DESIGN AND SIMULATION OF
MULTIMEDIA PROTOCOL

Dissertation submitted to the Jawaharlal Nehru Unitversity
in partal fulfilment of the requirements

Jor the award of the degree of
MASTER OF TECHNOLOGY
IN
COMPUTER SCIENCE

SANGITA GUPTA

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY
NEW DELHI - 110 067
" JANUARY 1995

CERTIFICATE

This 1is to certify that the dissertation titled
"DESIGN AND SIMULATION OF MULTIMEDIA PROTOCOL" being
submitted by SANGITA GUPTA to JawaharLal Nehru University in
partial fulfilment of the requirements for the award of the
degree of Master of Technology, is a record of the original
work done by her under the supervision of Prof. P.C. Saxena,
Professor, School of Computer and Systenm Sciences,
Jawaharlal Nehru University, New Delhi during the Monsoon

Semester, 1994.

[

The results reported in this dissertation have not been
submitted in part or full to any other University or

Institution for the award of any degree or diploma.

@%m - (e Oroers

Prof. K.K. Bharadwaj ’ Prof. P.C. Saxena

Dean,

School of Computer
and System Sciences,
Jawaharlal Nehru
University,

New Delhi.

Professor,

School of Computer
and System Sciences,
Jawaharlal Nehru
University,

New Delhi.

ACKNOWLEDGEMENTS

I wish to express my sincere and heartfelt gratitude to
Prof. P.C. Saxena, School of Computer and System Sciences,
Jawaherlal Nehru University, for the unfailing support he
has provided throughout. In all respects, I am very grateful
to the patiénce he has exhibited and for the time he has
spent with me discussing the problem. It would have been
impossible for me to come out successfully without uhis

constant guidance.

I extend my thanks to Prof. K.K. Bharadwaj, Dean, School of
Computer and Sysfem Sciences, JNU for providing me the
oppertunity to undertake this project. I would also like to
thank the authorities of our school for providing me the

neccesary facilities to complete my project.

I acknowledge and thank each and everyone of those who,

directly or indirectly, helped me in this work.

SLN

(SANGITA GUPTA)

CONTENTS

Chapter #1 INTRODUCTION
Chapter #2 NETWORK BACKBONE ARCHITECTURE
2.1 CHOICE OF BACKBONE ARCHITECTURE
2.1.1 FIBERNET
2.1.2 EXPRESSNET
2.1.3 C-NET
2.1.4 D-NET
2.2 D-NET ARCHITECTURE
Chapter #3 RANDOM ACCESS STRATEGIES
3.1 OVERVIEW
3.2 ALOHA
3.3 LCSMA
3.4 LCSMA-CD
3.5 PROTOCOL DESIGN
3.6 FAIRNESS SCHEMES
3.6.1 EQUAL TIMER SETTING
3.6.2 CHANNEL ACCESS PROBABILITY ASSIGNMENT
3.7 MULTIMEDIA TRAFFIC
3.7.1 VIDEO DATA TRAFFIC
3.7.2 VOICE DATA TRAFFIC
3.7.3 ORDINARY ﬁATA TRAFFIC
3.8 PRIORITY TRANSMISSION
3.9 DELAYS ENCOUNTERED BY PACKETS

3.9.1 QUEUING DELAY

3.9.2 ACCESS DELAY

3.9.3 TRANSFER DELAY
3.10 PERFORMANCE INDICES
Chapter #4 SIMULATION
4.1 INTRODUCTION
4.2 CONTINUOUS SYSTEM SIMULATION
4.3 DISCRETE SYSTEM SIMULATION
4.3.1 FIXED TIME STEP MODEL
4.3.2 EVENT TO EVENT MODEL
4.4 STOCHASTIC SIMULATION
4.5 RANDOM NUMBER GENERATION
4.6 LENGTH OF SIMULATION RUN
4.7 SIMULATION MODEL
4.8 SIMULATION OF MULTIMEDIA TRAFFIC
Chapter #5 PERFORMANCE ANALYSIS
5.1 DELAYS
5.1.1 QUEUING DELAY
5.1.2 ACCESS DELAY
5.1.3 TRANSFER DELAY
5.2 THROUGHPUT Vs. LOAD
5.3 SUCCESSFUL TRAFFIC TRANSMISSION
5.4 SIMULATION RUN LENGTH
Chapter #6 | CONCLUSION AND FUTURE DIRECTIONS
APPENDIX A
APPENDIX B

BIBLIOGRAPHY

'CHAPTER ONE

INTRODUCTION

CHAPTER ONE
INTRODUCTION

Communication network have rapidly become an important
and almost indispensible part of our lives today: from the
telephones in our homes to E-Mail in our offices, the
ultility of these networks is undenible. Traditionally, wide
area networks have evolved seperately around the end
applications that they support. For example, the telephone
network, which almost exclusively carries voice, has
developed independently of information networks that carry
data and as a result, the technologies involved are
significantly different. These distinct networks ‘served
there purpose very effectively for the applications for
which they were designed. But current trends are
increasingly pushing diverse networks towards integrating
into a common high-speed network. The high band width nature
of new applications neccesitates an underlying network that

can provide the raw bandwidth needed.

Multimedia computers process various kinds of data like
video, voice, text, image and graphics. Distributed
computing involving multimedia data on a local area network
needs integration of transmission of all the above specified
data traffics on the same network, to give one single

integrated information distribution system. The underlying

network should be able to cater for the special requirements
of video and voice traffics, i.e. high bandwidth and tightly

bounded network delay.

Progress in optical fiber communications has generated
tremendous interest in its application to 1local area
network. The propagation loss of glass fiber at the optical
' wavelength of 1550 nm is as low as 0.2 dB/km and therefore
fiber transmission system can be operated at 20-100
Gbits/sec data rates over distances greater than 100 km.
Moreover optical fibers are immuned to EMI, they are
chemically inert, 1light in weight and small in size. All
these properties make optical fiber the best transmission

medium available today.

For implementation of optical fiber LAN's there are
various architectures available 1like star shaped bus,
bidirectional bus structure like Ethernet and unidirectional
bus structure. For this project I have <chosen a
unidirectional bus structure because reliability of a bus is
more than that of a ring and low loss bidirectional taps for

transmission and reception are difficult to implement.

The objective of this project is to design a network
architecture to which multimedia computers can be connected.
After an exhaustive study of various unidirectional bus

architecture based optical fiber networks like C-Net, D-Net,

Fastnet, Express-Net and cbmparing their relative merits and
demerits D-Net architecture has been chosen. D-Net possesses
the advantages of high efficency; low delay and simplicity
in protocol. The multimedia computers are connected to the
underlying network by active optical taps. Active optical
taps override any existing signal on the bus, thus no slot
is wasted unless nobody on the network wants to send data in
that slot, but this also results in an inherent unfairness
'to upstream sources. Therefore the protocol design sould be
such that it removes the unfairness caused by active taps,
so that all computers can access the transmission channel
with equal fairness irrespective of their position on the
network. The delay requirements of the video and voice
traffic sould be met. Efficient bandwidth utilization is

another essential feature of the protocol design.

After the design of the multimedia protocol its
performance analysis 1is carried out using a stochastic

computer simulation.

CHAPTER TWO

NETWORK BACKBONE ARCHITECTURE

CHAPTER TWO
NETWORK BACKBONE ARCHITECTURE

2.1 CHOICE OF NETWORK ARCHITECTURE

The advantage of the low loss and wide bandwidth of
optical fiber has opened new dimensions for such high
bandwidth LAN applications. The very high data rate of
optical fiber 1leads the network designer to consider a
topology which uses as few links of fiber as possible so
that the capacity of the fiber is maximally utilised. To
implement fiber optic network we can use various
architectures 1like star shaped bus, unidirectional bus,
bidirectional bus, ring architecture etc. Reliability and
survivability of bus is better than ring so bus 1is better
suited than ring for implementation of this network. Low
loss bidirectional T-taps are difficult to implement hence
unidirectional bus architecture is chosen. An exhaustive
study of the following unidirectional bus architectures is

made.
2.1.1 FIBERNET

Fibernet is a fiber optics version of Ethernet. It uses
a star shaped bus to connect the stations. The access

protocol is based on the principle of carrier sense multiple

access with collision detection-CSMACD. Fibernet is very
efficient when the end-to-end signal propogation delay is
.mhch less than the backet_transmission time. But as the bus
data increases, the efficency drops to the range far below
the acceptable levels. Another shortcoming of fibernet is
that the delay of a packet is not deterministic. In worst
case a packet can encounter an unlimited number of
| collisioné this makes fibernet unsuitable for real time

(voice, video) communications.
2.1.2 EXPRESSNET

It uses a unidirectional transmision medium. Each
station 1is connected to the fiber at there taps, one to
sense carrier (S), second to transmit (T) and third to
recieve data (R). S of a station can only sense carrier
transmitted from "upstream" stations. While R of any station
can receive any signal transmitted by any station. Each

station of expressnet operates as follows.

(1) To transmit a packet a station waits for the event of
next end of carrier (EOC) to be deteted at S. When EOC is
detected (td seconds after the real EOC occurence), the
station starts to transmit a packet , which consists of a
preamble poftion Pp, and an information portion Pi. Within
td which is shorter than the transmission time of Pp, the

station can detect at S whether there is collision.

2) If a collision is detected, the station aborts the packet
transmission immediately, letting the Pi part of the packet
from an upstream station go through , and it goes back to

step 1. Otherwise it finishes its own packet transmission.

3) After successfully transmitting a packet, it waits for
end-of-train (EOT) to be detected at its R, the station is

allowed to search for (EOC) again.

Expressnet has efficiency of nearly one and delay is
also low so that for a limited number of stations connected,
voice communication quality is guaranteed. The mainv
disadvantage of Express-Net 1is that the algorithm is
complicated , which implies that the implemtation of it 1is

expensive.

All these complication arise from the fact that
Express-Net uses EOC and EOT as synchronising events to make
the protocol completely distributed, still the éccess
protocol of the first station remains slightly different
from the rest. It detects no EOC event. Hence because of its
high complexity Express-Net is also not suitable for my

application.
2.1.3 C-NET

C-Net uses a unidirectional bus network. A station is

connected to the bus through taps R, S and T which are to

receive packets, sense carrier and transmit packets
~respectively. After detecting Eof at its R, a station is
allowed to sense the outbound channel using its S. If the
channel is busy, then it waits untill the channel becomes
idle. If the channel is idle it transmits a packet if it has
to transmit. If this leads to a collision due to the
simultaneous transmission of packets by\ the upstrean
stations, then station stops transmitting immediately and
waits untill the bus becomes idle again: otherwise, it
finishes its packet transmission. After successfully
transmitting a packet, a station has to wait untill its R
detects the EOT of the train which contains its own packet.

Then it is allowed to sense the channel again.

On analysing the channel access strategy of C-Net it is
found that the maximal number of voice channels of C-Net is
only half that the expresnet. The poorer performance of

C-Net is compensated by the gain in protocol simplicity.
2.1.4 D=NET

It is a wunidirectional bus archifecture. It has a
locomotive generator at one end which is connected to the
fiber at two points (Transmiter {T} and receiver {R}). It
transmits at its T, a locdmotive (pulse) every time it
detects an EOT at its R. Each station uses EOC as the

synchronisation event to send the packet. Whenever a

collision is detected, a station stops transmitting untill
the next EOC is detected at its S. This protocol is simpler
than that of C-Net. Tap R of each station except that of the
locomotive generator need not detect EOT as needed in
Express-Net and C-Net. Tap T of each station except that of
the locomotive generator does not need to generate a
locomotive as needed in every station of Express-Net. D-Net
is a much simpler and less expensive system than E-Net &

C-Net.

On the analysis of all the above discussed
architectures it was found that, D-Net possesses the
advantages of high efficiency, low delay and simplicity in
protocol. Hence, for this application I have chosen D-Net as
the basic underlying network. A detailed discussion of D-Net

architecture is given in the next section.

2.2 D-NET ARCHITECTURE

D-Net uses a unidirectional bus architecture (Fig 1).
It consists of a locomotive generator (L.G.) which is
located farthest upstream. Its function is to implement the
slotted system by generation of slot timing pulse. A station
can transmit data only when it detects these pulses at its
carrier sense end. The interval between consecutive slot
pulses is determined by the packet length choosen for the

network and the bandwidth of the optical fiber. Each station

F—-J-JF B A —— S |

W I 1

(G) LAY B L1 IR T eeeeenen- T2)
n-

M.U.S. Picection ot Datg Flow MO S

Trensmitling

Ends

Bend

Receiving

\ ="

. LG - Locomative Generalor
Optical Taps MU
MD

S . Most Upstreem Source
S Maost Downstream Source

FIG.1

D-NET ARCHITECURE

(A multimedia computer) is connected to the fiber at two
ends, one is called the transmitting end and the other is
the receiving end. The optical fiber bus takes the shape of
alphabet "D" that is why this network is called D-Net. The
stations are connected to the fiber by optical taps. Optical
taps can be of two types active or passive. A passive
optical tap transmits the "OR" of the locally generated
signal and the signal on the network. An active optical tap
can switch between the 1locally generated signal and the
signal on the network. A source transmits at its
trénsmitting end and receives signal, from all of the
sources, at the receiving end. The signal passes the
transmitter end at each source, then it passes the D-bend

and reaches the receiver end of the sources.

The sources whose transmitting ends are nearer . to the
locomotive generator are called upstream sources and those
sources which are farther away from the L.G. are called
downstream sources. A slot pulse starts at the locomotive
generator, traverses the fiber starting from the
transmitting end of the most upstream source to most
downstream source, then it reaches the‘ D-bend. After
crossing the D-bend it traverses the receiving ends of all
sources starting from most downstream to the most upstrean,

and finally it reaches the L.G. When L.G. receives a slot at

10

its receiver it generates a slot and transmits it on the

fiber and this cycle continues.

Fig (2) describes the propogation of signals in the
D-Net. The signal at the transmitting end 2Zi of the ith
source is the composite signal from the sources that are
upstream from source terminal "Ti" and is referred to as
"local information". This is called 1local because it
provides pértial information about the state of the network
at a particular instant of time since only signals
transmitted by relatively upstream sources are included and
signals by the downstream sources are not present at that
point. The signal at receiving end "Ri" of a sources that
arrive at the bend in the 'D' network at a particular
instant of time and is referred to as "global informations".
The global signal provides complete information on the state
of the network at a particular instant of time. When a slot
accessed by a source reaches the receiving end of that
source, it means completion of one round trip. This global
signal is used by a source to determine when a
retransmission 1is required. When a source receives the
signal it has transmitted, it knows that the signal has been
successfully transmitted and no collision has otcured with
this packet. If it does not receive the transmitted packet,
the station understands that the packet has met a collision
and retransmission 1is required. This way it 1is a self

acknowledging system.

11

Fla. 2

DIRECTION OF DATA FLOW
IN D-NET

A Xal A
> \ > -
z1 al |z

I In-t In

R ~——— g@el Bn

“~

= Direction of

This network is unfair to the upstream sources. This
unfairness is discussed with the help of fig.3. A source T1
transmits a packet in a slot. When this slot reaches source
T4,it puts its packet in that slot overriding the already
placed packet i.e. slot occupied by T1 is snatched by T4.
This is because we are using active taps which override the
already present data on the channel and place their data.
This way downstream sources have a much better chance of
getting their message transmitted successfully than the
upstream sources. The collision rate of the packets of up
stream sources 1is much higher than that of downstreanm

sources.

Another unfairness 1is due to the self acknowledgement
technique being used. a downstream source packet is
acknowledged faster than an upstream source packet, because
the packet of an upstream source has to travel greater
distance to reach the receiving end. Therefore upstrean

sources have to wait longer for their next transmissions.

13

e
D D
W~

) W -

——

Position Hn

R4 - Self ack'd ‘T4

Glab al Intermation

Self kcknowledged - “Tn’

D
of Taps wp 4——— .

X4 - 4

X3
X2 4
X1

. ~————UTransmission by ‘In’

Slat snatched by ‘T4

Loca!l Infermation

Transmission by source ‘T1'

_l

Time

FIG. 3

INHERENT UNFAIRNESS Ibl D-NET

CHAPTER THREE

RANDOM ACCESS STRATEGIES

CHAPTER 3
RANDOM ACCESS STRATEGIES

3.1 OVERVIEW

An access strategy has to be designed to access the
D-Net network. The strategy should use the information at
the transmitter end in the unidirectional network for
channel access. It should not constrain the distance or
transmission rate of a network and should be able to use the
capabilities of fiber optic LAN. Twelve random access
strategies have been stuﬁied and analysed. The twelve access
strategies consist of three protocols, each of which can use
two timing arrangements and two network access devices. The
three protocols are ALOHA,LCSMA,LCSMA-CD. The prefix 'L' is
used to distinguish strategies that use local information at
the transmitter from strategies that use complete
information at the receiver. Each of these strategies can be
implemented with passive taps, that transmit the 'OR' of the
locally generated signal and the signal on the network, or
active taps that switch between the locally generated signal
and the signal on the network. The timing arrangment can be
slotted or unslotted. In unslotted system a station can
transmit whenever they find the channel free (in case of

CSMA/CSMA-CD) or whenever they are ready to transmit (in

15

case of ALOHA). But in slotted system, the source furthest
from the bend in the D-network periodically generated timing
pulses that signify the start slot. A source is allowed to
transmit only when it detects the start of slot pulse at its
transmitting end. The implemgntation and merits and demerits
of the three protocols with their combination of taps &
timing arrangment are discussed in the next section. In this
discussion the strategies are referred to as

protocol/timing/access where

- The protocol is ALOHA,LCSMA or LCSMA-CD
- The timing is unslotted (U) or slotted (S)

- The network access is passive (P) or active (A)

An X indicates that all of the values of a parameter are

considered.

3.2 ALOHA

AILOHA/U/P is the conventional ALOHA protocol. A source
transmits as soon as it has a packet, and it retransmits as
soon as it comes to know about the collision.
Acknowledgements are not required in ALOHA/U/P to determine
when a signal was received without colliélﬁn becauée the
same global signal is received by all of the receivers, and

a source can determine whether or not it has collided by

examining this signal.

16

ALOHA/U/A uses the same strategy as ALOHA/U/P except
that when a collision occurs, the signal from the downstream
source successfully acquired the network, whereas a
ALOHA/U/P, a collision means no valid data is carried in
that slot. Therefore ALOHA/U/A gives preference to

downstream sources.

ALOHA/S/P is the conventional slotted ALOHA protocol.
Packets that arrive during a packet transmission interval
are transmitted at the beginning of the next interval. In
ALOHA/U/P there is no concept of slot intervals, as soon as

a packet is ready, it is transmitted.

3.3 LCSMA

In LCSMA/X/X, a source listens to the signal from the
upstream sources before transmitting. If an upstream source
is transmitting, the local source delays its transmission.
This strategy gives preference to upstream sources. In

LCSMA/U/P, a source

(1) is delayed by packets from upstream sources that are

propagating past the transmitter when a packet arrives.

(2) collides with packets from upstream sources that arrive

at the transmitter during the packet transmission.

(3) collides with downstream sources that are already

transmitting when the packet arrives at their transmitter.

17

This strategy results in fewer collisions than that in
ALOHA/U/P. In this system, sources that detect a busy
channel can implement a retry strategy immediately instead
of waiting for a round trip propagation delay as 1in
ALOHA/X/X . LCSMA/U/A combines taps that give priority to
downstream sources with a transmission rule that gives
priority to upstream sources and results in a fair access
strategy. Though LCSMA has some advantages over ALOHA, but

the protocal is complex and difficult to implement.

3.4 LCSMA-CD

In LCSMA-CD/X/X, a source listens to the signal both
before and during its transmission. A source does ndt
transmit if an upstream sources 1is active, and stops
transmitting if an upstream source becomes active. Upstreanm
sources>always have preference over downstream sources. In
LCSMA-CD/U/P, a source does not tranmit if a packet from an
upstream source is passing the local transmitter when packet
arrives, and is preempted if an upstream source tansmits a
packet that arrives at the local transmitter while a packet

is being transmitted.

In LCSMA-CD/S/P, one source wins in every slot in which
one or more sources transmit, as in ALOHA/S/A. However, in
LCSMA-CD/S/P, upstream, rather than downstream, sources are

given priority. In LCSMA-CD/U/P, a source that uses a

18

persistent retry strategy acquires the channel as soon as
there are no upstream sources waiting to transmit. the
LCSMA~-CD/U/P protocol can be made more efficient by adoping
a preemptive resume strategy, in which a source that stops
transmitting, transmits the interrupted portion of the
packet, rather than the entire packet, when it resume. This
strategy increases the throughput, by not retransmitting
data that . have gotten through successfully, but

significantly increases the complexity of the system.

3.5 PROTOCOL DESIGN

On carrying an exhaustive analysis of the above
mentioned access strategies, it was found that these
strategies provide mechanism for trading three types of

complexity for throughput.

1. TIME SYNCHRONISATION
2. SIGNAL PROCESSING

3. TAP STRUCTURE

Time synchronised or slotted systems, adjust the
transmission times of the various sources so that all fixgd
size packets arrive at a common point in the network at the
same instant. Signal processing is used to avoid collisions
with upstream sources by examining the channel before or

during transmission. Taps that switch a transmitter into the

19

medium are used to allow sources to win in a contention
situation. Slotted systems are always more efficient than
unslotted systems and when synchronisation is combined with
either signal processing or switched taps, these systems can

approach a utilization of one.

On analysing the merits and demerits of the random
access stratagies, I have chosen a strategy which uses ALOHA

protocol with active opticl taps on a slotted time system.

Multimedia systems are connected to the optical fiber
channel through active optical taps. Multimedia systems
offering trafic to network are referred to as
sources/stations. The systems which are switched on at a

particular time are reffered to as ‘'active'.

In a particular slot, which travels across all the
active sources, every active sources can try to send a pack
et. When a source puts its data on the slot, any preexisting
data is removed and new one is placed. This is because opti
cal taps are reciprocal. In order to insert a fraction of a
signal on to the fiber, the same fraction of the signal on
the fiber must be removed. The active optical tap places a
fraction of regenerated sigﬁ;l on the bus, replacing the

incoming signal.

A source is ready to transmit when it has a new packet

to transmit or when the waiting time, after the 1last

20

transmission attempt, is over. A source transmits the same
packet till it succeeds. After this packet has reached its
destination and is self ackno&ledged by the transmitter
itself, then only next packet if any, is considered. After a
successful channel access attempt, the source waits till at
least that slot comes to its receiver end. If this slot has
the same data which was transmitted by this source, it be
comes self -acknowledged and the transmission attempt is
successful. This waiting time for a source, before
retransmission attempt, is equal to the distance between the

two ends of the source in terms of slots on the fiber.

Since all the data transmitted passes through receiving
ends of all the sources, a self acknowledgement mechanism
works and no seperate acknowledgement traffic is generated.
When the transmission of packed at a station is successful,
its buffers can be released. The network specifications are

given in Appendix B.

3.6 FAIRNESS SCHEMES

3.6.1 EQUAL TIMER SETTING

Every time a sources sends a packet, it sets a timer
within which the packet should reach the transmitting end.
This timer delay is set according to the position of the

source on the fiber. It is less for downstream sources than

21

upstream sources. Therefore, the downstream sources reveive
quicker self acknowledgement and quickly release the output
buffer assigned to these acknowledged packets and they can
attempt transfer of new packets. This system is unfair to
the upstream sources. To provide fairness in this scenario,
a technique called E.T.S. is employed. In this every source,
irrespective of its position, waits for equal time before
making a reﬁransmission attempt after a succéssful channel
access, 1in case its packet is not self acknowledged within
timer intervals and hence is deemed to have suffered a
collision. This time delay is kept equal to the time gap
between the two ends of the most upstream active source,
independent of the actual time gap between the two ends of
the source. This balances the favour enjoyed by the
downstream sources. The channel access procedure using the

E.T.S. is described in flow chart #1
3.6.2 CHANNEL ACCESS PROBABILITY ASSIGNMENT

After passing across transmitting ends of all sources,
the slot carries data sent by the most downstream one (i.e.
the last one) of those sources which had put their data on
this slot. So the data transmitted by an upstream in a slot
can only get through when no downstream source accesses that
" slot. Thus going downstream on the fiber, it becomes
progressively easier for the sources to get their data

through. This is clearly favourable to downstream sources.

22

START).
7
4

TRANSHIT OUTGOING
»{ PACKETY IN SLOT

SET THE TINER

y

UalT FOR SLOTS TILL
THE TINER RUNS GUT
s
OPR THE PRCKET IS , 1
FOUND AT THE FR&GNSHIT 17T
RECEIVIHG END AGAIN; SET TINER

PACKET FOUND
AT RECEIVING

HO

YES

HOUVE TO THE HEXT

PACKET WAITING TO
BE SENT. IF ANY

|

- FLOW CHART r1
CHANNEL ACCESS IN E.T.S. SCHEME

To provide equal fairness to all sources independent of
their position, the downstream sources are made less greedy
in accessing the channnel. The channel access protocol is
modified to make it a p-persistent ALOHA rather than
l-persistent ALOHA. The probability (P) of a ready source
trying to access a slot is made dependent oﬁ the position of
the source on the fiber. Upstream sources have higher
probability and downstream sources have lower probability of
accessing the chaannel as shown in fig - 4. Before accessing
a slot, a source generates a random number (0,1) and if this
number is less than the probability value assigned to this
source, it accesses this slot, otherwise leaves it. This
process is shown in flowchart #2. Thus the downstream
sources leave some slots free before accessing a slot. The
data transmitted by the upstream sources gets thriugh in
these free slots. The probability assignment is such that if
all the sources are active, then all the sources have equal
effective value of slot access probability independent of

their position.

In an "N" active sources arrangement, the probability

assigned to the ith source from start of the bus is

P(i) = 1/(1)
If all of them, turn by turn, try to access the same slot,

the effective probability of every source is equal to

24

1.a0§

0.50-
2
0.33
0.25
0.20
Peff ~— | o
T2 3 4 5 TN
Adtive Seurce Number W -
FIG. 4

CHANNEL ACCEESS PROBABILITY ASSIGNMENT

STAET OF A $LOT,

J/

9

‘P’- PROEWBILITY
OF CHANNEL ACCESS
KSSIGHED TO THIS
SOURCE ‘

<4
-«

y

GENERATE A RANDOH
HUNMBER "rn” (0,1)

HO

HalT FOR
HEXT SLOT

4

LEAUVE THIS SLOT

YES

. GRAB THIS SLOT

b

PUT THE PACKET
IN THIS SLOT

QUER

FLOW CHART # 2
CHANNEL ACCESS IN C AP ASSIGNMENT

Peff = 1/(N)

because the downstream source can overwrite the signal from

the upstream sources in that slot.

Consider such a slot in which every source tries to put
its data with above probabilty asignment. The mathematical
analysis given below derives the effective probabilty of

channel access.

MATHEMATICAL ANALYSIS FOR EFFECTIVE CHANNEL ACCESS

Total number of active sources = N
Probability assigned to the ith source from start of bus is

given by Pi where
Pi = (1/i)

Therefore probability assigned to most upstream source (i=1)
P1 =1/1 =1

Probabilty assigned to Nth source (most downstream source)
Py = (1/N)

Effective probability of ith source
= Pi* (probability that none of the 'sources further

downstream access this slot)

27

= Pi * (1-Pj)

= Pi * (1-(1/i+1))*(1-(1/i+2))*....... (1-(1/N))
= (1/1i)*(i/i+1)*(i+1/i+2)*. 0 0un.n... (1=N/N)
= 1/N

So for any value of i, effective channel access probability
for source “i" = (1/N) where N = number of active

sources.

This analysis shows that by this probability
assignment, all the sources get equal effective access to

the channel. Hence resulting in a fair access strategy.

The strategy works 1like this : every time a source
sends a packet, it sets a timer within which the packet
should reach the transmitting end. This timer delay can be
set according to the position of the source on the fiber or
it can be set to be equal to the distance between the
transmitter and receiver ends of the most upstream source.
If the packet is not acknowledged before the timer runs out,
a retransmission aetempt is made at the next slot with a
probability assigned to this source. This attempt is made at
every consecutive slot with this probability,vuntill success
occurs. In case of failed attempt, the same timer is set
repititively till the packet transmission is self
acknowledeged with in the timer interval. The timing diagram

for channel access is given in Fig - 5.

28

Recearving

Trenseuptting
End

Fandom no.s
generate

Tirver
Set

AV RN

Titmer —

gut

Random no.s
generated

Set

T imer
Qut

Random No.s
senerated

Timer —

{

0 8 0 0 8 00
e 0 0 0 4 8 0 0 s
4 0 0 6 0 0 8 4 4 8 6 0 0 8 6 2 0 e 00
L I B
LI I I)

al attempt

“Packet collided wi i
packet of trazitc by
dJownstream sources

11 attempt

Packet collided with
acket of traffic by
owastream sources

~

Hth attempt

Fig. S

AND C.A.P. SCHEMES

€nd

-

-

Y 6.6 4 8 6 0 8 0 & 6 2 4 8 B 2 0 4 0 s b e a b
I .

¢ 6 6 & 0 & 0 0 % 4 b & s 2 08 0

“*—Skxfubcs

Packet se
at recei1ving end and
fror the queue.

1£—acknoulcdq¢J
re

CHANNEL ACCESS USING E.T.S.

3.7 MULTIMEDIA TRAFFIC

Multimedia computers offer three kinds of data to the
network. These are video data, voice data, ordinary data
(text, graphics). These are categorise on the basis of band
width requirements, nature of bitstream, nature of traffic

and delay constraints (Appendix B).
3.7.1 VIDEO TRAFFIC

Video communication on a multimedia computer network
offers a steady, compressed bitstream with tightly bounded
delay requirements. The refreshing rate of a video screen is
30 frames per second, so the time gap between two
consecutive packets reaching the destination should not be
more than 33ms. Uncompressed video needs bandwidth
requirement of 90 Mbps but Intel's digital video interactive
| technique enableé full motion video to be transmitted at a

rate of 1.5 Mbps.

Motion Picture Experts Group (MPEG) of International
Standarads Organistaion (ISO) has suggested the following

standards for compression of motion video and associated

audio.

Compressed bit rate : 1.5 Mbps

Frame rate : 30 frames/sec without interlacing
Resolution of video : 352%240 pixels

30

Motion Picture Compression (MPC)' is different from still
picture compression. MPC makes use of the extensive frame to
frame redundancy present in all video sequences.

Joint Photographic Experts Group (JPEG) of ISO has
suggested standard for compression of still picture. Still
pictures can be compressed at different bit rates starting
from 0.25 bits/pixel to 2 bits/pixel. More the number of
bits/pixel, better is the picture quality. This way by com
pressing a still picture, it can be converted to digital

image computer data.
3.7.2 VOICE DATA TRAFFIC

Voice traffic is bursty in nature. Speach consists of
alternate talkspurts and silence intervals. The average
talkspurt length is 1.67ms and average silence interval is
1.33ms. The frequncy range of speach is 20Hz - 4000Hz. So a
sampling rate of 8Kbps (according to Nyquist's Theorem) is
needed. Using 8 bits per sample gives a ,bandﬁidth
requirement of 64Kbps. The upper bound on the time taken to
deliver a speech samgle to the listener after the instant at
which it was generated is typically 170-200ms. A speech
packet delayed more than this is worthless. Voice data can
tolerate some loss of packets with unnoticeable or 1little
degradation of the intelligibility of the received speech
signal. The acceptable packet loss percentage is maximum one

percent.

31

3.7.3 ORDINARY DATA TRAFFIC

Ordinary computer data consist of text or garaphic
data. These data can tolerate long delays buf they cannot
tolerate any loss, as loss of a ﬁacket means corruption of
the whole data. So data transmission requires a channel with

low error rate with a bandwidth of 64Kbps.

3.8 PRIORITY TRANSMISSION

Video traffic has a tightly bounded delay constraint of
33ms. Voice traffic can tolerate a delay upto 170ms and
ordinary data traffic has no upper bound on delay. Therefore
these data are prioritised accordingly. The video traffic
is given the highest priority, voice traffic comes next and
ordinary data traffic has the lowest priority. At the
transmitter end of the station, an output traffic queue is
maintained. Any newly generated packet which has to be
placed on the network is placed in the queue. This queue is
a priority queue i.e. a new packet generated takes position
ahead of any lower priority packets and behind all the
packets of the same priority. So queue at any moment
contains all the video packets at the top, followed by voice

packets and then the ordinary data packets are placed. The

32

queue length is assumed to be infinite to prevent any data

loss under heavy load conditions.

3.9 DELAYS ENCOUNTERED BY PACKETS

3.9.1 QUEUING DELAY

When a packet 1is generated inside the multimedia
source, it is placed in the output queue at transmitter end
at a position according to the priority of the type of data
.it contains. Starting from the time of generation of a
packet to the time when it reaches the top of the queue
(considered for transmission) for the first time, the delay

is counted as queuing delay for this packet.
3.9.2 ACCESS DELAY

After a packet reaches the top of the queue, the source
tries to send it on channel. It makes several attempts as
shown in fig - 5, till it succeeds. Meanwhile, If a higher
priority packet is denerated it is placed ahead of this
paéket; Now transmission attempts for sending this packet
are done only when the higher priority packet is
successfully transmitted. Starting from the instant a packet

reaches the top of the queue for the first time to the

33

instant it is successfully acknowledged at the receiving end
of the source, this period is called access delay. This
delay includes the data transmission time and delay for
propagation across thé network. The transmission delay
component is equal to one slot length. The propagation delay
is fixed for a source according to the length of fiber
between the transmitter and receiver ends of thhe source.
The remaining component is variable depending on the number
of attempts in which the packet is transmitted, and the
number of times it is pushed back by a high priority packet,

once it reaches the top of the queue.
3.9.3 TRANSFER DELAY

It is the total delay suffered by a packet starting
from the time at which it is generated and put up in the
queue, to the time at which it is self acknowledged at the
receiving end of the source. This is equal to the sum of the

queuing delay and access delay.

3.10 PERFORMANCE INDICES

For testing the system's performance and estimating
maximum capability, different workloads are applied. As

single multimedia computer offers more or less constant

34

load, different workloads are applied by varying the number

of active multimedia systems.

Performance 1indices for tésting and analysing the
system's performance are throughput, delays faced by packets
in transfer across the network, and load supported by the
network. Since due to bus architecture, the delays faced by
packets are also dependent on the position of the source
relative to other sources, the degree of fairness provided
by the protocol to the upstream sources is an important

performance index.

35

CHAPTER FOUR

- SIMULATION

CHAPTER 4
SIMULATION

4.1 INTRODUCTION

Simulation is a powerful technique for solving a wide
variety of problems. To simulate is to copy the behaviour of
'a system or phenomenon under study. Computer simulation
allows us to mimic the behaviour of the real life systen,
~however complex, and get a measure of its performance.
Simulation is becoming increasingly popular in the class of
dynamic systems 1like communication networks with random
traffic inputs. Simulation provides the means to visualize a
system that 1is not yet built, to analyse a system to
determine critical elements and to act as design accessory
in order to evaluate proposals. Simulations use simulating
models and based on these, perform experiments which enable

the analyst to determine the behaviour of a system.

From the view point of simulation there are two

fundamentally different types of systems :

(1) Systems in which the state changes smoothly or

continuously with time are called continuous systems.

(2) Systems in which the state changes abruptly at discrete

points in time are called discrete systems.

36

4.2 CONTINUOUS SYSTEM SIMULATION

Continuous systems are those systems in which the state
or the variables vary continuously with time. These systems
are generally described by means of differential equations.
If the set of differential equations describing a system are
ordinary, linear and time invariant, an analytic solution is
usually easy to .obtain. Simulating the system often gives
added insight into the problem besides giving the required

numerical soloution.

4.3 DISCRETE SYSTEM SIMULATION

Discrete systems are those systemsrin which changes in
the objects are discontinuous. Each change in the state of
the system is called an event. Therefore the simulation of a
discrete system is often referred to as discrete - event
simulation; In simulating any dynamic system, continuous or
dicrete, there must be a mechanism for the flow of time. For
we must advance time, keep track of the total elapsed_time,
determine the state of the system at the new point in time,
aﬁd terminate the simulation when the total elapsed time
‘equals or exceeds the simulation period. For continuous
systems time is advanced in small increments of t for as
long as needed. In simulatioﬁ of discrete systems, there are
two fundamentally different models for moving' a system

through time.

37

4.3.1 FIXED TIME STEP MODEL

In time step model a timer or clock is simulated by the
computer. This clock is updated by a fixed time interval t
and the system is examined to sée if any event has taken
place during this time interval. All events that take place
during this period are treated as if they occured
simultaneously at the tail end of:this interval. The fixed

time step simulation works as shown in flow chart # 3.
4.3.2 EVENT TO EVENT MODEL (NEXT EVENT MODEL)

In this simulation model the computer advances time
according to the occurence of the next event. It shifts from
event to event. The sytem state does not change in between.
Only those points in time are kept track of when something
of interest happens to the system. Event to event model is
preferred to fixed time step model because in this model no
computer time is wasted in scanning those points in time
when nothing takes place. This waste is bound to occur if a
very small value of t is picked. On the other hand if t is
so large that one or more events must take place during each
interval then the model becomes unrealistic and may not
yield. meaningful results. The impleﬁentation of event to
event model is more éomplicated than the fixed time étep
model. The event to event model is described in flow chart #

4.

38

Generate and store
random data (it any required)

|
| Initialize
(including time t=0)

Find alt events that occur,
it any, during period (t,
t + T

.

Let all these events oOcCcCur.
Update the system state

Extract - their effect on
statistics being gathered

End
of snmglotwn

Yes
Qutput desired /.
statislics _

FLOW CHART # S
FIXED TIME STEP SIMULATION

Generate and store
random data (if any required)

‘lnitiqllze]

4

Find next potential event,
and its time of occurrence

'

Let the event occur, Up -
date system state and clock

Extract its effect on statis -
tics being gathered

End
of simulation
?

Yes

Qutput desired
statistics

FLOW CHART # 4

NEXT EVENT SIMULATION

4.4 STOCHASTIC SIMULATION

Discréte dynamic systéms cén be classified as
deterministic or stochastic. The deterministic systems are
less demanding computationally than the stochastic systems
and are frequently solved analytically. Stochastic systems
are systems in which atleast one of the variables are given
by a probability function. There is inherent randomness or
unpredictability in the system's behaviour. To simulate such
random variables, we require a source of randomness. In
simulation experiments, this is acheived through a source of
unifomly distributed random numbers. These numbers are sam
ples from a uniformly distributed randbm variable between
some specified interval, and they have equal probabilty of
occurence. Stochastic simulation is of two types : static

stochastic simulation and dynamic stochastic simulation.
STATIC STOCHASTIC SIMULATION

When the distribution of random numbers is stationary
and the random samples are not co-related, the simulation is

called static stochastic simulation.
DYNAMIC STOCHASTIC SIMULATION

In dynamic stochastic simulation initially the
distribution of random numbers is not stationary and the

random samples are co-related. This stage known as

41

transient, has to be crossed and only then the observation

of results is started.

4.5 RANDOM NUMBER GENERATION

Random events can be simulated by generating random
numbers on a computer. The random numbers follow a certain

distribution.

(1) Exponential Distribution : To generate an exponential
distribution, first of all a random number 'r' is generated
with uniform distribution i.e. the number lies between 0 and
1. Then calculate the value of Ei wusing the following

equation.
Ei = -(Mean)*1ln(r)

Ei gives the instance of the desired exponentially
distributed random variate. This process of generation of
exponentially distributed random variate is described in

flow chart # 5.

(2) Poisson Distribution : Poisson distribution is a
discrete distribution in which the probability of an event
occuring exactly "k" times during a time interval t is given

by the probability mass function

GK(T) = ((tL) k)*(1/(k!))*(e” (-t*L))

42

=

3

GEHERATE A RANDOH
HUHMBER ’rn’ HITH
UNIFORH DISTRIBUTION
9 < rn <= 1

y

CALCULATE
-(HEAM) ¥ In(rn)

A

<: RETURN :>

FLOW CHART # &

EXPONENTIALLY DISTRIBUTED
RANDOM VARIATE

Where L is the average number of times the event occurs in a
unit period. The procedure required to get a poisson
distributed random variate is_ to form the product of
successive uniformly distributed random numbers, untill the

following equation is satisfied.
Ui < exp(-L)

Where Ui is a uniformly distributed (0,1) random number, L
is the mean of the distribution. The desired random variate
instance Ni will be one 1less than the required number of
uniformly distributed random numbers as shown in flowchart #

6.

4.6 LENGHT OF SIMULATION RUN

A simulation run 1is an uninterrupted recording of a
system's behaviour wunder a specified combination of
controllable variables. How 1long to run a simulation
experiment to aceive a reasonable degree of confidence in
the numerical results of the the experiment, is wvital for

validification of simulations involving randomness.

A problem specific variable entity ié chosen as ‘control
variable. This control variable should have important
bearing on the results of the simulation. The simulation run
continues till the value of the chosen control variable

stabilises. The check on the random number generator can

44

(STWRT
\]
.

INITIALIZE

PRODUICT =1.€ ;i K=0©

Pzevp(—ARRIUAL FRaTED

PRADUCT »>»= P

CEHERATE A RANDONH

HUHMBER rn’ HITH
UHIFORH DISTRIBUTIOHN

© < rn <= 1

PRODUCT= PRODUCT % rn

INCREHENT K BY 1
I

1

FLOW CHART # 6

POISSON DISTRIBUTED
~ RANDOM VARIATE

serve as a secondary method for the simulation 1length
control. In experiments using random numbers, the sample
mean (X) should be as close to population mean (L) as
possible. These become exactly equal when number of samples
taken are infinite. However, this needs simulation to
continue for infintely long time which is not practical. In
practice, simulation is allowed to run till a confidence

level in the results is reached.

Confidence 1limit (t) : It is the permitted variation in the

observed results from the theoritical results.

Confidence level : It is the probability that observed

results are within the confidence limits.

Confidence level calculation : Consider a random variable X
with mean L and standard deviation D. If X1, X2, X3,---—---

Xn are the samples taken, their average is

Xavg = Xi/n

and if n --> infinity, (Xavg - L) .--> 0

According to Central Limit Theorem, the sample mean Xavg is
itself a random variable with mean L and standard deviation

D/(n"0.5). The number of samples néeded (n) is given by

For (1-) = 90%, Y = 1.65

45

Where t = confidence 1limit, Y is a standardised normal

static for probability (1-) and D"2 is the variance of

the samples. D2 is not knowm in advance, so it is estimated

as

So for static stochastic simulation follow

following steps :

(1) Simulate for ni = 2000
(2) Calculate D"2est and recalculate n(i.e. ni)
(3) If ni+l1 > ni, continue upto ni+l

(4) Repeat above steps till for some "3j", nj+l <= nj

This process is explained in flow chart # 7.

4.7 SIMULATION MODEL

Data slots moving on a unidirectional bus

the

a

continuous system with continuous flow of information.

However the state of the network changes only when a slot

start pulse reaches the transmitting or receiving end of a

source (Multimedia system). At these time instants, a source

(1) Takes decision for accessing the channel.

46

STHU
RUN LE

CALCULATE SAMPLE HEAN
x>
ESTIMATE UARIANCE

2 2
O\ = Nest

¥

, ESTIHATE
M = n¥ — M SAHPLE SIZE
n*

FLOW CHART # 7

ATTAINING CONFIDENCE LEVEL

(2) Checks the existing packet at receiving end, whether it
is its own traffic, for self acknowledgement. If it is this

packet is removed from the queue.

(3) Increments its internal clock used for generation of

traffic packets.

This discrete event system based on a continual
transmission of data by sources is simulated by fixed time
step model. One time step is movement of slots train on the
network by one small unit distance. Every new allignment of
slot train on the network leads to some state changes due to
activities of the active sources. These events are allowed

to occur and system state is updated.

To simulate the actual behaviour of such a system as
closely as possible, the whole simulation software is driven
by a simulated slot pulse train movement and their
allignment with active sources on the:network. This approach
has been used since their are many different events and
their sequence of occurence affects the system behaviour. A
simulated slot pulse movement gives an effective solution

for the sequencing of potential events.:

In this simulation, initially, _the random number
generator is warmed up and its first thousand random outputs
which are generally co-related are ignored. This fulfills

the two preconditions for static stochastic simulation.

48

The network in the simulation is also warmed up to its
steady state. This is done by ignoring the packet delay
results obtained during first one thousand slots that pass

across the bus in a simulation run.

The control variable chosen is the average transfer
delay for the video data. The Video data is the traffic on
the network. Hence choice of this entity for controlling the
length of the simulation is justified. After every thousand
video packets transfered across.the network, new value of
the average transfer delay is recorded. Confidence level
estiﬁation is done on these valués obtained. The confidence
level. estimation on the random number generator proceeds
- simultaneously. Whenever any of these two checks indicate
that the simulation has acheiQéd maturity stage, the
simulation run is stopped and the results are recorded. The
éonfidence level chosen for the random number generator

check is 90% with confidence 1limit 0.05.
4.8 SIMULATION OF MULTIMEDIA TRAFFIC

VIDEO TRAFFIC

Simulation of video packet is done by periodic
generation of a video data packet. This period conforms to
the bandwidth requirement of video traffic and the bandwidth

supported by the underlying optical fiber network. Maximum

49

communication delay allowed for a video data packet is 30ms.
More than one percent of total video should not face
communication delay more than this. Otherwise the service

offered by the network is unsatisfactory.
VOICE TRAFFIC

Bursty voice data is modelled by poisson arrival of
data packets. The average bandwidth requirement is 64Kbps.
One talkspurt of this traffic is accomodated in one packet
of the network. Because of fixed length of packets, some
capacity in packet is unutilized by voice traffic while the
packet length (2000 bits) exactly fits the requirements of

one packet of video traffic.
ORDINARY DATA TRAFFIC

Ordinary data traffic is also simulated by poisson
arrival. The average bandwidth requirement of the data is
taken to be 64Kbps, which 1is equal to approximate

requirement of data retrieval on demand.

50

CHAPTER FIVE

PERFORMANCE ANALYSIS

CHAPTER 5
PERFORMANCE ANALYSIS

In this chapter the performance analysis of the
‘protocol designed is carried out. The system is simulated on
the computer and the simulation results are analyzed for
delays (Queuing delay, Access delay and Transfer delay),
throughput of the system and load supported by the network.
For each of the above mentioned performancé indexes, effects
.of fairness schemes (C.A.P. and E.T.S.) are also analyzed.
Graphs are plotted for analyzing the simulation results.
These graphs include the queuing delay, access delay and
transfer delay faced by packets of different data types for
different number of active stations. Number of active
stations supported by the network on applying different
fairness techniques is also described. The effect of
fairness techniques on individual delays of sources is
analyzed. The channel access probability (CAP) assigned to
multimedia sources can be equal for all sources, this case
is indicated by <CAP : OFF> in the graphs. If the channel
access probability is assigned according to the relative
positions of the sources, then in the graphs it is indicated
by <CAP : ON>. Equal Timer Setting (ETS) is implemented on
top of <CAP : ON> assignment. Whenever it is used it is

indicated by <ETS : ON>. The delays are expressed in terms

51

of number of slots where one slot has duration of 13.33

micro seconds.

5.1 DELAYS

In the previous chapters we had discussed the various
kinds of delays a packet faces. The time it takes from the
time of generation of a packet till it reaches the top of
the queue for the first time is called Queuing Delay. Access
Delay is the time gap between when the packet reaches the
top of the queue for the first time till it is self
acknowledged. Transfer Delay is the sum of queuing delay and
access delay. Queuing delay varies with the nature of the
packet. Video packets are given highest priority in the

prioritized output queue, next comes the voice packet and
ordinary data has the least priority. These priorities have
been assigned according to the maximum delay constraints of

various data traffic.
5.1.1 QUEUING DELAY _

Queuing delay depends on the nature of the packet.
Queuing delay for different data traffics is calculated and

results are analyzed from the graphs.
Video Packet

Video packets face minimum queue delay as they have the

highest priority in the queue. Graph #1 and #2 show the per

52

200

160

100

QUEUING DELAY
VIDEO DATA

DELAY (IN S8LOTS)

20 30 40
NO. OF ACTIVE STATIONS

—— <CARP:1ON> —+ <QAP:OFF>

250

200

160

100

QUEUING DELAY
VIDEO DATA ¢ CAP : ON »

DELAY (IN SLOTS)

0 10 20 80 40

Greph #2

NO. OF ACTIVE STATIONS
—— <ET8B:ON> —+ <ETB:OFF>

packet queuing delay faced by video packets plotted for
different number of active stations, Graph #1 shows the
effect of CAP assignment on the queuing delay and graph #2

shows the effect of ETS implemented when CAP is ON.
case 1 : <CAP : OFF> <ETS : OFF>

The queuing delay is negligible for low loads i.e. till
number of active stations is less than 25. As the 1load
increases, queues are formed and result in steep rise in

queuing delay.
Case 2 : <CAP : ON> <ETS : OFF>

In this case the queuing delay is negligibie only till
twelve stations, after that the delay rises very fast. This
is because when number of active sources increases, the
probability assignment changes. The probability decreases
sharply (exponentially) so the number of slots left free by
the sources increases, resulting in increase in queue length

and hence queuing delay.
Case 3 : <CAP : ON> ' <ETS ': ON>

The queuing delay in case of < ETS : ON > is higher
than in case of <ETS : OFF> because on applying ETS, the
wait before making a retransmission attempt increases for
all the active sources accept the most upstream source. So

in general queue length increases.

55

Voice Packet

Voice packets have 1lower priority than the video
packets and higher priority than the ordinary data packets.
Graphs #3 and #4 describe the queuing deléy faced by these
packets. They show the queuing delay for voice packets plot

ted for different number of active stations.

Graph #3 : The effect of CAP assignment is shown in this
graph. The queuing delay for the <CAP : OFF> is smaller than
that for <CAP : ON>. At loads below 20 active stations the

delay is smaller in <CAP : ON> than in <CAP :OFF>.

Graph #4 : This graph shows the queuing delay of voice
packet plotted for different number of active stations. It
shows the effect of ETS technique on queuing delay. The CAP
assignment is graded. The queuing delay in <ETS : ON> is
much higher than in <ETS :0FF> technique. At lower loads (
i.e. till number of active stations is less than 30) the
queuing delay is same in both <ETS : ON> and <ETS : OFF> but
as number of active stations increases further, The queuing
delay in <ETS : ON> scheme encounters a steep rise. This is
because under heavy load conditions, ~the number of
retransmission attempts increases, as collisions ipcrease.
In <ETS : ON> each source has to wait for a long time for

retransmission.

56

1000

800

600

400

200

DELAY (IN 5LOTS)

QUEUING DELAY
VOICE DATA

20 80 40 50 80
NO., OF ACTIVE STATIONS

—— <CAP1ON> ~—— <«CAP:OFF>

- — —]

QUEUING DELAY
VOICE DATA < CAP : ON »

- DELAY (IN SLOTS)

2600
DQUQIEY fevvreeseese e ens e e /
/
BT T PSS PR TR //
/
/
1 rf
OQO e // frree e
800

0 10 2Q 30 4G 60 - 80
NG, OF ACTIVE STATIONS
—— <(ET8:ON> — <(ETB:OFF:>
Graph #4

ordinary Data Packet

- Ordinary data is placed next to the existing video and
voice data in the queue of a source station. So an ordinary
data packet is transferred only when there is no video or
voice packet present in the queue. Any new video and voice
packets are put ahead of the already existing ordinary data
packets in the output queue. Graphs #5 and #6 describe the
queuing delays faced by ordinary data packets as the number

of stations increases.

Graph #5 : This graph shows the effect of CAP assignment on
queuing delay for ordinary data plotted for different number
of active stations. The nature of the graph is similar to
that for voice data (graph #3). The same explanation is
valid for this graph also. But the absolute values of the
delays are more. for ordinary data than for voice data or
video data. This is because ordinary data has least priority
in the output queue. Quebec delay in <CAP : ON> and <CAP :
OFF> 1is same under low load conditions (i.e. wupto 25
stations) after that a steep rise in queuing delay in <CAP :
ON> is encountered. ‘This is because as number of active
stations increase, the channel access probability assigned
to them decreases exponentially and because of this size of

gueues increases, increasing the queuing delay.

59

QUEUING DELAY
ORDINARY DATA

DELAY (IN SLOTS)

2000

1500 T

1GQo

600

0 10 20 30 40 60 80
NG, OF ACTIVE STATIONS

—— <CAP:ON> —— <CAP:OFF>

Gra 6 : This graph shows the effect of ETS technique on
queuing delay for ordinary data plotted for different number
of active stations. The CAP assignment is graded. Upto 25
stations, the queuing delay in case of <ETS : ON> is almost
the same as that in case of <ETS : OFF>. At 1oads higher
then this, the delay in case of <ETS : ON> is much higher
than in case of <ETS : OFF>. This is because queues in the
case of <ETS : OFF> clear off quickly. The wait time between
successive retransmission attempts is smaller in case of

<ETS : OFF>.
5.1.2.ACCESS DELAY

Starting from the instant a packet reaches the top of
the queue for the first time to the instant it is
successfully self acknowledged at the receiving end of the
source, this period is called the access delay. This delay
includes the data transmission time and delay for
propagation across the network. The transmission delay
component is equal to one slot length. The propagation delay
is fixed for a source according to the 1length of fiber
between the two endé of the source. The remaining component
is variable depending on the number of attempts in which the

packet is transmitted.

61

QUEUING DELAY
ORDINARY DATA < GAP ; ON >

DELAY (iN SLOTS)

300
DEQIQ frevveeeesseeresssm e 7.’
//
2000 ._.....-.........,-4......l’
/’/
1600 B <+ 54 b b it e ae e aa i et A e aana e e e e n ety e rf/"-j/#
/ ,/

GO0 _/’ - e
S
-

S BT
,-'ﬁ//’
N e~
0 - $ - 1 i 1 {
Q 10 20 30 40 6Q ag

Greph #9

NG, OF ACTIVE STATIONS

—— <ET8:ON> —— <ET8:OFF>

Vvideo Packet

When a video packet comes at the head of the queue, it
gains the first preference. It becomes the first packet to
be transmitted by the source station. As video packets have
highest priority in the queue, the access delay depends only
on the no. of transfer attempts needed before the packet is
successfully transmitted Graphs #7 and #8 show the access
delay of video packet plotted for different number of active

stations.

Graph #7: This graph shows the effect of CAP assignment on
Access delay for video data plotted for different number of
active stations. The access delay under <CAP: OFF> is almost
same for increasing number of stations. In case of <CAP:
ON>, the rise in access delay with increasing load is faster
than in the case of <CAP: OFF>. Since, as the number of
active stations increases, the probability values assigned
to sources decreases, resulting in more and more number of
slots left free in wait by active sources. This results in
larger access delays and their faster increase with

increasing load.

Graph #8: This graph shows the effect of ETS technique on
the per packet access delay plotted for different number of
active stations. The access delay in <ETS: ON> case is

slightly larger than in <ETS: OFF> case. In <ETS: ON> case,

63

100

ACCESS DELAY
VIDEO DATA

DELAY (IN 8LOTS)

00 10 20 80 40
NO. OF ACTIVE STATIONS
T CCAP:ON> T <CAP:OFF >
Graph #7

ACCESS DELAY
VIDEO DATA < CAP : ON »

DELAY (IN 5LOTS)

00

80

80

40

20

Q 10 20 3Q | 40 60 80
NO, OF ACTIVE STATIONS

—— <ET8:0ON> —— <ET8:0OFF>
Grepnh #8

access delay curve shows a slow and steady increase with

increasing load.

Voice Packet

Once the voice packet reaches the top of the dqueue,
the access delay starts till the packet is self acknowledged
at the receiver end. As the voice packet is second in the
priority list of the output queue, éven after it reaches the
top the queue, a video packet can supersede it and occupy
the top of the queue position. Therefore the access delay
for voice packets depends upon the no. of retransmission
attempts needed for successful transmission and the
frequency with which video packets are generated, as they
can supersede the transmission of voice packets. Graphs #9
and #10 show the access delay of voice packets plotted for

different number of active stations.

Graph #9: Graph #9 shows the effect of CAP assignment on
access delay for voice data plotted for different number of
active stations. Initially upto 35 active stations access
delay for <CAP: OFF> case is higher than the access delay
for <CAP: ON> case. This is because of the equal mix of
traffic from upstream ‘and downstream sources in the
transferred packets and since the upstream sources have high
delays in <CAP: OFF> caée. But at higher loads, again due to
domination of channel by the downstream sources, the access

delay for <CAP: OFF> case starts reducing. The access delay

66

ACCESS DELAY

VOICE DATA

DELAY (IN SLOTS)
260
200
160 -
100
60

o i 1 | L 3

0 10 20 30 40 60 80

NG, OF ACTIVE STATIONS
—— <CQAP:ON> —— <CAP:OFF>
Graph #Q

for <CAP: ON> case increases slowly upto 45 active stations
and after that it is nearly constant upto 50 active
stations. The domination stage in_this case is postponed to
higher load then the <CAP: OFF> case, where it is only 35

active stations.

Graph #10: This graph shows the effect of ETS technique on
the per packet access delay plotted for different number of
active stations. The CAP assignment is graded. The access
delay under <ETS: ON> and <ETS: OFF> 1is almost same. The
access delay is almost constant till the number of active
stations is less than 30 stations. After that there is a
smooth rise in delay which stabilizes at loads higher than

50 active stations.
Ordinary Data Packet

The absolute value of access delay is more for ordinary
data than for voice data. This is because when an ordinary
data packet reaches the head of the queue, a newly generated
video or voice packet, if any is placed ahead of it. Graphs
#11 and #12 describe the access delays faced by ordinary

data packets as the number of station increases.

Graph #11 : This graph shows the effect of CAP assignment on
access delay for ordinary data plotted for different number
of active stations. In <CAP: OFF> and <CAP:ON>, till 32

active stations, the accesé delay 1is almost same for both

68

ACCESS DELAY
VOICE DATA < GAP : ON >

DELAY (iN 8LOTS)

Q 10 20 30 4Q - 60 80
NO. OF ACTIVE STATIONS
—— <ET8:0ON>. — <ET8B:OFF>
Graph #10

ACCESS DELAY
ORDINARY DATA

DELAY (IN SLOTS)

3G0

D) feeeeerem e e e s bRkt

0 10 230 a0 40 50 o
NO, OF ACTIVE STATIONS

—— (CAF:ON> —— <CAR:OFF>

Gram #11

and constant. Then the access delay in <CAP: ON> increases -
whereas the access delay in <CAP: OFF> remains more or less

constant under heavy load conditions also.

Graph #12: This graph shows the effect of ETS technique on
the per packet access delay for ordinary data. The CAP as
signment is graded. The access delay in the case of <ETS:
ON> is same as that in case of <ETS: OFF>. So the ETS
technique does not effect the access delay much. The access
delay shows increase as the no. of active stations increase.
This is because collision rate increases with increase in
traffic, this calls in for increased number of

retransmission and hence increase in access delay.
5.1.3 TRANSFER DELAY

Transfer Delay is the sum of access delay and queuing
delay. The total time taken from the time a packet is
generated, till it is successfully transmitted is called

Transfer Delay.
Video Packet

Graphs #13 and #14 show the per packet transfer delay
faced by video data packets plotted for different number of
active stations. They show the effect of channel access
probability assignment and equal timer setting technique on

the transfer delay.

71

ACCESS DELAY
ORDINARY DATA < CAP : ON»

DELAY (IN SLOTS)

300
260 -’__'__:_7;.
_f"f//
200 -_,..-"’f’,.,-ﬂ"k’
- Pl
4"’/ -
160 e -7_'_’_,,1(/ .. 1
100 ...
50 ..
.0 i 1 'l \ 1
Q 1Q 20 30 40 60 a0

@raph #12

NG, OF AGTIVE STATIONS

—— <ETB:0ON> —— <ET8:CFF>

Graph #13: This graph shows the effect of channel access
probability assignment on the transfer delay for different
number of active stations. When CAP assighment is OFF, as
the 1load increases, the delay increases initially very
slowly and at higher loads, it increases sharply. When CAP
is ON i.e. channel access probabilities are different for
different stations, the delay rises sharply with increasing
load and at high load the increase is steep. The delay in
case of <CAP: ON> is higher than in case of <CAP : OFF>.
This is because, when numbers of active multimedia systems
increases, the probability assignment changes. The
probabilities decrease sharply so the number of slots left
free by the sources increases fast. This results in fast

increase in the delays faced by the packets.

Graph #14: This graph shows the effect of Equal Timer
setting technique on the per packet transfer delay of video
data. The channel access probability is graded. On
application of ETS, average transfer delay increases. The
delay rises faster than in <ETS: OFF>. The increase at
higher loads (around 50 active stations) is steep. This is_
bgcause the wait before retransmission attempt is much
higher than in case of <ETS OFF>. Every source, whatever be
the gap between its two ends, has to wait for a fixed number
of slots before making retransmission attempt in case a

packet is not self acknowledged within timer interval. The

73

300

260

200 caee

TRANSFER DELAY
, VIDEO DATA

DELAY (IN SLOTS)

160
100
50
¢} L . . 4 —
0 10 20 80 40 60 80

NO, OF ACTIVE STATIONS
—— CCAP:ON> —— <CAP:OFF>

TRANSFER DELAY
VIDEO DATA < CAP : ON >

DELAY (IN SLOTS)

400
B et e S
//
[4
/7
//
A— ,./'
g vy
JOQ e s oA __,.f-‘" ...
PSS
4,‘-"‘"#_#-‘
*‘—‘_'_'_ .
0 i 1] 1 i
¢ 10 20 30 4Q &5Q 60

Graph #14

NO., OF ACTIVE STATIONS

—— <ET8:ON> —* <ET8:OFF>

timer value set is equal to gap between two ends of the most

upstream source.

Voice Packet

Voice data is second in priority to video data in the
output queue of multi-media sources. Graphs #15 and #16 show
the per packet transfer delay for voice data plotted for
different number of active stations. They show the effect of
channel access probability assignment and Equal Timer

setting techniques on the transfer delay.

Graph #15: This graph shows the effect of channel access
probability assignment on the transfer delay for different
number of active stations. When CAP is OFF, the delay
increases slowly upto 25 active stations and then with some
fluctuations stabilizes for higher load when CAP is ON, the
average transfer delay increases with offered 1load.
Initially upto 30 stations, it rises slowly but later upto
45 active stations, it rises steeply and then for further
load, the delay starts stabilizing as now the downstream
sources dominate the channei and have very low transfer

delay, so average transfer delay stabilizes.

Graph #16= This graph shows the effect of ETS technique on
the per packet transfer delay for voice data. The channel
access probability assignment is graded. Upto 30 stations,

the transfer delay is same 1n both the cases. At higher

76

1460

12Q0

100G

TRANSFER DELAY

VOICE DATA
DELAY (IN SLOTS)
e
e e e e

Grepn #16

20
NG, GF ACTIVE STATIONS

—

—— <CAP: ON>

3¢

40 oG 80

QAP+ OFF »

TRANSFER DELAY
VOICE DATA ¢ CAP : ON »

DELAY (iN SLOTS)

260Q0
DI brvrrerree e //.
/
/
BB v reroeeee e ere s /
. A~
/ .
1000 B e ettt e eeeieeniieeteeeeeeteaneeateaseaaeentaetatineeeaareaarain ;’/'. /_,,r

0 10 20 30 40 60 80
NO. OF ACTIVE STATIONS

—— (ETB:0ON> —— <ET8:OFF>
Greaph #18

loads, the <ETS:0ON> case has higher transfer delay than in
<ETS: OFF> case. The increase in transfer delay at higher

loads is very steep.

ordinary Data

Oordinary data has the least priority in the output
gueue. So the ordinary packet is transmitted only when no
video or voice packet is present in the queue. So, transfer
delay of ordinary data packet is maximum as cbmpared to
video or voice data. Graphs #17 and #18 show the per packet
transfer delay for ordinary data plotted for different

number of active stations.

Graph #17: This graph shows the effect of channel access
probability assignment on the transfer delay for different
number of active stations. Upto 30 active stations, an ordi
nary data packet faces more transfer delay in <CAP: OFF>
than in the case of <CAP: ON>. At higher loads (40 active
stations) the delay value stabilizes under <CAP: OFF>. Under

<CAP: ON> the delay rises steeply after 35 active stations.

Graph #18: This graph shows the effect of ETS technique on
the per packet transfer delay for ordinary data. The channel
access probability assignment'is_graded. The transfer delay
in case of <ETS: OFF> is higher than for the case of <ETS:
OFF> upto 30 stations the delay for the two schemes is only

slightly different. But on higher loads, the delay increases

79

TRANSFER DELAY

ORDINARY DATA
DELAY (IN SLOTS)
2000
BN b e e ,’/”f
/
/
/
1000 .._................A..................4...‘-.......................”..............‘...“.“.4......7/. .. 1
v
/’/
—W
QG —f,-l'ﬁ’ﬂ._ e
Mj
-&——f——h‘ﬁ’_’"—’—
0 1 i 1 . I kY
Q 10 20 3¢ 40 &0

NO. OF ACTIVE STATIONS
—— <CAP:ON> — <QAP:OFF>

- Graph #17

TRANSFER DELAY
ORDINARY DATA ¢ CAP : ON >

DELAY (IN SLOTS)

3600

Sooo T
| /

2600 ._/

2000

1600

1000

600

o 10 20 30 40 60 80
NO., OF ACTIVE STATIONS
—— ¢ETB:ON> —— <ETB:OFF>
Graph #18

steeply in <ETS: ON> In <ETS:OFF> stabilization occurs after
40 active stations whereas with <ETS: ON> stabilization

occurs after 50 active stations.

In all cases, the absolute value for delay are much
lower than the maximum delay limits imposed by various data

traffics i.e.

Data traffic Max. delay limit
Video 2500 slots
Voice 12750 slots

Ordinary data --

5.2 THROUGHPUT Vs. LOAD

A multimedia system offers various kinds of data
traffics. These data traffics use different bandwidths.
Video uses a Bandwidth of 1.5 Mbps, voice- data uses a
bandwidth of 64Kbps and ordinary computer data uses a
bandwidth of 64kbps of the channel. Therefore one multimedia
system uses_1.085% of channel bandwidth. As the number of
active stations increase, the load offered increases. The
load can also be expressed in terms of fraction of channel
bandwidth. When a source transmits data in a slot, the
already existing signal on the bus is replaced by this
locally generated signal. In the case of a collision, the

data of the downstream source exists on the slot and the

82

slot is not wasted. Thus a slot is utilized if one or more
sources put their data in it. Graphs #19, #20 and #21 show
the channel utilization plotted for different amounts of
load offered. These graphs show the effect of fairness

schemes on the channel utilization.

As the 1load increases, more slots are utilized for
transmission of data and the throughput of the system
increases. The graphs between ‘throughput and the 1load
offered are simple straight lives for these loads offered.
These graphs are different in nature to the "Throughput vs
load offered" graph onr simple ALOHA contention system. In
the case of ALOHA, a collision results in wastage of the
slot since both the colliding packet are lost. Hence the
throughput increases with increasing load offered only upto
a certain load level (0.18 for unslotted ALOHA to 0.36 for
slotted ALOHA). When the load is increased further the
throughput starts decreasing. In contrast, as explained
earlier, throughput in this system increases with increasing
load. these graphs shall show saturation when the offered
load becomes equal to the capacity of the network. That

stage comes at nearly 90 active stations.

5.3 SUCCESSFUL TRAFFIC TRANSMISSION

A station is said to be successful if it is able to

successfully transmit data traffics. Graphs #22, #23, #24

83

THROUGHPUT/LOAD OFFERED

THROUGHPUT -

< CAP : OFF »

Q8

0.6

Q.4

0.3

0.2

01

0.2 0.3 0.4 0.6 0.8
LOAD OFFERED

THROUGHPUT /LOAD OFFERED
<CAP : ON>

THROUGHPUT

o 0.1 0.2 0.8 0.4 0.6 0.8
LOAD OFFERED

THROUGHPUT /LOAD OFFERED
<CAP : ON: <ET8S: ON>

THROUGHPUT

Q.8

o 0.1 0.2 0.8 0.4 0.6 0.8
LOAD OFFERED

show the number of successful stations at different loads

under different fair schenes.

Graph #22: This graph shows the no. of successful stations
for different data types when Channel Access probability for
all stations is same i.e. equal to one. When 40 stations
are active , only 35 of them are able to transfer ordinary
data. When 50 stations are active only 45 are able to

transfer voice dataand only 42 are able to transfer ordinary

data.
Graph #23 : This graph shows the number of successful sta

tions at different loads under <CAP:ON> assignment. Video
data is transferred by all the stations upto 50 active sta
tions. All stations are able to transfer all types of data
traffics, till number of active stations in less than 50.
On further increasing the number of active stations, some
stations fail to transfer voice and ordinary data, though

all of them are able to transfer video data.

Graph #24: This graph shows the effect of <E.T.S.:ON> tech
nique with <CAP:ON> on the number of successful stations at
different léads. All stations are succe;sful till the load
is less than 35 active stations. On increasing the number
of active stations further i.e. when 40 stations are active,
one fails to transfer voice data and two fail to transfer

ordinary data. This situation deteriorates as number of

87

1 SUCCESSFUL TRAFFIC TRANSMISSION
< CAP : OFF>

NO. OF SUCCESSFUL STATIONS

i. 60
ﬁ 40
80
20
10
. . : " o
0 10 20 30 40 60)

NO. OF ACTIVE STATIONS

- VIDEO DATA —+— VOICE DATA —%~ ORDINARY DATA
Graph #22.

SUCCESSFUL TRAFFIC TRANSMISSION
< CAP : ON >

NO. OF SUCCESSFUL STATIONS

¢} 10 20 80 40 &0 60
NO. OF ACTIVE STATIONS
— VIDEODATA —— VOICE DATA —*— ORDINARY DATA
Greph #23

SUCCESSFUL TRAFFIC TRANSMISSION
<CAP:ON> <ETS :ON>

NO. OF SUCGCESSFUL STATIONS

o 1 i L 1 L
0 10 20 80 40 50 80

NO., OF ACTIVE STATIONS

—— VIDEO DATA —— VOICE DATA —*— ORDINARY DATA

Greph #24

= —

stations are further increased. At 50 active station, 4
stations fail to transfer voice data and 8 stations fail to
transfer ordinary data. Video data is successfully
transferred by all stations for the load of 50 active

stations.

On analyzing the above three graphs it was found that
when channel Access Prob. of all stations is kept equal, the
network is able to cater for only 35 active stations.
Whereas when Channel Access Probability is graded for giving
fair access to all sources, it was found that the system was
able to cater for 50 active stations. On applying equal
Timer setting technique and graded channel access
probability, it was found that only 35 stations were able to
transfer data successfully therefore I conclude that Channel
Access probability assignment without equal timer setting

technique is best suited for this application.

5.4 SIMULATION RUN LENGTH

A simulation run is stopped when the control variable
chosen is found to be stabilized. The control variable
chosen for this simulation is the average transfer delay for
the wvideo packets. Since video traffic is the dominant
traffic on this network, this choice for control variable is

justified.

91

Graph #25: This graph shows the variation of average
transfer delay for video data .with the 1length of the
simulation run taken. The length of the simulation run is
expressed 1in terms of the number of video packets
transferred across the network. The new value curve shows
fluctuations initially and after 10,000 packets, it starts
stabilizing. The average of previous values curve shows
the average of all previous values obtained at steps of 1000
pckts. At 13,000 packets transferred, the new value graph
stabilize close to the average value graph and at this

point, the simulation is stopped.

92

SIMULATION RUN LENGTH
¢ CAP : ON >

Video Pokt Transfer Dolay

leg@ -
foe [
log |
log |
fop
96 1 i i
0 <] 10 % 20 .

Video Pckts Comm.{in 1000)
o+ New Value ~——— Prewioue Valus A\kj.

CHAPTER SIX

CONCLUSION AND FUTURE DIRECTIONS

CHAPTER 6
CONCLUSION AND FUTURE DIRECTIONS

In this project I have designed a multimedia protocol
for a high speed fiber optic bus network. The design was
simulated using Borland c*t. Pperformance Analysis of the
designed protocol was carried out and the software developed
successfully predicted the network behavior under varying
traffic conditions. The results of the simulation run give
the different delays in the transfer of packets across the
network, the throughput of the system, the packet loss, the

network service to individual stations.

The network has a maximum load limit, to which it can
provide satisfactbry service. This 1limit depends on
fairness strategy uéed. - On analyzing the results it was
found that when <CAP:O0FF> is used, the network could support
only 35 active stations whereas when <CAP:ON> was used the
number of successful stations increased to 50. When
<ETS:ON> with <CAP:ON) was used, the network could support
only 32 stations. So we find that <ETS:0ON> is not a useful

strategy.

When the load is moderate (i.e. around 30 stations),
video packets face the least delay under <CAP:GFF>. The
delay faced in <CAP:ON> is higher than this -and <EPS:0ON>

results in highest delays. Voice and ordinary data packets

94

are not much affected by the fairness strategies. The
degree of fairness to upstream soufces is highest ﬁhen
<CAP:ON> and <ETS:0OFF> scheme is used. The ~degree of
fairness to upstream sources is least when <CAP:OFF> is

used. ETS scheme does not have much effect.

Upto 15 active stations, the upstream sources get a
good service in <CAP:0FF> scheme along with faster overall
traffic transfer. For loads ranging from 15 to 35 active
stations, the degree of fairness to upstream sources
decreases. The <CAP:OFF> provides fast service only to
downstream sources, whereas <CAP:ON> provides fairness to
upstream sources although the overall delay is slightly
higher. For loads higher than 35 active stations <CAP:ON>
with <ETS:O0FF> is the best techniéue. Basically it is a
trade off between delay and fairness. For loads less than
15 active stations <CAP:OFF> should be used for faster
packet transfer and for higher loads <CAP:ON> with <ETS:OFF>

should be used.

The prioritized queuing system used for output queues
of multimedia sources has proved to be effective solution
for meeting these constraints. The video data and voice
data face delays much 1less than their respective upper
limits. Moreover, the ordinary data does not suffer much
because of the least priority given to it. It also gets

satisfactory network service.

95

The Channel utilization of the network is high under
all the three fairness schemes. the Channel utilization
increases with increasing load. This is possible due to use
of active opticél taps. Under a collision situation, at
least one packet is allowed to transmit, hence no slot is
wasted. Thus the multimedia computer network can support
applications like video conferencing, voice traﬁsmission and
ordinary data transfer. It can support a maximum of 50

stations, all of which can offer all kinds of data.
Suggestions For Future Work

(1) LCSMA AND LCSMA-CD can result in better channel access
strategies. Although their implementation is complex and
expensive, they can improve the service provided by the
network. Future work can be based on developing access

strategies using these protocols.

(2) This network uses single wavelength for the signal
transmissionn. An approach using multiple wavelengths can

be implemented.

(3) A mechanism can be developed by which under 1low 1load
conditions the network uses <CAP:OFF> technique and as the

load increases the network adapts the <CAP:ON> technique.

96

APPENDIX A

MATHEMATICAL ANALYSIS OF CHANNEL UTILIZATION EFFiCIENCY

A slot moving across the trénsmitting ends of the
active sources goes unutilized only if none of the sources
had packets to transmit in that slot. Thefefore, under very
heavy load conditions also, the channel utilization tends to

one.

Suppose N = number of active sources >= 1
Pi = instantaneous probability of source "i" of

transmitting a packet into slot being studied.

Probability of slot being unused is equal to the product of

probabilities of not transmitting by individual sources

i

(1-P3)

A slot is utilized if at least one source transmits a packet

in that slot, so
Slot Utilization Probability (S.U.P.) = 1 - (1-Pj) N>=1

So as the number of active sources (N) increases, slot

utilization probability increases and tends to one.

APPENDIX B

NETWORK SPECIFICATIONS

CHANNEL

Nature of channel Optical Fiber

Bit Rate 150 Mbps

Transmission Speed 2*10°8 m/sec
TAPS

Optical Taps Active, Unidirectional
TIMING

System Timing Slotted

Slot Time 13.33 micro sec.

packet length 2000 bits
PROTOCOL

ALOHA

TRAFFIC CHARACTERISTICS

VIDEO VOICE ORD. DATA
BANDWIDTH 1.5Mbps 64Kbps 64Kbps
NATURE S B B
BITSTREAM C 8] U
AVG. TALKSPURT - 1.67 ms -
AVG. SILENCE INTERVAL - 1.33 ms -
S = Steady B = Bursty

C = Compressed U Uncompressed

BIBLIOGRAPHY

[1] FRANCIS NEELAMKAVIL, "Computer Simulation and Model

ing", John Wiley and Sons, Chichester, Britain, 1987.

[2] NARSINGH DEO, " System Simulation with Digital

Computer", Prentice Hall of India, New Delhi, 1991.

(3] DIEDIER LE GALE, " MPEG : A Video Compression
Standardfor MUltimedia Applications", ACM Communications,

Vol.34, No. 4, pp. 47-58, April 1991.

[4] GREGORY K. WALLACE, " The JPEG Still Picture
Compression Standard ", ACM Comm., Vol. 34, No.4, pp. 31-44,

April 1991.

{5] ANDREW S. TANENBAUM, " Computer Networks ", Prentice

‘Hall of India, New Delhi, 1990.

(6] CHONG-WEI TSENG, BOR-UEI CHEN, " D-Net, A New Scheme
‘for High Data Rate Optical Local Area Networks', IEEE Jour.
on Special Areas in Communications (SAC), Vol. SAC-1, No.3,

pp. 493-499, April 1983.

1731 NICHOLAS F. MAXEMCHUK, " Twelve Random Access
Strategies for FIber Optic Networks", IEEE transactions on

Communications, Vol.36, No.8, pp. 481-489, August 1988.

(8] AUREL A. LAZAR, JOHN S. WHITE, " Packetized Video on
.MAGNET", Optical Engineering (Journal), Vol.26, No.7, pp.

596-601, July 1987.

[9] COSMOS NICOLAOU, " An Architecture for Real Time
Multimedia Communication Systems", IEEE Journal on SAC,

Vol.8, No.3, pp. 391-397, Aplril 1990.

[10] TATSUYA SUDA, TRACY T. BRADLEY, " Packetized Voice/Data
Integrated Transmission on a Token Passing Ring Local Area
Network", IEEE transactions on communications, Vo0l.37, No.3,

pp. 238-246, March 1989.

SOURCE LISTING

/7 multimed.c ' FINAL VERSION

// SOURCE CODE OF M.YECH PROJECT

// make sure whether BG! INITIALIZATION i& praper !
J7RERBARRABRER AR RERE standerd hoader files IiNClUusSionN #XFAXRHERERREXRE
#include <stdio.h>

#include “stdlib.h>

#include <graphics.h>

#include <conio.h>

#include “math.h>

#include <alloc.h>

AR L Ly Ry L T R T R N R Y RS
/7 This block contains the header declarations for the program

#ifndef NULL
#define NULL O
#endif

#ifndef ZERO
#define ZERD O
#endif

#define TWO &
#define FOUR &

#define MAX _STNS 64
#define NO_SLOTS_IN_RUN 1000
#define MAX_BLOTS_TO_RUN 65000

#define YES
#define NO
#define TRUE
#define FALSE

O = QO »e

#ifndef DECIMAL
#define DECIMAL 10
#endif

#define ONE_SECOND 1000

#define INVALID -1 // used in move_slts()
// used in ihitialization

#define NO_QF_DATA_IYPESlS // no. of data types

#define EMPTY_SLOT (o}

ddefine ORDINARY_DATA 1

#define VOICE_DATA 2

#define VIDED_DATA 3

#define MAX_VOICE_DELAY 12750

»

. o
#define MAX_VIDEQ_DELAY 2500

#define NORMAL_Q_LEN_LIMIT &
#define UPPER_Q_LEN_LIMIT 8
#define SERIAL_LENGTH 20

#define RASE_FOR_RANDOM ©.984 //meant for producing avg. 1 pkts per mestage
/7 used for ordinary and video traffics here.
#define MEAN_URD 7 2340 // avg. gap between successive ord. data
// spurts. This and BASE_ .. leads to

// d&vg, 1 pkt per 2000 slot

fdefine MEAN_VOICE - 2340 // avg. gap between talk spurts that is
/7 avg: | pkt is produced per 225 slots.
// approximating 1285 + 100

#define MEAN_VIDEOD 100 // avg. gap between successive video data phkts
// this leads to avg. 1 pkt per 125 slots

#define NO_PKTSE_IN_UNIT 1000 // the unit of the packet store
// the unit length shall also be dependent
/7 on the no. of slots in the unit run :
/7 iuquci*Q&«#«*#&##%**&#Q*«*;*;&*«4*;;44*44«*****ga****ﬁffuiifi*»**«**
/7 this block coritains headers for the simulation verification part

#define Y_VALUE 1,65 // value used in the formula for n(i+1) from n(i)
#define CONFIDENCE_LIMIT 0.05 // desired confidence limit (interval)
#define INITIAL_TRIES S00 // no. of calls initially to random no. gnrtr
IZA 2 2T2TT RIS SIS LTS ISR ZL R S ST TR TR X X 2 g Y R Y2 Y
7/ this block contains the header declarations for the graphics part

#define UPPER 160
#define LOWER 850
#define RIGHT 430

#define LEFT 15 //-the four limits of the bus

#define LEFT_LOCO &5 // denotes the locomotive position's X.
#define GAFP 3 // gap between real and virtual bus

#define SLOT_LENGTH 20 // denotes the length of the slot in pixels
#define MAX_SLOTS 74 // denotes the max no. of slots simultaneous

// on screen.
#define COLUMN_IN_PKT_STORE 5 // no. of columns of the packet store
#define CHANNEL;LENGTH (E#(RIGHT ~ 55 + GAP) + (LOWER ~ UPPER + 2 * GAF))

// the total leéngth of the chainnel over which the sources are arranged
#define ends_gap(x) (CHANNEL _LENGTH - (18 # x))/SLOT_LENGTH

// macro to return the gap between tthe ends
// of a slot in terms of no. of slots

#idefine abs_gap(x1,x2) (floor((9.0 » (float)abs(x1-x&))/(float)SLOT_LENGTH!)

#define stn_gap(xd,x8) (xd > xs) 7 abs_gapi{xd,xs) : (-abs_gap{(xd,xs))
// these two macros are used to find the gap
// between a source and its destination stn
// in terms of number of slots seperating
// them.

#define d_point_offset (LOWER - UPPER)/SLOT_LENGTH

// this value ls to be substracted from the
// communication delay calculation

77 now the dimensions of the result window and related objects start.

#define NO_BOX_FER_ROW 10 // in the result window

#define MARGIN_UFFER <]

H#define MARGIN_LEFT 5 // margins between the boxes and result(or q)
#define BOX_LENGTH 39

#define BOX_HEIGHT 20 // the dimensions of the slot & queue box

#define LEFT_R_WIN LEFT_LOCO
#define UP_R_WIN LOWER + 20 // gap between real bus and window =280

#define RIGHT_R_WIN LEFT_R_WIN + NO_BOX_PER_ROW * (BOX_LENGTH) + (2 » MARGIN_LEFT)

#define DOWN_K_WIN UP_R_WIN+209 // height of window = 20%
// these arg the four limits of the
// result window

/7 now the specific dimensions of the queue window and its objects start.

#define LEFT_QO_WIN RIGHT_R_WIN + (3% MARGIN_LEFT) // leaving the margin
#define UP_O~wIQ UP_R_WIN // same as result window

#tdefine RIGHT_Q_WIN RIGHT // same as real bus

#define DOWN_Q_WIN DOWN_R_WIN // same as result “window

#define SOURCES_SHOWN 4 // no of sources shown in the q window
#define Q_FACKETS_SHOWN 7 // no of packets in the gueue of a source

#defirde REFRESH_COLOR GREEN // this color meant for clearing of the
// vesult window

#define ORDINARY_COLOR LIGHTGRAY

#define VOICE_COLOR LLIGHTGREEN
#define VIDEO_COLOR LIGHTMAGENTA
#define EMPTY_COLOR BLACK // the colors to be filled in the result

// boxes in the result window.

o

/7 temp check with black »* white #* has been choosen with a special reason

/7 BRERRRRBERERRRARBR R BRI 0TI 22T 36 3T 33096 533396 962636 96 3 132 B0
7/ this block contains the global variable declarations in ariginal

F1LE #fp: // temporvary file structure for checking

unsigned int f_act_souwrces{MAX_STNGI; // array for storing which sources
// are going to be active for a particular run
// initialized to °'NO'

unsigned int f_shown_bources(MAX_STNSl; // array for storing which sources are going
/7 to be displayed in the Q-window for this
/7 particular run
// initialized to 'NO°

unsigned int f_special_status{MAX_STNS] ; //flags to indicate special status

unsigned int f_killer_status{MAX_STNS] : // flats to indicate killer status

unsigned int seirial_special_status{SERIAL_LENGTH) // array to record serial in
// which the source enter and leave special status

unsigned int sdrial_killer_status{SERIAL_LENGTH] 4 /7 array to record serial in
// which the source énter and leave killer status

unsigned int empty_special_entry = 2ERO j// indicators for empty positions
unsigned int empty_killer_entry = ZERO ;//7 ,,

int column_shown_sourcesIMAX_STNS1; // array for storing what are the columns to which
// a source has been mapped for the Q_WINDOW
/7 initlialized to ‘'INVALID'

int shown_sources{SOURCES_SHOWN]; // array for storing wich sources arve being
// displdayed in the queue window
// initialized to the actual values
// thete values are the internal values

/7 l*’“ll*I**{*Qf**”**Q**l'****%’iQl{’i#*{*{l}***i*l’*****}*{l****l}l{l
int x_y_q_boxesCSOURCES_SHOWNILG_FACKETS_SHOWNIL23;
/7 3-D array of integers to store the coords
// of the boxes in the rows of the Q@ window

int x_y_sname_boxes SBOURCES_SHOWNIL2];
/7 2-D array of integers to store the coords

// of the boxes for displaying the names of
/7 the sources shown in the queue window.

int destrn_stn{MAX_STNS]; // &rray for storing the destn station for
) // a station.
/7 initialized to 'INVALID'

unsigned int ro_of pkte_in_qIMAX_STNS) // contains the no. of pkts 1n the
/7 queue of a source at a time instant

stiruct packet

unsigned int packet_idg // packet identifier no. init to RAND _MAX

unsigned int sre_satng // source stn no. init tg ZERD

unsigned int type_of_pkt; // type of pkt. (data - O, voice - {, video -2
// init te 2ERQ

unsigned int slot_no_geny // slot's no. in which this pkt was generated

unsigned int slot no_treach_top; // slot's no. in which this pkt reached 0 top

unsigned int slot _ro_reach_destn; // slot's no. in which this pkt reached destn

// these three initiali:zed to ZERO;
atruct packet #next | // pointer to the next packet in the queue
¥ // structure for a packet's details

strruct slot

{
int packet_id; // packet identifier no.
int src_stng // these two initialized to INVALID
int type_of_pkt; // type of pkt. (data - 0, voice - 1, video -2
// initialized to 'EMPTY_SLOT'
>3 // structure for a slot's details
struct slot # head_slot_listCMAX_SLOTSI; // array of pointers to
// slot content details structure
// initialized to pointers to
// allocated riodes
struct packet # head_packet_queuelMAX_STNS]1: // array of pointers to

// packet queues of sources
// initialized to NULL

int size_of_packat = sizeof(struct packet);
/7 global vgriable to store size of packet
// structurey eadves many calls to sizeof()

£/ WA BN AT T T AT I AT I I IR
// simulation specific variables are declared here in this block
unsigned int f_bwb_switch

// flag used to indicate the status of

// the bandwWidth balancing switch

/7 1=-‘on' O=‘off’

unsigned int f_praob_assign .
// flag used to indicate the type of
// probability assignment ;
/7 '0' ~ all sources have equal C. A. probability
// 't' - probability assignment is graded one

unsigned int f_try_limit reached = NO 4
// flag uded %o derote whether the current try llmxt for random

// numbér generation routine is redached .

unsigned int f_simul _over = NO ;-

// flag used to denote whether the simulation verification

// shows this is the time for ending of the simulation or not
unsigned int f_mood_over = NO ;

// flag used to end the simulation by the user
unsigned int tried = ZERQ ;

/// 1t ie an unsigned variable to store the no. of times

/4 the yandom no. generator has been called for generating traffic

unsigned int try_upto = INITIAL_TRIES ;
// no. of times, the random number generator is initially called
// withoUt & check on the standard deviation of its output

unsigned long sum_numbers = ZERO
// sum of the number of packets gnnerated by the traffic generator

float deviation_sum = 0,0 ;
// long variable to store the sum of deviations

unsigned int no_of_act_stns =2ERO}
// this e the global variable to denote the number of stations
// which are active in a particular run

unsigned int slots_passed = ZERO j
// thigs 1% an unsigned long integer variable which is used to store
// the number of slots that have passed through the network

int x_white_upper =INVALID,y white_right = INVALID,x_white_lower= INVALID;

/7 the thrée white pixel positions;
7/ mind that they have been initializaed to INVALID;

float prob_basalMAX_STNSJ; // array of floating pt numbers to store the
// probability base values by virtue of the
/7 péSQQion of the source in the network

unsigned int normal_min_wait{MAX_STNS] ;
/7 unsigned int array to store the normal
// value of the minimum waits between successive
// retransmisgion attempts by a source

unsigned int min_waltiMAX_STNS] ;
// uneignad int array to store the numbers.
/7 of slots upto which the sources have to wait
// between successive transmission attempts.

/7 initialized to run-specifié actual value in init_all()

unsigned int wait_counter [MAX_STNSIINO_OF_DATA_TYPES];
// global 2-D array for storing the wait_next_spurt values for

// different data types.
/7 LILOY - aird, CIC1) -~ voice, (3{2) - video
7/ anitialized to ZERO

unsigned int access_waltCMAX_STNS)y
// this counters will store the number of slots
// for which the source has to wait betore trying
// to trangsmit again,

/7 RAREERBRAEERNARRRRARR varibales for result calculations

unsigned long total_q_delayIMAX_STNSICNO_OF_DATA_TYPES] :
// arvay of unsigned longs to store the total queuing delays
// of the different types of packets

unsigned long total_comm_delay[MAX_STNSIINO_OF _DATA_TYFES) ;
// array of unsigned longs to store the total communicaticon delays
7/ of the differant types of packets

unsigned int total_pkts_trans{MAX_STNSIINO_OF_DATA_TYFES]
// arrvay of unsigned ints to store the total communicatioon delays
7/ &f the different types of packets

unsigned 1nt no_of _slots_empty = ZERO § // this variable holds the no. of slots
// that have passed empty across the bus

unsigned int delay_allowed(NO_OF_DARTA_TYFES] ;
// array tda hold the max. no. of slots by
// which a packet of particular data type
// tould be allowed to get delayed

unsigned int no_of_pkts_delayed(MAX_STNSIINO_OF DATA_TYFES ;
// array to store the no, of packets of diff. types delayed beyond
// their limits . o

unsigned int pactet_storaCNO,PKTS*IN_UNIT][COLUMN_IN_FKT~STDREJ;
// B~D array of unsaigned int-s to store the info about pkts
/7 finally for each unit rung
// initialized to ZERO

unsigned int curr_empty_entry;
/7 unsigned int variable to store the no. of the current
// empty entry in the packet store
// global variable take care;
/7 initialized te 2ERO

7 ERRARRRRBRRERRBARGrAPNAICE COCIATALIONSE HHEIHIIAIRERRAAREN NN
unsigned int x_y_r_boses{MAX_SLOTSICE);

// atores tha x and y coordinates of the boxes in the

/7 result_window

// initialized by tHeir values

unsigned int x_y_slot_no_boxi2] i

. 7/ array to store the P
// corngr of the slot :oaggxy pts of the upper left
int pkt_color_arrayl(éel; -
// stores the €olors of the pkis in the result window
// initialized by color values

char filenamell15) ;3 // to store the name of the data file
[/ RERBREIIRI TGN I IR T T I II I NI A2 22Nt MBI IR N

/7 MAIN STARTS
void maintint argc, char # argvil)
{ .

F e e ®/

// function declarations

,vold init_all(void);

void rand_act_stns(void);

void remove_lock_stepsync(void) g
void init_graph(void);

void draw_net(void);

void draw_result_win(void);

void draw_g _win(void);

vaolid move_slots(void);

void simdlation (void) 3
/* L */

/7 char fildnamel151 ; // array to store the name of the file in which
7/ ﬁhe data generated by the simulation run is to
clracr() §3 // clear the screen
"{flargc > 1}
atrepy(filename,argvi1)}

else

{

printf("Please <ENTER> the name &f output data file <x.dat> : ") j
scanf("%g",filename)

>
clraér() t // clear the screen

/7 fp = fopen(filename,"w*)}

7/ if(fp == NULL)

/77 <

/7 privitf{"Could not open fileli");

/7 exit(i)g

/77)
init_all(>; // initializes all the global variables
rand_act_stns()y // randomizing the stations to be active
remove_lock_stepsyrnc() ; // to remove lock step synchronization
init_graph();) // initializing the graphics
draw_net(); // drawing the network structure

draw_result _win()g
draw_q, wWwin();
simulation() ;

// fclome(fp) ;

// drawing the q window and its objects

// drawing the result window and its objects

>
>
’/ ’ MAIN ENDS
// #6!*#***‘!4* GLOBAL INITIALIZATION BLOCK STARTS K #5805 08 x k2545 K4
// this block contains routines for the various initializations
// this includes routines for allocating memory for nodes

IFARZIZIZT TN E R T E TR TS

/7 this function allocates memory initializes the slot list & all headers
// called from

// 1. dain()

[/ RRRRERABRRRRRE BB R,

void ihit_alll)

(4

/% s - —%/
// function declarations

veid refresh_packet_store();
S B e s e e o e st o i #*/

register int i,J;
register int size_of_slot; // just meant to make fast routine

size_of_slot = s@izeof (struct slot) 3 // making it faster

for (%0 i<MAX_STNSji++)

¢
f_act_sources(il = NOj // initializing all sources as INACTIVE.

f_shown_sources(i1] = NOj// initializing all sources as INACTIVE.
column_shown_sourceslil = INVALID;
destn_stnli) = INVALID ;
// initializing columns to INVALID
)

for(i=0}) i <MAX_SLOTS;i++) // allocating and intializing slot list

{ .
head_slot_list[i) = (struct slot #)malloc(size_of_slot);
if(head_slot_liet[i] == NULL)

{

clracr ()} .
puts({"Memory not allocated for node in init_all()!\n check it!");

exit(1)§
} 7/ checking for the case when memory is not allocated

]
head_slot_listlil -> packet_id = INVALID;
head_slot_listli) ~> src_stn = INVALID;
head_#lot _l1istfil -> type_of_pkt = EMPTY_SLOT;
/7 filling type as empty

) L

// initializing the array of pointers to the stations' packet queues
for (10§ 1 <MAX_STNSsi++)
head_packet_quélelil = NULLj

>
o

/7 intializing the colors of the pkts array
pkt_color_arrayfEMPTY_SLOT] = EMPTY_COLOR; .
pkt_tolor_arraylORDINARY_DATA) ORDINARY_COLOR;
pkt_tolor_arraylVOICE_DATAJ VOICE_COLOR;
pkt_color_array(VIDEO_DATAl VIDEO_COLOR;

han

// initlializivg the wait_counters of stations to zero
for(i1=03i<MAX_STNSji++) // for all stations
for(j=03 J<NO_OF _DATA_TYFES; j++) // for all data types
wait_counterfil(j) = ZERO;

/7 Anitializing the min_wait array and C. A. probability array
for(im0; 1<MAX_STNS ji++)
{ . .
min_waitlil = 2ERO
formal _min_waitfil = ZERO ;
prob_baselil = 0.0 3
access_waitlil = ZERO
3
//initializing the delay variable to hold the result of a run
for (1=0;i<MAX_STNS;i++)
far (3=03 J<NO_OF _DATA_TYPES ; j++)
<

tutal_q _dalay[i1Lj) = ZERO
total comm_delaylilfjl = ZERO H
total_pkts transfilfj) = ZERO ;
no_of_pkts_delayed{illjl = ZERO ;
) .
// initializing the delay allowed values for the three data types

deldy_allowed (DRDINARY_DATA ~11 = RAND_MAX 3 // just for formality
delay_allowed(VOICE_DATA ~11] = MAX_VOICE_DELAY ; // max delay 170 ms
délay_allowed(VIDEO_DATA =11 = MAX_VIDEO DELAY ; // refresh_rate = 50 per sec.

/7 dourcé shown array initialized to ZEROD
far {12071 CSOURCES_SHOWN 3 1++)
shawh _sourceslil = 2ERD

.

// inttializing the packet store
refresh_packet_store()y // called to initialize the packet store

// initially as 2ERO
for($=O;i<HAX STNS;i++)

? _special_statusCi) = NO ;

f_killer _statusCi) = NO

no_of__pkts_in_qli) = ZERO j
¥//initializations

for (4=0}i< SERIAL_LENGTH ji++)

{
qorigl_lpccfnl_statui[i) = 2ERO

10

sertal _killer_statuslfil = ZERD ;
)

)
7/ REngunnannnsnw GLOBAL INITIALIZATION BLOCK ENDS 54533854050 05 26 % %4 %

7/ sangunpisnnnnn ACTIVE STATION RANDOMIZATION BLOCK #% K HXSXRAEFHERLE

AR XX T T L Ty O L Y L T L yyaarenren
//7this routine dsks the no. of stdtions to be active for a particular run
// arid randomizes to find the suitable configuwration until the user is
// satisfied with the configuration.

// called from
// 1. main()

AR Y L L L T L LYY Ty
void rand_act_stns()

¢ .

char respj

int stations ;

int § 3

register int rand_no, i ;

printf("“\a\n <ENTER> the no. of active stations [1 to %dl :",MAX_STNS) ;
scanf{"%d",tno_of_act_stns) ;

printf("\n\als BAND-WIDTH BALANCING to be used (i-yes/O-no) 7 t ")}
scanf("%d" ,&f_bwb_switch) 3

printf("\n\als FROBABILITY ASSIGNMENT 'FLAT EQUAL' or 'GRADED' (0O-flat/i-graded)?
scanf(“%d",&f_prob_assign) j

elrger () 3

randomize()y // called here for whole of the program

printf(" Warming up the Random Number Generator") 3
delay {ONE_SECOND) ;

for(i=s0 §1<1000§i++)

) = rand()

ifino_of_act_stns == ZERO || no_of_act_stns > MAX_STNS)
p :

printf(“ok !1\n Boodbyel ")}

exitil)

Y // if the no. specified is invalid, exit

elsg {f(no_of _act _stns == MAX_STNS)

<
for (1=0) i <MAX_STNS;i++)
f_ act_ucurces(i) = YES;

11

Y/¢ if all stations are active,; need not randomi=e
else
p d
clrscr()g
stationg = ZERO
printf("would you like to specify some stations (Y/N) 7) ;
flushall() j
scanf("%c",kresp) ;
if(resp == 'y' || resp == 'Y')
! ‘
printf("Welecome | How many ? ") ;
scanf("%d", &astations) ;
if(stations > no_of_act_stns)
exit(1) 3 // if this no. specified is larger then exit
for(i=0gi<stations ji++)
< : .
printf(“\n Enter the active station no. [%dl : ",i+1)
acanf ("%d",&J) ;
PFCCI>0) B8 (j<= MAX_STNS))
f_act_sourceslj-1] = YES
)
stations = 2ERO ;
// now checking how many different stations were declared active !
Cfar(i=03 i <MAX_BTNS ji++)
if(f_act_sourcesli) == YES)
stations ++ 3
// printing thie information to the user . .
printf{"\n\n No. of different active stations specified = %d !'\n ",stations) ;

puts ("\nRandomizing . . .");
delay (ONE_SECOND) ;

i=0y
while(i< (np_of_act_stns - stations))
{

rand_no = random(MAX_STNS)

{f(f_act_sourceslrand_nol == NO)

¢

f_act_sourceslrand_nol = YES;

d++y

}

3 // Generate reqd. no. of diff.random no.s in range 0 —~ MAX_STNS

3

for{ im0 i <MAX _BTNS}i++)

<
if(f_act _sourceslile=YES)
¢
do
<
rand_no = random(MAX_STNS);
Ywhile(f_act_sourceslrand_nol == NO (! rand_no == i);

12

destn_stnlfil= rand_noj

.}
// generating the random destination station for all
// active stations and storing the destns and their
// gap from source in no. of eslots

// filling the queue window sources arrays

i=0¢
while(f_act_sourceslil!e YES)
1443 // reaching the index of the first active source

f_shown_sourceslil]l = YES;
sHown_sourcesl0l] = j;
calumn_shown_sources{i++) = 0
//mdking this source active for show window
/7 at the first column
while(f_act_sourcesfil != YES)
i++g // reaching the index of the second active source
// from upstream side
f_shown_sources(il = YES;
shown_sources(1) = i;
column_shown_sources(il = 1;
// making this source active for show window
// at the second column

i = MAX_BTNS - 1 4 // now moving to the downstream side for other
/7 two spurces to be displayed

while(f_act_sourcesl(il!= YES)
i=-=} // reaching the index of the fourth active source
f_shown_sourceslil) = YES;
shown_sourcest3] = i;
column_shown_sources{i-—-1 = 3 ;
//making this source active for show window
// at the fourth column
while(f_act_sourcesl{i] 1= YES)
i-=} // reaching the index of the second active source
// from downstredm side
f_shown_sourcesl(i) = YES;
shown_sourcesl@} = i;
column_shown_sources{il = 2;
// making this source active for show window
// at the third column

/7 printing all the calculation results to the screen
printf("\n The stations choosen to be active are : \n");
for(i=0gi<MAX_BTNSji++)
Af(f _dct _dources(il == YES)
if(f_shown_sources(i) == YES)
printf("%d=stn\thd=destn\t%d=column\n",i+l,destn_stnlil +1,column_shown_sources(il)}

®lhe

13

o

printf("%d=gtn\tid=destn\n",i+1,destn_stnli] +1);

printf("\n\n Press any key to continue ...");

getech()y

{/ now assigning the probability base values for active sources

9 = no_of_act_stns; // this is the denom. for probabilities

i= MAX_BTNS - 1} 7/ starting from the most downstream source »

whil€é(i >= ZERO)
{
if(f_act_sourceslil) == YES)
(-
if(f_prob _sassign == YES)
prob_baselil = 1.0/(float)j
elge
prob_baselil = 1,0 3

1f(f_bwb_switch == YES)
for (1=0) i <MAX_STNS; i++)
{
if(f_act_sourceslil] == YES)
s
mir,_waitlil = ends_gap{shown_sourcesf0]) ;
normal _min_waitlil = min_waitlil j
}
b
alse
for(i-0|i<HAX STNS; i++)
<
if{f_act_sourceslil == YEB)
{
min_waitlil = ends _gap(i) .
normal_min_waitlil = min_waitlil ;

) .
Y} // amsignment of the min_wait values based on the status of flag

printf(®\n No. of active stations are t %d”,no_of_act_stns);
puta(® The assigned probabilities are t" g
for(i=0j1 < MAX_SBTNS i++)

if(f_act_ aources[i] =i YES)
printf(“pfobt%dl = %f, main_walt{%d) = %d\n",i+i,prob_baselil,i+l, min waitlil) j

printf("\n\n Press any key to continue ...");
getch()g

14

}
AR IS T 222222222 2R 2R 2 YT T LN

/7 this function sets the wait counters
// for traffic generations in such a way
/7 that the observed lock step synchro-
// nization is removed
S/ RRRURBERRBRBRREERERR RN RRD RN RRE RN R
vaid remove _lock _stepsync()

‘
AS

regigter int i,j=0 ;

for{i=mDj i <MAX_STNS;i++)
<
if(f_act_sourceslil==YES)
{
Wait_cdunterl13{0) = (no_of_act_stns—j) *(MEAN_ORD/no_of_act_stns) ;
wait_counterfiJ(1] = j*»(MEAN_VOICE/no_of_act_stns) ;
wait_counter(il(@] = j#(MEAN_VIDEO/no_of_act_stns) ;
j+e ; :
3
3
/% clracr()
printf(“The effect of removing lock step sync t\n");
for (10 i <MAX_BTNSji++)
¢
if(f _act sourcesli] == YES)
printf("\n Sourcel%d]",i+1) ;
for()=03 j<NO_OF _DATA_TYPES; j++)
printf(" %d" ,wait_counter[jl);
b
yn/
¥
// #epuinparpnaneneinanr RANDOMIZATION BLOCK ENDS #5555 5 5 % 3 4056 5 40 36 30303 536 3 5 3 96 3 3%

// RERARRRRRERRRERERE GRAPHICS INITIALIZATION BLOCK #5855 5 30585 5 % % H B 1% %
/7 **;*&##*a**;u***ii;***##é;;*{*{««»*
// routine for graphics initialization
// called from -
// main()

VAR 222 LTSI 2222222222 Rd sl sl dllld
void init_graph()

{

int maxx,maxys

c¢har respj

int graphdriver,graphmode;

detectgraph(igraphdriver, &graphmodelj // initlially detecting
1f(graphdriver < 0)
¢

puts{“can't detect a graphics card!");

15

o

ex1til);
¥// exit, if there is no graphics card.

// graphdriver and graphmode now set with highest
// resolution mode on adaptor card

printf(“\n card detected is"):

printf(" #4d, hi_res mode is #%d”,qgraphdriver,graphmode);
printf("\nfroceed to initialization®);

printf(" with these parameters ?(Enter y/n)");

flushall(); // flush the inmput stream
scanf ("%c" ,btresp);
if(resp == 'n’' Il resp =='N') exit(1);

initgraph(Lgraphdriver, &Lgraphmode,“c:\\becpp"’s;// TAKE CARE

s@tbkcolor (BLACK) ;

setcolor (WHITE) ;

}

AR 222 22T S TS SRR RS S T S
// aRassadezrinsnntx END OF GRAPHICS INITIALIZATION BLOCK ROUTINES ##%xx%x%

// wadpnnanptanneninnidt NETWORK DRAWING ROUTINES BLOCK S 54 33 55 9 5036 93 3 3 % 3 3 3 % #
// Routines for drawing the network on the screen

/7 RBRRRERRRRRRERERBRERRRREBEER AR NN

/7 this routine calls the routines for drawing components of the net

// this has been called from

/7 1. main()

/7 P Y R R g e YIT TTTT T

void draw_net()

,
N

// function declarations
void draw_bus(void);
void draw_loco(void);
void draw_stns(veid);

/R e e e */

draw_bus() ; // draws the bus of the network
draw_loco() 3 // draws the locomotive generator
draw_stns() i // draws the stations in the net
}

AR T YT Y R e e e s I ST IR 2
// this routine draws the real bus in the network
// called from

// 1. draw_net() in this block

S/ RBRN NI NN

void draw_bus()

7/ thik routine draws the network bus

&
rectangle(5,UPPER-10,15,UPPER+10)

16

w

rectangle(5,LOWER-10,15,LOWER+10); // for the twe ends of the bus

setfillstyle(WIDE_DOT_FIULL ,WHITE);
floodtill(10,UPPER,WHITE)

flocdfiII(XO,LONER,NHITE); /7 filling the two end boxes of the bus

lirne (LEFT,UFPER,RIGHT ,UPPER) ;
1ine(LEFT,LOWER,RIGHT ,LOWER)
1ine(RIGHT ,UFPER,RIGHT ,LOWER) 3 // the three arms of the bus
,]

VAR ZIZEIZITIZERETZLT TSR RN YR F PR R gp
// this routine draws the network locemotive generator
// called from
7/ 1. draw_net() in this block
VAR IZTETTYETRY T ETY FTY PR grggegnggy
void draw_locof()
{
int y_centre;
int radius;
radius =15;
y_centre = (UPFER+LOWER)/2;
circle(LEFT_LOCO,y_centre,radius);
1ine(LEFT_LOCO,UPPER,LEFT_LOCO,y_centre - radius);
line(LEFT_LOCO,y_centre + radius,lLEFT_{L.OCO,LOWER) ¢
outtextxy(LEFT_LOCC -3,y _centre - 3,"G");
¥
AR YT YET TN TR YT TR TR TR R
/7 this routine draws the station boxes in the net
// and fills the entries in the array
// meant far the purpose of displaying
// the access success star signs on
7/ the sourcesd
// called from
/7 1. draw_net() in this block
S/ RN RN R
voitd draw_stris()
{
// this routine draws the network stations.

// this uses the global flag of active sources to draw their colors in them

register int i,);

i=03

// setcolor (DARKGRAY) ;

setcolor (LIGHTGRAY) ;

setfilletyle(SOLID_FILL ,RED/*#YELLOWGREENL IGHTRED*/) 1 // color

for(i=1;i<{=MAX_STNS;i=1+2)

<
if(f_act_sources(i-1)==YES)
/7 setcolor (YELLOW);

17

to fill with

setcolor (LIGHTRED) ;
rectangle(SO+(i~1)#5+] ,UPPER + 10,50+ (i-1)#5+10+j,UPFER +110)
if(f_act_sourcesli-]l==YES) -

floodfill(SO+(i~1)a5 +j+2,UPPER + 12,LIGHTRED) ; s/ color of border

1ine(50+(i#5)+) ,UFPER,SO+ (1 #5)+j ,UFFER + 1Q);
// now filling the array entries

if(f_act_sourcesli-11==YES)
7/ setcolor (LIGHTCYAN) ;
/s setcolor (LIGHTGREEN) ;
setcolor (LIGHTMAGENTA) ;
1ine(SO+(145)+) UPPER+110 ,50+(1#5)+) ,LOWER) ;

1f(f_act_sourceslil==YES)
setcolor (LIGHTRED) ;

/7 setcolor (YELLOW) ;
eise

setcolor(LIGHTGRAY)

/7 setcolor (DARKGRAY) ;

rectangle(S59+(i-1)#5+) , UFPER +130,59+(1—-1)#5+10+§,LOWER-101}}
if(f_act_sourcesli] == YES)
floodfill(59+(i—~1)%#5 +j+2,UPPER + 132,LIGHTRED) ; // color of border
1ine(59+(i#5)+j,UFPER,S9+(i#5)+j ,UPPER + 130);
// now filling the array entries

if(f_act_sourceslil==YES)
/7 wetcolor (ILIGHTCYAN);
setcolor (LIGHTMAGENTA) ;

/7 setcolor (LIGHTGREEN)

line (S9+(1#5)+),LOWER — 10,59+ (i#5)+j,L0OWER);

setcolor (LIBHTBRAY) ;

// detcolor (DARKGRAY) ;

j+=83//) is being used to provide gaps between stations
)
setcolor (WHITE) ¢

b
// #endnnnrananninannsr NETWORK DRAWING BLOCK ENDS #8825 %% 84184 EXEREHEN RN

J/ anndrinnupepaninnnnansr RESULT DISPLAY WINDOW ROUTINES #5553 3 3 0 5 % %33 % 3 5%
// BLOCK contains routines for preparing displays for showing results

7/ RN
// this routine draws the result window
// called from

/7 1. main()

// 2. simulation control routine

VAR I XIZI2ZI2 222232222 22X

18

void draw_result_win()

Fé
S

S W e e e e »/
7/ function declarations

void set_x_y, i _boxes(void)

void draw_all_r_boxes(void) ;
void draw_data_type_boxes(void)
void draw_slot_no_box(void) j
void draw_status_boxes(void) ;

SR e e e e e */

setcolor (WHITE)

rectangle (LEFT _R_WIN,UP_R_WIN,RIGHT_R_WIN,DOWN_R_WIN);//result window

setcolor (BLACK) ;

rectaﬁgle(LEFT“R_NlN+1,UP_R_wIN+1,RIGHT_R_NIN—I,DONN_R_NIN—I);//1nner
Vs oniy meant for refreshing of the window

setcolor (WHITE) 3

set_x»_y_v_boxes(); // initialize the x,y array for box coordinates
draw_all_r_boxes(); // draws all the slot boxes in the result window
draw_data_type_boxes() ;// draws the data type boxes at the bottom
// of the result window
draw_slot_no_box() 3 // draws a slot no box near the bottom of the
// result window which shall continuously
// display the no. of slots that have crossed
// the network
draw_status_boxes() | // draws boxes for displaying bwb status, prob. assignment

/7 and the no. of active stations for a particular run

VAR XTI SIS 222222222222 22 2]

// this fuynction initializes the array containing the x,y values for boxes
// accesises the global array x_y_r_boxesl[1(]

// called from

// draw_result _win() in this block

VAR IZIIZIZIITY YRR TERLT LT R X2 2

void set_k_y_r_boxes()

{

/H et b i /
// function declaration
void rotate_x_y_r _boxes(void) ;

/M o e e i o */
register int i,

row_box, // to store the row in the result win .
column_box, // to store the column in the result win

X_coor, // to store the x value calculated

y_coor; // to store the y value calculated

for(i=0; i <MAX_SLOTSi++)

Ry

row_box = { + i / NO_BOX_PER_ROW; // finding the row and column

column_box = | + i % NO_BOX_PER_ROW: // of the box for slot ‘i’

19

')L;qor = LEFT_R_WIN + MARBIN_LEFT + (cclumn_box ~1) ®* (BOX _LENGTH) 4
y_coor = UP_R_WIN + MARGIN_UFFER + (row_box - 1) % (ROX_HEIGHT);

x_y_r_boxealill0] = x_coor;y // storing the values into the
x_y_r_boxesli1ll1] = y_coory 7/ global arrﬁy X_y_r_boxesl(]1[3;
N

rotate_x_y_r_boxes() ; ,

\
:

AR ZIT T I ST ERE 2T Y TR F R

/7 this function rotates the

// values in arvay x_y_r _boxesl)
+7 to the right by one place

/7 called from

7/ set _x_y. r _boxes() in this block
IEAR 22 2L S22l s YY)
vold rotate_x_y_r_boxes()

¢ .

register int i j

register unsigned int temp_x , temp_y ;

temp_x = x_y_r_boxes[MAX_SLOTS -~11{0]
temp_y = x_y_ir_boxes{MAX_SLOTS ~1]Jf1]
// storing the leftmost value temp.ly
for(1=MAX_SLOTS -13i>0;1-~)
x_y_ r_boxkesli1(0) = x_y_r_boxesl[i-11001 ;
x_y_r_boxes({il[1) = x_y r boxes{i-11[13]

. we

>
X_y_tr_boxesl0lL0] = temp_x 3
x_y_r_boxesl01(1]1 = temp_y 3

>

AR IS ISR ES S SIS R N 3

/7 this function draws all the boxes using draw_a_box()
// called from

// 1. draw_result_win() in this block

AR T III TSR TY R YRR TN LT RN

void draw_all_r_boxes()

¢
AN

/W e S en ——/
// function declaration
void diraw_a_box(undigned int,unsigned int) j
/W et e */

register unsigned int 1
for(i=13i< MAX_SL.OTSsi1++)
draw_a_boxti,i) ; // draw the boxes in the result win
draw_a_box(0,0) 3§ // draw the last box
>

R L e e e ey S S R S e 2 gy
7/ this function draws a box at given row and column in result window.
// called from

20

// 1. move_slots() in slot movement blork
S/ BEBERRRBRRBRERRRAPRRAFRRERERRR RN RBENBERRR

void draw_a_box{unsigned int curr_slot_no , unsigned int actual _slot_no)
< T

char slot_detaill101,

temp_stringl10l; // to print th=2 details of pkts in the slot box.

v

register int content_type, x_ccor,y_coor,color;

// content_type stores the type of packet in the slot
// color stores the corresponding filling color

¢/ otherr two store the coordinates of the box

x.coor = x_y r boxeslactual_slot_nollOl;
y._coor = x_ y r boxeslactual_slot_noll1); // recovering the coords

setcolor (WHITE) ;
rectdngle(x _coor,y coor,x_coor + BOX_LENGTH -2,y_cocor + BDX _HEIGHT - 2);
/// outer rectangle

// now filling the space with yellow color
setfillstyle(SOLID_FILL ,YELLOW) 3
floodfill({x_coor+8,y_coor+2,WHITE) 3

// now filling the space with the packet color

color = pkt _color_arrayl(head_slot_listlactual_slot_nol —> type_of_pkt)l;
setfillstyle(SOLID FILL,color) i

floodfill{x_toor+B,y_coor+2,WHITE) i

// now putting th slot description into the result box

iftcalor 1= EMPTY_COLOR)

<

setcolor (BLACK) 3

ultoa((long)(head_slot_listlactual_slot_nol->src_stn + 1),slot_detail ,DECIMAL);
outtextuy(x_coor+2,y_coor+2,slot_detail)g

uléoa((long)(destn_stn((head_slot_list[actual_slot_no]~>src_stn)J + 1),s8lot_detail ,DECIMAL);
adttextxy(x_coor+20,y_coor+2,slot_detail);

ultoa((longlcurr_slot_no,slot_detail ,DECIMAL);

outtextxy(x_coor+8,y_coor+li,slot_detail);

b

seteolor (WHITE) ¢

AR ISR RRLZR L SYLIEX LTSI LSS Y LY
// thig funetion draws the type color
// indicator boxes at the bottom of the
// result window

¢/ called from

/7 1 draw_result_win() in this block
VAR TIIYZYY TSR TR TTLL TS LLY 2
void draw_data_typa_boxes ()

21

(’ .
register int i
register int x_coor, y_coor ;
register int color ;

for(i=0y 1< NO_OF_DATA_TYPES + 1ii++)

{

x_coor = LEFY_R_WIN + MARGIN_LEFT - { + (i * 2 x (BOX_LENGTH + 12)) ;
y.coor = DOWN R _WIN - BOX_HEIGHT + & 3 // calc the upper left corner ccords

it

color = pkt_color_arvaylil ;
setcolor (color)
setfilpstyle(SOLID_FILL,color) i // setting the color and fill style

rectangle(x_coor, y_coor, x_toor + (2 # BOX_LENGTH)+ S, y_coor + BOX_HEIGHT - MARGIN_UPFER -4 H
floodfill(x_coor+2, y_coor + 2, color); ’
// boxes drawn and filled with appropriate type color

7/ now filling the name of the data type with black color
setcolor (BLACK) ;

switch(i)

{

case EMPTY_SLOT 1 setcolor (WHITE)
outtextxy(x _coor+2,y_coor+2,"EMPTY SLOT");
setcolor (RLACK)

break 3
case ORDINARY_DATA : outtextxy(x_coor+2,y_coor+2,"0RD. DATA");
break ;
cage VOICE_DATA H outtextxy(x_coor+2,y_coor+2,"VOICE DATA")
break
case VIDEO_DATA s outtextxy(x_coor+2,y_coor+2,"VIDEO DATA");
break
default H break
}
b
setcolar (WHITE)

b
AR 222 TR RS S L YIS SRR XL RN
// this function draws a slot number
// box, near the bottom of the result
// window, which shall display the no.
// of the slots that have crossed the
// d-netwark
// talled from .
// 1, draw_result_win() in this block
AR Y I Yy eI T T Y AN YN
void draw_slot_no_box()
{

int x_coor, y_coor

x_coor = LEFT_R_WIN + 4 # BOX_LENGTH + (2 #* MARGIN_LEFT) ;

ea

v_copr = UF_R_WIN + 7 # BOX_HEiGHT + (3*MARGIN_UFPER)

setcolor (WHITE) : // to write text
cuttextxy(x_coor,y_coor,"SL0TS FASSED :");

x_coor += (3 % BOX_LENGTH) -~ MARGIN LEFT -1; // x value for the slot no.
y_coor =-= (2 * MARGIN_UFFER: - 2; // vy vlaue for ithe siot no. box
setcolor (BLUE) ; // background cf the slot no box
x_y_slot_no_box(0]) = x_coor

x_y_slot_no box(1]) = y_coor ;i // x and v of the upper left corner of siot

rectangle(x_coor,y_coor,x_coor + 116 , y_coor + BOX _HEIGHT - 3)
// 111 indicates the length of the slot no box
setfillstyle(SOLID_FILL,BLUE)

floodfill(x_coor +2,y_coor+g, BLUE);

setcolor (WHITE) ;

.
b

VAR TII SRS S22 RSS2 Z 2SS R R R EEE S

/7 this function updates the slot no

‘// box with the passed value of slots_passed

// called from

/7 move_slots() in slot movement block

IR 22T X222 22 2 222222222 RS2 E S 2

void update_slot _no_box(unsigned int slots_passed_new)

{

char temp_buff(15] ;3 // temporary buffer to hold alphanumeric value

setcolor (BLUE) 3 // setting the back ground color to the foreground

ultoa((longl)(slots_passed_new - 1), temp_buff DECIMAL) ;
outtextxy(x_y_slot_no_box[0l+ 20, x_y_slot_no_box(11+47, temp_buff) :
// since the array value are the pts of corner of the box

// 30 text is to be started at some space from the corner .

setcolor (YELLOW) ; // setting the foreground color again
ultoa((long)(slots_passed_new), temp_buff ,DECIMAL) ;
outtextxy(x_y_slot_no_box[0]+20, x_y_slot_no_box[11+7, temp_buff) ;
setcolor (WHITE)

Y

/7 ITF PR RSSSRRS SRS SR RS R R R 2 2

/7 this function draws the boxes for

// indicating the status of the flags

// of BANDWIDTH BALANCING & PROBABILITY

/7 ASBIGNMENT & NO. OF ACTIVE STATIONS

7/ on the result window

// called from

/7 draw_result_win() in this block

7/ T T TSI S SR S22 2 S X 2 2 23

void draw_status_boxea()

{
char temp_buffli0] ;

a3

box

no box

. register int x_coocr, y_coor, & @

x_coor = LEFT_R_WIN-+ MARGIN_LEFT ;
y_toor = UP_R_WIN + MARGIN_UFFER + (8 # BOX_HEIGHT) + (2 # MARGIN UPPER) ;

setcolor (WHITE) { // to write text
outtextxy(x_coor,y _coor,"B.W.B.") ;

x_coor += &0
y_coor =-=(2 # MARGIN_UFFPER) - 2 ;

setcolor(BLUE)
setfillstyle(SOLID_FILL,BLUE)Y 3

rectangle(x_coor,y_coor,x_coor + 30,y _coor + BOX_KFEIGHT - 2) ;
tloodfill(x_coor + 1, y_coor + 1, BLUE) ;

setcolor(YELLOW) : // to write text in this bwb box
1f(f_bwb_switch)

outtextxy(x_coor+3, y_coor+8, " ON");
else

outtextxy(x_coor+3, y_coor+8, "OFF");

setcolor (WHITE) 3
x_coor += 35 ; : .
y.coor =.UP_R_WIN + MARGIN_UPPER + (B8 # BOX_HEIGHT) + (2 * MARGIN_UFPER);

outtextxy(x_coor,y_coor,"C.A. PROBs t");

x_coor = LEFT_R_WIN + (S5 # BOX_LENGTH) + MARGIN_LEFT ;
y_coor -~=(g % MARGIN_UPFER) - 2 ;

setcolor (BLUE) ;
rectangle(x_coor,y_coor,x_coor + 55,y_coor + BOX_HEIGHT - 2) 3

floodfill(x_coor + 1, y_coor + 1, BLUE) 3

setcolor(YELLOW) § // to write text in this FROBABILITY box

if(f_prob_assign) B}
outtextxy(x_coor+3, y_coor+8, "GRADED");
else
outtextxy(x_coor+3, y_coor+8, " FLAT");

setcolor (WHITE) 3
x_coor += 62 ¢’
y_coor = UP_R_WIN + MARGIN_UPPER + (8 % BOX_HEIGHT) + (2 # MARGIN_UPPER);

outtextxy(x_coor,y_coor,"ACTIVE STNS.") 3

x_coor = LEFT_R_WIN + (9 # BOX_LENGTH) + MARGIN_LEFT ;
y_coor ==(2 # MARGIN_UPFER) - 2 }

setcolor (BLUE) 3
rectangle(x_coor,y_coor,x_coor + BOX_LENGTH-2 ,y_coor + BOX_HEIGHT - 2) g

24

floodfill(x _coor + 1., y_coor + 1, BLUE »
setcolor (YELLOW) ; // to write text in this STATIONS bow

ultoa((long)no_of_act_stns,temp_buff,DECIMAL) 3
outtextxy(x_coor+i5, y coor+8, temp_buff) ;
setcolor (WHITE)

)

S/ BRRRERERERREBECRBRER RN EE I E TR *N

/7 clearing the result window

// called from

// 1. move_slots() in slot movemenrt block
// 2. simulation control routine

AR IS LTRSS T LSS SRR 2R PN N
void clear_r_win()

r
AN

setcolor (REFRESH_COLOR) ;

setfillstyle(SOLID_FILL ,REFRESH_COLOR)

rectangle(LEFT_R_WIN +1, UP_R_WIN +1, RIGHT_R_WIN ~1, DOWN_R_WIN -1);
floodfill(LEFT_R_WIN +2, UP_R_WIN +2, REFRESH_COLOR)

// filling the q_window with the refresh_color

setqolor(BLACK) 3

setfillstyle(SOLID_FILL,BLACK) § |

rectangle(LEFT_R_WIN +1, UP_R_WIN +1, RIGHT R_WIN -1, DOWN_R_WIN -1) ;
floodfil11(LEFT_R_WIN +2, DOWN_R_WIN -2, BLACK) 3
setfilleatyle(SOLID_FILL,WHITE) ;

// filling the qg_window with the BLACK

3

/7 #hsgannnhennnens RESULT DISFLAY BLOCK ENDS 55585058 %40 1K R HIEEER NS

7/ wpndguinngreann QUEUE DISFLAY BLOCK STARTS %3538 33534358 300 3934 % %%
-
VAR T2 YRR SRS RIS S S22 S22 2 2 22
/7 thig funtction calls the various functions
// in this box
// called from
// 1. main()
// FY YIS IZTZISI SRS SRR RS RSS2 R 2 2
void draw_q_win()
S e e o e o o */
// function declarations
void set_sname_boxes(void)j
void set_x_y_d_boxes{void);
void fill_snames(void);
void draw_all_q_boxes(void);
/W e e e o */

setcolor (WHITE)

25

rectangle (LEFT_Q_WIN,UP_Q_WIN,RIGHT_Q_WIN, DOWN_G_WIN); // § window

set_sname_boxes ()} /7 tinie sets the values for x and y of the
// source name boxes in the gueue window

set_x_y_q_boxes(); // setting the values of the boxes in the
// queue window

fill _snames(}} /7 fills the names of the sources shown 1n the
// boves for this purpose.

draw_all_q_boxes(); // draws all queues 1nitially

N
4

AR 2 Yy R N Y

/7 this function initializes the array containing the s,y values for source
// name hoxes in the queue window

// these boxes are to be used for storing the coordinates of the name boxes
// called from

/7 l.draw_q_win() in this blaock

S/ REBRAERRBERRRRAERRERERRBRRRESRE L HER

veid set_sname_bouxes()

register int i;

for(i=03i <SOURCES_SHOWN; i++)
¢
x_y_tname_boxes{i3J[0] = LEFT_G_WIN +.i ® (BOX_LENGTH + S) + (2#MARGIN_LEFT) ;
x_y_sname boxes{iJ(11 = UP_Q_WIN + MARGIN_UPFER:
)

3

AR TEIT YRS SIS S S RSS2 R S R R R RS 23
// this function initializes the array containing the x,y values for D-boxes
// accesses the global array x_y_q_boxes[1[1]
// called from
// draw_q_win() in this block
S/ R R RAAIRNN NN
void set_x_y_q_boxes()
{
register int 1,3},
X_coor, ~// to store the x value calculated
y_toor; /7 to store the y value calculated

for (1=0; 1<SO0URCES_SHOWN; i++)
for(j=0; j<Q_PACKETS_SHOWN; j++)
{
x_coor = LEFT_Q_WIN + (2 *MARGIN_LEFT) + i # (BOX_LENGTH + 5)
y_coor = UP_O_WIN + MARGIN_UPFER + (j+1) #* (BOX_HEIGHT +5);
x_y_q_boxes[ilL3l(0]) = x_coorj
x_y_q_boxesli1(jll1] = y_coory

/7 firgt dimension of the array represents the column
/7 second dimension represents the row in g_window

26

// third dimension represents whether it s ‘X' ar 'Y’

>

VAR IR Y]

// thig function draws the boxes far the names of the sources shown
// and fills them with the names

// called from

/7 1. draw_g _win() 1n this block.

// ﬁ”lQO#Q*"Q“!!&QQQOIUQ!O.“&*’Q*’

void fill_snames()

{
register int i,
X_coor,
y_coorg
char buffer(101]; /7 buffer for accepting itoa result
char stringl101; 7/ used for accumulating text before printing

for (1=0} i (SOURCES_SHOWN; 1++)

kS

x_coor = x_y_sname_boxes(11[01;
y_coor = x_y_sname_boxes(ill11;

setcolor(BLUE) ¢
rectangle(x_coor,y_coor,x_coor + BOX_LENGTH ,y_coor +BOX_HEIGHT);
// drawing the box in blue color

strecpy(string, “65#");
itoa(shown_sources(i11+1,buffer ,DECIMAL);
strcat(string,buffer);
// convert the name integer to a string
setfillstyle(SOLID_FILL,BLUE)
// setting the fill style to solid with blue color
filoodfill(x_coor+!l,y_coor+i,BLUE);
/7 filling the box in blue color
aetcolor (YELLOW)
outtextxy(x_coor+3,y_coor+S,string):
// display the name of the source in the box in yellow
}
getcolor (WHITE) ;
b
YR IR R R 222 RS2 s Rl st gl
// this function draws all the queues
// for the queue display window
// talled from
// 1. draw_q_win() in this block
[/ WA N
void draw_all_q_boxes()
¢
regiaster int i,),
X_COOr,
y_coors// for coordinates of the boxes

a7z

setcolor (WHITE)S /7 to be drawn in WHITE color
for(i=0; i <SOURCES_SHOWN; i++)
for (j=0; j<Q_PACKETS_SHOWN; j++)
{
x_toor =
y _coor

y._ Q_boxes({11(jIL07;
X_y. q boxes{11033011;

i

rectangle(x_coor,y_coor,x_coor + BOXx _LENGTH,y coor +BOX_HEIGHT);

// outer rectangle of the q_boxes

rectangle(x_coor+l,y_coor+i,x_coor + BOX_LENGTH-1,y coor +BOX_HEIGHT-1);
// inner rectangle in the boxes for refreshing :

// now made with WHITE color only

}// drawing all boxes of the queues in

// the q_window

N
’

VEAZEI ISR R E R R R LR R TR SRR BN

// this function is meant for updation
// of source queue on the queue window
// called from

/7 1. init_source_recv()

// 2. init_source_trans()

// called only if the source is being

// displayed in the queue window

AR TETTTIETT SIS S ST TYSR LY T
void refresh_queué(int actual_source_no)

Id
A S

register int x_coor,y_ coor,

source_column_no, // the column in the q_window
color; // color of the packet

register int boxes_filled; // counter to keep track
struct packet #ptr_pkt; // for traversing the queue

source_column_no = column_shown_sources{actual_source_nol;
// the column in the window is extracted
// the column no. in the window start from 0 and go upto SOURCES_SHOWN -1

ptr_pkt = head_packet_queuelactual_source_nol;
// starting at the queue top

boxes_filled = ZERO;j
// starting from q_top

while(ptr_pkt I= NULL && (boxes_filled <Q_PACKETS_SHOWN))
{

x_coor = x_y_q_boxesl{source_column_nollboxes_filledl[0];
y_ toor = x_y_q_boxes{source_column_nol(boxes_filledl[1];
// filling the two coordinate values

boxes_filled ++3

color = pkt_color_arrayl ptr_pkt -> type_of_pkt I1j

// retrlieving the color of the packet to be displayed
setcblor(color);

28

tectangle(x_coor+i, y_coor+t, ¥_coor + BOX_LENGTH -1,y _coor+BOX_HEIGHT -1

setfilletyle(SOLID _FILL ,color);

flqodfill(x“coor +2,y_coor +2, color):

ptr_pkt = ptr_pkt -> next ; // moving forward in the queue
// fill the box with this color

Y77 filling the curvent queue status

while(bores_filled « O_FACKETS_SHOWN
7/ if remaining boxes are to be painted empty
setcolor (BLACK) 3
x_coor = x_y_q boxeslsource_column_nollboxes_filledl[0);
y_coor = x_ y q boxeslsource_column_nollboxes filledl[11]}
// filling the two coordinate values
boxes_filled ++;

// now making the internal rectangle i1n RLACK color

rectangle(x_coor+l, y_coor+l, x_coor + BOX_LENGTH ~1,y_coor+ROX_HEIGHT -t
setfillstyle(SOLID_FILL.BLACK);

floodfill(x_coor +2,y_coor +2, BLACK);

/7 RN SLOT MOVEMENT BLOCK STARTS TR

£/ BRERTN NI N .
// this function actually moves &lots in the network and
// aldo serves the purpose of control centre

// called from
/7 1. main()

AR XTI LI IZISS ISR LR 3]
void move_slots()

{

F I et */

// function declarations

void init_source recv(unsigned int,int)

void inlt_source_trans(unsigned int,int) i

void draw_a_box(unsigned int,unsigned int) ;

void update_slot_no_box(unsigned int) ;

void clear_r_win(void) 3

void draw_result_win(void) j

/W e e e e */

register Iint curr_x, curr_y3 // store current pixel coords
regiater int x_1_limit,

x_r_limit,

y_1_limit,

y u_limit; // four limits of the virtual bus
reégister unsigred long int i ; // simple counter
register unsigned int curf_slot_no, // stores the current slots being

29

]

used

actual _slot_no; // used for making.calcs fagster

regiater tnt rel_x = -1; // stores the relative (w.r.t. S5)'x*
s of a pixel ’

//werans initialization

LEFT_LOCO;

RIGHT + GAF;

LOWER + GAF;

UPFPER ~ GAF; // initializing the four limits

«_1_limat
x_r_limit
y_l_limit
y_u_limit

nou o

]

curr_slot_no = slots_pasted ; // setting up to current value of
// no. of slots passed

// #n#xus loop starts
for{i=0 3 1< (NO_SLOTS_IN_RUN) # SLOT_LENGTH ; i++)

{

curr~slot_no‘= slots_passed ; // starting new traversal of bus
// now moving on the lower horizontal arm of virtual bus

curr_x = x_1_limit - 13

if(x_white_lower == INVALID)

{

Nhile(getpixel(curr_x +1l,y_1_limit) t= WHITE && curr_x < x_r_limit)
CUrr_x ++3

1flcurr _x == x_r_limit)
x_white_lower= INVALID;
else
x_white_lower = curr_x +1;
Y} /7 finding out the x_white_lower, if it is invalid

if(x_white_lower > x_1_limit)
{

curr_x =sx_white_lower -—1j

x_white_lower --j

b

else if(x_white_ lower == x_1_limit)

{

curr_x = x_white_lower + SLOT_LENGTH -13
x_white_lower =x_white_lower +SLOT_LENGTH -1}
putpixel(x_1_limit,y_1_limit,BLACK);

slots_passed f#; // one more slot passed

curr_slot_no ++j // entering a new slot

if((head _slot_listlcurr_slot_nro % MAX_SLOTS) ->src_stn)
no_of _slots_empty ++

update_slot_no_box(slots_passed) § // refreshes the slot

== [NVALID

30

)

// no. box with this new value

>
ifix_white_lower I=INVALID)
whiletcurr_x < x_r_limit)
(
putpixel(curr_x +1,y_ 1_limit,BLACK) ;
putpixel(curr_x,y_ 1_limit WHITE);

curr_slot_no ++ ; // entering a new slot

%f(curr_x + 1 >= §8) // 85 = 'x' of source 1

{

rel_x = curr_x + 1 - 55;

ift((rel_x 7/ 9) # @ == rel_x) && ((rel_x/9) < MAX_STNS)) //if rel_x is int. mult of 9
if(f_act_sourceslrel_x / 91 == YES)

if(head_slot_listlcurr_slot_rno % MAX_SLOTS] -» src_stn == (rel _x/9))

/7 fprintf(fp, "R\t%4d\t%d\n",rel_x/92,curr_slot_no);

init_source_recv(curr_slot_no, (rel_x /9))

// actual source no is passed to this routine

b

/7 if 'x' is between sources, check for ACTIVE source, and
// if it is found, call the source routine for receiving
// the slot. the source no. passed is internal no.

curr_x +=SLOT_LENGTH}
>
// completed the lower arm of the virtual bus

// now on the right vertical arm of the virtual bus

curr_y = y_1 limit + 1; // reaching the lower crnr of right arm

if(y_white_right == INVALID)

¢
while(getpixel (x_r_limit,curr_y=1) i= WHITE && cuwrr_y >y _u_limit)
curr_y =-j
if(curr_y == y _u_limit)
y_white_right= INVALIDj
else

y_white_right = curr_y -1y
Y /7 finding out the y_white_right, if it is invalid

if(y_white_right < y_1_limit && y_white_right !=INVALID)
¢
curr_y = y_white_right + 1;
y_white_right ++;
b
else if(y_white_right == y_1_limit)

31

curr_y = y_white_rfght - SLOT_LENGTH +1g
y_wWhite_right = y_ white_right ~SLOT_LENGTH + 1
/7 putpixel tx v timit,y 1_rimiyt BLACK);
>
ifly_white_right !'=INVALID)
while(curr_y > y_u_limit)
{
putpixel(x_r_limit,curr_y-1,BLACK);
putpixel(x_r_limit,curr_y WHITE);

curr_slot_no ++ 1 // entering a new slot
curr_y ==SLOT_LENGTH;
)

// completed the right arm of the virtual bus

// now moving to the upper arm of the virtual bus

curr_x = x_r_limit + 1
if(x_white_upper == INVALID)
<
while(getpixel(curr_x —1,y u_limit) != WHITE &L& curr_x » x_1_limit)}
curr_x --—j%
iflcurr_x == x_1_limit)
x_white_upper= INVALID;
else

x_white_upper = curr_x -1}
Y} /7 finding out the x_white upper, if it is i1nvalid

1fix_white_upper < x_r _limit L& x_white_upper t= INVALID)

<
curr_x =x_white_upper +1;
x_white_upper ++
}
else 1fix_white_upper == x_r_limit)

<
curr_x = x_white_upper — SLOT_LENGTH +1;
x_white_upper = x_white_upper - SLOT_LENGTH + 1;

/7 putpixel(x_r _limit,y_u_limit BLACK) g

J

ifi{x_white_upper !{=INVALID)
while(curr_x > x_1_limit)
<
putpixel(curr_x -1,y _u_limit,BLACK)};
putpikel (curr_x,y_u_limit ,WHITE)

curr_slot_no ++ 3 // entéring a new slot

if(curr_x - 1 >= 55) // 55 = 'x' of source 1

3e

B

rel_x = curr_x - 1 - 55; ©
if(llrel _x / 9) *# 9 == rel_x) L& ((rel_x/9) < MAX_STNS)) //if rel x is int
if(f_act_sourceslrel _x / 91 == YES) - - -

/7 fprintf(fp,“T\th\t%d\n“,rel_x/Q,curr_slot_nO);
init_source_trans(curr_slot_no,{(vrel_x /9)),

Y // if 'x' 1s between sources, check for ACTIVE source, and

/7 1f 1t is found, call the source routine for transmitting

// the slot. the source no. passed is internal no.

curyr _» ~=SLOT_LENGTH;
} // completed the upper arm of the virtual bus
ifC (A/SLOT_LENGTH)*SLOT _LENGTH == i)
[4
/7 generate a new pulse and put a new slot structure
putpixel(x_1_limit,y u_limit,WHITE);
// initialization of the corresponding slot structure has also to
// daone at this very place.

4 curv_slot_no ++
actual_slot_no = curr_slot_no % MAX_SLOTS;

head_slot_listlactual_slot_nol -> packet_id = INVALID;
head_slot_listlactual_slot_nol -> src_stn = INVALID;
head_slot_listlactual_slot_nol -> type_of_pkt = EMPTY_SLOT;

/7 draw_a_box(curr_slot_no,actual_slot_no); // refreshing the r_win

Y} // #amrExsrsansearnunsnmnsd end of loop

)
// wndannnantn SLOT MOVEMENT BLOCK ENDS #9535 5 5 5 5 5 0 35 % 3% % %

/7 Rxpnnunnnten STATIONS' INTERNAL ROUTINES BLOCK %8585 85 55 % %% % 35 % % %% %%
// this block contains routines for the various source distributions
/7 this includes routines for invoking them, and managing queues of

// the ACTIVE sources

AR IIITEL 22222222 222222

// this function invokes a source's receiving packet function

/7 called from

// 1. mov_slots() from slot movement block

// HRERBRREBERRERURSERRRE RSN

// This routine is activated only when the curr slot has the data transmitted
// by this very source . Now only to copy back the data onto the packet store
IVARIY2 TSI LRSI 22 TN

void init_source_recv(unsigned int curr_slot_no, int actual_source_no)

{

/M o e e e e e s e */
// function declarations

. mult of

9

void send_to_packet_storelstruct packet)

struct packet # search remove_return_pkt(struct slot *,int,unsigned 1nt)
void rbfresh~queue(1nt) :

Sy WU U Sy S x/ -

register unsigned int actual_slot_no § // tinternal value)
struct packet # ptr_temp;

ptr_temp = head packet_queuelactual_source_nol;

// if the head_packet_queue is NULL , since this packet has already
// been acknowledged and thus removed from the source and so simply
// return to the calling routine .

ifiptr_temp == NULL)

return j // because of reason given above ;

actual_slot_no = curr_slot_nc % MAX_SLOTS ;

ptr_temp = search_remove_return_pkt(head_slot_listlactual_slot_nol,actual souwce_no,
/7 trying to find, remove and extract the packet in the queue which 1is
// filled in this slot

if(ptr_temp == NULL)
return §} // this packet not found in the packet queue
else
{
ptr_temp -> slot_no_reach_destn = curr_slot_no + ends_gap(actual_source_noi
send_to_packet_store(ptr_temp) ; // send the data to backup
/7 if(f_shown_sourceslactual_source_nol == YES) :
// refresh_queue(actual_socurce_no) ;3 // if this source active, display the gueue
free(ptr_temp) ;

no_of_pkts_in_qglactual_source_nol -- ;
iflno_of_pkts_in_gqlactual_source_nol == ZERQ)}
{

if(f_special_statusfactual_source_nol == YES)

<
f _special_statuslactual_source_riol = NO g
\flempty_special_entry < SERIAL_LENGTH)
serial_special_statuslempty_special_entry++] = actual_source_no j
)
elege if(f_killer_statuslactual_source_nol == YES)
{
f_killer_statuslactual _source_nol = NO ;
if(empty_killer_entry < SERIAL_LENGTH)
serial_killer_statusfempty_killer_entry ++J = actual_source_no j
b

min_waitlactual_source_nol = normal_min_waitlactual_source_nol j;

}
)

34

cuyy

_slot__

no)

.
i

b
AR I 2RSSR 222 22 2 SR SRR TR 2T ! o

/7 this function searches a pkt in the
// queue of a source which i1s present

// in the slot passed ; 1t removes that

// packet from the queue ; updates the

// access watt counter | returns this

/7 packet to the calling routine

// called from

/7 1. init_source_recv() 1in this block

S/ BERRRAERRBRBRERBERER AR R R PP AL R AR

struct packet #search_remove return_pkt(struct slot #ptr_slot ,
,

8

struct packet *ptr_templ, #ptr_temp2 ; // temp ptrs to the list

int actual_source_oo, unsigned int curr_slot_no:

ptr_temp!l = head_packet_queuelactual_source_nol ;
/7 null condition already checked in calling routine init_source_recv()

100 ptyr_templ => type_of_pkt) == (ptr_slot -> type_of_pkt))
1ifidptyr _templ -D>packet_id) == (ptr_slot -> packet_id))
¢
// vow checking and updating reach top entry in the
// néxt packet in the queue, if any !
ptr_temp2 = ptr_templ -> next
if(ptr _temp2 I= NULL)
ifi{ptr_templ -> slot_no_reach_top == ZERO)
ptr_temp2 -> alot_no_reach_top = curr_slot_no + ends_gaplactual_source_no) i
// moving the second node to the top of the queue
// and resetting the access wait counter to zero
head _packet_queuvelactual_source_nol = ptr_temp2
access waitlactual_source_nol = ZERO
return{ptr_templ) ;
>

// Now start checking further in the list
// acceéss wait now need not be reset
// starting againg from the top point

ptr_temp®2 = ptr_templ = head_packet_queuelactual_source_nol ;

while({ptr_templ != NULL) &&(((ptr_templ->type_of_pkt) '=(ptr_slot ->type_of_pkt))
l{((ptr_temp!l ~>packet_id) !=(ptr_slot->packet_id))))
{
ptr_temp2 = ptr_templ ;
ptr_templ = ptr_templ -> next
¥

if((p%r_templ te NULL) L4((ptr_tempi-Dtype_of_pkt) ==(ptr_slot —->type_of pkt))
&L ((ptr_tempi —D>packet_id) ==(ptr_slot->packet_id)))

<

ptr_te@pe => next = ptr_templ -> next i
return{ptr_templ) ;

35

) ,
else
return((struct pscket #)NULL) ;

}

4 G&l****illl"l{i’i&i’li*%&’%ii#*lii**&i’**ﬁ**

// this function copies the contents of a node

// onto the packet store

// cdlled from

/7 1. init_sowrce_recv() in this block

AR 2 222 e 2222 22 2222 22T 2 T RN TR RN YR e
void send_to_packet_store(struct packet # ptr_pkt)

i
8

// function declaration

void refresh_packet_store(void) ;

void calc_delays_in_unit() ;

A B - e e e e e */

// trying to check whether the storage is already full
// but this is not a fool proof check

// modify this !

register int i; /7 just for printing packet onto file

if(curr_empty_entry == NO_PKTS_IN_UNIT)

{
calc_delays_in_unit() 3
réfresh_packet_store() ;
Y /7 1If the packet store is full, calc delays, refresh the store and

/7 copying the data in the packet onto the packet store
packet_storelcurr_empty_entryl{0) = ptr_pkt -> src_stn;
packet_storelcuryr_empty_entryl(1] = ptr_pkt —-> type_of_pkt;

packet storelcurr_empty_entryll2] = ptr_pkt -> slot_no_geny
packet_storelcurr_empty_entryl[3] = ptr_pkt ~-> slot_no_reach_top;
packet_storelcurr_empty_entryl{4] = ptr_pkt -> slot_no_reach_destn:

curr_empty_entry ++;
if(curr_aempty_entry == NO_PKTS_IN_UNIT)
{
calc_delays_in_unit() j
refresh_packet_store() 3
} // Repeat the earlier checking for the storage

/] BRRRRRRRREERRRARAER AR NN
// this function only refreshes the packet store

// ¢alled from

// 1. init_all() in initialization block

// 8. send_to_packet_store() in dstrbtn block

// 3. simulation{) in the simulation control routine
VAR XIS TSI SIS LSS 22 3

36

continue

void refresh_packet_store()

register int i,J1

for (im0} i<NO_PKTS_IN_UNIT{i++) /7 for all vows
for{j=0; j<COLUMN_IN PKT_STORE; j++) /7 for all columns
packet_storelilljl = ZERO;

curr_empty_entry = ZERD:;

1

P

AR I T TEE T S R R)

7/ this function invokes a source's generating packet function

// called from

/7 1. mov_slots() from slot movement block

AT YT R T T T TS TR TR

void init_source_trans(unsigned int curr_slot_no,int actual_source_no)

’
RS

/W e o e e e */
/7 function declarations

void put_in_queue(struct packet #,int,unsigned int) :
int give_random_no(void) ;
// int exponential(int) ;

void put_in_slot(int,unsigned int)

struct packet * create_packet(void) ;

void refresh_queuelint) ;

/B e e e e e i e = e e i i e e e */

register int i, 3, no_of_pkts_gen =0, rand_no ;

float rand_prob ; // random no. for prob. of tramsmission
int temp_buff; :
struct packet #ptr_temp;

/7 if all of the counters are non-zero return after
// decrementing them

iflactess_waltlactual_source_nol I=2ERQD)
if(wailt_counterlactual_source_nol{VIDEO_DATA -11 t= Z2ERO)
if(wait_counter(actual _source_nollVOICE_DATA ~11 i= ZERQ)
if(wait_counterlactual_source_nol[ORDINARY_DATA -1] = ZEROD)
¢ .
// riow at this pt., all these counters have non zero
// values, which means that neither any new traffic
// is to be generated nor any attempt of transmission
// is to be made . So return after decrementing these
// four counters
// decrementing the three type counters
// and the access wait counter
access_waitlactual_source_nol ~-;
for(i=0gi<NO_OF_DATA_TYPESji++)
wait_counterlactual _source_nollil -—3

37

return;

// if above check faiis, we proceed further

// now the channel access attempt shall be made

// this is done prior to genevation of rmew pachkets.

/7 since the packets cen be generated at any point 1n the slot

// while the channel car cnly be accessed at the start of the slot

/7 TRANSMISSION ATTEMFT

ptr_temp = head_packet_queuefactual_source_no];
// accessing the g_top packet for this source

if(access_waitlactual source_nol != ZERC)
access_waitlactual_source_nol -- ;
else

e
.

1f(ptr _temp ! =NULL)
¢
rand_prob = ((float)rand())/RAND_MAX;

if(rand_prob <= prob_baselactual_source_nol)
4
put_in_slot(actual_source_no,curr_slot_nolj
// put the packet in the slot ; itself updates te result window slot box
access_waitlactual_source_nol = min_waitlactual_source_rol;
}
>
)
// if access wait is rero, try to send and set the wait to min_wait
// eélse decrement the wait counter by 1.
// TRANSMISSION ATTEMPT OVER

// now the individual traffic distributions

// shall be called as follows

// {f the wait counter for a particular type of traffic

// becomes zero, invoke the random number gengrator for that

// traffic and generate as many pkts of that type. Generate

// a random number toc serve the purpose of packet id for

// identification of the packets . The video traffic is steady

// traffic as against the voice and data traffics, which are bursty
// in nature and so video traffic is represented by one packet

// generated per fixed time interval (represented by MEAN_VIDEQD)

// ORDINARY DATA GENERATION .
iflwait_counterlfactual_source_nollORDINARY_DATA ~11 != ZERQ)
wait_counterfactual_source_nolLORDINARY_DATA -11 -~ ;
else

¢

no_of_pkts_gen = give_random_no(); // generate no.(rand) of pkts in this data spurt

38

ifino_of_pkts_gen != ZEROD)
{
rand_no = rand() ;3 // random packet id
for(J=0;5j<no_of _pkts_geng j++)
(
ptr_temp = create_packet();
// create pkts, fill entries and put them 1n uoue
ptr _temp -> packet_i1d = rand_no + ;
ptr_temp ->src_stn = actudl_source_no ;
// the src stored in ithe packet is internal vaiuve
// please make this sure again !
ptr-_temp - type_of_pkt = ORDINARY_DATA;
ptr_temp -> slot_no_gen = curr_slot_no ;
put*in_queue(ptr_temp,actual~source_no,curr_slot~no):
b

3
wait_counterlactual_source_nollLORDINARY_DATA -11 = MEAN_ORD;

no_of_pkts_in_qglactual_source_nol += no_of_pkts_gen : s/ at every generation
> //0RDINARY DATA GENERATION OVER

// VIDEO DATA GENERATION

if(wait_counterlactual_source_nolIVIDEO_DATA -11 != JERD)
wait_counterlactual_source_nol[VIDEO_DATA ~-1] —-— ;

else

<

// generate a video packet, fill 1t
ptr_temp = create_packet()
rand_no = rand() ; // random packet i1d

ptr_temp -> packet_id = rand_no ;

ptr_temp -> src_stn = actual_source_no ;

ptr_temp -> type_of_pkt = VIDEO_DATA ;

ptr_temp -> slot_no_gen = curr_slot_no ;
put_in_queue(ptr_temp,actual_source_no,curr_slot_no};
wait_counterlactual_source_nol{VIDEO_DATA -1]1 = MEAN_VIDED ;

rno_of_pkts_in_qglactual_source_nol ++ ;
>

// VIDEQO DATA GENERATION OVER

// VOICE DATA BGENERATION
if(wait_counterlactual_source_nolIVOICE_DATA -11 I= ZERQ)

wait_counterlactual_source_nol)(VOICE_DATA -1] -~ 3

else

<
na_of pkts_gen = give_random_no(); // generate no.(rand) of pkts in this data
noho?_pkts,in_qtactual_sourte~nol += no_of_pkts_gen ;
tf(no_of_pkts_gen t= ZERD)
¢

rand_no = rand() 3 // random packet id

39

spurt

for(3=03idne_of _pkts_gen; j+3)
{
ptr_temp = create_packet();
// create pkts, fill entries and put them in queue
ptr_temp —-> packet_i1d = rand_no + j;
ptr_temp ~lsrc_stn = actual_source_no ;
// the src stored in the packet is internal value
/7 please make this sure again !
ptr_temp -> type_of_pkt = VOICE_DATA;
ptr_temp ~> slot _no_gen = curr_slot_no
put_in_queue(ptr_temp,actual_source_no,curr_slot_no):
>
b
do // ensuring the spurt gap is not differing by » 10
(
rand_no = random(MEAN_VOICE + 10);
} While(abs(rand_no - MEAN_VOICE) > 10);
wait_counterlactual _source_nolIVOICE_DATA - 11 = rand_no;

b
5

// VOICE DATA GENERATION OVER
// REFRESHING THE RESULTING QUEUE

// Afif _shown_sourceslactual_source_nol) == YES)
// refresh_queuelactual_source_no) ;

ifino_of_pkts_in_qlactual_source_nol >= NORMAL _Q_LEN_LIMIT)
¢ ,
if(f_special_statuslactual_source_nol == NO) && (f_killer_statusfactual_source_nol == NO))
4
f special_statuslactual_source_nol = YES ;
if(empty_special_entry < SERIAL_LENGTH)
serial_special_statuslempty_special_entry ++) = actual_source_no i
min_wai tlactual_source_nocl = normal_min_waitlactual_souwrce_nol/ TWO ;
)
ifino_of_pkte_in_qlactual_source_nol >= UPPER_Q_LEN_LIMIT)
if(f_killer_statuslactual_source_nol == NO)
{
f_special_statuslactual_source_nol = NO ;
if(empty_special_entry < SERIAL_LENGTH)
seéi-ial_special_statuslempty_special_entry ++] = actual_source_no ;
1f(egmpty_killer_entry < SERIAL_LENGTH)
serial _killer_statusl{empty_killer_entry ++] = actual_source_no ;
f killer_statusfactual_source_nol = YES
min_waitlactual_source_nold = (normal_min_waitlactual_source_nol)/ FOUR ;
b
)

3
IARZIIZTERYR YIS YT Y R 2 3

40

7/ thig function creates a new packet ndde and initializes it
// called from

/7 1. init_source_trans() in dstrbtn block

/) SRREBRERAREEARERER RN

struct packet #create_packet()

{

struct packet #ptr_temp;

ptr_temp=(struct packet =) malloc (size_of_packet);
ifiptr_temp == NULL)

{

closeqraph();

cirgscr{);

puts (" Memory not allocated in module create_packet()!I\n"):
puté(“ System fault !\n Please check it!\n Gocdhye!"):
exit(l);

)

// checking for memory allocation failure
ptr_temp ~> src_stn = RAND_MAX:
ptr_temp -> type_of_pkt = ZERO;
ptr_temp -> slot_no_gen = ZERQ;
ptr_temp -> slot_no_reach_top = ZERO;
pitr_temp -> slot_no_reach_destn = ZERQ;

ptr_temp ->next = NULL;

return(ptr_temp) /7 no comments needed, it is si1mple
3 .

VAR I ITIZSZT ISR S SRS XL R FR LR TR LR IR
/7 thig function puts the packet on the

// top of the queue of the source passed

// on the currert slot

// called from

// 1. init_source_trans() in this block
AR TZIYZEXIIITIL YIS TL SIS SRR 2 2

void put_in_slot(int actual_source_no, unsigned int curr_slot_no)

e
/H i e e e */

// function declarations
void draw_a_box{unsigned int, unsigned int) ;
/W e e e et e e e */

struct packet * ptr_pkt;

register unsigned int actual_slot_noj

ptr_pkt = head_packet_queuelactual_source_nolg

// accessing the q_top packet

actudl_slot_no = curr_slot_no % MAX_SLOTS;

/7 finding the internal slot corresponding to this current slot

// now topying the data from packet to slot

41

inttialization

head_slot_listlactual_slot _nol -> packet_id = ptr_pkt -> packet_id:

head_slot_listlactual_slot_nol -> &rc_stn = ptr_pkt ~> src_stn;
head_slot_listlactual_slot_nol -> type_of_pkt = ptr_pkt -> type_of_pkt;

// now updating this slot in the result window
// draw_a _box(curr_slot_no,actual_slot_no)
3
VAR 22T X 22X IZLTERETEE L TR E RN E PE PR
// this function puts the packet node passed
// to it 1n appro. place in the Q of
// the source ->actual_source_no
// called from
// 1. init_source_trans() in this block
AR 2R S IR YRS SRR 2SR R RN RN
voild put_in_queue(struct packet *ptr_pkt,int actual_sow ce_no, unsigned 1nt curr_slot_no)
{

register int this_pkt_type; // to keep new pkt type for fast comparisons
struct packet * ptri_temp, *ptr@_temp; //temporary pointers for traversal

// checking for the queue empty case!
if(head_packet_queuelactual_source_nol == NULL)
{

ptr_pkt -> slot_no_reach_top = curr_slot_no ;
head: packet_gueuelactual_source_nol = ptr_pkt ;
dccess_waitlactual _source_nol = ZERO 3

returng

) // if the queue is empty, put the packet at the
// top of the queue and fill the entry for reaching

// the top of the queue; reset the access_wait counter

// to Z2ERO value
this_pkt_type = ptr_pkt -> type_of_pkts // otherwise, starting operation

ptri_temp = ptr2_temp = head_packet_queuelactual_source_nol;
// starting giving value of HEAD

while(ptri_temp ->next != NULL && ptri_temp ->type_of_pkt >=this_pkt_type)
<

ptre_temp = ptri_temps

ptri_temp = ptri_temp - nexty

Y// move in the link list till the pt. of insertion comes -> by ptri_temp

// wheér list has only one node or say pt. of insertion is at the
// head jtself, then the two pointers are equal
if(ptrl_temp == ptr2_temp)
{
if((ptri_temp -> type_of_pkt) < this_pkt_type)
(
ptr_pkt -> slot_no_reach_top = curr_slot_no
ptrrpkt -> next = ptri_temp;

42

head _packet_queuelactual source_no)] = ptr _pktj

accens_waitlactual _source_nol = ZERO

return;

Y /7 fixing the new packet at the top of queue

// reseting the access_wait counter to ZERO

// filling the entry for reaching the top of the queue
else

ptrl_temp ->next = ptr_pkt;
>
else

I3
S

1f((ptrl_temp ->» type_of_pkt) Lo this_pkt _type)
{

ptr_pkt ->next = ptri_temp;

ptr2_temp ->next = ptr_pkty

)

else

ptri_temp -> next = ptr_pkt;
)

b
/s

AR I S I IR R T R R T T Y
// this function gives the no. of pkts per
// message for the ord and video traffic
// according to the flag type

// called from
// 1. init_source_trans() in this block

AR TIZIX ISR SS ST E T S L 0

int give_random_no()

<

double avg_nhumbers = 0.0 ;

ungigned int pkts

double prod = 1.0 , p_final, rand_float_no j
double variance j :

p_final = exp(- BASE_FOR_RANDOM 1}
pktg = ZERO

while(prod > p_final)
{
rand_float_ho = ((doublelrand())/RAND_MAX;

prod #= rand_float_no 3
pkts++; .
}

triod'*- 1 3 7/ increase the number of times this function has been
// invoked

Bum_numbers += pkts ; // increment the no. of pkts generated so far

avg_numbers = (float) sum_numbers / (float)tried s // (X_BAR)

43

deviation_sum += ((float)pkts ~ 8V9,"Um5ér53 *((float)prte—avg_numbers }

1fi(tried >= try_upto)

S

f_try_limit_reached = YES ;

variance = (double) (deviation_sum/try_upto) ;

try_upto = Y_VALUE

1f(tried >= try_upto)

f_simul_over = YES ;

else

>

f_try_limit_reached = NO ;

return(pkts - 1)3 // now ‘pkte -1' is being returned .so modify
// other routines after seperate testing

)

#if O

/7
//
/7
/7
/7
/7
/7
in
{

}~
#e
/7

(2222222222222 2SS RSS2 R
this function gives a exponentially
distributed nummber with a mean as
passed to this routine

called from

1. init_source_trans() in this block
*l’ﬁ"*lﬂl**#4}#'%}{{{*{“%Q{*li***l#*i

t exponegntial{int mean)

double rn, retval ;
int ret

/7 rand() returns a random no. from O to RAND_MAX

do

{
rne((double)rand())/RAND_MAXg
> while(rn == 0.0);

retval = ((mean) * log(rn))i
ret © (int) retvalg

return(-~ret);

ndif
shapprndninnnns STATION DISTRIBUTION BLOCK ENDS ####8% %% E%%4%%

snahdannnnnnnnit RESULT CALCULATION BLOCK STARTS ##isrisiisdans
PTR TR ST ITLI S S S22 S22 sl ol

this function calculates all the

delays needed for the result over

the current unit of packet store

4y

* Y_VALUE « Variance/(tDNFIDENCE~LIMIT *#CONF IDENCE _(LIMIT)

/7

.
H

(

SUM += X_i

sQuare

}

// céalled from
// t. master control routine ,

7/ 8. simulation control routine
// make it clearer
AR I TIITETYTTTERTEY 2L Y TR PR
void calc_delays _in_unit()
¢
register int i,J¢
register unsigned int src,type.slot_gen,slot_q_top.slot_destn;
register int q_delay, comm_delay

for (1=03i<NO_PKTS_IN_UNIT && 1<curr_empty_entry s1++)
<
src # packet_store(i11(0];

if((src >= ZERO) && (src < MAX_STNS))

{
type = packet_storelil(1] ;
total_pkts_tranglsrcliitype-11 ++ 3
q_delay = packet_storelill3] - packet_storelil(2]
total_q_delaylsrclltype ~11 += (longlq_delay ;
comm_delay = packet_storelil[4] - packet_storelill3] - d_point_offset ;
totdl _comm_delaylsrclltype —11 += (long)comm_delay ;
if((q~delay + comm_delay) > delay_allowedltype—11])

no_of_pkts_delayedisrclltype—-1] ++ ;
3// end of else
3// end of for

fp = fopen(filename,"a") ;
fprintf(fp,"<Results-RUN: Stn= “d,",no_of_act_stns) ;
fprintf(fp,"BNB= “d,Frob= %d>\n" ,f_bwb_switch,f _prob assign) i

for(i=0; i <MAX_STNSji++)

<
if(f_act_sourcesl(i) == YES)
<
fprintf(fp,"\n<Src-%d>,", i1+1) ;
for(§=0; j<NO_OF_DATA_TYPES} j++)
< .
fprintf(fp,”<Type—%d,Pkts—%d,Qnd—%ld,“,j+l,totalupkts_trans[ilfjl,total_q_dglay[i)(j]) H
fprintf(fp,"C_d—%ld,Deld—%d)“,total_commmdelaytiJ[j],no~of_pkts_delayed[iJ[JJ) i
3
)}
M

fprintf(fp,"\n");
fclose(fp) 3
>
7/ i#i*ﬁ*Q**Q**l***?*il*RESULT CALCULATION BLOCK OVER #%%%% %% %% % #8342 %

/7 RnnunEnisnsannanvanr gimulation control block AN NN

45

AR ZIIIZ IR RTYR YRR Y TN TR T RE TN TR TR
// This function takes the charge of running
// the simulation after the main() has drawn
7/ the screen and its components after the
// initialization of the variables .
// called from '
// main{) in the main block
YAVARR I*il*#*’*#Gi-{*ﬂ**iﬂl{{*****“#*D%&*&Q&“&{
void simulation(void)
/R e et e e e e e -/
/7 function declarations
void move_slots(void) i
void calc _results(void)
void calc_delays_in_unit(void) -
void refresh_packet_store(void) ; :
void show_std_results(void) ;
void clear_r_win(void) ;
voird draw_result_win(void) ;
/e e e i o et i e e e */
register int i,)

// do
/77
// move_slote() 3 // warming up the network
// but the calculations should not includel
// the packets reached within this time interval. SO
/7 refresh_packet_store() ;// not done for results
do
{
move_slotas() 4
) while((slots_passed < MAX_SLOTS_TO_RUN)&&L(f_mood_over == NO)) ;
//) while(!f_simul_over) 3
calc_delays_in_unit() 3
for (1203 1<503i++)
printf(“\a*);
fp=fopen(filename,"a")
fprintf(fp, "\n<THESE WERE THE FINAL RESULTS>");
fprintf(fp,“<THE CALCULATED R ESULTS ARE >\n");
for (i=03;1<MAX_STNS;i++)
Y
if(f_act_sourceslil == YES)
<
for (j=05 J<NO_OF _DATA_TYFES; j++)
< .
if(total_pkts_trans{iJ{Jj] 1=2ERO)

{ N N n
fprintf(fp;"\nq_delayl%dIC%d1=%f",i+1,j,(float)total_q_delay(illjl/(float)total _pkts_translill)

fprintf(fp," il comm_delay[%d][%d]=%f“,i+1,j,(float)total_comm_delay[i)(jJ/(float)total_pkts_tran
L1031

)
fclose(fp)
)

/7 Retnpnvasannnnnrrrnnmrsimulation block control over T

	TH68730001
	TH68730002
	TH68730003
	TH68730004
	TH68730005
	TH68730006
	TH68730007
	TH68730008
	TH68730009
	TH68730010
	TH68730011
	TH68730012
	TH68730013
	TH68730014
	TH68730015
	TH68730016
	TH68730017
	TH68730018
	TH68730019
	TH68730020
	TH68730021
	TH68730022
	TH68730023
	TH68730024
	TH68730025
	TH68730026
	TH68730027
	TH68730028
	TH68730029
	TH68730030
	TH68730031
	TH68730032
	TH68730033
	TH68730034
	TH68730035
	TH68730036
	TH68730037
	TH68730038
	TH68730039
	TH68730040
	TH68730041
	TH68730042
	TH68730043
	TH68730044
	TH68730045
	TH68730046
	TH68730047
	TH68730048
	TH68730049
	TH68730050
	TH68730051
	TH68730052
	TH68730053
	TH68730054
	TH68730055
	TH68730056
	TH68730057
	TH68730058
	TH68730059
	TH68730060
	TH68730061
	TH68730062
	TH68730063
	TH68730064
	TH68730065
	TH68730066
	TH68730067
	TH68730068
	TH68730069
	TH68730070
	TH68730071
	TH68730072
	TH68730073
	TH68730074
	TH68730075
	TH68730076
	TH68730077
	TH68730078
	TH68730079
	TH68730080
	TH68730081
	TH68730082
	TH68730083
	TH68730084
	TH68730085
	TH68730086
	TH68730087
	TH68730088
	TH68730089
	TH68730090
	TH68730091
	TH68730092
	TH68730093
	TH68730094
	TH68730095
	TH68730096
	TH68730097
	TH68730098
	TH68730099
	TH68730100
	TH68730101
	TH68730102
	TH68730103
	TH68730104
	TH68730105
	TH68730106
	TH68730107
	TH68730108
	TH68730109
	TH68730110
	TH68730111
	TH68730112
	TH68730113
	TH68730114
	TH68730115
	TH68730116
	TH68730117
	TH68730118
	TH68730119
	TH68730120
	TH68730121
	TH68730122
	TH68730123
	TH68730124
	TH68730125
	TH68730126
	TH68730127
	TH68730128
	TH68730129
	TH68730130
	TH68730131
	TH68730132
	TH68730133
	TH68730134
	TH68730135
	TH68730136
	TH68730137
	TH68730138
	TH68730139
	TH68730140
	TH68730141
	TH68730142
	TH68730143
	TH68730144
	TH68730145
	TH68730146
	TH68730147
	TH68730148
	TH68730149
	TH68730150
	TH68730151
	TH68730152
	TH68730153
	TH68730154
	TH68730155
	TH68730156
	TH68730157
	TH68730158
	TH68730159
	TH68730160
	TH68730161

