
ENHANCEMENT OF FTP FOR INCREASED RELIABILITY

Dissertation Submitted to
JAW AHARLAL NEHRU UNIVERSITY

in partial fulfilment of requirements
for the award of the degree of

Master of Technology
in

Computer Science & Technology

by

BHAWANINANDANPRASAD

SCHOOL OF COMPUTER & SYSTEMS SCIENCES
JAW AHARLAL NEHRU UNIVERSITY

NEW DELHI - 110 067
January 1997

CERTIFICATE

This is to certify that the dissertation entitled " ENHANCEMENT OF
FTP FOR INCREASED RELIABILITY" being submitted by 'BHA W ANI
NANDAN PRASAD' to School of Computer and System Sciences,
Jawaharlal Nehru University, New delhi, in partial fulfilment of the degree of
Master of Technology in Computer Science, is a bonafide work carried by him
under the guidance and supervision of Prof. R.C.Phoha. This work has not been
submitted elsewhere for any other purpose.

-
Dean, SC SS
(Prof. G. Singh)
SC&SS, J. .U.,
New Delhi-110067.

R~r-e~~
Supervisor
(Prof. R.C.Phoha)
SC&SS, J.N.U.,
New Delhi-110067.

ACKNOWLEDGEMENT

I express my profound sense nf gratitude to Prof. R.C. Phoha,

SC&SS, JNU, under whose invaluable guidance and incessant

encouragement, my work has taken its present shape.

I would like to express my sincere thanks to the staff members

of the Computer Laboratory, SC&SS, for providing me with all the

facilities required during the Project.

Finally, I would like to thank my friends for the help and

company they gave me on the long nights spent in the laboratory for

the successfully completion of this Project.

~
(BHA W ANI NANDAN PRASAD)

CHAPTER 1.
1.1.
1. 2.

CHAPTER 2.
2 .1.
2.1.1.
2 .1.2.
2 .1.3.
2.2.

CHAPTER 3.
3 .1.
3.2.
3.3.
3.4.
3. 5.
3 . 6 .

CHAPTER 4.
4 .1.
4.2.
4.3.
4.4.
4.5.
4.6.

CHAPTER 5.
5 .1.
5.2.
5.3.
5.4.

CHAPTER 6.

CHAPTER 7.
7 .1.

CHAPTER 8.

BIBLIOGRAPHY

APPENDIX A
APPENDIX B
APPENDIX c

INTRODUCTION
OBJECTIVE

CONTENTS

OUTLINE FOR REST OF THE REPORT

FTP AND RELATED PROTOCOLS
OVERVIEW OF FTP
HISTORY
TERMINOLOGY
FTP - MODEL
DIFFERENT PROTOCOLS SUPPORTING FTP AND THEIR RELATIONS

THEORETICAL BACKGROUND
STREAMS
QUEUE
SIGNAL
IOCTL
SOCKET
FSM

ISSUES IN DESIGN
FTP DATA STRUCTURE AND DATA REPRESENTATION
CREATING A MESSAGE-QUEUE
DESIGN OF SOCKET ADDRESS STRUCTURE
DESIGN OF CONNECTION-ORIENTED CLIENTS
DESIGN OF CONNECTION-ORIENTED SERVER
DESIGN OF BFTP

ISSUES IN IMPLEMENTATION
ESTABLISHING DATA CONNECTION
ESTABLISHING CONTROL CONNECTION
FTP REPLIES
ERROR CONTROL

DESCRIPTION OF SOFTWARE

USER INTERFACE
TERMINAL SESSION

CONCLUSION AND SCOPE FOR FUTURE WORK

1

!

FIGURES WITHIN THIS THESIS :

Fig-2.1.
Fig-2.2.
Fig-2.3.
Fig-2.4.
Fig-2.5.
Fig-2.6.
Fig-2.7.
Fig-2.8.
Fig-2.9.
Fig-2.10.
Fig-2 .11.

Fig-3 .1.
Fig-3.2.

Fig-4 .1.
Fig-4.2.
Fig-4.3.
Fig-4.4.

Fig-5.1.

Model for FTP use.
Model for SERVER-SERVER interaction.
Protocol Relationship.
TCP datagram format.
TCP HEADER format.
A sliding window.
Relationship of protocol in Protocol-suit.
Internet address format.
Format of IP datagram header.
UDP datagram format.
The path of data in Telnet remote terminal session.

Module linkage STREAM.
Construction of STREAM.

MESSAGE-QUEUE.
CONNECTION ORIENTED CLIENT-SERVER OPERATION.
BFTP module.
BFTP control connection.

TCP control processing.

2

CHAPTER.!

INTRODUCTION

The maJor goals of computer networking are resource-sharing, to

provide high reliability by having alternate source of supply, saving money,

access to remote programs, access to remote databases and value-added

communication facility to provide a powerful communication medium among

widely separated people. But, the main motivation for constructing computer

networks is data exchange among machines. For this purpose, a lot of file

accessing protocols have been developed, like FTP, TFTP, UUCP etc. Each

of these protocols are not suitable. For example, when a client is interested in

only a small part of a large file then transferring the whole file will require

more memory for storage and will cause network congestion. Existing file

transfer protocols do not support partial file transfer facility.

For a variety of reasons, file transfer in the internet has been

implemented as interactive or "Forground " service. That is, a user runs the

appropriate local FTP user interactive command and requests a file should fail

to complete for any reason, the user must reissue the transfer request.

F orground file transfer was suited to the requirements during the early days of

networking when the INTERNET I ARPANET was lightly loaded and

reasonably reliable.

More recently, the internet has become increasingly subject to

congestion and long delays, particularly during the times of peak usage. In

addition, as moreof the world becomes interconnected, planned and

unplanned outages of hosts, gateways and networks sometimes make it

difficult for users to successfully transfer files in FORGROUND. Performing

1

file transfer asynchronously(i.e. in BACKGROUND) provides a solution to

some of these problems by eliminating the requirement for a human user to be

directly involved at the time that a file transfer takes place. Background file

transfer has a number of potential advantage for a user.

*No waiting :

The user can request a large transfer and ignore it until a notification

messages arrives through some common channel (e.g. electronic mail).

* End-to-End Reliability :

The FTC daemon can try transfer repeatedly until it either succeeds or

fails permanently. This provides reliable end-to-end delivery of a file. In spite

ofthe source or destination host being down or poor Internet connectivity

during some time period.

* Multiple file delivery

* Deferred Delivery :

The user may wish to defer a large transfer until an off-break period .

This may become important when parts of the Internet adopt accounting and

traffic-based cost recovery mechanisms.

Also, when large files are transferred over long distances, the

reliability of the link becomes problem. Actually, it is very difficult to have a

link reserved for long tme over far distances.

OBJECTIVE:

Objective ofFTP are :

1. To promote sharing of files (computer programs and/or data).

2

2. To encourage indirect or implicit (via program) use of remote computers.

3. To shield a user from variations in file storage systems among hosts, and

4. To transfer data reliably and efficiently.

The following features of available " FTP under UNIX operating

system " will be enhanced to improved its reliability and efficiency :

1. One can connect to one remote machine (remote login facility)

----- Enhance to connect more than one machine at a time .

Problem specification :

A user can OPEN two machines at a time by giving "open "command

one by one for each machine. Also, a user is working on one machine (i.e.

unix server) but temporarily he wants to work on another machine then he can

change the machine without doing "logout" from that machine.

2. No Background transfer available:

------ Provide background transfer.

Problem specification :

Background transfer includes two features :

(a). Suppose you are working on one unix machines (say jnul), you can

transfer files/data from second unix machine (say jnu2) to third unix machine

(say jnu3).

(b). Suppose file transfer from source machine to destination machine is in

process, you can also see the file directory on both the machines.

For this task, two connections will be required :

3

(1). for file transfer when userlogs into the remote site. In this sesswn,

usercan executes the usual FTP commands like ls,cd,put,get,etc.

(2). User interface (to execute ls,dir, etc)

----- Message queue implementation required.

3. Low reliability in transfer of large files to a long distance on INTERNET I

ETHERNET

------- Break the large size file in N parts (say 5 parts), transfer the parted

sub-files parrallel (i.e. concurrently) in different virtual paths (i.e.

chunks)through different ports to destination machine and then assemble the

transferred parts inqueue at different recognisable address.

Problem specification :

when large files are transferred over long distances the reliability of the

link becomes a problem . Actually, it is very difficult to have a link reserved

for long time over laige distance. This project provides a simple solution to

this problem for only class of users. This project mainly aims at users who

have proper shell account at machine (which I assume to be situated at a far

away site).

The solution which has been tried is to transfer smaller files over

long distances instead of large ones. So, large files are split into smaller

chunks and then transferred. Also, all these files-chunks are transferred

concurrentlythen the total time taken to transfer the main large file will be

reduced and the link is required to be reserved for smaller time .Hence,

reliability of FTP for large file transfer will be increased.

4

In this case,the large (i.e. big) file is breaked in 5 parts of almost

equal size. The 5 virtual paths (i.e. channels) will be made with N ports and

bandwidth distribution utilisation .

The virtual channels have advantage of capturing more bandwidth (i.e.

bandwidth hogging) on internet to facilitate the efficient transfer of files from

this terminal among all other users.

The parted files of the original big file is to be transferred from

different ports by virtual paths at a time. Then, fmally the data packets

transferred from each path is to be received separately and joined in a quue to

original transeferred file. Hence, the transfer time will be reduced almost 1/n

times for large size file. But, for small size file at small distance (say within

department) its reliability may not increase, it may take more time.

This feature of FTP will be applicable to all the files on

ETHERNET /INTERNET, but its reliability of transfer time reduction will be

significant only in the case of transfer of large file from far distance in the

INTERNET.

5

CHAPTER.2

OVERVIEW OF FTP AND RELATED PROTOCOL

The network systems provide computers with the ability to access files

on remote machines. Designers have explored a variety of approaches to

remote access . Broad parameters for appraisal in this area are cost,speed,

reliability in transfer and possible modes of transfer etc. We take a cursory

look at various file transfer facility existing today and brief discussion of their

main distinguishing features . The terms defmed in this section are only those

that have special significance in FTP. Some of the terminology is very

specific to the FTP model.

2.1. OVERVIEW OF FTP :

FTP is the internet standard for the file transfer and is the most widely

used protocol. It facilitates file transfer between two machines(which may be

hetrogenous) on a network . FTP permits authorized users to log into a

remote system, identify themselves, list directories ,send and receive files.

Although Ftp is often used to transfer files interactively, it is actually designed

to be used by programs . It can transfer simple text files or executable

binaries.

FTP has the following main features :

(1). INTERACTIVE ACCESS :

Although FTP is designed to be used by programs, most

implementations provide an interactive interface that allows humans to easily

interact with remote servers. For examples, a user can ask for a listing of all

6

files in a directory on a remote machines. Also, the client usually responds to

input like "help" by showing the user information about commands that can

be invoked.

(2). FORMAT (representation) specification:

FTP allows the client to specify the type and format of stored data. For

examplethe user can specify whether a file contains text or binary integer and

whether text files use the ASCII or EBCDIC character set.

(3). AUTHENTICATION CONTROL :

FTP requires clients to authorize themselves by sending a login name

and password to the server before requesting file transfers . The server

refuses access to clients that can not supply a valid login and password.

Like other servers,most FTP implementations allow concurrent access

by multiple clients. clients use TCP to connect to the server which is reliable

Transport Layer Protocol. Hence, a single master server process awaits

connections and creates a slave process to handle each connections. Unlike

most servers, however, the slave accepts and handles the control connection

from the client, but uses an additional process or processes to handle a

separate data transfer operations.

FTP also supports some housekeeping operation as making

directories and changing the directory at the remote host as well as on the

local host. There are some optional fuctions that are not so generally available

. One of these is third party in which a user at one host causes a file to be

copied between two other remote hosts. Another service is restart recovery,

the ability to restart a failed file transfer where it is left off.

7

2.1.1. IDSTORY :

FTP has had a long computation over the years. The first proposed file

transfer mechanism in 1971 that were developed for implementation on hosts

at M.I.T. (RFC114) plus comments and discussions in RFC- 141 . RFC- 172

provided a user-leveloriented protocol for file transfer between host

computers. A revision of this as RFC- 265, restated FTP for additional

review, while RFC- 281 suggested furtherchanges. The use of a " set data

type" transaction was proposed in RFC- 294 in jan 1982.

RFC- 354 obsoleted RFCs 264 and 265. The file transfer protocol was

now defmed as a protocol for file transfer between hosts on the ARPANET,

with the primary fuction of FTP defmed as transferring files efficientely and

reliably among hosts and allowing the convenient use of remote file storage

capabilities.

RFC- 385 further commented on errors, emphasis points additions to

the protocol, while RFC- 414 provided a status report on the working server

and user FTPs. RFC430, issued in 1973, presented further comments on FTP.

Finally, an "official" FTP document was published as RFC- 454. By july

1973, considerable changes from the last versions of FTP were made but the

general structure remained the same.

RFC- 542 was published as a new "official" specification to reflect

these changes. In 1974, RFCs 607 and 614 continued comments on FTP.

RFC- 624 proposed furtherdesign changes and minor modifications. In

1975,RFC- 686 entitled, " Leaving well enough alone " discussed the

differences between all of the early and later versions of FTP. RFC- 691

presented a minor revision of RFC- 686, regarding the subject of print files.

8

Motivated by the transition from NCP (network control Protocol) to

TCP(Transmissiom Control Protocol) at the underlying protocol, a phoenix

was born out of all of the above efforts in RFC- 765 as the specification of

FTP for use on TCP. The current edition ofFTP specification (RFC- 959) is

intended to correct some minor documentation errors, to improve the

explanation of some protocol features and to add some new optional

commands.

In particulars, the following new optional commands are included in

this edition of the specification :

CDUP- change to parent directory.

SMNT - structure mount.

STOU- store unique.

RMD - remove directory.

MKD - make directory.

PWD - print directory.

SYST - system.

This specification is compatible with the preVIous edition . A Program

implemented to the previous specification should automatically be in

conformance to this specification.

2.1.2. TERMINOLOGY :

ACCESS CONTROL :Access controls defme users access privileges

to the use of a system, and to the files in the system . Access controls are

necessary to prevent unauthorized or accidental use of files. It is the

prerogative of a server-FTP process to invoke access controls.

9

BYTE SIZE : There are two byte sizes of interest in FTP : the LOGICAL

byte sizeof the file and the TRANSFER byte size used for the transmission of

the data.

CONTROL CONNECTION: The communicaion path between the USER­

PI and SERVER-PI for the exchange of commands and replies. This

connection follows TELNET protocol.

DATA CONNECTION : A full duplex connection over which data is

transferred in a specified mode and type. The data transferred may be a part

of a file, an entire file or a number of files. The path may be between a server­

DTP and a user-DTP, or between two server-DIPs.

DATA PORT : The passive data transfer process "listens" on the data for a

connection from the active transfer process in order to open · the data

connection.

DTP : The data transfer process establishes and manages the data connection.

TheDTP can be passive or active.

FTP COMMANDS : A set of commands that compnse the control

information flowing from the user-FTP to the server-FTP process.

PI : The protocol Interpreter. The user and server sides of the protocolhave

distinct roles implemented in a user-PI and a server-PI.

REPLY : A reply is an acknowledgment (positive or negative) sent from

server touser via the control connection in response to FTP commands. The

general form of a reply is a completion code (including error codes) followed

by a next string.

The codes are for use by programs and the text is usually intended for human

user.

10

SERVER - DTP : The data transfer process, in its normal "active" state,

establishes the data connection with the "listening" data port. It sets up

parameters for transfer and storage, and transfers data on command from its

PI. The DTP can be placed in a "passive" state to listen for,rather than initiate

a connection on the data port.

SERVER DTP PROCESS :A process or set of processes whichperform the

function of file transfer in cooperation with a user-FTP process and, possibly

another server. The functons consist of a protocol interpreter (PI) and a data

transfer process (DTP).

SERVER-PI :The server protocol interpreter "listens" on port L for a

connection from a user-PI and establishes a control communication. It

receives standard FTP commandsfrom the user-PI, sends replies, and governs

the server - DTP.

USER-DTP :The data transfer process "listens" on the data port for a

connection from a server-FTP process. If two servers are transferring data

between them, the user-DTPis inactive.

USER-FTP PROCESS :A set of functions including a protocol interpreter, a

data transfer proces's and a user interface which together perform the function

of file transfer in cooperation with one or more server-FTP processes.

USER _PI :The protocol interpreter initiates the control connection from its

port U to the server-FTP process, initiates FTP commands, and governs the

user-DTP if that process is part of the file transfer.

2.1.3. FTP MODEL :

The model of the FTP is shown in figure - 2.1. In the model shown in

the figure,the user- protocol interpreter initiates the control connection. The

11

control connection follows the Telnet Protocol. At the initiation of the

user,standard FTP commands are generated by the user- PI and transmitted

to the server process via the control connection .(The user may establish a

direct control connection to the server-FTP, frrom a TAC terminal for

example, and generate standard FTP commands independently, bypassing the

user-FTP process.) Standard replies are sent from the server-PI to the user-PI

over the control connection in response to the commands.

The FTP commands specify the parameters for the data connection (

data port, transfer mode, representation type, and structure) and the. nature of

the file system operation (store,retrieve, append,delete,etc.). The user-DTP or

its designate should "listen" on the specified data port, and the server initiates

the data connection and transfer in accordance with the specified parameters.

It should be noted that the data port need not be in the same host that initiates

the FTP commands via the control connection, but the user or the user-FTP

process must ensure a "listen" on the specified data port. It ought to also be

noted thatthe data connection may be used for simultaneous sending and

rece1vmg.

In another situation a user might wish to transfer files between two

hosts, neither of which is a local host. The user stes up control connections to

the two servers and then arranges for a data connection between them. In this

manner, control information is passed to the user-PI but data is transferred

between the server data transfer processes. The model of the server - server

interaction is shown in fig-2.2.

The protocol requires that the control connections be open while data

transfer is in progress . It is the resposibility of the user to request the closing

12

of the control connections when finished using the FTP service, while it is the

server who takes the action . The server may abort data transfer if the control

connections are closed without command .

13

USER INTERFACE USER

FTP COMMANDS
SERVER PI USER PI

FTP REPLIES

I
'

DATA
FILE SYSTEM SERVER DTP USER DTP FILE SYSTEM

CONNECTION

S E R V E R F T P USER FTP

F g. 2 . 1 Mode TOr FTP use

CONTROL USER FTP CONTROL --. USER-PI

I 9'C''

~

D A T A CONtlECTI 0 N
SERVER - FTP SERVER - FTP

"A" PART (A) PART (B) "B"

F g. 2.2 Model TOr Server-Server Interact on

2.2. DIFFERENT PROTOCOLS SUPPORTING FTP AND THEIR

RELATIONSHIP :

TFTP (Trivial File Transfer Protocol) :

TFTP is a simple method of transferring files between two systems. It

is designed to be small and easy to implement. So,as to provide inexpensive

and unsophisticated service . Tftp provides transfer of files via UDP

datagrams, so it requires very little communication software --- only IP and

UDP need be running on computer. TFTP uses port number 69 for server to

receive the request. Some essential features of TFTP are :

*sends 512 -octet blocks of data (expect for the last)

* Numbers the block starting with one

* supports ASCII or binary transfer

* can be used to read or write a remote file

* uses a simple header

* has no provision for user authentication.

Window NT supports both the FTP and TFTP under implementation of

transferring files across the INTERNET. The differences between the two

protocols are explained below :

* FTP is a complete session- oriented general purpose file transfer

protocol.

TFTP is used as a barebone special pupose file transfer protocol .

* FTP can be used interactively . TFTP allows only unidirectional

transfer of files.

14

* FTP depends on TCP, is connection -oriented, and provide reliable

control. TFTP depends on UDP requires less overhead and provides no

control.

* FTP provides user authentication . TFTP does not.

* FTP uses well -known TCP port numbers : 20 for data and 21 for

connection dial e.g. TFTP uses UDP port number 69 for its file transfer

activity.

* The windows NT FTP-server services does not support TFTP

because TFTP does not support authentication.

*Windows 95 and TCP\IP for windows do not include a TFTP client

program.

There are five types of packets used by TFTP. Every packets begins

with a 2-byte opcode.

opcode string EOS string EOS

1 02 illename 0 mode 01
read request (RRQ) 2 bytes n bytes 1 byte n bytes 1 byte

101 illename 0 mode o I
write request (WRQ) 2 bytes n bytes 1 byte n bytes· 1 byte

opcode block data

1 03 block# data

data 2 bytes 2 bytes n bytes, 0 <= n <= 512

opcode block

1 04 block# I
acknowledgement (ACK) 2 bytes 2 bytes

15

opcode block string EOS

error l._21_£_yt_eSl_rr_c_o4e_h_yt_e~_rr_s_tnngp--yt_e_s ___ o_.ll byte

TCP (Transport Control Protocol) :

The TCP is intended for use as a highly reliable host-to-host protocol

between hosts in packet-switched compute communication networks and in

interconnected ststems of such networks .

The TCP is connection-oriented, end-to-end reliable protocol designed

to fit into a layered hierarchy of protocols which support multi-network

applications.

The TCP provides reliable inter-process communication between pairs

of processesin host computers attached to distinct but interconnected

computer communication networks. TCP assumes it can obtain a simple

potentially unreliable datagram service from the lower level protocols. In

principle, the TCP should be able to operate hard-wired connections to

packet-switched or circuit-switched networks.

The TCP fits into a layered protocol architecture just above a basic

internet protocol which provides a way for the TCP to send and receive

variable length segments of information enclosed in internet datagram

envelopes.

The internet datagram provides a means for addressing source and

destination TCPs in different networks. The internet protocol also deals with

any fragmentationor reassembly of the TCP segments required to achieve

transport and delivery through multiple networks and interconnecting

16

HIGHER - LE:VEL

!Cf'

INTERNET PROTOCOL
---------i

COMMUNICATION NETWORK

RELATION TO THE OTHER PROTOCOL :

DIAGRAM ILLUSTRATES THE PLACE OF THE TCP IN THE PROTOCOL HIERARCHY

TEL NET FTP VOICE ----- Af'PliCATIOtl

LEVEL

I I I
TCP RTP ---- HOST LEVEL

_j

I
INTERNET PROTOCOL & ICMP GATEWAY LEVEL

LOCAL NETWORK PROTOCOL NETWORK LEVEL

F g. 2.3 Protocol Relat onsh ps

gateways. The Internet Protocol also cames information on the TCP

segments. So, this information can be communicated end-to-end across

multiple networks.

RELATION TO THE OTHER PROTOCOL:

The following fig-2.3.diagram illustrates the place of the TCP in the Protocol

hierarchy.

source destination sequence acknowledge flags window check urgent options data
port port number ment number size sum pointer

2 byte 2 byte 4 byte 4 byte 2 byte 2 byte 2 byte 2 byte varies

vanes

fig-2.4. TCP datagram format

TCP segments are sent as internet datagrams. The Internet Protocol

header carries several information fields includung the source and destination

host addresses. A TCP header follows the Internet header supplying

information specific to the TCP protocol. This division allows for the

existence of host level protocols other than TCP.

TCP provides a reliable, correctly sequenced,flow controlled stream

delivery service between the transport end-points (i.e. specific program) for

any two machines on a connected internet does not preserve message

boundaries.

TCP uses a technique called positive acknowledgement with

retransmission in which the sending end waits to receive an acknowledgement

of each segment before sending the next. The maximum comniunication

bandwidth achievable with this scheme is

17

maximum packet size I round trip size

which is almost certainly much lower than the network is actually able to

sustain. To overcome this problem, TCP uses a 11 SLIDING WINDOW

PROTOCOL 11 which allows several unacknowledged segments to be present

in the network. As shown in fig. the window gratually slides down the data

stream as the transmission proceeds.

Bytes behind the trailing edge of the window have been both

transmitted and acknowledged. Bytes in front of the leading edge of the

window have not been seen yet, to control this sliding window, there are

three fields within TCP header sequence number, acknowledgement number,

and the third field is used to control the size of the window. The sequence

number is placed in the header by the sender and indicates the byte offset

within the data stream at which this segment begins. The data is used by the

recipient ensure that misordered segments are re-assembled correctly,and to

reject duplicate segments. The acknowledgement number is used in the

acknowledgements returned by the recipient, it indicates which segment is

being acknowledged. A third packet to control size of the window is used in

acknowledge packets and is filled in by the recipient to indicate how many

more bytes of data the recipient Is willing to accept before further

acknowledgement are sent .

Consider the scenerio in fig.-2.6. A sliding window, the recipient has

acknowledged receipts of bytes 1 to 6, and specified a window size of 11 .

This gives the sender licence to send as far as, but not beyond, byte 17. At the

instant shown on the diagram, the sender has sent up to byte 13. Bytes 14-17

18

0 4 8 12 16 20 24 32

SOURCE PORT DESTINATION PORT

SEQUENCE NUMBER

ACKNOWLEDGEMENT NUMBER

RESERVED u A p R s F
DATA

R c s s y I
OFFSET WINDOW

G K H T N N

CHECKSUM URGENT POINTER

OPTIONS PADDING

DATA (UPTO 65,515 OCTETS OF DATA)

F g. 2. 5 TCP header ~ormat

Byte stream

+ ,----

1

2

3

4

5

6

Bytes already 7

sent 8

9

10

11

12

13

14

15

16

17

18
Bytes not sent

19
yet

20

1
21

22

'---

F g. 2.6

T
Bytes already

Acknowledged

Bytes yet

acknowledged

Back edge of window

Window size

(determined by

recipient)

Front edge on window

A sl d ng w ndow

may be sent without waiting for further acknowledgements. The sliding

window protocol allows TCP to flow-control the data stream accurately .

A number of important utilities were developed to take advantage of

TCP\IP .Especially, well used were TELNET which allowed you to login on

a remote machine and FTP which allowed transfer of files to and from remote

machine.

IP (INTERNET PROTOCOL) :

Intemetworking refers to any technology that joins independent

networks together into a single virtual network called an INTERNET.

Gateways are one of the fundamental components of the INTERNET.

Gateways accept packets from one network and forward them to hosts or

gateways on another. IP provides a connectionless and unreliable delivery

sustem. It provides the packet delivery services for TCP, UDP, ICMP. It is

connectionless because it considers each IP datagram independent

of all others. Every IP datagram contains the source address and the

destination address so that each datagram can be delivered and routed

independently.

IP datagram is unreliable because it does not guarantee that IP

datagram ever get delivered or that they are delivered correctly.

INTERNET ADDRESSING :

The INTERNET architecture is based on the idea that every host has

its own unique address. Internet addresses are composed of two parts, a

network portion and a local portion. The network part of the addess specifies

19

which network the host resides Ol\ and the local part identifies the specific

host on the network. INTERNET addess closely follows the model where

hosts connect to networks and networks are combined into internets.

The fig.-2.7. shows the relationship of the protocol m the

protocol suite with their approximate mapping into the OSI model. An

Internet address occupies 32 bits and encodes both a network ID and host ID.

A 32-bit IP address has one of the four formats shown in fig.

1 byte 7 bytes 24 bytes

class A I 0 netid hostid

2 byte 14 bytes 16 bytes

class B 11 0 netid hostid

3 byte 21 bytes 8 bytes

class C 11 1 0 netid hostid

4 bytes 28 bytes

class D 11 11 0 multicast address

fig-2.8. Internet address formats

IP DATAGRAM:

IP datagram differ from the NETWORK FRAMES in several important

ways. The header format is given in fig.-2.9. Like network frames,datagrams

contain both the sender's address and the address of the intended recipient. A

16-bit checksum provides error detection for the datagram header. The

checksum does not include the data portion of the datagram and uses 16-bit

20

USER PROCESS USER PROCESS <--------- OSI LAYER (5-7)

TCP UDP <--------- OSI LAYER 4

ICMP <-> IP ARP RAP <-- OSI LAYER 3

HARDWARE INTERFACE <------- OSI LAYER 1-2

F g. 2.7 Relat onsh p n protocol su t

VERSION

TTL

F g.

USER'S

TERMINAL

F g.

5 9 17 21 25

LENGTH
IHL TOS

IDENTIFICATION FLAG OFFSET

2.9

2. 1 1

TYPE CHECKSUM

SOURCE ADDRESS

DESTINATION ADDRESS

PADDING
OPTIONS

Format o~ IP datagram header

TELNET
CLIENT

OPERATING

SYSTEM

TEL NET

Path o~ Data

TEL NET
SERVER

OPERATING
SYSTEM

n Telnet remote

term na sess on.

32

arithmetic to compute the one's complement of the "one's complement sum of

the header".

An 8-bit type field identifies the type of data that the packet carries and

is used to demultiplex the datagram to higher level protocol software. An 8-

bit TTL field (i.e. "time to live" entry) prevents looping of datagrams

endlessly around between gatways with bad routing data . Finally the header

can include a variable length list of options. Thus, the header is not of fixed

size and its length is given in the length field . The 16 bit length field allows

datagrams to be upto 65,535 octets in size, although in practice they are

usually much smaller.

To indicate where the header ends and data begins, the header

includes a field containing the length of the Internet Header (IHL). the header

length specifies the number of 4-octets units in the header. Thus, the data

begins at an offset of 4 * IHL octets from the beginning of the datagram.

Because IP headers consume a minimum of 20 octets, the data portions can

contain no more than 65,515 octets of data.

TRANSPORTING DATAGRAM:

IP datagrams are the universal packet of the INTERNET, and all

Internet hosts and gatways understand how to process them. To send an IP

datagram, the sending machine encapsulates the datagram inside a network for

transmission across a directly connected network.

MAPPING IP ADDRESS into PHYSICAL ADDRESS :

One problem arises when a host wishes to send datagrams to a host or

gaeway on its directly connected network : what physical address should the

sender use to send datagrams to a specific INTERNET ADDRESS ? A

21

mechanism that maps Internet addresses to physical address is needed. The

Address Resolution Protocol (ARP) is a special protocol designed to solve

the problem of mapping between INTERNET and PHYSICAL addresses

.ARP maps the INTERNET address into hardware address and RARP maps a

hardware address into an internet address .

UDP (USER DATAGRAM PROTOCOL):

Not every application fmds it convenient to use the reliable stream

oriented service of TCP. Some applications wantdatagram-oriented

communication that understand record boundaries. The UDP provides

connectionless, unreliable delivery service using IP to carry messages among

machines. Indeed, UDP provides little more destinations on a machine and

provides checksum to ensure data integrity. It does not use acknowledgement

or retransmit lost datagrams.

Unlike TCP,UDP is not a complete transport protocol. Most

important,it does not provide congestion control or flow control.Applications

typiclly use UDP as a building block for more specilised protocols. The most

important function of UDP is to deliver datagrams between transport end­

points (i.e. specific programs) for any two machines on a connected internet.

UDP preserves message boundaries but does not guarantee delivery or

correct sequencing of the datagrams.

UDP provides only two features that are not provided by IP : Port

numbers and an optional checksum to verify the contents of the UDP

datagram. Like TCP, UDP uses 16-bit port numbers to identify the

destination of a datagram . UDP port numbers completely independent from

22

TCP ports because the type field in the IP diagram header distinguishes TCP

segments from UDP datagrams.

Source port Destination port Length Checksum Data

ss
2 bytes 2 bytes 2 bytes 2 bytes vanes

fig- 2.10. UDP datagram format

The 5-tuple that defmes an association in the internet suite consists of:­

* The protocol (TCP or UDP),

*The local host's Internet address,

* The local port number (a 16-bit value),

*The foreign host's Internet address (a 32-bit value),

*The foreign port number (a 16-bit value).

TELNET (APPLICATION LAYER PROTOCOL):

The INTERNET provides a simple remote terminal protocol called 11

TEL NET 11 which provides remote login facility. It allows an interactive user

or a client system to start a login session on a remote system. Once a login

session is established, the client process passes the user's keystrokes to the

server process. TELNET provides three main services : first, it defmes a

network virtual terminal interface standard upon which application programs

can be built. Second, it provides a way for a client and server to negotiate

options and provides a standard set of options. Finally, TELNET treats each

end of the connection symmetrically. Instead of designing one end of the

connection as the terminal, either end can be a program.Interestingly,

23

TELNET protocol can be used to access services other than the standard

remote login service like connect to a different ports .

Conceptually, a client application communicates with the TELNET

process on the local machine that transfer that to the remote TELNET

server,and the remote application accepts data from the TELNET server on

its machine.

RELATIONSHIP BETWEEN FTP AND TELNET :

The FTP uses the TELNET protocol on the control connection, this can

be achieved in two ways : First, the user-PI or the server-PI may implement

the rules of the TELNET protocol directly in their own procedures~ or,

second, the user-PI or THE server-PI may make use of the existing Telnet

module in the system. Ease of implementation, sharing code, and modular

programming argue for the second approach. Efficiency and independence

argue the first approach.

PROTOCOL COMPARISION:

IP UDP TCP

connection- oriented ? NO NO YES

message boundaries ? YES YES NO

data chaecksum ? NO OPT YES

positive acknowledge ? NO NO YES

24

timeout and retransmit? NO

duplicate detection ? NO

sequencmg ? NO

flow - control ? NO

full - duplex ? NO

fragmentation and re­

assembly of packet ? YES

25

NO YES

NO YES

NO YES

NO YES

NO YES

NO NO

CHAPTER .3

THEORETICAL BACKGROUND

3.1. STREAMS:

A stream is a collection of units called "modules", providing at one

end, the head,a user/kernel interface following a prescribed protocol, and at

the other end,the driver providing what is usually very similar to a traditional

device driver. Device drivers are the routines that know about (and,for the

most part hide) all the low level details of talking to the real hardware. The

modules between the head and the driver serve as filters,transforming data as

required,as servers,implementing particular data communication protocols; or

as routers,choosing lower streams for routing data in and out as various

devices and choosing upper streams for routing data to and from various

processes.Any module may send and receive messages of its

own,representing control requests or responses or error indications.

The head and driver ends of a stream are fixed when it is opened , but

modules may be dynamically pushed onto a stream as needed or popped one

stream to be linked under another, with the lower stream running at its head

special routines defmed within the upper stream, with the advent of

networking, a form of driver, often called a software driver,is used to stand

between user system calls, or even kernel calls and various network devices.

It often impl-ements one or more layers of a networking protocol family, or

acts as a filter to convert between data representations on different machines

or devices.

26

Head

wque Wput rput rque
Wsrv r--- rsrv

Down stream

Write side • Upstream

Wput ~ rput
wque

rque Read side
Wsrv rsrv

r---

~
rput

Wput rsrv
wque

rque
Wsrv

Driver

F g. 3. 1 Module L nk.age n a stream

wque rque

Null
Head 0_next

Q_Next ~

Driver Q_next -~

Q_next
Null_

F g. 3. 2 The L nk. between Queue pa rs

CONSTRUCTING A STREAM:

A field dstr (driver stream) has been added to cdevsw[].(standard

character device switch table). The connection between the system calls and

these function is made through the standerd character device switch table

cdevsw[] which is indexed by the major number of a device. The system calls

use cdevsw[] to fmd C function thar should be used for that device .

The 'dstr' intended to point to a structure that describes the

construction of a stream. When the kemal 'open' sees a non zero pointer, it

sets up to invoke special fixed 'STREAM' version of 'open' and 'close' (and

infact, of read,write,and ioctl). The value of dstr is the location of a

STREAMT AB structure :

The STREAMTAB structure itself need be the only variable accessible

by nameoutside the driver module itself. In other words, the remainder of the

variables may be declaried static or may be local to perticular routines.The

special STREAMS Open() procedure now carries out the following actions:-

It allocates a pair of QUEUES for the stream head, and fills these

with standard stream head QINIT structure .

It allocates a pair of QUEUES for the driver and fills these with the

QINIT structure described in the STREAMTAB.

3.2. QUEUE

The basic structural description of a stream is that it is a collection

of pairs of queues, doubly linked in a special way. Each queue is an

instance of the data structure :

27

struct QUEUE {

}

QINIT *q_qinfo;

MSGB *q_frrst;

MSGB *q_last ;

QUEUE *q_next;

QUEUE *q_links;

Caddr _ t *q_ptr ;

ushort qflag ;

short q_ mmpsz ;

short q_ maxpsz ;

The queue pairs are made up of a read side and a write side . The

memory is allocated in one double sized chunk with the read member at lower

address. Message queue belongs to either a read queue which we call an

rque or the write queue which we call wque.

Message queue is IPC (inter process communication) mechanism generally

lmown as Sysytem V IPC. A message queue is an ordered list of messages

held in the kemel.H has some features in common with a shared memory

segment , it is identified by a numeric key value , it has own chip and access

nodes and it exists quite independently of any particular user process. Subject

to usual access permissions any process that lmows the key of a message

queue can send the message to it and retrieve the messages from it.

Each message on queue carries user data and it is used to give some

control over the order in which the messages are retrieved from queue. In

term of functionality message queue are sub-ways between named-pipes and

28

shared memory of IPC (inter process communication) . They offer more

flexible access then the strictly first-in first-out manner of a pipe. But they do

not offer the completely random access provided by shared memory.

3.3. SIGNAL :

A signal is an asynchronous event which delivers to process .

Asynchronous means that the event can occur at any time ,it is not related to

or synchronised with any particular operation in program. Broadly speaking a

signal is usually a notification to a process that Somethig unexpected or

unusual has happened which may require the process to leave what it is doing

for a moment and take special action . Signals are sometimes called software

interrupts. Signal can be sent :-

By one process to another process (to itself also)

By kernel to process

A process specifies how it wants a signal handled by calling the signal

system call .

#include<signal.h>

int (*signal(int sig,void(*func)(int))) (int);

Signals have a type (a small integer) and the types have symbolic

names.

Signal name

SIGHUP

SIGINT

SIGQUIT

SIGKILL

Default Action

Terminate process

Terminate process

Create core image

Terminate process

29

Descriyption

Hangup

Interrupt character typed

Quite character typed

Result of kill

SIGSEGV

SIGALAM

SIGURG

SIGUSRl

create core image Invalid memory reference

Terminate process Clock time expired

Discard signal Urgent condition on socket

Terminate process User defmed signal type

How a process responds to a signal:-

A process may choose how it will respond when a signal of a particular

type is delivered. This choice is known as disposition of signal. There are

three possibilities :-

1. The process can choose to ignore the signal

2. The process can choose to execute a special signal handler

function when the signal is delivered and then continue where it lefts off

3. The process can accept deiault behaviour of the signal.

The disposition of a signal is set using system() system call. The genral

form is : signal(sig, Handler) where sig is the signal type and handler is the

address of the handler function.

3.4. IOCTL (system call/function) :

The ioctl system call is used to change the behaviour of an opened

file like(fcntl).

#include<sys/octl.h>

int ioctl(int fd, unsigned long request, char *arg);

This system call performs the variety of control functions on terminal

devices sockets (BSD) and streams. The greatest use for ioctl is to change the

terminal characteristics, the baud rate, parity, number of bits per character,

30

etc. The main difference between fctl and ioctl is that fctl is intended for any

open file and ioctl is intended for devices specific operations.

The ioctl I_ LINK system call is the system call that creates the lik.

ioctl(op _stream_ fd,I _ LINK,lan _stream _fd)

The op_stream_fd is becomes the Control Stream for multiplexed

configuration and when it is closed the configuration is automatically

dismounted.

3.5. SOCKET :

A socket is an end point for communication . It is where the

applications programs and the transport provider meet (operating system

side). Sockets can only interacts with socket of same type. The system call

system creates a socket (a data structure withi opeating system) i.e. creates

a TSAP of given type.Comparision of Sockets TLI(Iransport Layer

Inteiface),Message queue

SERVER allocate space

create endpoints

bind address

specify queue

wait for connection

get pre fd

CLIENT allocate space

Socket

socket()

bind()

listen()

accept()

31

TLI Message Queue

t_aloc()

t_ open() mesg..:_get()

t_bind()

t_listen()

t_open()

t_alloc()

create endpoints socket() t_open() msgget()

bind address bind() t_bind()

connect to server connect() t connecto

transfer data read() read() msgrcv()

terminate close() t_close() msgctl()

3.6. DESCRIPTION OF FSM (FINITE STATE MACHINE):

A key concept used in many protocol models is the finite state

machine. With the technique ,each protocol machine (i.e. sender or receiver)

is always in a specific stage at every instant of time .Its state consists of all the

values of its variables,including the program counter. In most cases,a large

number of state can be grouped together for purposes of analysis.For

example,considering the receiver in protocol -3 ,we could extract out from all

the possible states two important ones: waiting for frame 0 or waiting for

frame l.All other states can be thought of as transient,just steps on the way to

one of the main states. Typically the states are chosen to be those instants that

the protocol machine is waiting for the next event to happen(i.e. executig the

procedure call or wait event in this examples) .All this point of state of the

protocol machine is completely determined by the states in the variables. The

number of states is then 2 **n, where n is the number of bits needed to

represent all the variables combination. The state of the complete system is

the combination of all the states of the two protocol machines and the

channel.The state of the channel is determined by its contents.Using Protocol

3 ,the channel has four possible states:a zero frame,or a one frame moving

from sender to receiver ,an acknowledgement frame going the other way or

32

an empty channel.If we model the senderand receiver as each having two

states, the complete system has 16 distinct states.

From each state ,there are zero or more possible transitions to ther

states. Transition occurs when some event happens. FOr a protocol machine a

transition might occure when a frame is set, when a frame arrives, when a

timer goes off,when an interrupt occurs etc.For the channel,typical events

are intertioon of a new frame onto the channel by a protocol machine, delivery

of a frame to a protocol machine ,or loss of frame due to noise burst.

Given a complete description of the protocol machine and the channel

characteristics,it is possible top draw a directed graph showing aa the states

as nodes and all the transitions a directed arcs.Formally,a finite state

machine(FSM)model of a protocol can be regarded as a quadruple (S,M,I, T)

where:--

S-is the set of states of processes and channel can be in

M-is the set of frames that can be exchanged over

l-is the set of initial states of the processes

T-is the set of transitions between states

At the begining of time ,all processes are in the initialtates.Then events

begin to happen,such as frame becoming available for transmissions or timers

going off.Each event may cause one of the process of the channel to take an

action and switch to new state .If there exists a set of states from which there

is no exit and from which no process can be made(correct frames received),

we have an error(deadlock). A less serious error protocol specification that

tells how to handle an event in a state in which the event cannot

occur(extraneous transition).

33

CHAPTER .4

ISSUES IN DESIGN

4.1 FTP DATA STRUCTURE & DATA REPRESENTATION:

Data is transferred from a storage device in the receiving host. Often

it is necessary to perform certain transformations on the data because data

storage representations in the two systems are different. The sending and

receiving sites would have to perform the necessary transformations between

the standard representation and their internal representations.

A different problem in representation arises when transmitting binary data (no

character codes) between hosts with different word lengths. It is not always

clear that the sender should send data, and the receiver store it. For example

when transmitting binary data (not character codes) between host systems

with different word lengths. It is not always clear how the sender should send

data, and the receiver store it. For example when transmitting 32-bit bytes

from a 32-bit word length systems to a 36-bit word length systems, it may be

desirable (for reason of efficiency and usefulness) to store the 32 bit bytes

right justified in a 36 bit word in the latter system.

Data Types : data representations are handled in FTP by a user specifying a

representation type

Ascii Type :This is the default type and must be accepted by all FTP

implementations. It is intended primarily for the transfer of text files, except

when both hosts would fmd the EBCDIC type more convenient.

EBCDIC type :This type is intended for efficient transfer between hosts

which use EBCDIC for their internal character representation.

34

Image type :Image type is intended for efficient storage and retrieval of files

and for transfer of binary data.

Local type :The data transferred in logical bytes of the size specified by the

obligatory second parameter , Byte size. The logical byte size is not

necessararily the same as the transfer byte size. If there is a difference in byte

sizes, then the logical bytes should be packed continuously disregarding

transfer byte boundaries and with any necessary padding at the end.

When data reaches the receiving host it will be transformed in a manner

dependent on the logical byte size and the particular host.

Format Control: The types ASCII and EBCDIC also take a second(optional)

parameter, that is to indicate what kind of vertical format control, if any is

associated with a file. The following data representation types are defmed in

FTP:-

Non print, telnet format control, carriage control.

Data structure :

Three types of data structure:

1) File structure

2) Record structure

3) Page structure

To transmit files that are discontinuous, FTP defmes a page structure to

provide for various page sizes and associated information , each page is sent

costs a page header. the page header has the following defmed fields

1. lleaderlength :-

The no. of logical bytes in the page header including this byte. The minimum

header length is 4,

35

Page index - The logical page number of this section of the file.

Data length- The number of logical bytes in the page data.

Page type- the following page types are defmed :-

O=last page

1 =simple page

2=descriptor page

3= ascess controlled page

The function msgget(key,flag) creates a message-queue by setting flag­

value to the IPC _ CREAT I PERMS , and by setting the flag argument to

zero, a handle on the existing message-queue.

id = msgget(key,flag);

where id --> Handle for message-queue,

key --> Numeric key identifying the queue,

flag--> IPC_CREAT I 0644, to create new queue with access (rw-r­

r--),or 0 to get an existing queue.

struct msgbuf{

long mtype;

char mtext; }

struct msgbuf *ptr;

The function msgsnd() call is used to place a message on the queue. The user

is required to assemble a message with a type field at the beginning followed

by the data. The syntax of msgsnd() :

msgsnd(id,ptr,size,flag);

A message is read from the message-queue using the msgrcv system call.

int msgrcv(int msqid, struct msgbuf *ptr, int length,long msgtype,int flag);

36

Type 1

msgsnd()

F g.

Type 2 Type 3

Data Data

M e s s a g e q u e u e

msgrcv()

F g. 4. 1 Message que u·e

id msgget (key, flag)

Creat

I

IPC-CREAT:0644
to create new
queue with

access

ng a message queue

Key

4.3. DESIGN OF SOCKET ADDRESS STRUCTURE :

Unix domain address structure :­

struct sockaddr _ un {

short sun_family;

char Slffi _path;

};

Internet domain address structure :

struct sockaddr _in {

short sin_family;

truct in_ addr {

u_long s_addr;

};

u _short sin _port;

struct in_ addr sin_ addr;

char sin_ zero;

generic socket address structure :

struct sockaddr {

u_short sa_family;

char sa_data[14];

};

socket types :

/* tag : AF _UNIX */

/* path name */

/*tag: AF _INET */

/* port number *I

/* IP address */

/* padding */

SOCK STREAM /*A connection-oriented transport e.g. TCP */

SOCK DGRAM /* A connectionless transport, e.g. UDP */

37

SOCK RAW /*Used on occasiol\ to talk directly to the IP Layer */

SOCK_ SEQ PACKET /* Sequenced packet socket

SOCK RDM /* Reliably delivered message socket

Combination of socket family, type, and protocol:

family type protocol actual protocol

AF INET SOCK DGRAM IPPROTO UDP UDP - -

AF INET AOCK STREAM IPPROTO TCP TCP - -

AF INET SOCK RAW IPPROTO RAW (raw)

4.4 DESIGN OF CONNECTION-ORIETED CLIENTs :

*I

*I

FTP is a connection-oriented file-transfer protocol, uses connection­

oriented clients & server mechanism . The client application allocates a

socket and connects it to a server. It then sends requests across the

connection and receives replies back.

Algorithm of Client :

(1.) Identify the IP address and protocol port number of the server with which

communication is desired.

(2.) Allocate a socket.

(3.) Specify that the connection needs an arbitrary, unused protocol port on

the local machine, and allow TCP to choose one.

(4.) Connect the allocated socket to the server.

(5.) Communicate with the server using the application-level protocol (this

usually involves sending requests and awaiting replies).

38

(6.) close the connection.

Find the IP address and protocol port-number:

The address of srver-machine includes the IP address of the host

corresponding to the server, and port number for the server. The client

program accepts server's hostname as an argument and uses it to fmd the

server's IP address. The socket interface includes library routines (inet_addr

and gethostbyname) that perform the conversion descibed ahead . inet_ addr

takes an ASCII string that contains a dotted decimal address and returns

the e qui valent IP address in binary. gethostbyname takes an ASCII string

that contains the domain name for a machine. It returns the address of a

hostent structure that contains, among other things the host's IP address in

binary. The hostent structure is declared in the include file netdeb.h:

struct hostent {

char *h_name;

char **h_aliases;

int h _ addrtype;

int h _length;

/*official hostname */

/*other aliases */

/*address type */

/*address length */

char **h _ addr _list; /* list of addresses */

};

#defme h_addr h_addr_list[O];

To obtain the IP address client calls 'gethostbyname' as in:

struct hostent *hptr;

if(hptr = gethostbyname("host")) {

/* IP address is now in hptr ->h _ addr *I

}

39

else {

/*no entry for host in /etc/hosts file */

}

If the call is successful, gethostbyname returns a pointer to a valid

hostent structure. If the hostname can not be mapped into an IP address.

Looking up a well-known port by name :

To fmd the port number, the client invokes library function

getservbyname, which takes two argument : a string that specifies the desired

service and a stringthat specifies the desired service and a string that specifies

the protocol being used. It maps the service name to port number. It returns a

pointer to a structure of type servent also defmed in the include file netdb .h :

struct servent {

char *s name; /*official service name*/

char **s aliases; /* other aliases */

int s_port; /*port for the service */

char *s_proto; /*protocol to use */

};

The client calls getservbyname in the following way :

struct servent *sp;

if(sp = getservbyname(service, "tcp")){

/*port number is now in sp->s_port */

}else

{

/*no entry for service in the /etc/services */

}

40

Both getservbyname & gethostbyname returns the port-number & IP address

in network byte order.

Looking up a protocol by name :

The socket interface provides a mechanism that allows a . client or

server to map a protocol name to the integer constant assigned to that

protocol.Library function "getprotobyname" performs the look up:

struct protent {

char *p_name; /* official protocol name */

char **p_aliases; /* list of aliases allowed */

int p_proto; /* official protocol number */

};

struct protent *pptr;

if(pptr = getprotobyname("udp")) {

/* official protocol number is now in pptr->p _proto */

} else {

/* error occurred-handle it */

}

(2.) Creating a socket:

#include<sys/types.h>

#include<sys/socket>

int sd; /*socket descriptor*/

sd = socket(AF _INET,SOCK_STREAM,O);

(3.) Setting a local address :

Unlike the server, the client does not need explicitly to bind an address

to this socket. The system automatically bind an address for you, choosing an

41

arbitrary port number. There is an important execption for clients which must

bind a reserved port number (< 1024) as a verifier to the server. Thefunction

'rresvport()' is used to obtain a socket with a reserved port bound.

4. Connecting the socket to the server :

connect() system call is used to connect the client's socket to the server's.

retcode=connect(sd,(struct sock_ addr _ in*)&tcp _ svr _ addr),

sizeof(tcp _ svr _ addr);

One of the parameter to this call is a "sock_ addr _in" structure which must be

filled in with the address of the server i.e. remote end-point to which

connection is established.

4.5 DESIGN OF CONNECTION-ORIENTED SERVER :

Connection-oriented design of server requires a separate socket for each

connection, while connectionless designs permit communication with multiple

hosts from a single packet. Each server follows a simple algorithm :- It

creates a socket and binds the socket to the well-known port at which it

desires to receive requests. It then enters an infinite loop in which it accepts

the next request. Formulates a reply and sends the reply back to the client. In

the concurrent connection-oriented server, the master server process accepts

incoming connections and creates a slave process to handle each. Once the

slave finishes, it closes the connection.

Algorithm:

master processes :

1. Create a socket and bind to the well-known address for the service being

offered. Leave the socket unconnected.

2. Place the socket in passive mode, making it ready for use by server.

42

3. Repeatedly call accept to receive the next request from a client, and

create a new slave.

slave processes :

1. Receive a connection request (i.e. socket for the connection) upon

creation.

2. Interact wit the client using the connection : read request(s) and send

back response(s).

3. Close the connection and exit. The slave process exits after handling all

requests from one client.

Connection-oriented server operation design:

Establishing the connection :

(1.) CREATE socket :

A socket of the required address family and type is created.

int sock;

sock= socket(AF _INET, SOCK_STREAM,O);

(2.) BIND a 'well-known' port number to the socket:

An address is bound to the socket. The address consists of an IP address and

a port number, and it has to be placed in a sock_addr_in structure along with

the tag value AF _ INET to say what kind of address this is. This structure is

passed to the bind() system call.

#defme server _port

struct sockaddr in server;

server.sin_family = AF _INET /* tag value */

server.sin_addr.s_addr = INADDR_ANY;

server. sin _port = htons(server _port);

43

bind(sock,(struct sock_ addr*)&server, sizeof(server));

The functions htons converts the port-number from host to network byte

order, which all machines can understand.

(3.) Establish a LISTEN queue for connections:

Inform the kernel to accept the connections on the socket by listen(sock,n);

where n is the no. of pending connection requests

the system should queue.

(4.) Accept a connection :

The fmal stage in establishing communication is to wait for, and accept a

connection from a client. The code is typically as follows :

struct sockaddr _in client;

int fd,client len;

client_len = sizeof(client);

sfd =accept(sock, &client, &client_len);

The return value from accept() is a new descriptor relating to the connection

now established to the client.

There are five items defming the connection between the server and client :

(a) The protocol in use,

(b) The client's IP address,

(c) The client's port-number,

(d) The server's IP address,

(e) The server's port-number.

The significance of this connection is that if any of the five items is different,

it is a different connection. If another client is connected to the same server

machine than one of the five items defming the connection will be

44

(SERVER OPERATIONS)
\.. J

') CLIENT OPERATIONS

J

CREATE SOCKET

BIND A 'WELL - KNOWN'

PORT NUMBER TO THE SOCKET

ESTABLISH A LISTEN

QUEUE FOR CONNECTIONS CREATE SOCKET

ACCEPT A CONNECTION ~ CONNECT TO SERVER'S PORT

READ FROM CONNECTION
~- - WRITE TO CONNECTION r--

(\
AS REQUIRED BY a

\ APPLICATION)
WRITE TO CONNECTION f-- ..

READ FROM CONNECTION 1-

•
'END - OF - FILE' ~- - CLOSE CONNECTION

F g-~~Connect on-Or ented Cl ent and Server Operat ons

different. This approach makes the server spawn a child process to deal with

each client.

Data transfer (read from a connection/write to connection) using socket:

Once the connection is estalished, the desriptor sd behaves like any other file

desriptor. The Dialogue between client and server depends on the application

protocol. It consists of request from the client followed by responses from the

server. Process the data in inbuf[] and Placing the result in outbuf[] :

read(sfd,inbuf, size of(inbuf));

write(sfd, outbuf, sizeof(outbuf));

close(sfd);

Finally, when the server will finish with one client, it will usually close

that connection and loop around to accept the next one.

Allocation and bindng of a serve:i socket using TCP or UDP in passive

mode :The function Passivesock(service,protocol,qlen) contains the socket

allocation details, including the use of portbase. The first argument specifies

the name of a service associated with a desired port, the second argument

specifies the name of the protocol, and the third (used only for TCP sockets)

specifies the desired length of the connection request queue. Passivesock

alloctes either a datagram or stream-socket, binds the socket to the well­

known port for the service, and returns the socket descriptor to its caller.

When a server binds a socket to a well-known port, it must specify the

address using structure sock_ addr _in which includes an IP address as well as

a protocol port-nwnber. Passivesock uses the constant INADDR _ANY

instead of a specific local IP address, enabling it to work either on hosts that

have a single IP address or on gateways and multi-homed hosts that have a

45

single IP address or on gateways and multi-homed hosts that have multiple IP

address.

Algo:

struct servent *pse; /*pointer to service information entry *I

struct protent *ppe; /* pointer to protocol information entry *I

struct sockaddr_in sin; /*Internet end-point address */

memset((char*)&sin, O,sizeof(sin));

sin. sin _family= AF _ INET;

sin.sin _ addr.s _ addr INADDR _ANY;

1. Map servicename to port-number.

pse = getservbyname(service,protocol);

sin.sin_port = htons(ntohs(u_short)pse->s_port + portbase);

2. Map protocol name to protocol number.

ppe = getprotobyname(protocol);

3. Use protocol to choose a socket.

if(strcmp(protocol, "UDP") = 0) then

type= SOCK_DGRAM;

else

type= SOCK_STREAM;

4. Allocate a socket:

s = sock(PF _INET,type,ppe->p_proto);

5. Bind the socket :

bind(s, (struct sockaddr*)&sin, size of(sin));

if(type = SOCK_STREAM && listen(s,qlen) < 0)

then "can't listen on service port";

46

return s; /* socket-descriptor *I·

Passive socket for use in a TCP server is created as:

int PassiveTCP(service, qlen)

{

return Passivesock(service, "tcp", qlen);

}

Passive socket for use in a UDP server :

int PassiveUDP(service)

{

return Passivesock(service, "UDP" ,0);

}

FSM (finite state machine) Implentation for use in server :

After getting connect request server works as a FSM (finite state

machine) as the server maintains information about the status of ongoing

interactions with the ients. Keeping a small amount of information in the

server reduces the size of messages that the client and server exchange, and

allows the server to respond to requests quickly. Essentially, state information

allows a server to remember the history of requests made till then by the

client.

The server maintains a table that holds state information about the file

currently being accessed. To transfer a file from one machine to another

machine struct fsm method is desired which elements are functions to handle

various state transitions during file-transfer.

struct fsm_ method {

void (*f)(void);

47

}

struct fsm _method method_ tab[] = {

fsm qO,

fsm ql,

fsm q2,

I* recognise command and to machine-2 *I

I* get port-number of machine-1 *I

I* to get reply from buf & retrieve file

from machine-1 & store on machine-2 *I

fsm qwl,

fsm q3,

fsm qw2,

fsm q4,

fsm qr,

}

struct fsm _entry {

int next state;

int method_ index;

}

I* for ACK reply from machine-1 & wait

I* for ACK reply from machine-2

I* for ACK wait reply from machine-2

I* to give transfer complete

I* to give transfer error

struct fsmentry fsmtab[][] = { }

*I

*I

*I

*I

*I

A function to drive FSM should be designed to handle change of states during

file transfer from 'qO' to 'q4' including error handling.

Syntax of drive_fsm():

{

struct fsmentry p;

present_state = QO;

do {

p = fsmtab[present_state][rep_char- '1'];

48

present_state = p.next_state;

(*method_ tab[p .method_ index],f)();

}while(present_state != QERR && present_state != QOK);

To transfer file in chunks from one machine to another machine :

struct gf _ fsm {

int next state;

void(*f) (char*, char*, char*, int, int, int) }

is defmed to handle different functions to control state changes.

First argument of the function should be usemame; second argument should

be password of the user; third argument pointer to file being transferred; forth

argument, socket-descriptor of the machine to which file is to be transferred;

fifth argument, index of message-queue; and sixth,number of chunks.

Different states are :

1. sends a password to the remote host during connection.

2. sends a command to set the transfer type.

3. to handle an error occurrence.

4. to retrieve a file from the remote host.

5. to signal an end of file transfer.

6. to quit from file-transfer process.

DESIGN OF BFTP :

In FTP-model, server-PI will listen on a well-known port 21. The user

PI will initiate the establishment of control connections by connecting to the

server. Standard FTP commands are generated by the user PI to the server.

49

The server PI takes actions on these commands and based on the results of

these actions a character string known as the FTP reply. The FTP replies are

described later .Actual data is transferred over the data connections between

the user DTP and the server DTP. The protocol specifies that the user DTP

shall "listen" on a port, specified to the server beforehand by the PORT

command.

The server-DTP initiates establishment of the data connection. The

protocol requires that the control connection remains open while the data

transfer is in progress:The model for BFTP is given in figure-4.3. The BFTP­

model is very similar to that of the standard FTP-model. The only difference is

that in the two FTP sessions which are initiated, user commands are

generated from different sources. In the first FTP session,the user cmmands

come from the user, while in the second FTP session the commands are

generated from the queue.

fig.- 4.4 .

Control connections in BFTP :

The two connections are shown in

The first FTP session is started when the user first logs on. The BFTP

server PI sends the standard FTP commands to the server-PI or the queue if

the user so desires. This session is iterative and replies sent by the server are

shown to the user. Whenever a user generates a file retrieval request, he is

presented with an option to execute it in background. If the user wishes to

transfer the fils in background, this request is enqueued.

After the user exits the first FTP session,the second session is opened.

This FTP session has no direct involvement of user. All the commands are

generated from the queued user commands. The replies sent by the server PI

50

Queue

"""-
Quaued .. SERVER-PI User PI L..t_

FTP Convnands I I I I I

Data
SERVER - DTP User - DTP -

Connection

F g. 4.3 Model TOr Background FTP

~ FTP 1 User

SERVER
~------

FTP 2 ~IIIII
Queue

Before logging out

After logging out

F g. 4.4 Control Connect on n Background FTP

are not displayed to the user. The user FTP process handling this second FTP

session is run in background and is dissociated from the control terminal. This

process remains in existence as long as queue is non-empty.

Queueing of commands :

The second FTP session executes a set of FTP commands which are

enqueued by the first FTP session. The commands are enqueued in such a

way that in case of a file-retrieval, the pathname, the mode, the type of data

transfer, and the user information is stored. This ensures that the file-transfer

takes place correctly.

The queue of commands is maintained as a linked-list of nodes having

the following structure :

1. The command which is to be executed. This command is coded in the

form of an integer.

2. The local pathname : this string is NULL if not required.

3. The remote pathname : This string is null if not required.

4. The pointer to the next element in the list.

The queue is maintained in such a manner that all the file retrieval

requests generated by the user are carried out correctly in background. The

following commands are enqueued :

All 'cd' commands which change the currnt working directory of the

server file system.

Type and mode related commands which determines the nature of file

transfer.

All file retrieval and store commands which the user wishes to be

processed in background.

51

User related information which dtermine the account to which file is

transferr ed.

BFTP module :

The command Interpreter stores all the FTP functions in a table

structure which consists of command-name and a pointer to the associated

function. Whenever the user enters a commands, the command table is

searched. If the command is found, the corresponding function is called and

executed otherwise an error message is generated.

The BFTP model stores all the standrd FTP functions. This module is

responsible for sending FTP commands to the server and interpreting the

replies. This module opens the first FTP session at the user's request, carries

out all the commands generated by the user, enqueues the ones which are

relevant and opens another FTP session after the user has logged out.

After the user logs out, the BFTP module spwans a child process. This

child process opens the second FTP ession with the server. The parent

process exits, while the child process keeps on executing after the close of the

first FTP session. As far as the user is concerned, FTP session is over. The

child process which handles the second FTP session is now disassociated

from it's control terminal. This is accomplished by the use of setpgrp() system

call.

52

ISSUES IN IMPLEMENTATION

5.1. ESTABLISHING DATA CONNECTION:

CHAPTER .5

The mechanics of transferring data consists of setting up tha data

connection to the apprpriate ports and choosing the parameters for transfer.

Both the user and the server-DTPs have a default data port. The user process

default data port is the same as the control connection port(i.e U). The server­

process default data port is the port adjacent to the control connection port

(i.e L-1).

The transfer byte size is 8-bit bytes. This byte size is relevant only for

the actual transfer of the data; it has no bearing on representation of the data

within a host's file system.

The passive data transfer process (this may be a user-DTP or a second

server-DTP) shall "listen" on the data port prior to sending a transfer request

command . The FTP request command determines the direction of the data

transfer . The server, upon receiving the transfer request, will iniate the data

connection to the port.When the connection is established, the data transfer­

begins between DTP's ,and the server-PI sends a confirming reply to the user­

PI.

It is possible for the user to specify an alternate data port by use of the

PORT command. The user may want a file dumped on a TAC line printer or

retrieved from a third party host. In the latter case,the user-PI sets up control

connections with both server-PI's. One server is then told(by an FTP

command) to "listen" for a connecton which the other will iniate. The user-PI

53

(J.

s n Is n + ack

close I fin

fin I ack

fin I ack

~cth·e open I syn

'

fin I ack

close I
timrout I

reset

timeout after 2 seRment lifetimes

'

Figun:-.5-L The TCP finite State Machine that controls processing.

•

sends one server-PI a PORT command indicating the data port of the other.

Finally ,both are sent the appropriate transfer commands. This model is

shown in the figure

5.2. ESTABLISHING CONTROL CONNECTIONS:

FTP connections are reliable and connection-oriented. If successfully

connected, the server sends a successful 220 reply. A two way control

connection is opened between the client and server. The user-PI interpreter

the commands generated by the user and sends the corresponding FTP

commands over this connection. FO example, a 'dir' by the user is actually

sent to the server as a LIST command. This command is then executed by the

server and corresponding directory listing is sent over the data connection.

Usually, in this project, the control processing of the data transfer is done by

FSM (finite state machine).

5.3. FTP REPLY :

An FTP reply consists of a three digit number (transmitted as three

alphanumeric characters) followed by some text. The number is intended for

use by automata to determine what state to enter next; the text is intended for

the human user. It is intendedthat the three digits contain enough encoded

information that the user-process(the User-PI) will need to examine the text

and may either discard it or pass it on to the user,as appropriate. In particular,

the text may be server-dependent,so there are likely to be varying texts for

each reply code.

A reply is defl.l'led to contain the 3-digit code followedd by space SP,

followed by one line of text (where some maximum line length has been

specified), and terminated by the Telnet end-of-line code. There will be cases

54

however,where the text is longer than a single line. In these cases the

complete text must be bracketed so the user-process knows when it may stop

reading the reply (i.e stop processing input on the control connection) and go

to other things.This requires a special format on the ftrst line to indicate that

more than one line is coming, and another on the last line to designate it as

the last. At least one of these must contain the appropriate reply code to

indicate the state of the transaction. To satisfy all functions,it was decided

that both the ftrst and last line codes should be the same.

Thus the format for multi-line replies is that the ftrst line begin with the

exact required reply code,followed immediately by a hyphen,"-"(also known

as Minus), followed by text. The last line will begin with the same

code,followed immediately by space SP , optionally some text,and the Telnet

end-of-line code.

The three digits of the reply each have a special significance. This is

intended to allow a range of very simple to very sophisticated responses by

the user-process. The ftrst digit denotes whether the response is good,bad or

incomplete. (Reffering to the state diagram), an unsophisticated user-p[rocess

will be able to determine its next action (proceed as

planned,redo,retrench,etc.) by simply examining this ftrst digit. A user­

process that wants to know approximatelywhat kind of error occured)e.g ftle

system error, command syntax error) may examine the second digit,reserving

the third digit for thr fmest gradation of information)e.g RNTO command

without a preceding RNFR).

There are ftve values for the digit of the reply code :

1 yz. Positive Preliminary Reply

55

The requested action is being iniated~expect another reply before

proceeding with a new command. (The user-process sending another

command before the completion reply would ne in violation of protocol; but

server-FTP processes should queue any commands that arrive while a

p[receding command is in progress.) This type of reply can be used to

indicate that the command was accepted and the user-process may now pay

attention to the data-connections ,mplementations where simultaneous

monitoring is difficult. The server-FTP process may send at most, one lyz

reply.

2yz Positive Completion reply

The requested action has been successfully completed. A new request

may be iniated.

3yz. Positive Intermediate reply

The command has been accepted, but the requested action is being held

in abeyance, pending receipt of futher information. The user should send

another commands specifying this information. This reply is used in command

sequence groups.

4yz Transient Negative Completion reply

The command was not accepted and the requested action did not take

place,but the error condition is temporory and the action may be requested

again. The user vshould return to the beginning of the command sequence,if

any .It is difficult to assign a meaning to "transient", particularly when two

distinct sites(Server- and user-processes) have to agree on the interpretation.

Each reply in the 4yz category might have a slightly different time

value,but the intent is that the user-process is encouraged to try again. A rule

56

of thumb in determining if a reply fits into the 4yz or the 5yz(Permanent

Negative) category is that replies are 4yz if the commands can be repeated

without any change in command form or in properties of the User or Server

)e.g the command is spelled the same with the same arguments used; the user

does not change his file access or user name; the server does not put up a new

implementation.)

5yz PermanentNegative Completion reply

The command was not accepted and the requested action did not take

place.

The user-process is discouraged from repeating the exact request (in

rthe same sequence) Even some "permanent" error conditions can be

corrected, so the human user may want to direct his user process to reiniate

the command sequence by direct action at some point in the future (e.g after

the spelling has been changed, or the user has altered his directory status.)

In the project only the first digits are used for the purpose of driving the

finite state machine.

FTP replies are explained in terms ofREPLY CODES.

Reply codes by Function groups as example :

200 command okay.

500 syntax error, command unrecognized.

501 syntax error in parameters or arguments.

502 command not implemented.

214 help message.

125 data connection already open; transfer starting.

225 data connection open; no transfer in progress.

57

425 can't open data connection.

226 closing data connection.

426 connection closed; transfer aborted.

etc.

Numeric order list of reply codes :

120 restart marker reply

200 command okay.

214 help message.

257 pathname created.

331 Usemame okay, need password.

332 Need account for login.

etc.

58

CHAPTER .6.

DESCRITION OF SOFTWARE

The FTP program allows a user to log into two remote host at a time.

Thus, a user can work with a two FTP servers. The interface function host is

there to switch functioning between the two remote host. The connetions are

to two different host with different names. That is the criteria for

differentiating the remote host.

open jnul < enter >

Enter the login-name and password for jnul.

open jnu2 < enter >

Enter the login-name and password for jnu2.

Thus three machines are opened : one working platfom machine, and another

two host machines.

A function 'copy' has also been added which allows a user to copy

(read transfer) a file· from one remote host to another. The syntax of this

command is

copy this-file that-file

from JNUl to JNU2. Then the command will be

copy jnul :rfcl 09.txt jnu2:rfc109.txt

The mode of the file 'ascii' or 'binary' is required to be changed

corresponding the file by using command 'ascii' or 'binary' at the 'myftp'

prompt before transferring the file.

2. Transfer file in CHUNKs :

59

The most elegant feature of the program is to transfe a file in chunks.

The command for this is

getL

Its syntax is

getL file-name

It assumes that one has a shell account in the remote machine and is

logged into it through this program. When the getL command is issued it asks

for the size which should be provided correctly for correct transfer. The

program then uses the exec service to log into the remote machine and splits

the file into five chunks. All these chunks are then transferred concurrentely

using different connections. The choice of five chunks is made for there are

many FTP servers which do not handle more than five connections

concurrentely. It is also assumed that the splitting program is installed in the

remote machine. The program produces two files - myftp.split.log and

myftp.log to report the status of the file transfer.

DESCRIPTION of PROJECT's PROGRAM MODULES :

Different HEADER files defmed :

cmd.h:

#defme USER 0

#defme PASS 1

#defme QUIT 2

#defme PORT 3

#defme PASV 4

#defme TYPE 5

60

#define STRU 6

#defme MODE 7

#defmeRETR 8

#defme STOR 9

#defmeAPPE 10

#defmeALLO 11

#defmeRNFR 12

#defmeRNTO 13

#defmeABOR 14

#defmeDELE 15

#defme CWD 16

#define XCWD 17

#defme LIST 18

#defme NLST 19

#defmeHELP 20

#defmeNOOP 21

#defmeMKD 22

#defme XMKD 23

#defmeRMD 24

#define XMD 25

#defmePWD 26

#defme XPWD 27

#defme CDUP 28

#defme XCUP 29

#defme STOU 30

61

#defme REIN 31

PARGET.H

#include <stdio.h>

#include <sys/types>

#include <sys/ipc.h>

#include <sys/msg.h>

#include "netdef.h"

#defme NUM OF CHUNKS 5

#defme ID OF MSGQ ((key t) 0 * 10)

#defme T COMPLETE 10

#defme T ERROR 20

#defme T REPLY 30

#defme MAXMESGSIZE (MAXBUFF + 2 * (sizeof(int)))

struct my msgbuf {

int type~

char err str[MAXBUFF]~

};

extern FILE *logfileP~

extern char ofile[]~

netdef.h

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

62

#include <netdb .h>

#ifdefMAXHOSTNAMELEN

#undefMAXHOSTNAMELEN

#endif

#defme MAXHOSTNAMELEN 128

#defme MAXBUFF 2048

#defme MAXDATA 512

#defme MAXFILENAMELEN 128

#defme~~ 512

#defme HOSTNAME "202.41.10.01"

Main.c:

The program module 'Main.c' defmes a function

main(int argc, unsigned char

*argv[])

which uses the function 'Mainloop()' to give prompt 'myftp' when value of

argc

is 1, else 'socket open error' .Finally, it interfaces to the command function

array to allow to execute different commands like 'open' , 'ls' ,' copy' ,'quit'

'get' , 'put' etc .

Interface.c:

The program module 'Interface.c' defmes an array of commands

char *cmd str[];

correspondingly, an array of function

struct LocalFunc {

int (*cmd Fun) (char*); }

63

struct LocalFunc FuncArray[];

and also, an array of help related to the commands char *Help cmd

str[];

char *cmd str[] = {

"ascii"
'

"hi"
'

"cd"
'

"close"
'

"copy",

"del"
'

"dir"
'

"get",

"getL",

"help",

"host"
'

"led"
'

"ldel"
'

"lls"
'

"lmd"
'

"lpwd",

"ls"
'

"md"
'

"open",

"put",

"pwd",

64

"quit",

"rd"
'

"rhelp",

"status"

"user"

};

The corresponding function array :

struct LocalFunc Funcarray[] = {

Ascii, I

Binary, I

ChangeDir, I

Close,

Copy, I

Delete, I

Dir, I

GetFile, I

GetL, I

Help, I

Host, I

Led, I

Ldel, I

Lls,

Lmd, I

Lpwd, I

List, I

65

'

int Ascii(char*); I

int Binary(char*); I

int changeDir(char*); I

I int Close(char*); I

int Copy(char*); I

int Delete(char); I

int Dir(char*); I

int GetFile(char*); I

int GetL(char*); I

int Help(char*); I

int Host(char *s); I

int Led(char*); I

int Ldel(char*); I

I int Lls(char*); I

int Lmd(char*); I

int Lpwd(char*); I

int List(char*); I

MakeDir, I int MakeDir(char*); I

Ope~ I int Open(char*); I

StoreFile, I int StoreFile(char*); I

PresentDir, I int PresentDir(char*);

Quit, I int Quit(char*); I

RemoveDir, I int RemoveDir(char*); I

Rhelp, I int Rhelp(char*); I

Status, I int Status(char*); I

User, I int User(char*); I

};

Related array of HELP to the commands :

char *help Cmd str[] = {

"Sets transfer type to ascii "

"Sets transfer type to binary"

"Changes remote working directory"

"closes a connection"

"Logs in a user in the remote host" }

PROGRAM MODULES in REMOTE LOGIN :

Netopen.c

I

Netopen.c defmes two variables, socketdescriptorl and

socketdescriptor2, to handle two machines hostl and host2.

Algorithm:

66

(1.) open the machine by using command 'open'

syntax : prompt> open (machine-name)

if (socketdescriptor1 > 0 && socketdescriptor2 > 0) then

and

*I

print "two connection are opened: hostl & host2,close one

try again. "

else

mysd = Tcpopen(s,"ftp",O); /* s is host-machine name

to connect to server.

if (socketdescriptor1 < 0) then strcpy(host1,s)

print "present host is hostl"

socketdescriptor 1 = sd = mysd;

else if(socketdescriptor2 < 0) then strcpy(host2,s)

else

"print present host is host2"

socketdescriptor = sd = mysd;

"print close one machine & try again ".

(2.) to close one machine, compare the host-name to two opened machine-

name

if(sd = socketdescriptorl) then

*usemame 1 = '\0'·
'

*password1 = '\0';

send_ cmd(QUIT,(char*)NULL,sd);

close(sd);

67

Tcpopen.c:

*hostl ='\0'·
'

sd = socketdescriptor2;

socketdescriptor 1 = -1 ;

if(sd > 0) then "print present host is host2" ;

else

if(sd = socketdescriptor2)

/* similarly try as before */

Tcpopen.c module defmes a function Tcpopen(host,service,port) which

connects to the server machines by opening TCP connection using 'socket'

and creates 'stream-socket' to read and write n bytes on the stream socket

using the functions

readn(sd,ptr,nbytes) and writen(sd,ptr,nbytes).

struct sockaddr _in {

short sin_family; /* AF INET *I

u_short sin _port; /* 16-bit port number */

struct in_addr sin_addr; /* 32-bit netid/hostid IP address*/

char sin_zero[8]; /* padding */

This structure is defmed in INTERNET family header file <netinet/in.h>.

struct servent {

char

char

*s name·
- '

*s aliases;

char *s _port;

char *s _proto;

/* official service name */

/* alias list */

/* port number, network byte order*/

/* protocol to use */

68

};

The function getservbyname() looks up a service by getting port nummber.

#include <netdb .h>

struct servent *getservbyname(char *servname, char *protname);

struct hostent *gethostbyname(char *hostname);

struct hostent {

char *h_name; /*name of the host-machine */

char *h aliases /*alias list */

int *h_addtype; /*host address type */

int *h_length; /*length of address */

char *h addr list /* list of addresses from *I - -

/* name address

*I

};

#defme h_addr haddr_list[O] /*first address in list*/

does address to name mapping of the INTERNET address of client by server.

The function gethostbyname() function returns a pointer to a hostent structure

that is defmed in <netdb.h>. The function gethostbyaddr(char *addr,int len,int

type)

Algorithm of the function Tcpopen() :

This function returns socket descriptor if ok else -1 on error.

(1.) Initialize the server's Internet address structure store the actual 4-byte

Internet address and the 2-byte port# below.

struct sockaddr _in tcp _ srv _ addr;

struct servent tcp_srv_info;

69

struct hostent tcp_host_info~

bzero((char *) &tcp _ srv _ addr, sizeof(

(20) if (service !=null) then

if ((sp = getservbyname(service,"tcp" ==null) then

error(tcp-open: unknown service)

else

tcp_srv_info = *sp~ /*structure copy */

if (port > 0) then it is the port of server (caller's value)

tcp_svr_addrosin_port := htons(port)~

else

tcp _ svr _ addr 0 sin _port = sp->s _port~ (service-value)

if (port<= 0) then "error: must specify either service or port"

(3 0) convert the host-name as a dotted decimal number

if ((inaddr = inet_addr(host)) != INADDR_NONE) then

memcpy((void*) &tcp _ svr _ addr 0 sin_ addr, (void*)

&inaddr 0 sizeof(inaddr))~

tcp_host_infooh_name =null~

else

if((hp = gethostbyname(host)) ==null) then "error: host-name"

tcp_host_info = *hp~

memcpy((void*) &tcp _ svr _ addr 0 sin_ addr, (void*) hp-

>h _length)~

(4 0) get a reserved port

if (port < 0) then resvport = IPPOR T _RESERVED - 10

if ((sd = rresvport(&resvport)) < 0)

70

then "error : can't get a reserved port ".

if((port>= 0) && (sd = socket(PF _INET, SOCK_STREAM,O) < 0)

then " error :can't create TCP socket "

(5.) connect to server

if

sockaddr*)&tcp _ svr _ addr ,sizeof(tcp _ svr _ addr)<0)

then "error : can't connect to server ";

close (sd);

else return (sd);

cmd.c:

This program module defmes an array of command

static unsigned char *cmd _ str[];

and uses a function

((connect(sd, (struct

send_cmd(int cmd,char *data,int sfd) who sends a command and reads in

only one reply.

Algo of send_ cmd() :

*buf= '\0'·
'

strcat(buf,cmd str[cmd]);

if (data!= null) then strcat(buf,data);

strcat(buf, "\r\n");

if(written(sfd,buf,strlen(but)) < 0) then "error :send_cmd socket write";

if(ReplyToBeRead) then n = ReadReply(sfd,buf,MAXBUFF);

if(n < 0) then "error: send cmd socket read";

else printf(but);

Login.c:

71

Login.c program module logs to (i.e. connect to server machine) by using

socket descriptor(sd).

syntax of function: int login(unsigned char *dummy).

Algo:

(1.) if (sd > 0) then get usemame and match it in the user's login file-name

ReplyToBeRead =false;

send_ cmd(USER,usemame,sd);

ReplyToBeRead =true; /*check authority of user*/

ReadReply(sd,Reply,MAXLINE);

/*it gives the socket-descriptor no. of the machine to be

connected */

(2.) check the user's authority and then connect the user to the machine.

switch(rep_char)

case 2: if (sd = socketdescriptorl or socketdescriptor2)

authority

ttynoecho();

then match the usemame and get password to check

gets(password);

ttyrestore();

send_ cmd(P ASS,password,sd);

ttynoecho() {

ioctl(O, TCGETA, &tty old);

ttynew = ttyold;

ioctl(O, TCSETA, &ttynew);

retum(O)}

72

ttyrestore() { ioctl(O,TCSETA, &ttyold); }

(3.) if password is correct then connect the user to that machine.

PROGRAM MODULE in BACKGROUND FILE TRANSFER :

Copy.c:

This program module transfers a file from one machine to the another

machine in

Bacgronund mode.

struct fsm_method {void (*f)(void) }

struct fsm_method method_tab[] = {

struct fsmentry {

int next_ state;

fsm qr,

fsm ql,

fsm q2,

fsm qwl,

fsm q3,

fsm qw2,

fsm q4,

s};

in method_ index;

};

struct fsmentry fsmtab[6] [5] = {

{

{ QERR, FERR },

73

{ QONE, FONE } ,

{ QERR, FERR },

{ QERR, FERR },

{ QERR, FERR }

},

{

{ QERR, FERR },

{ QTWO, FTWO },

{ QERR, FERR },

{ QERR, FERR },

{ QERR, FERR }

},

{

{ QWAITl, FWAITl },

{ QERR, FERR },

{ QERR, FERR },

{ QERR, FERR },

{ QERR, FERR }

},

{

{ QERR, FERR },

{ QTHREE, FTHREE } ,

{ QERR, FERR },

{ QERR, FERR },

{ QERR, FERR }

74

},

{

{ QWAIT2, FWAIT2 },

{ QERR, FERR },

{ QERR, FERR },

{ QERR, FERR },

{ QERR, FERR }

},

{

{ QERR, FERR } ,

{ QOK, FOK },

{ QERR, FERR },

{ QERR, FERR },

{ QERR, FERR }

}

};

Different FSM functions used:

fsm_qO(void) --> allocate socket to the machine-2 (dest-machine)

fsm _ q 1 (void) --> get port number and connect to machine-1 source~ machine

fsm _ q2(void) --> rtrieve the file into buffer from machine-1 and store it

on machine-2 from buffer, get aknowledgement

from mach-1

fsm _ qw 1 (void) --> wait till file is retrieved from machine-1

fsm_q3(void) -->transfer the file frim buffer to machine-2

fsm_qw2(void) -->wait till file on machine-2 is to transfered

75

fsm _ q4(void) --> to give acknowledgement of transfer complete

fsm _ qr(void) --> to give acknowledgement of transfer error

int drive_fsm(void) -->which changes the state from present state to

fmal state to transfer file .

getport(char *cret, char *sret) --> get port for the machine connection

int drive_fsm(void)

{

struct fsmentry p;

present state= qO~

do {

p = fsmtab[present_state][rep_char- 'l'L

present_ state= p.next_state;

(*method_tab[p.method_index].f)();

} While(present_state != QERR && present_ state != QOK)~

return ((present_state = QERR)? -1 : 0)~ }

}

Algorithm of 'copy' function :

syntax of the function 'copy': Copy(char *s);

/* Copy hostl :source file host2:destination file */

(1.) First the syntax of the filenme along with hostname is checked.

(2.) corresponding to the hosts, the socket-descriptor is getten.

(3.) new connection will have to be opened.

(4.) File transfer process is done.

t_start()~ /*time at the beginning of transfer */

Echo= false~

76

fsm_qO();

drive_fsm();

Echo= true;

t_stop;

print 11 the time taken to transfer by function t_getrtime()11

TRANSFER FILE IN CHUNKs :

getL.c:

Program module transfers the file from one machine to another

machine by breaking the file in 5 parts. The parted file-chunks are transferred

concurrently by different 5 ports from source - machine to destination -

machine. There these files are stored in a queue and fmally, cocatenates all the

files into original file transferred.

Algorothm of getL() :

(1.) check connectivity whether the source - machine and destination­

machine areopened or not.

if (sd <0) then 11 not connected, use open 11
•

(2.) set file-name by entering the name of file.

i.e. gets(file);

(3.) get file-size.

(4.) set the usemame,password and hostname of the source and destination

machines.

(5.) start time counter module

start= times(&tms_start);

(6.) Now fork() and let the child process to handle the large file transfer.

77

P =fork();

(7.) close all the socket-connection (i.e. soket-descriptor) of parent process.

(8.) open the 'logfile' for the status write during file transfer.

(9.) split the remote file

mysplit(usr, passwd,file,file-size,host);

(1 0.) transfer the splitted file in parallel.

getFilelnParallel(usr,passwd,host);

(11.) close the logfile and host-machine by function

RemoveRemote(usr,passwd,host).

struct servent *pse;

pse = getservbyname("exec" , "tcp");

sockd = rexec(&host, pse->s_port,usr,passwd,"\\rm ftp.l.*,(int*)O);

close(sockd);

(12.) give the ti

me taken to transfer the file.

mysplit.c:

The program module 'mysplit.c' defmes a function

mysplit(char *user,char *passwd, cahr *file,int file-size,char *host)

split the large file in 5 parts by calculating the size of each files.

Algo:

(1.) FILE *fp;

struct servent *pse;

open the file torecord the splitting session

fp = fopen("/tmp/myftp.split.log","w");

78

(2.) give the remote execution of the split command with the appropriate

arguments.It is assumed that that the remote host has the bsplit program

present.

(3.) make cmd string and split infile into num Of chunks i.e. 5 parts by

bsplit(),

sockfd = rexec(&host,pse->s _port, usr,passwd,cmd,(int*)null);

(a) defme the infile and outfile as an array,

char ifile[MAX];

char ofile[MAX];

char outfile[MAX];

(b) calculate the size of each and the size of the last chunk-file,

size_of_each =size/count;

size_of_last = size_of_each +size o/o count;

(c) open these files to output the corresponding files with chunk-filename.

for (i = O;i < count;i++){

}

ofp = fopen(outfile, "wb");

this_size = (i = count-1)? size_of_last: size_of_each;

for(i=this_size; i>= MAXbuff; i -= MAXBUFF){

fread(buf,MAxBUFF ,sizeof(char,ifp);

fwrite(buf,MAXBUFF,sizeof(char),ofp);}

if(i > 0) {

fread(buf,i,sizeof(char),ifp);

fwrite(buf,i,sizeof(char),ofp); }

fclose(ofp);

79

Parget.c:

This program module defmes a function

getFileinParallel(char *usr, char *passwd, char *host)

which uses the functions gf_drivefsm() (i.e. FSM implementation m

GfFsm.c)

and getFileChunk() . This module get a file in parallel by opening certain

number of connections to the remote host.

Algo:

(1.) Establish a message-queue here for communication with all the childs,

msgqid = msgget(ID _OF_ MSGQ,PERMS I IPC _ CREAT);

(2.) Now fork the parent process into children process.

for(i=O;i<NUM _OF_ CffiJNKS;i++)

p =fork();

error conition : if a few processes have been forked and then the fork)()

failed then what happens ? How to handle it ? It must be specified in the

communication protocol. This protocol as yet does not handles it.

if (p = 0) then "report fork error";

else if (p = 0) then get files in chunks.

i.e. getFileChunk(usr,psswd,i,msgqid,host);

(3.) Read the message queue to check the status of the file-transfer.

for(i=O;i<NUM_of_CffiJNKS;i++)

if

(msgrcv(msgqid,&msg,MAXMESGSIZE,(long)(T_REPL Y),O) <0) then

"error reading queue.

else

80

msgctl(msgqid, IPC_RMID);

and write the reporting transfer status to "logfileP".

(4.) close the mssage-queue.

msgctl(msgqid, IPC_RMID);

getFileChunk.c:

This program-module defmes a function

getFileChunk(char *usr,char *passwd,int number,int msgqid,char

*host);

to get the splitted files in chunks.

Algo:

(1.) open a TCP connection, sd = Tcpopen(host,"ftp",O);

(2.) Read the socket for an FTP-reply, n = ReadReply(sd,buf,MAXBUFF);

(3.) if (rep_char ='2') then call funtion 'gf_drivefsmO' to drives FSM to

retrieve a file,

gf _ drivefsm(USER,passwd,filename,sd,msgqid,number);

else "error during file transfer";

msg.type = T_REPLY;

msgsnd(msgqid, &msg, strlen(msg. err_ str), 0);

gtFsm.c:

In this program module, various functions are defmed to send a passwd

to the remote host, send a command to set the transfer mode,error handling,

signals an end of receive and retrieve of a file from remote host

different defmed terms :

#define GF ERROR -1

#defme GF START 0

81

#defme GF SENDP 1

#defme GF SETTT 2

#defme GF GETFC 3

#defme GF QUIT 4

#defme GF OVER 5

deifferent defmed functions :

(1.) gf_sendp() sends a password to the remote host,

gf _sendp(char *usr,char *pass, char *file,int sockd,int msgqid,int

chunk_ num); send_ cmd(P ASS,pass,sockd);

(2.) gf_settt(char *usr,char *pass,char *file,int sockd,int msgqid,int

chunk_num) sends a command to set the transfer mode.

i.e. send_cmd(TYPE,((type==ASCII)? "A" : "I"),sockd);

(3.) gf_error(char *usr,char *pass,char *file,int sockd,int msgqid,int

chunk_ num) handles error during file transfer.

(4.) gf_over(char *usr, char *pass, char *file,int sockd,int msgqid,int

chunknum) signals an end of receive.

(5.) gf_getfc(char *usr,char *pass, char *file, int sockd,int msgqid, int

chunk_num) rtrieves a file from the remote host.

(6.) gf_quit(char *usr,char *pass,char *file,int sockd,int msgqid,int

chunk_ num) quits from the file transfer process,

.e. send_cmd(QUIT, (char*)NULL, sockd);

(7.) gf_drivefsm(char *usr,char *pass,char*file,int sockd,int msgqid,int

chunk_num) drives the FSM for retrieving a file.

struct gf _fsm p;

Bool oldEcho =Echo;

82

Echo = false;

send_ cmd(USER, usr ,sockd)

present_ state= GF _START;

while(present_state != GF _ 0 VER && present_ state != GF _ERROR)

{

p = gf _fsmtab[present_ state] [rep_ char-' 1 '];

present_state = p.next_state;

(*p .f) (usr ,pass,file,sockd,msgqid, chunk_ num);

} /* end of while */

Echo = oldEcho;

/*end of drive fsm function*/

get.c:

This program module defmes getFile(char *s) to get a file from machine.

put.c:

This program module defmes a function StoreFile(char *s) to store a file on a

machine.

new.c:

This program module defmes a function host(char *s) to switch from one

machine to another machine if both machines are opened.

INCLUDE = cmd.h netdef.h parget.h Global.h

LID=

myftp : ls-dir.o Local.o Main.o New.o Login.o Readin.o Tcpopen.o Cmd.o

Tty.o

time.o Netopen.o Copy.o Dir.o Interface.o Error.o getFileChunk.o getL.o

parget.o

83

gFfsm.o mysplit.o list.o put.o get.o getpassive.o list.o

cc -o myftp ls-dir.o time.o Error.o New.o Login.o Main.o Readin.o

Tcpopen.o

Cmd.o Tty.o Local.o Netopen.o Dir.o Interface.o Copy.o getFileChunk.o

gFfsm.o

mysplit.o parget.o getL.o get.o put.o getpassive.o list.o $(LID)

ls-dir.o: ls-dir.c $(INCLUDE)

cc -g -c ls-dir.c

getFileChunk.o: getFileChunk.c $(INCLUDE)

cc -g -c getFileChunk.c

gFfsm.o : gFfsm.c $(INCLUDE)

cc -g -c gFfsm.c

mysplit.o : mysplit.c $(INCLUDE)

cc -g -c mysplit.c

parget.o: parget.c $(INCLUDE)

cc -g -c parget. c

getL.o : getL.c $(INCLUDES)

cc -g -c getL.c

time.o : time.c

cc -g -c time.c

Copy.o : Copy.c $(INCLUDE)

cc -g -c Copy.c

Error.o : Error.c $(INCLUDE)

cc -g -c Error.c

Cmd.o : Cmd.c $(INCLUDE)

84

cc -g -c Cmd.c

Tcpopen.o: Tcpopen.c $(INCLUDE)

cc -g -c Tcpopen.c

Readin.o : Readin.c $(INCLUDE)

cc -g -c Readin.c

Main.o : Main.c $(INCLUDE)

cc -g -c Main. c

Tty.o : Tty.c $(INCLUDE)

cc -g -c Tty.c

Dir.o: Dir.c $(INCLUDE)

cc -g -c Dir.c

Netopen.o : Netopen.c $(INCLUDE)

cc -g -c Netopen.c

Interface.o : Interface.c $(INCLUDE)

cc -g -c Interface.c

Login.o : Login.c $(INCLUDE)

cc -g -c Login. c

dtp.o : dtp.c $(INCLUDE)

cc -g -c dtp.c

file.o : file.c $(INCLUDE)

cc -g -c file.c

Local.o: LocaLe $(INCLUDE)

cc -g -c Local. c

New.o : New.c $(INCLUDE)

cc -g -c New.c

85

get. o : get. c

cc -g -c get.c

put.o : put.c

cc -g -c put.c

list. o : list. c

cc -g -c list. c

getpassive.o : getpassive.c

cc -g -c getpassive.c

86

CHAPTER .7

USER INTERFACE

It has been attempted to provide a "USER FRIENDLY" command

interface to FTP & BFTP. The commands in both are similar. This interface

provides extensive prompting, defaulting, and help facilities for every

command. For the list of all FTP commands, the user may enter "help

<return>" at the 'myftp' prompt. To obtain information on a particular

command, "help <command-name> <return>" should be entered. The 'quit'

command will exit for FTP or BFTP. The user has to give at the prompt all

the set of parameters with the command-name to run the command like, open

<machine-name>, copy <hostl :filename> <host2:filename> etc. The

procedure for a BFTP user is to set up a set of parameters for the desired

transfer and then submit the request to the FTC daemon. To give the user the

maximum flexibility, BFTP supports two modes of submission:

To transfer a file by breaking the file in chunks, the user should run

'getL' command with its specified syntax : getL <filename> at the 'myftp'

prompt. Also, a user can use 'get' and 'put' command to transfer a file with its

specified file-name within different users (i.e. different login-name) on the

same machine. If a user wants to see other person's file-directory by login into

that person's login-name then user can use 'user' command at the 'myftp'

prompt.It will ask for user-name and password of that user. The user can

make new directory in that person's privilege, can delete the created

directory, can change to any exiting directoryy using md,rd, and cd

commands.At the same time, the user can also work into own- Background

87

operation: To request a reliable background file transfer, the user will answer

"no" to the 'myftp' prompt and "forground" when issueing a file transfer

request. For the simple third party file-transfer, user can use 'copy' command

with its specified syntax : copy <hostl :filename> <host2:filename> at the

'myftp' prompt.

privilege.

7.1. TERMINAL SESSION:

From the beginning, a short description of working style on 'myftp'.

Local> c jnu1

Local-010- session 1 to jnu1 established.

DEC OSF/1 Version V2.0 (jnui.jnu.emet.in) ttyOv.

login:s_nandan

password:

Last login: wed jan 1 05:25:18 in ttyOv.

DEC OSF/1 V2.0(Rev. 240)~ Thu oct

Hello> cd project

Hello> Is

Copy.c Main.c

Hello> myftp

myftp> help

get.o

ascii bi cd close copy

Tty.c

88

myftp

del dir get getL help

host led ldel lls lmd

lpwd ls md open put

pwd quit rd rhelp status

user

myftp> rhelp

not connected.

myftp> open jnul

connected to jnul/ftp in FTP server (OSF/1 version 5.60) ready.

present host jnul.

usemame : s _nandan (typed by own)

331 password required for s _nandan.

password : (type user's password of jnul).

230 user s _nandan logged in.

myftp> ls

200 PORT command successful!.

150 opening ASCII mode data connection for /binlls (202.41.10.1, 1038).

total 727

-rw-r--r-- 1 s nandan Mtech95 4618 Dec 24 16:07 Interface.c

-rw-r--r-- 1 s nandan Mtech95 172710 Jan 1 03:47 RFC793.TXT

226 transfer complete.

time taken= 01.5200000 seconds.

myftp> open jnu2

89

connected to jnu2/ftp.

present host jnu2.

password:

230 user s_nandan logged in.

myftp> ls

-rw-r--r-- 1 s nandan 51 326992 Dec 24 15:17 RFC1147.TXT

-rw-r--r-- 1 s nandan 51 9425 Jan 1 03:52 r3

226 transfer complete.

Time taken= 0.900000 seconds

myftp> pwd

257 "/datal/users/s_nandan" is current directory.

myftp> host

Host changed to jnu2.

myftp> rhelp

214-The following commands are recognized(* =>'s unimplemented).

USER PORT STOR MSAM* RNTO NLST MKD CDUP

214 End of help

myftp> md report

550 report: File exits.

myftp> md remote

90

257 MKD command successful!.

myftp> cd remote

250 CWD command successful!.

myftp> rd remote

550 remote: No such file or directory.

myftp> cd ..

250 CWD command successful!.

myftp> rd remote

250 RMD command successful!.

myftp>host

Host changed to jnu1.

myftp> user

Usemame: s rverma

331 password required for s _ rverma.

password:

230 User s_rverma logged in.

myftp> Is

200 PORT command successfull.

150 Opening ASCII mode data connection for /bin/ls (202.41.10.1,1073).

total40

-rw-r--r-- 1 s rverma mtech95 18564 Oct 16 01:50 viewedit

226 Transfer complete.

Time taken = 0.160000 seconds

myftp> lls

91

total1561

-rw-r--r-- 1 s nandan mtech95 28616 Dec 2 12:40 Interface.o

myftp>get test

200 PORT command successful!.

550 test: No such file or directory.

myftp> get viewedit

200 PORT command successful!.

150 Opening ASCII mode data connection for viewedit (202 .41.1 0.1, 107 6)

(18564 b.226 Transfer complete.

Time taken= 0.960000 seconds.

myftp> put Interface.o

200 PORT command successful!.

150 Opening ASCII mode data connection for Interface.o

(202.41.10.1,1077).

226 Transfer complete.

Time taken= 2.120000 seconds.

myftp> copy jnu1 :RFC793.TXT jnu2:RFC793.TXT

Transfer complete

Time taken = 0.440000 seconds

myftp> copy jnu2:r3 jnu1 :r3

Transfer complete.

Time taken= 0.140000 seconds

myftp>getL

Enter filename : RFC793. TXT

92

Please Enter file size :172710

Large file Transfer initiated.

IngetFileChunk1

Time taken= 0.520000 seconds.

Out of getFileChunk1

IngetFileChunk2

Time taken= 0.260000 seconds.

Out of GEtFileChunk2

IngetFileChunk3

Time taken= 0.440000 seconds.

Out of getFileChunk3

IngetFileChunk4

Time taken= 0.520000 seconds.

Out of getFileChunk4

IngetFileChunk5

Time taken= 0.200000 seconds.

Out of getFileChunk5

Toad time taken= 0.870000 seconds.

Transfer over.

myftp> del RFC793. TXT

Delete RFC793. TXT ? y

250 DELE command successful!.

myftp> pwd

257 "/usr/users/s_nandan" is current directory.

myftp> status

93

Host1 = jnu1

Host2 = jnu2

Transfer type = Ascii

myftp> bi

200 Type set to I.

myftp> ascii

200 Type set to A.

myftp> dir

200 PORT command successful!.

.cshrc

.login

report

bsplit.c

150 Opening ASCII mode data connection for file list (202.41.1 0.1, 1 063).

226 Transfer complete

Time taken = 0. 020000 seconds

myftp> close jnu2

closing jnu2.

221 Goodbye.

Connection to host jnu2 closed.

current host is jnu1.

myftp> open jnu2

94

myftp> quit

Sdl = 3

Sending Quit

Closing jnu2

Sd2=4

Sending Quit

Closing jnul

Goodbye

Hello>

CHAPTER .8

CONCLUSION AND SCOPE FOR FURTHER EXTENSION

8.1. CONCLUSION :

All the three main objective of this project remote login

enhancement, background file transfer and transferring the files in chunk have

been implemented and tested. The following conclusions have been drawn.

1. By opening two host machines along with working plateform machine one

can switch from one unix machine to another unix machine easily by 'Host'

command and he can see directory (ls command); delete any wrongly

transferred files or available files on that machine. Also he can make directory

or remove created directory etc.

2.a. In the background file transfer mode the third part file transfer has been

done correctly without loss of any bytes of data of both 'ascii' and 'binary'

type within the seperate sub-directory.

b. In the background file with deffered delivery giVe user the sense of

navigating the server's file system reliable file-transfer is still not insured due

to remote connectivity problem.

3. The transferring the files in chunks reduce the overall transfer time for the

large size files but reliability is not ensured for small size-file.

96

8.2. SCOPE FOR FUTURE EXTENSION :

1) The present program -module is blocking in nature, this can be removed.

2) It handles only two hosts but the capability can be increased to any number

of hosts. This will be quite useful.

3) Any editor can also be added to the program module so that user can see

the file's content on the host machine of required irrespective of only listing of

directory to see no. of byte transferred with the original number of byte to

confirm correct transfer of files.

97

BIBLIOGRAPHY

1. Bro~ Chris; " Unix Distributed Programming ", First editio~
1994; Prentice Hall Inc.

2. Stevens,W.Richards; "Unix Network Programming", Fourth editio~
Pentice Hall Inc.

3. Kocha~ Steven G. & Hood, Patrick H.;" Unix Networking",
Prentice Hall Inc.

4. Comer, Douglas E. & Stevens, David L.; "Internetworking with
TCP/IP ", VOL 1; Priciples, Protocols, and Architecture; Second
Editio~ Pill Pub.

5. Comer, Douglas E. & Stevens, David L.; "Internetworking with
TCP/IP ",VOL II; Desi~ Implementation & Internals; Second
Editio~ Pill Pub.

6. Comer, Douglas E. & Stevens, David L. "Internetworking with
TCPIIP", VOL III; Client-Server Programming and Applications;
Second Editio~Pill Pub.

7. Feit,Sidnie; "TCP/IP" Third Editio~ May'96, Pill Pub.

8. Patridge, Craig; " Innovations on Intenetworking "

9. Tanenbuam, A.S; "Computer Networks: Towards distributed
Proccesing systems", Pill Pub; cliffs, New Jersy.

10. Postel, J. and Reynolds, j.; "FILE TRANSFER PROTOCOL (FTP)"
RFC-959, USC/Information Science Institute; oct,1985.

11. Descha~ A. and Bradh~ R.; " BA VKGROUND FILE TRANSFER
(BFTP)" RFC-1068, lSI, August 1958.

12. ISI,Univ. Of Southern California; " TRANSPORT CONTROL
PROTOCOL (TCP) " RFC-793, Sept, 1981.

13. Brade~R. & Postel,j.; lSI, " REQUIREMENTS FOR INTERNET
GATEWAYS II RFC-1 009; July, 1987.

98

APPENDIX A

INTERNET SUPERVISOR :

With the interface ofTCP/IP support into UNIX, and the development of real-time

servers such as telnetd and ftpd, the number of services grew steadily, and after a while the

number of daemon-processes in the system begain to get rather large. Of course, these

daemons are not consuming processing time unless a client actually connects to them,

because they are blocked awaiting the connection. However, they are using memory (or at

the last, swap space) and they are consuming slots in the kemel•s scheduling tables.

To overcome this problem, 4.3 BSD UNIX introduced the idea of a •super­

server, called inetd(or internet daemon). The inetd server waits for connection requests on

behalf of many ordinary servers. When a connection request is received, inetd forks a new

process and duplicates the network connection onto the appropriate server program

Further to reduce the number of idle processes in the machines, inetd simplifies

matters by taking care of details of establishing a network connection, allowing the server

itself to be completely •network-alive•, and simply communicate with the client using its

standard input and standard output. Thus, making server easier to write and smaller

because it does not need to include any socket code. Using inetd, any UNIX filter program

(i.e. one which communicates solely via its standard I/0) can be turned into a network

server.

To identify which servers to listen on behalf of:and at which ports, inetd reads two

files: /etc/inetd.conf and /etc/services. The /etc/inetd.conf file specifies which services to

listen for, and the /etc/services file specifies at which port to listen. As example:

echo 7/tcp,

ftp _data 20/tcp,

ftp 21/tcp,

telnet 23/tcp,

login 513/tcp,

The different fields of inetd.conf are : service-name, socket-type, protocol, wait­

flag, login-name, server-program, server-program arguments.

The steps performed by inetd :

99

.. ,

r--1

SOCKET ()

BIND ()

LISTEN ()

(IF STREAM SOCKET)

---------------------- ---------------------J

SELECT ()

FOR READABiliTY

ACCEPT ()

(IF STREAM SOCKET)

FOR EACH SERVICE liSTED IN THE

/ETC/INTD.CONF FilE

PARENT CHilD

ClOSE CONNECTED
SOCKET

(IF STREAM SOCKET)

FORK ()

EXEC() SERVER

F g. A. 1 Steps performed by

ClOSE All FilES
OTHER THAN SOCKET

DUP SOCKET TO FDS 0.1
AND 2; ClOSE SOCKET

1
SETGID ()
SETUID()

(IF USER NOT ROOT)

netd.

APPENDIX-B

SYNTAX OF FTP COMMANDS :

The command begin with a command code fallowed by an argument field. The

argument feild consists of a variable length character string ending with the character

string ending ending with the character string. < CRTF > (Carriage Return, Line

Feed) for NVT-ASCIT representation.

The following are the FTP Commands :

USER <SP> <usemame> <CRLF>

PASS <SP> <password> <CRLF>

ACCT <SP> <account-information> <CRLF>

CWD <SP> <pathname> <CRLF>

CDUP<CRLF>

SMNT <SP> <pathname> <CRLF>

QUIT<CRLF>

REIN<CRLF>

PORT <SP> <host-port> <CRLF>

PASV<CRLF>

TYPE <SP> <type-code> <CRLF>

STRU <SP> <structure-code> <CRLF>

MODE <SP> <mode-code> <CRLF>

RETR <SP> <pathname> <CRLF>

STOR <SP> <pathname> <CRLF>

STOU <SP> <CRLF>

APPE <SP> <pathname> <CRLF>

ALLO <SP> <decimal-integer>

[<SP> R <SP> <decimal-integer>] <CRLF>

REST <SP> <marker> <CRLF>

RNFR <SP> <pathname> <CRLF>

RNTO <SP> <pathname> <CRLF>

100

ABOR<CRLF>

DELE <SP> <pathname> <CRLF>

RMD <SP> <pathname> <CRLF>

MKD <SP> <pathname> <CRLF>

PWD <CRLF>

LIST [<SP> <pathname>] <CRLF>

NLST [<SP> <pathname>] <CRLF>

SITE <SP> <string> <CRLF>

SYST<CRLF>

STAT [<SP> <pathname>] <CRLF>

HELP [<SP> <string>] <CRLF>

NOOP<CRLF>

101

APPENDIX C

DIFFERENT HEADER FILES:

<arpa/inet.h> ---> For internet ARP struct and functions to convert dotted decimal fonnat

and in addr structure.

<netdb.h> --->For struct hostent,protent & servent and functions gethostby name,

getprotobyname, getservbyname.

<sys/ioctl.h> ---> For the function ioctl(stream-fd, I_ S TR, strioctl)

and ioctl(upstream-fd, I_ LINK, lowstream-fd).

<sys/socket.h> ---> For socket address structure and related system calls as, struct

sock_ addr _in, and system calls socket, bind, connect, listen.

<sys/types.h> ---> Provides C definitions and data-types.

<sys/time.h> ---> Structure pointed to by the time-out argument, i.e. struct timeval;

functions like t_start,t_stop & t_getrtime().

<sys/paramh> ---> For HZ, the number of clock ticks per second.

<sys/ipc.h> --->For structure & other constants ofiPC system call.

<sys/msg.h> --->For the system call to create, open, control and IPC operations of the

message-queue, like msgget(),msgrcv,msgtype.

<sys/stat.h> --->For structure stat & file-access mode.

<netinet/in.h> ---> For internet-address family structure, and IPPROTO _ xxx value.

<ermo.h> ---> For system error number.

<stdarg.h> --->For stepping through a list of function-arguments ofunknown number

and type, as va _ start(va _li~ ap, last_ arg)

<setjmp.h> ---> Provides a way to avoid the nonnal function call and return

sequences, typically to permit an immediate return from a deeply nested function call.

SYSTEM CALUFUNCTION :

rexec() : rexec() is a remote execution function on local host and uses server rexecd on

remote host. The rexec() function does not need superuser privileges,since a reserved port

is not required. The rexec() passes a login name and a cleartext password across the

network to the server, for verification (i.e. authentication) on the remote host. The server

takes the cleartext password and encripts it. The server then compares its encrypted

102

version with the encrypted version inthe password file on the server's system To pass the

cleartext password to the fuction, the caller might have their password in the source file,

which is another potential security hole.

The syntax of rexec() :

int rexec(char **ahost, int remport, char *servuname,char *password, char *cmd, int

*sockfd);

This project assumes that rexec() remote function should be available on the both host

machines between which file is to be transfered.

htons() & htonl() function :

These functions handle the potntial byte order differences between different

computer architecture and different network protocls :

#include <sys/types>

#include <netinet/in.h>

u_long htonl(u_long hostlong); /*convert host to network,long integer */

u_short htons(u_long hostshort); /*convert host to network,short integer */

u_long ntohl(u_long netlong); /*convert network to host, long integer */

u_short ntohl(u_long netshort); /*convert network to host, short integer*/

103

	TH63940001
	TH63940002
	TH63940003
	TH63940004
	TH63940005
	TH63940006
	TH63940007
	TH63940008
	TH63940009
	TH63940010
	TH63940011
	TH63940012
	TH63940013
	TH63940014
	TH63940015
	TH63940016
	TH63940017
	TH63940018
	TH63940019
	TH63940020
	TH63940021
	TH63940022
	TH63940023
	TH63940024
	TH63940025
	TH63940026
	TH63940027
	TH63940028
	TH63940029
	TH63940030
	TH63940031
	TH63940032
	TH63940033
	TH63940034
	TH63940035
	TH63940036
	TH63940037
	TH63940038
	TH63940039
	TH63940040
	TH63940041
	TH63940042
	TH63940043
	TH63940044
	TH63940045
	TH63940046
	TH63940047
	TH63940048
	TH63940049
	TH63940050
	TH63940051
	TH63940052
	TH63940053
	TH63940054
	TH63940055
	TH63940056
	TH63940057
	TH63940058
	TH63940059
	TH63940060
	TH63940061
	TH63940062
	TH63940063
	TH63940064
	TH63940065
	TH63940066
	TH63940067
	TH63940068
	TH63940069
	TH63940070
	TH63940071
	TH63940072
	TH63940073
	TH63940074
	TH63940075
	TH63940076
	TH63940077
	TH63940078
	TH63940079
	TH63940080
	TH63940081
	TH63940082
	TH63940083
	TH63940084
	TH63940085
	TH63940086
	TH63940087
	TH63940088
	TH63940089
	TH63940090
	TH63940091
	TH63940092
	TH63940093
	TH63940094
	TH63940095
	TH63940096
	TH63940097
	TH63940098
	TH63940099
	TH63940100
	TH63940101
	TH63940102
	TH63940103
	TH63940104
	TH63940105
	TH63940106
	TH63940107
	TH63940108
	TH63940109
	TH63940110
	TH63940111
	TH63940112
	TH63940113
	TH63940114
	TH63940115
	TH63940116
	TH63940117
	TH63940118
	TH63940119
	TH63940120

