
DESIGN AND SIMULATION OF
MULTil\'IEDIA PROTOCOL

Dissertation submitted to "the Jawahar/al Nehro Unitversity
in partal fulfilment of the requirements
' for the award of the degree qf

MASTER OF TECHNOLOGY
IN

COMPUTER SCIENCE

SANGITA GUPTA

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JA WAHARLAL NEHRU UNIVERSITY

NEW DELID-110 067
JANUARY 1995

CERTIFICATE

This is to certify that the dissertation titled

"DESIGN AND SIMULATION OF MULTIMEDIA PROTOCOL" being

submitted by SANGITA GUPTA to JawaharLal Nehru University in

partial fulfilment of the requirements for the award of the

degree of Master of Technology, is a record of the original

work done by her under the supervision of Prof. P.C. Saxena,

Professor, School of Computer and System Sciences,

Jawaharlal Nehru University, New Delhi during the Monsoon

Semester, 1994.

The results reported in this dissertation have not been

submitted in part or full to any other University or

Institution for the award of any degree or diploma.

Prof. K.K. Bharadwaj
Dean,
School of Computer
and System Sciences,
Jawaharlal Nehru
University,
Ne\'l Delhi.

~_()MO~
Prof. P.C. Saxena
Professor,
School of Computer
and System Sciences,
Jawaharlal Nehru
university,
New Delhi.

ACKNOWLEDGEMENTS

I wish to express my sincere and heartfelt gratitude to

Prof. P.C. Saxena, School of Computer and system Sciences,

Jawaherlal Nehru University, for the unfailing support he

has provided throughout. In all respects, I am very grateful

to the patience he has exhibited and for the time he has

spent with me discussing the problem. It would have been

impossible for me to come out successfully without his

constant guidance.

I extend my thanks to Prof. K.K. Bharadwaj, Dean, School of

Computer and System Sciences, JNU for providing me the

oppertunity to undertake this project. I would also like to

thank the authorities of our school for providing me the

neccesary facilities to complete my project.

I acknowledge and thank each and everyone of those who,

directly or indirectly, helped me in this work.

j~
{ SANGITA GUPTA)

Chapter #1

Chapter #2

Chapter #3

CONTENTS

INTRODUCTION

NETWORK BACKBONE ARCIDTECTURE

2.1 CHOICE OF BACKBONE ARCHITECTURE

2 .1.1 FIBERNET

2 .1. 2 EXPRESSNET

2 .1. 3 C-NET

2 .1. 4 D-NET

2.2 D-NET ARCHITECTURE

RANDOM ACCESS STRATEGIES

3.1 OVERVIEW

3.2 ALOHA

3.3 LCSMA

3.4 LCSMA-CD

3.5 PROTOCOL DESIGN

3.6 FAIRNESS SCHEMES

3.6.1 EQUAL TIMER SETTING

3.6.2 CHANNEL ACCESS PROBABILITY ASSIGNMENT

3.7 MULTIMEDIA TRAFFIC

3.7.1

3.7.2

VIDEO DATA TRAFFIC

VOICE DATA TRAFFIC

3.7.3 ORDINARY DATA TRAFFIC

3.8 PRIORITY TRANSMISSION

3.9 DELAYS ENCOUNTERED BY PACKETS

3.9.1 QUEUING DELAY

3.9.2 ACCESS DELAY

3.9.3 TRANSFER DELAY

3.10 PERFORMANCE INDICES

Chapter #4 SIMULATION

Chapter #5

Chapter #6

4.1 INTRODUCTION

4.2 CONTINUOUS SYSTEM SIMULATION

4.3 DISCRETE SYSTEM SIMULATION

4.3.1 FIXED TIME STEP MODEL

4.3.2 EVENT TO EVENT MODEL

4.4 STOCHASTIC SIMULATION

4.5 RANDOM NUMBER GENERATION

4.6 LENGTH OF SIMULATION RUN

4.7 SIMULATION MODEL

4.8 SIMULATION OF MULTIMEDIA TRAFFIC

PERFORMANCE ANALYSIS

5.1 DELAYS

5.2

5.3

5.4

5.1.1 QUEUING DELAY

5 .1. 2

5 .1. 3

ACCESS DELAY

TRANSFER DELAY

THROUGHPUT Vs. LOAD

SUCCESSFUL TRAFFIC TRANSMISSION

SIMULATION RUN LENGTH

CONCLUSION AND FUTURE DIRECTIONS

APPENDIX A

APPENDIXB

BffiLIOGRAPHY

CHAPTER ONE

INTRODUCTION

CHAPfERONE

INTRODUCTION

Communication network have rapidly become an important

and almost indispensible part of our lives today: from the

telephones in our homes to E-Mail in our offices, the

ultility of these networks is undenible. Traditionally, wide

area networks have evolved seperately around the end

applications that they support. For example, the telephone

network, which almost exclusively carries voice, has

developed independently of information networks that carry

data and as a result, the technologies involved are

significantly different. These distinct networks served

there purpose very effectively for the applications for

which they were designed. But current trends are

increasingly pushing diverse networks towards integrating

into a common high-speed network. The high band width nature

of new applications neccesitates an underlying network that

can provide the raw bandwidth needed.

Multimedia computers process various kinds of data like

video, voice, text, image and graphics. Distributed

computing involving multimedia data on a local area network

needs integration of transmission of all the above specified

data traffics on the same network, to give one single

integrated information distribution system. The underlying

1

network should be able to cater for the special requirements

of video and voice traffics, i.e. high bandwidth and tightly

bounded network delay.

Progress in optical fiber communications has generated

tremendous interest in its application to local area

network. The propagation loss of glass fiber at the optical

wavelength of 1550 nm is as low as 0. 2 dBjkm and therefore

fiber transmission system can be operated at 20-100

100 km.

they are

Gbitsjsec data rates over distances greater than

Moreover optical fibers are irnrnuned to EMI,

chemically inert, light in weight and small in size. All

these properties make optical fiber the best transmission

medium available today.

For implementation of optical fiber LAN' s there are

various architectures available like star shaped bus,

bidirectional bus structure like Ethernet and unidirectional

bus structure. For this project I have chosen a

unidirectional bus structure because reliability of a bus is

more than that of a ring and low loss bidirectional taps for

transmission and reception are difficultto implement.

The objective of this project is to design a network

architecture to which multimedia computers can be connected.

After an exhaustive study of various unidirectional bus

architecture based optical fiber networks like c-Net, D-Net,

2

Fastnet, Express-Net and comparing their relative merits and

demerits D-Net architecture has been chosen. D-Net possesses

the advantages of high efficency, low delay and simplicity

in protocol. The multimedia computers are connected to the

underlying network by active optical taps. Active optical

taps override any existing signal on the bus, thus no slot

is wasted unless nobody on the network wants to send data in

that slot, but this also results in an inherent unfairness

to upstream sources. Therefore the protocol design sould be

such that it removes the unfairness caused by active taps,

so that all computers can access the transmission channel

with equal fairness irrespective of their position on the

network. The delay requirements of the video and voice

traffic sould be met. Efficient bandwidth utilization is

another essential feature of the protocol design.

After the design of the multimedia protocol its

performance analysis is carried out using a stochastic

computer simulation.

3

CHAPTER TWO

NETWORK BACKBONE ARCHITECTURE

CHAYfERTWO

NETWORK BACKBONE ARCIDTECTURE

2.1 CHOICE OF NETWORK ARCIDTECfURE

The advantage of the low loss and wide bandwidth of

optical fiber has opened new dimensions for such high

bandwidth LAN applications. The very high data rate of

optical fiber leads the network designer to consider a

topology which uses as few links of fiber as possible so

that the capacity of the fiber is maximally utilised. To

implement fiber optic

architectures like star

network we

shaped bus,

can use various

unidirectional bus,

bidirectional bus, ring architecture etc. Reliability and

survivability of bus is better than ring so bus is better

suited than ring for implementation of this network. Low

loss bidirectional T-taps are difficult to implement hence

unidirectional bus architecture is chosen. An exhaustive

study of the following unidirectional bus architectures is

made.

2.1.1 FJ:BERNET

Fibernet is a fiber optics version of Ethernet. It uses

a star shaped bus to connect the stations. The access

protocol is based on the principle of carrier sense multiple

4

access with collision detection-CSMACD. Fibernet is very

efficient when the end-to-end signal propagation delay is

much less than the packet transmission time. But as the bus

data increases, the efficency drops to the range far below

the acceptable levels. Another shortcoming of f ibernet is

that the delay of a packet is not deterministic. In worst

case a packet can encounter an unlimited number of

collisions this makes fibernet unsuitable for real time

(voice, video) communications.

2.1.2 EXPRESSNET

It uses a unidirectional transmision medium. Each

station is connected to the fiber at there taps, one to

sense carrier (S), second to transmit (T) and third to

recieve data (R) . S of a station can only sense carrier

transmitted from "upstream" stations. While R of any station

can receive any signal transmitted by any station. Each

station of expressnet operates as follows.

(1) To transmit a packet a station waits for the event of

next end of carrier (EOC) to be deteted at s. When EOC is

detected (td seconds after the real EOC occurence), the

station starts to transmit a packet , which consists of a

preamble portion Pp, and an information portion Pi. Within

td which is shorter than the transmission time of Pp, the

station can detect at s whether there is collision.

5

2) If a collision is detected, the station aborts the packet

transmission immediately, letting the Pi part of the packet

from an upstream station go through , and it goes back to

step 1. Otherwise it finishes its own packet transmission.

3) After successfully transmitting a packet, it waits for

end-of-train (EOT) to be detected at its R, the station is

allowed to search for (EOC) again.

Expressnet has efficiency of nearly one and delay is

also low so that for a limited number of stations connected,

voice communication quality is guaranteed. The main

disadvantage of Express-Net is that the algorithm is

complicated , which implies that the implemtation of it is

expensive.

All these complication arise from the fact that

Express-Net uses EOC and EOT as synchronising events to make

the protocol completely distributed, still the access

protocol of the first station remains slightly different

from the rest. It detects no EOC event. Hence because of its

high complexity Express-Net is also not sui table for my

application.

2 .1. 3 C-NET

C-Net uses a unidirectional bus network. A station is

connected to the bus through taps R, s and T which are to

6

receive packets, sense carrier and transmit packets

respectively. After detecting EOT at its R, a station is

allowed to sense the outbound channel using its s. If the

channel is busy, then it waits untill the channel becomes

idle. If the channel is idle it transmits a packet if it has

to transmit. If this leads to a collision due to the

simultaneous transmission of packets by the upstream

stations, then station

waits until! the bus

finishes its packet

stops transmitting immediately and

becomes idle again: otherwise, it

transmission. After successfully

transmitting a packet, a station has to wait untill its R

detects the EOT of the train which contains its own packet.

Then it is allowed to sense the channel again.

On analysing the channel access strategy of C-Net it is

found that the maximal number of voice channels of c-Net is

only half that the expresnet. The poorer performance of

C-Net is compensated by the gain in protocol simplicity.

2 .1. 4 D-NET

It is a unidirectional bus architecture. It has a

locomotive generator at one end which is connected to the

fiber at two points (Transmiter {T} and receiver {R}). It

transmits at its T, a locomotive (pulse) every time it

detects an EOT at its R. Each station uses EOC as the

synchronisation event to send the packet. Whenever a

7

collision is detected, a station stops transmitting untill

the next EOC is detected at its s. This protocol is simpler

than that of C-Net. Tap R of each station except that of the

locomotive generator need not detect EOT as needed in

Express-Net and C-Net. Tap T of each station except that of

the locomotive generator does not need to generate a

locomotive as needed in every station of Express-Net. D-Net

is a much simpler and less expensive system than E-Net &

C-Net.

On the analysis of all the above discussed

architectures it was found that, D-Net possesses the

advantages of high efficiency, low delay and simplicity in

protocol. Hence, for this application I have chosen D-Net as

the basic underlying network. A detailed discussion of D-Net

architecture is given in the next section.

2.2 D-NET ARCHITECTURE

D-Net uses a unidirectional bus architecture (Fig 1).

It consists of a locomotive generator (L.G.) which is

located farthest upstream. Its function is to implement the

slotted system by generation of slot timing pulse. A station

can transmit data only when it detects these pulses at its

carrier sense end. The interval between consecutive slot

pulses is determined by the packet length choosen for the

network and the bandwidth of the optical fiber. Each station

8

\~
Optical Taps

Dlrf!di<Jti ot 0dftl fluw

\~
Transm1t11ng

End1

Receiving
Endl

Tn
0-Bend

1-----

FIG.l

D-NET ARCHITECURE

LG : locomotive Gener&tor
H_U S _ Most Upstream Source
H 0 S Most Do-.vnslrcam Source

(A multimedia computer) is connected to the fiber at two

ends, one is called the transmitting end and the other is

the receiving end. The optical fiber bus takes the shape of

alphabet "O" that is why this network is called 0-Net. The

stations are connected to the fiber by optical taps. Optical

taps can be of two types active or passive. A passive

optical tap transmits· the "OR" of the locally generated

signal and the signal on the network. An active optical tap

can switch between the locally generated signal and the

signal on

transmitting

the

end

network. A

and receives

source transmits

signal, from all

at

of

its

the

sources, at the receiving end. The signal passes the

transmitter end at each source, then it passes the 0-bend

and reaches the receiver end of the sources.

The sources whose transmitting ends are nearer.to the

locomotive generator are called upstream sources and those

sources which are farther away from the L. G. are called

downstream sources. A slot pulse starts at the locomotive

generator, traverses the fiber starting from the

transmitting end of the most upstream source to most

downst·ream source, then it reaches the 0-bend. After

crossing the 0-bend it traverses the receiving ends of all

sources starting from most downstream to the most upstream,

and finally it reaches the L.G. When L.G. receives a slot at

10

its receiver it generates a slot and transmits it on the

fiber and this cycle continues.

Fig (2) describes the propogation of signals in the

0-Net. The signal at the transmitting end Zi of the ith

source is the composite signal from the sources that are

upstream from source terminal "Ti" and is referred to as

"local information". This is called local because it

provides partial information about the state of the network

at a particular instant of time since only signals

transmitted by relatively upstream sources are included and

signals by the downstream sources are not present at that

point. The signal at receiving end "Ri" of a sources that

arrive at the bend in the 1 D 1 network at a particular

instant of time and is referred to as "global informations".

The global signal provides complete information on the state

of the network at a particular instant of time. When a slot

accessed by a source reaches the receiving end of that

source, it means completion of one round trip. This global

signal is used by a source to determine when a

retransmission is required. When a source receives the

signal it has transmitted, it knows that the signal has been

successfully transmitted and no collision has obcured with

this packet. If it does not receive the transmitted packet,

the station understands that the packet has met a collision

and retransmission is required. This way it is a self

acknowledging system.

11

Xl

Rl

){fl-1 Xn

Z!

Rn

FIG. 2

DIRECTION OF DATA FLOW

IN D-NET

Direction of
Movement of

Slots

This network is unfair to the upstream sources. This

unfairness is discussed with the help of fig.3. A source Tl

transmits a packet in a slot. When this slot reaches source

T4, it puts its packet in that slot overriding the already

placed packet i.e. slot occupied by Tl is snatched by T4.

This is because we are using active taps which override the

already present data on the channel and place their data.

This way downstream sources have a much better chance of

getting their message transmitted successfully than the

upstream sources. The collision rate of the packets of up

stream sources is much higher than that of downstream

sources.

Another unfairness is due to the self acknowledgement

technique being used. a downstream source packet is

acknowledged faster than an upstream source packet, because

the packet of an upstream source has to travel greater

distance to reach the receiving end. Therefore upstream

sources have to wait longer for their next transmissions.

13

)
I
I

I
Rt ~-----

RZJ
R3

Glob~llnforrtiB1ioll

Position Hn -+----
0 --+-----J

of-Ta~ Xn ~----

Sel1 Ad:nowledged · '1 n'

X~

XJ

X2
X1

Slot sn!tdted by 'T.f'

1ransmission by source 'T1'

FIG. 3

INHERENT UNFAIRNESS IN D-NET

I
Local Information

l

CHAPTER THREE

RANDOM ACCESS STRATEGIES

3.1 OVERVIEW

CHAPfER3

RANDOM ACCESS STRATEGIES

An access strategy has to be designed to access the

D-Net network. The strategy should use the information at

the transmitter end in the unidirectional network for

channel access. It should not constrain the distance or

transmission rate of a network and should be able to use the

capabilities of fiber optic LAN. Twelve random access

strategies have been studied and analysed. The twelve access

strategies consist of three protocols, each of which can use

two timing arrangements and two network access devices. The

three protocols are ALOHA,LCSMA,LCSMA-CD. The prefix 'L' is

used to distinguish strategies that use local information at

the transmitter from strategies that use complete

information at the receiver. Each of these strategies can be

implemented with passive taps, that transmit the 'OR' of the

locally generated signal and the signal on the network, or

active taps that switch between the locally generated signal

and the signal on the network. ~he timing arrangment can be

slotted or unslotted. In unslotted system a station can

transmit whenever they find the channel free (in case of

CSMA/CSMA-CD) or whenever they are ready to transmit (in

15

case of ALOHA). But in slotted system, the source furthest

from the bend in the D-network periodically generated timing

pulses that signify the start slot. A source is allowed to

transmit only when it detects the start of slot pulse at its

transmitting end. The implementation and merits and demerits

of the three protocols with their combination of taps &

timing arrangment are discussed in the next section. In this

discussion the strategies are referred to as

protocol/timing/access where

- The protocol is ALOHA,LCSMA or LCSMA-CD

- The timing is unslotted (U) or slotted (S)

- The network access is passive (P) or active (A)

An X indicates that all of the values of a parameter are

considered.

3.2 ALOHA

ALOHA/U/P is the conventional ALOHA protocol. A source

transmits

soon as

as soon as it has a packet, and it retransmits as

it comes to know about the collision.

Acknowledgements are not required in ALOHA/U/P to determine

when a signal was received without collision because the

same global signal is received by all of the receivers, and

a source can determine whether or not it has collided by

examining this signal.

16

ALOHA/U/A uses the same strategy as ALOHA/U/P except

that when a collision occurs, the signal from the downstream

source successfully acquired the network, whereas a

ALOHA/U/P, a collision means no valid data is carried in

that slot. Therefore ALOHA/U/A gives preference to

downstream sources.

ALOHA/S/P is the conventional slotted ALOHA protocol.

Packets that arrive during a packet transmission interval

are transmitted at the beginning of the next interval. In

ALOHA/U/P there is no concept of slot intervals, as soon as

a packet is ready, it is transmitted.

3.3 LCSMA

In LCSMA/X/X, a source listens to the signal from the

upstream sources before transmitting. If an upstream source

is transmitting, the local source delays its transmission.

This strategy gives preference to upstream sources. In

LCSMA/U/P, a source

(1) is delayed by packets from upstream sources that are

propagating past the transmitter when a packet arrives.

(2) collides with packets from upstream sources that arrive

at the transmitter during the packet transmission.

(3) collides with downstream sources that are already

transmitting when the packet arrives at their transmitter.

17

This strategy results in fewer collisions than that in

ALOHA/U/P. In this system, sources that detect a busy

channel can implement a retry strategy immediately instead

of waiting for a round trip propagation delay as in

ALOHA/X/X . LCSMA/U/A combines taps that give priority to

downstream sources with a transmission rule that gives

priority to upstream sources and results in a fair access

strategy. Though LCSMA has some advantages over ALOHA, but

the protocal is complex and difficult to implement.

3.4 LCSMA-CD

In LCSMA-CD/X/X, a source listens to the signal both

before and during its transmission. A source does not

transmit if an upstream sources is active, and stops

transmitting if an upstream source becomes active. Upstream

sources always have preference over downstream sources. In

LCSMA-CD/U/P, a source does not tranmit if a packet from an

upstream source is passing the local transmitter when packet

arrives, and is preempted if an upstream source tansmits a

packet that arrives at the local transmitter while a packet

is being transmitted.

In LCSMA-CD/S/P, one source wins in every slot in which

one or more sources transmit, as in ALOHA/S/A. However, in

LCSMA-CD/S/P, upstream, rather than downstream, sources are

given priority. In LCSMA-CD/U/P, a source that uses a

18

persistent retry strategy acquires the channel as soon as

there are no upstream sources waiting to transmit. the

LCSMA-CD/U/P protocol can be made more efficient by adoping

a preemptive resume strategy,

transmitting, transmits the

in which a source that stops

interrupted portion of the

packet, rather than the entire packet, when it resume. This

strategy increases the throughput, by not retransmitting

data that have gotten through successfully, but

significantly increases the complexity of the system.

3.5 PROTOCOL DESIGN

On carrying an exhaustive

mentioned access strategies, it

strategies provide mechanism for

complexity for throughput.

analysis of the above

was found that these

trading three types of

1. TIME SYNCHRONISATION

2. SIGNAL PROCESSING

3. TAP STRUCTURE

Time synchronised or slotted systems, adjust the

transmission times of the various sources so that all fixed

size packets arrive at a common point in the network at the

same instant. Signal processing is used to avoid collisions

with upstream sources by examining the channel before or

during transmission. Taps that switch a transmitter into the

19

medium are used to allow sources to win in a contention

situation. Slotted systems are always more efficient than

unslotted systems and when synchronisation is combined with

either signal processing or switched taps, these systems can

approach a utilization of one.

On analysing the merits and demerits of the random

access strat.agies, I have chosen a strategy which uses ALOHA

protocol with active opticl taps on a slotted time system.

Multimedia systems are connected to the optical fiber

channel through active optical taps. Multimedia systems

offering trafic to network are referred to as

sourcesjstations. The systems which are switched on at a

particular time are reffered to as 'active'.

In a particular slot, which travels across all the

active sources, every active sources can try to send a pack

et. When a source puts its data on the slot, any preexisting

data is removed and new one is placed. This is because opti

cal taps are reciprocal. In order to insert a fraction of a

signal on to the fiber, the same fraction of the signal on

the fiber must be removed. The active optical tap places a

fraction of regenerated signal on the bus, replacing the

incoming signal.

A source is ready to transmit when it has a new packet

to transmit or when the waiting time, after the last

20

transmission attempt, is over. A source transmits the same

packet till it succeeds. After this packet has reached its

destination and is self acknowledged by the transmitter

itself, then only next packet if any, is considered. After a

successful channel access attempt, the source waits till at

least that slot comes to its receiver end. If this slot has

the same data which was transmitted by_ this source, it be

comes self acknowledged and the transmission attempt is

successful. This waiting time for a source, before

retransmission attempt, is equal to the distance between the

two ends of the source in terms of slots on the fiber.

Since all the data transmitted passes through receiving

ends of all the sources, a self acknowledgement mechanism

works and no seperate acknowledgement traffic is generated.

When the transmission of packed at a station is successful,

its buffers can be released. The network specifications are

given in Appendix B.

3.6 FAIRNESS SCHEMES 777-
3.6.1 EQUAL TIMER SETTING

Every time a sources sends a packet, it sets a timer

within which the packet should reach the transmitting end.

This timer delay is set according to the position of the

source on the fiber. It is less for downstream sources than

21

upstream sources. Therefore, the downstream sources reveive

quicker self acknowledgement and quickly release the output

buffer assigned to these acknowledged packets and they can

attempt transfer of new packets. This system is unfair to

the upstream sources. To provide fairness in this scenario,

a technique called E.T.S. is employed. In this every source,

irrespective of its position, waits for equal time before

making a retransmission attempt after a successful channel

access, in case its packet is not self acknowledged within

timer intervals and hence is deemed to have suffered a

collision. This time delay is kept equal to the time gap

between the two ends of the most upstream active source,

independent of the actual time gap between the two ends of

the source. This balances the favour enjoyed by the

downstream sources. The channel access procedure using the

E.T.S. is described in flow chart #1

3.6.2 CHANNEL ACCESS PROBABILITY ASSIGNMENT

After passing across transmitting ends of all sources,

the slot carries data sent by the most downstream one (i.e.

the last one) of those sources which had put their data on

this slot. So the data transmitted by an upstream in- -a slot

can only get through when no downstream source accesses that

slot. Thus going downstream on the fiber, it becomes

progressively easier for the sources to get their data

through. This is clearly favourable to downstream sources.

22

.START ,.

TRAHSNIT OUTGOING
PACK6T IH SLOT

SET TH£ TittER

UHIT FOR SLOTS TILL
THE TINER RUHS OUT

OP. rHE PHCk£T IS
fOUND AT THE
R£C£JVJHG EHI>

t10UE TO THE HEXT
L----~ PACKET IIA IT I HG TO

BE SEHT. IF.AH'I

FLOW CHART 11

HO

CHANNEL ACCESS IN E.T.S. SCHEME

1'RicHSt1 IT IT

AGAIN; SET Tlt1£R

To provide equal fairness to all sources independent of

their position, the downstream sources are made less greedy

in accessing the channnel. The channel access protocol is

modified to make it a p-persistent ALOHA rather than

!-persistent ALOHA. The probability (P) of a ready source

trying to access a slot is made dependent on the position of

the source on the fiber. Upstream sources have higher

probability and downstream sources have lower probability of

accessing the chaannel as shown in fig - 4. Before accessing

a slot, a source generates a random number (0,1) and if this

number is less than the probability value assigned to this

source, it accesses this slot, otherwise leaves it. This

process is shown in flowchart #2. Thus the downstream

sources leave some slots free before accessing a slot. The

data transmitted by the upstream sources gets thriugh in

these free slots. The probability assignment is such that if

all the sources are active, then all the sources have equal

effective value of slot access probability independent of

their position.

In an "N" active sources arrangement, the probability

assigned to the ith source from start of the bus is

P(i) = 1/(i)

If all of them, turn by turn, try to access the same slot,

the effective probability of every source is equal to

24

1.00

1

0.50·

Pi
0.33

o.2s rltNJ
0.20 1 ·

Pet1__ J._ _________:..:...=:,=----

2 3 4 5 •.. N

0

FIG. 4

. CHANNEL .ACCEESS PROBABILITY ASSIGNMENT

'p ·= PROBHB I LIT\'

Of CHAHHEL ACCESS
JiSS I c::HH• TO THIS

SOURCE ;

GEHERATE A RAHDON

HUNBER ' rn' < eJ. U

GRAB THIS SLOT

PUT THE PACI<ET
IH THIS SLOT

FLOW CHART I 2

HO

~kiT FOR

HEXT SLOT

LEAI..'E THIS SLOT

CHANNEL ACCESS IN C.A.P_ ASSIGNMENT

Peff = 1/(N)

because the downstream source can overwrite the signal from

the upstream sources in that slot.

Consider such a slot in which every source tries to put

its data with above probabilty asignment. The mathematical

analysis given below derives the effective probabilty of

channel access.

MATHEMATICAL ANALYSIS FOR EFFECTIVE CHANNEL ACCESS

Total number of active sources = N

Probability assigned to the ith source from start of bus is

given by Pi where

Pi = (1/ i)

Therefore probability assigned to most upstream source (i=1)

Pl = 1/1 = 1

Probabilty assigned to Nth source (most downstream source)

PN = (1/N)

Effective probability of ith source

= Pi* (probability that none of the sources further

downstream access this slot)

27

= Pi * (1-Pj)

=Pi* (1-(1/i+1))*(1-(1/i+2))* (1-(1/N))

= (1/i)*(i/i+1)*(i+1/i+2)* (1-N/N)

= 1/N

So for any value of i, effective channel access probability

for source "i" = (1/N) where N = number of active

sources.

This analysis shows that by this probability

assignment, all the sources get equal effective access to

the channel. Hence resulting in a fair access strategy.

The strategy works like this every time a source

sends a packet, it sets a timer within which the packet

should reach the transmitting end. This timer delay can be

set according to the position of the source on the fiber or

it can be set to be equal to the distance between the

transmitter and receiver ends of the most upstream source.

If the packet is not acknowledged before the timer runs out,
...

a retransmission attempt is made at the next slot with a

probability assigned to this source. This attempt is made at

every consecutive slot with this probability, untill success

occurs. In case of failed attempt, the same timer is set

repititively till the packet transmission is self

acknowledeged with in the timer interval. The timing diagram

for channel access is given in Fig - 5.

28

Tr~n:sMit.t.an'9

[nd

p.~nd.:>N nu.S
q~n*r~t~d ..

T it"\+ r I ~tt~r-1pt

-1
s.,.t PA.;lc<t't .;.:>I J J d<t'd --~It};

pA~kE't df trAifaG h~
d.:>wnstr~•r-1 sourcE'S -3

~
TiME'T
out

R.oduM no. s
9~n•r•t~d ..

y TiM~r

s"'t

T- iMt-T
Out

R"~d-oi-1 no • s
.. A-.P~-w.d

T i,.,.r
s.t

- .

-.

-.

-.

II •t't~MFt

·p ~c);~t. ~o • 1 i d~d with
p•ck•t of tr~ffi~ b~
dOWftS~r~~ sour~~s

H-th ~-t-t•MP-t

FIG. 5

(nd

~~.5

• P~ck:t. ~~lf-~cxnowl•d9~Jt
• ~t r•c~IVI09 ~nd ~nd r~
. fro~ tn. qu~u~.

CHANNEL ACCESS USING E.T.S.
AND C .A.P. SCHEMES

3.7 MULTIMEDIA TRAFFIC

Multimedia computers offer three kinds of data to the

network. These are video data, voice data, ordinary data

(text, graphics). These are categorise on the basis of band

width requirements, nature of bitstream, nature of traffic

and delay constraints (Appendix B).

3.7.1 VIDEO TRAFFIC

Video communication on a multimedia computer network

offers a steady, compressed bitstream with tightly bounded

delay requirements. The refreshing rate of a video screen is

30 frames per second, so the time gap between two

consecutive packets reaching the destination should not be

more than 33ms. Uncompressed video needs bandwidth

requirement of 90 Mbps but Intel's digital video interactive

technique enables full motion video to be transmitted at a

rate of 1.5 Mbps.

Motion Picture Experts Group (MPEG) of International

Standarads Organistaion (ISO) has suggested the following

standards for compression of motion video and associated

audio.

Compressed bit rate

Frame rate

Resolution of video

1.5 Mbps

30 framesjsec without interlacing

352*240 pixels

30

Motion Picture Compression (MPC) is different from still

picture compression. MPC makes use of the extensive frame to

frame redundancy present in all video sequences.

Joint Photographic Experts Group (JPEG) of ISO has

suggested standard for compression of still picture. Still

pictures can be compressed at different bit rates starting

from 0.25 bits/pixel to 2 bits/pixel. More the number of

bits/pixel, better is the picture quality. This way by com

pressing a still picture, it can be converted to digital

image computer data.

3.7.2 VOICE DATA TRAFFIC

Voice traffic is bursty in nature. Speach consists of

alternate talkspurts and silence intervals. The average

talkspurt length is 1.67ms and average silence interval is

1.33ms. The frequncy range of speach is 20Hz - 4000Hz. So a

sampling rate of 8Kbps (according to Nyquist's Theorem) is

needed. Using 8 bits per sample gives a bandwidth

requirement of 64Kbps. The upper bound on the time taken to

deliver a speech sample to the listener after the instant at

which it was generated is typically 170-200ms. A speech

packet delayed more than this is worthless. Voice data can

tolerate some loss of packets with unnoticeable or little

degradation of the intelligibility of the received speech

signal. The acceptable packet loss percentage is maximum one

percent.

31

3.7.3 ORDINARY DATA TRAFFIC

Ordinary computer data consist of text or garaphic

data. These data can tolerate long delays but they cannot

tolerate any loss, as loss of a packet means corruption of

the whole data. So data transmission requires a channel with

low error rate with a bandwidth of 64Kbps.

3.8 PRIORITY TRANSMISSION

Video traffic has a tightly bounded delay constraint of

3 3ms. Voice traffic can tolerate a delay upto 17 Oms and

ordinary data traffic has no upper bound on delay. Therefore

these data are prioritised accordingly. The video traffic

is given the highest priority, voice traffic comes next and

ordinary data traffic has the lowest priority. At the

transmitter end of the station, an output traffic queue is

maintained. Any newly generated packet which has to be

placed on the network is placed in the queue. This queue is

a priority queue i.e. a new packet generated takes position

ahead of' any lower priority packets and behind all the

packets of the same priority. So queue at any moment

contains all the video packets at the top, followed by voice

packets and then the ordinary data packets are placed. The

32

queue length is assumed to be infinite to prevent any data

loss under heavy load conditions.

3.9 DELAYS ENCOUNTERED BY PACKETS

3.9.1 QUEUING DELAY

When a packet is generated inside the multimedia

source, it is placed in the output queue at transmitter end

at a position according to the priority of the type of data

it contains. Starting from the time of generation of a

packet to the time when it reaches the top of the queue

(considered for transmission) for the first time, the delay

is counted as queuing delay for this packet.

3.9.2 ACCESS DELAY

After a packet reaches the top of the queue, the source

tries to send it on channel. It makes several attempts as

shown in fig - 5, till it succeeds. Meanwhile, If a higher

priority packet is generated it is placed ahead of this

packet. Now transmission attempts for sending this packet

are done only when the higher priority packet is

successfully transmitted. Starting from the instant a packet

reaches the top of the queue for the first time to the

33

instant it is successfully acknowledged at the receiving end

of the source, this period is called access delay. This

delay includes the data transmission time and delay for

propagation across the network. The transmission delay

component is equal to one slot length. The propagation delay

is fixed for a source according to the length of- fiber

between the transmitter and receiver ends of thhe source.

The remaining component is variable depending on the number

of attempts in which the packet is transmitted, and the

number of times it is pushed back by a high priority packet,

once it reaches the top of the queue.

3.9.3 TRANSFER DELAY

It is the total delay suffered by a packet starting

from the time at which it is generated and put up in the

queue, to the time at which it is self acknowledged at the

receiving end of the source. This is equal to the sum of the

queuing delay and access delay.

3.10 PERFORMANCE INDICES

For testing the system's performance and estimating

maximum capability, different workloads are applied. As

single multimedia computer offers more or less constant

34

load, different workloads are applied by varying the number

of active multimedia systems.

Performance indices for testing and analysing the

system's performance are throughput, delays faced by packets

in transfer across the network, and load supported by the

network. Since due to bus architecture, the delays faced by

packets are also dependent on the position of the source

relative to other sources, the degree of fairness provided

by the protocol to the upstream sources is an important

performance index.

35

CHAPTER FOUR

SIMULATION

4.1 INTRODUCTION

CHAPfER4

SIMULATION

Simulation is a powerful technique for solving a wide

variety of problems. To simulate is to copy the behaviour of

a system or phenomenon under study. Computer simulation

allows us to mimic the behaviour of the real life system,

however complex, and get a measure of its performance.

Simulation is becoming increasingly popular in the class of

dynamic systems like communication networks with random

traffic inputs. Simulation provides the means to visualize a

system that is not · yet built, to analyse a system to

determine critical elements and to act as design accessory

in order to evaluate proposals. Simulations use simulating

models and based on these, perform experiments which enable

the analyst to determine the behaviour of a system.

From the view point of simulation there are two

fundamentally different types of systems :

(1) Systems in which the state changes smoothly or

continuously with time are called continuous systems.

(2) Systems in which the state changes abruptly at discrete

points in time are called discrete systems.

36

4.2 CONTINUOUS SYSTEM SIMULATION

Continuous systems are those systems in which the state

or the variables vary continuously with time. These systems

are generally described by means of differential equations.

If the set of differential equations describing a system are

ordinary, linear and time invariant, an analytic solution is

usually easy to _obtain. Simulating the system often gives

added insight into the problem besides giving the required

numerical soloution.

4.3 DISCRETE SYSTEM SIMULATION

Discrete systems are those systems in which changes in

the objects are discontinuous. Each change in the state of

the system is called an event. Therefore the simulation of a

discrete system is often referred to as discrete - event

simulation. In simulating any dynamic system, continuous or

dicrete, there must be a mechanism for the flow of time. For

we must advance time, keep track of the total elapsed time,

determine the state of the system at the new point in time,

and terminate the simulation when the total elapsed time

'equals or exceeds the simulation period. For continuous

systems time is advanced in small increments of t for as

long as needed. In simulation of discrete systems, there are

two fundamentally -different models for moving a system

through time.

37

4.3.1 FIXED TIME STEP MODEL

In time step model a timer or clock is simulated by the

computer. This clock is updated by a fixed time interval t

and the system is examined to see if any event has taken

place during this time interval. All events that take place

during this period are treated as if they occured

simultaneously at the tail end of this interval. The fixed

time step simulation works as shown in flow chart # 3.

4.3.2 EVENT TO EVENT MODEL (NEXT EVENT MODEL)

In this simulation model the computer advances time

according to the occurence of the next event. It shifts from

event to event. The sytem state does not change in between.

Only those points in time are kept track of when something

of interest happens to the system. Event to event model is

preferred to fixed time step model because in this model no

computer time is wasted in scanning those points in time

when nothing takes place. This waste is bound to occur if a

very small value of t is picked. On the other hand if t is

so large that one or more events must take place during each

interval then the model becomes unrealistic and may not

yield meaningful results. The implementation of event to

event model is more complicated than the fixed time step

model. The event to event model is described in flow chart #

4.

38

Generate and store
random data. (if any rcqui~d)

Find all ll.vents that occur,
if any, durin9 period (t ,

t + T)

Let all these events occur.
Update the s 5 term state

Extract therr effect on
statrstics bczin gathered

No

FLOW CHART I 3

FIXED TIME STEP SIMULATION

G~n~rat~ and stor~
random data (if any required)

Up­
clock

~ff~ct on stat is­
gathered

No

Yes

FLOW CHART I 4

NEXT EVENTSIMULATlUN

4.4 STOCHASTIC SIMULATION

Discrete dynamic systems can be classified as

deterministic or stochastic. The deterministic systems are

less demanding computationally than the stochastic systems

and are frequently solved analytically. stochastic systems

are systems in which atleast one of the variables are given

by a probability function. There is inherent randomness or

unpredictability in the system's behaviour. To simulate such

random variables, we require a source of randomness. In

simulation experiments, this is acheived through a source of

unifomly distributed random numbers. These numbers are sam

ples from a uniformly distributed random variable between

some specified interval, and they have equal probabilty of

occurence. Stochastic simulation is of two types : static

stochastic simulation and dynamic stochastic simulation.

STATIC STOCHASTIC SIMULATION

When the distribution of random numbers is stationary

and the random samples are not co-related, the simulation is

called static stochastic simulation.

DYNAMIC STOCHASTIC SIMULATION

In dynamic stochastic simulation initially the

di~tribution of random numbers is not stationary and the

random samples are co-related. This stage known as

41

transient, has to be crossed and only then the observation

of results is started.

4.5 RANDOM NUMBER GENERATION

Random events can be simulated by generating random

numbers on a computer. The random numbers follow a certain

distribution.

(1) Exponential Distribution To generate an exponential

distribution, first of all a random number 'r' is generated

with uniform distribution i.e. the number lies between 0 and

1. Then calculate the value of Ei using the following

equation.

Ei -(Mean)*ln{r)

Ei gives the instance of the desired exponentially

distributed random variate. This process of generation of

exponentially distributed random variate is described in

flow chart # 5.

(2) Poisson Distribution Poisson distribution is a

discrete distribution in which the probability of an event

occuring exactly "k" times during a time interval t is given

by the probability mass function

GkfT) = ((tL) ~k) *{1/ (k!)) * (e~ {-t*L))

42

START

GEHER~TE ~ R~HDON

HUMBER 'rn' UITH
UHIFORM DISTRIBUTIOH

€1 < rn < = 1

C~LCUL~TE

- < NE~HHfl n < rn>

RETURH

..
FLOW CHART I 5

EXPONENTIALLY DISTRIBUTED

RANDOM VARIATE

Where L is the average number of times the event occurs in a

unit period. The procedure required to get a poisson

distributed random variate is to form the product of

successive uniformly distributed random numbers, untill the

following equation is satisfied.

Ui < exp(-L)

Where Ui is a uniformly distributed (0,1) random number, L

is the mean of the distribution. The desired random variate

instance Ni will be one less than the required number of

uniformly distributed random numbers as shown in flowchart #

6.

4.6 LENGHT OF SIMULATION RUN

A simulation run is an uninterrupted recording of a

system's behaviour under a specified combination of

controllable variables. How long to run a simulation

experiment to aceive a reasonable degree of confidence in

the numerical results of the the experiment, is vital for

validification of simulations involving randomness.

A problem specific variable entity is chosen as'control

variable. This control variable should have important

bearing on the results of the simulation. The simulation run

continues, till the value of the chosen: control variable

stabilises. The check on the random number generator can

44

"

IliiTIALIZE

PRODUCT =1.C ; ~=C ;

GENERATE A RAHDOM

HUMBER ' rn' WITH

UHIFORN DISTRIBUTIOH

0 < rn < = 1

PRODUCT= PRODUCT * rn

I HCREJ1EHT 1-: B'r' 1

\

FLOW CHART I 6

POISSON OtSTRIBUTED

RANDOM VARIATE

serve as a secondary method for the simulation length

control. In experiments using random numbers, the sample

mean (X) should be as close to population mean (L) as

possible. These become exactly equal when number of samples

taken are infinite. However, this needs simulation to

continue for infintely long time which is not practical. In

practice, simulation is allowed to run till a confidence

level in the results is reached.

Confidence limit (t) : It is the permitted variation in the

observed results from the theoritical results.

confidence level It is the probability that observed

results are within the confidence limits.

Confidence level calculation : Consider a random variable X

with mean L and standard deviation D. If Xl, X2, X3,------

Xn are the samples taken, their average is

Xavg = Xi/n

and if n --> infinity, (Xavg - L) --> 0

According to central Limit Theorem, the sample mean Xavg is

itself a random variable with mean L and standard deviation

D/(nA0.5). The number of samples needed (n) is given by

*
n = ----------------------

tA2

For {1-) = 90%" y = 1.65

45

Where t = confidence 1 imi t, Y is a standardised normal

static for probability (1-) and D- 2 is the variance of

the samples. n-2 is not knowm in advance, so it is estimated

as :

o-2est = ------------------
(n - 1)

So for static stochastic simulation follow the

following steps

(1) Simulate for ni = 2000

(2) Calculate n-2est and recalculate n(i.e. ni)

(3) If ni+1 > ni, continue upto ni+1

(4) Repeat above steps till for some "j", nj+1 <= nj

This process is explained in flow chart # 7.

4.7 SIMULATION MODEL

Data slots moving on a unidirectional bus is a

continuous system with continuous flow of information.

However the state of the network changes only when a slot

start pulse 'reaches the transmitting or receiving end of a

source (Multimedia system). At these time instants, a source

(1) Takes decision for accessing the channel.

46

M = n* - M

START

READ
eo(, t,M, "/

PERFORM
Slt1ULATIOH RUH

FOR
RUH LEHG7H 'M'

CALCULATE SAMPLE MEAH
<x)

ESTIMATE VARIAHCE

ESTIMATE
SAMPLE SIZE

FLOW CHART I 7

AnAINING CONFIOENCE lEVEL

(2) Checks the existing packet at receiving end, whether it

is its own traffic, for self acknowledgement. If it is this

packet is removed from the queue.

(3) Increments its internal clock used for generation of

traffic packets.

This discrete event system based on a continual

transmission of data by sources is simulated by fixed time

step model. One time step is movement of slots train on the

network by one small unit distance. Every new allignrnent of

slot train on the network leads to some state changes due to

activities of the active sources. These events are allowed

to occur and system state is updated.

To simulate the actual behaviour of such a system as

closely as possible, the whole simulation software is driven

by a simulated slot pulse train movement and their

allignment with active sources on the network. This approach

has been used since their are many different events and

their sequence of occurence affects the system behaviour. A

simulated slot pulse movement gives an effective solution

for the sequencing of potential events ..

In this simulation, initially, the random number

generator is warmed up and its first thousand random outputs

which are generally co-related are ignored. This fulfil:ls

the two preconditions for static stochastic simulation.

48

The network in the simul~tion is also warmed up to its

steady state. This is done by ignoring the packet delay

results obtained during first one thousand slots that pass

across the bus in a simulation run.

The control variable chosen is the average transfer

delay for the video data. The video data is the traffic on

the network. Hence choice of this entity for controlling the

length of the simulation is justified. After every thousand

video packets transfered across the network, new value of

the average transfer delay is recorded. Confidence level

estimation is done on these values obtained. The confidence

level estimation on the random number generator proceeds

simultaneously. Whenever any of these two checks indicate

that the simulation has acheived maturity stage, the

simulation run is stopped and the results are recorded. The

confidence level chosen for the random number generator

check is 90% with confidence limit 0.05.

4.8 SIMULATION OF MULTIMEDIA TRAFFIC

VIDEO TRAFFIC

Simulation of video packet is done by periodic

generation of a video data packet. This period conforms to

the bandwidth requirement of video traffic and the bandwidth

supported by the underlying optical fiber network •. Maximum

49

communication delay allowed for a video data packet is 30ms.

More than one percent of total video should not face

communication delay more than this. Otherwise the service

offered by the network is unsatisfactory.

VOICE TRAFFIC

Bursty voice data is modelled by poisson arrival of

data packets. The average bandwidth requirement is 64Kbps.

One talkspurt of this traffic is accomodated in one packet

of the network. Because of fixed length of packets, some

capacity in packet is unutilized by voice traffic while the

packet length (2000 bits) exactly fits the requirements of

one packet of video traffic.

ORDINARY DATA TRAFFIC

Ordinary data traffic is also simulated by poisson

arrival. The average bandwidth requirement of the data is

taken to be 64Kbps, which is equal to approximate

requirement of data retrieval on demand.

50

CHAPTER FIVE

PERFORMANCE ANALYSIS

CHAPfERS

PERFORMANCE ANALYSIS

In this chapter the performance analysis of the

protocol designed is carried out. The system is simulated on

the computer and the simulation results are analyzed for

delays (Queuing delay, Access delay and Transfer delay),

throughput of the system and load supported by the network.

For each of the above mentioned performance indexes, effects

of fairness schemes (C.A.P. and E.T.S.) are also analyzed.

Graphs are plotted for analyzing the simulation results.

These graphs include the queuing delay, access delay and

transfer delay faced by packets of different data types for

different number of active stations. Number of active

stations supported by the network on applying different

fairness techniques is also described. The effect of

fairness techniques on individual delays of sources is

analyzed. The channel access probability (CAP) assigned to

multimedia sources can be equal for all sources, this case

is indicated by <CAP : OFF> in the graphs. If the channel

access probability is assigned according to the relative

positions of the sources, then in the graphs it is indicated

by <CAP : ON>. Equal Timer setting (ETS} is implemented on

top of <CAP : ON> assi-gnment. Whenever it is used it is

indicated by <ETS : ON>. The delays are expressed in terms

51

of number of slots where one slot has duration of 13.33

micro seconds.

5.1 DELAYS

In the previous chapters we had discussed the various

kinds of delays a packet faces. The time it takes from the

time of generation of a packet till it reaches the top of

the queue for the first time is called Queuing Delay. Access

Delay is the time gap between when the packet reaches the

top of the queue for the first time till it is self

acknowledged. Transfer Delay is the sum of queuing delay and

access delay. Queuing delay varies with the nature of the

packet. Video packets are given highest priority in the

prioritized output queue, next comes the voice packet and

ordinary data has the least priority. These priorities have

been assigned according to the maximum delay constraints of

various data traffic.

5.1.1 QUEUING DELAY

Queuing delay depends on the nature of the packet.

Queuing delay for different data traffics ~s calculated and

results are analyzed from the graphs.

Video Packet

Video _packets face minimum queue delay as they have the

-highest pri-ority in the queue. Graph #1 and #2 show the per

52

DELAY (IN SLOTS)

QUEUING DELAY
VIDEO DATA

200r-----------------------------------~

160

0 10 20 so 40

NO. OF ACTIVE STATIONS
- < CAP : ON > ~ < CNl : OFF >

QUEUING DELAY
VIDEO DATA < CAP : ON >

DELAY (IN SLOTS)
2~~----------------------------------~

60

oL_~~~~~~~--~--~--~
0 10 20 eo 40

NO. OF ACTIVE STATIONS
- < ETS : ON > ~ < ETS : OFF >

packet queuing delay faced by video packets plotted for

different number of active stations, Graph #1 shows the

effect of CAP assignment on the queuing delay and graph #2

shows the effect of ETS implemented when CAP is ON.

Case 1 : <CAP OFF> <ETS OFF>

The queuing delay is negligible for low loads i.e. till

number of active stations is less than 2 5. As the load

increases, queues are formed and result in steep rise in

queuing delay.

Case 2 : <CAP ON> <ETS OFF>

In this case the queuing delay is negligible only till

twelve stations, after that the delay rises very fast. This

is because when number of active sources increases, the

probability assignment changes. The probability decreases

sharply (exponentially) so the number of slots left free by

the sources increases, resulting in increase in queue length

and hence queuing delay.

Case 3 : <CAP ON> <ETS ·: ON>

The queuing delay in case of < ETS : ON > is higher

than in case of <ETS : OFF> because on applying ETS, the

wait before making a retransmission attempt increases for

all the active sources -accept the most ups.tream source. so

in general -qu.eue leng-th increases.

55

Voice Packet

Voice packets have lower priority than the video

packets and higher priority than the ordinary data packets.

Graphs #3 and #4 describe the queuing delay faced by these

packets. They show the queuing delay for voice packets plot

ted for different number of active stations.

Graph #3 : The effect of CAP assignment is shown in this

graph. The queuing delay for the <CAP : OFF> is smaller than

that for <CAP : ON>. At loads below 20 active stations the

delay is smaller in <CAP : ON> than in <CAP :OFF>.

Graph #4 This graph shows the queuing delay of voice

packet plotted for different number of active stations. It

shows the effect of ETS technique on queuing delay. The CAP

assignment is graded. The queuing delay in <ETS : ON> is

much higher than in <ETS :OFF> technique. At lower loads (

i.e. till number of active stations is less than 30) the

queuing delay is same in both <ETS : ON> and <ETS : OFF> but

as number of active stations increases further, The queuing

delay in <ETS : ON> scheme encounters a steep rise. This is

because under heavy load conditions, the number of

retransmission attempts increases, as collisions increa.se.

In <ETS : ON> each source has to wait for a long time for

retransmission.

56

DELAY (IN SLOTS)

.;···.

QUEUING DELAY
VOICE DATA

~00~------------------------------------

200

0~----~----~----~----~------L---~

0 w ~ ~ ~

NO. OF ACTIVE STATIONS
- < Qti.P I ON > -+- (CAP I OFF >

QUEUING DELAY
VOICE DATA < G6.P : ON >

DELAY (IN SLOTS)
2600r-------------------------------------~

1

:2000 r-···r························l
I / I I I I

16oor-··l····························l

I / I
1000r ;l::t=

1
600 ··~~:. /..~ .. ~

I I

l l oL-~==~=----L----~------L-----~----_j
0 10 :2.0 30 40 50 80

NO. OF ACTIVE STATIONS
- < ET8 : ON > ---4-- < ET8 : OFF >

Ordinary Data Packet

Ordinary data is placed next to the existing video and

voice data in the queue of a source station. So an ordinary

data packet is transferred only when there is no video or

voice packet present in the queue. Any new video and voice

packets are put ahead of the already existing ordinary data

packets in the output queue. Graphs #5 and #6 describe the

queuing delays faced by ordinary data packets as the number

of stations increases.

Graph #5 : This graph shows the effect of CAP assignment on

queuing delay for ordinary data plotted for different number

of active stations. The nature of the graph is similar to

that for voice data (graph #3) . The same explanation is

valid for this graph also. But the absolute values of the

delays are more. for ordinary data than for voice data or

video data. This is because ordinary data has least priority

in the output queue. Quebec delay in <CAP : ON> and <CAP :

OFF> is same under low load conditions (i.e. upto 25

stations) after that a steep rise in queuing delay in <CAP :

ON> is encountered. 'This is because as number of active

stations increase, the channel access probability assigned

to them decreases exponentially and because of this size of

queues incr:eases, increasing the queuing delay.

59

QUEUING DELAY
ORDINARY DATA

DELAY' (IN SLOTS)
2000~------------------------------------~

1600 1-······--···--···--··--····················--·--·····--···--··································--·--············--····--···-------······--···----····
_,.,...,--'

,.,--
/

1000 .. /
/

"~ I 600 .. ~/L .. ~~----··---·-------··----~

/~~ I
L •:?-ol ..__ : ~ _ __..__....-..!........ .

o 10 20 so 40 so eo
NO. OF ACTIVE STATIONS

- < CAP : ON > ~ < CAP : OFF >

Graph #6 : This graph shows the effect of ETS technique on

queuing delay for ordinary data plotted for different number

of active stations. The CAP assignment is graded. Upto 25

stations, the queuing delay in case of <ETS : ON> is almost

the same as that in case of <ETS : OFF>. At loads higher

then this, the delay in case of <ETS : ON> is much higher

than in case of <ETS : OFF>. This is because queues in the

case of <ETS : OFF> clear off quickly. The wait time between

successive retransmission attempts is smaller in case of

<ETS : OFF>.

5.1.2.ACCESS DELAY

Starting from the instant a packet reaches the top of

the queue for the first time to the instant it is

successfully self acknowledged at the receiving end of the

source, this period is called the access delay. This delay

inc-ludes the data transmission time and delay for

propagation across the network. The transmission delay

component is equal to one slot length. The propagation delay

is fixed for a source according to the length of fiber

between the two ends of the source. The remaining component

is variable depending on the number of attempts in which the

packet is transmitted.

61.

QUEUING DELAY
ORDINARY DATA < CAP i ON >

DELAY (IN SLOTS)
3000~------------------------------------~

2QOO~ l I
I / I 2000 t-···f·······························

I I

:::: t ;zz~ 1

,

1

I I ~
ooo r-··7~<~~··1

I I""~ I
0 1 • t t : I I I

0 10 20 30 40 60 60

NO. OF ACTIVE STATIONS
- < ETB : ON > ---'-- < ETB : OFF >

Grepn #6

,,

I
I
I

Video Packet

When a video packet comes at the head of the queue, it

gains the first preference. It becomes the first packet to

be transmitted by the source station. As video packets have

highest priority in the queue, the access delay depends only

on the no. of transfer attempts needed before the packet is

successfully transmitted Graphs #7 and #8 show the access

delay of video packet plotted for different number of active

stations.

Graph #7: This graph shows the effect of CAP assignment on

Access delay for video data plotted for different number of

active stations. The access delay under <CAP: OFF> is almost

same for increasing number of stations. In case of <CAP:

ON>, the rise in access delay with increasing load is faster

than in the case of <CAP: OFF>. Since, as the number of

active stations increases, the probability values assigned

to sources decreases, resulting in more and more number of

slots left free in wait by active sources. This results in

larger access delays and .their faster increase with

increasing load.

Graph #8: This graph shows the effect of ETS technique on

the per packet access delay plotted for different number of

active stations. The access delay in <ETS: ON> case is

slightly larger than in <ETS: OFF> case. In <ETS.: ON> case,

63

DELAY (IN SLOTS)

ACCESS DELAY
VIDEO DATA

100r-------------------------------------~

80 ··

40

20 .. .

0~----~-----L----~------._----~----~
0 ~ ~ ~ ~

NO. OF ACTIVE STATIONS
- < Cl'P : ON) --'- < CN2 : OFF)

I
~
II

II .I

~
II

II

ll
l

ACCESS DELAY
VIDEO DATA < CAP i ON >

DELA"{ (IN SLOTS)
100 .

80 t-··· .. ,

I ~~
60-····························· ················~······················

-~
~~ I 40 ~-························ ············:·· -

20 !-···

o~----~----~------~----~------~--~

0 10 20 30 40 60 60

NO, OF ACTIVE STATIONS
- < ETS : ON > -+-- < ETB : OFF >

access delay curve shows a slow and steady increase with

increasing load.

Voice Packet

Once the voice packet rea-ches the top of the queue,

the access delay starts till the packet is self acknowledged

at the receiver end. As the voice packet is second in the

priority list of the output queue, even after it reaches the

top the queue, a video packet can supersede it and occupy

the top of the queue position. Therefore the access delay

for voice packets depends upon the no. of retransmission

attempts needed for successful transmission and the

frequency with which video· packets are generated, as they

can supersede the transmission of voice packets. Graphs #9

and #10 show the access delay of voice packets plot~ed for

different number of active stations.

Graph #9: Graph #9 shows the effect of CAP assignment on

access delay for voice data plotted for different number of

active stations. Initially upto 35 active stations access

delay for <CAP: OFF> case is higher than the access delay

for <CAP: ON> case. This is because of the equal mix of

traffic from upstream and downstream sources in the

transferred packets and s~nce the upstream sources have high

delays in <CAP: OFF> case. But at higher loads, again due to

domination of channel by the downstream sources, the acces-s­

delay for <CAP: OFF> case starts reducing. The access delay

66

ACCESS DELAY
VOICE DATA

DEL~l (IN SLOTS)
250~------------------------------------~

:2.00 -··;t······································

A // I

:::~··: .. ·······································••7;~·······················
60 r-···························7···

.___I/'

o~----~----~------~----~----~----~
0 10 20 so 40 60 60

NO. OF ACTIVE STATIONS
- < CAP : ON > -'- < CAP : OFF >

for <CAP: ON> case increases slowly upto 45 active stations

and after that it is nearly constant upto 50 active

stations. The domination stage in this case is postponed to

higher load then the <CAP: OFF> case, where it is only 35

active stations.

Graph #10: This graph shows the effect of ETS technique on

the per packet access delay plotted for different number of

active stations. The CAP assignment is graded. The access

delay under <ETS: ON> and <ETS: OFF> is almost same. The

access delay is almost constant till the number of active

stations is less than 30 stations. After that there is a

smooth rise in delay which stabilizes at loads higher than

50 active stations.

Ordinary Data Packet

The absolute value of access delay is more for ordinary

data than for voice data. This is because when an ordinary

data packet reaches the head of the queue, a newly generated

video or voice packet, if any is placed ahead of it. Graphs

#11 and #12 describe the access delays faced by ordinary

data packets as the number of station increases.

Graph #11 : This graph shows the effect of CAP assignment on

access delay for ordinary data plotted for different number

of active stations. In <CAP: OF.F> and <CAP:ON>, till 32

active stations, the access delay is almost same for both

68

ACCESS DELAY
VOICE DATA< CAP: ON)

DELAY (IN SLOTS)
300~------------------------------------~

I I :2.60 [... ;;;;d-....................... 1

- I
:200 I ,

160~ .. ~~~~

100

60

0~----~----~----~------~----~----~
0 10 20 30 40 60 eo

NO. OF ACTIVE STATIONS
- < ET8 : ON > ~ < ET8 : OFF >

Grepn #10

II
'I
1!

II
II
II
II
I

I
I
I

DELAY (IN SLOTS)

ACCESS DELAY
ORDINARY DATA

300~------------------------------------~

160

100

60

o~----~----~----~~----~----~----~
0 10 20 so 40 60 60 .

NO. OF ACTIVE STATIONS
- < Qt\P : ON > ~ < CAP 1 OFF >

and constant. Then the access delay in <CAP: ON> increases

whereas the access delay in <CAP: OFF> remains more or less

constant under heavy load conditions also.

Graph #12: This graph shows the effect of ETS technique on

the per packet access delay for ordinary data. The CAP as

signment is graded. The access delay in the case of <ETS:

ON> is same as that in case of <ETS: OFF>. So the ETS

technique does not effect the access delay much. The access

delay shows increase as the no. of active stations increase.

This is because collision rate increases with increase in

traffic, this calls in for increased number of

retransmission and hence increase in access delay.

5.1.3 TRANSFER DELAY

Transfer Delay is the sum of access delay and queuing

delay. The total time taken from the time a packet is

generated, till it is successfully transmitted is called

Transfer Delay.

Video Packet

Graphs #13 and #14 show the per packet transfer delay

faced by video data packets plotted for different number of

active stations. They show the effect of channel access

probability assignment and equal timer setting technique on

th-e transfer delay.

71

ACCESS DELAY I
ORDINARY DATA < CAP : ON > I

DELAY (iN SLOTS) I
300! . ,

260l ... J I
I _--r I I ./""- /
I _.-' / I

200 r-···:;./~·-·-/··································· I __ ,_, .-J-_--

1 //
I - -16or···;;;.~~-·-···,

I /./

1::~~
o~----~.~~----~----~l------~~------~--~

0 10 20 30 40 60 60

NO. OF ACTIVE STATIONS
- < ET8 : ON > -'- < ET8 : OFF >

Grapn #12

Graph #13: This graph shows the effect of channel access

probability assignment on the transfer delay for different

number of active stations. When CAP assignment is OFF, as

the load increases, the delay increases initially very

slowly and at higher loads, it increases sharply. When CAP

is ON i.e. channel access probabilities are different for

different stations, the delay rises sharply with increasing

load and at high load the increase is steep. The delay in

case of <CAP: ON> is higher than in case of <CAP : OFF>.

This is because, when numbers of active multimedia systems

increases, the probability assignment changes. The

probabilities decrease sharply so the number of slots left

free by the sources increases fast. This results in fast

increase in the delays faced by the packets.

Graph #14: This graph shows the effect of Equal Timer

setting technique on the per packet transfer delay of video

data. The channel access probability is graded. On

application of ETS, average transfer delay increases. The

delay rises faster than in <ETS: OFF>. The increase at

higher loads (around 50 active stations)

because the wait before retransmission

is steep. This is

attempt is much

higher than in case of <ETS OFF>. Every source_, whatever be

the gap between its two ends, has to wait for a fixed number

of slots before making retransmission atte111pt in case a

packet is not self acknow1edged within timer interval. The

73

TRANSFER DELAY
VIDEO DATA

DELAY (IN SLOTS)
300~------------------------------------~

260 ···

200 ······· ···!·········
160

100

50

o~----~----------~------~----~----~
0 10 20 so 40 eo

NO. OF ACTIVE STATIONS
- < CAP : ON > -+- < QNl : OFF >

TRANSFER DELAY
VIDEO DATA < CAP : ON >

DELAY (IN SLOTS)
400 . . 1

aool + I
I /

II

200~···//•. 1

I _,..r-~;.____--J/ I
~~ ~~~ I

_,;-'~~ _____ .,.....,...- i
100 .. ~-.. ·········!

~ ____ __..,........., , .

...,__...,-~_,...,--- I

o~----~------~----~----~~----~----~

0 10 20 so 40 60 60

NO. OF ACTIVE STATIONS
- < ET8 : ON > -'- < ET8 : OFF >

I
II
h

~
I
I

II

II
'I
!

timer value set is equal to gap between two ends of the most

upstream source.

Voice Packet

Voice data is second in priority to video data in the

output queue of multi-media sources. Graphs #15 and #16 show

the per packet transfer delay for voice data plotted for

different number of active stations. They show the effect of

channel access probability assignment and Equal Timer

setting techniques on the transfer delay.

Graph #15: This graph shows the effect of channel access

probability assignment on the transfer delay for different

number of active stations. When CAP is OFF, the delay

increases slowly upto 25 active stations and then with some

fluctuations stabilizes for higher load when CAP is ON, the

average transfer delay increases with offered load.

Initially upto 30 stations, it rises slowly but later upto

45 active stations, it rises steeply and then for further

load, the delay starts stabilizing as now the downstream

sources dominate the channel and have very low transfer

delay, so average transfer delay stabilizes.

Graph #16~ This qraph shows the effect of ETS technique on

the per packet transfer delay for voice data. The channel

access probability assignment is qrad-ed. Upto 30 stations,

the transfer delay i~s saiire in both the cases. At higher

76.

TRANSFER DELAY
VOICE DATA

::: rl~((I~· ~~T~)
1

I,'

1000 ~--···:r/~ 1
I // I

BOO ~--···-~/'··j
I / I eooL .. / , .. 1
I / ~ I
I / /' I

:::t••······························~··~··································<·········>.·.·.·.·.·.·.·j
01 .c:--=:- I I I I I

0 10 20 80 40 60 60

NO. OF ACTIVE STATIONS
- <CAP : ON> ---+-- <CAP : OFF>

Grepn #16

TRANSFER DELAY
VOICE DATA < CAP : ON >

DELAY. (iN SLOTS)
2500~------------------------------------~,

I

t I
:2000 ~-·· ··;/··············· ,

I I
15oo ... · · /··· · · .. ···· · ·· · ·I

~ I I
~~ I

I I
iOOO ···/··········7······································1

I / I
/ /., I
// I
- I ... 1 600

I
I

o~----~----~------~----~------~--~
0 10 :20 30 40 60 80

NO. OF ACTIVE STATIONS
- < ET8: ON> -+-- < ET8 :OFF>

Grapn #16

II

~
!I
II
II

I
1,

i

loads, the <ETS:ON> case has higher transfer delay than in

<ETS: OFF> case. The increase in transfer delay at higher

loads is very steep.

Ordinary Data

Ordinary data has the least priority in the output

queue. So the ordinary packet is transmitted only when no

video or voice packet is present in the queue. So, transfer

delay of ordinary data packet is maximum as compared to

video or voice data. Graphs #17 and #18- show the per packet

transfer delay for ordinary data plotted for different

number of active stations.

Graph #17: This graph shows the effect of channel access

probability assignment on the transfer delay for different

number of active stations. Upto 30 active stations, an ordi

nary data packet faces more transfer delay in <CAP: OFF>

than in the case of <CAP: ON>. At higher loads (40 active

stations) the delay value stabilizes under <CAP: OFF>. Under

<CAP: ON> the delay rises steeply after 35 active stations.

Graph #18: This graph shows the effect of ETS technique on

the per packet transfer delay for ordinary data. The channel

access probability assignment is .graded. The transf.er delay

in case of <ETS: OFF> is higher than for the case of <ETS:

OF-F> upto 3{:} stations the delay for the two schemes is only

:slightly different. But on higher loads·, the delay increases

79

TRANSFER DELAY
ORDINARY DATA

DELAY (IN SLOTS)
2000~--------------------------------------~

_..--"'
1600 ·~··:···;~·-······················ ·····!

~J I I
I / I

/ I

/ . ~ I
/_£._------ ~ I

60Qr-·· ... ~~-.. ,
~­·-?

~_,.--"
I< ----

0~----~----~~------~----~------~----~
0 10 20 30 40 50

NO. OF ACTIVE STATIONS
- < CAP : ON > ---+- < CPP : OFF >

Grepn #17

TRANSFER DELAY
ORDINARY DATA < CAP : ON >

DELAY (IN SLOTS)
3600,--------------------------------------,

3000 r·········· ·
I

:2600 r-···;(........................ .

I
:2000 -···/································

I

160oc- ;~r 1
. I .

1000 ··· .. .

600 -·· ... ···

OL_~~~~~~------L-•----J-----~----_j
0 10 20 30 40 60

NO. OF ACTIVE STATIONS
- < ET8 : ON > ---'- < ET8 : OFF >

Gregn #18

steeply in <ETS: ON> In <ETS:OFF> stabilization occurs after

40 active stations whereas with <ETS: ON> stabilization

occurs after 50 active stations.

In all cases, the absolute value for delay are much

lower than the maximum delay limits imposed by various data

traffics i.e.

Data traffic

Video
Voice
Ordinary data

5.2 THROUGHPUT Vs. LOAD

Max. delay limit

2500 slots
12750 slots

A multimedia system offers various kinds of data

traffics. These data traffics use different bandwidths.

Video uses a Bandwidth of 1. 5 Mbps, voice data uses a

bandwidth of 64Kbps and ordinary computer data uses a

bandwidth o£ 64kbps of the channel. Therefore one multimedia

system uses 1. 085% of channel bandwidth. As the number of

active stations increase, the load offered increases. The

load can also be expressed in terms of fraction of channel

bandwidth. When a source transmits datq in a- slot" the

already existing signal on the bus is replaced by this

locally generated signal. In the case of a coll.ision, the

data of the downstream source exi:sts on the slot and- the

82.

slot is not wasted. Thus a slot is utilized if one or more

sources put their data in it. Graphs #19, #20 and #21 show

the channel utilization plotted for different amounts of

load offered. These graphs show the effect of fairness

schemes on the channel utilization.

As the load increases, more slots are utilized for

transmission of data and the throughput of the system

increases. The graphs between throughput and the load

offered are simple straight lives for these loads offered.

These graphs are different in nature to the "Throughput vs

load offered" graph for simple ALOHA contention system. In

the case of ALOHA, a collision results in wastage of the

slot since both the colliding packet are lost. Hence the

throughput increases with increasing load offered only upto

a certain load level (0.18 for unslotted ALOHA to 0.36 for

slotted ALOHA) . When the load is increased further the

throughput starts decreasing. In contrast, as explained

earlier, throughput in this system increases with increasing

load. these graphs shall show saturation when the offered

load becomes equal to the capacity of the network. That

stage comes at nearly 90 active stations.

5.3 SUCCESSFUL TRAFFIC TRANSMISSION

A stati-on is said to be successful if it i·s abl-e to

successfully transmit data tra.ff_ics .• Graphs #22, #23, #24

83

THROUGHPUT/LOAD OFFERED
<CAP: OFF>

THROUGHPUT·
o.e r-----------------------,

o.o ····~·······~··

0.4

o.s ·· ···

0.2

0.1

o.o '----.1.....----"-----L---____...J'---____...J------.J

0 0.1 0.2 o.s 0.4 0.6 0.6

LOAD OFFERED

THROUGHPUT /LOAD OFFERED
<CAP: ON)

THROUGHPUT 0.8,....----------------------,

0.4 .. .

o.e

0.1

o.o L.----L.-------l"-------'-----1------1....--....J

0 0.1 0.2 o.e o.4 0.6 0.8

LOAD OFFERED

THROUGHPUT/LOAD OFFERED
< (}N) : ON > < ETS : ON)

THROUGHPUT
o.e ,..---------------------,

o.o ···

0 . .4 .. ··

o.a ··· ···

0.2

0.1

o.o '------L-------"-----'------L.--____._ __ -..J

0 0.1 0~ ~3 ~· o.o o.e
LOAD OFFERED

show the number of successful stations at different loads

under different fair schemes.

Graph #22: This graph shows the no. of successful stations

for different data types when Channel Access probability for

all stations is same i.e. equal to one. When 40 stations

are active , only 35 of them are able to transfer ordinary

data. When 50 stations are active only 45 are able to

transfer voice dataand only 42 are able to transfer ordinary

data.

Graph #23 This graph shows the number of successful sta

tions at different loads under <CAP:ON> assignment. Video

data is transferred by all the stations upto 50 active sta

tions. All stations are able to transfer all types of data

traffics, till number of active stations in less than 50.

On further increasing the number of active stations, some

stations fail to transfer voice and ordinary data, though

all of them are able to transfer video data.

Graph #24: This graph shows the effect of <E.T.S.:ON> tech

nique with <CAP:ON> on the number of successful stations at

different loads. All stations are successful till the load

is less than 35 active stations. on increasing the number

of active stations further i.e. when 40 stations are active,

one fails to transfer voice data and two fail to transfer

ord-inary data. This situa-tion det:eriorates as number of

87

SUCCESSFUL TRAFFIC TRANSMISSION
c CAP: OFF>

NO. Of SUOCESSFUL STATIONS
60~-------------------------------------

o ro ro oo ~

NO. OF ACTIVE STATIONS
- VIDEO I:W"A --+- vaa: tW"A,._ ORDINARY OOJA

SUCCESSFUL TRAFFIC TRANSMISSION
<CAP, ON)

NO. OF SUOJESSFUL STATIONS
~~--------------------------------~

40 ... ···

ao ··· ··

20

10

0------~----~--~~--~~--~~--~
0 10 20 ao 40 eo

NO. OF ACTIVE STATIONS
- VIDEO OATA ~ VOICE DATA -- ORDINARY CA11a.

SUCCESSFUL TRAFFIC TRANSMISSION
c CAP : ON , c ETS : ON ,

NO. OF SUCXJESSFUL STATIONS
~~----------------------------------~

o~----~----~----~----~----~----_j
0 10 20 30 40

NO. OF ACTIVE STATIONS
- VIDEO DATA --+- VOICE DATA -"- ORDINARY DA'lA

Gr~ #24

stations are further increased. At 50 active station, 4

stations fail to transfer voice data and 8 stations fail to

transfer ordinary

transferred by all

stations.

data. Video data is successfully

stations for the load of 50 active

On analyzing the above three graphs it was found that

when channel Access Prob. of all stations is kept equal, the

network is able to cater for only 35 active stations.

Whereas when Channel Access Probability is graded for giving

fair access to all sources, it was found that the system was

able to cater for 50 active stations. on applying equal

Timer setting technique and graded channel access

probability, it was found that only 35 stations were able to

transfer data successfully therefore I conclude that Channel

Access probability assignment without equal timer setting

technique is best suited for this application.

5.4 SIMULATION RUN LENGTH

A simulation run is stopped when the control variable

chosen is found to be stabilized. The control variable

chosen for this simulation is the average transfer delay for

the video packets. Since video traffic is the dominant

traffic on this network., this choice for control variable is

justified.

91

Graph #2 5: This graph shows the variation of

transfer delay for video data with the length

average

of the

simulation run taken. The length of the simulation run is

expressed in terms of the number of video packets

transferred across the network. The new value curve shows

fluctuations initially and after 10,000 packets, it starts

stabilizing. The average of previous values curve shows

the average of all previous values obtained at steps of 1000

pckts. At 13,000 packets transferred, the new value graph

stabilize close to the average value graph and at this

point, the simulation is stopped.

92

SIMULATION RUN LENGTH
<CAP;ON)

VIdeo Pokt Transfar Delay

tog

lo!l,

98--------------------~--------~------~
0 6 10 16 20

Video Pokts Corrm.(in 1000)
• • • • • New Voi.ue..

CHAPTER SIX

CONCLUSION AND FUTURE DIRECTIONS

CHAPTER6

CONCLUSION AND FUTURE DIRECTIONS

In this project I have designed a multimedia protocol

for a high speed fiber optic bus network. The design was

simulated using Borland c++. Performance Analysis of the

designed protocol was carried out and the software developed

successfully predicted the network behavior under varying

traffic conditions. The results of the simulation run give

the different delays in the transfer of packets across the

network, the throughput of the system, the packet loss, the

network service to individual stations.

The network has a maximum load limit, to which it can

provide satisfactory service. This limit depends on

fairness strategy used. on analyzing the results it was

found that when <CAP:OFF> is used, the network could support

only 35 active stations whereas when <CAP:ON> was used the

number of successful stations increased to 50. When

<ETS:-ON> with <CAP:ON) was used, the network could support

only 32 stations. So we find that <ETS:ON> is not a useful

strategy.

When the load is--moderate (i.e. around 30 stations),

video packets face the least delay und-er <CAP:OFF>. The

4e-1-ay faced in <CAP.:ON> is h.i-qher than thi-s- --and <ETS-:--ON>­

-results in highest delays. Voi-ce and ordinary data packets

94

are not much affected

degree of fairness to

by the fairness strat-egi-es.

upstream sources is highest

The

when

<CAP: ON> and <ETS: OFF> scheme is used. The degree of

fairness to upstream sources is least When <CAP:~OFF> is

used. ETS scheme does not have much effect.

Upto 15 active stations, the upstream sources ge-t a

good service in <CAP:OFF> scheme along with faster overall

traffic trans.fer. For loads ranging from 15 to 3-5 activ:e

stations, the degree of fairness

decreases. The <CAP: OFF> provides

to upstream sources

fast service only to

downstream sources, whereas <CAP: ON> provides fairness to

upstream sources although the overall delay is slightly

higher. For loads higher than 35 active stations <CAP:ON>

with <ETS: OFF> is the best technique. Basically it is a

trade off between delay and fairness. For loads less than

15 active stations <CAP:OFF> should be used for faster

packet transfer and for higher loads <CAP:ON> with <ETS:OFF>

should be used.

The prioritized queuing system used for output queues

of multimedia sources has proved to be effective solution

for meeting these constraints. The video data and voice

data face delays much less than their respective upper

limits. Moreover, the ordinary data does not suffer much

because of the least priority given to it.

satis~actory network service.

95

It also gets

The Channel utilization of the network is high under

all the three fairness schemes. the Channel utilization

increases with increasing load. This is possible due to use

of active optical taps. Under a collision situation, at

least one packet is allowed to transmit, hence no slot is

wasted. Thus the multimedia computer network can support

applications like video conferencing, voice transmission and

ordinary data transfer. It can support a maximum of 50

stations, all of which can offer all kinds of data.

Suggestions For Future Work

{1) LCSMA AND LCSMA-CD can result in better channel access

strategies. Although their implementation is complex and

expensive, they can improve the service provided by the

network. Future work can be based on developing access

strategies using these protocols.

(2) This network uses single wavelength for the signal

transmissionn. An approach using multiple wavelengths ca.n

be implemented.

(3) A mechanism can be developed by which under low load

conditions the network uses <CAP: OFF> technique and as the

load increases the network ada-pts the <CAP:ON> technique.

96

APPENDIX A

MATHEMATICAL ANALYSIS OF CHANNEL UfiLIZATION EFFICIENCY

A slot moving across the transmitting ends of the

active sources goes unutilized only if none of the sources

had packets to transmit in that slot. Therefore, under very

heavy load conditions also, the channel utilization tends to

one.

Suppose N = number of active sources >= 1

Pi = instantaneous probabi 1 i ty o.f source "i 11 of

transmitting a packet into slot being studied.

Probability of slot being unused is equal to the product of

probabilities of not transmitting by individual sources

= {1-Pj)

A slot is utilized if at least one source transmits a packet

in that slot, so

Slot Utilization Probability {S.U.P.) = 1 - (1-Pj) N>=1

So as the number of active sources (N) increases, slot

utilization probability increases and tends to one.

APPENDIXB

NETWORKSPEC~CATIONS

CHANNEL

TAPS

Nature of channel

Bit Rate

Transmission Speed

Optical Taps

TIMING

System Timing

Slot Time

packet length

PROTOCOL

ALOHA

Optical Fiber

150 Mbps

2*10~8 mfsec

Active, Unidirectional

Slotted

13.33 micro sec.

2000 bits

TRAFFIC CHARACTERISTICS

BANDWIDTH

NATURE

BIT STREAM

AVG. TALKSPURT

AVG. SILENCE INTERVAL

S = steady

C = Compressed

VIDEO

1.5Mbps

s

c

VOICE

64Kbps

B

u

1. 67 ms

1. 33 ms

B = Bursty

ORO. DATA

64Kbps

B

u

U = Uncompressed

BIBLIOGRAPHY

[1] FRANCIS NEELAMKAVIL, "Computer Simulation and Model

ing", John Wiley and Sons, Chichester, Britain, 1987.

[2] NARS INGH DEO I " System Simulation with Digital

Computer", Prentice Hall of India, New Delhi, 1991.

[3] DIEDIER LE GALE, " MPEG A Video Compression

Standardfor MUltimedia Applications", ACM Communications,

Vol.34, No. 4, pp. 47-58, April 1991.

[4] GREGORY K. WALLACE, II The JPEG Still Picture

Compression Standard 11 , ACM Comm., Vol. 34, No.4, pp. 31-44,

April 1991.

[5] ANDREW s. TANENBAUM, 11 computer Networks 11

Hall of India, New Delhi, 1990.

Prentice

[6] CHONG-WEI TSENG, BOR-UEI CHEN, " D-Net, A New Scheme

for High Data Rate Optical Local Area Networks", IEEE Jour.

on Special Areas in Communications (-SAC), Vol. SAC:...1, No.3,

pp. 493-499, April 1983.

{71 NTCHOLAS F. MAXEMCHUK, " Twelve Random Access

Strategies· for Fiber Optic Networks", IEEE transactions on

C<>mm\Ulica-ti-ons, Vol.36-, -No.a, pp. 4'81-489, August 19"8"8.

(8] AUREL A. LAZAR, JOHN S.

MAGNET", Optical Engineering

596-601, July 1987.

WHITE, " Packetized Video on

(Journal), Vol.26, No.7, pp.

(9) COSMOS NICOLAOU, " An Architecture for Real Time

Multimedia Communication systems", IEEE Journal on SAC,

Vol.8, No.3, pp. 391~397, Aplril 1990.

(10] TATSUYA SUDA, TRACY T. BRADLEY, 11 Packetized Voice/Data

Integrated Transmission on a Token Passing Ring Local Area

Network", IEEE transactions on communications, Vol.37, No.3,

pp. 238-246, Ma-rch 1989.

SOURCE LISTING

l! multi.med.c FINAL VERSION
II SOURCE CODE OF 11. rECH PROJECT
II make sure whether BG! INITIALIZATION iE propel· !
II******************* fitand~rd h~ader f1les inclusion***************
ttincludP. <stdio.h>
~include <gtdlib.h>
•~nclude <gr~phics.h>

#include <conio.h>
*in~lude <math.h)
#include <~lloc.h>

II **
II This bibck contains the header declarations for the program

*i fndef NULL
tldefine NULL 0
tlendif
ftifndef ZERO
#define ZERO 0
ttendi f

ttdefine TWO 2
ttdefine F'OU~ 4

*define MAX _STNS 64
tldefine NO SLOTS IN RUN 1000
ltdefine MAX.JlLOTS_Tq_RUN 65000

ltdefine YES 1
ltdefine NO 0
tldefine TRU£ 1
ttdefi~e FALSE 0

tH fndef DECIMAL
ttdefine DECIMAL 10
•~.ndif

#define ONE_SECOND 1000

#define INVALID -1
II used in ihiti~lization

*define NO_OF_DATA_TVPES 3

ttdefine £MPTV SLOT 0
*define ORDINARV_DATA 1
ttdefine V01CE_OATA 2
#define VtDEO_OATA 3

ltdefine MAX_VOICE_OELAY 12750

II used in move_slts<>

II no. of data types

~define MAX_VtD~O~DELAY 2500

ffdP.fine NORMA~_Q_LEN_LIMIT 6
#define UPPER_Q_L£N_liMIT 8
#define SERlAL_~ENGTH 20

ltdefine FIASE_F'OR_RANDOM 0.981i //meant for producing avg. 1 pkts pel- mes~::age
II used for ordlnary and video tr~ffics here.

#define MEAN bRp 2340 II avg. gap between successive o1·d. data
II spur~s. This and BASE leads tu
II ~vg, 1 pkt per 2000 slot

#define MEA~_VO~CE 2340 II avg. gap between talk spurts that is
II avb, 1 pkt is produced per 225 slots.
II aPProNim-~iMg 125 + 100

#d~;>fine MEAN_VIDEO 100 II avg. gap between successive v1deo data p~·:ts
II this leads to ~vg. 1 pkt per 125 slots

*define NO_PKTS_lN~UNIT 1000 II the unit of the packet store
II the unit length shal} also be dependent

II on the no. of slots in the unit run
II **********~*~********.**
II this block corttains headers for the ~imulation verification part

#define Y_VALUE 1.65 II value used in the formula fo•- n(i+l > f•··om n(i >
#define CONFIDENCE_LIMIT 0.05 II desired confidence limit (inte•-val>
#define INITIAL_TRlES 500 II no. of calls initially to random no. gnrtr
II***
II this bloCk cont,ins the header declarations for the graphics part

tldefine UPPER 1 (:>
tldefi.ne LOWER 250
#define RIGHT 630
#define LEFT 15

#define LEFT_LOCO 25

#define GAP 3

tldefine SLOT~LENGTH
tldefine MAX_~LOTS

II on screen.

eo
74

#define COLUMN_IN_PKT_STORE S

//~the four limits of the bus

II denotes the locomotive position's X.

II gap between real and virtual bus

II denotes the length of the slot in pixels
II denotes the max no. of slots simultaneous

II no. of columns of the packet store

#define CHANNEL LENGTH C8*<RIGHT- 55+ GAP>+ <LOWER- UPPER+ 2 *GAP >>
II ~he total l;ng~h of the chann~l over which the sources are arranged

#define ends_gap<x> <CHANNEL_LENGTH- <18 * xl>ISLOT_LENGTH

II macro to return the gap b~tween tthe ends
II of a slot in terms of no. of slots

#define abs_gap<x1,><2l <floo•- c < 9. 0 * <f loc:~t labs< x 1-><2> l /<float >SLOT _LENGTH>>

#defin£:' stn_ge~p<xd,Ks> (xd > xs) ? abs_gap(;<d,xs)
II these two macros are uHe~ to find the gap
II between a source and its destination stn
II in terma of number of slots seperating

II them.

#define d_point_offset <LOWER - UPPER>ISLOT LENGTH
II this value is to be substracted from the
II communication delay calculation

(-abs_gap < xd, ::s) l

II now ~he dimensions of the result window ~nd related objects start.
ttdefine NO_BOX_PER_ROW 1(J II 1n the result window

ltdefine MARGIN_UF'PER 5
#define MARGlN_t...EFT 5 II margins between the boxes and result< or q) Nindow

*define BDX_LENG1H 3~

*dedne eox_HEIGHT 20 II the dimensions of the slot & queue box

#define LEFT_R_WIN LEFT_LOCO
#define UF'_R_WIN LOWER+ 20 II gap between real bus and w1ndow =20
tldefine RIGHT_R_WIN LEFT_R_WIN + NO_BOX_PER ROW * <BOX LENGTH> + <2 * MARGIN LEFf l
#define OOWN_~_WIN UP_R_WIN+209 II height of window= 209

II t~ese are the four limits of the
I I ,-esul t wIndow

II now the specific dim~n~ions of the queue window and its obJects start.

#define LEFt Q WIN RIGHT R WIN
ftdefine U~_o:wi~ UP_R_WlN­
~define RIGHT Q WIN RIGHT
ftdefi ne DOWN_i5j1r N OOWN_R_W IN

ttdefine SOURCES_SHOWN 4
ttdefine Q_PACKETS_SHOWN 7

+ <3* MARGIN LEFT> II leaving the margin
I I same as ;:-es1.1l t window
II same as real bus
II same as result'window

II no of sources shown in the q window
II no of packets in the queue of a source

*define REFRESH_COLOR BREi::N' II this color meant fat- clearii1g of the
II ,-esult window

ttdefine ORDtNARV_GOLOR LIGHTGRAY
ftdeflne VOICE COLOR LIGHTGREEN
ttdefine VIOEO=COLOR LlGHTMAGENTA
#define EMPTY_COLdR BLACK II the colors to be filled in the ,-esult

II boxes in the result window.

3

0

II temp check with black ** white ** has been choosen with u special reason

II ************~*«***~~******
II this block cbntains the global variable declarations in original

FlLE •fp: II temporary file structure for checktng

unsigned int f_act_sources[MAX_STNSJ; II array fer storing whJCh sources
II are going to be active for a particular run
11 initialized to 'NO'

unsigned i nt f _shown_tiloUl-cesCMAX_STNSJ; II ar•-ay
II to be displayed in the Q-window for this
II particul~r run

for storing which sources are going

II initialized to 'NO'
uns i yned i 11t f _spec ial_statusCMAX_STNS l
uns1gned int f_killer_statusCMAX_STNSJ

//flags to indicate spectal
II flats to indicate killer

st,,tus
st.;otus

u>"'signed i nt srw l.al_spec 1al_statusCSERIAL_LENGTHJ ; II array to reco•-d se•-•al
II which the source enter and leave special status

unsigned int sel-1al_ki ller _statusCSERIAL_LENGTHJ ; II a n-ay to reco•-d se•-ial
II which th' source enter and leave killer status

u~signed int empty_.pec:iai_entry = ZERO 111 indicators for empty positions
unsigned int empty_killer_entry =ZERO ;II ,,

1n

ln

int column_shown_soUrcesCMAX_STNSJ; II array for storing what are the columns to which
II a source has been mapped for the Q_WINDOW
II initlialized t~ 'INVALID'

int shown_toourcestSOURCES_SHOWNl; II array for storing wich sources an• t1eing
II displayed in t~e queue window
11 initialized to the actual values

II the~e value~ are the internal values

II ******t*****~*~**
i nt x_y _q_boxe~CSOURCES_SHOW"!HQ_PACKETS_SHOWNJ (2J;

II 3-D array of integers to store the coords
II of the box~s in th• rdws of the Q window

i nt x_y _sname_box.sCSOURCES_SHOWNJ C2l;
II 2-0 array of integers to store the cbords
II of the boxes for displaying the names of
II the sources shown in the queue window.

int destn_stnCMAX_STNS]J

II initialize~ to 'INVALID'

II 4rray for storing the destn station for
II a station.

unsign!!d int rjo_of_jjkts_ir'l_qCMAX_STNS) 111 contains the no. of pkts 111 the
II queue of a •ource ~t a time instant

stt-uct p<~cket

unsigned int pack~t_id;
unsigned int ~rc_stnt
unsigned int type_of _okt 1

II packet identifier no. init to RAND MAX
II source stn ~o. init to ZERO-

I I 1 nit to ZERO
/ I type of pkt. (data - 0, voicF.' -· 1, video -2

Lt ns i g 11!l'd

uns 1 g ned
uns 1 g ned

int
int
int.

!illtlt_no_gen; II slot's no. in which this pkt was ge;-.e,-ated
slot .. _np_reach_top; II slot's no. in which this pkt reache(1 D top
slot_:_no_reach_destn; II slot's no. i.n which this pkt ,-eached destn

struct packet *next I
} ;

II these three initialized to ZERO;
II pointer to the next packet in the qu~ue

II structure for a packet's details

stl-uct ~lot
{

II packet identifier no. i nt pac ket_i d;
int src_stn; II these two initialized to INVALID
1 nt t ype_of _pk t; II typ• of pkt. (data- 0, voice- 1, video -2

II initialized to 'EMPTY_SLOT'
} I II structure for a slot's details

stJ-uct slot t h•ad_slot_l istrMAX_SLOTSJ;
II •lot content details structure
II initialized to pointers to
II allocated nodes

stl-uct packet -if head_oacket_queueCMAX_STNSJ;
II packet queues of sources
II initiali~ed to ~ULL

int size_of_JHlCk~t ,. sizeof<struct packet> 1
II global vprlable to store size of p~cket
II structure; s4ves many calls to sizeof<>

II array of pointers to

II array of pointers to

II **************~**
II simulatiqn.sp~clfic variables are declarld here in this block
unsigned int f_b!'lb_switch 1

11 flag used to indicate the status of
II the band~idth b~lancin9 switch
11 1-'on' o-ioff'

unsigned int f_prQb_asaign '
11 flag used to indicate the type of
11 probability assignment 1
II '0' -ali sources have equal C. A. Rrobability
II '1' - p~obability assignmeryt is graded one

Ut1signed tnt f _try_l imi t_reached .. NO 1
II flag used to denote whether the current try limit for random
II numb~r generation routine is re•ched .

unsigned int f_simul_over =NO ;
II flag ue~d to denote whethQr the simulation verification
II show' this is th~ time for ending of the simulation or not

unsignE'd int f _mood_over = NO 1
II flag used to end the simu}ation by the user

unsigned int trted c ZERO ;
Ill it is •n ~nsigned variable to store the no. of times
II the r~ndo~ no. generator has been called for generating traffic

unsigned int try_upto ., INITIAL_TRIJoS
II no. of time~; the random number generator is initially called
II withoUt a check on the standard deviation of its output

unsign~d long sum_numbers ~ ZERO
II SLim of the 11umber of packets generated by the traffic gener«.tor

float devia~ion_sum = 0.0 1
II long variable to atore the sum of deviations

unstgne~ ~ht ~o_of_aet_stns =ZERO;
II this i• th• global varie.ble to denote the number of station•
II whi~h ar& active in a particular run

unsigned int &lots_passe~ = ZERO 1
II this is an unsigned long integ~r variable which is used to store
II the n~mbet of alot• that have passed through the network

int K_white_upper .,lNVALID,y_white_right "' INVALID,x_white_lowe.-.= INVALID;
II the tht•e White pixel positionA;
II mind th•t they ~~ve been initializaed to INVALID;

float pl-ob_baseCMAX_~TNSJJ II array of floating pt numbers to store the
II probability b~se values by virtue of the
II position of t~e source in the network

L1nsig11ed ~nt normal_tljin_waitrNAX_STNSJ ;
II unsig~~d int array to store the normal
II v~lue of the minimum waits betwe~n successive
11 retr~ns~ission attempts by a source

unsiongd int mln_walttMAX_STNSJ 1
11 unsigned int array to •tore the numbers.
11 of slots upto which the sources have to wait
11 between auccesslve transmi.sion attempts.
11 initialized to run-specifit actual value in init_all< >

unsigned int wai t_counter [MAX_STNSJ[NQ_OF _DATA_TYPESJ;
II glopal e-o array for storing the wait_next_spurt values for

6

II different data types.
II rJCOJ - ot~. ClCll - voice~ CJC2l - video
II tniti•lized to ZERO

untilgn~d int acc••s~waitCMAX_ST~SJJ
II thl~ coun~are will star@ the number of ~lots
II for which the source has to wait betore trying
II to tr•n•~it again.

II *******************~* varibales for result calculations
Ltnsigrled ldng tot.u_q_delayCNAX_STNSlCNO_OF _DATA_TYPESJ
II array of unsigned longs to store the total queuing delays
II of the differ~n' types of packets

uns1gned long total_comm_delayCMAX_STNSHNO_DF _DATA_TYF'ESJ ;
II array of un~igned longs to store the total communicatinon delays
11 of the differant types of packets

unsigned i nt tot a l_pkts_trans CMAX_STNS J C NO_OF _DATA_ TYPES J ;
II ~rray of unsign~d lnts to store the total communicatioon delays
11 bf the different type~ of packets

unsigned 1nt tio_of _slots_empty = ZERO 1 II this var1able holds the no. of slots
II that have passed empty across the bus

unsigned int delay_allowedCNO_OF_DATA_TYPESl ;
II array to hold the max. no. of •lots ~Y
11 which a packet of p~rticular data type
II could be allowed to get delayed

unsigned i nt no_of _pkts_delayed CMAX_STNSHNO_OF _DATA_ TYPES J
II array to store the no. of packets of diff. types delayed beyond
II their limi~s •

uns ign~d i nt ~~cket_storeCNO_PI<TS~II•(.. UNIT JCCOLUMN_IN_PKT _STORE l I
II e-o array ot unsigned tnt-s to store the tnfo about pkts
II tin~lly for each uni~ runr
II initialize~ to ZERO

Ltnsigned int curr _empty_tl'ntryr
II unsigned int variable to store the no. of the current
II empty entry in the packet store
11 global vari~ble take care;
11 initialized to Z~RO

unsigned int K_y_r_boH•sCMAX_SLOTSJC2jr
11 stores the H •hd y coordinates of the boKes in the
II r•su1t~windo~
II initialized by tHeir values

unsigned tnt K_y_s1ot_no_boxC2J 1

~II array to store the k and
0

y pts of the upp~r left
II corner of the slot no bo~

int pkt_color_arrayC4J;
II stores the Colors of the pkts in the result winnow
II initialized by color values

char filenameC15J ; II to store the name of the data file
II *~**
II MAIN STARTS
void main<int argc, char* argvCl>
{

I* --~-------------------- *I
II function declarations
void lnit_.ll<voidl;
void rand_ac t_stns< void>;
void remov~_lock_stepsync<voidl
void init_graph(void);
void draw_n@t(voidl;
void draw_result_win<void>;
void draw_q_win<void>;
void move_slots<voidl;
void simul~tion <void)

I* ---·-------------------- •I

II ch•r f1l.nameC1~l 1 II array to star@ the name of the file in which
II the djta generated by the simulation run is to

clr.crC) J II clear the screen
i f(argc > 1)

~trcpy(filename,argvClJ>I
else
{

printf<"Please <ENTER> the name of output data file <•.dat> "> 1
scanf<"K~",filename> 1

)

clrser(> t II clear the screen
11 fp "' fopen<n lename, "wN > 1

II if(fp •• NULL)
II (
II prit"'tf("Col,lld not open file!">;
II &Hit (1) J
II)

init-•11 <>1
rantl_ac:t_stns< l'
remov._lock_stepsync<>
intt ... oraph< >;
dra~_net<>•
draw_resul t_win<) 1
draw_q_wih<) J
simul.tlon<) 1

II 'tcJotle(fp) I

II initializes all the global variables
II randomizing the stations to be active

II to remove lock step synchronization
II initializing the graphics

e

II drawing the network structure
II drawing the result window and its objects
II drawing the q window and its objects

}

II MAIN ENDS
II ************ GLOBAL INITIALIZATION BLOCK STARTS *****************
II thi~ blQCk contains routines for the various initializations
II this lnciudes routines for allocating memory for nodes

II **********************
II this tunction allocates memory Initializes th~ slot list t all headers
II called fi"ortt
I I I • nla i n < I
II ****t****************
void ihit_all(l
{

I* ------------------------•1
II function decl~rations
void refre•h_packet_store<>;
I* ---------~--------------*1

regi.ter int i,J;
register int size_of_slot; II just meant to make fast ~-outine

size_of_slot • sizeof <struct slot> 1 II making it faster

for<i~OJi<MAX_STNS;i++>
{

}

f_act~sourcesCil • NO; II initializing all sources as INACTIVE.
f_showh_sourcesCil • NOJII initializing all sources as INACTIVE.
column_shown_sources[il = ~NVALID;
destn_stnt i) ., INVALI.D ;

11 initializing columns to INVALID

for(i~O;i<MAX_SLOTS;i++) II allocating and intializing slot list
{

}

head_slot_list[i] • <struct slot •>malloc(size_of_slotl;
if<h~ad_slo~_liettil •• NULL>
{

c 1 r .. t:r < l I
puts<"Mefllory not allocated for node in init_all<l!\n check it 1 "l;
Eildt<llj

) II c~eckino for the case when memory is not allocated I

head_slot_list[i] -> packet_id • INVALID;
head_•lot_l~stCi] -> src_stn ~ INVALID1
head_llot.l~stCil -> type_of_pkt • EMPTY_SLOT;
11 fillino typa as empty

II initializing the array of pointer• to the stations' packet queues
for(i~Oii<MAX_STNS;i++>
head.p~cket_qu~~eCil c NULL;

9

.II intializing the. colors of thR pkts array
pkt_eolor_arrayCEMPTY_SLOTJ = EMPTY_COLOR;
pkt_color_arrayCORDlNARY_DATAJ a ORDINARY_COLOR;
pkt_eolor_arrayCVOICE_DATAJ = VOICE_COLOR;
pkt_color_arrayCVIDEO_DATAJ = VIDEO_COLOR;

of stations to zero II initlializing the wait_counters
for (i =0 1 i <MAX_STNS J i ++ >

for<J•OJJ<NO_OF_DATA_TYPES;j++)
!!'Iii!. t_co4nter [i H j J = ZERO;

II for all stations
II for all data types

II initi~li%ing the ~in_wait array and C. A. probability array
for(i•O; i<HAX_STNS Ji++>
(

min_waitCil • ZERO ;
ndr~al_~in_waitCil =ZERO
pro~_baaeCil • o.o 1
~cceas_waitCiJ = ZERO ;

)

lllnitializing the delay variable to hold the result of a run
for(~aOii<MAX_STNS;i++)
fqr (J•O; J<NO_OF _DATA_ TYPES ; J++ >
(

t~ta~_q_delayCiJ[jl • ZERO 1
t~t-~_comm_delayCilCJl = ZERq 1
tptai_pkts_transCiJ[jJ c ZERO ;
nq_of _pk ta_delayedC i J C j J =.ZERO

)

II initializing the delay allowed values for the three data types
del4y_llllowed[ORDINARY_DATA -1] = RAND_MAX ; II just fo,- fOl-mality
delay_allowedCVOICE_DATA -1J ,. MAX VOICE DELAY II max delay 170 ms
d,l~y-allowedCVIDEO_DATA -1] = MAX=VIDEO=DELAY II refresh_ra.te = 50 per sec.

II aourc• shown array initialized to ZERO
far(i•O;i<SOURCES SHOWN 1 1++>
show~ ~ourceaCiJ .-zERd 1 ·

' -
11 initializing the packet store
refreah_p~cket_store<>; II called to initialize the packet store

II initially as ZERO

for<~•Oii<HAX_STNSii++)
{ '

t_•p•cial~•tatuaCil • NO 1
f killer atat~aCil • NO 1
n~_of_pkt._in_q[iJ • ZERO I
)liinitializations

for<i•Oii< S~RIAL_LENGTH Ji++)
<
••rit1ll_apeci'al_status[iJ ., ZERO

10

ser~al_killer_status[i) ~ZERO
}

)

II ***~********** GLOBAL INITIALIZATION BLOCK ENDS *****************

II ***•********** ACTIVE STATION RANDOMIZATION BLOCK*****************

II ***~******************************
//this rquttne ~sks the no. of st~tions to be active for a particular run
II and r•hd~mi%es to find the suitable configuration until the user is
II s~~isfied with the configuration.
II c"l.eq from
II 1, rna in<>
II **********************************
void rand_act_stns<>
{

char resp;
int stations
int J 1
register int rand_no, · i

printf< "\.a\n <ENTER> the no. ·of .active stati~ns C 1 to Y.dJ :" ,MAX_STNS> ;
scanf< "Y.d" 1 t.no~of ..;.act_stnsl 1

~riritf<"\n\aiS BAND-WIDTH BALANCING to be used < 1-yes/0-nol ? ">;
scanf("~d" ,t.f _bwb_swi tch I 1

printf("\n\ai• PROBABILITY ASSIGNMENT 'FLAT EQUAL' 01- 'GRADED' <O-flat/1-graded>? ")
tacC!lnf("Y.d" ;t.f _.prob_assign> 1

clri'l~r<> 1

r01ndomi:te< I 1 II called here for whole of the pr~gram

priritf(" W.armlng up the Random Numbet- Generator ••.. "> ,;
dliHay(ONE_SECOND> ;
for(iaO ;i<lOOOji++>
j "' r•nd < > 1

if(no_of_act_•tns c~ ZERO I I no_of_act_stns > MAX_STNS>
(

~r,ntf< 11 ok !\n GoodbYel">l
•><itC1>;

> II lf the no. specified is invalid, eKit

els~ ~f(hO_of_att_stns aa MAX_STNS>
{

fot<ieO!i<MAX_STNS;i++)
f_~ct_sourcesCil =YES;

11

}/~ if all •tations .!!or& active; need not 'randomi:N'!
else
{ '

clrsc:r()l
~~~tiona • ZERO ; 
printf<"Would you 
flu•hall<> , 
ac-nf("Kc"i~respl 
1 f < resp .,., 'y ' I I 
~ . 

like to specify some stations <YIN> ? ") 

resp ="' 'Y' l 

printf<"Welc:ome I How many? "l 
~canf("Kd", ~stations> ; 
if< stat ions > no_of _act_stns l 
e>dt<l> 1 II if this no. specified is larget- then exit 

fOr(iuOai<st•tions ;i++) 
< 

) 

printf("\n Enter ~he active stt!ltion no. [KdJ : ",i+l> 1 
scanf < "Kd" , t. ~ > ; 
if(<J>O> ~~ (j(= MA~_STNS>l 
f_act_aourcesCj-1] = YES 1 

~tations • ZERO 1 
II now checking how many different stations were declared active ' 
for<i•OJl<MAX_STNS 1i++l 

if(f_act_sourcesCil •• YES > 
stations ++ 1 

II printing this information to the user 
printf("\n\n No. of different active stations specified ld !\n ",stations l 

> 
put~("\nRandomizing •.. ">; 
~elay<ONE_SECONDl; 

i"'PI 
~hile<i< ( no_of_act_stns- stations )) 
< 

rand_no • random<MAX_STNS>a 
if(f_ac:t_aources[rand_nol •= NO> 
< 
f_~ct_sourcesCrand_noJ YES1 
i++l 

) 

S // Generate reqd. no. of diff.random no.s in range 0 - MAX_STNS 
) 

for(i•Oti<MAX_STNSai++> 
< 

if(f_act_aourc,sCiJc•YESl 
{ 

dO 
{ 

rand_no e random<MAX_STNSl; 
)while<f_act_sourcesCrand_noJ •= NO I I rand_no •= il; 

12 



destn_stnl: i ]"" r.;nd_no; 

. ) 
II generating t~e random destination station for all 

II active stations and storing the destns and their 
II gap from source in no. of slots 

II filling the queue window sou.-ces arrays 
i=O; 
wh~le<f_act_sources[i)!c YES> 
,.~, II reaching the inde~ Of the first active source 

f_shown_sourcesCiJ a YES; 
shown_sourcestOl = i; 
columri_shown_aourcasti++J = o 1 
1/m~king this source ~ctive for show window 
II 4t the first column 
while(f_act_sourcesCil •= YES> 

i++; 1/ reaching the inde~ of the second active source 
II from upstream side 

f_shpwh_sourcesCil • YES; 
shown_scurcesttl = i; 
column_shown_.ources[iJ m 1; 
II makinQ thia source •ctjve for show window 
II at t~e 'econd column 

• MAX_BTNS - 1 'J II now moving to the downstream side for other 
11 two squrces to be displayed 

while(f_act_sourcesCiJ!c YES> 
i-•j II reaching the inde~ of the fourth active source 

f~shown_sourcesCiJ a YES; 
shown~sourcesC~l = i; 
coiumn_ehown_sourcesCi--J e 3 1 
llmakirg this source active for show window 
II at the fourth column 
while(f_a~t_sourcesCil !c YES> 

i--1 II reaching the index of the second active source 
II from downstream side 

f_shown_source~CiJ =YES; 
shqwn_sourcest2J = i; 
column_shown_sourcestil a 2; 

II m•king thi• source active for show window 
II .at ·the third column 

II printing all the calculation results to the screen 
printf("\n The stations choosen to be active are : \n">; 
far<i•01i<MAX_STNS1i++> 

if<f act sourcesCil == YES> 
if(f'shown sourcestil ==YES> 
priiitf("%d=stn\tl<d0destn\tY.d=co~umn\n",i+1,destn_stn[iJ +1,column_shown_sources[iJ>; 

llflh 

13 



·• prtntf< "Y.d"'tltn\tY.d•destn\n", i+t ,destn_stn[ i J +1 >; 

printfC"\n\n Pnu;s any key to continue .•• "l; 
getch()J 

II no~ assignlpg the probability base values for active sourceB 
J = no_ot_.act_t>tnsJ II this is the denom. fo•- pi-obabilities 
i= HfllC_STNS- li II starting from the most downstream gource 

while(i >=ZERO> 
{ 

if<f_act_sourcesCi] == YES> 
{ . 

if<f_prob_assign •• YES > 
prob_baseCiJ = 1.0I<floatlj 

e~se 
prcb_baseC i l ca 1.0 '; 

j --; 
) 

i --· } 

if<f~b~b_switch •• YES> 
for<i•OJi<MAX_STNSJ 1++> 
{ 

if<f_.ct_.ourca•CiJ cc YES> 
{ 

~in_waitCiJ • ends_gap~shown_sources(Ol> 

normal_min_waitCiJ = min_waitCil 1 
} 

} 

alee 
fpr ( ~ •O 1 i <MAX_StNS 1 i +-+-) 
{ . 

if<f_act_•ourc~aCiJ =• YES> 
{ 

~in_waitCil • aQds_gap<i> 1 
nqrmal_min_waitCil = min_waitCil 

} 

} // a•sivnment of the min_wait values based on the status of flag 

print:fC"\n No. of 41ctive stations are 1 Y.d",no_of_act_stnsll 
putil(!' The •••ion•d probabiHti•• are 1")f 
for (. •0. J 1 < MAX_STNS I i ++ > 

if(f_act_eources[iJ aM YES> 
printf< "pt'ob[Y.dl • %f, main_waitCY.dl "' Y.d\n", i+1,prob_baseri l, i+1, min_waiH i l > 

printfC"\n\n Pres• any key to continue .•• ">; 
getch<) 1 

14 



) 

II ~************************************ 
II thi• f~nction sets the wait counters 
II f~r traffic generations in such a way 
II th~t the obse•-ved lock !!ltep synchro-
11 ni~atlon is removed 
II ************************************* 
void remove_loch_stepsync c > 
{ 

re91~ter int i,J=O ; 

fdr<i•P;~<MAX_STNS;i++l 

< 
if<f_act_sources[iJ=EYESl 
( 

) 

} 

wai t_CCli..tnterC 1 )[OJ IC Cno_of _act_stns-j) * <MEAN_.DRDino_of _dCt_stnsl 
wai~_counterCiJ(lJ = j•<MEAN VOICE/no of act stns> : 
wai t_COUI'Itert i J [c) = H <MEAN=VIDEOino::::af::::ac t::::stns) ; 
j++ , 

I* clrtscr< l 1 
printf~"The effect of removing lock step sync r\n">; 
for<i•O;i<MAX_STNS;i++l 
< 

if<t" ..... •ct_._sourc•eCll •• ·vES> < . 

} 

pr,nttC"\n SourceC~dl",i+ll ; 
forCJ•O;J<NO_OF_DATA_TYPES;j++l 
pr intf (" ~d" ,wai t_counter [ j l l; 

>•I 
) 

II ******************** RANDOMIZATION BLOCK ENDS ************************** 

II ••**************** GRAPHICS INITIALIZATION BLOCK *********************** 
II ************************J********** 
II I'"'OUtine for g1·aphics initialization 
II ca~~ed from 
11 main<> 
II *********************************** 
void inlt_graph() 
{ 

int m4Kl<,lftaKyJ 
char r••PI 
int graphdriver,graphmode; 

det.ctoraph<&9raphdriver, ~graphmode>; II initlially detecting 
if<grap~driver < O> 
( 

15 
(> 



ex 1 t I 1 l 1 
}II exit 1 If there is no gr&phics card. 

II gr~phdriver and graphmode now set wtth highest 
II re~olution mode on adaptor card 

printfC"\n card detected is">; 
printfC" f*Y.d, hl_res mode is #Xd",g,·aphdl"lver,graphmodel; 
printf("\nProceed to initialization">; 
p•·intf<" with these pa•·amete•·s ?(Ente1· ylnl"l; 
flushall<>; 11 flush the input st•·e;.•m 

} 

scanf< "Xc" ,t.1·esp I; 
if(resp == 'n' II ,-esp =='N' > exit<ll; 

initgraph<t.graphdriver, t.graphmode,"c:\\bcpp"l;/1 
~~tbkcolor<DLACKl; 

s~tcolor<~HitE>; 

II *'******************************* 

TAKE CARE 

II ***********'**** END OF GRAPHICS INITIALIZATION BLOCK ROUTINES ******** 

II ******************** NETWORK DRAWING ROUTINES BLOCK********************* 
II Routines for drawing the network on the screen 
II *********************~********** 
II this routine calls the routine& for drawing components of the net 
II thi& has been called from 
II 1. mal n<) 
II ********************************* 
void d1·aw_net () 
{ 

} 

I* -------------------------•1 
II function declarations 
void draw_bus<void); 
void draw_loco<voidlJ 
vo+d dl·aw_stns<void); 

I* -------------------------•1 
draw bus<> ; II draws -
draw_ loco<> II draws 
draw_stns( > II draws 

II **~***************************** 

the 
the 
the 

bus of the 
locomotive 
stations in 

11 thl• routine draws the real bus in the network 
11 called from 
II 1, draw_net(l in this block 
II ******************************** 
void d1·aw bus<) 
II thilj; ,-;;utine drawi! the network bus 
( 

rectang le<S,UPPER-10, t5,UPPER~ 10 I 1 

16 
" 

netw01· k 
genera to,-

the net 



r~ctangle<~,LOWER-10;15,LOWER+10)J II 'for the twc; c.onds cf" the; bus 

l!letf i llsty leCWIDE_DOT _FILL ,WHIT£) ; 
floodfi11C10,UPPER,WHITEIJ 
floodfi.llC10,L0WER,WHITElJ II filling the two end boxes of the bus 

line<LEFT,UPPER,RIGHT,UPPER>; 
line<LEFT,LOWER,RIGHT,LOWER>! 
llne<RIGHT,UPPER,RIGHT,LOWERI; II the thre~ arms of the bus 

} 

II ********************************* 
II this routine draws the network locomotive generator 
II CAlled froth 
II ~. draw_net<-1 in th1s block 
II *~****************************** 
vo~d draw_loco< I 
{ 

int y_centre; 
int ,-adius; 
,-adius =15; 
y_centre = CUPPER+LOWERl12; 
circle<LEFT_LOCD,y_centre,radiusl; 

line<LEFT_LOCO,UPPER,LEFT_LOCO,y_centre- radius>; 
line(LEFT_LOCO,y_centre + radius,LEFT_LOCO,LOWERI; 

outte><txy<L-EFT_LOCO -3,y_centre - 3, "G" I; 
) . 
II ***************************** 
II this routine draws the station boxes in the net 
II and fills the entr1es in the array 
II meant for the purpose of displaying 
II the access !!iuc:cess sta•· sign5 on 
1 I the solll-ces 
11 called froltl 
II 1. draw_net() in th1s block 
II ***************************** 
voil:l draw_stntd 1 
{ 

II this routine draws the network stations. 
11 this uses the global flag of active sources to draw their colors in them 

register int i,j; 

j=O; 
II setcolorCDARKGRAV>; 
setcolor<LIGHTGRAYI; 
setfi llstyleC SOLID_FILL ,REDI•YELLOWGREENLIGHTRED*I l 1 I I colo•- to fi 11 with 

for(tc1;i<cMAX_STNS;i=i+2l 
{ 

lf(f_act_sources(i-IJ==VES> 
II setcolor<YELLOWl; 

17 



) 

setcolor<LIGHTRED>; 
t·ect~ngleC50+1i-1>•5+j,UPPER + 10.50+Ii-1)~5+10+J,UPPER +110>; 
if(f_act_sources(i-l)mDYES> 

floodfill(50+(i-1>•5 +j+2,UPPER + 12,LIGHTRED! 11 color of border 

line<50+(i*5l+j 1 UPPER,50+1i*5l+j 1 UPPER + 101; 
II now filling the array entries 

iflf_act_sources(i-tJ~=YES> 

II setcoloriLIGHTCYANI; 
II setcoloriLIGHTGREEN>; 

setcoloriLIGHTMAGENTA>; 
llnaC50+Ci*5l+j,UPPER+110 ,50+<i•5l+J.LOWERl; 

iflf_act_sources[iJ:=YES> 
setcolor<LIGHTREOI; 

II setcolorCYELLOWl; 
eiss 

setcolor<LitHTGRAY>; 
II setcolorCOARKGRAYI; 

rectanglei59+Ci-11•5+j,UPPER +130,59+Ci-11•5+10+J,LOWER-101; 
iflf_act_sources(iJ ==YES> 

floodfillC59+1i-1>•5 +j+2,UPPER + 132,LIGHTRED> II color of border 
line(59+Ci•5)+j,UPPER,59+Ci*5)+j,UPPER + 1301; 

II how filling the arr~y entries 

if<f_act_sources(iJ==YESI 
II setco}or<LIGHTCYANI; 
setcolorCLIGHTMAGENTAl; 
II setcolorCLIGHTGREENI; 

line(59+(!*5l+J,LOWER- 10,59+Ci•Sl+j,LOWER>; 

$~tcolorCLIBHTBRAY>; 
II ~etcolor<OARKGRAY>; 
j+b8JII j is b~ing used to provide gaps between stations 

} 
setcolor<WHITE>t 

II ******************* NETWORK DRAWING BLOCK ENDS *********************** 

II ********************** RESULT DISPLAY WINDOW ROUTINES ***************** 
II BLOCK contain• routines for preparing di5plays for showing results 

II ************************ 
II thia routine draws the result window 
II t~lled from 
II 1. ~a1n<> 
11 e. 9imulation control routine 
II ************************ 

18 



void draw_result_win<> 
{ 

I• -------~-----------------•1 
II fUMction declarations 
void set_l<_y_i-_boxes(voidl 1 
vo1d draw_all_,-_boxe!S<voidl 
void dt·aw_data_type_boxes<voidl 
void draw_slot_no_box<voidl ; 
void dtaw_status_boxes<voldl ; 
I+ --------------------------+1 
setcol or< WHITE) 1 
rec tang 1 e (LEFT _R_WJN, UP _R_WIN, RIGHT _R_WIN, DOWN_R_WIN >; llt·esLil t window 
set co lor (BLACK l ; 

1·ec tarig l E' (LEFT _R_WIN+ 1, UP _R_W IN+ 1, RIGHT _R_WIN-1, DOWN_R_W I N-1 >;IIi nner 
I/ only meant for refreshing of the window 

setcolor<WHITE>; 

set_>:_y_,·_boxes<>; II initialize the :<,y array for bo:< coord1nates 
dl-aw_all_,·_boxes(); II d1·aws all the slot boxes in the 1·esult window 

draw_data_type_boxes() ;II draws the data type boxes at the bottom 
II of the result window 

draw_slot_no_box(J; II draws a slot no box nea1· the bottom of the 
II result window which shall continuously 
II display the no, of slots that have crosseq 
II the network 

draw_15tatus_boxes<> ; II draws boxes for displaying bwb status, prob. assignment 
II and the no. of active stations for a particular run 

II ***************************** 
II this f~nc~ion initializes the array containing the x,y values for boxes 
II acceases the global array x_y_r_boxes[J[J 
II called f1·om 
II draw_,·esult_win() in this block 
II ***************************** 
voicl set_x_y_,- _boxes<> 

I* --------------~---+1 
II function declaration 
void rotate_x_y_r_boxes<void> 

I* ------------------•1 
,-eg i ster· i nt 1, 

,-ow_bq:<, I I to • t01-e the row in the ,-esu 1 t win 
t:olumn_box, II to ·store the column in the result win 
w_coor, II to store the x value c•lculated 
y_coor; II to store the y value calculated 

for<i=OJi<MAX_SLOTSJi++l 
{ 

row_box = 1 + i I NO_BOX_PER_ROW; II finding the row and column 
column_bol< = 1 + i Y. NO_BOX_PER_ROW; II of the bo1< foo· slot 'i' 

19 



~),_coer~ L~FT_R_WIN + MARGIN_LEFT + Ccclumn_box -1> •<BOX_LENGTHl1 
y_coor .. UP_R_WlN + MARGIN_UF'F'ER • <ro~l __ bol'.- 1> * <BOX_HEiGHT>J 

"~y_r _boxesCilCOJ "' x_coor1 II storing ~he values into the 
x_y_,·_boxes(i.J(1]-= y_coor; II global ar•·ay x_y_r_boxesCHJ; 

,1 

rotate_x_y_r_boxes<> 

;; *******.****.************** 
II this function rotate~ the 
II values in a,-,-ay x_y_t-_boxes(J 
'' to the right by one place 
II called from 
II set_x_y~r_boxes() in this block 
II *************************** 
vo1d rotate_x_y_r_boxes<l 
{ 

} 

register int i ; 
register unsigned int temp_x , temp_y 

temp_x = x_y_,. _boxes(MAX_SLOTS -1 JCOJ 
temp_y.: x_y_t-_boxesCMAX_SLOTS -1H1J 
II storing the leftmost value temp.Jy 
ror<1•MAX_SLOTS -lli>O;i--l 

x_y_r_bo~esCiJCOl = x_y_r_boxes[i-1lCOl 
x_y_r_boxe•CiJ[1l a x_y_r_boxe•Ci-1Jt1J 

) 

x_y_;-_boiHPt~COJCOJ = temp_x 
x_y_r_boxesCOl(1J ~ temp_y 

II *************************** 
II this function qt·aws all the boxes using dl-aw_a_bo>:(l 
I 1 called from 
1 I 1. draw_reS>Ul t_win< l 1 n th i10 block 
II ****************~********** 
void draw_all_r_boxes<> 

} 

I* -----------------~-•1 
II function declaration 
void di·aw_a_box<unsigned i.nt,unsigned int> 1 
I* -------------------•1 
re~ister unsigned int i ; 
for<1=l;i< HAX_SLOTSii++l 

draw_a_box<i,i) II draw the boxes in the •-esult win 
draw_._box<O,O) 1 // draw the last box 

II *t**************************************** 
II this function draws a box at ~ivEn row and column in result window. 
11 c<\lleq from 

20 



II 1. move_slots < > in slot movement. bled< 
II **************************************~*** 
void draw_ .. _boldunsigned int curr _slot_no , unsigned int actual_slot_no> 
< 

} 

char slot_detai}ClOJ, 
temp_string[10JI II to print th:? details o~ pkts ~n the slot box. 

reg1st•r int content_type, x_ccor,y_coor,color; 
II content_type stores the type of packet in the slot 
II color stores the corresponding filling color 
II ot~er two store the coordinates of the box 

x_cpot- "' x_y_r _boxes(actual_.slot_nol(Ol; 
y_coor = ~<_y_r._boxes(actu<~l_slot_nolCl); II recovet-ing the coords 

setcolor <WHITE> 1 
,-ectangle(x_coor,y_coor,x_coor + BOX_LENGTH -2,y_coor + E<OX_HEIGHT- 2>; 
Ill outer rectangle 

11 now filling the space with yellow color 
setfillstyle<SDLID_FILL,YELLOWJ ; 
floo~fill<x_coor+2,y_coor+2,WHITE> 1 

II no~ filling the apace with the packet color 
color ,. pkt_c:olor _array[ <head_slot_l ifitCactual_slot_noJ -> type_of _pkt > J; 
setflil~tyle<SOLID_FILL,color> J 
floodf~ll<x_coor+2,y_coor+2,WHitE> 

II how putting th slot description into the result box 
if<co!or !• EMPTY_COLOR> 
< 

} 

setcolor<BLACK> J 
u.ltoa<<long><head_&lot_listCactual_slot_noJ->src_stn + ll,slot_detail,DECIMAL>; 
outt~xtxy(x_coor+2,y_coor+2,slot_d•tail>; 

ultoa<<longl<destn_stn~<head_slot_list[actual_slot_nol->src_stnll + ll,slot_detail,DECIMAL>; 
o4ttextxy<x_coor+20,y_coor+2,slot_detail>; 

ultoa<<longlcurr_slot_no,slot_detAil,DECIMAL>; 
outtex t My( x_coo,-+e, y _coor+11, s lot_detai 1 > 1 

sett:Olot-<WHITE> I 

I I **lt-il:*~********'********************* 
II this function draws the type color 
II indic~~or boxes at the bottom of t~e 
II rll'11ult window 
11 cailed from 
II 1. draw_re11ult_win<> in this block 
II *********************************** 
void draw_data_typ~_boxes<> 

21 



} 

{ 

,-egiBte,- int i 
,-egi~ter int v. r:oo,-, y coo,­
regltoter int color ; 

fm- ( i='O 1 
{ 

i' NO_OF_OATA TYPES+ !ai++) 

) 

LEFT_R_WIN • MARGIN_LEFT- 1 + (i • 2 • <BOX_LENGTH • 1211 
DOWN __ R __ WIN BOX HEIGHT + 4 ; II calc the upper left con>PI- coo1·ds 

color = pkt_color_array(i) 
setcolor<colorl ; 
set fi 11 sty 1 e <SOL I D _FILL, t:o 1 or > II setting the color and fill style 

rec:tangle<x_cool-, y_coor, x_co01· + <2 * BOX_LENGTH I+ 5, y_co01- + BOX_HEIGHT- MARGIN_UPPt:R- 4 I 
floodfill<x_coor+2, y_coor + 2, color>; 
II boxes drawn and filled with a~propriate type color 

I/ now filling the name of the data type w1th blac~ color 
setcolo1· (BLACK) 

switch<i> 
{ 

case EMPTY_SLOT 1 setcolor<WHITEI 1 
outtextxy<x_coor+2,y_coor+2, "EMPTY SLOT") 1 
setc:olor<BLACK> 

b1·eak ; 
case ORDINARY DATA outtextxy<x_coor+2,y __ cooi·+2,"DRD. DATA">; 

break 
cilse! VOICE_DATA 

br·eak 1 
case VIDEO_DATA 

default 
} 

break 
outte:<txy<x_coor+2,y_cool-+2, "VIDEO DATA"); 

break 1 

setc:olor<WHITE> 

II *********************************** 
II this function dr~ws a slot number 
II box, near the bottom of the result 
II window, which shall display the no. 
11 of the slots that have crossed the 
II d-net~ork 
11 t:i!-lled from 
II 1. draw_result_win< > il, ~his block 
II ********************************** 
void draw_slot_nd_box<> 
{ 

int x_coor, y_coor 1 

x_coor c LEFT_R_WIN + 4 * BOX_LENGTH + <2 * MARGIN_LEFT> 

22 



v_copr ., UF' ___ R_WIN + 7 * BCX_HEiGHT + C3~MARG!N UPPER> 

setcolor<WHITE> II to write tekt 
out text xy C x_coo1·; y _co01·, "SLOTS PASSED : "); 

x_coor +<: <3 * BOX_LENGT!-'~ - MARG!N_LEFT -!; /I x value fo•· the slot no. box 
y_coor -= 12 * MARGIN_UPPER! - 2; II y vlaue for the slot no. box 
setcolorCBLUEl: II background cf the slot no bo~ 

x_y_slot_no_bo~(OJ 

x_y_slot_no __ box( I J 
x_cooi· 
y _COOl" II x and y of the upper left corner of slot no box 

,-ectBnglel:{_coor,y_coor,x_coo•- +- 116, y_co01· + BOX_HEIGHT- 3 >: 
II 111 indicates the length of the slot no box 
setfillstyleCSOLID_FILL,BLUE> 
floodfill<x_coor +2,y_coor+2,8LUEl; 
setcolo1· <WHITE> 

II *******************************•~•• 
II this function updates the slot no 

'II box with the pBssed value of slots_passed 
II called from 
II move_slotsCl in slot movement block 
II *********************************** 
vbid update_slot_no_box<unsigned int slots_pas!ied __ new> 
{ 

} 

char temp_buff(15J II temporary buffer to hold alphanumeric value 

setcolOI- (BLUE l II setttng the back ground color to the foreground 

ultoaCClong>Cslots_passed_new- 1>, temp_buff,DECIMAL> 
outtextxy<x_y_slot_no_box(<)J+ 20, x_y_slot_no_bo}:[lJ-+7, temp_buff) 
11 since the array value are the pts of corner of the box 
11 ~o text is to be started at some space from the corner . 

setcolorCYELLOW> ; II setting the foreground color again 
ultoa( (long> Cslots_passed_newl, temp_buff ,DECIMAL> ; 
out text xy C x_y _s 1 ot_no_box (0 J +20, x_y _s 1 ot_no_bo:< ( 1 J+7, temp _buff) 
setcol01- <WHITE> 

II *********************************** 
II this function dr~ws the boxes for 
11 indic~ting the status of the flags 
II of BANDWIDTH BALANCING & PROBABILITY 
II ASSIGNMENT ~ NO. OF ACTIVE STATIONS 
11 on the result window 
II called from 
II draw_1-esult_w1n<> 1n this blo=k 
II *********************************** 
void draw_status_boxesC> 
{ 

ch~r temp_buff(10J ; 

23 



,._coor = LEFT _R_WIN ·+ MARGIN_LEFT ; 
y_coor· ~ UP_R_I-IIN + MARGlN_UPPER + <8 * BOX_HEIGHT > + <2 * MARGIN_UPPER>; 

setctllor <WHITE> II to write te:<t 
r;u t te ~· t .>< y ( x _c 001- , y _c oOI- , "B. W. B. " > 

x_com- += 60 1 
y_coor -=<2 * MAF:GIN_UF·PER> - 2 

setcolor<BLUE> ; 
setftllstyle<SOLID_FILL,BLUE> 
ret::tangl.e<x_coDI-,y_coor,x_coor + 30,y_coor + BOX_HEIGHT- 2> 
t"loodfill<x_coor + 1, y_coor + 1, BLUE ) 

setcolor<YELLOW> II to wfite text in this bwb box 

if!f_bwh_switch> 
out text xy ( x_coOI-+3, 

e~se 
outtextxy<x_coor+3, 

~>etcolor <WHITE> 
x_coor += 35 ; 

y coor+B, - . "ON"l; 

y_coor+B, "OFF">; 

y_coor = UP_R_WIN + MARGIN_UPP~R + <8 * BOX_HEIGHT > + <2 * MARGIN_UPPER>; 
outtE!xtxy<x_coor,y_coor,"C.A. PROBs:"); 

~<_cool- -= LEFT_R_WIN + (5 * BOX_LENGTHl + MARGIN LEFT 
y coor -~<2 * MARGIN_UPPER> - 2 ; 

setcolor<BLUE> 
rect~ngle(x_coor,y_coor,x_coor + S5,y_coor + BOX_HEIGHT - 2> 
floodfill<x_coor + 1, y_coor + 1, BLUE> 

settolor<YELLOW> II to write text in this PROBABILITY box 

if(f_prob_assign> 
outt~xtxy<x_coor+3, 

else 
outt~xtxy<x_coor+3, 

setcolor<WHITE> 
x_coor +• 62 ,. 

'· y_coor+B, "GRADED"); 

y_coor+B, FLAT">; 

y_coor • UP_R_WIN + MARGIN_UPPER + <8 * BOX_HEIGHT > + <2 * MARGIN_UPPERlJ 
outtil!ll<tHy(x_coor ,y_coor, "ACTIVE STNS." > 

x_coor e LEFT_R_WIN + (9 * BOX_LENGTH> + MARGIN_LEFT 
y_coor -Q<2 * MARGIN_UPPER> - 2 1 
setcolor<BLUE> ; 
rectangle(x_coor,y_coor,x_coor + BOX_LENGTH-2 ,y_coor + BOX_HEIGHT - 2> 1 

24 



floodf111 <x coor + 1. y_c.:oor + 1, BLUE ) 1 
satcolorCYELL014> II to write text 1r. this STATIONS bo~< 

u 1 tpa ( ( 1 eng )no_uf _act _s t ns, temp __ buff, DEC I MAL) 
outtextxy<x_cool-+15, y_coor+B, temp_buff) 
setcolo1· <WHITE) 

II *********************************** 
II cl@aring the result window 
II called from 
II 1. mov~_slotsC> in slot movement block 
II 2. simulation control routine 
II *********************************** 
void clear_r_win<> 

setcolor<REFRESH_COLOR>; 
se tf i 11 style< SOL I D_F ILL, REFRESH __ COLOR l 
t·ectang1e<LEFT_R_WIN +1, UP_R_WIN +1, RIGHT_R_WIN -1, DOWr\l _ _f~_WIN -1>; 
floodfill<LEFT_R_WIN +2, UP_R_WIN +2, REFRESH_COLORl: 
II filling the q_window with the refresh_color 

setcolor<BLACK> 1 
setfl~lstyle<SOLID_FILL,BLACK) 1 
r~ctangleCLEFT_R_WIN +1, UP_R_wiN +1, RIGHT R WIN -1, DOWN_R_WIN -!l 
floodfill<LEFT_R_WIN +2, DOWN_R_WIN -2, BLACK) 
setfillstyle<SOLID FILL,WH!TE> ; 
II ~illing the q_w~ndow wtth the BLACK 

} 

II ***~************ RESULT DISPLAY BLOCK ENDS ************************* 

II ************** QUEUE DISPLAY BLOCK STARTS ************************* -II 
II 
II 
II 

******************************* 
hhis funttion calls the various 
in this box 
ca 11 ed. fro'tn 

I 1 1. main<> 
II ******************************* 
void dt-aw_q_win() 

I• -----------------------•1 
II function declarations 

void set_snam~_boxes<voidl; 
void •et_x_y_q_boxes<voidlJ 
void fill_snames<voidl; 
void draw_all_q_boxes<voidl; 
I• -----------------------•1 
setcolor<WHITEl: 

25 

functions 



rectangle(LEFT_Q_WIN,UP_C.:_WtN,RIGHT_Q_WIN, DO!oiN_Q_WlNl; /I Q window 

set_sname_boxes<>; 
II sourc;.e name boxes 

set _X_}' __ q_boxes < >; 

II ti1ie f'.ets thP. values fo,- x andy of the 
in the queue window 

II queue window 
II s~tting the values of the boxes 1n thm 

f IiI __ sn.t~me"!>(); II f 11 Is the names of the SOLtrc<?s shown 1 n the 
II boNes for thts purpose. 

rJraw_a.ll __ q_bo:<e~(l; II c.Jt-'-'WS all queues tnttJ;:~lly 

II ••****************************** 
II this function initializes the array containing the ~.y values for BOurce 
II na~e boxes in the queue window 
II these boxes are to be used for storing the coordinates of the name boxes 
II called from 
ll l.draw_q_win<> in this block 
II ******************************** 
void set_sname_bo:<es <) 

registe•- inti; 

for<i•O;i<SOURCES_SHOWN;i++) 
{ 

x_y_&name_boxes[iJ[OJ 
x_y_sname_boxes[iJClJ = 
) 

LEFT_Q_WIN + .i * <BOX_LENGTH 
UP_Q_WIN + MARGIN_UPPER; 

II ******************************** 

+ 5 ) + <2•MARGIN_LEFrl 

II this function initializes the array contain1ng the x,y values for 0-boxes 
II ~ccesses the global array x_y_q_boxes[J[J 
I I called from 
II draw_q_win() in this block 
II ***************************** 
void set_x_y_q_boxesC> 
{ 

register int i,J, 
K_coor, 'II to store the K value calculated 

> 

y_coor; II to sto,-e the y value ci'lculated 

for<i=O;i<SOURCES_SHOWN;i++) 
for< J=O; j(Q_PACf(ETS_SHOWN; J++l 
{ 

x_coor • LEFT_Q_WIN + (2 •MAHGIN_LEFT> + i * <BOX_LENGTH + 5> 
Y_.coor • UP_Q_WIN + MARGIN_UPPEH + Cj+ll * <BOX_HEIGHT +5l; 
x_y_q_boxes[iJ(jJCOJ m x_coor1 
x_y_q_bol<es(i)(jJ[lJ., y_coor·J 

II first dimension of the array representm the column 
II Qecond dimension represents the row in q_window 

26 



II tHird dimension represents whether it ~s 'X' o~ 'Y' 

} 

II ************~•****************** 
II thi£. function dt-awo;; the boxes fot- the n.;ames of the sou•-ces shown 
II and fills them w1th the names 
11 called from 
II 1. drdw_q_win<J 1n thls block. 
II '**~**************•*•*********** 
votd fill_sn~mes<J 
{ 

register int i, 
x __ coor, 
y_coor; 

chat· buffed10J; 
ch~r gts- i ng( 10); 

II buffer for ~ccepting ito~ result 
II used for accumulating text before prtntlng 

forli=O;i<SOURCES_SHOWN;t++J 

x_coor "'x_y_sn~me_bo:-:es[i)(OJ; 

y_coor x_y_sname_boxes(iJ[1J; 

setcolor<BLUEJ 1 
rectanglell<_coor,y_coor,x_coor + BOX_LENGTH ,y_coo•- +BDX_HEIGHT>; 
II drawing the bo1< in blue color 

strcpylstring,"S*">; 
i toa ( shown_sources( 1 J +1, buffe•-, DEC I MAL J; 

strcat<string,bufferl; 
II convert the name integer to a string 
setfillstyle<SOLID_FILL,BLUEl; 
11 setting the fill style to solid with blue color 
fioodfilllx_coor+l,y_coor+1,BLUEJ; 
II filling the box in blue color 
s•tcolor<YELLOWl; 
out tel< t l<Y ( x _coOl-+3, y _coor+S, string J; 
11 display the name of the source in the box in yellow 

} 

setc:olo,- <WHITE>; 
> 
II ********************************* 
II this function draws all the queues 
II for the queue display window 
I 1 ca 11 ed from 
II 1. draw_q_winll in this block 
II ********************************* 
vold draw_all_q_bol<esl > 
< 
register int i,j, 

x coor, 
y=coor;ll for coordinates of the boxes 

27 



s•tcolorCWHITE>I II to be drawn in WHITE color 
forli•O;i<SDURCES_SHOWN;i++l 

forCjaO;J<Q_PACKETS_SHOWN;J++> 
( 

X _C:OOI" 

Y._CoDI-

x_y __ q_boxes[ 1 )( j J ((I): 
x_y_q_boxes(iJ[jJ(lJ: 

rec tang 1 e I x_coo1-, y _coer, x_coo1- + BOX __ LENGTH, y _c oor +BOX_HE 1 GHl ) ; 
II outer rectangle of the q_boxes 
rectanglelx_coor+l,y_coor+i,x_coor + BOX_LENGTH-l,y coor +BOX HEIGHl-11; 
II inner rectangle in the boxes for refreshing 
II now made with WHITE color only 

}II drawing all boxes of the queues in 
I I the q_wi ndow 

II******************************** 
II thi~ function is meant for updation 
II of source queue on the queue window 
II called from 
II 1. init_source_recvll 
II 2. init_source_trans<> 
II called only if the source is being 
II displayed in the queue window 
II ******************************** 
void refresh_queuelint actual_source_no) 
{ 

register int x_coor,y_coor, 
source_column_no, II the column in the q_window 
color; II color of the packet 
register lnt boxes_filled; II counter to keep track 
struct packet •ptr _pkt; I I for traversing the queue 

source_column_no = column_shown_sources(actual_source_noJ; 
II the column in the window is extracted 
II the column no. in the window start from 0 and go upto SOURCES_SHOWN -1 

ptr_pkt e head_packet_queue[actual_source_noJ; 
II starting at the queue top 

boxes_filled e ZERO; 
II startino from q_top 

wh1lel ptr_pkt fm NULL~~ lboxes_filled <Q_PACKETS_SHOWN >> 
{ 

~_coer • x_y_q_boxea[source_column_noJ[boxes_filledJ(OJ; 
y~coor ~ x_y_q_boxes[source_column_noJ[boxes_filledJ[lJ; 
II fillino the two coordinate values 
boxes_filled ++J 
color "" pkt_color _array[ ptr _j)kt -> type_of _j)kt J 1 
II retrleving the color of the packet to be displayed 
setcblorlcolor>; 

28 



tecto~~ng le< ><_coor+l, y_coor+l, ><_coer + _,BOX_LENGTH .. 1, y_coor+DOX_HElGHT -1 11 
set f i lla t y 1 e (SOL I D_F ILL , co 1m· ) i 
flqodfill<><_coor +2,y_coor +2, color); 
ptr _pkt "' ptr _pkt -) ne~t ; 1/ moving forwao-d in the queue 
II fill the bo>< with this color 

)II filling the curo·ent queue status 

whlle<bo><es __ filled < Q_PACKETS_SHOWN 1 

1 I if r·emai ni ng bo::es ao-e to be painted empty 

setcolor<BLACfO; 
x_coor <= x_y _q_boxes [source _col umn_noJ [ boxes_f i 11 ed J [ 0 J: 
y _coo•- • K_y _q_boxes ( souo-ce_co 1 umn_no J ( bo:<es_f i 11 ed J ( 1 J ; 
II filling the two coordinate values 
boxes_filled ++; 

II now making the internal rectangle In BLACK color 
rectangle<x_coor+l, y_coor+l, :<_coco- + BOX_LENGTH -1 ,y_cooo-+BOX_HElGHT -1 J; 

setfillstyle<SOLID_FILL.BLACK>; 
floodfill<><_cooo- +2,y_cooo- +2, BLACI<>; 

) 

} 

II ************** SLOT MOVEMENT BLOCK STARTS 

II ~************************* 
II this function actually moves ~lots in the network and 
II al•o serves the purpose of control centre 
II called from 
II i. main ( > 
II ~************************ 
void move_slots<> 
{ 

I* ------------------------------•1 
II function decJarations 
voiq lnit_source_recv<unsigned int,int> J 
void lnlt_source_trans<unsigned int,int> ! 
void draw_a_box<unsigned int,unsigned int> 
void update_slot_no_box<unsigned int) ; 
void clear_r_win<voidl ; 
void draw __ result_win<void> 1 

I* --------------------------------•1 

*********** 

r~glster lnt curr_x, curr_yl 
r~gis~er int K_l_limit, 

~e_r_limit, 

II store current pixel coords 

y_l_liinit, 
Y~U_limit:J II four limits of the virtual bus 

register unsigned long int i II simple counter 

register unsigned int curr_slot_no, I! stores the current slots being used 

29 



actual_slot __ no; II usc.>d ~or maldng-l.:<~lc-s f~ster 

register 
II 

tnt rel_x "'-1; 
of a pixP.l 

II stores the relative lw.r.t. 551'x' 

II•••••~ initialization 

LEFT_LOCO; 
RIGHT + GAP; 
LOWER + GAP; 

:< 1 limtt 
x_r _1 imi t 
y_l_limit 
y_u~limit UPPER- GAP; II initializing the four lim1ts 

CUIT_slot_no"' slots_pas!sed ; II setting up to cur•·ent value ot 
II no. of slots passed 

II ****** 
for!i=O 
{ 

loop starts 
i< ( NO_SLOTS IN_RUN * SLOT_LENGTH i++) 

curr _slot._no = slots_passed : II starting new traversal of bus 

II how moving on the lower hori=ontal arm of virtual bus 

if(x_white_lower == INVALID) 
( 

~hile<getpixel<curr_x +1,y_l_limit> !=WHITE && curr K < x_r_limitl 
curr_w ++; 

t~<curr_x cc x_r_lim1tl 
x __ whi t&_lower'"' INVALID; 

else 
x_whit•_lower = curr_x +1; 

} II finding out the x_white_lower, if it is invalid 

if(x_white_lower > x 1 limit 
( 

} 

curr_x •x_white lower -1; 
x_white_lower --1 

else if<x_white_lower == x 1 limit) 
{ 

curr x m x white lower +SLOT LENGTH -1; 
x whtte lo;:;er .. x-whlte lower +sLot LENGTH -11 
p~tpixel(l<_l_limtt,y_l=:limit,BLACK)J 

&lots_p•ssed t•l II one m9re slot passed 
curr_slot_no ++; II entering a new slot 
if<<he•d_slot_list(curr_slot_no X MAX_SLOTSJ ->src_stnl c= INVALID ) 

no of slots empty ++ ; 
- i;pdate=slot_no_box ( slots_passed) ; I I refreshes the slot 

30 



II no. box with thls new value 

) 

if(x white lower '"'INVALID> 
while<curr_x < x_r_llmit> 
{ 

putpixel(cu,-,-_x +I ,y_l_ltmit,BLACK>; 
putpixellcurr_x,y_l_limlt,WHlTE>; 

curr_slot_no ++ ; II entertng a new slot 

iflcurr x + 1 )>= 55> 
I -

II 55 = 'x' of source 
{ 

r•l_x • curr x + 1 - 55; 
iflllrel xI 9> * 9 -== ,-el x) t.t" llrel x/9) <MAX STNSJ) //if rel xis int. mult of 9 
iflf_act_sources(rel_x I 9J ==YES> 

~f(head_slot_list(cun- _slot_no Y. MAX_SLOTSJ -> src_stn ~~ lnel ~19)) 

II fprintflfp,"R\tY.d\tY.d\n",,-el_x/9,cltl-r_slot_nol.: 
init_source_,-ecv(cur~-_slot_no, lrel_x /9) >; 
II actual source no is passed to this routine 
} 

II if ·~· is between sources, check for ACTIVE source, and 
II if it is found, call the source routine for receiving 
/) the slot. the source no. passed is internal no. 

Curr_x +mSLOT_LENGTH; 
} 

11 completed the lower arm of the virtual bus 

11 now on the right vert1cal arm of the virtual bus 

} 

curr_y --; 

curr_y • y_l_limit + 1; //reaching the lower crnr of right arm 

ifly_white_right =m INVALID> 
{ 

whilelgetpixellx_r_limit,curr_y-1) I= WHITE~~ curr_y ~y_u_limit> 

if(curr_y •t. y_u_limit> 
y_white_right= INVALID; 

else 
y_white_l-ight = CUI_l __ y -1; 

>'II finding out the y_white_right, if it is invalid 

1f<y_white_right < y_l_limit ~~ y_white_right !~INVALID> 

curr_y = y_white_right + 1; 
y_white_right ++; 

eiee ifly_white_right =• y_l_limit> 

31 



} 

cun-_y = y_white_l_t,~ht- SLOT_LENGTH +1; 
y_white riqht = y white rtqht -SLOT LENGTH+ 11 
II putpi xel1 >: __ • -.1 tllll t ~-y_j _1 i mit. BLACK); 

i f"<y_wh i te_r ight '=INVALl D .1 

while<curr _y > y_u_limitl 
{ 

pu tp i xe 1 I x_r _lim 1 t • c urr _ y-1 , [<LACf: l ; 
putpixellx_r_limit,curr_y,WHiTE>; 

curr_slot_no ++ ; II entertng a new slot 

curr· _y -=SLOT _LENGTH; 

II completed the right arm of the virtual bus 

II now movang to the upper arm of" the vtrtual bus 
curr_x x r limit+ 1; 

if"lx_whate_upper =m INVALID> 
{ 

else 
x_whi te_upper • cltl-r _x -1; 

while<getpixellcurr_x -1,y_u_llmitl •= WHITE t.& curr_x 
curr_x --; 

if"(curr_x ac x_l_limitl 
x_white_upper= INVALID; 

II finding out the x_white_upper, if" it is tnvalid 

iflx_wt11te_upper <. x_,·_l1m1t t.& :<_whtte_upper •~ INVALID> 
{ 

} 

el•e if<x_white_upper 
{ 

curr_x =x_white_upper +1; 
x_white_upper ++ ; 

x_,- _1 imi t l 

curr x • x_white_upper - SLOT_LENGTH +1; 
J< __ white_upper c x_white_upper- SLOT_LENGTH + 1; 

II putpixellx_r _limit,y_u_ltmit,BLACKl; 

if"(x_white_upper !=INVALID> 
Whiie<curr_x > x_l_limitl 

{ 

p~tpixel<curr_x -l,y_u_limit,BLACKl; 
put pi kel I curr _x, y _u_l imi t ,WHITE) 1 

curr_slot_no ++ 1 II entering a new slot 

if<curr_x - 1 >• 55> II 55 E 'x' of source 

32 

:< I llmitl 



r@l_x = curr_x- 1- 55; o 

if(((rel_x I 9) * 9 ""'' 1·el x) t..t. ((rel_x/9) < HAX:_STNS)) //if red x is int. mult of 9 
if<f_act_sources[rel_x I 9] =~ YESi 

II fprintf<fp,"T\i;Xd\tY.d\n",•-el_x/9,cUI·r_slot_r,ol; 
i r1i t_source_ tr.<ns < c•Jrr _s 1 ot __ no, ( 1·e l_x /9) ) ; 

II if 'x' is between sources, check for ACTIVE source, and 
II if it is found, call the soun:e routine fo,· transmitting 
II the slot. the source no. passed is internal no. 

curr _x -=SLOT_LENGTH: 
} // completed the upper arm of the virtual bus 

if ( ( i /SLOT _LENGTH l •SLOT _LENGTH "'= i l 
( 

II generate a new pulse and put a new slot structure 
putpixel<x_l_limit,y_u_llmit,WHITEl; 
II initialization of the- corresponding slot structure has also to 

II done at this very place. 

I I cun·_s lot_no ++ ; 

II 

actual_slot_no = curr_slot_no Y. MAX:_SLOTS; 

head_alot_liat[actual_slot_noJ -> packet_id = INVALID; 
head_slot_list[actual_slot_noJ -> s•·c_stn = INVALID; 
head_slot_list[actual_slot_noJ -> type_of_pkt = EHPTY_SLOT1 

dl-aw_a_box<curr _slot_no,oi.\ctual_slot_no); II ,-ef•-eshliiQ tt1e r _win 

) II ********************* end of loop 
) 

II *********** SLOT MOVEMENT BLOCK ENDS ****************** 

II ************ STATIONS' tNTERNAL ROUTINES BLOCK ******************** 
II thi• block contains rout~nes for the various source distributions 
II thi~ includes routines for invoking them, and man•ging queues of 
11 the ACTIVE sources 

II ************************* 
II this function invokes a source's receiving packet function 
II called from 
II 1. mov_slots<> from slot movement block 
II *****t******************* 
II This routine is activated only when the curr slot has the data transmitted 
II bY this very source • Now only to copy back the data onto the packet store 
II *t*********************** 
void init_source_recv< unsigned int curr_slot_no, int actual_source_no 
{ 

I• ---------------------------------------•1 
II function declarations 

33 



void ~tend_t;o_packet_l!to,-e(s;tJ-uct packet .. , ; 
l!truct packet* soarch_remove __ return__pkt<struct 
void r~fresh_queue< intl 1 

I* ----------------------------------------•1 

0 

slot *• int,unsigned 

ragifiter unsigned int actual_slot_no ; II finternal value> 
str0ct packet * ptr_temp; 

pti-_temp "' head_packet_queue(actual_sow-ce_noJ; 

II if ~he head_packet_queue is NULL , since this packet nas al•-eady 
II b~en acknowledged and thus removed from the source and so stmply 
II return to the calling routine . 
if<ptr_temp z= NULL> 
retUrn ; II because of reason given above ; 

actual_slot_no = curr_slot_nc Y. MAX_SLOTS ; 

1 nt I 

p t•- _temp "' seat-ch_remove_t-eturn_pk t (head_£ 1 ot _1 i st [ e.c tua l_s 1 ot _no), ac tua I __ soLn-ce _no, cu•-,- _s l ot_no I 
II trying to find, remove and extract the packet in the queue which ts 
II filled in this slot 

ifCptr_temp ==NULL> 
return 1 II this packet not found in the packet queue 

else 
{ 

ptr_temp -> alot_no_reach_destn = curr_slot_no + ends_gap<actual_source_noi 
&end_to_packet_storeCptr _temp> ; II send the data. to backup 

II if<f_shown_sources(actual_source noJ ==YES ) 
II refresh_queueCactual_sou•-ce_nol ; II if this sou•-ce act1ve. d1splay the queue 

free!( ptr _temp) 

no_of _pkts_i n_q[ ac tua l_source_no J 
if(no_of_pkts_in_q(actual_source_nol 
{ 

if(f~~pecial_status[actual_sourc&_noJ 
{ 

ZERO 

YES 

f _spec ial_statusCactua l_source_r'loJ "" NO 1 
if(empty_special_entry < SERIAL_LENGTH I 
serial_special_status(empty_special_entry++J 

else if<f_killer_status(actual_source_noJ ==YES 
{ 

a.ctual_source_no 

f kiiler •t•tu&Cactual source noJ • NO 1 
if(e~pty=killer_entry ( SERIAL_LENGTH ) 
serial_ktller_atatus[empty_killer_entry ++J • actual_source_no 

) 

mtn_wait(•ctu.al_tso'-!rce_no) = normal_min_wait[actual_soUt-ce_noJ 
> . 

) 

34 



II *-*********~***-*****~*•********** 
II this function searches a pkt in the 
II queue of ~ source which 1s present 
II in the slot passed ; it remaveg that 
II packet from the queue J updBtes the 
II acce•~ wait counter 1 returns this 
11 packet to the calling routine 
II called f•·om 
II !. init_source_rPcv<) 1n thi.s block 
II ********************************** 
st.-uct pAcket •see~rch_remove_,-eturn_pkt<struct slot •pt.-_slot, 1nt actual sou•-cE •"'• unsigned int cu,-,- slot no) 
{ 

struct packet *ptr_templ, •ptr_temp2 ; II temp ptrs to the l1st 

ptr _tempi = head_packet_queue(actual_sou•-ce_no) ; 
II rii.Jll condition already checked in calling routine init_soLn-ce_recv() 

1 f( < ptl- _tempt -> type_of _pkt l == (ptr _slot -> type_of _pk t l 
1f< <ptr _tempi ->packet_idl ="' <ptr _slot -> packet_idl 
{ 

} 

II riow checking and updating reach top entry in the 
II n~Nt packet in the queue, if any 
ptr_temp2 • ptr_templ -> next 1 
if(ptr_temp2 IN NULL> 
•f<ptr_tempe -> •lot_no_reach_top E= ZERO l 
ptr _tempe -> slot_no_reach_top .. curr _slot no + ends __ gap<actuc.l_source_nol 

II moving the second node to the top of the queue 
II and re~ettlng the access wait counter to zero 
head_packet_queue[actual_!Source_noJ = ptr· __ temp2 ; 
access_walt[actual_source nol • ZERO ; 
returnCptr_templl 

II Now start checking further in the list 
II access wait now need not be reset 
II starting againg from the top point 

ptr _tempe .. ptr _templ = head_packet_queue[actual_source_noJ 

while((ptr_templ !=NULL> f.f.(((ptr_templ->type_ofyktl 1 =Cptr_slot ->type_of_pkt)) 
II< <ptr _tempt ->packet_ldl l:o(ptr _slot->packet_idl l l l 

{ 

ptr_te~p2 = ptr_templ ; 
ptr_templ = ptr_templ -> neNt J 

} 

if((ptr_templ I= NULL> t.f.C<p~r_templ->type_of_pkt) cc(ptr_slot ->type_of_pktll 
~f. <<ptr_templ ->packet_id) ~z<ptr_slot->packet_1d)ll 

{ 

ptr tempe -> next 
ret~rn(ptr_temp1> 

ptr _templ -> neNt ; 

35 



} 

elee 
return<<str·uct pc;cket «->NULL> 

II ••***************************************** 
II this function copies the contents of a node 
II onto thP packet store 
II cc;lled from 
II 1. init_soLn·ce_recV() in th1s block 
II ************************~****************** 
void send_to_packet_store ( struc t packet * ptr_pkt i 
{ 

) 

,, ------------------------------•1 
II function declaration 
void refresh_p~cket_store<voidl 
void calc_delays_in._uni t < > 
I* ------------------------------•1 
II trying to check whether the storage is already full 
II bu~ this is not a fool proof check 
II modify this 1 

t·egister int i; II just for printing packet onto file 

if<curr_empty_entry za NO_PKtS IN_UNITl 
{ 

calc_delays_in_unit<> 1 
r~freeh_packet_store<> ; 

} II If the packet store is full, calc delays, refresh the ~torp and conttnue 

/1 copying the data 1n the packet 
packet_storeCcurr_empty_entryJ[OJ 
pa~ket_store[curr-_empty_entryH 1 J 
pAcket_~tore[curr_empty_entryJ[2J 

packet_store[curr_empty_entryJC3J 
pAc~et_fitore[curr_empty_entry)C4J 

onto the packet store 
"' ptr _pkt -> st·c_stn; 
.. ptr _pkt -> type_of_pkt; 
m ptr_pkt -> slot_no_gen; 
= ptr_pkt -> slot_no_reach_top; 

ptr_pkt -> slot_no_reach_destn: 

curr_empty_entry ++; 
if<cun·_empty_entry "'"' NO_PKTS IN_UNIT> 
{ 

calc_delays_in_unit<> 
refresh_packet_store<l l 

} II Repeat the earlier checking for the storage 

II '*********************** 
II this function only refreshes the packet store 
1 I called from 
II 1. init all() in initialization block 
II a. send:to_packet_store<> in d~trbtn block 
II 3. simulation<) in the simulation control routine 
II •************************ 

36 



void refresh_p•cket_store<l 
{ 

for<i"'Oii<NO_PI<TS_JN_UNITci++l II fa•· all ,-m~s 
for(jnO;J<COLUMN_lN_PKT_STORE;J++I II for all columnt:i 
packet_store[i)[JJ = ZERO; 

cUI·r _empty_ent1·y -= ZERO: 
} 

II ********~**************** 
II this function invokes a source's generating p~cket funct1on 
II c<:~lled from 
II 1. mov~slots<) from slot movement block 
II************************** 
void init_source_trans<unsigned int curr _slot_no,int c>c.tue~l_sou•·ce_nol 
{ 

I* ---------------------------------------------•1 
II function declarations 
void put_in_queue<struct packet •,int,unsigned inti 
lnt give_random_no<voidl 

II int exponential<intl ; 
void put_in_slot<int,unsigned inti ; 
struct packet * create_packet<voidl 
void refresh_queue<intl ; 
I• ----------------------------------------------•1 
•·egister int i, j, no_of _pkts_gen cO, rand_no ; 
float r•nd_prob ; II ,-andom no. for prob. of trar~smlssion 
i ht temp_buff; 
struct pC~cket •ptr_temp; 

II if all of the counters are non-zero return after 
II decrementing them 

if(access_waltCactual source_noJ !•ZERO> 
if<walt_counterCactual_source_noJCVIDEO_DATA -1] !e ZERO> 

if<wait_counter(actual_source_noJCVOICE_DATA -1) != ZEROI 
if<Wait_counter(actual_source_noJCORDINARY_DATA -1J 1 = ZERO> 
{ 

II Mow at this pt., all these counters have non zero 
II values, which means that neither any new traffic 
11 is to be generated nor any_attempt of transmission 
II is to be ~ade • So return after decrementing these 
II four counters 

II decrementing the three type counters 
II and the ·acces·s wait counter 
access.wait(actual source no]--; 

for<i=OJi(NO_OF_DATA_TYPESJi++) 
wait_counterCactual_source_noJCiJ --1 

37 



return; 
> 

/I if above check f~ils, we proceed further 

II now the channel access attempt shall bE, made 
II this is done prto•· to gene·,·.-.tion of ,,e,. pac:~oets. 
II since the packets can be generated at any point 111 the slot 
II while the che<m1e! cc.n only !Je accessed at the stc>..-t of the slot 

II TRANSMISSION ATTEMPT 

ptr _temp "' head_packet queue( ~ctual soLwce no): 
II accessing the q_top-packet for this sou~ce 
if( accetH;_w•ut(actual __ source_noJ '= ZERO l 
access_wait[actual_source_no) 

€' 1 Ill? 

tf<ptr_temp '=NULLI 
{ 

t•and_pt·ob "' ( (floatlrand( l liRAND_HAX; 

1 f ( rand_prob <= prob_base[actuoal_.sou.·ce_no] 
( . 

PIJt_i n_sl ot ( •c tua l_source_no, curr _s lot_no I 1 
II put the packet in the slot 1 itself updates te result window slot box 
accesa_wai t(actual_source_noJ ,.. min_wai t[actual_sout-ce_r.oJ; 

} 

II if access wait is zero, try to send and set the wait to min_wa1t 
II ~lse decrement the wait counter by 1. 
II TRANSMISSION ATTEMPT OVER 

II now the individual traffic distributions 
II shall be called as follows 
II if the wait counter for a particular type of traffic 
II becomes zero, invoke the random number generator for that 
II traffic and generate as many pkts of that type. Generate 
II a random number to serve the purpose of packet id for 
II identification of the packets . The video traffic is steady 
II traffic as against the voice and data traffics, which are bursty 
II in nature and so video traffic is represented by one packet 
I I gener~ted per fixed time i nte1·val <represented by MEAN_ VIDEO l 

II ORDINARY DATA GENERATION 
if(wait_counter[actual source_noJ(ORDlNARY_DATA -1) !c ZERO> 
wait_tounterCactual_source_noJ[ORDINARY_OATA -1) -- ; 

eise · 
{ 

no_of_pkts_gen = give_random_no<>; II generate no.<randl of pkts 111 this data spurt 

38 



if<no_of_pkts_gen !~ZERO) 
( 0 

rand_no ~rand<) ; II random packet 1d 
for< j=<); j<no_of _pkts_ger'l; j++) 
( 

ptr _temp c. create_packet C I; 
II create pkts, fill entr1es and put them 1n ~u~ue 
p tJ· _tf.'m~' -· > packet_! d = •·and_no + J: 

ptr_temp ->src_stn = Bctual_source_no ; 
II the src store~ kn the packet is internal value 
II pl<:ase ma~e th1s sure again 1 

pt•·_temp -> type_of _pkt "' ORDINARY_DATA; 
ptr _temp -> slot_no_gen = cu1·1· _slot_no ; 
put_in_queuelpt•· _temp, ac tual_soun:e_no,cUl·,- slot no 1: 

) - -

wait_counte•·(actual_source_nol(ORDINARY_DATA -tJ = MEAN_ORD; 

no_of _pkts_in_qCactual_source_noJ += no __ of _pkts __ gen ; 1 I at eve1·y gener·at 1011 

} //ORDINARY DATA GENERATION OVER 

II VIDEO DATA GENERATION 
ifCwait_counter(actual_source_,,oJ[VJDEO_DATA -tJ •= ZERO> 
wait_counter[actual_source_noJ[VIDEO_DATA -tJ -- ; 

el~e 
{ 

} 

II generate a video packet, fill 1t 
ptr_temp = create_packet<> 
o·and_,,o "' re~nd<) ; II 1·andom pe~cket 1d 

ptr_temp -> packet_id = rand_no ; 
ptr _temp -> src_stn "' actual_source no 
ptr_temp -> type_of_pkt = VIDEO_DATA 1 
j:ltt·_temp -> tolot_no_gen = cu1·r _slot_no ; 
put_in_queue<ptr_temp,actual_source_no,curr_slot_no>; 
w•it_counter[actual_source_noJ[VIDEO_DATA -tJ = MEAN_V!DEO 
nd_of_pkt5_in_q(actual_source_noJ ++ ; 

II VIDEO DATA GENERATION OVER 

II VOICE DATA GENERATION 
1 fCwai t_counter [actual_source_noJ [VOICE_DATA -1 J I"' ZERO) 
~ait_counterCactual_source_noJ[VQICE_DATA -1J -- ; 

ell!• 
{ 

,o_of_pkts_gen "'give_random_no<>; II generate no.lrand> of pkts in this data spurt 
no~of_pkts_in_qCactual_~ource_noJ += no_of_pkts_gen ; 
if<no_of_pkta_gen !m ZERO) 
< 

rand_no m rand() 1 II random packet id 

39 



} 

for< j "'0; j <no_of _pk ts_gen; J +,t) 
{ 

pt1· _temp "' create_packet <) 1 
II cr~ate pkts, fill entr1es and put t~em in queue 
ptr_temp -> pscket_ld c rand_no + j; 

pt1·_temp ->src_stn = actual_snurce_no ; 
II t.he src ,;tared in the packet 1s intern<\! valuP. 
II please make this sure aga1n 1 

ph_temp -> type_of _pkt = VOICE_DATA: 
ptl-_temp -> slot_no_gen = cun·_slot_~o ; 
put_i n_queue <ptr _temp ,ac tual_source_no,cu1·r _slot_no); 

} 

do II ensuring the spurt gap is not d1ffering by ) 10 
( 

rand_no .. random<MEAN_VOICE + 10>; 
} while<abs(rand_no- MEAN_VOICE> > 10>; 
wait_counter[actual_source_noJ[VOICE_DA~A- 1J 1·and_no: 

II VOICE DATA GENERATION OVER 

II REFHESHING THE RESULTING QUEUE 

II tflf._shown_sourc~rs(actual source_noJ •= YES ) 
I I refr·esh_queue ( sc tua l_source_no) ; 

} 

if<no __ c)f_pl<ts_in __ q(actual_source_noJ >= NORMAL_Q_LEN LIMIT> 
{ 

ifCif_special_status[actual_sour·ce_noJ ==NO> t,~ .. (f f·ille•· status(actu<d source no) 
( 

f_special_statu•(actual_source_noJ =YES 
if(empty_special_entry < SERIAL_LENGTH > 
sel-i.al_specioal_status[empty_special_entry ++J = actual_sou1·ce_no : 

mi n_wa it (actua l_source_nol '"' no1·ma l_mi n_wa it [ ac tua l_soUI·ce_no) I TWO 
) 

if< no_of _pk ts_i n_q( ac tua 1_source_noJ >"' UPPER_Q_LEN_L I MIT> 
if<f_killer_status(actual_source_noJ =c NO> 
( 

f_special_status[actual_source_noJ =NO ; 
if<empty_special_•ntry < SERIAL_LENGTH > 
sei·ial_special_status(efllpty_special_entry ++) "' actu.al_sou1·ce no 
1f<e~pty_killer_entry < SERIAL_LENGTH > 
n~rial_klller_status(&mpty_killer_entry ++J = actual_6ource no ; 

f_killer_statusractual_source_nol c YES ! 
mln_wal t[actu.tll_source_nol "' ( nortr\al_min_wai t (actual_source_noJ >I FOUR 1 

) 

} 

II ********************** 

40 

NO)) 



II thi!l function creates a new packet rv::lde and i..J,itializes it 
I I ca llP.rl from 
II 1. init_sourc:e_tr011ns<) in dstrbtn block 
II ********************** 
struct p•cket •create_packet<l 
{ 

struct packet •ptr_temp: 

ptr_temp=Cstruct packet •> malloc<size_of_packet>: 
if<~tr_temp ==NULL) 
{ 

c:los!!graph <); 
clrflcr(); 
put~<" Memory not allocated in module creatc_packet(j'\n''J: 
put~<" Sygtem fault !\n Please-check itl\n Goodbye'"): 
e>< it< 1); 

II chP.cking for memory allocation fa1lurv 
ptr·_temp -> sr-c_stn = RAND_MAX: 
ptr._temp -> type_of_pkt = ZERO; 
ptr_temp -> slot_no_gen • ZERO; 
ptr _temp -> slot_no_•-each_top = ZER01 
ptr _temp -> slot_no_reach_destn = ZERO; 

ptr_temp ->ne><t • NULL1 

return<ptr_temp>r 
} 

II no comments needed, 1t i~ s1mple in1tial1zation 

II **************************************** 
II thi9 function puts the packet on the 
II top of the queue of the source passed 
II on the current slot 
I I c~lled from 
II 1. init_source_trans() in this block 
II **************************************** 
void put_in_slot(int actual_source_no, unsigned int curr slot_no) 
{ 

I* ------------~--------------•1 
11 function declarations 
void draw_a_box<unsigned int, unsigned int) 

I* ---------------------------•1 
st•-uct packet * ptr _pkt; 
regist~r unsigned int actual_slot_noJ 

ptr_pkt ~ head_packet_queue[actual_&ource_noJJ 
II accessing the q_top p•cket 
actua1_slot_no • curr_alot_no Y. MAX_SLOTS; 
II finding the internal slot corresponding to this current slot 

II how copying the data from packet to slot 

41 



head_sJot_l1st[actual_slot~noJ -> packet_ld ~ ptr _pkt -> p~c~et_id: 
he;ad_slot_Ut!lt[actual_slot_noJ -> ~rc_stn c ptr _pkt -> src_;;tn; 
head_slot list[actual_slot_noJ -> type_of__pkt -= ptr __pkt -> type_of_pkt; 

II now updatit1g this slot in the result wi•1daw 
II draw_.a_bo><<curr _slot_no,actual_slot __ no> 

,·; ******•***•****•************************ 
II this function puts the packet node passed 
II to it 1n appro. place in the Q of 
1/ the source ->actual_source_no 
II called from 
II 1. init_source trans<> in th1s block 
II •*************************************** 
void put_in_queue(stt-uct packet •ptr __pkt, int actual_soLwce __ no, unsigned tnt cun- _slot_no> 

,-egll>ter· int this__pkt_type; 
~truct packet * ptrl_temp, 

II to keep new pkt type fot- fa<>t compartsr"'~-· 

•ptt-2_temp; 1/tempor-c.ll·y potnter-s for tr·ave,·<,col 

II checking for the queue empty case! 
if ( head__packet_queue( ac tLta l_sow-ce_no J 
{ 

NULL> 

ptr·__pkt -> slot_no_reach_top "' curr _slot_no ; 
he;ad__packet_queue(actual_source_noJ ~ ptr_pkt 
atcess_wait(actual_source_noJ m ZERO 
rll!turn, 

} II if the queue is empty, put the packet at the 
II top of the queue ,.,,d fill the entt-y t'or- r·e,>ching 
II the top of the queue; reset the access_wa1t counter 
II to ZERO value 

thi&ykt_type .. ptr _pkt -> type_of__pkt; II othet-wise, starting operation 

p tr l_temp .. ptr2_temp = head_packet_queLte [ ac tua l_sout-ce_no J 1 
II startihg giving value of HEAD 

while<ptrl_temp ->next !"'NULL t.t. ptt-l_temp ->type_o_f_pkt >=>this__pkt_tvpe> 
( 

ptrE_temp = ptrl_temp1 
ptr1_temp = ptrl_temp -> next; 

))I move in the link list till the pt. of insertion comes-> by ptrl_temp 

/1 w~en list has only one node or say pt. of insertion is at the 
II h•ad itself, then the two pointers are equal 
if<ptrl_temp ~- ptr2_templ 
< 

1f<<ptr1_temp -> type_of_pktl < this_pkt_typel 
( 

ptr_pkt -> slot_no_reach_top curr_slot_no 
ptr~kt ->next= ptrl_temp; 

42 



} 

head_packet_queueC.tctual ... saurce_no~ ... ptt· _pkt 1 
acce&$_Wait(actual_wource_noJ R ZE~O 1 
return; 

> II fixing the new packet at the top of queue 
II reseting the access_wait counter to ZERO 
II filling the entry for reach1ng the top of the queue 
E.•lse 

ptrl_temp ->ne)<t = ptt·_pkt; 
} 

else 

lf((ptt·l_temp -> type_of_pktl 
{ 

p t r _p k t -· > ne x t "' p t ,. I _temp ; 
ptr2_temp ->next = ptr _pkt; 

) 

else 
ptr1_temp -> next ptr _pkt; 

<- thls_pkt._type> 

II *~*************************** 
II this function gives the no. of pkts per 
II messAge for the ord end video traffic 
II ~ccording to the flag type 
II call&d from 
II 1. init_soUrce_trans<> in this block 
II ******************************* 
int give_random_no() 
{ 

double avg_numbers ~ 0.0 ; 
un9igned int pkts 1 
double prod '" 1.0 , p_final, rand_float_no 
double variance 1 

p_fin•l e exp< - BASE_FOR_RANDOM >1 

pkt!$ • ZERO 

while< prod > p_final 
{ 

) 

rand_f 1 oa t_no .. «double> rand< l )IRAND_MAX; 
prod •~ rand_float_no J 
pktts++J 

tri•d •• 1 1 II increase the nu.ber of times this function has been 
II invoked 

taum_num~ers +• pkts 1 II increment the no. of pkts genet·ated tso fat· 

~vg_nutnl:let·s = <float> sum_numbers I <float>tried II X BAR 

43 



deviation_sum +-= «flo.;;.tlpktti- avg_numbersi "'«floatlp~t~-avg_numt:.>~rs 

1fltrted >~ try_uptol 

f_try_l1mit_reached • YES ; 

variance • (double><deviatlon_•um/try_uptol 

try_upto = Y_VALUE * Y_VALUE ~ varidnceiCCONFIDENCE_LIMIT •CONFIDENCE LIMITI 

tf<trted >= tr·y_upto ) 
f_simul_over ~YES 1 

else 
f_try_limit_reached = NO 

,-eturn( pkts- 1 l; II now 'pkt!'i -1' is being returned .so modify 
II other routines after seperate testing 

fh f f) 

II ********************************** 
II this function gives a exponentially 
II distributed nummber with a mean as 
II passed to this routine 
II called from 
II 1. in I. t_•ource_trans< > in this block 
II **~******************************* 
int expon~ntiallint mean> 
{ 

double rn, retval 
int ret1 

II rand<> returns a random no. from 0 to RAND_MAX 
do 
{ 

rn=<<double>rand())/RAND_MAXI 
> ~hile<rn == 0.0 >; 

,-etval ,. C <mean) * logCrn> > 1 
r·et ~ Cint> retva11 

r&~t!Jrn< •ntt > J 
) 

tt~ndtf 
II ****~********** STATION DISTRIBUTION BLOCK ENDS ************** 

II ****~********** RESULT cALCULATION BLOCK STARTS ************** 
II ***************************** 
11 ~hts function calculates ali the 
II delays needed for the result over 
11 the current unit of packet store 

44 



II called from 
II 1. m•ster control routine 
II 2. simul&tion control routin@ 
II make it clearer 
II *************************«**** 
void c:alc_delO<ys_in_unit< > 
{ 

> 

register 1nt i,JJ 
register unsigned int src,type,slot_gen,slot_q_top,slot_destn; 
1·egister lnt q_delay, comm_delay ; 

fo,·<i=(l;i<NO_PKTS_IN_UNIT && t<curr_empty_enb·y :t++l 
{ 

src ~ packet_store(iJCOJ; 

ifC<src >• ZERO>~~< src < HAX_STNS>> 
{ 

type = pac:ket_store(iJClJ ; 
tqtal_pkts_t•-ans(src J ( tyoe-1 J ++ ; 
q_delay = packet_stOI-e(iJ(3J- packet_store(iJC2J 
totAl~_q_delay(srcJCtype -lJ += < lonq)q __ delay ; 
comli\_delay = packet_store(iJ(4J- packet_store(iJ(3J - d_po1nt_offset 
total_co~m_delayCsrcJ(type -1] += <longlcomm_delay ; 
ifdq_delay + comm_delay> > delay_allowedCtype-1]) 
no_of _pkts_delayed(s,-c H type-1 J ++ ; 

}// ttnq of else 
} I I end of for 

fp "' fopenCfi lename, "a") 
fprlntfCfp,"<Results-RUN: Stn= Xd,",no_of_act_stns> 
fprintf<fp,"BWB"' Y.d,F'r·ob= Y.d>\n",f_bwb_switd1,f__prob __ <<~,s1qnl 

forci~O;i<HAX_STNSJi++) 
{ 

if(f_act sources[iJ c• YES> 
( 

) 

fprintf<fp,"\n<Src-Xd>,", i+l> 
forCj=OJj<NO_OF_DATA_TYPESJj++) 
{ 

fpr i nt f ( fp, "<Type-Xd, Pk ts-Y.d, Q_d-X 1 d, " , j + 1 , tot a 1 _p k ts_ trans [ i J [ j J , tot a l_q_de 1 a y[ i J ( j J > 
fpr i nt f < fp, "C_d-X 1 d, De 1 d-Y.d >",to ta l_comm __ de 1 ay [ i J ( j J , no_of _p k ts_de 1 ayed ( i J ( j J > J 
) 

) 

fprintf<fp,h\n">J 
fclo.e(fp) J 

II ***t**~**************RESULT CALCULATION BLOCK OVER **************** 

II ******************** simulation control block ••••••********** 

45 



)( j]) 

II -~·········~·····················¥******* 
II This func~ion takes t~e charge of running 
II the simulation after the m~in<> has drawn 
II the screen and its components aftPr the 
II initializ~tion of the variables 
II called from 
II main<> ln the main bloc!< 
II ***************************************** 
void simulation<voidl 

I* ----------·----------------- ---*1 
II function declarations 
void move_slots<voidl ; 
void calc results<voidl ; 
void calc=d~lays_in_unit~voidl 
void ,-efn!sh._pac ket store< vo ld > 
void ~how_std_resulis<void> ; 
void clear_r_win<voidl ; 
vold dt·aw_re'sl...tlt_win<voidl ; 
I• ----------------------------•1 
,-egister int I, j ; 

II po 
I I ( 
II move_slots<> 1 II warming up the n@twork 

II b~t the calculations should not include) 
II the p•ck~te reached within this time interval. SO 

II refresh_packet_store() ;II not done for re.sults 
do 
{ 

move_tslots< > 1 
} while< <slots_passed < HAX_SLOTS_TO_RUNlt.t.<f _mood_ove•- "''"'NO>> 

II > while< !f_simul_over> 
calc_delays_in_unit<> 1 
for<i=Oii<50Ji++) 
printf<''\a")l 

fp•fopen<filename,"a"> 1 
fprintf(fp,~\n<THESE WERE THE FINAL RESULTS>">; 
fprintf<fp 1 ''<THE CALCULATED RESULTS ARE )\n"l; 
for<i=O;i<MAX_STNSJi++> 
{ 

if<f_act_sources[iJ == YES l 
{ 

) 

for(j•OJj<NO_DF_OATA_TYPES;j++l 
{ 

if(total_pkt~_trans[i][j] t~ZERO) 

{ 
fpr i ntf" ( fp; • \nq_de 1 ay( Y.d] [ Xd J ""Xf" , i + 1 , j , < f 1 oat l tot a l_q _de 1 ayC i ] [ j J I< f 1 oat l tot a 1 _p k t s_ trans ( i H jl 

fpr i ntf ( fp 
1 

• 1 1 comm_de 1 ay( Y.d J ( Y.d J -=Xf", i + 1 , j 1 < f 1 oat l tot a l_comm_de 1 ay ( i J ( j J I ( f 1 oat l to ta 1 __p k ts_tr an 



) 

fc 1 o~Se< fp > 
} 

J 
II *********************•simulation bloc~ control over ................... *"***** 


	TH68730001
	TH68730002
	TH68730003
	TH68730004
	TH68730005
	TH68730006
	TH68730007
	TH68730008
	TH68730009
	TH68730010
	TH68730011
	TH68730012
	TH68730013
	TH68730014
	TH68730015
	TH68730016
	TH68730017
	TH68730018
	TH68730019
	TH68730020
	TH68730021
	TH68730022
	TH68730023
	TH68730024
	TH68730025
	TH68730026
	TH68730027
	TH68730028
	TH68730029
	TH68730030
	TH68730031
	TH68730032
	TH68730033
	TH68730034
	TH68730035
	TH68730036
	TH68730037
	TH68730038
	TH68730039
	TH68730040
	TH68730041
	TH68730042
	TH68730043
	TH68730044
	TH68730045
	TH68730046
	TH68730047
	TH68730048
	TH68730049
	TH68730050
	TH68730051
	TH68730052
	TH68730053
	TH68730054
	TH68730055
	TH68730056
	TH68730057
	TH68730058
	TH68730059
	TH68730060
	TH68730061
	TH68730062
	TH68730063
	TH68730064
	TH68730065
	TH68730066
	TH68730067
	TH68730068
	TH68730069
	TH68730070
	TH68730071
	TH68730072
	TH68730073
	TH68730074
	TH68730075
	TH68730076
	TH68730077
	TH68730078
	TH68730079
	TH68730080
	TH68730081
	TH68730082
	TH68730083
	TH68730084
	TH68730085
	TH68730086
	TH68730087
	TH68730088
	TH68730089
	TH68730090
	TH68730091
	TH68730092
	TH68730093
	TH68730094
	TH68730095
	TH68730096
	TH68730097
	TH68730098
	TH68730099
	TH68730100
	TH68730101
	TH68730102
	TH68730103
	TH68730104
	TH68730105
	TH68730106
	TH68730107
	TH68730108
	TH68730109
	TH68730110
	TH68730111
	TH68730112
	TH68730113
	TH68730114
	TH68730115
	TH68730116
	TH68730117
	TH68730118
	TH68730119
	TH68730120
	TH68730121
	TH68730122
	TH68730123
	TH68730124
	TH68730125
	TH68730126
	TH68730127
	TH68730128
	TH68730129
	TH68730130
	TH68730131
	TH68730132
	TH68730133
	TH68730134
	TH68730135
	TH68730136
	TH68730137
	TH68730138
	TH68730139
	TH68730140
	TH68730141
	TH68730142
	TH68730143
	TH68730144
	TH68730145
	TH68730146
	TH68730147
	TH68730148
	TH68730149
	TH68730150
	TH68730151
	TH68730152
	TH68730153
	TH68730154
	TH68730155
	TH68730156
	TH68730157
	TH68730158
	TH68730159
	TH68730160
	TH68730161

