
DESIGN AND IMPLEMENTATION OF
AN OBJECT-ORIENTED GRAPHICAL
USER INTERFACE FOR A RAILWAY

RESERVATION SYSTEM

Dissertation submitted to the Jawaharlal Nehru University
in partial fulfilment of the requirements

for the award of the Degree of

MASTER OF TECHNOLOGY

zn

COMPUTER SCIENCE & TECHNOLOGY

by

B.V.RA VEENDRA

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAW AHARLAL NEHRU UNIVERSITY

NEW DELHI 110067
INDIA

JANUARY 1995

CERTIFICATE

This is to certify that the dissertation entitled

"DESIGN AND IMPLEMENTATION OF AN OBJECT-ORIENTED GRAPHICAL

USER INTERFACE FOR A RAILWAY RESERVATION SYSTEM" being

submitted by B.V.RAVEENDRA to Jawaharlal Nehru University,

New Delhi in partial fulfilment of the requirements for the

award of the degree of Master of Technology in Computer

Science and Technology is a record of the original work done

by him under the supervision of PROF. K.K.NAMBIAR, School of

Computer and Systems Sciences, Jawaharlal Nehru University,

New Delhi during the year 1994, monsoon semester.

The results reported in this dissertation have not been

submit ted in part or · full to any other university or

Institution for the award of any degree or diploma .

\ b-\.
..,..'\S

Prof. K.K. Bharadwaj P~
School of Computer &'
sxstems Sciences,
Jawaharlal Nehru University
New Delhi - (INDIA)
Pin 110067.

Prof. K.K. Nambiar,
School of Computer &
Systems Sciences,
J. N. U. , New Delhi .

ACKNOWLEDGEMENTS

I wish to express my sincere thanks and gratitude to

Prof. K.K. Nambiar for his invaluable guidance and the

enthusiasm with which he helped me during the course of this

project work.

I would like to thank Prof. K. K. Bharadwaj , Dean of

School of Computer and Systems Sciences, Jawaharlal Nehru

University, New Delhi, for making the various facilities

available.

I am grateful to other members of teaching and non-

teaching staff who helped in all measures to make this

project a success.

12:,.v.~
(B.V. RAVEENDRA)

"GUROSTU MOUNAM VYAKHYANAM

SISHYASTU CHINNA SAMSAYAH 11 11

Dedicated to all masters of all times, who stood for

imparting invaluable knowledge and guided us towards light

and bliss.

CONTENTS

CHAPTER 1: ABSTRACT

CHAPTER 2: INTRODUCTION

CHAPTER 3 : ANATOMY OF A WINDOW

3.1
3.2

3.2.1
3.2.2
3.2.3

The WinMain()Function
Window Creation & Message processing

Registering a window class
Message Loop
Message processing

3.3 Window properties
3.4 Memory Management
3.5 BorlanQ Resource Workshop(BRW)
3.6 A Look at the Module definition file

CHAPTER 4: OBJECT WINDOWS CONCEPTS

4.1 A Comparative study
4.2 Features of Object Window
4.3 Object Windows Class Heirarchy

CHAPTER 5: DESIGN AND IMPLEMENTATION

5.1 Railway Database Design

5.1.1 Database Design steps
5.1.2 Railway Database Implementation

5.2 User Interface Design

5.2.1 Main program flow
5.2.2 Construct TMainWindow object
5.2.3 Process Mainwindow messages
5.2.4 Execute TReservationDlg
5.2.5 Execute TCancelDlg
5.2.6 Process List
5.2.7 Execute TViewTicketDlg
5.2.8 Process Trains Details
5.2.9 Execute Fare Details
5.2.10 Process Save
5.2.11 Process Load
5.2.12 Process Exit

CHAPTER 6: SAMPLE SESSION

CHAPTER 7: CONCLUSION

Bibliography

CHAPTER 1

ABSTRACT

A comparative study between Windows programming and

Object Windows programming using Object Windows Library (OWL)

is carried out, highlighting the benefits of using OWL.

A complete database and a user interface are designed

and implemented for the prototype of a Railway Reservation

System; using the Borland C++ for Windows (BCW) and the

Borland's Resource Workshop (BRW). The system can reserve a

ticket, cancel a ticket, display any particular ticket's

details, can answer all the enquiries for trains and fares

details. The system is also equipped with a full help

facility.

1

CHAPTER2

INTRODUCTION

This project is an attempt towards the design and

implementation of a prototype for a Railway Reservation

System with MSWindows 3.1 Graphical User Interface(GUI) using

Borland C++ for Windows with OWL.

Object Orientation makes. writing programs

simpler, easier and effective.The early development

environments for Windows did little to help the programmer

deal with the daunting task of writing a Windows program.Even

a simple windows program requires much code to be written.The

user is forced to sift through over 600 API functions to find

a suitable one that achieves his task.Borland C++ with Object

Windows takes some ui the pain out of Winouws programming by

providing predefined object classes that handle many of the

details of Windows programming.An Object Windows program

consists of lesser code when compared to a Windows program

without Object Orientation.New features can be added to the

program by just adding the appropriate object to it.Because

Object Windows is an object oriented library,the programmer

can inherit the features needed from the library and overload

the routines that are needed to change.

The state-of-the-art GUI's have taken the computer

industry by storm and liberated the user from all of those

arcane sequences of key strokes to accomplish his task.

2

With the advent of more "user friendly" Windows, users

began to work on it playfully, because it is easy to use

"visual interface" with its asthetic appeal. Today the user

can get all his work done just at the click of a mouse

button. In addition to the textual data, the directories,

applications, peripherals, accessories are represented by

Icons. These icons depict to the user the qualities and

characteristics of those concepts or items of which these

icons are tokens. So, user can easily notice the item he

wants instead of searching through directories etc.

Moreover, by just moving and clicking on icons, user gets his

work done in certain applications. For example, in a data

communication application, by simply selecting the icon

representing a baud rate and the icon representing the type

of channel; the user can change the baud rate to the new

specification as well as the communicaton channel being used,

say for example, from coaxial cable to fibre optic cable.

What a fantastic flexibility

Interface.

Thanks to Windows User

As Windows 3.1 includes the Multi-media extensions, new

types of applications can be written. These burgeoning

relatively new technologies will bring computers to people

who have never used a computer before. With special versions

of Windows, imagine yourself being able to program your VCR,

3

CD player, TV, microwave oven and so on, in the days to

come.

Wayback in mid-1970's, the machines such as the Alto and

the Star and environemnts such as Small talk supported the

visual interface. Subsequently with the bloom of Apple's

Macintosh GUI's have flooded the computer industry. Present

day GUI's available are :

1. for IBM - compatibles

(i) running MS-DOS -------> Windows

(ii) running OS/2 -------> Presentation
Manager

2. for the Commodore Amiga -------> Intuition

3. for the Atari ------- > GEM

4. for machines running UNIX -------> X-Windows

5. for Sun Micro systems workstation -------> NeWs

6. for the NeXT -------> NextStep

Microsoft Windows version 3. 1 was released in April

1992. The most significant new feature in Windows 3.1 is the

True Type font technology developed by Apple Computer, Inc.,

and Microsoft . It gives scalable outline fonts to Windows.

Windows 3.1 also supports Multimedia(sound & music), Object

Linking and Embedding(OLE), and common dialogboxes. Windows

3.1 runs only in protected mode and requires an 80286 ·or

80386 processor with atleast 2MB of memory.

4

Windows 3.1 contains a new header file ,WINDOWSX.H . This

file contains a number of macros to make writing Windows

applications much easier and faster. Mostly, these macros are

of great help in the casting operations; instead of :rourself

sprinkling the casts throughout the code.

WHAT IS WINDOWS ?

Windows is a graphics-based multitasking windowing

environment that allows programs written specifically for

Windows to have a consistent appearence and command

structure.

'
The various built-in routines of the Windows package

allow the easy implementation of pull-down menus, scroll

bars, dialog ·boxes, icons, and many other features of a

user-friendly graphical interface. Usage of the extensive

graphics programming language allows a program to easily

format and output text in a variety of fonts and pitches.

The video display, keyboard, mouse, printer,

serialport,and system timers-all are default by windows in a

device independent manner. This allows the same progranune to

run identically on a variety of hardware configurations.

5

The power of Windows lies in its three main capabilities:

-a graphics oriented user interface

-a multitasking capability

-and hardware independence.

A WINDOW DEFINED :

"To the user, a Windows window is a rectangular portion of

the display with a program independent consistent appearence,

that is the visual interface between the user and the

program generating the window."

"To an application, the window is a rectangular area of the

screen that is under the control of the program."

Each window possesses a Titlebar, a ControlBox, a

MinimizeBox, a MaximizeBox, a window frame in minimum,and may

also include scrollbars and other features. The management

of an application window in effect is the cohesive effort

between the application and Windows. The Windows maintains

the standard display of an application window at a proper

position and acts as a mediator between the user/application

and the window, passing on the user input through messages

to window. The window's client area can be completely

organized by the user.

This whole activity is achieved through the Application

Programming Interface(API) provided by the GUI. The API

facilitates to create screen objects, to draw screen objects

and to monitor mouse activations.

6

WHY WINDOWS GUI ?

Windows is a standardised GUI. The consistent user

interface employs pictures to depict drives, files,

subdirectiries and many other operating system commands and

actions.Each program is identified by its caption bar.

One of the major advantages in using Windows GUI lies

in the facility thatmany of the basic file manipulation

functions are accessed through the program's menus by just a

click of the mouse at the proper location.

Multitasking :

In the Windows multitasking environment the several

application programs, or several instances of the same

program are allowed to run concurrently.At any time the user

is at ease to move the windows around on the screen, to

switch between different programs,to change the window's

size, and he can exchange information from window to window

aswell. Windows is hence said to be a "desktop metaphor " for

the display of multiple programs.Every program under Windows

can be visualised as a RAM-resident popup.

Queued Input :

Under Windows, an application does not make explicit calls to

get input from the keyboard or mouse. Instead it is the

Windows that receives all inputs from mouse, keyboard, timer

etc. in a 'System Queue' . Windows manages to redirect the

7

input to the appropriate program by copying it from the

System Queue into the program's queue. When the application

program is ready to process its input, it directly reads

from its own queue and dispatches a message to the correct

window.

Ir.forrnation is disseminated in a multitasking environment

through "messages". Messages can be generated by the user

externally. or by the program or by the Windows itself.

A message is a notification that some event of interest has

occured. The message in turn may or may not prompt any

action.

Device Independence

Hardware device independence is another colourful feather in

the cap of Windows. Windows absolutely frees the programmer

from having to cater for every possible variety of monitor,

printer and input device available. In the Windows

environment, each device driver need to be written only

once.Windows includes a graphics programming language called

the Graphics Device Interface(GDI} that allows the easy

display of formatted text. Windows virtualizes display

hardware.

Compilation Steps For a Windows Program

1.The program's source code is compiled by the C/C++ compiler

to produce an objective file.

8

2. The Linker takes both this Objective file as well as the

module definition file and produces an unfinished .EXE file.

3. The Resource Compiler takes the resource file content,

compiles it to form a resource data file with .RES

extension.

4.This .RES file and the unfinished .EXE file, both are fed

to the Resource Compiler to produce the final finished .EXE

file of the program.

Hardware and Software requirements to run Windows :

The minimum hardware required is a 80286 based PC with

2MB of memory, a hard disk, and an EGA or VGA video

screen. The software requirement is Borland C++ for Windows

(BCW) along with Windows 3.1 package.

STEPS IN CREATING A WINDOWS PROGRAM

Writing a Windows program can involve all or some of the

following seven steps :

1. Write the Main program file with all the associated

Windows functions in

editor.

C or C++ language using the

2. All the optional resources required such as Menu,

DialogBoxes, ListBoxes, etc., are created using Borland's

resource Workshop(BRW).

3. The corresponding resource scripts generated are added to

the resource script file (.RC file) using "save project"

option of BRW.

9

4. The Icon generation for the program, building the

optional cursors & bitmaps also is achieved using BRW

5. The custom module definitions are written and placed in a

module definition file(.DEF file).

6. Make a project file with all the source codefile, .RC file,

(.DEF) file, and the .H file if any.

7. Compile the project file using the "Build.All" option of BCW

compiler.

Then finally run the program using the "Run" option.

The GUI designed uses the database created and responds

to the requests of user. The functions that the system can

carry out are

1. Reserving a Railway Ticket.

2. Cancelling a Railway Ticket.

3. Response to Enquiry on vacancy.

4. Response to Enquiry on various Trains details

5. Response to Enquiry on fare from one station to another;

6. Display of a Reserved Ticket with all details, on

production of its PNR no.

7. Listing of all the tickets Reserved.

8. Provision for the database administrator(DBA) to build the

tree with all records of tickets reserved till the prior

day intact and being ready to reserve next ticket.

10

Chapter3 introduces the basic concepts of Windows and

explains how to write specific Windows applications.It also

throws light on the memory management capabilities of

Windows, knowledge of which aids the programmer to write

efficient programs.Chapter4 focusses the design and

imple~entation of the prototype of the GUI for the Railway

Reservation System developed, with all details of the

database design.ChapterS tokens a sample session with the

application program developed.chapter6 highlights the

enhancements that can be made further to this project in

future.

References used in the project are appended at the end

of the thesis.

11

CHAPTER 3

ANATOMY OF A WINDOW

A standard Windows program will consist of some or all of

the following, depending on which resources are being used

1) The main programm file consisting of the code,

2) The Resource file where the resources being used are

defined,

3) The header file, comprising all the declarations, and

finally

4) The module definition file, which contains the

definitions of heapsize, stacksize etc. required for the

program.

Every Windows program must include the WINDOWS.H file.

WINDOWS.H contains definitions for types WORD, HANDLE, HWND

(handle of a window) etc etc. For example, the sample

definitions are as below:

Standard Windows Data Types

Prefix Data Type Represented

b BOOL/(integer)

by BYTE/(unsigred Character)

c Character

dw DWORD/(unsigned long)

fn HANDLE/(unsigned integer)

i integer

12

1

lp

n

np

p

s

sz

w

X

y

LONG/ (long)

long/(far) pointer

short integer

near/(short) pointer

pointer

string

NULL/(o) terminated string

WORD/(unsigned integer)

short/ (when used as the

X coordinate)

short/ (when used as the

Y coordinate)

3.1 The WinMain () Function:

The standard WinMain function format is as below:

int PASCAL WinMain (HANDLE hinstance, HANDLE hPrevinstance,

LPSTR lpsz(mdLine, int nCmdShow)

Observe, this function is declared to be "int PASCAL".

It is because the function returnes an integer value when it

is finished. The word "PASCAL" directs the C compiler to use

the function calling conventions of the Pascal language,

rather then those of the C language. The basic reason for

this is that the PASCAL function calling convention results

in less computer

instructions. The

code on compilation into machine

PASCAL calling convention puts the

13

parameters passed by a function on the stack in the same

order they are declared in the function's declaration. The C

language convention does just the reverse. So, the compiler

knows priorhand that the first argument is on the top of the

stack with the PASCAL convention, while with the C

convention, the Compiler is forced to search down the stack

for the location of the first argument. But, notice that the

PASCAL function calling convention doesn't allow functions to

have variable number of arguments.

Thus Windows uses the PASCAL function calling convention

to make programs smaller and faster.

Every Windows program must have WinMain (function.

When a Windows application starts, it is the WinNain (

function that beg~ns execution. Similarly at the and of and

of an application, WinMain() returns exit code to Windows.

The data type HANDLE indicates that handles are unsigned

integers. Each window on the screen has a unique window

handle. Handles are also used to uniquely identify each

running application, each assigned memory block etc. The

Windows kernel maintains tables for the convertion of these

handles to physical memory addresses. A handle is basically a

pointer to a pointer to a memory location. For memory

management, if Windows moves the program or memory block 1n

memory, the corresponding handle table is updated properly.

14

The program is abstract to all these changes. It can go ahead

with its own defined handles, without any calamity.

WinMain() parameters:-

hiastance These can be many applications running in

Windows simultaneously. To distinguish among them, Windows

creates and assigns these "hinstance" handles to each of

them. Physically, hinstance is the memory handle to the

application's default data segment.

hPrevinstance: There can be several instances of the same

application program running in Windows at a time. To cope

with these copies of the same application, as soon as another

copy is started, hPrevinstance will contain the hinstance

value for the last copy started. If only pne instance of an

application is running, hPrevinstance will be zero.

lpszCmdLine: This is a pointer to a character string

containing the conunandline arguments passed to the program,

if any. If none is passed, it is NULL.

nCmdShow: This is the integer value to be passed to the

Show Window() function.

15

3.2 Window Creation & Message processing:

The CreateWindow(function is used to create the

application's window, having the window frame, captionbar,

centerarea (called the "client area"). The 'style" of window,

font for the letters on controls, the shade of the client

area, the size & location of window etc. are determined by

the CreateWindow (function. ShowWindow(function makes

the window created to be visible on the screen.

3.2.1 Registering a window class:

For creating a new class of
class () function is used. WNDCLASS

Windows, Register
structure is defined

in WINDOWS.H. All the members of the WNDCLASS structure

are filled first and then a pointer is passed to Register

Class(). A standard window class structure declaration

looks like below:

WNDCLASS wndclass;

if (!h Previnstance)

{

wndclass.style = cs_HREDRAW I CS_VREDRAW;

wndclass.lpfnWndProc = WndProc;

wndclass.cbCls Extra = 0;

wndclass.cbWndExtra = 0;

wndclass.hinstance = hinstance;

wndclass.hicon =Loadicon (NULL, IDI_APPLICATION};

16

wndclass.hCursor = Load Cursor (NULL, IDC_ARROW) ;

wndclass.hbrBackground = Getstockobject(WHITE_BRUSH);

wndclass.lpsz MenuName =NULL;

wndclass.lpsz ClassName = "myclass";

if (! Register class (& wndclass))

return (O);

}

If the same application is running more that once

simultaneously, it is enough to register class only once.

The style member of the WNDCLASS specifies that windows of

this class should be redrawn if either the horizontal or

vertical size changes. The cbClsExtra and cbWndEstra members

of the WNDCLASS structure allow to allocate a memory block

for each class or window of a class.

3.2.2 Message Loop:

Windows generates messages corresponding to the actions

of user.

For example: The mouse cursor moved to X,Y on the screen

(WM MOUSE MOVE)

The left mouse button was depressed

(WM LBUTTONDOWN)

A key was pressed

(WM _KEYDOWN) .

17

Each message has a unique integer ID value. Windows

applications cooperate with the Windows environment by

continually checking whether there are any incoming

messages. This is achieved through a small program loop

called a "message loop". The message loop will use either

the GetMessage() or PeekMessage() function to read messages

sent to the program.

Within WinMain(), a local variable 'msg' of type MSG

is declared first. MSG data structure is defined in

WINDOWS.H as

typedef struct tagMSG

{ HWND hwnd;

WORD message;/ *the message ID value */

WORD wParam;/ *one WORD of data passed

LONG

DWORD

POINT

}MSG;

with message *I

lParam;/ *LONG data passed with message */

time;

pt;

A message can be attributed to a block of memory,

divided into the six different types of data defined in the

MSG datastructure. The HWND and WORD data types occupy two

bytes of memory each. The LONG, DWORD and POINT data-types

all occupy four bytes. This results in a requirement of 18

18

bytes of memory per message when Windows sends a message to

a running application. Windows fills in the data in a MSG

datastructure and stores the data in a memory block that the

application can read. The program calls either the

GetMessage{) or PeekMessage{) function to read the message

data. The first parameter passed to the GetMessage{}

function is a pointer to a message structure.

copies the message data into this structure

program can use it.

GetMessage {}

so that the

When a program executes GetMessage{}, the Windows

environment checks whether there are any messages waiting

for the program. If there are none, Windows doesn't allow

the GetMessage{} program loop to run. Instead, Windows

retains control of the system and goes about doing other

things until a message to the program is generated. Only if

there is a message for the program, the GetMessage{} function

gets it and the subsequent actions get triggered, allowing.

the program to start operating. GetMessage (} is one of

the keys to Windows' ability to run several programs at

the same time. The DefWindowProc(} function carries out all

of the default actions for a window. The outlining of the

window, movement, and repainting is all handled by the

DefwindowProc{) function .

Every Windows application will have a message loop. The

loop will contain either the GetMessage{) function or a

19

PeekMessage() function. The GetMessage() gives the control

back to Windows until there is any message for it; so that

Windows can process other application programs. This is the

significance of message loop allowing user to switch between

applications. If a Windows program is written without a

message loop, unless it terminates immediately, it takes

over all of the system's processing time and the user will

not be able to switch to another program.

3.2.3 Message processing:

All the messages are normally processed in a function

named WndProc () . In order to let the message data from

newly registered class to be passed to the WndProc ()

function, the address of WndProc () function should be

visible to Windows. Hence, we have to 'export' the address

of WndProc() by adding a line saying "EXPORTS WndProc" to

the Definition file of the application. Windows can

locate the WndProc() function through what are known as

"Task Database" and the "Module Database" tables which

will be updated automatically by Windows as soon as the

WndProc() function moves in memory. In order to separate the

message processing to be done only in WndProc(), in the

message loop, we call "Dispatch Message()" function. All

the message data incoming will be stored first in MSG data

structure and then we get that data through a call to

GetMessage{) and then hand it over to WndProc{) through

20

DispatchMessage(); where we pass the address of message

field of MSG data structure.

Finally, in the WndProc(), to stop an application, we

use the WM_DESTROY message received from Windows, and call

"PostQuitMessage(O)". Then the message loop receives a

WM_QUIT message. The Get Message() on receiving WM_QUIT

returns zero which breaks the message loop.

3.3 window Properties :

Another way to associate data with created windows is

through window properties. Suppose, there is a window

instance for a class that you did not register yourself. You

want to associate data with that window. But, since you have

not registered the window class your self, you can't

appraise the no. of extra bytes specified in the WNDCLASS

structure. Even if you can retrieve this information using

"GetClassinfo"; the allocated extra bytes may be in use by

the window procedure that operates on this class. Using

these extra bytes for your own task will ~~~~itely
.... ~ . 6:\

interfere with the behaviour of this window. ~ ~
.&; Litron7 <'!
~~ !; i
j.. ~:o/

Properties pave the way for you to associate:-:-·aata with

a window by suing a string name instead of modifying the

information stored in the internal window structure. Notice

that only 16-bit values may be associated with a property.

21

Windows provides four functions to manipulate

properties of a window:

• The SetProp function associates a property with a

window.

• The RemoveProp function removes a property associated

with a window.

• The GetProp function retrieves the property associated

with a window

• The EnumProps function retrieves the list of all

properties associated with a window.

3 • 4 Memory Management

As the memory is a vital shared resource under Windows,

to avoid fragmentation, as soon as new applications crop up

and the older ones get finished, Windows does memory

management consolidating free memory space by moving blocks

of code and data in system memory.

Under Windows, a program's code can be more than the

capacity memory at one time. Windows discards code from

memory and later reload the code from the program's .EXE

file. Routines located in "dynamic link libraries" can ·be

shared by programs running in Windows. Windows links both at

22

run time. Windows itself is a set of dynamic link libraries.

If a big windows program comprises many C or C++

program files, after compiling, each individual C/C++

program results in a separate piece of final program called

a "segment". Windows can load and remove each segment of a

program to and from memory separately. At any time, there

could be any of the segments of all available might be

loaded into memory. If a function call is made in presently

loaded segment, automatically, the segment possessing the

called function will be loaded into memory; before the

execution of the calling segment.

Windows manages the data also similarly. Each piece of

data in the application program's resource data is handled

separately by Windows. As the program runs towards

execution, each piece .of data referred in the resource data

can be set in such a way that it is not loaded into memory

until it is needed. So each data item can be separately

loaded and unloaded from memory as and when it is needed.

For the Windows programmer, there is an Option to choose as

to how he wants his program code and data is managed in

memory. These options for Memory should be indicated in

module definition file and in the resource script file.

23

OPTION

PRELOAD

LOADONCALL

MOVEABLE

FIXED

DISCARDABLE

MULTIPLE

Memory Management Options in Windows

MEANING

24

The code or data is loaded into

memory when th~ program first

starts.

The code or data is not loaded into

memory until it is needed.

The code or data can be moved in

memory. This is the most common

option.

The code or memory remains at a

fixd address in memory. (Usually

used in rare situations such as

interrupt driven interfaces with

hardware devices.)

The code or memory can be

temporarily

to make room

removed

for

data or

from memory

other objects.

will then be The code

reloaded if it is needed.

Applies only to program data.

MULTIPLE means that if the same

Stacks and Heaps:-

program is started several times

(several instances) each will have a

different set of data.

Each application program in Windows uses it sown single

memory segment for maintaining its "stack" and "local heap".

Automatic variables used in the program are stored in the

stack, while global and static variables are stored in the

local heap. the program's code is in one or more segments. A

separate segment holds the stack and local heap. The

automatic variables will be over written each time a

function body is entered, while global and static variables,

occupy fixed positions within the segment.

There can be requests for blocks of memory in Windows

programs. These requests can be for Fixed Moveable, or

discardable blocks of memory as the program runs.

3.5 Borland Resource Workshop :

(TO CREATE CUSTOM RESOURCES)

The various important Resource Types are:

1. Keyboard Accelerators

2. Bitmaps

3. Cursors

25

4. Icons

5. Menus

6. Dialog Boxes

We can add more and more custom Resource Data specific

to each application consisting of all Windows controls,

Dialog Boxes, List Boxes, ComboBoxes etc. very easily and

painlessly using Breland's Resource workshop. Once the

resource data is available in the resource file, when we make

a Turbo C++ protect comprising the main program file, the

resource file, the header file if any, and the Module

definition file; and compile it the following steps occur.

The resource compiler compiles the resource file to make an

.RES resource data file. Then the linker takesover. It

Combines the data in the .RES file with the program wherever

applicable forming a final totally compiled Windows

Application.

The Bordand Resource Workship package consists of

individual Resource Editors. The BRW is a completely

integrated environment designed to run under Windows. The BRW

is a Windows program with full menu and dialog Box support.

If the "New" option is selected from the File menu of the

BRW, several protect types can be selected .. By clicking one

of the project buttons shown, the user can elect to design

i·cons, cursors, dialog boxes, and more.

26

3.6 A look at the Module definition file:

The data given in the module definition file specifies

the memory options that are specific to Windows.

An example module definition file is as below:

N~E ~WPROO~

DESCRIPTION

EXETYPE

CODE

HEAPSIZE

STACKSIZE

EXPORTS

Project thesis of B.V. Raveendra

WINDOWS

PRELOAD MOVEABLE MULTIPLE

1024

5120

WndProc.

1. The N~E statement specifies the name of the file and is

opsional.

2. DESCRIPTION adds a textstring specified to the beginning

of the file.

3. EXETYPE always specified as WINDOWS for Versions 3.0 and

above. If not specified as WINDOWS, it is taken as WINDOWS

2.0 is the current WINDOWS package version.

4. The STU statement has the name of a small Dos programm

WINSTUB.EXE to alert user with a message saying "This program

is to be run under Microsoft Windows", if he attempts to run

it from DOS.

6. The program's data segment size is set with the HEAPS+ZE

and STACKSIZE specified.

27

7. The EXPORTS statment specifies the names of the

functions that vill be accessed directly by Windows as soon

as the programm runs.

28

CHAPTER 4

OBJECT WINDOWS CONCEPTS

If we have to reuse portions of programs already

written earlier, it will be cumbersome. No doubt, we can

always reuse the entire program. But, if we have to take

support of small bits and pieces of various programs to make

a completely new program, certainly a lot of modification and

reprogramming will be required or at times it may be

impossible also. The concept of Object-Orientation to create

reusable objects comes to our rescue, in this direction. The

advantage of Object-oriented programming in this situation is

that you can modify parts of an object to change specific

things while keeping the rest of the object. Object

orientation is very well there inherent in the Windows

programming style itself. Windows defines everything on the

screen as a window. Each window is in effect an object that

inherits some of its features from other windows. The data

associated with a window is encapsulated into the window

object. polymorphism is another salient feature that results

from object orientation. Window objects are polymorphic, they

can all receive any common messages and take action that is

appropriate for that window.

To make the Windows programming much easier and to

reduce the burden to a great extent I we used the Object

Windows Library {OWL) that comes with Borland C++ for Windows

29

(BCW) package. Basically, we have to create an application

object and a window object first, as the descendants of

TApplication class and TWindow class of the OWL. Over and

above that, we go on adding menu objects, dialog objects etc.

We are always at freedom to change the parts of objects

according to our needs, while navigating the program. A

Windows program written without using OWL involves checking

for previous instances of the program, registering window

classes, and defining window procedures. The usage of OWL

simplifies making a Window application by reducing the number

of steps needed to create two objects that are descendants of

the TApplication and TWindow classes as mentioned earlier.

Let us consider a sample minimal example object windows

program and analyze.

#include <owl.h>

class TAppname:pubic TApplication

{

public:

};

TAppname(LPSTR ApName, HANDLE Pevinst,

LPSTR CmdLine, int CmdShow) :

TApplication (ApName, Inst, Previnst, CmdLine,

CmdShow) {};

virtual void InitMainWindow();

30

void TAppname: :InitMainWindow()

MainWindow=new TWindow{NULL,"MyProgram");

}

int PASCAL WinMain(HANDLE Inst,HANDLE Previnst,

LPSTR CmdLine, int CmdShow)

{

TAppname Appname ("An OOP", Inst,

previnst,CmdLine, CmdShow);

Appname.Run{);

return Appname.status;

}

The include statement for "owl.h"file is a must for an

OWL application, inorder to include the Object Windows

objects and constants. The next part of the program defines a

descendant of TApplication called TAppname. The definition

implies that this class has a constructor that calls the

constructor for TApplication and a member function {TAppname)

that overloads the InitMainWindow {) member function. The

next step in the program involves creation of a TWindow

object by the "InitMainWindow" function. The string that

appears on the caption bar (i.e. "My program", here) is an

optional one inputted by the programmer. The final part of

the program is the WinMain function that Windows calls when

it starts the program. The WinMain function first creates a

31

TAppname object. Creating this object calls the constructor

which setsup the application. Then the WinMain calls the

members function 'Run' . This function starts by calling the

InitMainWindow member function. It is the InitMainWindow

member function, that create and displays the application's

main window when we run the program. All the message

processing for messages being sent from Windows for moving,

repainting, minimizing, maximizing, closing the application

window, is done by 'Run'.

Finally, to terminate the application program, when

Windows sends a WM_QUIT message to the program, the Run

function returns to WinMain which inturn returns the Status

variable from the TApplication object to Windows.

In a nutshell, an OWL application's main program

normally comprises just three statements.

1. The first statement of the ·winMain () constructs the

application object, by calling its constructor.

2. The second statement calls the application's 'Run' member

function.

3. The third statement returns the final

application that object windows stores in

member.

32

status of the

'Status' data

In the execution of the program, the sequence of

actions that take place are as below:

'Run' calls 'InitApplication' & 'Initinstance' to perform the

first instance and each instance initialization,

respectively.

'InitMainWindow' is then called to create a main window.

The application then starts moving ahead with the 'Run'

member function calling the message loop, to begin processing

incoming windows messages.

33

4.1 A Comparative Study :

In nopnal Windows Program In an OWL application program

1. Explicit checking
for previous instances
of the program.
2. Explicit call to Regis­
ter class() function
to register the class
for an application
window under WNDCLASS

3. Explicit call to Cre­
ateWindow() function to
create the application
window.
4. Explicit call to the
message loop involving
GetMessage()function to
receive messages for the
program. If none are
there for the applica­
tion, GetMessage() returns
control back to Windows
until it gets a message
for application.
5. Each time a Windows
function is to act, the
corresponding window's
handle is to be specified
6.Normally all the applic­
ation's message processing
is done in a function
called WndProc().
?.Explicitly the program
should process
WM_COMMAND message etc.
with a switch statement,
searching for which
command message has come.
8.Default message,process­
ing for moving, sizing,
closing the application
window is handled by
calling DefWindowProc().
9.For terminating an
application,explicit call
to DestroyWindow() functi­
on is to be made.

34

1. Object-Windows calls
Initinstnace for every instance
of the application.
2. No explicit registration
for window creation. Object
Windows uses a default class for
registering the window class. It
is the TWindow class normally
that does this.

13. 'Run' on its own calls !nit
Main Window() member function
that creates a window.

4. Inherent message loop
structure. Object Windows calls
the IdleAction member function
of the TApplication class
whenever there are no messages for
the application.

5. The HWindow member function of
the window object encapsulates
the handle requiring you to
specify the handle only once.

6. No need to define a separate
Wndproc. Member functions of
TApplication class handle messages
from Windows.

7. Indexed referencing for
messages eases the task.

8. The 'Run' member function does
all the default message
processing for an application
window.

9.Just before an application
exits, object windows calls the
TApplication member function
"CanClose" to see if it is OK to
stop the application.

This comparision clearly shows how easy it is, to

develop a windows program using standard OWL. Borland's OWL

provides the following advantages in Windows program

development.

A simplified and consistent interface to windows is

given. By consistency we mean, knowing how to develop one

complete OWL application program makes the programmer being

able to create any other Windows program; because all the

steps involved in that process use standardized formats

supplied by OWL.

For window management and message processing, OWL has

several automatic routines built-in which will be called

accordingly. For structuring a Windows application, a basic

frame work is supplied.

4.2 Features Of Object Windows

[]. Encapsulation of Window information:

The window object possesses its own member functions

which call the various windows functions. Those windows

functions act on the windows using individual windows'

handles. The window handle is encapsulated within the

object's 'HWindow' data member. We need not specify it each

time.

35

[]. Abstraction of many Windows API functions:

All the related function calls are grouped into single

member function by the Object Windows. This results in less

dependence on numerous API functions for the same task.

[]. Automatic message response:-

The DefWndProc() function is automatically invoked by

the Object Windows for all the messages which are not being

processed by the application program. In the case of normal

Windows program without using OWL, this needs an explicit

call to DefWindowProc() function by the application program.

4.3 Ob)ect Windows Class Hierarchy:

TApplication class
(represents .the application)

I
datamembers

i) application instance
(hinstance)

ii) pointer to mainwindow
(Main Window)

iii}pointer to accelerator table
(HAec Table)

member functions

i)Init Application

ii}Init Instance

iii}Can Close

During a call to 'Run' the 'InitApplication' and

'Initinstance' member functions are called by Object Windows

to initialize the application. To stop the application,

Object Windows calls the 'CanClose' member function.

36

I

TWindow Class
(represents a window on the

screen)

datamembers that contain the several member
functions like
WMPaint() etc. for
message processing.

position, size, style of a window,
and a far pointer.

A TWindow object is created in the InitMainWindow()

function. The constructor for this class sets all the object

variabies for size, style etc of a window. When the

application receives a WM_CREATE message from the Windows for

the window creation, then the member functions of this class

are activated.

The registration of a window class is done by the

TWindow class. Since, we define the application's class as a

descendant of TWindow class, due to Inheritance the

registration automatically takes place for the application

window's class. If the way the window is registered by Object

Windows is to be changed, we need two member functions to

overload this class. The first one is GetclassName. It

returns a pointer to class. The second function is GetWindow

class. It fills in the WNDCLASS structure with information

about the window class.

The OWL has definitions for various object classes like

TButton, TDialog, TEdit etc. for objects Button, Dialog, Edit

37

etc. respectively. Objects like edit windows are called

control windows, and are most frequently used in Dialog

boxes. Object Windows treats control windows as descendants

of TWindow class. Control windows are always associated with

their parent windows. To copy information from more than one

control windows, it suffices to give a single function call.

For example, the data entered in a dialog box in several edit

windows can be copied at a time to storage area by us·ing the

TransferData member function. To create Multiple Document

Interface (MDI) applications, TMDIClient and TMDIFrame

classes are useful.

Borland C++ package provides message response functions

to easily define a member function which manages the Windows

message. There are several ranges of numbers that object

Windows uses for indexed member functions. For example,

WM FIRST leads the index into the range for Windows messages

CF FIRST leads the index into the range for messages from

controls etc.

follows:

The format of a reference message can be as

Virtual void function (RTMessage Msg)

=[Index offset + message from Windows]·;

RTMessage implies Reference to TMessage structure.

The TApplication calss is divided from TModule class which

itself is derived from Object class.

38

TApplication

TFileDialog

TlnputDialog

TSearchDialog

TGroupBox I
TButton

(FROM OBJECT WINDOWS FOR C++ USER'S GUIDE p 224)

OBJECT WINDOWS HIERARCHY

TModule

TWindowsObject

TStreamable

TWindow

TEditWindow

TFileWindow

TControl

TStatic

supports Windows memory management and

error processing.

supports handle creation, message

processing and destruction of windows

object.

: defines the behaviour shared by all

windows objects.

represents main, pop-up and child

windows of an application.

allows text editing in a window.

In addition to text editing, allows

loading and saving text files.

defines member functions of handle

creation and message processing for

all controls.TButton,

TList Box,

controls

TCheck Box,

are derived

etc all

from

TControl class to represent the

respective controls.

defines member functions that set,

query and clear the text of a static

control.

39

TEdit

TFileDialog

TinputDialog

provides text processing capabilities

for a window's Edit control.

supports file opening, editing &

saving.

defines a dialogbox for user input of

a single data item.

40

CHAPTER 5

DESIGN AND IMPLEMENTATION

5.1 Railway Database Design:

The design involves two parts-the design of the

database and the design of the user interface.

A database is an integrated collection of automated

data files related to one another in the support of a common

purpose. Each file in a database is made of "dataelementS 11
•

These data elements are to be organized by, stored in, and

retrieved from the database. · In the view of a database

designer, data means automated information, i.e. information

in a format acceptable for automatic processing by a

computer. For achieving automated information, it should be

reduced into a machine-readable form. As we all know, the

smallest component of data in a computer is the "bit", a

binary element with the only allowed values of zero and one.

Bits form the building blocks of bytes (or characters), which

in turn are used to build data elements. Data files contain

11 records 11 that are made up of data elements, and a database

consists of files. So, the heirarchy is as follows:

l. Data base

2. File

3. Record

4. Data element

41

5. Character (byte)

6. Bit

While designing a database the first five levels in the

heirarchy are of importance. That is because, the database

contains files of records that contain data elements, made up

of characters.

Databases are filled with items of information. The

values of these items must be stored somewhere. The places

where they are stored are data elements. A data element is a

place in a file used to store an item of information that is

uniquely identifiable by its purpose and contents. For each

application there will be relevant data elements. In this

Railway Reservation System, some relevant dataelements used

are Origin, Destination, Farel (fare in I class), Fare2 (fare

in II class), Train name, Train No., Deptime (departure

time), Day (Day of the Week on which it is operational),

Quotal (No. of hearths in I Class), Quota2 (No.of hearths in

II class), No. of coaches, PNR No. (unique identification no.

of a ticket) , Distance (in kilometers) , Name (of the

passenger), Age, Sex, Address, Date (Date of journey) etc.

The functional relationship of these data elements to the

application's purpose is important. The context of the

function supported by the system is contributed to by the

data elements recorded in a database. We can also view the

data element as a temporary repository for a transient value

42

or the value of the instance of information. The dataelement

assumes a specified data value in a specific instance. Hence,

a data value is appropriately defined to be the information

stored in a data element.

Notice, that a database is a set of files related to

one another by a common purpose. We can say that a file is a

set of records where the records have the same data elements

in the same format. Each record will have a format which is

determined by the order of storage of data elements in a

file. After notifying the files, records and data elements we

have to define the schema. A "Schema" is the expression of

the database in terms of the files it stores, the data

elements in each file, the key data elements used for record

identification, and the relationships between files. Now,

the file keys are to be identified. A file "key" logically

points to the record that it indexes. The unique file key

that differentiates each record from all others in a file is

the "primary key". Only one record in a file can contain a

given value of a primary key. Put in otherwords, the primary

key data element in a file is the data element used to

uniquely describe and locate a desired record. A combination

of more than one data element can also form a key. Finally,

the inter-relationships among files are to be identified;

since we are using a Relational Database in this project.

43

5.1.1 Database Design steps :

The design of a relational database is carried out

as shown below in a sequence of steps.

1. Identify the basis for the database reqiurements.

2. Define the database functional and performance

requirements~

3. Identify the data items.

4. Separate the data elements from the files.

5. Build the data element dictionary.

6. Gather data elements to files.

7. Identify the retrieval characteristics of each file.

8. Identify·the relaionships between files.

9. Develop the schema for the DBMS you are using.

STEPl: The problem definition forms the basis for the

database requriements.

Problem:- Keep track of the vacancies available in various

trains to the specified destinations on specified dates.

Record the passengers taking part in journey along with their

PNR No.'s and the fares calculated for their journey. Report

the status of reservations made taking into considertion all

44

the cancellations being made. Report the Trains detials &

fares detials.

the system.

Resources:

Provide complete help on each operation of

The list of available resources includes

information from

1) The passenger's application form for reservation or

cancellation.

(2) The standard fares specification table of Railway

Department.

(3) The standard trains time-table of Ralway Deparment .

. STEP 2:-

Functional Requirements:

1. The system records the reservation data· for each

passenger on taking input for Name, Address, Age, Sex, Origin

(Station) I Destination (Station) I Class (of journey) I Date

(of journey) . The data will be stored with the same data

element names. The system allots a unique PNR No. for each

ticket reserved. The system calculates the correct fare of

journey by checking the class and age.

2. The system deletes the data for a particular passenger. on taki

the PNR No. for cancellation.

45

3. The system reports the complete details of ticket

booked/reserved, on production of the ticket's PNR No.

4. The system reports the total list of tickets reserved

on a particular date.

5. The system records the trains information in records.

Each record includes, the train no. train name, the departure

time, the origin, the destination, the no. of coaches, the

quota 1 (capacity in I class), quota 2 (Capacity in II

class) , Day (on which operational) .

6. The system will reocrds the fares information in records.

Each record includes, Origin,

class), Fare 2 (in II class),

Destination,

Distance

Fare 1

(in km) .

(in I

The

passenger can book a ticket in either I class or II class. In

calculating the fare for a passanger, the system checks if

his age is below 14 years. If so, the system charges one-half

of the fare calculated either in I class or in II class. If

the age is above 14. years, the system takes the Fare 1 or

Fare 2 as it is, correspondingly.

7. The system reports with a list of trains with each

train's record on request from a passenger.

8. The system reports with a list of fares with each fare-'s

records on request from a passenger. The fare to a specific

destination can also be calculated.

46

9. The system gives a provision for the database

administrator to take a backup of all the tickets reserved on

a particular date. Also everyday morning before starting

reservation operations, it builds all the records reserved

for a particular date into a doubly linked list and will be

ready for

etc.

the next action of reservation or cancellation

10. The system also provides on optional exit of the menu.

Performance Reqyiremnets:

1. The system will support upto 45 days prior reservation.

2. The system will support upto 200 stations.

3. The system will support upto 50 trains. ·

4. Each train consists of 15 coaches.

5. Each first class coach will have 50 beraths capacity.

6. Each second class coach will have 70 breaths capacity.

7. Retrieval of data recorded about a passenger, a train will

be on-line and will be in response to the user's entry of the

PNR No. of the ticket, the train no. respectively.

47

STEP3:-
The collection of possible data items reads as follows.

(Notice the word "data items" we used is not the data

elements list only) . Fares, Trains, pas sanger, Train no.

Train Name, Date of journey, Class, No. of Coaches, Distance,

Name, Address, Age, Sex, Day (optional), Quotal, Quota2,

Farel, Fare2, PNR No., Origin, Destination, Status, Bearthsl,

Bearths 2.

STEP4:-

Here, from the above list in step 4, we should separate

out the files and the data elements. In terms of the entity-

relation model (ER Model), the entities and their

attributes are to be distinguished.

The data elements identified are:

Train No., Train Name, Day (Operating), No. of Coaches,

Origin, Destination, Quota 1, Quota 2, DepTime, Class,

Date (of journey), Name (of passenger), Addrss, Farel, Fare2,

Age, Sex, PNR No. Bearthesl, Bearths2, Distance.

The relations identified are:

Passenger, Trains, Fares, Status.

Notice: The relations are the files themselves.

STEPS:-

The physical properties of all the dataelements that

will be in the database are described in what is known as a

48

"data element dictionary". A data element dictionary is a

table data elements including at least the names, data types,

and lengths of every data-element in the subject database.

Data element Name Data Type Length Remarks

Name character string 20

Address character string 40

Age Integer 4

Sex character 1

Origin string 10

Destination string 10

Class Integerter 2

Date String 14

Train No. Integer 8

Train Name String 20

Day String 10

No. of Coaches Integer 4

Quota 1 Integer 4

Quota 2 Integer 4

Fare 1 Integer 8

Fare 2 Integer 8

Distance Integer 10

Deptime Float 10 upto two
decimal places

Bearths 1 Integer "4

Bearths 2 Integer 4

PNR No. Integer 8 A four digit
number

49

STEP6:-

As we have identified earlier I the files of the

database are passenger I Trains I Fares and Status. Here 1 we

will consider each of them as an entity and try to assign the

corresponding attributes to them.See figure2.

There are finally four tables designed.

Passenger Table

PNR No. Name Address Age Sex Train No. Date Origin Desti- Class
nation

-- -- -- --

-- -- -- --

Trains Table

Train No. Train Deptime Destination Distance No.Of Quotal Quota2
Name Coaches

Fares Table

Train No. Destination Class Farel Fare2

so

STATUS TABLE

~D~a~t~e~~~~~=~~T~r~a~i~n~~N~~o~.~~~~~=~-B-e_a_r_t_h __ s_l_. _____ IBearths2

Notice in the Trains table the very first destination

is always the Origin of the train, where from it starts.

STEP:7&8:-

In this step, for each file the retrieval

characteristics are to be defined. The retrieval of records

of information is dependent on what are known as "Primary

Keys".

1. For the cancellation of a ticket, the ticket's PNR No.

will be the primary key.

2. For the display of a particular ticket's details, its

PNR No. will be the primary key.

3. Display the file which lists the complete

trains information on request of viewing it.

4. Based on the Train No. Destination and Class, the

correpsonding fares details can be known.

5. To list all the Tickets reserved display all the records

of passenger relation one by one.

To know the inter- relationships among the files,

first let us identify all the relations with their keys of

retrieval.

51

Passenger:

Train

Fares

Status :

PNR No.

Train No.

Train No. Destination, Class

Date. Train-No.

PNR No. , Train No. are the primary keys of relations

passenger, and Trains. Train No. together with Destination and

Class form the candiate key for the relation Fares.

The functional dependencies assumed for the database

design are:

Passenger:

Fares:

Status:

STEP 9:-

PNR No----> Name

PNR No----> Address

PRN No---->Train No.

PNR No---->Origin

PNR No---->Class

PNR No---->Age

PNRNo----->Sex

PNR No---->Date

PNR No---->Destination

Train no destination class --->Fare 1

Train no. Destination class --->Fare 2

Date Train No--->Bearthsl

Date Train No--->Bearths2.

Defining the database schema invovles, all the

practical steps carried out in the implementation of data

base.

52

5.1.2 Railway Database Dmplementation :

The passenger relation has been stored in TICINFO. DAT

File {The file name indicates that ticket information is

stored in that file) . The train relation has been stored in

a file named TRINF.DAT. The Fares relation has been stored

in FARE .DAT file. The Status relation has been stored in

STATUS.DAT file.

Ticket is a structure defined with all the members to

collect information for Name, Age, Sex, Address, etc., with a

left pointer to the node and with a right pointer to the

node called "prior 11 and 11 next 11 respectively. Also, a pointer

to this structure itself called "Info" is defined. A doubly

linked list is used to hold the data of the structure members.

After each reservation operation the whole data of that

passenger is stored into TICINFO.DAT from the doubly linked

list. A structure is defined to input the records into

TRINF.DAT containing information for trains. Similarly,

FARE.DAT and STATUS.DAT are also filled through structures

defined for them.

5.2 User Interface Design

The user interface stands as a mediator between the

user and the database.

53

1 . user selects the options and gives the commands . User

inputs the appropriate data also.

2. Taking the inputted data, the system searches the database

and retrieves the proper records, and operates on that data.

User interface should provide a menu to the user.

Since., we are concerned with a Railway Reservation System the

manu consists options to reserve, cancel, View ticket

details, trains and fares details. To perform the respective

tasks, the interface needs relevant data from the user. This

data is accepted through a dialog box. If the validity of

input data is violated the interface should prompt back to

the user with a message box, giving warning.

The user interface should not restrict the user to

operate only with the mouse. It should give to the user

provision for shortcut key access also. That means, keyboard

accelerators are to be incorporated.

The interface design should be such, that at each

step, flexibility of decision should be left to the user.

That is to say that suppose, in listing all the tickets

reserved, there should be two push buttons in a message box

with YES and NO optiops. If the user selects YES, the system

should proceed listing next ticket. If the user selects No,

the control should go back to the main window menu, clearing

54

the client area. Appropriate help, whereever required should

be given.

5.2.1

Start

End

5.2.2

Start

End

Main Program Flow

Initialize TApplication Object datamembers

Through Inst & Previnst, perform first and each

instance initialization

Process InitMainWindow

Construct TMainWindow object

Enter message loop

{

}

process Messages for the applciation, until

WM_QUIT message does not occur

End Message loop on finding (WM_QUIT)

Destory TMainWindow and TApplication objects

return status

Construct TMainWindow object

Assign menu to TMainWindow object

Build the doublylinked list using the passenger

information file

55

5.2.3 Process Main window messages

start

case option selected

menuitem Reserve => Execute TReserveDlg

menuitem Cancel => Execute TCancelDlg

menuitem List tickets => Process List

menuitem View Ticekt => Execute TViewTicketDlg

menuitem viewTrains => Process TrainsDetails

menuitem ViewFares => Execute TFaresDlg

menuitem Save => Process Save

menuitem Load => Process Load

menuitem Exit => Process CanClose

default => Default Windows Process in

End case

End

Figure aside shows the message processing for the main

window. The corresponding member function is executed by the

TMainWindow object, as soon as a message comes. If the user

selects the reserve option, the application gets a CM Reserve

~essage from Windows. The Reserve member function is then

executed.

56

5.2.4 Execute TReserveDlg

Start

Construct TReservDlg's child objects

Show Reserve dialog box

Fetch the data into various buffers to hold

name, origin, destination etc.

Case option selected

OK button If (! (Valid Train no & Valid origin &

Valid destination))

Give error message

else

{

if (datebuffer >(date of booking+ 45))

Give a message saying. out of

reservation period

else
{
Search the STATUS file and check for

vacancy.

if (vacancy exists)

{

PNRno.=PNRno+l

Allot PNRno.

Get farel or fare2 from FARES file

57

Cancel button

default

End case

End.

}
}

58

depending on class is first or second

if (age <14}

fare = fare/2

Create a new node in the doubly

linked list and load the whole data

if (class is first)

Quota1=(Quota1}-1

else

Quota2=(Quota2)-1

Store new Quota in STATUS file

Display the details of ticket booked

along with the PNRno. allotted

Close TReservaDlg and

return to TMainWindow

}

else

Give a Message saying no vacancy

Default Windows processing

Default Windows processing

5.2.5

Start

Execute TCancelDlg

Construct TCancelDlg's child objects

Show cancel dialog box

Fetch the PNRno. inputted into a buffer called

numbuffer

Case option selected

OK button: If(! (Valid PNR no)) give error message

else

{

Traverse all the nodes in the linked

list for a match with the PNR no. in

numbuffer

If a match occurs,

corresponding

the linked list

Release the PNRno.

If (Class is first)

Quotal=(Quotal)+l

else

Quota2=(Quota2)+1

node

delete

Store new Quota in STATUS file

the

from

Give a message to the user that his

ticket is cancelled.

59

}

fare=(fare-10/lOO*fare)

Output the fare calculated

Close TCancelDlg and return to
TMainWindow

Cancel button : Default Windows processing

default: Default Windows processing

End case

End

5.2.6 Process List

Start

Case option selected

OK button:

Initialize the pointer to the first node of

ticket data

repeat

Display the ticket data held by node

Message box with YES & No option asking if

the user wants to see next ticket or not

until (IDNO)

return to TMainWindow

60

End.

5.2.7

Start

Cancel button : Default Windows processing

default: Default Windows processing

End case

Execute TViewTicketDlg

Show view ticket ~ialogbox

Fetch the PNR No inputted into a buffer called numbuffer

Case option selected

OK button: if (!Valid PNR No.)

Give error message

else

{

Move the pointer of the list to

point to first node

while ((node-->PNRno.) !=(numbuffer)

{

Goto next node;

/*last is apointer which always points to the end of

last node in list*/

61

if(list pointer ==last) ·

set flag;

}

If (flag)

{

Give a message that ticket not found

Close TViewTicketDlg

return to TMainWindow
}

else

{

Display the whole node data

Close TViewTicketDlg

return to TMainWindow

}

}

Cancel button : Default Windows processing

default: Default Windows processing

End case

End

5.2.8 Process Trains Details

Start

Give a messageBox with YES & No option asking if the user

wants to see the whole list of trains.

case option selected

OK button: Create a child window

62

Open the TRAINS file

Display it in the child window

return to TMainWindow

Cancel button : Default Windows processing

default: Default Window processing

End case

End

5.2.9

Start

Execute Fare details

Construct TFaresDlg's child objects

Show Fares dialog

Fetch origin, Destination and class

case option selected

OK button : If! (Valid destination)

Give error message

else

63

{

Search FARES file and retrieve

the record with the given

destination and class

if (class is first)

Display (farel)

End case

End

else

Display (fare2)

Close TFaresDlg

return to TMainWindow

}

Cancel button : Default Windows processing

default: Default Windows processing

5.2.10

Start

Process Save

End

Open a file in appendmode

save the whole linked list's data in that file

prompt back to user with a message box

5.2.11 Process Load

Start

End

open the file used for saving

Build the doubly linked list with all the nodes data

from the file

prompt back to user with a message box

64

5.2.12

Start

End

Process Exit

Store the linked list contents in TICINFO file

Save the STATUS file

DestroyWir.Ldow ()

65

CHAPTERS

SAMPLE SESSION

A project file is created using the main program file, the

resource file, the header file for the program and the module

definition file. Using Borland C for Windows (BCW), compile the

project file. From the program manager run the application

program. Then the application's main ·window appears on the

screen. This is shown in the figure in page 68 .

This contents Reserve, Cancel, View, List, Admin, Help,

Exit options. The various popup menus are as follows :

Menu Item Popup Menu

Reserve Normal

Cancel Normal

View - Ticket

- Trains

- Fares

List

Admin - Save

- Load

Help

Exit Quit menu

66

Remarks

Gives, TReserveDlg
Dialog box.

Gives TCancelDlg
Dialog box.

Gives TViewTicketDlg
Dialog box.
Displays Trains
Information file.

Displays Fares
Information file and
TFaresDlg.

List all the
tickets booked.

Saves into a file

Loads into a linked
list from file.

Provides Help.

Quits the application.

The TReserveDlg is shown in the figure in page 70 The

TCancelDlg is shown in the figure in page 7J The TViewTicketDlg

is shown in the figure in page 74 The List gives output as shown

in figure in page 76. The Save Popup menu on selection gives a

message box as shown in figure in page 78 , while saving the

ticket's information into TICINFO.DAT file. The Load popup menu

on selection gives the message shown in figure in page 79, after

loading the ticket's details into a linked list. The Quit menu

popup menu for Exit menu option is shown in the figure in page 80.

For all data inputs, data validation checking is carried

out.

67

-~--------Wl

~~ RAILWAY RESERVATION SYSTEM -~~~~
RESERVE CANCEL VIEW LIST HELP ADMIN. EXIT

68

69

PASS NAME

ADDRESS

SEX

TRNUMB.

FROM

TO

DATE

RES.Cl.ASS

DATE

RES.CLASS

-------~ ---------
RESERVE DAlA

D AGE I I

~-]
L----j

D AGE ~
12615 I
I delhi I
I madras I
116-1-95 I ,,

jflrst I

70

L---'

71

CANCEL TICKET

GIVE THE PNR NO. OF

TICKET TO BE CANCELLED

PNR. NUM

72

TICKET TO BE CANCELLED

73

VIEW TICKET

PNR.NUM ~~1-0o_o __________ ~

lllllllll

74

75

76

(1 00 YO WANT TO SEE MORE? '. '

77

78

~RAILWAY RESERVATION
SYSTEM

0 SAVED IN A FILE

-·, RAILWAY RESERVATION SYSTEM '.

0

79

LOADED THE DATA FROM A FILE
TO BUILD A TREE

80

CHAPTER 7

CONCLUSION

The design and implementation of a prototype of an

object ogiriented GUI for a Railway Reservation System has

been carried out in this project, using Borland C++ for

Windows and OWL. The work has progressed in two stages.

First, the database and then the GUI are designed. Then

finally they are implemented. The application also assists

the user by giving complete help on how to use it. The

fulfledged realworld Railway reservation system is a huge one

and complex too. The constraints of limtied time prevented us

from implementing a real world database.

Some of the improvements that can be made to this

application are:

One of

making the

communication

the major improvements that can be made is

system completely distributed. Over a

network if the stations are connected,

reservation can be made from any station to any other station.

Also onward reservation facility can be added to this

application.

The provision for preponement and postponement of a

reserved ticket can be given. For preponement, marking the

PNRno.s of all the tickets cancelled, the same no.s can be

again allotted for a preponement request with just moving the

81

"prior" and "next" pointer of the doubly linked list.

Similarly, the postponement involves moving the prior and

next pointers of a node ahead in the linked list, by

incrementing the PNRno. by one, for each movement ahead of a

node.

The databse organization can be made more powerful and

efficient by using B-Trees for holding the data for searching

the database.

As an improvement that can be done in future, a more

powerful interface can be accomplished using Windows 4. 0,

when it enters market. As reported by SteveFox in "computers

and conununications", October '94, advantages of it are as

below:

1. Improved Interface: The Program manager and Filemenager

are replaced by "My Computer", "Explorer" and "Start": They

make data a point-and-click affair.

2. CONFIG.SYS, and AUTOEXEC.BAT are so well hidden that the

programmes or the user need not worry about them at all.

3. Long life names: The limitation on filenames to be "eight

dot three" in length is no more there.

4. Clever right mouse button: Right-Click ·any where to

bringup a context sensitive menu.

82

5. Preemptive multitasking: A new order governs your

applications, and a 32-bit architecture provides performance

and stability.

6. Plug and Play: If IRQS got you down in version 3.1, Windows

4. 0 gives solution. Windows instantly recognizes plug and

play cards and peripherals. Plug in and get on with your

computing.

7. If an application hangs, you can shut it down without

rebooting Windows.

8. Shortcuts: Easy-to-create icons provide quick access to

files or applications.

'
9. Mobile computing: Drag and drop files into your Brief

case folder for quick portability and file syrchronization

when you return.

10. Communications: Remote network access, and TCP/IP

support for interactive inter-net connections, are all

standard.

83

BIBILOGGRAPHY

1. Jim Conger, "Windows Programming Primer Plus", Galgotia

publications private limited, 1994.

2. Louis Fernades, Yogesh Seth and Anish Kurup, .. "Borland C++

3. 0 for Windows 3 .1 Programming with Object Windows", BPB

publications, 1993.

3. Henry F. Korth and Abraham Silbeischatz, "Database System

Concepts", Second edition McGraw-Hill Computer Science

Series, 1991.

4. Gary Syck, "Object Windows How-To", Galgotia publication

private limited, 1993.

5. Brain W. Kernighan and Dennis M. Ritchie, "The C

programming Languague", Print ice Hall of India private

limited, 1993.

6. "Object Windows for C++ User'·s Guide", Borland

International Inc

7. Robert Lafore, "Object Oriented Program-ning in Turbo

C++", Galgotia Publication private limited, 1993.

8. James Conger "Windows API Bible", Galgotia Publications

Private Limited,l993.

84

9. Bjarne Stroup Stroup, "The C++ Progranuning. Language",

Addision Wesley Publishing Company, 1994.

10. C .J. Date, "An Introduction to Database Systems" Vol. 1

Adsdison-Wesley narosa Indian Student Edition, 1987.

11. Kaare Christian,"Borland C++ Techniques and Utilities",

ZBPress, 1994.

12. Chapman Hall "Object Oriented Programming Systems, Tools

and Applications" London 1991.

85

	TH56050001
	TH56050002
	TH56050003
	TH56050004
	TH56050005
	TH56050006
	TH56050007
	TH56050008
	TH56050009
	TH56050010
	TH56050011
	TH56050012
	TH56050013
	TH56050014
	TH56050015
	TH56050016
	TH56050017
	TH56050018
	TH56050019
	TH56050020
	TH56050021
	TH56050022
	TH56050023
	TH56050024
	TH56050025
	TH56050026
	TH56050027
	TH56050028
	TH56050029
	TH56050030
	TH56050031
	TH56050032
	TH56050033
	TH56050034
	TH56050035
	TH56050036
	TH56050037
	TH56050038
	TH56050039
	TH56050040
	TH56050041
	TH56050042
	TH56050043
	TH56050044
	TH56050045
	TH56050046
	TH56050047
	TH56050048
	TH56050049
	TH56050050
	TH56050051
	TH56050052
	TH56050053
	TH56050054
	TH56050055
	TH56050056
	TH56050057
	TH56050058
	TH56050059
	TH56050060
	TH56050061
	TH56050062
	TH56050063
	TH56050064
	TH56050065
	TH56050066
	TH56050067
	TH56050068
	TH56050069
	TH56050070
	TH56050071
	TH56050072
	TH56050073
	TH56050074
	TH56050075
	TH56050076
	TH56050077
	TH56050078
	TH56050079
	TH56050080
	TH56050081
	TH56050082
	TH56050083
	TH56050084
	TH56050085
	TH56050086
	TH56050087
	TH56050088
	TH56050089
	TH56050090
	TH56050091
	TH56050092
	TH56050093
	TH56050094
	TH56050095
	TH56050096
	TH56050097
	TH56050098
	TH56050099
	TH56050100

