
OBJECT-ORIENTED PARADIGM IN

LANGUAGE SPECIFICATION

Dissertation Submitted to
JAWAHARLAL NEHRU UNIVERSITY

in partial fulfilment of requirements
· for the award of the degree of

Master of Technology
.
'tn

Computer Science

by
Bhaskarjya Parashar

SCHOOL OF COMPUTER & SYSl"ErJIS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI- 110 067

January 1996

CERTIFICATE

This is to certify that the dissertation entitled

OBJECT-ORIENTED PARADIGM IN LANGUAGE SPECIFICATION

which is being submitted by Bhaskarjya Parashar to the School of

Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi

for the award of Master of 'technology in Computer Science, is a record of

bonafide project work carried out by him under the supervision and guidance

of

· Prof. R.G. Gupta.

This work is original and has not been submitted in part or full to any

University or Institution for the award of any degree.

~---JJ
Prof. R.G. Guptc?.

(Dean, pC & SS) (Supervisor)

Dedicated to my parents . ..

, ACKNOWLEDGEMENT

I wish to convey my heartfelt gratitude and sincere acknowledgements to my

guide Prof R G. Gupta, School of Computer & Systems Sciences for his whole

hearted, tireless and relentless effort in helping me for the successful completion of the

project.

I would like to record my sincere thanks to, my Dean, Prof. G. V. Singh,

School of Computer & Systems Sciences for providing the necessary facilities in the

centre for the successful completion of the project.

I take this opportunity to thank all my faculty members and friends for their

critical comments during the fOUrse of the project.

~rashar

CONTENTS

Chapter 1 Introduction ... 1

1.1. The Object-Oriented Paradigm 3

1.2. Basic Object-Oriented Concepts 5

1.2.1. Objects .. ·. 6

1.2.2. Object Classes 6

1.2.3. Class Hierarchies and Inheritance 7

1.2.4. Polymorphism 9

1.2.5. Dynamic Binding 11

1.2.6. Information Hiding 12

1.2.7. Prototype•................................. 12

Chapter 2. Language Specification Structures 14

2.1. Context-Free Grammars 14

2.1.1. BNF ... ·.14

2.1.2. Extended BNF ·~ 15

2.1.3. Syntax Charts 16

2.2. Form Of a Syntax-Directed Definition 18

2.3. · Attribute Grammars 18

2.4. Why Object-Oriented Attribute Grammars? · .. 20

Chapter 3. Object-Oriented Language Specification ... 23

Chapter 4. A Discussion on Grammar Transformation 34

Chapter 5. Discussion .40

Bibliography• · 42

1. INTRODUCTION

In making a study of programming languages and their evolution we can also

classify them into two main subcategories:

i) Procedural languages or Computational languages.

ii) Object Oriented languages.

Computational l:anguages serve to describe the combination of functions,

either by simple combination or by recursive combination or by iterative combination.

Most of the programming languages e.g FORTRAN, LISP, APL etc., are of this type.

Object oriented languages on the other hand follows a different kind of programming

style. They can be seen as having evolved from the procedural type of programming

style and which are in a certain sense of higher level than computational languages.

In procedural languages we deSCribe algorithms;. in object oriented languages we

describe objects, to which algorithms determined by their form and yielding function

values determined by the parameters of an object are understood to apply.

Computational languages may be classified according to the complexity of

the data (objects) and basic functions which they provide. .

The simplest computional languages are the machine level assembly

languages. A language of this type provides only rudimentary data types (machine

words) and a limited fixed repertoire of functions (essentially the wired instructions of

a particular machine). Function combination is expressed only by a succession of

operations; iterations only by explicitly written transfers; and recursion not at all.

At the next level of sophistication among computational languages or

procedural languages we find such languages as FORTRAN. Languages of this kind

provide a few data types (integers, reals, dimensional arrays); provide certain basic

1

operations related to these data types (notably indexed access operations for dealing

with arrays); and allow the combination of functions in considerably more convenient

ways (functions nesting, infix operations) than are allowed by assembley languages.

Iteration forms represented by special DO and FOR statements may also be

provided. Languages of this kind may quite naturally be extended to include a

greater variety of data objects and of corresponding basic operations; such

extensions are made by PU1 and various other languages which provide methods

for data structuring more general than array dimensioning.

A still more sophisticated or specialized procedural language will refer

directly to compound objects and will provide operations dealing directly with such

objects. Examples are LISP (which uses binary lists), APL (which works with arrays

as objects) or more explicitly set theoretical languages which may be defined without

undue difficulty.

All languages mentioned thus far are computational in that they are

. concerned with functions and their algorithmic combination. Object-oriented

languages by contrast serve not for the combination but for the definition of

functions. In object-oriented languages, one deals not with procedures but with

mechanisms or models. With fully described model one is able to specify these

functions in an effective way. A model is described as listing its parts and describing

the connections of these parts.To define a part within an object-oriented language,

one specifies the manner in which the part reacts to all other parts to which it is

connected; these specifications, together with a description of the interconnection

pattern characterizing a given mechanism, will determine the action of the

'" mechanism. i.e., will determine certain mechanism related functions.

2

1.1 The Object-Oriented Paradigm

The object-oriented paradigm is a software design and development

technology incorporating several sophisticated and efficient mechanisms that provide

an organizational framework for the development of large and complex software

projects. In comparision to traditional software techniques, the object-oriented

technology improves development of software systems by facilitating better factoring

of functionality and related data. To some researchers the object-oriented paradigm

is more than a better approach to software development; it is a goal that software

designers and developers should aim for. In the words of Cox :

To get a grip on object-oriented means coming to the realization that it is an end, not a means --an

objective rather than the technologies for achieveing it. It means changing how we view software, shifting our

emphasis to the objects we build rather than the processess we use to build them. It means all available tools,

from COBOL to Smalltalk and beyond, to make software as tangiblem --and as ameneable to common sense

manipulation --as are the everyday objects in a department store. Object-oriented means abandoning the

process-centric view of the software universe where the programmer-machine interaction is paramount in

favour of a product-centered paradigm driven by the producer-consumer relationship.

The object-oriented programming approach is a data oriented approach to

software design and development, where the data is encapsulated in objects ~nd

messages are used to manipulate the data. An object is the encapsulated data that

can be accessed or manipulated by means of a set of interface functions or handles.

A message is the mechanism by which a particular operation is performed on the

data encapsulated within an object. Thus, an object is defined in terms of the data it

encapsulates and the operations on the data that are allowed by the set of interface

functions.

Encapsl)lation of data enables information hiding. The actual method of

storage of the encapsulated data is an implementation detail which is independent of

3

how the data is used. The operations which can be performed on the encapsulated

data are specified as part of the interface to the object. These operations are also

called the interface functions. The implementation of the interface functions is

internal to the object. The implementation details of the operations that manipulate

the stored data can be changed without affecting the interface. Thus, tile concept of

an object incorporates infolll)ation hiding and data abstraction.

The only way that an object can be manipulated is by the set of interface

functions. The operations which are defined are generic operations that are

applicable to other similar objects. All objects that have similar characteristics are

said to belong to the same class. The concept of a class is central to the object­

oriented paradigm. A class is an abstract definition of the characteristics of objects

that have similar appearances and that allow similar operations to be performed on

the encapsulated data. Thus, a class is an abstract definition of the data being

encapsulated along with the definition of the set of operations that can be performed

on t~e instances of that class. An object is an instance of a particular class and is

distinct from other instances of the same class.

The concept of inheritance is also central to the object-oriented paradigm.

'Inheritance allows the creation of a new class as a model. It is the mechanism that

promotes reusability of code. The fundamental idea employed is that of defining new

classes in terms of existing classes.

In general, object-oriented programming implies the availlability of data

abstraction, inheritance, and polymorphism features. The other important concepts in

object-oriented paradigm are multiple inheritance, parameterized types, and

persistence. These conceptswill later be covered in depth.

4

In other words, the motivation for using object-oriented paradigm in

programming can be summed up in the following points:

**Object-oriented approaches encourage the use of modem software

engineering technology.

**Object-oriented approaches promote and facilitate code reusability.

**Object-oriented approaches facilitate interoperability.

**Object-oriented approaches result in code which can be easily

modified, extended and maintained.

-object-oriented approaches produce solutions which closely

' resemble the original probler;n.

**There is a significant reduction in integration problems.

**The conceptual integrity of both the process and the product

improves.

1.2 Basic Object-Oriented Concepts

Object-oriented languages are far more closely related to imperative

languages than to functional or even logic programming languages. For example,

they (typically) use the same execution model: a version of the von neumann

computer in which a complex structured state is modified under explicit software

control. Object-oriented languages may be viewed as imperative languages that

introduce a number of new concepts such as variables, arrays, structures and

5

functions. In the following paragraphs only some of the basic 'new' concepts (in fact,

not all these concepts are brand new; some of them were previously used in modern

imperative languages or in languages used in the artificial-intelligence area) will be

discussed.

1.2.1 Objects

The fundamental concept of object-oriented languages is the object. Objects

are run-time units that can preserve some local data (the object's internal state) and

that can respond to certain requests addressed to them by carrying out an operation.
0

It comprises of an object state, expressed in terms of actual values of a set of

attributes, together with functions, called object methods, operating on this state.

' The attributes and methods together fonns the features of an object. Thus an object

encapsulates both data and the operations on this data. One of the most important

basic operations of object-oriented .languages is the activation of a method m for an

object o. Here, the object plays the major role; the method, being a component of the

object is subordinate to it. This object orientation has given its name to the class of

'languages. Objects are volatile just like variables are in procedural languages. Some

languages have incorporated mechanisms for nnaking objects objects persist beyond

the life of the.process in which they were created.

1.2.2 Object classes

We know that type information is an important prerequisite for generating

efficient and reasonably reliable programs. Object-oriented extend the known type

concept of imperative languages such as PASCAL or C (not all object-oriented

languages use static typing, as the example of Smalltalk-80 shows). Their types are

usually called object classes. An object class specifies attributes and methods

together with their types and prototypes (i.e., types of return values and parameters),

6

respectively. In order to belong to the class, objects must contain these features, but

they also contain others. Some object-oriented languages such as Eiffel permit

further specifications for the methods, such as pre- and post-conditions. This

provides a means of restricting the meaning of methods (semantics). Frequently the

class also defines the methods; however, under certain conditions, these definitions

can be overwritten. The object class forms the modularization unit of object-oriented

languages.

In a PASCAL-like language, a rough counterpart of an object is a dynamic

variable; then a class corresponds to a record type. A reference value to access an

object corresponds to a value of a pointer type, and an operation corresponds to a

subroutine whose parameters employ the pointer type.

1.2.3 Class hierarchies and Inheritance

Inheritance is defined as the incorporation of all features of a class A into a

new class, B. 8 may also define other features .and, under certain conditions,

overwrite methods inherited from A Some languages permit the renaming of the

inherited features to avoid name conflicts or simply to allow more meaningful names

in the new context.

If A inherits from B then the class A is derived from 8 and 8 is called a base

class for A. In other words clasS A is defined as the sub-class of 8: this relation is

deonoted with B -> A. If class A is a subclass of class B, B is called the superclass

of A. A class system is pair (C,->), where C is the set of classes. As usual, the

transitive closure of this relations is denoted by ->+ and the reflexive transitive

closure is denoted by ->*. A subclass specializes (or extends) its superclass by

introducing properties that are added to those of the superclass. The objects created

as instances of the subclass therefore inherit the properties of the superclass which

they have in addition to the properties defined by the subclass itself. Hence B -> A

implies that an object of class A responds to all the requests specified by class B,

7

and it contains all the attributes given by class B. In contrast, an object that is

created as an instance of class B does not recognize the requests and attributes

specified by class A. Due to the inheritance of properties, we may think that the

properties of an object are divided into layers so that the properties originating from a

particular class occupy one layer. If an object is created as an instance of class A, it

has a layer for each class C such that C ->* A. It is natural to assume a partial order

for the class layers of an object: C ->+ A implies that C-layer is above the A-layer.

Since a superclass may in turn be a subclass of another class, the

inheritance of properties becomes transitive: if C ->+ A, an instance of A has all the

properties specified by class C as well. We say that A is a descendant class of C,

and Cis an ancestor class of A. We require that the class system is cycle-free, i.e.,

A ->+ A holds for no A (a class cannot be its own descendant or ancestor).

If a class can have at most one superclass, we say that the class system has

single-inheritance. In that case the class system imposed by relation -> is purely

hierarchical, tree-like (or actually a forest). OtherWise the class system has multiple

inheritance, and the class structure becomes a directed acyclic graph. If a class

system has single inheritance, the class layers of an object represent a path in a

class tree, ending at the root.

Inheritance is one of the most important concepts of object-oriented

languages. It makes extensions and the formation of variants very easy. The

resulting inheritance hierarchies also permit a structuring class libraries and the

introduction of different levels of abstraction. It provides us with the possibility of

reusing parts of an existing implementation in a simple way, extending them and, if

need be, adapting them locally to particular requirements or circumstances by

overwriting individual methods.

Moreover we retain the facility to define abstract classes. This leads to a

flexibility in programming languages similar to that achieved in natural languages by

means of abstract concepts: we retain different levels of abstraction. Anything that

8

can be formulated at a high level of abstraction tends to have a wide area of

application and thus is to a large extent reusable.

Typed object-oriented languages take account of the inheritance hierarchy in

their type system. If a class B inherits from a class A then the type assigned to B is a

sub-type of the type assigned to A. Every object of a sub-type is automatically also

an element of the subtype; an inheriting class is a subclass of the class from which it

inherits. This has the following effect:

Subtype rule. When an object of a certain type is required at an input position

(function input parameter, right:hand side of assignments) or as a function return

value, objects of any subtype are allowed.

Method selectio'n rule. If class B inherits from· class A and overwrites method m

then for B objects b the definition of m given by B (or a sub-class) must be used

even if b is used as an A object.

Dynamic-binding rule. A method of an object o, which can potentially be

overwritten in a sub-class, has to be bound dynamically if the compiler cannot

determine the run-time type of o.

1.2.4 Polymorphism

Objects are created by reference values stored in the attributes of other

objects or in the local variables or parameters of routines; we call these locations

collectively slots. If a slot is associated with a statically known class, we say that the

language is statically typed; the associated class is called the static class of the slot

(and of the referenced object). In a statically typed language a slot is always known

to refer to an object of the static class. However, ifC ->+A, an object of class A can

also be viewed as an object of class C; hence a slot with static class C may also

9

refered to an A object. This is called (inclusion) polymorphism in object-oriented

languages. We note that the class layers of the object above the static class are

known statically (static class layers while the class layers below the static class are

known only at the run time (dynamic class layers).

· Example 1 . Class hierarchies and objects

Suppose that we have the following class hierarchy:

Vehicle

Car

Bicycle

Boat

Steering Device

Rudder

Wheel

Engine

Sport Wheel

StdWheel

SteamEngine

Diesel Engine

where subclass relation is denoted by nesting. Hence, there are three topmost

ancestor classes:Vehicle, SteeringDevice, and Engine; each of them has subclasses.

The entire class system is a forest. On the other hand; a car object has as its

components an Engirie object and a Wheel object. This could be expressed as:

10

Vehicle

Car

Engine Steering])evice

Wheel
DieselEngine Lt

SportWheel

Fig. 1. Examples of obJects. A ·car· object (with superclass "Vehicle") has
component objects of static classes "Eo.ss:ine" and "Wheel". The arcs
show the component objects. tae static type of the objects is indica-

ted by the target layer. The component objects have (in this case) dy­
namicclasses "Diesel.Engine~ arid "Sport Wheel", respectively. In add­

ition the wheel object obje~t has superclass "Steeringl)evice".

Car = Engine Wheel

The different layers of a car object and its component objects are shown in Fig. 1.

The properties of an object denoted by a slot can be referenced using the

conventional dot notation, as if the properties were fields of a record. However, in a

statically typed language only the properties specified by the static class and its

ancestor classes can be referenced through the slot.

1.2.5 Dynamic binding

Sometimes it is natural to specify a property for a class, even though the

'
actual meaning of the property depends on the sub-classes. For example, every

instance of clas "GeometricShape" recognizes the request "DrawYourself' displaying

the shape in question, but the actual drawing procedure depends on the sub-class

(say, "Circle") of the object. We say that "DrawYourself' is in that case a virtual

property of class "GeometricShape": the property is known to the class only in an

abstract sense. If a class contains virtual properties, it cannot be instantiated

because the meaning of the virtual properties could not be detennined for the

resulting object. Such a class is called an abstract class.

A virtual property is an example of dynamic binding: the name of the

property is bound to its actual meaning only at run-time. In the case of a virtual

property the descendant classes are forced to provide the actual specification of the

property. A more liberal form of dynamic binding is the redefinition of properties in

descendant classes: a descendant class may redefine some property already defined

in its ancestor class (e.g. Smalltalk, Eiffel). In that case any object of the descendant

class follows the redefined meaning of the property, instead of the original one in the

ancestor class. However, an object that is created as an instance of the ancestor

class follows the original meaning; this class is not regarded as an abstract ·class.

11

. -

Dynamic binding is one of the key features of object-oriented languages, allowing the

dynamic adaptation of properties to the current descendant classes.

1.2.6 Information hiding

Often object-oriented languages provide facilities for information hiding:

classes may specify that certain properties are not available for the clients (or

subclasses) of that class, resembling interface specifications of modules in

languages like Modula-2. Such classes support data abstraction in the same sense

as modules: a class may export only its abstract properties and hide its

implementation details. For example, a considerable part of the object-oriented

extensions in C++ pertains to limiting the usage of class properties in various ways.

A language may also automatically hide certain kinds of properties; for example, in

Smalltalk all attributes of objects (instance variables) are hidden to the clients, while

all operations (methods) are visible.

1.2.7 Prototypes

An alternative approach to the conventional object-oriented model is

prototype based inheritance. In this approach there are no classes: objects inherit

properties from their parent objects rather than from their superclasses. Objects are

not created as instances of classes, but they are "cloned" from other objects; This

model is conceptually simpler and more flexible, but class-based inheritance is

regarded as more reliable.

We • can ask ourselves ''Why object-oriented language specification?".

Although object-orientation is a popular design paradigm for languages and software,

it has seldom been used as a language specification/implementation paradigm, that

is as a design paradigm for programming languages or implementation softwares.

12

Nowadays, though a large number of high level programming languages help

in producing object-oriented software, the languages themselves are not conceived

around an object-oriented base. In other words, the compiler construction

methodology is not in tune with the notion of object-oriented paradigm. The current

compiler construction methodology follows the structured programming paradigm. If

the construction procedure is improved upon so that it follows the object-oriented

methodology, then the languages subsequently developed will inherently support

production of object-oriented software. To make this feasible, the language

specification structures (like the context-free grammars, attribute grammars etc.)

need to be changed or modified so that they reflect object-oriented characteristics.

My work in this paper is concentrated in extending these language specification

structures, mainly attribute grammars to incorporate object-oriented characteristics.

13

2. LANGUAGE SPECIFICATION STRUCTURES

The syntax of a language specifies how programs in a language are built up.

Syntactic structure, i.e. the structure imposed by syntax on a language, is the

primary tool for working with a language. It has been used to organise language

<

descriptions and translations. as well as rules for reasoning about programs in a

language.

The syntax of a programming language is almost always specified using

'
some variant of a notation called context-free grammars, or simply grammars. The

most important variants are BNF (Backus Naur Form), EBNF (Extended BNF) and

syntax charts'.

2.1 Context-Free Grammars

A context-free grammar (CFG) is a four-tuple (T, N, S, P), where T is the set

of terminal symbols, N is the set of non-terminal symbols, S in N is the start symbol,

and P is a finite set of productions of the form A->w, where A is in N and w is in (T U

N)*. We assume that Nand Tare disjoint.

2.1.1 BNF

The concept of a context-free grammar consisting of terminals. non-

terminals. productions and a starting non-terminal, is independent of the notation

used to write grammars. In BNF. non-terminals are enclosed between the symbols <

and > and the empty string is written as <empty>.

14

Grammars for arithmetic expressions are based on rules like the following:

An expression is a sequence of terms separated by + or-.

A term is a sequence of factors separated by * or div .

A factor is a parenthesized expression, a variable or a constant.

The following is a partial grammar for expression without the rules for

variables and constants:

<expression> ::= <expression> + <term> 1 <expression> - <term> 1

<term>

<term> ::= <term> * <factor> 1 <term> div <factor> 1 <factor>

<factor> ::= {<expression>) 1 <variable> 1 <constant>

2.1.2 Extended BNF

In EBNF (extended BNF), non-terminals begin with uppercase letters,

terminals consisting of symbols like + and - quoted, and terminals in boldface like div

• appear as it is. Furthermore:

A vertical bar, 1. represents a choice.

A parenthesis, (and), are used for grouping.

A braces, { and }, represents Zero or more repetitions.·

Brackets, [and], represent an optimal construct.

An EBNF version of the grammar given above is:

Expression ::=Term { ('+' 1 '-')Term}

Term ::=Factor { ('*' 1 div) Factor}

Factor::='(' Expression')' 1 variable 1 constant

15

Here Term { ('+' 1 ·-·) Term } represents a sequence of one or more terms

separated by either + or - signs.

The quote around + and - , which are known from the context to be

I .

terminals, will often be dropped. The quotes around the parentheses in '(' expression

')' will be retained, however, to say that the parentheses are terminals in the

language of expressions.

2.1.3 Syntax Charts

A syntax chart or syntax diagram, is another way of writing a grammar. It is

constructed as follows - there is a sub-chart for each non-terminal similar to the chart

given below for Factor.

Factor
Expression

Variable

Constant

Each production for the non-terminal results in a path through the chart.

Along the path for a production are the terminals and non-terminals on its right side;

the terminals are enclosed in rounded boxes and the non-terminals in rectangular

boxes. Braces denoting zero or more repetitions, lead to syntax charts containing

cycles.

16

Context-free grammars gives a specification of the syntax of a programming

language. It can also be used to help guide the translation of programs. Many

programming language constructs have an inherently recursive structure that can be

defined by context-free grammars. For example, we might have a conditional

statement defined by a rule such as

If S1 and S2 are statements and E is an expression, then

" if E then s1 else s2 " is a statement.

This form of conditional statement cannot be expressed using regular

expressions (they can specify the lexical structure of tokens). On the other hand,·

using the syntactic variable statement to denote the class of statements and

expression lhe class of expressions, we can readily express the above statement as

'
statement-> if expression then statement else sta~ement

Modem programming languages have evolved around the context-sensitive
'

grammars because there is a need of associating semanti~ rules with productions

(obtained from the context-free grammars). To capture the essence of context­

sensitivity we have a syntax-directed definition iin which we generalize the context-

free grammar so that each grammar symbol has an associated set of attributes

(properties). That syntax-directed definition is a notation for associating semantic

rules with productions. Syntax-directed definitions are high-level specifications for

translations. They hide many implementation details and free the user from having to

state explicitly the order in which translatio11 takes place ..

An attribute can represent anything we choose; a string, a number, a type, a

memory location or whatever. The value of an attribute at a parse tree node is

defined by a semantic rule associated with the production used at that node. The

value of a synthesized attribute at a node is computed from the values of attributes

17

at the children of that node in the parse tree; the value of an inherited attributeis

computed from the values of attributes at the siblings and parent of that node.

Semantic rules set up dependencies between attributes that will be

represented by a graph. From the dependency graph we derive an evaluation order

for the semantic rules. Evaluation of the semantic rules defines the values of the

attributes at the nodes in the parse tree for the input string. A semantic rule may also

have side effects, e.g., printing a value or updating a global variable.

2.2 Form of a Syntax-Directed Definition

In a syntax-directed definition, each grammar production A -> w has

associated with it a set of semantic rules of the form b := f (c1,c2, ... , cJJ where f is

a function, and either

1. b is a synthesized attribute of A and c1, c2, ... ,ck are attributes

belonging to the grammar symbols of the produCtion, or

2. b is an inherited attribute of one'of the grammar symbols on the

right side of the production, and c1, c2, ... , ck are grammar symbols of the

production.

In either case we say that attribute b depends on attribute c 1 c2, ... , ck- An
'

attribute grammar is a syntax-directed definition in which the functions in semantic

rules cannot have side effects.

2.3 Attribute Grammars

As mentioned earlier, a number of necessary properties of programs cannot

be described by a context-free grammar. These properties are described by

prediCates on conteXt information, so called context conditions. These include the

declaration~related properties and the type consistency. Both depend on the scoping

and visibility rules of the programming language.

18

An attribute grammar specifies context-dependent computations on tree

structures, which are dsecribed by the underlying context-free grammar.

Specifications of computations are associated to its productions. Dependencies

between computations are expressed by definition and use of attributes. The context-

ferr grammar which is the skeleton of the attribute grammar should be designed such

that attribution can be specified as clear as possible and without unnecessary

redundancy. Especially context-free grammar terminals without relevant information

and certain chain productions can be ommited from the context-free grammar.

Hence in case of compiler specification the context-free grammar should be an
.

abstract syntax derived from the complete system[Kasten91].

Attribute grammars are used to described the static semantic analysis in

most compiler generating systems.they associate attributes, as carriers of static

semantic information, with the symbols of a context-free grammar, the so called

underlying grammar. In addition they show what the functional dependencies

between the values of occurrences of attributes in the productions of the grammar

~re. Such a functional dependency can be viewed as a computational prescription,

which specifies how the value of the occurrence of an attribute is calculated from the

values of other occurrences of attributes of the same production.

Appropriate conditions for the functional dependencies ensure that all

instances of attributes in every syntax tree for a syntactically and semantically

correct program can be evaluated, t~at is, can be assigned· a value from their

domain of attribute values.

Definition (attribute grammar)

Suppose G = (V, T, P, S) is a context-free grammar. We write the pth .
production in P as p : Xo -> X1 ... XnP, ~ € (V U T), 0-' i ~ nP

An attribute grammar AG over G consists of

1. an association of two disjoint sets, lnh(X), the set of the inherited

attributes and Syn(X), the set of synthesized attributes, with each .symbol of (V u T

19

). We let Attr(X) = lnh(X) U Syn(X) denote the set of all attributes of X; if a € Atti\Xj).

then a has an occurrence in production p at the occurrence of Xi, which we write as

ai. Let V(p) be the set of all attribute occurrences in production p.

lnh = U lnh(X); Syn = U · Syn(X); Attr = /nh v Syn

XE.V /(E:VvT

2. the specification of a domain 0 8 for each attribute a Attr, that is,

the set of each potential values;

3. a semantic rule

ai = fp, a}b1j1, ... , bkjk) (0 {. j1 ~np) (1 f. I~ k)

for each attribute a lnh(Xi) for 1 ~ i ~ np and each a syn(Xo) in

. every p, where b1i1 attr(Xjl) (0 ~ j1 ~ np> (1 .f. I ~ k). Thus, fp,

a, i is a function from Db 1 *

We always view an attribute as an attribute of one non-terminal or terminal;

that is, the assignments lnh and Syn cari be viewed as injective functions from the

set V u T into the set of attributes.

2.4 Why Object-Oriented Attribute Grammars?

Although ·object-orientation has its indisputable advantages in software

development, it is not at all clear that this basically procedural paradigm, can or

should be integrated with a declarative specification formalism like attribute

grammars. There are several reasons that can motivate this integration.

First, due to their declarativeness attribute grammars are a static

specification method. Each attribute has a single value during its lifetime, and the

tree structure controlling the evaluation of the attributes remain the same. This is

sufficient for specifying various kinds of mappings - like the mapping from a source

program to a target program - but in many cases we need a more dynamic view of a

20

program in a language environment. This is the case e.g. in language - oriented

editors, interpreters, and debuggers. In a sense incremental evaluation algorithms

were the first step towards a more dynamic view of attribute grammars, but when

trying· to preserve the original form of attribute grammars they also preserve its basic

weaknesses as a specification tool. Integrating attribute grammars with object-

oriented mechanisms is a possible way to extend this formalism with explicit dynamic

capabilities- but of course not the only one.

In a sense object-orientation is the greatest common factor of, all

applications; this is the basic reason for its wide popularity. A general benefit of

object-orientation is that it supports "application-oriented" software, that .is, software

following closely the concepts and structures of the application domain. In a

language specification formalism like attribute grammars this means that the

specifications are given in terms of the source language. When combined with

appropriate special mechanisms tuned for language implementation, such a

specification can to large extent ignore conventional compilation techniques. This

makes the speci~cations more high-level, and therefore easier to construct,

understand, and m~intain. On the other hand, since object-orientation is the greatest

common factor of different 'aspects of language implementation, too, the

implementation descriptions become unified; very different kinds of language

'
implementation problems are solved using the same basic mechanisms.

One could argue that attribute grammars as such also support source

languag~ oriented, "high-level" specifications. This is true in principle, but

unfortunately in practice the role of attribute grammars in language implementation

tends to be a declarative wrapping for a fairly conventional compiler. The reason for

this is that attribute grammars are only the skeleton without flesh: the mere fact that

you can specify the relations between some data associated with the nodes of a

syntax tree is too primitive a notion to be nothing but a basic framework in which

more advanced features can be placed.

21

A particular benefit of object-orientation is its support for reusing existing

code: new classes can be specified as extensions on existing ones, without the need

to repeat the properties of the ancestor classes. This contributes to the (conceptual)

shortness of the code, and to the productivity of the programmer. In object-oriented

attribute grammars we have the same effect, at least in principle: common parts of

th~ specifications can be "factored out".

22

3. OBJECT-ORIENTED LANGUAGE SPECIFICATION

In a context-free grammar (T, N, S, P}, where T is the set of terminal

symbols, N is the set of non-terminal symbols, Sis in N and is the start symbol, and

P productions of the form A -> w, where A N and w q T u N)*. The cardinality of set

c is denoted with card(C}. as usual, we use symbol => for derivation: vAu => vwu if (

A-> w)EP.

An object-oriented view usually implies that the underlying concept, context­

free grammars, is also seen in an object-oriented sensa.

'According to the usual interpretation of context-free grammars, a source

text is a collection of (nested) instances of non-terminals. Hence, we see that there

are obvious candidates for the counterparts for the object-oriented concepts "class"

and "object" in context-free grammars. They are as follows:

1. A non-terminal corresponds to a class and a particular language

structure generated by a non-terminal (or a node of the syntax tree)

in the source text corresponds to an object.

2. A production can be visualised as the structural specification of

an object: an occurrence of a non-terminal on the right-handside of a

production represents a slot whose static class is the given non­

terminal class. ·For each right-hand side non-terminal occurrence

there is a component object for an object of the left-hand class.

To relate the subclass/superclass relations of the classes with features of the

context-free grammars we have something very natural, although it appears to be

surprisingly simple: each chain production(i.e. a production whose right-hand side

consists of a single non-terminal symbol) represents an instance of such a relation.

23

More precisely, production A -> B implies that A is a superclass of B. The intuitive or

logical reasoning behind such an idea is that in typical grammars a bunch of unit

productions with the same left-hand side describes the (named) alternative forms of

a particular language structure, in other words, the sub-classes of that language

structure.

'For example in a PASCAL-like language we might have:

Statement -> assignmentStat 1 ProcedureCall 1 WhileStat 1 ...

This kind of production pattern is rather usual because language designers

tends to give names to the alternative forms of language structures. To be sensible

from the object-oriented point of view, we must require that the alternative forms of a

language structure are always named: we cannot have unnamed classes.This

requirement implies the non-terminals will be placed in two separate categories:

1. those non-terminals having only .a single production and

2. those having a set of chain productions.

We call these categories basic non-terminals and superc/ass non-terminals,

respectively.

From the object-oriented point of view, basic non-terminals specify the

syntactic compositions of basic language structures and superclass non-terminals

specify the ancestor class hierarchies of these language language structures. A basic

non-terminal provides a single syntactic pattern for each basic structure. Since these

patterns possibly make use of the names of the ancestor classes, such specifications

alone would not constitute a complete grammar. Superclass non-terminals, on the

other hand, are not syntactic by nature: they simply define the subclass\superclass

relations for a set of class names. However, this specification acquires syntactic

24

significance due to the principle of polymorphism: if A is an ancestor class of B, then

any pattern requiring an A structure in a particular context must be satisfied with~a B

structure, too. Consequently, together with this class hierarchy the syntactic

specifications of the basic structures specify a complete language. The separation of

the class hierarchy and the syntactic definitions of the basic structures is clearly seen

in the object-oriented attribute grammar formalisms discussed in the sequel.

We have mentioned before that we cannot have circular class hierarchies,

an object-oriented context-free grammar must be cycle-free (that is, A ->+ never

holds for a non-terminal A). From a purely syntactic point of view it would be sensible

to require that the grammar is reduced (i.e.< every non-terminal is needed in the

derivation of some sentence of the language); however, from the object-oriented

point of view this would be unnecessarily restrictive. We can have two approaches.

They are:

1. We require that all the classes (non-terminals) are sometimes

used as a static class, or

2. We allow classes that are used only as ancestor classes of the

static classes.

Naturally, the latter classes would be "useless" from the syntactic point of

view, but they may offer some useful general properties to the objects instantiated

using their descendent classes. On the other hand, they do disturb the interpretation

of syntax in any way. ·To make possible these two approaches we present in the

following also a "strong" variant of an object-oriented context-free grammar.

Defination 1. A context-free grammar is pseudo-reduced, if for all non-terminals A

either S => • uAv => ·w or (A=> +B and S => ·usv => ·w), where u,v E. (T U N)"

and w E T·.

25

Definition 2. A pseudo-reduced, cycle free context-free grammar is Ml(multip/e

inheritance)-structured, if for each A Neither 1) or 2) holds:

1. card{ p f. P 1 p = (A -> w) for some w } = 1 and (A -> w) e. P => w ~

(TuN)*\ N

2. (A-> w) e P =>wE N.

These conditions are clearly non-overlapping; the non-terminals satisfying 1)

and 2) are basic non-terminals and superclass non-terminals, respectively. We note

that if a non-terminal A has a single chain production, it is regarded as a superclass

non-terminal. (Naturally it could be regarded as a basic non-terminal consisting of a

single sub-structure as well - and this is possible to express in the real systems - but

since we are primarily interested only in the grammatical conditions we make this

simplifying decision.) Ml stands for multiple inheritance: a class system defined

above allows situations in which a class has more than one superclasses. however,

multiple inheritance may be undesirable for various reasons. The following definition

excludes multiple inheritance (SI stands for single inheritance):

Definition 3. An Ml-structured CFG is Sl-structured, if ((a -> B)E: P and (C -> B) E P)

=>A= C.

If only syntactically meaningful non-terminals are allowed, we must have the

additional requirement that the grammar is reduced:

Definition 4. An Ml-structured context-free grammar is strongly Ml-structured i\' it is

reduced.

Definition 5. An Sl-structured context-free grammar is strongly Sf-structured if it is

reduced.

26

Finally we associate object-oriented context-free grammar with classes by

defining the class system associated with an Ml-structured context-free grammar (

and hence an 51-structured context-free grammar, too).

Definition 6. The class system of an Ml-structured context-free grammar is (N, ->)

where A -> B if and only if (A -> B) E. P.

In the sequel we shall consider mainly 51-structured context-free grammar,

we can determine the objects that correspond to a given input string as follows.

Consider the syntax tree of the input string (we note that un-ambiguity is not required

for Ml- or 51-structured grammars; however, we assume that in case of ambiguity

there is some way of choosing the "right" syntax tree). Each instance of a basic non-

terminal in the tree corresponds to the lowest class layer of an object. The upper

class layers of the objects are determined directly by the ancestor classes of the

basic non-terminal (class). This object will be a component object for the object that .
corresponds to the nearest instance of a tiasic non-terminal encountered above in

the tree.

Example 2. Sf-structured expressions

Conventionally, expressions are specified syntactically using context-free

grammars of the form:

Expression-> Expression AddOp Term 1 Term

Term-> Term MuiOp Factor 1 Factor

Factor-> number 1 '(' Expression ')'

AddOp -> '+' I ·-·

MuiOp -> '*' I '/'

27

Here "number'' denotes an integer constant. This grammar is not Ml­

structured, nor Sl-structured. A (strongly) Sl-structured grammar is obtained by the

following transformation:

Expression -> Sum 1 Term ·

Sum -> Expression AddOp Term

Term-> Multiplication 1 Factor

Multiplication-> Term MuiOp Factor

Factor-> Constant 1 SubExp

Constant -> number •

SubExp -> '(' Expression')'

AddOp -> Plus I Minus

MuiOp' -> Times I Div

Plus->'+'

Minus->'-'

Times->'*'

Div -> '/'

As can be seen from this example, transforming this grammar into an Sl­

structured one tends to increase the size of the gra'mmar considerably. On the other

hand the need to find names for the alternative right-hand sides also increases the

informative contents of the description. The resulting objects are illustrated in the

figure 2.

There is a straight forward algorithm for transforming an arbitrary context­

free grammar into an Sl-structured one, without changing the generated language

(elaborated in the next chapter). The resulting grammar may of course grow; it can

be shown that the growth rate is quadriatic. However, it is noted that practical

grammars are often close to Sl- or Ml- structured.

28

+

Fig. 2. The objects and their class layers for input string 1+2*3.The components objects
are shown by arcs pointing at the static type of the object. The part correspond­
ing to the syntax tree is shaded. We note that the two neighbouring layers in the
shaded part correspond to a chain production in the syntactic sense.

As long as we are considering complete sentences of a language, an Sl-

structured context-free grammar implies that all the superclasses are abstract: a

superclass non-terminal cannot appear in a syntx tree without a basic non-terminal

below it. However, in some systems it is sensible to consider partial sentences as

well (e.g. systems for generating syntax-directed editors); then a missing part may be

represented by an instance of a superclass. Hence, in the former approach the

syntactic structure is regarded as the virtual property' of the superclass. Hence, in the

former approach the syntactic structure is regarded as a virtual property of the

superclasses, while in the later approach the syntactic structure is an additional

property provided by the basic classes.

For better clarification I review two approaches for object-oriented attribute

grammars. These approaches are Grosch's Ag system [Gor90], in which object

orientation is applied in a relatively simple and clean way and the OOAG [ShK90]

which is least object-oriented: the emphasis in this system is in the support of

dynamic semantics through a message passing mechanism.

Ag

Ag belongs to a set of compiler construction tools developed at GMD

'
Karlshrue [GrE90). The purpose of Ag is to generate attribute evaluators that are

'
associated either with concrete or with abstract syntax; in the former case an

additional tool is required for parser construction.

Here again a non-terminal is viewed as a class. An attribute grammar is

given in the form of nested non-terminal (class) definitions. The nesting implies a

class hierarchy: sub-classes are directly within the superclass. A class definition
"

consists of the properties of the class, followed by a list of sub-class definitions

enclosed within angled brackets(<>). The properties includes the structural definition

or syntactic definition, attribute definitions, and attribution rules. Due to the principle

29

of polymorphism, one may think that there is a~ implicit chain production A -> B for

each superclass-subclass pair (A, B).

Example. Expressions in Ag

Expr = [Value: INTEGER] {Value := 0;}

< Add = Lop: Expr '+' Rop: Expr {Value := Lop:Value +

Rop:Value;}

Sub = Lop: Expr '-' Rop: Expr {Value := Lop:Value -

Rop:Value;}

Const = Integer {Value := Integer: Value;}

>

Integer : [Value: INTEGER]

Attribute definitions are given in brackets O; here attribute "Value" is

associated with all "Expr" structures, with a default rule "Value:=O". The types of the

attributes are taken from the target language (Modula-2). The attribute computations

rules are given in curly bracket~ O; here the rules given for classes "Add", "Sub" and

"Const" override the rule given in the supreclass. The structural compositions are

given as a sequence of class names, possibly prefixed by a selector (Lop, Rop)

allowing unambgious access to the component structures. "Integer'' is a terminal

class (: instead of=) defined at the end (+ and·- are special ''terminal" classes not

essential here), possessing attribute "Value" as well. It should be noted that this

specification assumes that scanning and parsing has been carried out using some

other tool (syntax is ambiguous), and that the abstract structure corresponding to this

specification has been constructed successfully.

From the user's point of view, the underlying context-free grammar of this

example is (the system extracts the productions in a different way depending on

whether the specification is for the concrete or for the abstract syntax):

30

Expr =Add 1 Sub 1 Const

Add= Expr '+' Expr

Sub = Expr '-' Expr

Const = Integer

indicating that "Add", "Sub" and "Const" are subclasses Of "Expr''. Since

associativity and priorities of operators have been taken care of in the parsing phase

the intermediate classes are not necessary.

(end of the example)

In Ag a specification can be split into modules: a module is intended to

contain parts that belong logically together. A module is primarily a structuring device

for making the specification more manageable and understandable: modules are not

processed separately.

The above given example exhibits some essential features of Ag from the

object-oriented point of view. First, assuming that no stf\Jctural (syntactic)

specifications are given ot the superclasses, the underlying context-free grammar is

strongly Sl-structured. The notation guarantees that multiple inheritance is excluded

in Ag. Second, within a module, class hierarchies are given in the nested fashion,

reflecting the fact that a language is considered to be implemented as a whole: all

the sub-classes are assumed to be known beforehand (New sub-classes can be

added in a different module, though.). Nested class definitions hamper the reusability

if classes, but on the hand specifications become more readable because the class

hierarchy is explicitly shown. Third non-terminals can inherit attributes and their

computation rules become unnecessary: The whole sequence of nodes connected by

chain productions is regarded as a single unit. In other words, descendants can share

the attributes of their ancestors.

In a sense an attribute computation rule corresponds to an operation

(function) that can be redefined in the descendant classes,

31

introducing thus, dynamic binding. We note that, however, these

rules are applied implicitly by the system, and that a rule is activated

exactly once for each attribute instance. Therefore the "dynamic

binding" is connected to the values of attributes rather than to

function calls. For example, we could have

Expr = [Value: INTEGER; X: INTEGER]

Value;}

< ... as before ... >

{Value := 0; X :=

The value of X will usually not be 0 but the value determined by the lower

class levels.

Grosch also proposes the inheritance of syntactic specifications in the same

sprit as the inheritance of attributes: the syntactic specification is "extended" by the

sub-class in the sense that the right right-hand side of a sub-class is concatenated

with the right-hand side of its superclass. Typical languages rarely allow the direct

exploitation of this featurein the concrete syntax, because the variations of a

particular language structure do not usually begin in the same way. However, Ag is

intended for specifications associated withthe abstract syntax, too. In the abstract,

internal representation of a program such structural inheritance is sometimes

sensible.

OOAG

The OOAG formalism (object-oriented attribute grammar) proposed in

[ShK90] combines attribute grammars with a message passing mechanism borrowed

from the object-oriented paradigm. Each node of the syntax tree is treated as an

object (implying that every production is regarded as class) communicating with

other objects by sending them messages. Since there is no class hierarchy nor

32

inheritance, the object-orientation is relatively weak. On the other hand, the system

allows an arbitrary number of named methods for the objects, which is more than the

previous systems offer. In OOAG the system guarantees that the attributes have

consistent values with regard to the attribute equations by propagating the changes

in the tree.The practical feasibility of this somewhat expensive mechanism is still

open; in particular, it seems that the mechanism is slow for implementing dynamic

semantics (that is, interpretation) of programs. Obv!ously, the system is primarily

intended for implementing other less "semantically" oriented tools in a programming

environment.

33

4. A DISCUSSION ON GRAMMAR TRANSFORMATION

It is clear from the previous chapter that an object-oriented context-free

grammar does not reduce the expressive power of the grammar formalism: any

context-free language can be described by such a grammar, and any context-free

grammar can be_ transformed into an object-oriented one without changing the

language. However, an object-oriented context-free grammar tends to be

considerably larger than a corresponding conventional context-free grammar. This

drawback might not be seen to be of great significance because the user of those

systems is expected to write the object-oriented grammar from scratch, rather than to

obtain it from grammar transformation. But in practice it will be sensible to have an

automatic transformation tool for the convetional grammar for the language to be

specified.

reproduce below an algorithm [KosMak91] which considers such

transformations and also a discussion about their cost in terms of increased grammar

;

size. In general, the results therefore indicate the price of using an object-oriented

grammar form.

Let G = (N, T, P, S), be a context-free grammar with the symbols denoting

the usual meanings (as mentioned in the earlier chapters). We define a production

with a non-terminal A on its left-hand side to be an A-production. The set of all A-

productions is denoted by prod(A). A production A -> a is a chain production if a

N. The set of all chain productions with_ A on the left hand-side is denoted by

chainprod(A).

34

A non-terminal is said to be mixed if among A-productions there are both

chain productions and non-chain productions and chain non-terminal if all A­

productions are chain productions, i.e., prod(A) = chainprod(A).

A context-free grammar G = (N, T, P, S), is said to be reduced if each

symbol X is used in some derivationS =>• aXb =>· w, weT·. We consider reduced

cycle-free context-free grammars only. A context-free grammar is said to be well­

structured if for each non-terminal A either

1. there is only one A-production

2. all the A-productions are chain productions

3. all the A-productions have only terminal symbols on their

right-hand sides

Moreover, we require that each non-terminal appears on the right-hand side

of a chain production at most once. It is also necessary that to mention about the

size of the transformed grammar, we need a measure for grammar size. A measure

by Harrison is norm II G II = 1 G 1 log (card(N U. T)). Norm counts the number of

symbols involved in productions, but only in logarithmic sense. The number of non­

terminal symbols is essential in the application we are interested in, but the number

of terminal symbols is not changed during the transformations. Hence, the definition

of norm is slightly modified as 11 G 11 = 1 G llog(card(N). The context-free grammars

are assumed to have at least two non-terminals. The number of non-terminals,

card(N), can also be used as a measure of grammar size.

The Algorithm

The algorithm transforming a context-free grammar into a well-structured

context-free grammar must pay special attention to chain productions. The form of

35

chain productions is restricted by the requirement that each non-terminal appears on

the right-hand side of a chain production.

Evidently, we need a method for eliminating chain productions without

effecting the language generated. If A-> B is a chain production to be eliminated, we

first define the set non-chain(A) = {wE:((N u T)* \ N) 1 A =>+ C => w. C E N}. The

production A -> B can now be replaced by the set {A -> W 1 wE non-chain(B)}. We

may assume that the chain production whose left-hand side is a mixed non-terminal

are more casual than those having a chain non-terminal on the left-hand side.

Let P c be the set of productions having a chain non-terminal on the left-

hand side. If some non-terminal appears on the right-hand side of the productions in

Pc more than once, we have to eliminate some productions of Pc.

An ideal situation would be the one in which the sub-classes were changed

for as few classes as possible; that is, for as many non-terminals as possible, all

productions in prod(A) could be taken to the resulting context-free grammar.

However, it is' a difficult combinatorial problem to such a set of nonterminals. It is in

fact, a NP-complete problem to ma~imize the cardinality of a set of chain

productions such that no non-terminal appears more than once on the right-hand

sides and no set prod(A} is split. This problem can be called the CHAIN NON­

TERMINALS problem and can be formulated as follows.

INSTANCE: A context-free grammar G = (N, T, P, S) and an integer

k.

PROBLEM: Is it possible to choose a set M of chain non-terminals

from N such that the corresponding set of chain productions PM = {A

-> B 1 AEM} has cardinality k and no pair of productions in PM has a

common right-hand side?

The following theorem is stated without proof.

36

Theorem. CHAIN NON_ TERMINALS is NP-complete.

Although CHAIN NON_ TERMINALS is intractable in the worst case, we may

assume that in any practical situation it is possible to find the largest set of chain

productions to be taken to the resulting context-free grammar or at least find out a

heuristic algorithm to perform this task.

In what follows, we withdraw the requirement that, for a chain non-terminal

A, all A-productions should be taken to the resulting well-structured context-free

grammar. We also note that if A is originally a chain non-terminal and some A­

productions are eliminated and some are left unchanged, A becomes a mixed non­

terminal.

After eliminating the undesirable chain productions among those having a

chain non-terminal in the left hand side, we can still try to find chain productions with

a mixed non-terminal on the left-hand side and a right-hand side not yet present in

the resulting context-free grammar.

After, the chain· productions have been handled, we can fix the other

requirements for a context-free grammar to be well-structured. Suppose a non­

terminal A is not a chain non-terminal and let {A -> a1 ... A -> an}, N > 1, be the set

of all A-productions which are not chain productions and at least one ai, 1 ~ i ~ n, is

not in T·: We replace these A-productions by the set {A-> A1, A1 -> a1, ... , A -> An,

An -> an} where Ai's are new non-terminals. The whole algirithm is described as

follows.

Algorithm WS

Input: A context-free grammar G = (N, T, P, S).

Output: A well-structured context-free grammar G' = (N', T, P', S)

such that L(G) = L(G').

37

Method:

1. Consider the collection {prod(A) 1 A is a chain non-terminal}. Mark the

largest possible set of productions from the sub-sets such that no non-terminal

appears twice on the right-hand side. Eliminate all other chain productions in prod(A).

Take the marked chain productions toP'. Update sets prod(A).

2. Consider the set PM of chain productions having a mixed non-terminal on

the left-hand side. Mark the largest subset of PM such that when added to the set

choosen in step 3, no pair of of productions have a commom right-hand side.

Eliminate all other chain productions in PM. Take the marked chain productions to P'.

Update sets prod(A).

3. Take to P' the productions in prod(A) if prod(A) is a singleton set or if all

productions have their right-hand sides in T*. For all olher sets prod(A), do the

following. If prod(a) = {A-> a 1, ... , A -> an} then take the productions {A -> Ai, Ai ->

ai 1 1 .!. i ~ n} to P'. The non-terminals Ai are new and are taken to N'. Besides the

non-terminals added in this step, N' contains the non-terminals in N.

The correctness of the algorithm follows directly by the definition of well

structured context-free grammars. For the increase in grammar size the following

theorem is stated.

Theorem. The algorithm WS can increase the size of the input context-free

grammar by a quadriatic factor but not more. Quadratic factor is possible only when

chain productions are eliminated.

To find out exact constant factor in the linear growth of grammar size

caused by step 3 of the algorithm WS. Suppose a context-free grammar G is as after

steps 1. - 3. of the algorithm; that is, each non-terminal appears at most once on the

right-hand sides and if a non-terminal A is on the left-hand side of exactly one chain

production, then A is a mixed non-terminal. However, as we are looking for the

38

greatest possible growing factor and we know that chain productions are not replaced

in step 3, we may suppose that G has no chain productions at all. If A-productions

are replaced in step 3, then at least one of the right-hand sides contains non-

terminals. If G has A-productions A -> E and A -> aB, then the resulting context-free

grammar has productions A -> A1, A1 -> 8, A -> A2, A2 -> a B. The growing factor

does not increase if we take more A-productions to G. We may have the

correspondings productions for B and so on, but we also need a non-terminal which

eventually ends the chain by having terminals on the right-hand side (a single

production with E on the right-hand side is the best choice). This shows that the size

'·
of G cannot even increase by factor 2, although we go arbitrarily close to it.

A striking result is obtained if we measure grammar sizes by the cardinality

of non-terminal alphabets. As the length of productions is unlimited, there is no upper

bound for the number 'of productions, although we bound the number of non-

terminals used. Hence, the number of non-terminals can have an unbounded

increase when Algorithm WS is used. We notice that steps 1.-3. have no effect to the

number of non-terminals. Naturally the number of productions obtained by using, say

2 non-terminals, the result holds.

39

5. DISCUSSION

.Incorporating object-oriented views in language specification structures is a

fairly recent idea and the ultimate motive of developing a compiler in tune with the

object-oriented paradigm will require much more effort and planning.

We have discussed the benefits of introducing object-orientation in attribute

grammars, but in doing so we can recognize three more problem areas.

First, conceptual integration: which object-oriented concepts are sensible in

connection with attribute grammars, to what extent can they be applied, and the

kinds of problems or conflicts they may cause when interacting with the concepts of

language specification structures (attribute grammar). This problem area is

particularly emphasized in Ag. We have seen that the concepts of classes and class

hierarchies can be introduced in a natural manner by regarding non-terminals as
>

classes, and by deriving the class hierarchies from a structured form of context-free

grammars. Inheritance can be applied to attributes and structured specifications. On

the other hand, the idea of inherited attributes was found to be in conflict with class

inheritance, in particular when multiple class inheritance is allowed. We also have

doubts 9r some confusion on whether multiple inheritance can be introduced in a

sensible form in attribute grammars; on whether attribute grammars can be extended

so that it would it be a more essential part of the description of semanticS, rather than

a "factoring-out" technique. We can also think about feasible ways of describing

context through class inheritance rather than attribute inheritance.

The second problem area is in the developmenl of more high~/evel concepts

for supporting language implementation, and their integration with attribute

grammars. We know that the concept of attribute grammar is too primitive and we

can think of it as only a basic framework; as the "machine language" of language

40

implementation. For practical development, there must be substantial automation. At

present attribute grammars offer automation for the support system (e.g., parallel

compilation), rather than for the description of the actual semantics.

Thirdly, there is the problem of describing dynamic semantics. We can ask

ourselves the questions of whether dynamic semantics can be described using

consistent attribute values in an efficient way and whether dynamic semantics, if

given in procedural style, can be naturally integrated with a declarative grammar.

We have also seen that the problem of removing multiple inheritance from

an object oriented context free grammar in an optimal way is NP-complete. we do

not know transformation algorithms that would remove multiple inheritance from an

object-oriented program, but also there is no reason why such algorithms could not

be developed: they might be useful for translating programs from one object-oriented

language (allowing multiple inheritance) to another (requiring single' inhertance).

The' fact that the size of an object-oriented grammar grow with quadratic

factor with respect to the cdnventional grammar should not be regarded as a

drawback as this happens only with unrealistic grammars and in practice the growth

seems to be a linear one. It should also be noted that an object-oriented grammar

carries more explaining information du& to the fact that all the alternative choices

must have names. Therefore, object-oriented grammars are easier to read inspite of

their larger size. Hence, in fully automatic transformation from a conventional

grammar into an object-oriented one is not sensible: the user must at least supply the

names of the new subclasses suggested by the transformation algorithm.

41

BIBLIOGRAPHY

Aho, A. V., R. Sethi and J. D. Ullman [1988]. Compilers; Principles, Techniques and

Tools, Addison-Wesley, Reading, Mass.

Aksit, M., R. Mostert and B. Haverkort (1990]. "Grammar Inheritance", Dept. of

Computer Science, University of Twente.

Budd, T. [1991]. An Introduction to Object-Oriented Programming, Addison-Wesley,

Reading, Mass.

Cardelli, L., and P. Wegner [1985]. "On understanding Types, Data Abstraction and

Polymorphism", ACM Computer Surv., 17, 4, pages 471-523.

Fischer, A. E., and F. S. Grodzinsky [1993]. The Anatomy of, Programming

Languages, Prentice-hall, Englewood Cliffs, N.J.

Kastens, U. [1991]. "Attribute Grammars as a Specification Method", Lecture notes in

Computer Science, Volume 545, pages 16-47, Springer-Verlag.

Koskimies, K. [1991]. "Obje~t-Orientation in Attribute Grammars", Dept. of Computer

Science, University of Tampere, R•3port A-!991-1.

Koskimies, K., and E. Makinen [1991]. • On Grammar Transformation Related to

Class Hierarchies", Dept. of Computer Science, University of Tampere, Report A-

1991-2.

42

	TH63740001
	TH63740002
	TH63740003
	TH63740004
	TH63740005
	TH63740006
	TH63740007
	TH63740008
	TH63740009
	TH63740010
	TH63740011
	TH63740012
	TH63740013
	TH63740014
	TH63740015
	TH63740016
	TH63740017
	TH63740018
	TH63740019
	TH63740020
	TH63740021
	TH63740022
	TH63740023
	TH63740024
	TH63740025
	TH63740026
	TH63740027
	TH63740028
	TH63740029
	TH63740030
	TH63740031
	TH63740032
	TH63740033
	TH63740034
	TH63740035
	TH63740036
	TH63740037
	TH63740038
	TH63740039
	TH63740040
	TH63740041
	TH63740042
	TH63740043
	TH63740044
	TH63740045
	TH63740046
	TH63740047
	TH63740048
	TH63740049

