
JA' ''"t:RSITV

OBJECT u.·,•C.NTED GRAPHICAL USER INTERFACE
FOR

HOTEL AUTOMATION SYSTEM

Dissertation submitted to the Jawaharlal Nehru University
in partial fulfilment of the requirements

for the award of the Degree of

MASTER OF TECHNOLOGY
(COMPUTER SCIENCE & TECHNOLOGY)

by

>
c. ..

R. VIJAYASARA THI

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI -110067
INDIA

CERTIFICATE

This is to certify that the thesis titled Object-Oriented Graphical User

Interface for Hotel Automation· System, being submitted by Mr. R. Vijayasarathi to

the Jawaharlal Nehru University, New Delhi in partial fulfilment of the requirements for

the award of the degree Master of Technology (Computer Science & Technology).

is a record of the original work done by him under the supervision of Prof. K. K.

Nambiar, Professor, School of Computer & Systems Sciences, Jawaharfal Nehru

University, New Delhi, during the Monsoon Semester, 1994.

The results reported in this thesis have not been submitted in part or full

to any other University or Institution for the award of any degree etc.

ptt)
,to...-\'

Prof. K. K. Bharadwaj,
Dean, SC&SS,
J. N. U.,
New Delhi-11 0067

Prof. K. K. Nambiar,
Professor, SC&SS,
J. N. U.,
New Delhi-11 0067

ACKNOWLEDGEMENTS

It is a great pleasure for me to sincerely express my deep sense of

respect and gratitude to Prof. K. K. Nambiar for his invaluable guidance and

inspiration. His knowledge, scholastic experience and remarkable patience led me

throughout the project, leading to the successful completion of the same. It would have

been impossible for me to come out successfully without his constant guidance and

constructive criticism.

I extend my thanks to Prof. K. K. Bharadwaj, Dean, for providing me the

opportunity to undertake the project.

A friend in need is a friend indeed. I thank all my friends, especially

Diana and John for the moral support provided throughout. Thanks are also due for all

those who helped me directly or indirectly in completing the project.

There are others whose positions preclude them from being officially

acknowledged for their help. Their unstinting assistance has been priceless.

R. VIJAYASARATHI

ABSTRACT

An attractive "look and feel" in a software product's user interface is as

important to its success as its functionality. Graphical User Interfaces started a new era

in man-machine communication. Microsoft Windows epitomized the concept of

Graphical User Interface with its intuitive and user-friendly approach.

With the advant of object-oriented technology, Object-Oriented

Programming(OOP) became the natural choice for the implementation of user interface

systems. Object-Oriented Programming allows the mapping of visual objects on the

display, directly to conceptual objects in the software, providing consistency and

simplification.

Borland's Object Windows Library(OWL) came to the rescue of the

Windows programmer, encapsulating the complexities of Windows programming.

Object Windows thus provides a flexible and simplified application frame work.

Design and implementation of an Object Oriented Graphical User

Interface for Hotel Automation System is discussed in this thesis. The Hotel Automation

System is meant to automate the functioning of a Star Hotel for fast and efficient

functioning. It provides various services such as making an enquiry about the

availability of rooms for reservation etc. It also provides a flexible billing and menu

system.

CONTENTS

Chapter 1 INTRODUCTION

Chapter 2 PROGRAMMING CONCEPTS

2. 1 Graphical User Interfaces

2. 2 Object-Orientation Concepts

2. 2. 1 Object
2. 2. 2 Class
2. 2. 3 Inheritance
2. 2. 4 Abstraction
2. 2. 5 Encapsulation

2. 3 The Windows Concepts

2. 3. 1 The Windows Paradigm
2. 3. 2 The OWL Paradigm
2. 3. 3 The Object Windows Class Hierarchy

Chapter 3 DESIGN AND IMPLEMENTATION

3. 1 Hotel Database Design

3. 2 Hotel Database Implementation

3. 3 User Interface Design

3. 4 User Interface Implementation

3. 4. 1 Application Flow

Chapter 4 SAMPLE SESSION

Chapter 5 CONCLUSION AND ENHANCEMENTS

Chapter 6 PROGRAM LISTING

BIBLIOGRAPHY

Chapter 1

INTRODUCTION

Computer technology enables people to interact with enormous amounts of

data using large numbers of functions. The user's controlling commands and

computer's responses constitute a user interface, an exchange of information

between the user and the computer. As the state of computing matured, users

wanted the interface to be more intuitive, visually appealing and simple to use, and

still meet the entire range of problem solving requirements. The significant

improvement of computer hardware and software technology, high resolution bitmap

graphics and pointing devices such as mouse, made it possible the evolution of

modern Graphical User Interfaces (GUis).

Microsoft Windows provides an excellent Graphical User Interface for DOS,

with its capabilities like device independence, multitasking, and Graphics Device

lnterface(GDI). Microsoft Windows supports an Application Programming

lnterface(API) that allows programmers to create GUI applications by providing a

powerful library of more than 600 function to:

* Create and draw screen objects like windows, bitmaps,

and dialogboxes.

* Monitor and process mouse and other keyboard activations.

With the advent of Object-Oriented technology, object-oriented programming

became the natural choice for the implementation of user interface systems.

Rather than separate declarations of data structures and functions that operate on

them, we have, integrated objects which maintain their own state and provide a set of

applicable operations. Object-oriented programming allows the mapping of visual

2

objects on the display (like windows, bitmaps) directly to conceptual objects in the

software, providing consistency and simplification.

Borland's Object Windows Library (OWL) provides a programming interface

to Windows, taking away the burden of window management and message

processing from the programmer. Object Windows simplifies the development of

Windows applications by encapsulating the behaviors that Windows applications

commonly perform. Object Windows uses the object-oriented features of C++ to

hide parts of Windows API, insulating the programmer from the internals of Windows

programming. As a result, Windows applications can be developed with much less

time and effort.

In this thesis, the development of a prototype of an object-oriented Graphical

User Interface (GUI) for Hotel Automation System is discussed in detail. The Hotel

Automation System is meant to automate the activities of a Star Hotel for fast and

efficient functioning. This software system allows for making

enquiries about availability of rooms, as well as making reservation of rooms. It

provides a flexible billing and menu system. It allows for general enquiry about a

guest. It also provides other miscellaneous functions that are generally performed,

such as check-in/check-out of guests. The various operations performed by the Hotel

Automation System are listed below:

1. Room Reservation Enquiry

2. Room Reservation

3. Cancellation of a Reservation

4. Food Menu

5. Bar Menu

6. Prepare Bill

3

7. Update Date

8. Guest Enquiry

9. Check-In

10. Check-Out

11. Change Availability of Food/Drink

Chapter 2 introduces the various concepts involved in the development of this

system. In this, the evolution and importance of Graphical User Interfaces (GUis) and

Object-Orientation concepts are discussed. This chapter also emphasizes the Microsoft

Windows programming and introduces Borland's Object

Windows Library (OWL), providing the details of Object Windows class hierarchy.

Chapter 3 discusses the design and implementation of the prototype of the

object-oriented GUI for Hotel Automation System. It gives the design and

implementation issues of the GUI and hotel database separately, discussing various

design considerations.

Chapter 4 gives the "look and feel" of the product developed by providing

some snapshots from the execution of the program in a sample session.

Time constraints forced the project to confine to a prototype Hotel Automation

System instead of a real world system. Chapter 5 discusses the possible

enhancements and further extensions that can be made to this software system.

Chapter 6 gives a partial listing of the program.

References used in the project are provided at the end of the report.

4

Chapter 2

PROGRAMMING CONCEPTS

2. 1 Graphical User Interfaces

As the state of the computing matured, users wanted programs that were

visually more appealing and simple to use. The user's inputs, commands and the

computer's responses constitute a user interface. In the case of earlier interactive

computer, the primary means of interaction with computer has been through

command-based interface. This interface was rather awkward and the user has to

memorize a large set of commands to use the system and run an application.

The purpose of the user interface is to facilitate user-computer communication

by enveloping hardware and software in a dialogue. Users often prefer simpler sets of

functions with good user interfaces to large sets of functions with awkward user

interfaces. An attractive look and feel in a product's user interface can be as important

to its success as its functionality. User interfaces were originally described by

relatively small amounts of code embedded in the application. As people recognized

the importance of the user interface, the code became specialized and separate.

User interfaces are now become so important that for some applications, the

amount of code devoted to the user interface may exceed that for the application.

*

•

The properties of a good user interface include the following:

User control. Users can easily use the program and should feel that they

directly control the program.

Predictability. User interfaces should be as consistent as possible, so that the

user would feel less unfamiliarity while using the application, for example, a

pop-up menu should always appear at the same place relative to the cursor.

6

* Economy of expression. User interfaces should facilitate concise expression

of user's wants, needs, and actions and should respond appropriately.

The user's ability to learn an interface is crucial to its acceptance. It must let the

user accomplish tasks in the most straight forward way possible and still meet the entire

range of problem solving requirements.

Object-oriented design is natural for user interface systems. Visual objects on

the display (like windows, and bitmaps) map to conceptual objects in software.

Implementing a user interface in a language which supports object-oriented

programing provides consistency and simplification. Rather than separate

declarations of data structures and functions that operate on them, we have

integrated objects which maintain their own state and provide a set of applicable

operations.

Another advantage of the object-oriented approach for user interface design is

the clear decomposition of structure and

functionality, which makes it easier for a developer to design, maintain, and reuse

components. Since object-oriented systems support inheritance, new components can

be specialized or extended from existing ones. This makes object-oriented

interfaces well suited for rapid prototyping.

Significant hardware improvements like powerful dedicated processors, high

resolution bitmap graphics, and pointing devices such as mouse, facilitated the

evolution of modern Graphical User Interfaces (GUis). GUis are systems that allow

creation and manipulation of user interfaces employing graphical objects such as

windows, icons, bitmaps, buttons and menus. GUis not only do away with tedious task

of data preparation, but also hide the user from the usually character based operating

7

system of the computer. Another useful feature of GUis is they are so easy to use

that even novices can learn to drive the systems and their individual applications

without any manual training.

Smalltalk MVC, Apple Macintosh Toolbox, Microsoft Windows, X-Windows,

Sun Microsystem's NEWS, DEC's DECWindows are some of the examples of GUis.

One of the most important aspects of GUis is that they all have programmer's

interfaces, called Software Development Kits (SDK) which allow independent software

developers to create applications which 'look and feel' like the main GUI. The

Software Development Kits provide an Application Programming Interface (API) which

enables users to:

* Create and draw screen objects like windows, bitmaps and dialogboxes.

* Monitor and process mouse and other keyboard activations.

2. 2 Object-Orientation Concepts

The distinguished characteristic of industrial-strength software is that it is

intensely difficult, if not impossible, for the individual developer to comprehend all

the subtleties of its design. The complexity of such system often exceeds the

human intellectual capability. We observe that this inherent complexity derives from

four elements: the complexity of the problem domain, the difficulty of managing the

developmental process, the flexibility possible through software, and the problems of

characterizing the behavior of discrete systems.

8

Our failure to master the complexity of software results in projects that are

late, over budget, and deficient in their stated requirements. We often call this

condition 'software crisis'.

As Dijkstra suggests, "The technique of mastering complexity has been

known since ancient times: divide et impera (divide and rule)"[4]. When designing a

complex software system, it is essential to decompose it into smaller and smaller

parts, each of which may then be refined independently.

Algorithmic Decomposition: Most of us have been formally trained in the

dogma of top-down structured design, and so we approach decomposition as a

simple matter of algorithmic decomposition, wherein each module in the system

denotes a major step in some overall process.

Object-Oriented Decomposition: Another possible decomposition strategy

decomposes the system according to the key abstractions in the problem domain.

Rather than decomposing the problem into substeps, objects have been identified,

which derive directly from the problem domain. From this perspective, an object is

simply a tangible entity which exhibits some well defined behavior. Since the

decomposition is based upon objects and not algorithms, it is called an 'object-oriented

decomposition'.

Object-oriented decomposition has a number of highly significant

advantages over algorithmic decomposition. Object-oriented decomposition yields

smaller systems through the reuse of common mechanisms, thus providing an

important economy of expression. Object-oriented systems are also more resilient to

change and thus better able to evolve over time, because their design is based upon

stable intermediate forms. Indeed, object-oriented decomposition greatly reduces the

9

risk of building complex software systems, because they are designed to evolve

incrementally from smaller systems in which we already have confidence.

As structured design methods evolved to guide developers who were trying to

build complex systems using algorithms as their fundamental building blocks, Object­

oriented design methods have evolved to help developers exploit the expressive

power of object-oriented programming languages, using the class and object as basic

building blocks.

Object-oriented programming employs object-oriented decomposition. Object­

oriented programming is a "method of implementation in which programs are

organized as co-operative collections of objects, each of which represents an

instance of some class, and whose classes are all members of a hierarchy of classes

united via inheritance relationships". This definition implies that object-oriented

programming uses 'objects'; each object is an instance of some 'class' ; classes are

related to one another via 'inheritance' relationships. Under this definition,

smalltalk, Object Pascal, C++ and CLOS are all object-oriented programming

languages.

2. 2. 1 Object

The fundamental idea behind object-oriented languages is to combine both

'data' and the 'functions that operate on that data' into a single unit, called 'object'. An

object's functions called 'member functions' or 'methods' provide the only way to

access its private data.

In other words, an object is a tangible entity that exhibits some well defined

behavior. An object has state, behavior and identity.

10

The state of an object encompasses all of the (usually static) properties of the

object plus the current (usually dynamic) values of each of these properties. A

property is an inherent or distinctive characteristic, quality, or feature that

contributes to making an object uniquely that object.

The behavior of an object is how an object acts and reacts in terms of its

state changes and message passing. An operation is some action that one object

performs upon another in order to elicit a reaction. In object-oriented programming

languages, operations performed on an object are typically declared as 'methods' or

'member functions', which are part of the declaration of the class of the object.

The identity of an object is that property which distinguishes it from all other

objects. Since an object is distinguished from all others, the identity of each object is

preserved even when the state of that object is completely changed.

2. 2. 2 Class

The concepts of a class and an object are so interrelated that we cannot

talk about an object without regard for its class. However, there are important

differences between these two terms. Whereas an object is a concrete entity that

exists in time and space, a class represents only an abstraction, the "essense" of an

object, as it were. In other words, "A class is a set of objects that share a common

structure and a common behavior". A single object is simply an instance of a class.

Consider the following C++ class declaration for a 'Stack' class.

class Stack
{
private:

int st[MAX]; II stack: array of integers
protected:

11

*

*

*

int top; II top of the stack
public:

Stack(); II constructor
void push(int x)

};

{

}

if(top < MAX)
st[top++] = x;

else
{
cout<<"\nError: Stack is full";
exit(1);

}

int pop()
{
if(top > 0)
return st[top--];

else
cout<<"\nError: Stack is empty";

}

The above declaration of the 'Stack' class consists of three parts.

Public : A declaration that is visible to all clients that are visible to it

Protected : A declaration which is not visible to any other client except its sub-

classes.

Private A declaration which is not visible to any other class; accessible

only to its member functions.

Relationships Between Classes and Objects:

Classes and objects are separate yet intimately related concepts. Specifically,

every object is an instance of some class, and every class has zero or more

instances (objects). Practically for all applications, classes are static; therefore, their

12

existence, semantics, and relationships are fixed prior to the execution of a program.

Similarly, the class of most objects is static, meaning that once an object is created,

its class is fixed. In sharp contrast, however, objects are typically created and

destroyed at a furious rate during the lifetime of an application.

2. 2. 3 Inheritance

Inheritance is one of the powerful features of object-oriented programming.

Inheritance is a relationship among classes, wherein one class shares the structure or

behavior defined in one (single inheritance) or more (multiple inheritance) other

classes. In other words, it is the process by which one class can acquire the properties

of another class. It allows the creation of new classes, called 'derived classes'

from the existing or 'base classes'. The derived class not only inherits all the

capabilities of the base class, but can add additional features and refinements of its

own, leaving the base class unchanged. Inheritance defines a kind of hierarchy

among classes in which a derived class typically augments or redefines the existing

structure and behavior of its base classes.

Person

/~
Student Employee

/I~
Professor Officer Clerk

Fig. 2. 1 Class hierarchy for a University example.

13

The class hierarchy of a University example is shown in Fig. 2. 1. Both Student

and Employee are persons. They inherit the characteristics of Person. Both Student

and Employee specialize the properties of persons, and conversely Person

generalizes the properties of both Student and Employee. Similarly, Professor,

Officer and Clerk inherit the common properties from Employee and would

specialize the employee characteristics. The arrows in the class hierarchy or

inheritance diagram are directed from derived classes to base classes.

Inheritance lets the programmers reuse code and redefine its application within

the current environment. Reusing existing code saves time and money and

increases the reliability of software. It is the key to building maintainable, reusable

systems, and it provides a form of configuration management.

2. 2. 4 Abstraction

An abstraction denotes the essential characteristics of an object that distinguish

it from all other kinds of objects and thus provide crisply defined conceptual

boundaries, relative to the perspective of the viewer. An abstraction focuses on the

outside view of an object, and so allows to separate an object's essential behavior

from its implementation. The different kinds of abstractions include:

•

•

Entity abstraction : An object that represents a·useful model of a problem­

domain entity.

Action abstraction : An object that provides a generalized set of operations, all

of which perform the same kind of fuction.

14

•

•

Virtual machine abstraction: An object that groups together operations

that are all used by some superior level of control, or operations that all

use some junior-level set of operations.

Coincidental abstraction : An object that packages a set of operations that

have no relation to each other.

The different kinds of abstractions above are listed in the decreasing order of

usefulness. We strive to build entity abstractions because they directly parallel

the vocabulary of a given problem domain.

2. 2. 5 Encapsulation

Abstraction and encapsulation are complementary concepts: abstraction

focuses upon the outside view of an object and encapsulation, also known as

'information hiding', prevents users from looking its inside view, where the

behaviour of the abstraction is implemented. In this manner, encapsulation provides

explicit barriers among different abstractions. For example, in designing a database

application, it is standard practice to write programs so that they don't depend on the

physical representation of data, but depend only upon a scheme that denotes the

data's logical view. Hence, objects at higher levels of abstraction are shielded from

lower level implementation details.

Whereas abstraction "helps people to think about what they are doing",

encapsulation "allows program changes to be reliably made with limited effort".

In other words, Encapsulation is the process of hiding all of the details of an

object that do not contribute to its essential characteristics. For abstraction to work,

implementations much be encapsulated. In practice, this means that each dass

15

must have two parts: an interface and an implementation. The interface of a class

captures only its outside view, encompassing our abstraction of the behavior common

to all instances of the class. The implementation of a class comprises the

representation of the abstraction as well as the mechanisms that achieve the desired

behavior. This explicit division of interface/implementation represents a clear

separation of concerns: the interface of a class is the only place where we assert all

of the assumptions that a user may make about any instance of the class; the

implementation encapsulates details about which no user may make assumptions.

2. 3 The Windows Concepts

2. 3. 1 The Windows Paradigm

In a traditional data-processing or task-oriented application, the application

itself performs a series of tasks, under its own control. This model works well for

non-interactive applications, but it is not very well suited to interactive applications

such as user-interfaces. For an interactive application, a programming environment

that reacts in a natural way to the user's actions, is needed. If the user clicks the

mouse to push a button in a dialog, the necessary action should be performed.

Instead if the user closes a window, some other necessary task should be performed.

The main advantage of event-driven programming is that it addresses this need.

An event-driven program has an orientation that is different from a traditional

program. In an event-driven program, the program waits for a command. If the user

gives any message (by clicking the mouse, for example) the program sends a

message that describes that event, to the application. The application wakes up,

receives the message, processes the message, and then waits for another message.

16

Another advantage of using the event-driven programming model is that it helps

the program manage several independent applications. After an application

finishes processing a message, the program can send the next message to a different

application, making the user feel as if more than one application is running

simultaneously.

Microsoft Windows is a Graphical User Interface (GUI) built on DOS,

employing the event-driven programming. Microsoft Windows provides an intuitive and

easy to use GUI for DOS, using windows, icons, bitmaps, buttons, dialog boxes etc.

*

*

*

*

*

*

Microsoft Windows offers many benefits to the user. They include:

Provides an intuitive interface. If you know how to use one Windows application,

you know how to use them all.

No need to set up devices and drivers for each application. Windows

provides drivers to support various vendors' peripherals.

Multitasking. You can use many application simultaneously by opening any

number of overlapped windows.

Data interchange between different windows applications. You can

transfer data between your application and Clipboard etc.

Access to more memory: Windows runs in 386 Enhanced mode on 80386

processor to provide the virtual memory capabilities. With this, applications

have access to more memory than is physically available on the system.

Device-independent graphics. So graphical applications run on all standard

display adapters.

17

Microsoft Windows supports an Application Programming Interface (API) that

allows programmers to create Windows applications by providing a powerful library

of more than 600 functions to:

* Create and draw screen objects like windows, bitmaps, and dialog boxes.

* Monitor and process mouse and other keyboard activations.

2. 3. 1 The OWL Paradigm

The Object Windows Library of Borland C++ doesn't fundamentally alter

Windows' event driven paradigm, but it clearly provides a much more convenient and

trouble free way to use the event-driven paradigm. Object Windows simplifies the

process, allowing the programmer to focus on the application's function, rather

than its form. Object Windows uses the object-oriented features of Borland C++

to encapsulate parts of the Windows API, insulating us from the internals of Windows

programming. As a result, we can develop Windows programs with much less time

and effort.

Object Windows let us use objects to represent the fairly complex elements of

a Windows program. Its window objects encapsulate data that all windows require,

perform common window operations, and respond to common Windows messages

and events. Objeci Windows' window and application classes completely manage the

processing of messages, which normally comprises the bulk of a Windows application.

Specifically, Object Windows provides the following advantages:

Advantages of object-oriented programming.

18

Object-oriented programming is natural for user interface systems. Visual

objects on the display map to conceptual objects in the software. C++ provides

much stronger type and usage-checking than C, which is a tremendous boon in

Windows programming.

• Encapsulating Window information .

Object Windows supplies classes that define behavior and data storage for

the windows, dialog boxes, and controls of Windows applications. There is a

TWindow class for working with windows, a TDialog class for creating dialog

boxes, various other classes for the controls, and so on.

These classes often take care of many details automatically, and they

can all be used as base classes, which makes it easy to create specialized

behavior.

• Abstraction of many Windows API functions .

Object Windows simplifies the calling of Windows API functions by offering

object member functions that abstract many of the function calls. As many of the

parameter for Windows API functions are already stored in the data members of

interface objects, (such as windows, dialog boxes, and controls), the member

functions can use this data to supply Windows functions with parameters. In addition,

Object Windows groups related function calls into single member functions that

perform higher level tasks. This results in a streamlined, easier-to-use interface to

Windows.

While this approach greatly reduces the dependence on the hundreds of

Windows API functions, it does not restrict us from calling the API functions directly.

19

* Automatic message response.

Object Windows lets us associate class member functions with individual

messages. Such member functions are called 'message response functions'. This

eliminates the need for huge, unwieldy switch statements and it provides a far

cleaner way to manage messages.

2. 3. 3 Object Windows class hierarchy

Object Windows is a comprehensive set of classes that simplifies the

development of Windows programs with Borland C++. It is a library consisting of a

hierarchy of classes that can be used, modified, or added to, using inheritance. The

class hierarchy of Object Windows is shown in Fig. 2.2.

TComboBox
TGroupBox I
TButton

TCheckBox

TRadioButton

Fig. 2. 2 Object Windows Class Hierarchy

20

Object is the base class for all Object Windows derived class and is

defined in the Borland C++ container class library. TApplication defines the behavior

required of all Object Windows applications, and is derived from TModule.

TModule defines behavior shared by both dynamic-link libraries (DLLs) and

application modules.

The remaining objects in the Object Windows hierarchy are generally termed

as interface objects. They are interface objects in the sense that they represent

elements in the Windows user interface, and because they serve as a kind of

interface between the application code and the Windows environment.

TWindowsObject is a base class that unifies the three main types of Object

Windows interface objects: Windows, dialog boxes, and controls. It provides member

functions to handle the creation, message processing and destruction of window

objects.

Window Objects:

Window objects represent not only the familiar windows of the windows

environment, but also most of the visual elements within that environment, such

as controls. TWindow is a general-purpose window class whose instances can

represent main, pop-up or child windows of an application. TEditWindow is

derived from TWindow and defines a class that allows text editing in a window.

TFileWindow which is also derived from TWindow, defines a class that allows text

editing in a window, but can also load and save text files.

21

'" .· __..")-.,.

,· (",

;

Dialog Objects:

Dialog objects represent interactive dialog boxes containing controls such as

buttons, list boxes, and scroll bars. TDialog class serves as a base for derived

classes that manage Windows dialog boxes. TFileDialog is derived from TDialog

and defines a dialog that allows user to choose a file for any purpose, such as

opening or editing. TlnputDialog is also derived from TDialog and defines a dialog

box for user input of a single text item.

Control Objects:

Within windows and dialogs, controls allow users to enter data and select

options. Control objects provide a consistent and simple means of dealing with all

the different kinds of controls defined by Windows.

TControl is an abstract class that serves as a common base class for all

control objects. TButton defines Windows push buttons. TCheckBox, derived from

TButton, defines Windows check boxes and provide member functions to manage

their state. TRadioButton derived from TCheckBox, defines the creation and state

management for Windows radio buttons. TListBox class handles creation of and

selection from Windows list boxes, and defines member functions to manipulate items

in a list. TComboBox, derived from TListBox defines behavior for Windows combo

boxes. TGroupBox defines . Windows group boxes. TStatic provides member

functions that set, query, and clear the text of a static control. TEdit, derived from

TStatic provides the extensive text processing capabilities for a windows edit

control. TScroiiBar defines member functions that manage the range and thumb

position of a standalone scroll bar control.

22

MDI Objects:

Windows implements a standard for handling multiple windows within the

framework of a single window. This standard is called the 'Multiple Document

Interface (MDI)'. Object Windows provides a means of setting up and

manipulating MDI windows.

TMDIFrame provides the windowing behavior appropriate for the main

window of an application that follows the Windows MDI specification. TMOICiient

provides additional support for MDI windows. The MDICiient object is the object

that actually manages the MDI window's client area.

Scroller Objects:

TScroller is the object that gives life to Windows scroll bars, providing an

automated way to scroll the text and graphics in windows. TScroller also scrolls its

owner when the user drags the mouse from the inside to the outside of a window's

client area; therefore TScroller works for windows that don't even have scroll bars.

23

Chapter 3

DESIGN AND IMPLEMENTATION

The design and implementation of the Object-Oriented GUI for Hotel

Automation System can be divided into two parts: design and implementation of hotel

database and user interface. The user interface allows the user to access the database

through various predefined operations.

3. 1 Hotel Database Design

The hotel database has been designed as a relational database. The

database consists of five relations Room, Guest, Restaurant, Reservation and Bill.

The scheme and details of the five relations are given below:

* Room

The relation Room is defined on the following scheme.

Room = (RoomNumber, Type, Status, Rent)

The attribute 'RoomNumber' is the primary key of the Room relation. The

domain of 'Room Number' is {1, ... , 200}. The attribute 'Type' denotes the type of the

room. Its domain is {SINGLE NON_AC, SINGLE AC, DOUBLE NON_AC, DOUBLE

AC}. The 'Status' attribute denotes the status of the room and its domain is

{RESERVED, UNRESERVED}. 'Rent' attribute indicates the unit rent of the room per

day, and its domain is the set of real numbers.

* Guest

The relation Guest is defined on the following scheme.

Guest = (Name, Sex, Age, Address)

25

The attributes 'Name', 'Sex', 'Age' and 'Address' denote the guest's

name, sex, age and address respectively. The domain of 'Name' and 'Address' is any

character string of length NAMELEN and ADDRESSLEN respectively, defined in the

header file. 'Sex' can take either 'M' or 'F' and the domain of age is {1, ... , 1 00}.

* Restaurant

The Restaurant relation is defined on the following scheme.

Restaurant= (Item, Rate, Availability)

The attributes 'Item', 'Rate' and 'Availability' denote the name, unit rate,

and availability of items, respectively in the restaurant. The domain of 'Item' is the set of

character strings of length ITEMLEN, defined in the header file. The domain of 'Rate' is

the set of real number and the domain of 'Availability is {YES, NO}.

* Reservation

The relation Reservation is defined on the following scheme.

Reservation = (RoomNumber, Name, From, To)

To attribute 'RoomNumber' can take any value from the domain {1, ... ,

200}. The attribute 'Name' denote the name of the customer on whose name the

reservation is made for and its domain is the set of character strings of length

NAMELEN, defined in the header file. The attributes 'From' and 'To' denote the dates

from which date to which date the room is reserved for (inclusive of both the dates).

The domain of 'From' and 'To' is the set of character strings of the form '00/MMIYEAR',

whose length is DATELEN, as defined in the header file.

* Bill

The Bill relation is defined on the following scheme.

26

Bill = (Name, RoomNumber, Bill)

The attribute 'Name' denotes the name of the customer and its domain is

the set of character strings of length NAMELEN, defined in the header file. The domain

of 'Room Number' is {1, ... , 200}. The attribute 'Bill' indicates the total bill added to the

customer's account. The domain of 'Bill' is the set of real numbers.

3. 2 Hotel Database Implementation

The relations Room, Guest, Restaurant, Reservation and Bill have

been stored in the files room.$$$, guest.$$$, restaurant.$$$ and bill.$$$ respectively.

Each of the five relations have been implemented using the data

structure 'B·tree'. Instead of developing routines forB-tree implementation, the Borland

C++ Container Class Library's Btree class has been used. In the implementation of the

database, the Container Class Library's Date and String classes have been used to

represent dates and character strings respectively. The class hierarchies in the Borland

C++ Object-based Container Class Library is shown in Fig. 3. 1.

27

Fig. 3.1

Hash Table

Dictionary

Class hierarchies in Borland C++ Object-based Container
Class Library.

(Source: Borland C++ 3.1 Programmer's Guide)

BRoom, BGuest, BRestaurant, BReservation and BBill objects are

declared as Btree objects. BRoom B-tree stores the Room relation (RoomNumber,

Type, Status, Rent). BGuest B-tree stores the Guest relation (Name, Sex, Age,

Address). BRestaurant B-tree stores the Restaurant relation (Item, Rate, Availability).

BReservation B-tree stores the Reservation relation (RoomNumber, Name, From, To).

BBill B-tree stores the Bill relation (Name, RoomNumber, Bill). 'RoomEntry',

'GuestEntry', 'RestaurantEntry', 'ReservationEntry', and 'BiiiEntry' classes which are all

28

derived from the Sortable class, are created to hold the tuples of the relations Room,

Guest, Restaurant, Reservation, and Bill respectively. The inheritance diagram of the

relations is shown in Fig 3.2.

RoomEntry .-------l RestaurantEntry

GuestEntry '--------lReservationEntry

Bill Entry

Fig. 3.2 Class Inheritance Diagram for the classes
RoomEntry, GuestEntry, RestaurantEntry, ReservationEntry, BiiiEntry

Initially, when the application is started, the relations stored in the files

room.$$$, guest.$$$, restaurant.$$$, and bill.$$$ are used to construct the

corresponding 8-trees. All the processing of the database is done on the 8-trees. At the

end of the session, when the application is about to be closed, all the data in the 8-

trees is stored back into the corresponding files.

3. 3 User Interface Design:

The user interface system interacts with both the database and the user

as shown in the following Fig. 3. 3.

29

input data

User Interface System

source data destination data

Hotel Database

Fig. 3. 3 Interaction of user interface with user and database.

The user accesses the database through the user interface. When the

user gives commands to the interface system, it prompts the user for the input and the

user responds by giving the input data. The user interface system receives the user

input and retrieves the source data from the database and writes the updated data

back to the database, after processing. The user interface has been designed keeping

in mind, the facilities offered by Microsoft Windows and Borland's Object Windows

Library (OWL), such as windows, menus and dialog boxes. It is designed such that the

information flow across the user interface is minimized.

The user interface is designed as a menu driven system. The menu

structure is described in Chapter 4 SAMPLE SESSION.

3. 4 User Interface Implementation

The user interface has been implemented in Borland C++ 3.1 using

Object Windows Library (OWL) in MS-Windows 3.1 environment.

30

Object Windows greately simplified the implementation of the user

interface. The capabilities of MS-Windows and Object Windows Library have been

widely used in the implementation in order to reduce the programming effort.

The application object 'HoteiApp' has been derived from the

TApplication class. The application's main window 'HoteiMainWindow' has been

derived from the TWindow class. The dialog box objects for each of the menu items

'TReserveEnqDialog', 'TReserveDialog', TCanceiDialog',

'TBarMenuDialog', 'TChecklnDialog', 'TCheckOutDialog',

'TF oodMenuDialog',

'TPrepareBiiiDialog',

'TChangeAvaiiDialog' have all been derived from TDialog class. For the menu items

GuestEnquiry and UpdateDate, instead of defining separate classes, the TlnputDialog

class has been used. The inheritance diagrams for each of the above classes have

been showed in Figures 3. 4 through y.

TApplicatlon lWindow

THoteiApp THoteiMainWindow

Fig. 3. 4 Inheritance Diagrams for the Application and Main Window
objects

31

TDialog

;'

c TReserveEnqDialog (TBarMenuDialog)
TReserveDialog

\,
TChecklnDialog)

TCanceiDialog TCheclcOutDialog

TF oodMenuDialog r TPrepareBiliDialog
\,

TChangeAvaiiDial og

Fig. 3. 5 Inheritance Diagram for the Windows Dialog Boxes

The user interface application's main program consists of just three

statements. The first statement of the WinMain (Windows main program) constructs

the application object by calling its constructor. The constructor initializes the data

members of the application object. The second statement calls the application's Run

member function. The third statement returns the final status of the application that

Object Windows stores in the Status data member. Run calls lnitApplication and

lnitlnstance to perform the first-instance and each instance initialization, respectively.

lnitMainWindow is then called to create the main window. Run then sets the

application in motion by calling Messageloop to begin processing incoming Windows

messages, which directly affect the application's flow. MessageLoop calls member

functions that process particular incoming messages.

The application flow of the user interface application is shown below.

Chapter 6 gives a partial listing of the source code.

32

3. 4. 1 Application flow

Begin

End

Construct a T Application object

Construct aTMainWindow object

While(message = WM_ QUIT)

Process messages for the application

Destruct TMainWindow object

Destruct TApplication object

Return status

3. 4. 1. 1 Construct a TApplication object

Begin

Initialize TApplication object data members

End

3. 4. 1. 2 Construct a TMainWindow object

Begin

End

Initialize TWindow object data members

Assign menu to TMainWindow ogject

Build BRoom B-tree from room.$$$ file

Build BGuest B-tree from guest.$$$ file

Build BRestaurant B-tree from restrnt.$$$ file

Build BReservation B-tree from reserve.$$$ file

Build BBill B-tree from bill.$$$ file

33

3. 4. 1. 3 Process messages for the application

Begin

Case Active object:

THoteiMainWindow => Process main window messages

TReserveEnqDialog => Process reservation enquiry dialog messages

TReserveDialog => Process reservation dialog messages

TCanceiDialog => Process cancel reservation dialog messages

TFoodMenuDialog => Process food menu dialog messages

TBarMenuDialog => Process bar menu dialog messages

TlnputDialog => Process guest enquiry dialog messages
(Guest Enquiry)

TChecklnDialog => Process check-in dialog messages

TCheckOutDialog => Process check-out dialog messages

TPrepareBiiiDialog => Process prepare bill dialog messages

TlnputDialog => Process update date messages
(Update Date)

TChangeAvaiiDialog => Process change availability dialog messages

THelpWindow

End Case

=> Process help window messages

End

3. 4. 1. 3. 1 Process main window messages

Begin

Case User Selection:

menu item RoomReservationEnquiry => Execute TReserveEnqDialog

menu item RoomReservation => Execute TReserveDialog

menu item Cancellation => Execute TCanceiDialog

34

menu item FoodMenu

menu item BarMenu

menu item GuestEnquiry

menu item Checkln

menu item CheckOut

menu item PrepareBill

menuitem UpdateDate

=> Execute TFoodMenuDialog

=> Execute TBarMenuDialog

=> Execute TlnputDialog
(Guest Enquiry)

=> Execute TChecklnDialog

=> Execute TCheckOutDialog

=> Execute TPrepareBiiiDialog

=> Execute TlnputDialog
(Update Date)

menu item ChangeA vailabilityOfF ood/Drink

menu item Help

End Case

End

35

=>Execute TChangeAvaiiDialog

=> Execute Help Window

Chapter 4

Sample Session

The Hotel Automation System is a window-based menu-driven system.

The application has the same "look and feel" as any standard MS-Windows application

and all the common operations such as selecting an item, closing, minimizing and

maximizing etc. will work in a similar fashion as any standard MS-Windows application.

The application's main window(Fig. 4. 1) shows the main menu of the

application. The ,bodging menu provides the services related to the lodging such as

reservation of rooms etc. The Boarding menu provides the services related to the

restaurant. The General menu provides the general services such as enquiry of a

guest etc. The Internal menu provides the services which are of the internal use of the

hotel management, such as change availability of food/drink items. The Help menu

provides the information about the application and its services.

l
.. ~ ... ~
~ Hotel Automation System a~1

.bodglng floardlng .G.eneral Internal Help

Fig. 4. 1 The main window of the application

37

The selection of the bodging menu item leads to a sub-menu(Fig. 4. 2),

showing the individual services that are available in the bodging menu.

Roomfleservation
.C.ancellation

Fig. 4.2 The Lodging menu

The Boarding pulldown menu is shown in Fig. 4. 3. It lists the services

related to the restaurant and the bar.

Fig. 4. 3 The Boarding menu

38

Selection of the General pulldown menu shows the general services as

shown in Fig. 4.4.

Checkln
Check.Qut

Pre are.flill

Fig. 4. 4 The General menu

Selection of the !nternal menu item in the main menu gives the pull

down menu as shown in Fig. 4. 5.

Fig. 4. 5 The Internal menu

39

Selecting the t!elp menu item in the main window gives the following

pulldown menu(Fig.4.6), which provides the general help about the application and its

services.

Fig. 4. 6 The Help menu

40

When the user selects the RoomReservation,!;_nquiry menu item in the

bodging menu, the Room Reservation Enquiry dialog, shown in Fig. 4. 7 appears. It

takes the room type and dates of booking as input and returns a message whether the

reservation exists or not.

ROOM RESERVATION ENQUIRY

Room Type

SINGLE NON AC II
SINGLE AC
DOUBLE NON_AC
DOUBLE AC

Booking From

125-12-1994

To

129-12-1994

Fig. 4. 7 Room Reservation Enquiry

41

Selection of Room,Beservation menu item from the bodging menu

gives the Room Reservation dialog (Fig. 4. 8). This dialog box takes the guest's details

such as name, address etc., the room type and booking dates as input and reserves

the room for the specified period, returning the reservation number. If the reservation

does not exist, it gives a message to that effect.

ROOM RESERVATION

Name

I M. Srinivas

Occupation

I Govt. servant

Street

I Mehdipatnam

City

lHyderabad

Booking From 125-12-1994

To 129-12-1994

Fig. 4. 8 Room Reservation dialog

42

If the user selects the ~ancellation menu item from the ,bodging menu,

the Cancellation dialog appears on the screen. It takes the reservation number and

cancellation dates and cancels the reservation.

CANCELLATION

Reservation Number

11001

Cancel Reservation

From jl0-11-199.4

To 114-11-1994

Fig. 4. 9 Cancellation dialog

43

When the user selects the EoodMenu menu item from the Boarding

menu, the Food Menu dialog appears(Fig. 4. 10). It lists the available food items in a list

box and allows the user to select any number of items from the menu.

FOOD MENU

Select Items

Fig. 4. 10 Food Menu dialog

44

If the user selects the BarMenu menu item from the Boarding menu, the

Bar Menu dialog appears(Fig. 4. 11). This lists the available drink items in a list box and

allows the user to select any number of items from the list.

BAA MENU

Select Items

Fig. 4. 11 The Bar Menu dialog

Selecting the Guest£nquiry menu item from the General menu prompts

the Guest Enquiry dialog as shown in Fig. 4. 12. This dialog takes the guest's name

and returns the guest's details.

GUEST ENQUIRY

Enter the Name

jsriniva~

Fig. 4. 12 The Guest Enquiry dialog

45

Selecting the Check-In menu item from the General menu gives the

Check In dialog (Fig. 4. 13). It takes the guest's details and performs the check-in

operation. This operation is performed when a guest checks in the hotel against a

reservation. It changes the status of the room from 'VACANT' to 'OCCUPIED'.

CHECK-IN

RoomNumber 1..._2_50 __ ___,

Name lA. S. R. Sundantm

Sex EJ
Age 1~5

Address:

Street I Kodambaklcam

City !Madras

Fig. 4. 13 The Check In dialog

46

Selection of the Check-Out menu item from the General menu gives the

Check Out dialog(Fig. 4. 14). It takes the guest's details and performs the check-out

operation. This operation is performed when a guest vacates the room on expiry of the

reservation or in advance. It changes the statut of the room from 'OCCUPIED' to

'VACANT'.

CHECK-OUT

RoomNumber 1112

Name !Micheal

Sex ~
Age [23

Address:

Street lvasant Vihar

City !New Delhi

Fig. 4. 14 The Check Out dialog

47

Selection of the PrepareBill menu item from the General menu gives

the Prepare Bill dialog(Fig. 4. 15). It takes the customer's name and room number(if

resident) and prepares the bill.

PREPARE BILL

Name I B. Satyavathi

RoomNo 1._2_0_3_----.J

Fig. 4. 15 Prepare Bill dialog

Selecting the !,!pdateDate menu item from the !nternal menu gives the

Update Date input dialog box(Fig. 4. 16). This operation allows to update the 'current

date' by taking the new date as input. The 'current date' is used in various calculations.

This operation is usually performed at the beginning of a day.

UPDATE DATE

Enter New Date

1•-1-1995

Fig. 4. 16 The Update Date dialog

48

Selecting the Change~vailabilityOfFood/Drink menu item from the

!nternal menu gives the Change Availability dialog. Selecting the 'Food' or 'Drinks'

button fills the list box with food or drink items respectively. Fig. 4. 17 shows the

Change availability dialog for food items. The user can change the availability by

clicking on the particular item.

CHANGE AVAILABILilY

Select:

Change Availability:

Green Salad
Russian Salad
Tandoori Salad
Butter Paneer
Malal Kofta
Dal Makhani

NO
YES
NO

YES
YES

YES

Fig. 4. 17 Change Availability dialog

49

If the user selects the _8bout menu item from the Help menu, a message

box giving information about the application appears on the screen.

· ABOUT THE APPLICATION

This Application "Object·Orlented GUI
for Hotel Automation System" provides a
user·friendly. easy to use graphical
user interface for Hotel Automation System.
The Hotel Automation System is meant to
automate various operations performed
In a Star Hotel for fast and efficient
functioning.

The application is developed in
Borland C++ 3.1 using Object Windows
Llbrary[OWL) In MS·Windows 3.1 environment.

Fig. 4. 18 About message box

50

If the user selects the Help.§.ystem menu item from the f:!elp menu, the

Help System window appears on the screen(Fig. 4. 19). The Help System provides

information about various services the Hotel Automation System provides by listing

them in a list box. Selection of any particular service displays the information regarding

that service.

;3 . · Help System

Help Information:

This operation Is performed when a guest
checks in the hotel against a reservation.
It changes the status of the room from
'VACANT' to 'OCCUPIED'.

Fig. 4. 19 The Help System window

51

Chapter 5

Conclusion And Enhancements

Graphical User Interfaces play very important role in the success of any

software product. The concept of GUI has taken a revolutionary change with the

introduction of systems like MS-Windows. Object-Oriented Programming is well suited

for GUI development and made the development of GUI easy. Borland's Object

Windows Library (OWL) further simplified the development of Windows applications.

The Hotel Automation System automates the activities of a Star Hotel for

fast and efficient operations.

Time constraints forced us to limit the project to a prototype Hotel

Automation System instead of a real world system. Some of the possible

enhancements that can be made to this system are discussed below.

The present Hotel Automation System performs 11 selected operations.

More operations can be added to represent other activities like laundry, discotheque

etc. Extra operations can be easily added by defining classes to represent them and

adding aditional member response functions to the appropriate window objects.

The present system supports only a single restaurant. Provision can be

made to support number of different restaurants.

Not every person is allowed to access every operation. Some previleged

operations should be restricted to specific persons only for security reasons. For

example, 'ChangeAvailabilityOfFood/Orink' operation should be allowed to be

performed only by Manager(Catering).

53

Accounting and auditing of the hotel's financial accounts can be done.

Employee information and salary calculation and maintanance can be included in the

Hotel Automation System.

As the present system provides only a limited help facility, a full-fledged

on-line help system can be added to improve the user interface.

User interface can be made more effective and user-friendly by including

more controls, like check boxes, combo boxes, group boxes, radio buttons etc.

Database design can be normalized so that data redundancy and other pitfalls can be

minimized.

54

Chapter 6

PROGRAM LISTING

The project file of the application contains the files hotel.cpp,

he/pwlnd.cpp, hotrl.rc and standard.def. The header files of the application are

hotel.h, resource.h, helpwind.h and project.h. In this Chapter, a listing of the

project's main file hotel.cpp and the project's header file project.h is provided to give a

brief outline of the application.

The hote/.cpp file contains WinMain and member functions for

HoteiApp, THoteiMainWindow and all the dialog box classes. The project.h file contains

class declarations for all window classes and classes to represent tl'le members of

different B-trees. The hotel.rc file contains the resource data. The standard.def file

contains the memory stack and memory heap requirements of the application.

56

6. 1 Application's MainProgram (hotel.cpp)

#include "project.h"

I************** Implementation of TReserveEnqDialog functions ***********/

II Construct the TReserveEnqDialog dialog
TReserveEnqDialog:: TReserveEnqDialog(PTWindowsObject AParent, LPSTR ANa me,

PTModule AModule = NULL)
: TDialog(AParent,AName,AModule)

{
new TListBox(this,l D _LISTBOX);
new TEdit(thls,ID _FROMEDIT, DA TELEN ,NULL);
new TEdit(this,ID_ TOEDIT,DATELEN,NULL);
new TButton(this,IDOK);
new TButton(this,IDCANCEL);
TransferBuffer = &ReserveEnqData;

}

TReserveEnqDialog::-TReserveEnqDialogQ
{
}

I************ Implementation of TReserveDialog functions ***************I

II Construct the TReserveDialog dialog
TReserveDialog::TReserveDialog(PTWindowsObject AParent,LPSTR AName,

PTModule AModule = NULL)

{
: TDialog(AParent,AName,AModule)

new TEdit(this,ID_NAMEEDIT,NAMELEN,NULL);
new TEdit(this,ID_OCCUPATIONEDIT,75,NULL);
new TEdit(this,l D _ STREETEDIT, 75,NULL);
new TEdit(this,ID_CITYEDIT,75,NULL);
new TEdit(this,ID_RFROMEDIT,DATELEN,NULL);
new TEdit(this,ID_RTOEDIT,DATELEN,NULL);
new TListBox(this,ID_RLISTBOX);
new TButton(this,IDOK);
new TButton(this,IDCANCEL);
TransferBuffer = &ReserveData;

}

TReserveDialog: :-TReserveDialogQ
{
}

!*************** Implementation of TCanceiDialog functions **************/

II Construct the TCanceiDialog dialog

57

TCanceiDialog::TCanceiDialog(PTWindowsObject AParent,
LPSTR AName,PTModule AModule = NULL)
: TDialog(AParent,AName ,AModule)

{
new TEdit(this,ID_RNUMBER,75,NULL);
new TEdit(this,ID_CFROMEDIT,DATELEN,NULL);
new TEdit(this, ID _ CTOEDIT ,DA TELEN ,NULL);
new TButton(this,IDOK);
new TButton(this,IDCANCEL);
TransferBuffer = &CanceiData;

}

!************** Implementation of TFoodMenuDialog functions *************/

II Construct the TFoodMenuDialog dialog
TFoodMenuDialog::TFoodMenuDialog(PTWindowsObject AParent,LPSTR AName,

PTModule AModule = NULL)
:TDialog(AParent,AName,AModule)

{
ListBox =new TListBox(this,ID_FMLISTBOX);
new TButton(this,IDOK);
new TButton(this,IDCANCEL);
ListBox->CiearlistO;
ListBoxData =new TListBoxDataQ;
for(int i=O;i<MAXFOODITEMS;i++)
{
if(strcmp(YFood[i],Food[i]) == 0)
ListBoxData->AddString(IFood[i]);

}
TransferBuffer = &ListBoxData;

}

TFoodMenuDialog::-TFoodMenuDialogQ
{
}

!**-************* Implementation of TBarMenu functions *****************/

II Construct the TBarMenuDialog dialog
TBarMenuDialog::TBarMenuDialog(PTWindowsObject AParent,LPSTR AName,

PTModule AModule = NULL)

{
: TDialog(AParent,AName,AModule)

ListBox =new TListBox(this,ID_BMLISTBOX);
new TButton(this,IDOK);
new TButton(this,IDCANCEL);
ListBox->CiearlistQ;
ListBoxData = new TListBoxDataQ;
for(int i=O;i<MAXDRINKITEMS;i++)
{
if(strcmp(YDrink[i],Drink[i]) == 0)
ListBoxData-> AddStri ng (I Dri n k[i]);

58

}
TransferBuffer = &ListBoxData;

}

TBarMeni.JDialog::-TBarMenuDialogO
{
}

!*************** Implementation of TChecklnDialog functions*************/

II Construct the TChecklnDialog dialog
TChecklnDialog::TChecklnDialog(PTWindowsObject AParent,LPSTR AName,

PTModule AModule = NULL)
: TDialog(AParent,AName,AModule}

{

new TEdit(this,ID_ROOM,ROOMLEN,NULL);
new TEdit(this,ID_NAME,NAMELEN,NULL);
new TEdit(this, I 0 _ SEX,SEXLEN ,NULL);
new TEdit(this,ID_AGE,AGELEN,NULL);
new TEdit(this,ID_STREET,75,NULL);
new TEdit(this,ID_CITY,75,NULL);
new TButton(this,IDOK);
new TButton(this,IDCANCEL);
TransferBuffer = &ChecklnData;

}

TChecklnDialog::-TChecklnDialogO
{
}

!*************** Implementation of TCheckOutDialog functions *************/

//Construct the TCheckOutDialog dialog
TCheckOutDialog::TCheckOutDialog(PTWindowsObject AParent,LPSTR AName,

PTModule AModule = NULL)
: TDialog(AParent,AName,AModule)

{
new TEdit(this,ID_CROOM,ROOMLEN,NULL);
new TEdit(this,ID_CNAME,NAMELEN,NULL);
new TEdit(this,ID_CSEX,SEXLEN,NULL);
new TEdit(this,ID_CAGE,AGELEN,NULL);
new TEdit(this,ID_CSTREET,75,NULL);
new TEdit(this,ID_CCITY,75,NULL);
new TButton(this,IDOK);
new TButton(this,IDCANCEL);
TransferBuffer = &CheckOutData;

}

TCheckOutDialog: :-TCheckOutDialogO
{
}

59

!************* Implementation of PrepareBiiiDialog functions H**********/

II Construct the TPrepareBiiiDialog dialog
TPrepareBiiiDialog::TPrepareBiiiDialog(PTWindowsObject AParent,LPSTR AName,

PTModule AModule = NULL)
: TDialog(AParent,AName,AModule)

{
new TEdit(this,ID_BNAME,NAMELEN,NULL);
new TEdit(this,ID_BROOM,ROOMLEN,NULL);
new TButton(this,IDOK);
new TButton(this,IDCANCEL);
TransferBuffer = &PrepareBiiiData;

}

TPrepareBiiiDialog::-TPrepareBiiiDialogQ
{
}

!************** Implementation of ChangeAvaiiDialog functions************/

//Construct the TChangeAvaiiDialog dialog
TChangeAvaiiDialog::TChangeAvaiiDialog(PTWindowsObject AParent,LPSTR AName,

PTModule AModule = NULL)
: TDialog(AParent,AName,AModule)

{
ListBox =new TListBox(this,ID_ALISTBOX);
new TButton(this,ID_FOODBTN);
new TButton(this,ID_DRINKBTN);
new TButton(this,IDOK);
new TButton(this,IDCANCEL);

}

TChangeAvaiiDialog::-TChangeAvaiiDialogQ
{
}

II Process Food button message
void TChangeAvaiiDialog::HandleFoodButtonMsg(RTMessage)
{
inti;
ListBox->CiearListQ;
FoodListData =new TListBoxDataQ;
for(i=O;i<MAXFOODITEMS;i++)
FoodListData->AddString(Food[i]);

TransferBuffer = &FoodListData;
ListBox-> Transfer(&FoodListData,TF _SETDATA);

}

II Process the Drink button message
void TChangeAvaiiDialog::HandleDrinkButtonMsg(RTMessage)
{

60

ListBox->CiearListO;
DrinkListData = new TListBoxDataQ;
for(int i=O;i<MAXDRINKITEMS;i++)
DrinkListData->AddString(Drink[i]);

TransferBuffer = &DrinklistData;
ListBox-> Transfer(&DrinkListData, TF _ SETDA T A);

}

II Process the List box message
void TChangeAvaiiDialog::HandleListBoxMsg(RTMessage Msg)
{
char Selection(25];
BOOL flag;
if(Msg.LP.Hi == LBN_SELCHANGE)
{
int lnd = ListBox->GetSellndexQ:
ListBox->GetSeiString(Selection,25);
if{(lnd<MAXFOODITEMS)&&(Ind<MAXDRINKITEMS))
{

}

if(lstrcmp(Selection,Food(lnd]))
flag= TRUE;

else if(lstrcmp(Selection,Drink[lnd]))
flag = FALSE;

}
else if(lnd<MAXFOODITEMS)

flag= TRUE;
else if(lnd<MAXDRINKITEMS)

flag = FALSE;
if(flag)
{
if(! strcmp(Selection, YF ood[l nd]))
strcpy(Food[lnd],NFood(lnd]);

else if(!strcmp(Selection,NFood(lnd]))
strcpy(Food[lnd],YFood(lnd]);
listBox->DeleteString(lnd);
ListBox->lnsertString(Food[lnd],lnd);

}
else
{
lf{lstrcmp(Selection,YDrink[lnd]))
strcpy(Dri nk[l nd], NDri n k[l nd]);

else if(lstrcmp(Selection,NDrink[lnd]))
strcpy(Drink[lnd],YDrink[lnd]);
ListBox->DeleteString(lnd);
listBox->lnsertString(Drink[lnd],lnd);

}
}

I************* Implementation of THoteiMainWindow functions ***************I

II Construct the Application's MainWindow object
THoteiMainWindow::THoteiMainWindow(PTWindowsObject AParent,LPSTR A Title)

: TWindow(AParent,ATitle)
{

61

OFSTRUCT of;
int RmHandle,GHandle,RtHandle,RvHandle,BHandle;
char RoomNo[ROOMLEN], Type[TYPELEN],Status(ST A TUSLEN] ,Biii[BI LLLEN];
char Sex[SEXLEN],Age[AGELEN),Address[ADDRESSLEN], F rom[DA TELEN], To[DA TELEN]:
char Rate[RATELEN],Name[NAMELEN], ltem[ITEMLEN],Availability[AVAILLEN];
char Rent[RATELEN];
AssignMenu("MAINMENU");
strcpy(DateBuffer, "DD/MMIYY");
strcpy(GuestBuffer, "Name");

r Constructing the 8-tree objects from the files at the beginning of the
session*/

RmHandle = OpenFile("room.$$$",&of,OF _READ);
while(!eof(RmHandle))
{
_lread(RmHandle,RoomNo,ROOMLEN);
_lread(RmHandle, Type, TYPE LEN);
_lread(RmHandle,Status,STATUSLEN);
_lread(RmHandle ,Rent,RA TELEN);
BRoom.add(*new RoomEntry(RoomNo,Type,Status,Rent));

}
_lclose(RmHandle);

GHandle = OpenFileC'guest.$$$",&of,OF _READ);
while(!eof(GHandle))
{
_lread(G Handle ,Name ,NAMELEN);
_lread(GHandle,Sex,SEXLEN);
_lread(GHandle,Age,AGELEN);
_lread(GHandle,Address,ADDRESSLEN);
BGuest.add(*new GuestEntry(Name,Sex,Age,Address));

}
_lclose(GHandle);

RtHandle = OpenFile("restrnt.$$$",&of,OF _READ);
while(!eof(RtHandle))
{
_lread(RtHandle, Item, ITEMLEN);
_lread(RtHandle,Rate,RATELEN);
_lread(RtHandle,Availability,AVAILLEN);
BRestaurant.add((Object&)*new RestaurantEntry(ltem ,Rate ,Availability));

}
_lclose(RtHandle);

RvHandle = OpenFile("reserve.$$$",&of,OF _READ);
while(!eof(RvHandle))
{
_lread(RvHandle,RoomNo,ROOMLEN);
_lread(RvHandle,Name,NAMELEN);
_lread(RvHandle,From,DATELEN);
_lread(RvHandle, To,DATELEN);
BReservation .add(*new ReservationEntry(RoomNo,Name, From, To));

}
_lclose(RvHandle);

BHandle = OpenFile("bill.$$$",&of,OF _READ);

62

while(!eof(BHandle))
{
_lread(BHandle,Name,NAMELEN);
_lread(BHandle, Room No, ROOMLEN);
_lread(BHandle,Biii,BILLLEN);
BBill.add((Object&)*new BiiiEntry(Name,RoomNo,Bill));

}
_lclose(BHandle);

}

void THoteiMainWindow::HandleEnquiryMsg(RTMessage)
{
if(GetApplicationO->ExecDialog(new TReserveEnqDialog(this,

"ENQUIRYDIALOG"))==IDOK)

}

{
GlobaiRoomNo = 1;
ReservationEntry& m = (ReservationEntry&)BReservation.firstThat(

testMember, 0);
if(GiobaiRoomNo < MAXROOMS)
MessageBox(HWindow, "Yes, Reservation Exists", "MESSAGE" ,MB_ OK);

else
MessageBox(HWindow,"Sorry! Reservation Does not Exist","MESSAGE",MB_OK);

}

void THoteiMainWindow::HandleResvMsg(RTMessage)
{
if(GetApplicationO->ExecDialog(new TReserveDialog(this,

"RESERVATIONDIALOG")) ==lOOK)
{
char temp[ROOMLEN];
char Buf[1 00];
GlobaiRoomNo = 1;
Reservation Entry& m = (ReservationEntry&)BReservation. firstThat(

testMember,O);
if(GiobaiRoomNo < 3)
{
BReservation.add(*new ReservationEntry(itoa(GiobaiRoomNo,temp, 1 0),

ReserveData.Name,ReserveData.FromEdit,ReserveData.ToEdit));
wsprintf(Buf,"RoomNumber %dIs Reserved From %s To o/os",GiobaiRoomNo,

ReserveData.FromEdit,ReserveData.ToEdit);
MessageBox(HWindow,Buf, "MESSAGE" ,MB_ OK);

}
else

MessageBox(HWindow,"Sorry! The Reservation Does Not Exist","MESSAGE",
MB_OK);

}
}

void THoteiMainWindow::HandleCanceiMsg(RTMessage)
{
GetApplicationQ->ExecDialog(new TCanceiDialog(this,"CANCELDIALOG"));

}

void THoteiMainWindow::HandleFoodMsg(RTMessage)

63

{
GetApplicationO->ExecDialog(new TFoodMenuDialog(this,"FOODDIALOG"});

}

void THoteiMainWindow::HandleBarMsg(RTMessage)
{
GetApplicationO->ExecDialog(new TBarMenuDialog(this,"BARDIALOG"));
}

void THoteiMainWindow::HandleGuestEnqMsg(RTMessage)
{
GetApplicationO->ExecDialog(new TlnputDialog(this,"GUEST ENQUIRY",

"Enter the Name",GuestBuffer,sizeof GuestBuffer));
}

void THoteiMainWindow: :HandleCheckl nMsg(RTMessage)
{
GetApplicationO->ExecDialog(new TChecklnDialog(this,"CHECKINDIALOG"));

}

void THoteiMainWindow::HandleCheckOutMsg(RTMessage)
{
GetApplicationO->ExecDialog(new TCheckOutDialog(this,

"CHECKOUTDIALOG"));
}

void THoteiMainWindow::HandlePrepareBiiiMsg(RTMessage)
{

}

GetApplicationO->ExecDialog(new TPrepareBiiiDialog(this,
"PREPAREBILLDIALOG"));

void THoteiMainWindow::HandleDateMsg(RTMessage)
{
GetApplicationO->ExecDialog(new TlnputDialog(this,"UPDATE DATE",

"Enter New Date",DateBuffer,sizeof DateBuffer));
}

void THoteiMainWindow::HandleChangeAvaiiMsg(RTMessage)
{
GetApplicationO-> ExecDialog(new TChangeA vaiiDialog(this,

"CHANGEAVAILDIALOG"));
}

void THoteiMainWindow::HandleAboutMsg(RTMessage)
{
char *Buff;
Buff=
"This Application \"Object-Oriented GUI\r\n"
"for Hotel Automation System\" provides a\r\n"
"user-friendly, easy to use graphical\r\n"
"user interface for Hotel Automation System.\r\n"
"The Hotel Automation System is meant to\r\n"
"automate various operations performed\r\n"
"in a Star Hotel for fast and efficient\r\n"
"functioning.\r\n\n"

64

}

The application is developed in\r\n"
"Borland C++ 3.1 using Object Windows\r\n"
"Library(OWL) in MS-Windows 3.1 environment.";

MessageBox(HWindow,Buff, "ABOUT THE APPLICATION" ,MB_OK);

void THoteiMainWindow::HandleHelpMsg(RTMessage)
{
HlpWindow = new HelpWindow(this);
GetApplicationO->MakeWindow(HipWindow);

}

BOOL THoteiMainWindow::CanCioseO
{
OFSTRUCT of;
int RmHandle,GHandle,RtHandle,RvHandle,BHandle;
int no_of_items,i;
String& RoomNo(*new Stringf"')),Type(*new StringC"'));
String& Status(*new String("'')),Age(*new StringC"')),Bill(*new StringC"'));
String& Availability(*new StringC'")),Sex(*new StringC"'));
String& Address(*new Stringf"')),From(*new String("")),To(*new String(""));
String& Rate(*new String("")),Name(*new String("")),ltem(*new String(""));

II Storing the data from the B-trees to the files at the end of the session
no_of_items = BRoom.getltemslnContainerO;
RmHandle = OpenFile("room.$$$",&of,OF _READWRITEjOF _CREATE);
for(i=O;i<no_of_items;i++)
{
RoomNo = ((RoomEntry&)(BRoom[i])).RoomNoO;
Type = ((RoomEntry&)(BRoom(i])).TypeO;
Status = ((RoomEntry&)(BRoom[i])).StatusO;
Rate = ((RoomEntry&)(BRoom[i])).RentO;
_lwrite(RmHandle,RoomNo,ROOMLEN);
_lwrite(RmHandle, Type, TYPELEN);
_lwrite(RmHandle,Status,STATUSLEN);
_lwrite(RmHandle,Rate,RA TELEN);

}
_lclose(RmHandle);

no_of_items = BGuest.getltemslnContainerO;
GHandle = OpenFilef'guest.$$$",&of,OF _READWRITEIOF _CREATE);
for(i=O;i<no_of_items;i++)
{
Name= ((GuestEntry&)(BGuest[i])).NameO;
Sex= ((GuestEntry&)(BGuest[i])).SexO;
Age = ((GuestEntry&)(BGuest[i])).AgeO;
Address = ((GuestEntry&)(BGuest[i])).AddressO;
_lwrite(GHandle,Name,NAMELEN);
_lwrite(GHandle, Sex, SEXLEN);
_lwrite(GHandle ,Age ,AGE LEN);
_lwrite(GHandle ,Address,ADDRESSLEN);
}

_lclose(GHandle);

no_of_items = BRestaurant.getltemslnContainerO;
RtHandle = OpenFile("restmt.$$$",&of,OF _READWRITEjOF _CREATE);

65

for(i=O;i<no_of_items;i++)
{
Item = ((RestaurantEntry&)(BRestaurant[i])).ltemQ;
Rate = ((RestaurantEntry&)(BRestaurant[i])) .RateQ;
Availability = ((RestaurantEntry&)(BRestaurant[i])) .AvailabilityQ;
_lwrite(RtHandle,ltem,ITEMLEN);
_lwrite(RtHandle,Rate,RATELEN);
_lwrite(RtHandle,Availability ,AVAILLEN);
}

_lclose(RtHandle);

no_of_items = BReservation.getltemslnContainerQ;
RvHandle = OpenFile("reserve.$$$",&of,OF _READWRITE!OF _CREATE);
for(i=O;i<no_of_items;i++)
{
RoomNo = ((ReservationEntry&)(BReservation[i])).RoomNoQ;
Name = ((ReservationEntry&)(BReservation[i])).NameQ;
From = ((ReservationEntry&)(BReservation[i])).FromQ;
To= ((ReservationEntry&)(BReservation[i])).ToQ;
RoomNo.printOn(cout);
Name.printOn(cout);
From.printOn(cout);
To.printOn(cout);
_lwrite(RvHandle ,Room No ,ROOM LEN);
_lwrite(RvHandle,Name,NAMELEN);
_lwrite(RvHandle,From,DATELEN);
_lwrite(RvHandle, To ,DA TELEN);
}

_lclose(RvHandle);

no_of_items = BBill.getltemslnContainerQ;
BHandle = OpenFile('bill.$$$",&of,OF _READWRITE!OF _CREATE);
for(i=O;i<no_of_items;i++)
{
Name= ((BillEntry&)(BBill[i])).NameQ;
RoomNo = ((BiiiEntry&)(BBill[i])).RoomNoQ;
Bill = ((BiiiEntry&)(BBill[i])).BiiiQ;
_lwrite(BHandle,Name,NAMELEN);
_lwrite(BHandle,RoomNo,ROOMLEN);
_lwrite(BHandle,Biii,BILLLEN);
}
_lclose(BHandle);

delete &RoomNo;
delete &Type;
delete &Status;
delete &Availability;
delete &Sex;
delete &Age;
delete &Address;
delete &From;
delete &To;
delete &Rate;
delete &Name;
delete &Item;
delete &Bill;

66

return TRUE;
}

/******-******* Hotel Application Object HoteiApp functions ************/

II Construct the Application object
HoteiApp::HoteiApp(LPSTR AName,HINSTANCE hlnstance,HINSTANCE hPrevlnstance,

LPSTR lpszCmdLine,int nCmdShow)
: TApplication(AName,hlnstance,hPrevlnstance,lpszCmdLine,nCmdShow)
0

void HoteiApp::lnitMainWindowQ
{
MainWindow = new THoteiMainWindow(NULL,Name);

}

/*********************** Main function WinMain **************************/

//Main function for the Application
int PASCAL WinMain(HINSTANCE hlnstance,HINSTANCE hPrevlnstance,

LPSTR lpszCmdLine,int nCmdShow)
{
HoteiApp HoteiObj("Hotel Automation System",hlnstance,hPrevlnstance,

lpszCmdLine,nCmdShow);
HoteiObj.RunQ;
return HoteiObj.Status;

}

6. 2 Application's Header File (Project.h)

#include <owl.h>
#include <io.h>
#include <iostream.h>
#include <listbox.h>
#include <button.h>
#include <edit.h>
#include <inputdia.h>
#include <string.h>
#include <bwcc.h>
#include <assoc.h>
#include <btree.h>
#include <strng.h>
#include <ldate.h>
#include "vcS.h"
#include "resource.h"
#include "helpwind.h"

Btree BRoom(S),BGuest(S),BRestaurant(S),BReservation(S),BBiii(S);
int GlobaiRoomNo;
PTListBox FdListBox,BrListBox;

67

char *YFood[MAXFOODITEMS] ={"Green Salad YES", "Russian Salad YES", "Tandoori
Salad YES", "Butter Paneer YES", "Malai Kofta YES", "Dal Makhani YES", "Paneer
Makhani YES", "Shahi Paneer YES", "Palak Paneer YES", "Gobi Masala YES",
"Navrattan Korma YES", "Butter Chicken YES", "Mutton Masala YES", "Vegetable Pulao
YES", "Kashmiri Pulao YES", "Tandoori Chicken YES", "Kashmiri Kabab YES", "Chicken
Kabab YES", "Vegetable Raita YES", "Tandoori Nan YES"};

char *YDrink[MAXDRINKITEMS] = {"BiackLabeiWhisky YES", "RoyaiSaluteWhisky YES",
"BacardiRum YES", "OidMonkRum YES", "RemyMartinBrandy YES", "MarteiiBrandy
YES", "LondonDryGin YES", "TanquerayGin YES", "StolichnayaVodka YES",
"AbsolutVodka YES" };

char *NFood[MAXFOODITEMS] ={"Green Salad NO", "Russian Salad NO", "Tandoori
Salad NO", "Butter Paneer NO", "Malai Kofta NO", "Dal Makhani NO",
"Paneer Makhani NO", "Shahi Paneer NO", "Palak Paneer NO", "Gobi Masala
NO", "Navrattan Korma NO", "Butter Chicken NO", "Mutton Masala NO",
"Vegetable Pulao NO", "Kashmiri Pulao NO", "Tandoori Chicken NO", "Kashmiri Kabab
NO", "Chicken Kabab NO", "Vegetable Raita NO", "Tandoori Nan NO"};

char *NDrink[MAXDRINKITEMS] = {"BiackLabeiWhisky NO", "RoyaiSaluteWhisky NO",
"BacardiRum NO", "OidMonkRum NO", "RemyMartinBrandy NO", "MarteiiBrandy
NO", "LondonDryGin NO", "TanquerayGin NO", "StolichnayaVodka NO",
"AbsolutVodka NO" };

char *Food[MAXFOODITEMS] ={"Green Salad YES", "Russian Salad YES","Tandoori
Salad YES", "Butter Paneer YES", "Malai Kofta", "Dal Makhani YES", "Paneer Makhani
YES", "Shahi Paneer YES", "Palak Paneer YES", "Gobi Masala YES", "Navrattan
Korma YES", "Butter Chicken YES","Mutton Masala YES", "Vegetable Pulao YES",
"Kashmiri Pulao YES", "Tandoori Chicken YES", "Kashmiri Kabab YES", "Chicken Kabab
YES", "Vegetable Raita YES". "Tandoori Nan YES"};

char *Drink[MAXDRINKITEMS] = {"BiacklabeiWhisky YES", "RoyaiSaluteWhisky YES",
"BacardiRum YES", "OidMonkRum YES", "RemyMartinBrandy YES", "MarteiiBrandy
YES", "LondonDryGin YES", "TanquerayGin YES", "StolichnayaVodka YES",
"AbsolutVodka YES" };

char *IFood[MAXFOODITEMS] ={"Green Salad ","Russian Salad ","Tandoori Salad ",
"Butter Paneer ", "Malai Kofta ", "Dal Makhani ", "Paneer Makhani ", "Shahi Paneer
", "Palak Paneer ","Gobi Masala ", "Navrattan Karma ", "Butter Chicken ",
"Mutton Masala ","Vegetable Pulao ", "Kashmiri Pulao ","Tandoori Chicken ", "Kashmiri
Kabab ","Chicken Kabab ","Vegetable Raita ", "Tandoori Nan "};

char *IDrink[MAXDRINKITEMS] = {"BiackLabeiWhisky ", "RoyaiSaluteWhisky ", "BacardiRum
", "OidMonkRum ", "RemyMartinBrandy ", "MarteiiBrandy ", "LondonDryGin "
'TanquerayGin ", "StolichnayaVodka ", "AbsolutVodka "};

/******* Structures to store the dialog box's TransferBuffer data ********/

struct TReserveEnqData
{
PTListBoxData ListBoxData;
char FromEdit[DATELEN];
char ToEdit[DATELEN];
TReserveEnqDataO;
} ReserveEnqData;

68

struct TReserveData
{
char Name[NAMELEN];
char Occupation[75];
char Street[75];
char City[75];
char FromEdit[DA TELEN];
char ToEdit[DATELEN];
PTListBoxData ListBoxData;
TReserveDataQ;

} ReserveData;

struct TCanceiData
{
char RvNo[75);
char FromEdit[DATELEN];
char ToEdit[DATELEN];
TCanceiDataO;

} CanceiData;

struct TChecklnData
{
char RoomNo[ROOMLEN];
char Name[NAMELEN];
char Sex[SEXLEN];
char Age[AGELEN);
char Street[75];
char City[75];
TChecklnDataQ;

} ChecklnData;

struct TCheckOutData
{
char RoomNo[ROOMLEN];
char Name[NAMELEN];
char Sex[SEXLEN];
char Age[AGELEN];
char Street[75];
char City(75];
TCheckOutDataQ;

} CheckOutData;

struct TPrepareBiiiData
{
char Name[NAMELEN];
char RoomNo[ROOMLEN];
TPrepareBiiiDataQ;
} PrepareBiiiData;

!********* Constructors to initialize the TransferBuffer data ***********/

TReserveEnqData :: TReserveEnqDataO
{
ListBoxData =new TlistBoxData;
memset(FromEdit,O,DATELEN);
memset(ToEdit,O,DATELEN);

69

ListBoxData->AddString("SINGLE NON_AC",TRUE);
ListBoxData->AddString("SINGLE AC");
ListBoxData->AddString("DOUBLE NON_AC");
ListBoxData->AddString("DOUBLE AC");

}

TReseNeData :: TReseNeDataQ
{
memset(Name,O,NAMELEN);
memset(Occupation 10,75);
memset(StreetiOI 75);
memset(City 10 175);
memset(FromEdit 10 1DATELEN);
memset(ToEdit 10 1DATELEN);
ListBoxData =new TListBoxData;
ListBoxData->AddStringfiSINGLE NON_AC" 1TRUE);
ListBoxData->AddString("SINGLE AC");
ListBoxData->AddString("DOUBLE NON_AC");
ListBoxData->AddString("DOUBLE AC");

}

TCanceiData::TCanceiDataQ
{

}

memset(RvNo 10 175);
memset(FromEdit IOIDA TELEN);
memset(ToEditiOIDATELEN);

TChecklnData::TChecklnDataQ
{
memset(RoomNo 10 1ROOMLEN);
memset(NameiOINAMELEN);
memset(Sexl 0 I SEXLEN);
memset(Age I 0 ,AGELEN);
memset(Streetlol 75);
memset(City 10 175);

}

TCheckOutData::TCheckOutDataQ
{
memset(RoomNo 10 1ROOMLEN);
memset(NameiOINAMELEN);
memset(SexiOISEXLEN);
memset(Age10,AGELEN);
memset(Streetlol 75);
memset(City,OI 75);

}

TPrepareBiiiData::TPrepareBiiiDataQ
{

}

memset(Name 10 1NAMELEN);
memset(RoomNoiOIROOMLEN);

70

II Function to convert a character string to a Date object

Date& StringToDate(char *s)
{
char from[DATELEN],temp1 [3),temp2[3).temp3[3];
strcpy(from,s);
int i,k=O;
for(i=O;i<2;i++ ,k++)
temp1 [i] = from[k];
temp1 [i+1) = '\0';
k++;
for(i=O;i<2;i++ ,k++)
temp2[i] = from[k];
temp2[i+1] = '\0';
k++;
for(i=O;i<4;i++ ,k++)
temp3[i] = from[k];

temp3[i+1] = '\0';

}

int day = atoi(temp1);
int month = atoi(temp2);
int year= atoi(temp3);
Date D1 (month,day,year);
return (Date&)D1;

I* Class definition for RoomEntry class. Defines RoomEntry objects to be
stored in the BRoom 8-tree. *I

class RoomEntry : public Sortable
{
String& aRoomNo;
String& aType;
String& aStatus;
String& aRent;

public:

enum {roomEntryCiass = _firstUserCiass};
RoomEntry(char *roomno,char *type,char *status,char *rent)

: aRoomNo(*new String(roomno)),aType(*new String(type)),
aStatus(*new String(status)),aRent(*new String(rent))O

RoomEntryQ : aRoomNo(*new String("")),aType(*new String("")),
aStatus(*new String("")),aRent(*new String("")){}

classType isAO canst
{
return roomEntryCiass;

}

char _FAR *nameOfO canst
{
return "RoomEntry";

}

71

int isEqual(const Object& e) const
{
return RoomNoO == ((RoomEntry&)e).RoomNoO

&& TypeQ == ((RoomEntry&)e).TypeO
&& StatusO == ({RoomEntry&)e).StatusO
&& RentO == ((RoomEntry&)e).RentO;

}

int islessThan(const Object& e) const
{
return RoomNoO < ((RoomEntry&)e).RoomNoO;

}

hashValueType hashValueO const
{
return aRoomNo.hashValueQ+aType.hashValueQ+

aStatus.hashValueQ+aRent.hashValueQ;
}

void printOn(ostream& os) const
{
os<<aRoomNo<<":"<<aType<<":"<<aStatus<<":"<<aRent<<endl;

}

String& RoomNoO const
{
return aRoomNo;

}

String& TypeO const
{
return aType;

}

String& StatusO const
{
return aStatus;

}

String& RentO const
{
return aRent;

}

-RoomEntryO
{

};

delete &aRoomNo;
delete &aType;
delete &aStatus;
delete &aRent;

}

I* Class definition for the GuestEntry class. Defines GuestEntry objects
to be stored in the BGuest 8-tree. */

72

class GuestEntry : public Sortable
{
String& aName;
String& aSex;
String& aAge;
String& aAddress;

public:

enum {guestEntryCiass = _firstUserCiass+1};
GuestEntry(char •name,char •sex,char •age,char *address)

: aName(*new String(name)),aSex(*new String(sex)),aAge(*new String(age)),
aAddress(*new String(address))O

GuestEntryO : aName(*new String("")),aSex(*new String("")),
aAge(*new String("'')),aAddress(*new String(""))O

classType isAO const
{
return guestEntryCiass;

}

char _FAR *nameOfO const
{
return "GuestEntry";

}

int isEqual(const Object& e) const
{
return NameO == ((GuestEntry&)e).NameO

&& Sexo == ((GuestEntry&)e).SexO
&& AgeO == ((GuestEntry&)e).AgeO
&& AddressO == ((GuestEntry&)e).AddressO;

}

int isLessThan(const Object& e) const
{
return NameO < ((GuestEntry&)e).NameO;

}

hashValueType hashValueO const
{
return aName.hashValueQ+aSex.hashValueO+

aAge.hashValueQ+aAddress.hashValueO;
}

void printOn(ostream& os) const
{
os<<aName<<":"<<aSex<<":"<<aAge<<":"<<aAddress<<endl;

}

String& NameO const
{
return aName;

}

73

String& sexo const
{
return aSex;

}

String& AgeO const
{
return aAge;

}

String& AddressO const
{
return aAddress;

}

-GuestEntryO
{

};

delete &aName;
delete &aSex;
delete &aAge;
delete &aAddress;

}

I* Class definition for the RestrauntEntry class. Defines RestaurantEntry
objects to be stored in the BRestaurant 8-tree. */

class RestaurantEntry : Sortable
{
String& altern;
String& aRate;
String& aAvailability;

public:

enum {restrauntEntryCiass = _firstUserCiass+2};
RestaurantEntry(char *item,char *rate,char *availability)

: altem(*new String(item)),aRate(*new String(rate)),
aAvailability(*new String(availability))Q

RestaurantEntryO : altem(*new String("")),aRate(*new String("")),
aAvailability(*new String(""))Q

classType isAO const
{
return restrauntEntryCiass;

}

char _FAR *nameOfO const
{
return "RestaurantEntry";

}

int isEqual(const Object& e) const
{
return ltemO == ((RestaurantEntry&)e).ltemO;

74

}

int isLessThan(const Object& e) const
{
return ltemO < ((RestaurantEntry&)e).ltemO;

}

hashValueType hashValueO const
{
return altem.hashValueQ+aRate.hashValueO+

aAvailability.hashValueO;
}

void printOn(ostream& os) const
{
os<<altem<<":"<<aRate<<":"<<aAvailability<<endl;

}

String& ltemO const
{
return altem;

}

String& RateO const
{
return aRate;

}

String& AvailabilityO const
{
return aAvailability;

}

-RestaurantEntryO
{

};

delete &altem;
delete &aRate;
delete &aAvailability;

}

/* Class definition for the ReservationEntry class. Defines Reservation Entry
objects to be stored in the BReservation 8-tree. */

class ReservationEntry : public Sortable
{
String& aRoomNo;
String& aName;
String& aFrom;
String& aTo;

public:

enum {reservationEntryCiass = _firstUserCiass+3};
ReservationEntry(char *roomno,char *name,char *from ,char *to)

75

: aRoomNo(*new String(roomno)),aName(*new String(name)),
aFrom(*new String(from)),aTo(*new String(to)){}

ReservationEntryQ : aRoomNo(*new String("")),aName(*new String("")),
aFrom(*new String("")),aTo(*new String("")){}

classType isAO const
{
return reservationEntryCiass;

}

char _FAR *nameOfQ const
{
return "ReservationEntry";

}

int isEqual(const Object& e) const
{
return RoomNoQ == ((ReservationEntry&)e).RoomNoO

&& NameQ == ((ReservationEntry&)e).NameO
&& FromQ == ((ReservationEntry&)e).FromQ
&& ToO== ((ReservationEntry&)e).ToQ;

}

int islessThan(const Object& e) const
{
return (RoomNoQ < ((ReservationEntry&)e).RoomNoQ)

II ((RoomNoQ == ((ReservationEntry&)e).RoomNoQ)
&& (StringToDate((char *) *(ToO))

< StringToDate((char *) *(((ReservationEntry&)e).FromQ))));
}

hashValueType hashValueQ const
{
return aRoomNo.hashValueQ+aName.hashValueQ+

aFrom.hashValueQ+aTo.hashValueQ;
}

void printOn(ostream& os) const
{
os<<aRoomNo<<":"<<aName<<":"<<aFrom<<":"<<aTo<<endl;

}

String& RoomNoO const
{
return aRoomNo;

}
String& NameO const
{
return aName;

}

String& FromO const
{
return aFrom;

}

76

String& ToO const
{
return aTo;

}

-ReservationEntryO
{
delete &aRoomNo;
delete &aName;
delete &aFrom;
delete &aTo;

}
};

I* Class definition for the BiiiEntry class. Defines BiiiEntry objects to
be stored in the BBill 8-tree. */

class BiiiEntry : Sortable
{
String& aName;
String& aRoomNo;
String& aBill;

public:

enum {BiiiEntryCiass = _firstUserCiass+4};
BiiiEntry(char *name,char *roomno,char *bill)

: aName(*new String(name)),aRoomNo(*new String(roomno)),
aBill(*new String(biii))O

BiiiEntryO : aName(*new String("")),aRoomNo(*new String("")),
aBill(*new String(""))O

classType isAO const
{
return BiiiEntryCiass;

}

char _FAR *nameOfO const
{
return "BiiiEntry";

}

int isEqual(const Object& e) const
{
return NameO == ((BiiiEntry&)e).NameO

&& RoomNoO == ((BiiiEntry&)e).RoomNoO
&& BiiiO == ((BiiiEntry&)e).BiiiQ;

}

int isLessThan(const Object& e) const
{
return NameO < ((BiiiEntry&)e).NameO;

}

77

hashValueType hashValueO cons!
{
return aName.hashValueQ+aRoomNo.hashValue()+aBill.hashValue();

}

void printOn(ostream& os) canst
{
os<<aName<<":"<<aRoomNo<<":"<<aBill<<endl;

}

String& NameO canst
{
return aName;

}

String& RoomNoO canst
{
return aRoomNo;

}

String& BiiiO canst
{
return aBill;

}

-BiiiEntryO
{

};

delete &aName;
delete &aRoomNo;
delete &aBill;

}

I* Function to search for a reservation. This function is used as an
argument to the firstThatQ function of BReservation Btree objects */

BOOL testMember(const class Object& x,void *)
{
Date& D1 = StringToDate(ReserveEnqData.FromEdit);
Date& D2 = StringToDate(ReserveEnqData.ToEdit);
Date& D3 = StringToDate((char *) *((ReservationEntry&)x).FromQ);
Date& D4 = StringToDate((char *) *((ReservationEntry&)x).ToQ);
int temp= atoi((char *) *((ReservationEntry&)x).RoomNoQ);
if(GiobaiRoomNo < temp)
return TRUE;

else if(GiobaiRoomNo == temp)
{
if(D2.isLessThan(D3))
return TRUE;

else if(D4.isLessThan(D1))
return FALSE;

else
{
GlobaiRoomNo++;
return FALSE;

78

}
}
return FALSE;

}

II Class declaration for the Application object HoteiApp
class HoteiApp : public T Application
{
public:

HoteiApp(LPSTR AName,HINSTANCE hlnstance,HINSTANCE hPrevlnstance,
LPSTR lpszCmdLine,int nCmdShow);

virtual void lnitMainWindowO;
};

II Class declaration for the main window class THoteiMainWindow
class THoteiMainWindow : public TWindow
{
public:

char DateBuffer[1 OJ;
char GuestBuffer[1 OJ;
HelpWindow *HipWindow;

THoteiMainWindow(PTWindowsObject AParent,LPSTR A Title);
BOOL CanCioseO;
void HandleEnquiryMsg(RTMessage Msg) = [CM_FIRST+CM_ENQUIRY];
void HandleResvMsg(RTMessage Msg) = [CM_FIRST+CM_RESERVATIONJ;
void HandleCanceiMsg(RTMessage Msg) = [CM_FIRST+CM_CANCELLATIONJ;
void HandleFoodMsg(RTMessage Msg) = [CM_FIRST +CM_FOODMENU];
void HandleBarMsg(RTMessage Msg) = [CM_FIRST+CM_BARMENUJ;
void HandleGuestEnqMsg(RTMessage Msg) = [CM_FIRST+CM_ROOMPERSONENQ];
void HandleChecklnMsg(RTMessage Msg) = [CM_FIRST+CM_CHECKINJ;
void HandleCheckOutMsg(RTMessage Msg) = [CM_FIRST+CM_CHECKOUT];
void HandlePrepareBiiiMsg(RTMessage Msg) = (CM_FIRST+CM_PREPAREBILL];
void HandleDateMsg(RTMessage Msg) = [CM_FIRST +CM_DATEJ;
void HandleChangeAvaiiMsg(RTMessage Msg) = [CM_FIRST+CM_AVAILABILITY];
void HandleAboutMsg(RTMessage Msg) = [CM_FIRST+CM_ABOUTJ;
void HandleHelpMsg(RTMessage Msg) = [CM_FIRST +CM_HELP];

};

II Class declaration for the TReserveEnqDialog class
class TReserveEnqDialog : public TDialog
{
public:

TReserveEnqDialog(PTWindowsObject AParent,LPSTR AName,PTModule AModule);
- TReserveEnqDialogO;

};

II Class declaration for the TReserveDialog class
class TReserveDialog : public TDialog
{
public:

79

TReserveDialog(PTWindowsObject AParent,LPSTR AName,PTModule AModule);
- TReserveDialogQ;

};

II Class declaration tor the TCanceiDialog class
class TCanceiDialog : public TDialog
{
public:

TCanceiDialog(PTWindowsObject AParent,LPSTR AName,PTModule AModule);
};

II Class declaration tor the TFoodDialog class
class TFoodMenuDialog : public TDialog
{
public:

PTListBox ListBox;
PTListBoxData ListBoxData;
TFoodMenuDialog(PTWindowsObject AParent,LPSTR AName,PTModule AModule);
- TFoodMenuDialogQ;

};

II Class declaration tor the TBarMenuDialog class
class TBarMenuDialog : public TDialog
{
public:

PTListBox ListBox;
PTListBoxData ListBoxData;
TBarMenuDialog(PTWindowsObject AParent,LPSTR AName,PTModule AModule);
- TBarMenuDialogQ;

};

II Class declaration for the TChecklnDialog class
class TChecklnDialog : public TDialog
{
public:

TChecklnDialog(PTWindowsObject AParent,LPSTR AName,PTModule AModule);
- TChecklnDialogQ;

};

II Class declaration tor the TChecklnDialog class
class TCheckOutDialog : public TDialog
{
public:

TCheckOutDialog(PTWindowsObject AParent,LPSTR AName,PTModule AModule);
- TCheckOutDialogQ;

};

II Class declaration tor the TPrepareBiiiDialog class
class TPrepareBiiiDialog : public TDialog
{
public:

80

TPrepareBiiiDialog(PTWindowsObject AParent,LPSTR ANa me ,PTModule AModule).
- TPrepareBiiiDialogQ;

};

II Class declaration for the TChangeAvaiiDialog class
class TChangeAvaiiDialog : public TDialog
{
public:

PTListBox ListBox:
PTListBoxData FoodListData,DrinkListData;
TChangeAvaiiDialog(PTWindowsObject AParent,LPSTR AName,PTModule AModule);
- TChangeAvaiiDialogQ;
void HandleFoodButtonMsg(RTMessage Msg) = [ID_FIRST+ID_FOODBTN];
void HandleDrinkButtonMsg(RTMessage Msg) = [ID_FIRST+ID_DRINKBTN];
void HandlelistBoxMsg(RTMessage Msg) = [ID_FIRST+ID_ALISTBOX]:

};

81

BIBLIOGRAPHY

[1] Aaron Marcus and Andries Van Dam
"User-Interface Developments for the Nineties", IEEE Computer, September, 1991.

[2] Alan Synder
"The essence of Objects: Concepts and Terms", IEEE Software, January, 1993.

(3] Bjarne Stroustroup
"The C++ Programming Language", Addison Wesley Publishing Company, 1993.

(4] Dijkstra E
"Programming considered as a Human Activity", Classics in Software Engineering,
Yourdon Press, 1979.

[5] Gary Syck
"Object Windows How- To", Galgotia Publications Private Limited, 1993.

[6] Grady Booch
"Object Oriented Design With Applications", The Benjamin/Cummings Publishing
Company,lnc., 1991.

[7] Henry F. Korth, Abraham Silberschatz,
"Database System Concepts", Me Graw Hill Publishing Company, 1993.

[8] James Conger
"Windows API Bible", Galgotia Publications private limited, 1994.

[9] Jim Conger
"Windows Programming Primer Plus", Galgotia Publications Private Limited, 1994.

(1 0] Preece P
"An Introduction to Graphical User lnterfaces(GUis)", Object Oriented Programming
Systems : Tools and Applications, Chapman & Hall, 1991.

[11] Raimund K. Ege and Christian Stary
"Designing Maintainable, Resusable Interfaces", IEEE Software, November, 1992.

[12] Robert Lafore
"Object Oriented Programming In Turbo C++", Galgotia Publications Private Limited,
1994.

[13) Setrag Khoshafian and Razmik Abnous
"Object Orientation Concepts, Language, Database, User Interfaces", John Wiley &
Sons Inc., 1990.

82

[14] Stanley Lippman
"C++ Primer'', Addison Wesley Publishing Company, 1991.

[15] Vijay Mukhi
"C++ and Graphics", C Odyssey, Vo/1, BPB Publications, 1993.

[16] Vijay Mukhi
"Borland C++ 3.0 for Windows 3.1 ", BPS Publications, 1993.

[17] Borland C++ 3. 1 User's Guide, Borland Inc.

[18] Borland C++ 3.1 Programmer's Guide, Borland Inc.

[19] ObjectWindows for C++ User's Guide, Borland Inc.

83

	TH56070072
	TH56070073
	TH56070074
	TH56070075
	TH56070076
	TH56070077
	TH56070078
	TH56070079
	TH56070080
	TH56070081
	TH56070082
	TH56070083
	TH56070084
	TH56070085
	TH56070086
	TH56070087
	TH56070088
	TH56070089
	TH56070090
	TH56070091
	TH56070092
	TH56070093
	TH56070094
	TH56070095
	TH56070096
	TH56070097
	TH56070098
	TH56070099
	TH56070100
	TH56070101
	TH56070102
	TH56070103
	TH56070104
	TH56070105
	TH56070106
	TH56070107
	TH56070108
	TH56070109
	TH56070110
	TH56070111
	TH56070112
	TH56070113
	TH56070114
	TH56070115
	TH56070116
	TH56070117
	TH56070118
	TH56070119
	TH56070120
	TH56070121
	TH56070122
	TH56070123
	TH56070124
	TH56070125
	TH56070126
	TH56070127
	TH56070128
	TH56070129
	TH56070130
	TH56070131
	TH56070132
	TH56070133
	TH56070134
	TH56070135
	TH56070136
	TH56070137
	TH56070138
	TH56070139
	TH56070140
	TH56070141
	TH56070142
	TH56070143
	TH56070144
	TH56070145
	TH56070146
	TH56070147
	TH56070148
	TH56070149
	TH56070150
	TH56070151
	TH56070152
	TH56070153
	TH56070154
	TH56070155
	TH56070156
	TH56070157
	TH56070158
	TH56070159

