

BEGIN 

print{"ID of the region");/*p->id*/ 

return; 

END 

while (p is not equal to NULL) 

BEGIN 

if (a[K] is 0) 

p<-son(p, 11 ); 

if(a[K] is 1] 

p<-son(p, 12); 

if(a[k] is 2) 
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p<-son(p, 13); 

if(a[K] is 3) 

p<-son(p, 14); 

k<-k+1; 

if(state(p) is not equal to GRAY) 

BEGIN 

if (state(p) is WHITE) 

print ("empty node, no region is represented"); 

return; 

END 

if(state(p) is BLACK) 

BEGIN 

END 

print("id of the region"); 

return; 

END 

procedure CREATE_QUADCODE(b); 

/*This algorithm creates a code for traversing to the desired block 
in which the given point resides. The algorithm calls the algorithm 
CODE which actually gives the code number. s,y,k,i,X,Y,MAX,MIN 
are integers.* I 

value pointer point b; 

BEGIN 

X<-0; 

Y<-0; 

k<-(MAX-MIN}/2; 

x<-xco(b); 

y<-yco(b); 

for i is 1 to 8 do 

BEGIN 

A[I]<-CODE(X, Y,x,y); 

k<-(k+ 1 )/2; 

if(a[i] is 1) 

BEGIN 
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END 

X<-X-k; 

Y<-Y-k; 

END 

if(a[i] is 2) 

BEGIN 

X<-X+k; 

Y<-Y-k; 

END 

if(a[i] is 3) 

BEGIN 

X<-X-k; 

Y<-Y+k; 

END 

if(a[i] is 4) 

BEGIN 

X<-X+k; 

Y<-Y+k; 

END 

END 

int procedure CODE(p,q,r,s); 

/*This algorithm calculates the code and returns the same to the 
procedure CREATE_QUADCODE*/ 

value integer p,q,r,s; 

BEGIN 

if(r>p) 

BEGIN 

if(s>q); 

return 4; 

else 

return 2; 

END 

else 

BEGIN 

if(s>q) 

23 (a) 



END 

END 

return 3; 

else 

return 1; 

3.1.4 ALGORITHM OVERLAY : 

This algorithm takes the two images in the forms of quadtrees 
and then merges them as a single image in the form of quadtree. 

recursive procedure pointer node OVERLAY (root1, root2); 

/*This computes the overlay i.e., merges the two trees or union of 
the two trees and returns resultant quadtree root node address. 
This algorithm recursively calls itself when two node states are of 
type GRAY. This algorithm calls the another simple algorithm COPY, 
which takes the two arguments and copies the first argument into 
second argument. *I 

value pointer node root1 ,root2; 

BEGIN 

pointer node r; 

if(((state(root1) is WHITE) and (state(root2) is WHITE)) or 

((state(root1) is BLACK) and (state(root2) is WHITE)) or 

((state(root1) is BLACK) and (state(root2) is GRAY)) or 

((state(root1) is GRAY) and (state(root2) is WHITE)) 

BEGIN 

COPY(root1 ,r); 

return r; 

END 

if(((state(root1) is WHITE) and (state(root2) is BLACK)) or 

((state(root1) is WHITE) and (state(root2) is GRAY)) or 

((state(root1) is WHITE) and (state(root2) is BLACK)) 

BEGIN 

COPY(root2,r); 

return r; 

END 

if((state(root1) is GRAY) and (state(root2) is GRAY)) 

BEGIN 
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END 

r<-new node(); 

son(root1, 11 )<-0VERLAY(son(root1, 11 ),son(root2, 11 )); 

son(root1, 12)<-0VERLAY(son(root1, 12),son(root2, 12)); 

son(root1, 13)<-0VERLAY(son(root1, 13),son(root2, 13) ); 

son(root1, 14)<-0VERLAY(son(root1, 14),son(root2, 14) ); 

return r; 

END 

3.2 PM3 QUADTREE 

Since PM quadtree is used to implement polygonal maps, it's 
basic entities are vertices and edges. Each vertex is represented 
as a record of type point which has two fields called XCOORD and 
YCOORD that correspond to the x andy coordinates, respectively, 
of the point. They can be of type real or integer depending on 
implementation considerations such as floating precision. An edge 
is implemented as a record of type line with four fields, p1, p2, left 
and right. p1, p2 contain pointers to the records containing the 
edge's vertices. Left and right are pointers to structures that iden­
tify the regions which are on the sides of the edge. We shall use 
the convention that left and right are with respect to a view of the 
edge that treats the vertex closest to the origin are marked as be­
ing associated with regions 1 and 2, respectively. Each PM node is 
a collection of q_edges which is organized according to the variant 
being implemented (i.e., PM1 ,PM2,PM3) and is represented as a 
record of type node containing seven fields. The first four fields 
contain pointers to the node's four sons corresponding to the direc­
tions (i.e., quadrants NW, NE, SW,SE. If pis a pointer to a node 
and 1 is quadrant, then these fields are referred as son (p, i). Then 
fifth field is NODETYPE(STATE) indicates whether the node is a 
terminal node(LEAF) or a non terminal node (GRAY) node. The 
SQUARE field is a pointer to a record of type square which indi­
cates the size of the block corresponding to the node. It is defined 
for both LEAF and GRAY nodes. It has two fields, CENTER and 
LEN. Center points to a record of type point which contains the x 
andy coordinates of the center of the square. LEN contains the 
length of side of the square which is the block corresponding to the 
node in the PM quadtree. DICTIONARY is the last field and it is a 
pointer to a data structure that represents the set of q_edges that 
are associated with the node. Initially, the universe is empty and 
consists of no edges or vertices. It is represented by a tree of one 
LEAF node whose DICTIONARY field points to the empty set. 
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In the implementation given here the set of q_edges for 

each LEAF node is a linked list whose elements are records of type 

edgelist containing two fields DATA and NEXT. DATA points to a 

record of type line corresponding to the edge of which the q_edges. 

Although the set of q edges is implemented as a list here, it really 

should be implemented by a data structure that supports the effi­

cient execution of the delete, insert, set union, and set difference 
operations. However, a linked list is usually sufficient since in our 

empiricaUests, the list is enougt.l. ln. case of PM3 quadtree we 

would want to have seven subsets corresponding to the vertex and 
the six combinations of sides. These subsets have been approached 

by D_ VERTEX and D_SIDE, respectively. The set of q_edges cor­

responding to GRAY node is said to be empty. Note that all of the 
q_edges point to the same line record. The following algorithm was 
developed by SAMET and WEBBER[SAMET 9]. 

3.2.1 INSERTION ALGORITHM : 

An edge is inserted into a PM3 quadtree by traversing the 

tree in preorder and successively clipping it (using CLIP _LINES) 

against the blocks corresponding to the nodes. Clipping is impor­
tant because it enables us to avoid looking at areas where the edge 

cannot be inserted. This process is controlled by procedure 

PM INSERT which actually inserts a list of edges. If the edge can 
be inserted into the node, say p, then PM INSERT does so and ex­

its. Otherwise, a list, say L, is formed containir:'g the edge and any 
q_edges already present in the node, pis split and PM INSERT is 
recursively invoked to attempt to insert the elements of L in the four 
sons of P. PM INSERT uses PM3_CHECK to determine if the crite­

ria of the appropriate PM quadtree is satisfied. Isolated vertices 
pose no problems and are handled by PM3-CHECK. The imple­

mentation given below assumes that whenever an edge or an iso­
lated vertex is inserted into the PM quadtree it is not already there 
or does not intersect an existing edge. However, an endpoint of the 
edge may intersect an existing vertex as long as it is not an isolated 
vertex. Procedure CLIP _SQUARE is predicate that indicates if an 
edge crosses a square. Similarly, procedure PT _IN_SQUARE is a 

predicate that indicates if a vertex lies in a square. They are re­
sponsible for enforcing the conventions with respect to vertices and 
edges that lie on the boundaries of blocks. Their code is not given 
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here. Equality between records corresponding to vertices is tested 
by use of the"=" symbol which requires that its two operands be of 

\be same type (i.e., pointers to records of type point). This algo­
rithm is developed by Samet and Webber [SAMET 9]. 

recursive procedure PMINSERT(P,R); 

/*Insert the list of edges pointed at by pin the PM3 quadtree rooted 
at r. This calls the procedure PM3_CHECK. */ 

BEGIN 

value pointer edgelist P; 

value pointer node R; 

pointer edgelist L; 

quadrant I; 

L<-CLIP _LINES(P,SQUARE(R))K; 

if (empty(L) then return; /*NO new edges belong in the quad 
rants*/ 

if LEAF(R) then/* A terminal node* I 

BEGIN 

L<-MERGE_LISTS{L,DICTIONARY(R)); 

if PME_CHECK(L,SQUARE(R)) then 

BEGIN 

DICTIONARY(R)<-L; 

return; 

END 

else SPLIT _PM3_NODE(R); 

END 

for I in {NW,NE,SW,SE} do PMINSERT{L,SON{R,I); 

END 

recursive edgelist procedure CLIP _LINES(L,R); 

/*Collect all of the edges in the list of edges pointed by P that 
intersect square pointer at by R. ADD_ TO_LIST(X,Y) adds 
element X to the listS and returns a pointer to the resulting 
list. *I 

BEGIN 

value pointer edgelist L; 

value pointer square R; 
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return(if( empty(L) then Nl L 

else if CLIP _SQUARE(DATA(L)R), then 

ADD_ TO_LIST(DATA(L), CLIP _LINES(NEXT{L),R)) 

else CLIP _LINES(NEXT(L), R)); 

END 

recursive Boolean procedure PM3_CHECK{L,S); 

/* Determine if the square pointed by Sand the list of edges pointed 
at by L form a legal PM3 quadtree node. In order to allow an iso­
lated vertex to coexist in a leaf node along with edges that do not 
intersect it, INF is used to represent a factious point at (infinite, 
infinite) and serves as the shared vertex in the call to 
SHARE_PM3_VERTED.~ 

BEGIN 

value pointer edgelist L; 

value pointer squareS; 

return (if(empty(L) then true 

else if P1 (DATA(L)) = P2(DATA{L)) then 

SHARE_PM3_ VERTEX(INF,NEXT(L),S) 

else if PT _IN_SQUARE(P1 (DATA(L),S) and 

PT _IN_SQUARE{P2{DATA{L),S) then false 

else if PT _IN_SQUARE(P1 (DATA{L),S) then 

SHARE_PM3-IN_ VERTEX(P1 (DATA{L),S), NEXT (L),S) 

else if PT _IN_SQUARE(P2{DATA{L),S) then 

SHARE_PM3_ VERTEX(P2(DATA(L)),NEXT(L),S) 

else PM3_CHECK(NEXT(L),S)); 

END; 

recursive Boolean procedure SHARE_PM3_ VERTEX(P,L,S); 

/*The vertex pointed at by Pis the shared vertex in a PM3 quadtree. 
It is inside the square pointed at by S. Determine if all the edges in 
the list of edges pointed at by L either share P and do not have their 
other vertex within S, or do not have either of their vertices in S* I 

BEGIN 
value pointer point P; 
value pointer edgelist L; 
value pointer square S; 
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return (if(empty(L) then true 

else if P=P1 (DATA(L)) then 

not (PT _IN_SQUARE(P2(DATA{L))S,)) and 

SHARE_PM3_ VERTEX(P,NEXT{L),S) 

else if P=P2(DATA(L)) then 

not (PT _IN_SQUARE(P1 (DATA(L)),S)) and 

SHARE_PM3_ VERTEX(P,NEXT(L),S) 

else not (PT _IN_SQUARE(P1 (DATA(L)),S) and 

not(PT _IN_SQUARE(F?2(DATA(L)),S)) and -

SHARE_PM3_ VERTEX(P,NEXT(L),S)); 

END; 

procedure SPLIT _PM3_NODE(P); 

/*Add four sons to the node pointed at by P and change P to be of type GRAY*/ 

BEGIN 

value pointer node P; 

quadrant I, J; 

pointer node Q; 

pointer square S; 

/*XF and YF contain multiplicative factors to aid in the location of 
the centers of the quadrant sons while descending the tree*/ 

preload real array XF[NW,NE,SW,SE] with -0.25,0.25,-0.25, 0.25; 

preload real array YF[NW,NE,SW,SE] with -0.25,0.25,-0.25, 0.25; 

BEGIN 

0<-create(node); 

SON(P,I)<-0; 

for J in {NW,NE,SW,SE} do SON(O,J)<-NIL; 

STATE (0)<-LEAF; 

S<-create(square ); 

SOUARE(O)<-S; 

CENTER(S)<-create(point); 

XCOORD(CENTER(S)<-XCOORD(CENTER(SOUARE(P))) + 

XF[I]*LEN(SQUARE(P)); 

YCOORD(CENTER(S)<-YCOORD(CENTER(SOUARE(P))) + 

YF[I]*LEN(SQUARE(P)); 

29 



LEN(S)<-0.5* LEN(SQUARE(P)) 

END 

DICTIONARY(P)<-NIL; 

STATE(P)<-GRAY; 

END; 

3.2.2. DELETION ALGORITHM : 

An edge is deleted from a PM quadtree by using a pro­
cess whose control structure is identical to that used in the inser­
tion of an edge. Again, the tree is traversed in preorder and the 
edge is successively clipped (using CLIP _LINES) against the blocks 
corresponding to the nodes. This process is controlled by proce­
dure PMDELETE which actually deletes a list of edges. At each 
LEAF node, the DICTIONARY field is updated to show the elimina­
tion of the edge (or edges). Once all four sons of GRAY node have 
been processed, an attempt is made to merge the four sons by the 
use of procedures POSSIBLE_PM3_MERGE and 
TRYTOMERGE_PM3 to check if the criteria of the appropriate PM 
quadtree are satisfied. These procedures made use of PM_ CHECK. 
This algorithm is also developed by Samet and Webber [SAMET 9]. 

recursive procedure PMDELETE(P,R); 

/* Delete the list of edges pointed by P from the PM quadtree 
rooted at R. This calls to procedure POSSIBLE_PME_MERGE and 
TRYTOMERGE_PM3. */ 

BEGIN 

value pointer edgelist P; 

value pointer node R; 

pointer edgelist L; 

quadrant I; 

L<-CLIP _LINES(P,SQUARE(R)); 

if empty(L) then return 

if GRAY then 

BEGIN 

; /* none of the edges are in the quadrant*/ 

for I in {NW,NE,SW,SE} do PMDELETE(L,SON(R,IO)); 

if POSSIBLE_PM_MERGE(R) then 
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BEGIN 

L<-NIL; 

ifTRYTOMERGE_PM(R,R,L) then 

BEGIN 

END 

DICTIONARY9R)<-L; 

STATE(R)<-LEAF; 

END 

END 

elseDICTIONARY9R)<-SET _DIFFERENCE(DICTIONARY(R),L); 

END; 

Boolean procedure POSSIBLE_PM3_MERGE(P); 

/* Determine if an attempt should be made to merge the four sons 
of the PM3 quadtree. Such a merger is only feasible if all four sons 
of a GRAY node are LEAF nodes *I 

BEGIN 

value pointer node P; 

return (LEAF(SON(P,NW)) and LEAF(SON(P,NE)) and 

LEAF(SON(P,SW)) and LEAF(SON(P,SE)); 

END; 

Boolean procedure TRYTOMERGE_PME(P,R,L)P; 

/* Determine if the four sons of the PM3 quadtree rooted at node 
P can be merged. Variable Lis used to collect all of the edges that 
are present in the subtrees. Note that there is no need for param­
eter R, and the procedure is not recursive. The call to PM3_CHECK 
is necessary for checking legality of quadtree *I 

BEGIN 

value pointer node P, R; 

reference pointer edgelist L; 

quadrant I; 

for I in {NW,NE,SW,SE} do 

L<-SET _UNION(L,DICTIONARY(SON(P,I))); 

return(PM_CHECK)L,SQUARE(P))); 

END; 
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3.2.3. POINT LOCATION ALGORITHM : 

Point location is an operation on image using 
quadtrees. This operation is starts with finding corresponding node 
from quadtree. Point location in PM3 quadtree is accomplished 
by finding closest q_edge(part of the original edge) with respect 
to the 7 classes of q_edges. For finding the closest edge two 
cases arise. One is the block(node) in which point lies, consists 
the vertex and other case is the block does not contain vertex. In 
case block contain vertex, then find the nearest edge among the 
edges that passes through vertex. Then find the line joining the 
vertex to given point. If this line intersecting any of the q_edges 
other than edges those closes at vertex. If no intersection occurs, 
the nearest q_edges is the q_edge that passes through the ver­
tex. Then finds the region on which side of this q_edge the point 
lies. This is accomplished by finding intersection point (offset point) 
and then compare this point to the given point. Then finds the 
region. In case of the line joining the given point and vertex inter­
sects the any of the 6 classes of q_edges that causes the inter­
section. Then finds the nearest q_edge among the intersection 
edges. After finding the nearest q_edge the task is simplified by 
finding on which side of the q_edge the point lies. This is done by 
finding the offset point and compare this point with the given point. 
In case of the block does not contain vertex vertex the task is 
entirely different. In this case find the q_edge among all the 6 
classes of q_edges. This task is done by finding the offset from 
the given point to each of the q_edge. The closest q_edge is the 
q_edge which have the shortest distance from the point. After 
finding the nearest q_edge then task is simplified to finding on 
which side the point resides. This is also accomplished by find 
the offset intersection point and then compare it to the point and 
then finds the region [SAMET 9]. 

procedure POINT _LOCATION (C,P); 

/*This algorithm locates the region of the given point*/ 

value pointer point C; 

value pointer node P; 

BEGIN 

if D_ VERTEX(DICTIONARY(P)) is not equal to NULL 

BEGIN 
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else 

END; 

FIND_NEAREST _ VERTEX_EDGE()][ 

if line joining the vertex and point c is intersected with q_edges 

BEGIN 

COLLECT _ALL_LINES_ THAT _INTERSECTED(); 

FIND_ THE_NEAREST _LINE_ TOPOING(); 

FIND_REGION(); 

END 

else 

FIND_REGION()' 

END 

BEGIN 

FIND_ THE_NEAREST _EDGE(); 

FIND_REGION(); 

END 

3.2.4. OVERLAY ALGORITHM : 

This algorithm computes the overlaying of two PM3 
quadtrees. The overlay algorithm can be decomposed into four 
procedures: OVERLAY, MERGE, CAN_MERGE and QUARTER. 
The code for some of them is presented below using a pseudo AL­
GOL notation in order to provide a maximum amount of information 
in a minimum amount of space. Procedure OVERLAY takes two 
PM3 quadtrees as parameters. It traverses the two quadtrees in 
parallel. When one tree is leaf and the other tree is not, the leaf is 
split into a node with four sons, each of which are leaf nodes (and 
correspond to a description of the same region as the correspond­
ing sons. When both quadtrees are leaf nodes, the dictionaries of 
q_edges in each of them are merged to form a leaf in the output 
tree. The dictionaries are accessed by the D_VERTEX and D_SIDE 
fields. D_ VERTEX refers to the dictionaries which are accessed 
with the aid of dictionary indices {NW,NE,NS,SE,SW,EW}. 

Procedure MERGE produces the subtree the results 
from merging two leaf nodes (from a pair of PM3 quadtrees) de­
pending on whether or not the q_edges involved intersect. Recall 
that the information about q_edges that is stored in the leaf nodes 
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is ordered with respect to various intercepts (either a vertex of a 
side of the block). Thus the merger of this information is simply the 
merger of the corresponding trees. The routine that performs the 
actual merging is termed D_MERGE and is not given here. The 
worst_case execution time of MERGE is proportional to the num­
ber of nodes merged plus the cost of executing the procedures : 
CAN_MERGE, and QUARTER. 

The coding of procedure MERGE uses WHICHEVER_HAD_D_VERTEX, 
which returns NIL ff netther leaf contains a vertex and otherwise returns 
the dictionary connected to the vertex. Note that the function 
CAN_MERGE has a side effect of removing redundant references 
to the same vertex (Le., with the same x andy coordinates). The 
information in two dictionaries is merged to form a new dictionary 
by the function D_MERGE. 

Procedure CAN_MERGE determine whether a pair of 
leaf nodes of PM3 quadtrees can be me~ed. In order to be mergible, 
the q_edges in the two leaf nodes cannot intersect and if there is a 
vertex in both of the leaf nodes, then it must have the same x andy 
coordinate values. Since the checking of intersection (done by the 
procedure LINES_INTERSECT) can take advantage of the 
q_edges, the execution time of CAN_MERGE is proportional to the 
number of q_edes in its leaf parameters. 

The final procedure to consider is QUARTER, which 
takes a leaf as a parameter and returns a subtree containing four 
leaves that represents the same map. This procedure involves vis­
iting each q_edge in its leaf parameter and determine which parts 
of it will lie in which sons of the new subtree. Its execution time is 
proportional to the number of q_e-dges processed. Its code is simi­
lar to SPLIT _NODE of the insertion algorithm. This algorithm is 
developed by Samet and Webber [SAMET 9]. 
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procedure OVERLAY(SUBTREE1, SUBTREE2); 

/*compute the overlay of the quadtrees SUBTREE1, and SUBTREE2 *I 

BEGIN 

value pointer quadtree SUBTREE1, SUBTREE2; 

pointer quadtree QTD, THE_ SUBTREE, TREE_ TO_RETURN; 

quadrant X; 

if IS_LEAF(SUBTREE1) and IS_LEAF(SUBTREE2) then 

return(MERGE(SUBTREE1, SUBTREE2); 

~'- -.... ··- · -- ·else-if-IS:..:.LEAF(SUBTREEt) or IS.::...LEAF(SUBTREE2) then 

BEGIN 

QTD<-

QUARTER(WHICHEVER_WAS_LEAF(SUBTREE1 ,SUBTREE2)); 

THE_SUBTRE<-, 

WHICHEVER_ WAS_NOT _LEAF(SUBTREE1 ,SUBTREE2); 

TREE_ TO_RETURN<-NEW _NODE(); 

foreach X in {NW,NE,SW,SE} do 

SON(TREE_ TO _RETURN,X)<- OVERLAY(SON(qTD,X),SON(THE_SU 

BTREE,X)); 

else 

END; 

return(TREE_ TO _RETURN); 

END; 

BEGIN 

TREE_ TO_RETURN<-NEW _NODE(); 

for each X in {NW,NE,SW,SE} do 

SON(TREE_ TO_RETURN,X)<-OVERLAY) 

SON(SUBTREE1 ,X), SON(SUBTREE2,X)); 

return (TREE_ TO_RETURN); 

END; 

procedure MERGE(LEAF1, LEAF2); 

/* Perform the overlay algorithm on the simple case where both 
quadtrees, LEAF1 ,and LEAF2, are leaf nodes. *I 

BEGIN 

value pointer quadtree LEAF1, LEAF2; 

pointer quadtree LEAF_ TO_RETURN, QT1, QT2; 
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quadrant Q; 

dictionary _index X; 

if not CNA_MERGE(LEAF1, LEAF2) then 

BEGIN 

LEAF_ TO_RETURN<-NEW_NODE(); 

QT1 <-0UARTER(LEAF1 ); 

QT2<-0UARTER(LEAF2); 

foreach Q in {NW,NE,SW,SE} do 

·· · ,.~ · · ,. ·· .... T.... ........ -"SON(LEAF _TO _RETURN,Q)<-MERGE(SON(QT1 ,O),SON(.QT2,Q)); •• 

return (LEAF_ TO_RETURN); 

else 

END 

BEGIN 

LEAF_ TO_RETURN<-NEW _NODE(); 

D_ VERTEX(LEAF _ TO_RETURN)<­

WHICHEVER_HAD_D_ VERTEX(LEAF1, LEAF2); 

foreach X in {NW,NW,NS,SE,SW,EW} do 

D_SIDE(LEAF _TO_RETURN,X)<· D_MERGE(D_SIDE(LEAF1 ,X),D 

_SIDE(LEAF2,X)); 

return(LEAF _ TO_RETURN); 

END; 

END; 

Boolean procedure CAN_MERGE(LEAF1 ,LEAF2); 

/* Returns true if and only if the merger of the leaf nodes, LEAF1, 
and LEAF2, would not create any new vertices. Note that in the 
case that neither leaf node contains a vertex, it is possible for one 
intersection to occur and yet the nodes would still be mergible. The 
counter, N, records the number of known vertices in the pair of 
nodes. If this counter is zero, then LINES_INTERSECT, upon no­
ticing that exactly one intersection occurs, has the side effect of 
incrementing N and updating the D_ VERTEX field of its last pa­
rameter, which is always LEAF1. Of course, if more than one inter­
section occurs, then LINES..:..INTERSECT will cause CAN_MERGE 
to return false.*/ 

BEGIN 

reference pointer quadtree LEAF1, LEAF2 ; 
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di~tionary_index X,Y; 

dictionary TH_~-VERTEX; 

integer N; 

N<-0 

if HAS_ VERTEX(LEAF1) and HAS_ VERTEX(LEAF2) then 

if SAME_XY _ VERTEX(LEAF1, LEAF2) then 

BEGIN 

D _ VERTEX(LEAF1 <­

D_MERGE(D_ VERTEX(LEAF),D_ VERTEX(LEAF2)); 

D_ VERTEX(LEAF2)<-nil; 

END; 

else return (false); 

if HAS_ VERTEX(LEAF1) or HAS_ VERTEX(LEAF2) then 

BEGIN 

N<-1 

THE_ VERTEX<­
D_ VERTEX(WHICHEVER_HAD_ VERTEX(LEAF1, LEAF2); 

for each X in {NE,NW,NS,SW,SE,EW} do 

if LINES_INTERSECT(THE-VERTEX,D _SIDE(LEAF1 ,X),N,LEAF1) 

or LINES_INTERSECT(THE_VERTEX,D_SIDE(LEAF2,X),N,LEAF1) 

then return(false); 

END; 

foreach X in {NE,NW,NS,SW,SE,EW} do 

BEGIN 

for each Y in {NE,NW,NS,SW,SE,EW} do 

BEGIN 

if UNES_INTERSECT(D_SIDE(LEAF1 ,X),D _SIDE(LEAF2,Y),N,LEAF1) 

then return (false); 

END; 

END; 

return (true); 

END: 
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CHAPTER 4 

IMPLEMENTATION OF THE PROJECT 

This -implementation part can be broadly divided into 
two parts. One is implementation of region quadtree and another 
is implementation of PM3 quadtree. The implementation of inser­
tion, deletion, point, location, and overlay operations are done on 
both types of quadtrees. 

ENVIRONMENT : 

The project is implemented on computer system 80386/ 
80486 (LAN connected) with operating system MS-DOS version 
5.0. This was coded in "C" language. Compiler used was Borland 
CIC++ compiler. 

'C' is a general purpose programming language which 
features economy of expression, modern control flow and data struc­
tures, and a rich set of operators. "C" provides a variety of data 
types. The fundamental types are characters, integers and float­
ing-point numbers of several sizes. In addition, there is a hierarchy 
of derived data types created with pointers, arrays, structures, and 
unions. Expressions are formed from operators and operands. Any 
expression, including an assignment or a function call, can be a 
statement. Pointers provide for machine independent address arith­
metic. 
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- COMPILER USED : 

The compiler used to do the project work is the Borland 
CIC++ compiler, version 3.1. Borland C compiler is a full imple­
mentation of the language, a language known for its efficiency, 
economy, and portability. 

HEADER FUNCTIONS USED : 

In the implementation of quadtrees, the following header 
functions were use,d. 

#include<studio. h> 

#include<conio.h> 

#include<graphics. h> 

#include<math.h> 

#include<stdlib. h> 

#include<iostream.h> 

#include<mem.h> 

#include<alloc.h> 

4.1 DATA STRUCTURES USED : 

The following structures are qefined and heavily used. Their 
definitions and descriptions are mentioned below. 

4.1.1.STRUCTURE NODE FOR REGION QUADTREE : 
This structure is used region quadtree. This has 9 fields four of 
which are sons, fifth is state of node i.e. whether it is a black or 
white or gray, sixth is identification number, seventh is length of 
side of the block, eighth and ninth is the x and y coordinates of left 
bottom of block. 
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struct node { 

struct node *11 ,*12,*13,*14; 

int state; 

int id; 

int side; 

int minix, miniy; 

}; 

typedef struct node nod~; 

4.1.2. STRUCTURE FOR POINT : This is used for both types of 
quadtrees and consists x and y coordinates. 

struct point { 

int xco; 

int yeo; 

}; 

typedef struct point point; 

4.1.3. STRUCTURE FOR LINE : This structure is consists 
of four fields. First two fields are pointers to end points of line. And 
last two fields are specifying the regions on both sides of line. 

struct line { 

} ; 

point *p1, *p2; 

int left; 

int right; 

typedef struct line line ; 
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4.1.4. STRUCTURE FOR SQUARE : This structure is used in PM3 
quadtree. This specifies the block center coordinates and length of 
the block. 

struct square { 

point *center; 

int len; 

}; 

typedef struct square square; 

4.1.5. STRUCTURE FOR EDGE LIST : This structure is heavily 
used in PM3 quadtree. This consists of two fields, one is data field 
and next is pointer to next edgelist. 

struct edgelist { 

line *data; 

struct edgelist *next; 

}; 

typedef struct edgelist edgelist; 

4.1.5. STRUCTURE FOR DICTIONARY : This structure is used if 
PM3 quadtree for accessing the edgelists. The edges having ver­
tex are placed in dvertex field and other edges are placed in dside 
field. 

struct dictionary { 

edgelist *dvertex; 

struct dside *ds; 

}; 

typedef struct dictionary dictionary; 
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4.1.6. STRUCTURE FOR OS IDE : This structure is used in PM3 
quadtree for accessing the edges those have no vertex. 

struct dside { 

edgelist *d1; 

edgelist *d2; 

edgelist *d3; 

edgelist *d4; 

edgelist *d5; 

edgelist *d6; 

} ; 

typedef struct dside dside ; 

4.1.7.STRUCTURE FOR NODE : This structure is used in PM3 
quadtree. This description is mentioned in detail in PM3 quadtree. 

struct node { 

struct node *11 ,*12,*13,*14; 

int state; 

square *sqr; 

dictionary *d; 

}; 

typedef struct node node; 

4.2 REGION QUADTREE : In this region quadtree insertion, 
deletion, point location and overlay implementation details are dis­
cussed. 

4.2.1 IMPLEMENTATION OF INSERTION ALGORITHM : 

node *create_region_quadtree{void) 

{ 

/*This function builds the quadtree from the raster image and 
returns a pointer of type node, which is root node address. This 
function calls the build_tree() function.* I 

} 
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node *build_tree(int xo, int yO, x1, int y1) 

{ 

/*This function takes the left top and right_bottom coordinates of 
the image block and returns a pointer of type node. This function 
calls another function node_on(). */ 

} 

int node_on(int xO,intyO, int x1, inty1) 

{ 

/* This routine checks whether the block of the image contain en­
tirely 1 s or entirely Os or both. According to image position in block 
it returns 0 if the block contain entirely Os (i.e., off pixels) or it re­
turns 1 if the block of image contain entirely 1 s(i.e., on pixels) or it 
returns 2 if block of image contain both off pixels and on pixels.* I 

} 

4.2.2.1MPLEMENTATION OF DELETION ALGORITHM : 

node *delete_region_quadtree(node*p, node*q) 

{ 

I* This function takes the two pointer variables of type node. One is 
the source tree root node and another is destination tree root node 
address which is to be deleted. This function returns a node which 
is the resultant tree root node address. This function recursively 
calls itself, when two node states of the input trees are of type GRAY 
i.e., 2. It also calls the function split_node(), if the source tree has 
the state of 1 (BLACK and destination tree has the state or 2(GRAY). 
If p state is o(WHITE) and q state is 1 (BLACK) or p state is 0 and 
q state is 2 or p state is 2 and q state is 1 the deletion algorithm 
prints the message "illegal deletion". This is because of assump­
tion that the image to be deleted is there and exists. *I 

} 
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node *split_node(node *p) 

{ 

/*This function splits the image block into four sub-blocks without 
change in image. It simply adds four sons to the given node and 
changes its state to 2 (GRAY).*/ 

} 

4.2.3.1MPLEMENTATION OF POINT LOCATION ALGORITHM : 

void point_locate_region_quadtree(node *p, point *c) 

{ 

/*This function takes the arguments of two pointer variables. One 
is of type node and another of type point. Node p is root node of 
the tree of the image. This function calls the another function 
create_quadcode{) which returns the code for accessing the re­
quired node. After getting the required node then task is to find the 
region by printing the id of the node.*/ 

} 

void create_quadcode{point *p) 

{ 

/*This function takes the argument as pointer variable of type point 
and then determines the code for finding the block from total im­
age. This function calls the function code () which actually calcu­
lates the code. This code is stored in global array which is ac­
cessed by parent function.* I 

} 

int code {int p, int q, int r, int s) 

{ 

/*This function calculates the code according to the grid size and 
returns 0,1 ,2,3, values*/ 

} 
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4.2.4.1MPLEMENTATION OF OVERLAY ALGORITHM : 

node *overlay_region_quadtree(node *p, node*q) 

{ 

/* This function takes the two arguments as pointer variables of 
type node and returns a pointer of type node which is the root node 
address of resultant quadtree after overlaying. The two input vari­
ables are actually two subtree root node addresses. In this case it 
is assumed that two images are not intersected. This function re­
cursively calls itself when two states of input nodes are of type GRAY. 
·Other wise it~calls the function-copy f)·which·copies the first argu­
ment into second argument and returns the same which is the re­
sultant quadtree root node *I 

} 

4.3 PM3 QUADTREE : 

The following section describes the implementation 
details of the PM3 quadtrees i.e. insertion, deletio-n, point location 
and overlay. 

4.3.1.1MPLEMENTATION OF INSERTION ALGORITHM : 

void insert_pm3_quadtree(edgelist *p, node *r) 

{ 

/*This routine inserts the set of edges into the quadtree. This func­
tion takes the two arguments and returns null. The first argument 
is the pointer variable of type edgelist and second is the pointer 
variable of type node. The first argument is the address of the first 
edge of the set of edges. This is a linked list. The second argu­
ment is the root node address of the quadtree. This function calls 
the clip_lines(), which actually clips the set of edges against the 
given node boundaries and it returns the edges that are clipped. 
Then it calls the another function mergelists() which actually merges 
the two given lists and returns the resultant list. The function 
pm3_check() checks whether the block contain the set .of edges 
forms a legal quadtree node or not. This function also calls the 
place_edges(), split_pm3_node() functions.* I 

} 

edgelist *cliplines(edgelist *1, square *r) 
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{ 

/*This function actually clips the lines against the square spefied 
by the second argument. The lines are submitted through first ar­
gument. This function calls another function clip_square() which 
checks whether the line is clipped or not. This is recursively called 
by itself when situation arises.* I 

} 

int pme_check)edgelist *I, square *s) 

{ 

/*This function verified the set of edges placed in square are formed 
a legal node or not. It return 0 if it fails or 1 if it success. This 
function calls the pt_in_square() and share_pm3_vertex().*/ 

} 

int share_pm3_vertex(point *P, edgelist *1, square *s) 

{ 

/*This function determines, the vertex pointed by p is the shared 
vertex or not. Determine if all of the edges in the list of edges 
pointed by L either share p and do not have their other vertex within 
s or do not have either of their vertices in s. *I 

} 

void split_pm3_node(node *p) 

{ 

/*This function takes the argument a node and adds four sons and 
changes the state of this node into of types GRAY and returns the 
same.*/ 

} 

edgelist *merge_lists(edgelist *a, dictionary *d) 

{ 

/*This function takes the input arguments, one is edgelist and other 
is the dictionary. It merges the given edgelist to the edgelists of 
dictionary and returns an edgelist of resultant. This function calls 
setunion ().*/ 

} 
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void place_edges(edgelist *1, node *r) 

{ 

/*This function places the set of edges which is first argument of 
the function in the given node into appropriate places of 7 classes 
*I 

} 

4.3.2.1MPLEMENTATION OF DELETION ALGORITHM : 

node *delete_pm3_quadtree(edgelist *p, node *r) 

{ 

/* This function deletes the list of edges pointed by p from pm3 
quadtree rooted at r. This calls the functions possible :_pm3_merge(), 
try_to_merge(). This function also calls the clipliness(), 
set_ difference.* I 

} 

int possible_pm3_merge(node *p) 

{ 

/* Determine if an attempt should be made to merge the four sons 
of the pm3 quadtree. Such a merge is only feasible if all four sons 
of gray node are leaf node. It return 1 if the merging is possible or 
0 if merging is not possible. *I 

} 

int try_to_merge(node *p, node *r, edgelist *c) 

{ 

/* This function determines if the four sons of the pm3 quadtree 
rooted at node p can be merged. Variable L is used to collect all of 
the edges that are present in the subtrees. Note that there is no 
need to the parameter r but it is used for generic. This functions 
calls the another function setunion(). *I 

} 
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4.3.3.1MPLEMENTATION OF POINT LOCATION ALGORITHM : 

void point_location_pm3_quadtree(point *p, node *n) 

{ 

/* Before computing the region in which the point lies, find the node 
(block of image which consists set of lines) from the given quadtree. 
This node can be found by using the create_quadtree() and code() 
tunctions of the previous topic of quadtree. This function computes 
the region in which a given point lies. This function calls the 
find_vertex(), nearest_vertex_edge(), intersect(), setunion(), 
point_loc(), locate() functions. *J-· 

} 

point *find_vertex(edgelist *a, square *s) 

{ 

/*This function finds the vertex from the set of lines within the block 
of squares. This returns the vertex point to the parent function*/ 

} 

edgelist *nearest_vertex_edge(point *p, edgelist *e, square *s) 

{ 

/*This function computes the nearest edge among the number of 
lines having vertex with the given point. This uses the header func­
tion <math.h> for finding the angles, there by it finds nearest vertex 
edge *I 

} 

edgelist *intersect(edgelist*z, node *n) 

{ 

/*This function calculates the edges that are intersected with the 
any of the edges that are placed in the given node and return these 
edges that are intersected. This calls the function 
find_intersection_point(). *I 

} 
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point *find_intersect_point(edgelist *a, edgelist *b) 

{ 

/*This function computes the intersection of two edges which are 
supplied as input and returns the intersection point to the parent 
function.*/ 

} 

void locate (point *p, edgelist *e) 

{ 

/* This function computes region of the given point by finding on 
which side of the edge it lies. This function calls the offset_point(). 
*I 

} 

point *offset-Point(edgelist *e, point *p) 

{ 

/*This function computes the offset (perpendicular) point for the 
given point to the edgelist and returns the same to the parent func­
tion*/ 

} 

void point_locate(point *p, edgelist *a) 

{ 

/*This function computes the nearest edge among the number of 
lines and then finds on which side of the line and point lies. This 
function calls another function offset_distance(O. *I 

} 

int offset_distance(edgelist *a, point *p) 

{ 

/* This function computes the offset distance between the given 
edge to the given point and then returns the same to the original function.*/ 

} 
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edgeUst *setunion (edgelist *a, dictionary *z) 

{ 

/*This function collects all the edges from the dictionary i.e., from 7 classes 
(dvertex and dside). The first argument to dummy argument which has the 
zero value. This is using for generic facility:*/ 

} 

4.2.4. IMPLEMENTATION OF OVERLAY ALGORITHM : 

node *overlay_pm3_quadtree(node *a, node *b) 

{ 

/* The above function takes the two arguments as input. These two argu­
ments are actually two quadtree (subtrees) addresses. This function merges 
or overlaying the two trees into one tree (as a single image) and returns the 
same. This function calls the another functions merge(), quarter(). This 
function also calls itself when both node states are of type GRATY. */ 

} 

node *merge (node *a, node *b) 

{ 

/* This function actually merges the two given input nodes which are two 
quadtree root node addresses and returns resultant quadtree root node. 
Merging the two nodes means merging the edgelists of two node dectionaries. 
That is each class of dictionary into corresponding each class of 7 classes in 
the dictionary. This function calls another function which actually returns an 
integer which specifies whether merging can be possible or not. This func­
tion also calls quarter function and also calls d-merge(). *I 

} 

int can_merge(node *a, node *b) 

{ 

/* This fu~ction determines the possibility of merging and returns 1 if the 
merging can possible or 0 if merging can not possible. This function calls 
lines_intersect() and samexy() functions.*/ 

} 

49 



int lines_intersect(edgelist *v, edgelist *d, node *p) 

{ 

/*This function calculates the intersection of two lines and also finds whether 
the two lines are intersected or not. If single intersection occur, the vertex is 
created and placed in the node p. Each line in each edgelist is tested thor­
oughly. If there is an intersection it returns 1, or if no intersection it returns 
0. */ 

} 

node *quarter (node *p) 

{ 

/*This function takes input as a single argument which is a pointer variable 
of type node and this node is splinted into four equal blocks without chang­
ing the image i.e., adding the four sons to the p and changing the p state to 
non leaf and returns the address of this father to the original function.*/ 

} 

edgelist *d_merge(edgelist *a, edgelist *bO 

{ 

I* This function takes two arguments as two edge lists and merges them into 
a single edgelist and returns that edgelist to the function from which it is 
called. */ 

} 

int samexy (node *a, node *b} 

{ 

I* This function takes the input as two nodes and collects the edgelists from 
dvertex of dictionary and then tests whether the two dvertices have the same 
vertex or different vertex. If the vertex of two nodes are same it returns 1 or 
it returns 0 otherwise. */ 

} 
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CHAPTER 5 

COMPARISON AND ANALYSIS : 

5.1 COMPARISON : 

In previous chapters various data structures for 
representing spatial data were discussed. Among the various data 
structures we have chosen region quadtree and PM3 quadtree be­
cause these have many advantages over other structures. So this 
chapter of comparison and analysis is very important for justification 
of the benefits. In this chapter the comparisons are to be made to 
data structures, that represent interiors of the image and the data 
structures that specify only exteriors i.e., boundaries of the data 
structures. The region can be represented only exteriors i.e., bound­
aries of the data structures. The region can be represented either 
by chain codes, runlength codes, block codes and region quadtrees. 
Boundaries of image can be represented by MX quadtree, edge 
quadtree, PM 1 quadtree, PM2 quadtree and PM3 quadtrees. So 
comparisons can be made between the data structures of region 
representation and boundary representation. 

5.1.1. COMPARISON BETWEEN DATA STRUCTURES OF INTE­
RIOR REPRESENTATION : 

For comparing the various methods, some form 
of image is necessary. This image is shown in figure 2 of chapter 2. 
For representing that region each data structure requires some 
amount of memory (space complexity). So we are comparing be­
tween among chain codes, runlength codes, block codes and re­
gion quadtree. Table 7 of following pages shown that for represent­
ing that image it requires 256 numbers (cells) if array method is 
used. But it requires 64 numbers if chain codes, and it requires 29 
numbers if runlength codes are used. In case block codes 57 num­
bers are required. Lastly our most studied region quadtree requires 
only 6 numbers. So region qudtree is superior than all. 
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5.1.2. COMPARISON BETWEEN DATA STRUCTURES OF EX­
TERIOR REPRESENTATION : 

For comparing the various quadtrees of exterior nature 
of representation 3 cartographic maps are taken. One is road line 
map, another is cityline map and last is powerline map [SAMET 9]. 
T~e ·poWer line map shows the path of the main power line. The 

cityline map indicates the border of the local municipality. The road 
line map is our most complicated map, which details a part of the . 
local roadway work. Table 7 of next page contains the numbers of 
vertices and edges in each of these maps. Note that all of these 
maps consists of line segments whose vertices rest on 512*512 
grid at level 9. 

As mentioned in previous chapter neither MX 
quadtree nor the edge quadtree is really an appropriate represen­
tation for polygonal maps, since they only correspond to an ap­
proximation of the map, where as the variants of the PM quadtree 
represent the maps exactly. Nevertheless in practice, for the MX 
quadtree is natural to consider the approximation that results from 
representing line segments with same accuracy as grid. In the 
512*512 image, that we are considering, this means that the MX 
quadtree is built by truncating the decomposition at depth 9. Simi­
larly the edge quadtree is also constructed by translating the 
decomposition at depth 9. Tables 1 to 6 summaries the storage 
requirements of the various quadtree methods of representing the 
maps. As we observed before, the PM 1 quadtree will always be 
the largest of the PM quadtrees, i.e., it will require the most nodes. 
Therefore, let us consider how it compares with two alternative ap­
proaches, the MX and edge quadtree given in tables 2 and 3 re­
spectively. Table 4 contain data for the different PM quadtrees. 
Table 5 shows breakdown the leaf count in terms of the different 
type of nodes on all as gives the average number of q_edges for 
each node type (in parenthes) where it is relevant. 
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The MX quadtree (see table 2) has the worst case per­
formance. In all of our examples the MX quadtree is larger than the 
PM1 quadtree (see table 4) by at least a fraction of 9. More gener­
ally, we could expect the size of the MX quadtree for a polygonal 
map to roughly as large as the product if the average line and num­
ber of nodes in the corresponding PM1 quadtree. The edge quadtree 
can be seen to a definite improvement over MX quadtree corre­
sponding the trivial maps like powerline and cityline, we seen the 
edge quadtree is the 3 times as large as the PM 1 quadtree. 

The roadline map, which is the most complex map that 
we have examined to date is also 3 times the PM 1 quadtree. This 
is first surprising, since we observe that the maximum depth at this 
quadtree is considerably greater than that required by the digitization 
grid. In this digitization grid, it requires some nodes at depth of 13. 
In essence, the average depth of a vertex node is again between 6 
and 7 for PM 1 quadtree while it is 9 for the edge quadtree. 

The above discussion leads us to conclude that the PM 1 
is improvement over earlier approaches to handling real data. We 
have seen that the PM 1 quadtree has the desirable property of re­
ducing the average depth at which the dominant node type is located. 
The PM2 and PM3 quadtrees are attempts to further reduce the maximum 
depth of nodes in a PM 1 quadtree. The PM2 quadtree has the effect of 
reducing the maximum depth (see table 6 of previous) by a virtue of compact 
treatment of the case when close edges that radiate from the same vertex 
lie in a different node from the vertex. When comparing the depth of the 
PM1 quadtree column with the data of the PM2 quadtree columns of table 4, 
we observe no change in the powerline map, since it is composed of only 
obtuse angles. 

Comparing the PM3 quadtree with the PM1, PM2 quadtrees 
also shows no change in the number of nodes, when used on the powerline 
map. This is because, the powerline map contain no edges that pass closely 
to vertices, other than their end points. This is because the powerline map 
contain no edges that pass closely to vertices other than their end points. 
This situation occurs a bit more frequently in the cityline map resulting 12 
percent reduction in size. Note that the existence of such situation implies 
that vertex nodes will be slightly closer to the root in the PM3 quadtree in­
stead of PM 1 quadtree leads to 19 percent 
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'lap 

Table l. Size of the Maps 

Map 

l'owcrlin'e 
Citylinc 
Hoadline 

Tahle II. 

No. of vertices No. of edges 

15 
6·1 

684 

14 
6·1 

764 

Size of the MX Quadtrees 

Map Depth Leaves BLACI< nodes WHITE nodes 

l'owerline 9 1594 521 1073 
Cityline 9 2335 782 1553 
Road line 9 HJ51:l 7055 12458 

Table III. Size of the Edge Quadtrees 

~lap Depth Leaves Vertex nodes Line nodes WHITE nodes 
--- ·-- -- ------- -------- --·---

l'owerline 9 '211 15 68 - 128 
Cityline 9 7:l0 64 219 447 
Hoadline 9 (iGf•H 684 2431 3543 

Table IV. Size of the PM., PM2. and PM3 Quadtrees 

Depth Leaves Q-edges 

Map PM, PM2 PMJ PM, PM2 PM3 PM, PM2 PM3 

Powerline 7 7 7 61 61 61 38 38 38 
Cityline 9 8 8 214 208 187 178 176 168 
Homiline 1:1 9 9 2125 1960 1714 2144 2096 1976 

Table V. Breakdown of Information in Table IV by Node Type 

Vertex nodes 
(llvcru~:e q·ed~:es) 

Line nodes 
(averat-:e q-edges) 

WHITE nodes 

I'M, Pl\1 2 PMJ PM, PM2 PMJ PM 1 PM, PMJ 
-------------------

l'u~<erline 15 ( 1.9) 15 (1.9) 15 (1.9) 10 10 ( 1.0) 10 (1.0) 36 36 36 
Cir;·line 64 (2.0) 64 (2.0) 64 (2.1) 50 47 (1.0) 33 (1.0) 100 97 90 
H .. adline ti84 (2.2) 684 ('2.2) 684 (2.3) 618 515 (1.1) 360 (1.1) 823 761 670 

·r.ahle V l. Dis! rihution of Node Types by Depth for PM Quad trees in the Roadline Map 

lleplh 
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10 

II 
1:2 
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PM, 

0 

0 

0 
'2 

10 

Jill) 

'2'2·1 
I!'•H 
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0 
0 
(l 
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Vertex nodes 

PM 2 

0 

0 
0 
2 

10 
75 

PMJ 

0 

0 

0 
'2 

12 
H2 

192 
:2:J:! 
1:1.'> 

:2!.1 

Line nodes WHITE nodes 

PM, __ ~~-2 __ P~-~~~~~~_! __ 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 4 4 4 
0 0 0 8 8 8 
4 

34 
1:32 
204 
IS() 

4H 
13 
14 
10 
3 

6 
35 

127 
198 
126 
:n 

7 
29 

120 
139 
59 
ti 

38 
109 
218 
237 
162 
40 
2 
3 

38 
105 
212 
222 
142 
30 

38 
101 
199 
195 
104 
21 



Table 7 

Type Nodes q_edges Dictionaries 

PM1 28 31 24 

PM2 16 22 13 

PM3 7 17 9 
! 

Comparison of various PM quadtrees. 

Table 8 

Data structure Numbers required 

Array 69 

Chain codes 64 

Run length code 29 

Block codes 57 

Quadtrees 6 

Comparison of various data structures of interior region representa­
tion. 
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reduction in size. This is due to the tendency for vertex nodes to 
occur closer to the root in the PM3 quadtree than the PM1 quadtree . 

. From the above we see that although the difference . 
among the different PM quadtrees can be drastic in principle, for 
typical cartographic data, this difference in the number of nodes in 
the various PM quadtrees for a particular map is less pronounced. 
Thus, for cartographic data the choic_e among the different PM 
quadtrees is dictated more by the problems of implementation rather 
than by .the need to conserve space. However; -it.should be noted 
that cartographic data is rather special in that it generally consists 
of sequence of short line segments meeting at obtuse angles. Since 
the lengths of the line segments are often shorter than the distance 
between the features that the line segments are representing, this 
yields data tends to bring out the best in each of the types of PM 
quadtrees with the result that there is little difference between them. 
For data that is not this simple, then benefits of the PM2 and PM3 
quadtrees over PM1 quadtree should be more pronounced. The 
main motivation for .the development of the PM qudtree data struc­
ture is that its size is relatively invariant to shifting and rotation. 

5.2 ANALYSIS : 

5.2.1. REGION QUADTREE : 

The prime motivation for the development of the 
quadtree is the desire to reduce the amount of space necessary to 
store data through the use of aggregation of homogeneous blocks. 
However a quadtree implementation does have overhead in terms 
of the non leaf nodes. For an image with B and W black and white 
nodes respectively, 4*(B+W)/3 nodes required. In contrast, a bi­
nary array representation of a 2" * 2" image requires only 22

" bits. 
However this quantity grow quite quickly. Further more if the amount 
of aggregation is minimal, the quadtree is not very efficient. This is 
due to [SAMET 8]. 

The worst case for a quadtree of a given depth in terms 
of storage requirements occurs when the region depth corresponds 
to a chessboard pattern. The amount of space required is obvi­
ously a function of the resolution (i.e. the number of levels in the 
grid within which it is embedded). As a single example of placing a 
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square of size 2m* 2m at any position in a 2" * 2" image requires an 
average of 0(2m+n + n- m) quadtree nodes. An alternative charac­
terization of this result is that the amount of space necessary is 
o(p+n) where pis the perimeter (in pixel width} of the block. 

Dyer's O(p+n) result for a square image is merely an 
instance of the following theorem developed by Hunter and Steglitz 
who obtained the same result for simple polygons (i.e. polygons 
with non intersecting edges and without holes) [SAMET]. 

THEOREM : The quadtree corresponding to a poly­
gon with perimeter p embedded in an image of 2" * 2" has a maxi­
mum of 24*n- 19 + 24*p (i.e., O(p+n) nodes. 

COROLLARY : The maximum number of nodes in a 
quadtree corresponding to an image is directly proportional to the 
resolution of the image. 

The significance of corollary is that when using 
quadtrees, increasing the image resolution leads to a linear growth 
in the number of nodes. This is in contrast to the binary array repre­
sentation where doubling the resolution leads to a quadrupling of 
number pixels. 

Since in most practical cases the perimeter, p, domi­
nates the resolution, n, the results of theoremare usually interprets 
as stating that the number of nodes in a quadtree is proportional to 
the perimeter of the region contained therein. The complexity mea­
sures discussed above do not explicitly reflect the fact that the 
amount of space occupied by a quadtree corresponding to a region 
is extremely sensitive to its orientation. For example, in DYER ex­
periment, the number of nodes required for the arbitrary placement 
of a square of size 2m * 2m at any position in a 2" * 2" image ranged 
between 4*(n-m) + 1 and 4*p + 156*(n-m)- 27, with average being 
O(p+n-m). Clearly shifting the image within the space in which it is 
embedded can reduce the total number of nodes. The problems of 
finding the optimal position for a quadtree can be decomposed into 
two parts. First, we must determine the optimal grid, resolution 

, and second, the partition points. 
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5.2.2. PM QUAOTREES : 

The main goal in specifying this data structure is derive 
a reasonably compact representation that satisfies the following 
three criteria. 

1. It stores polygonal maps without information loss (i.e. it 
does not suffer a loss of accuracy resulting from digitization). 

2. It is not overly sensitive to the positioning of the map 
(i.e., shift and rotation operations do not drastically change the stor­
age requirements of the map.) 

4 

3. It can be efficiently manipulated. 

To meet these goals we develop three closely related 
quadtree structures-, PM1, PM2, PM3. Our approach is to find a 
decomposition criteria that corresponds to the principle of repeat­
edly breaking up the collection of vertices and edges (forming the 
polygonal map) until obtaining a subset that is sufficiently simple 
so that it can be organised by some other data structure. We find 
this decomposition criteria by recursively weakening the definition 
that constitutes a permissible leaf node. Thus a permissible PM1 
quadtree leaf node is also a permissible PM2 leaf node and like­
wise a permissible PM3 quadtree leaf node. 

The depth of the PM 1 quadtree is maximum of the following. 

01 = 1 + log 2(root 2/d min w) 

02 = 1 + log 2(root 2/d min ev). 

03 = 1 + log 2(root 2/d min ee). 

Where d min W is the minimum separation distance between 
vertex and vertex. 

Where d min ev is the separation distance between edge and 
vertex. 
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Where d min ev is the separation distance between edge 
and edge. 

Plus the depth of the dictionary structure. 

A1 =log 2 V + 1 

Where V is the number of vertices. 

But the depth of the PM3 quadtree is 01 + A 1. 
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CONCLUSION 

'-'- -··.,_, The approach taken to the development of a 
quadtree like data structures for storing polygonal maps is interrup­
tive. This is started with the region quadtree, and then proceed to 
development of PM quadtrees. The final formulation, PM3 quadtree, 
uses same decomposition rate as the PR quadtree, but it stores 
considerably more information in the terminal nodes. The PM 
quadtree enables storing polygonal maps without information loss. 
Since isolated vertices pose no problems, the PM quadtree can be 
used to represent points, lines and regions. The workdone in this 
project is implementation of insertion, deletion, point location and 
overlay for both region and PM3 quadtrees. 

Some future work includes the development of 
algorithms for other operations i.e., shifting and rotation. In imple­
mentation aspect of view window based user interface can be de­
veloped for this project. 
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APPENDIX A 

DESCRIPTION OF PSEUDO-CODE LANGUAGE 

The algorithms are given using p~~ud<?_-code. This pseudo­
co'de is a variant of the ALGOL programming lang~age, which has 
a data structuring facility that incorporates pointers and record struc­
tures. It make heavy use of recursion. This language has similari­
ties to C, PASCAL and ALGOL W. All reserved words are designed 
in boldface. This also includes the names of predefined record struc­

tures. 

A program is defined as a collection of functions and proce­
dures. Functions are distinguished from procedures by the fact 
that they return values via the use of the return construct. Also the 
function header declaration specifies the types of the data that it 
returns as its value. In the following the term procedure is used to 
refer to both procedures and functions. 

All formal parameters to procedures must be declared along 
with the manner in which they have been transmitted (value or 
reference). All local variables are declared. Global variables are 
declared and are specified by use of the reserved word global be­
fore the declaration with the reserved preload and appending the 
reserved word with and the initialisation values to the declaration. 

A procedure is a block of statements separated by semico­
lons. A block is delimited by begin and end. An if-then-else con­
stitutes a statement. Blocks must be used after a then and an else 
when there is more than one statement in this position. Pointer to 
a record structures are declared by use of the reserved word pointer, 
which is followed by the name of the type of the record structure. 
Short-circuit evaluation techniques are used for Boolean operators 
that combine relational expressions. In other words, as soon as 
any parts of a Boolean or (and) are ue(false), the remaining parts 
are not tested. There is a rich set of types. These types are de­
fined as they are used. In particular, enumerated types in the sense 
of PASCAL are used heavily. For example, the type quadrant is an 
enumerated type whose values are NW, NE, SW, SE. 
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APPENDIX B 

(RESULTS) 
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BUILDING A QUADTREE FROM IMAGE (INSERTION) 

(256,256) 

2 2 0 0 0 2 2 1 0 0 0 0 0 0 0 0 0 

(PREORDER TRAVERSAL OF STATES) 

Give the id of object 1 

Give the number of points of polygons: 4 

Give the x value of point 1 : 64 

Give they value of point 1 : 64 

Give the x value of point 2 : 79 

Give they value of point 2 : 64 

Give the x value of point 3: 79 

Give they value of point 3 : 79 

Give the x value of point 4 : 64 

Give they value of point 4 : 79 
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BUILDING A QUADTREE (INSERTION) 

(0,0) 

(256,256) 

2 2 0 0 0 1 0 0 0 

20 20 256 25 1 2 

Give the id of object 1 

Give the number of points of polygons: 4 

Give the x value of point 1 : 64 

Give they value of point 1 : 64 

Give the x value of point 2 : 127 
-

Give the y value of point 2 : 64 

Give the x value of point 3: 127 

Give they value of point 3 : 127 

Give the x value of point 4: 64 

Give they value of point 4: 127 

66 



DELETION OF IMAGE (QUADTREE) (AFTER DELETION) 

(0,0) 

(256,256) 

2 2 0 0 0 2 2 0 1 1 1 1 1 1 0 0 0 
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IMAGE TO BE OVERLAYED 

: ''?;: .;<'">';;'; .• 

~~. .. ., "' ' •' .·: ~~ 

\j,i~~ 

200021000 

Give the id of object 2 

Give the number of points of polygons: 4 

Give the x value of point 1 : 128 

Give they value of point 1 : 128 

Give the~ value of point 2 : 191 

Give they value of point 2 : 128 

Give the x value of point 3 : 191 

Give they value of point 3 : 191 

Give the x value of point 4: 128 

Give they value of point 4 : 191 
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OVERLAYING OF TWO IMAGES (AFTER OVERLAY) 

2 2 0 0 0 1 0 0 2 1 0 0 0 
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POINT LOCATION 

2 2 0 0 0 2 2 1 0 0 0 0 0 0 0 0 0 

give x value and y value 

70 70 

ld is 1 



PM3 QUADTREE (INSERTION) 

(0,0) 

< ~ ............ 

i'J \ t ,.----~ 

(256,256) 

2 2 0 0 0 0 2 0 0 0 0 0 0 0 

Give the number of lines of nonintersecting nature. 

5 

Give the values of x1, y1, x2, y2, left, right of line 20 50 100 30 1 2 

Give the values of x1, y1, x2, y2, left, right of line 200 30 120 100 2 1 

Give the values of x1, y1, x2, y2, left, right of line 120 100 40 120 2 

Give the values of x1, y1, x2, y2, left, right of line 40 120 80 80 1 

Give the values of x1, y1, x2, y2, left, right of line 80 80 20 50 2 1 

71 



PM3 QUADTREE (INSERTION) 

\ r---. 
7 

~ I 
~ 

Give the number of lines of nonintersecting nature 4 
Give the values of x1, y1, x2, y2, left, right of line 130 130 200 140 1 2 
Give the values of x1, y1, x2, y2, left, right of line 200 140 180 200 2 1 
Give the values of x1, y1, x2, y2, left, right of line 180 200 140 180 2 1 
Give the values of x1, y1, x2, y2. left, right of line 140 180 130 130 1 2 



OVERLAY OF PM3 QUADTREES 

2 2 0 0 0 2 0 0 0 0 0 0 0 2 2 0 0 0 0.0 0 0 



1\ 

2 2 0 0 0 0 0 0 0 

Give the x1, y1, x2, y2 region left and right values 20 30 100 100 1 2 
Give the x1, y1, x2, y2 region left and right values 100 100 10 80 2 1 
Give the x1, y1, x2, y2 region left and right values 20 30 10 80 2 1 

PM3 QUADTREE DELETION (ORIGINAL IMAGE) 



PM3 QUADTREE (IMAGE TO BE DELETED) 

give the x1, y1, x2, y2 values of deleting line 
20 30 100 100 



POINT QUADTREE (IMAGE AFTER DLELETION) 

I 



1 

POINT LOCATION IN PM3 QUADTREE 

Give the number of lines of nonintersection nature 6 
Give the values of x1, y1, x2, y2 left and right region of line 20 20 256 25 1 2 
Give the values of x1, y1, x2, y2 left and right region of line 20 20 256 50 2 3 
Give the values of x1 , y1, x2, y2 left and right region of line 20 20 256 1 00 3 4 
Give the values of x1, y1, x2, y2 left and right region of line 20 20 50 256 1 4 

Give the values of x1 , y1 , x2, y2 left and right region of line 256 150 100 256 4 6 
Give the values of x1, y1, x2, y2 left and right region of line 256 200 200 256 56 6 

give value of x and y 250 250 
Region is 5 
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