
SIMULATION OF CSMA/CD LAN
WITH NETWORK PARTITIONING

Dissertation submitted to the Jawaharlal Nehru University
in partial fulfilment of the requirements

for the award of the Degree of

MASTER OF TECHNOLOGY

in

COMPUTER SCIENCE AND TECHNOLOGY

by

PANGULURI RAMARAO

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JA WAHARLAL NEHRU UNIVERSITY

NEW DELHI • 110067
INDIA.

CERTIFICATE

This is to certify that the thesis entitled "Simwati~n of CSMA/CD LAN with Network

Partitioning", being submitted by me to Jawahar1al Nehru University in partial fulfilment of the

requirements for the award of Degree of Master ofT echnology, is a record of original work done by

me under the supervision ofProf. · Karmeshu, Professor, School of Computer and Systems Sciences,

Jawaharlal Nehru University and Mr. S. Madan, Asst. Professor, School of Computer and Systems

Sciences, Jawaharlal Nehru University, during the Monsoon Semester 1994.

The results reported in this thesis have not been submitted in part or full to any other university

or Institution for the award of any degree.

,..., .,...

\\sf
Prof. K.K. Bharadwaj
Dean, SC & SS

"'-'1

Jawaharlal Nehru University
New Delhi
Pin 110067.

PANGULURI RAMA RAO

Prof.· " , Karmeshu
Professor,
SC&SS
J.N.U., New Delhi.·

Mr. S. Madan
Asst. Professor
SC&SS
J.N.U., New Delhi.

ACKNOWLEDGEMENTS

It is a great pleasure for me to sincerely express

my deep sense of respect and gratitude to Prof. '<Karmeshu

for his invaluable suggestions, guidance and inspiration.

I express my special gratitude to Mr.S.Madan for

his invaluable suggestions and for his constant encouragement

during the course of the project.

I take this opportunity to thank Prof. K.K. Bharadwaj

for providing me the opportunity to undertake the project. I

would also like to thank the authorities of our School for

providing me the necessary facilities to complete my project.

I am thankful to Michael, Gopal and John for their

support.

PANGULURI RAMARAO

ABSTRACT

The performance of CSMA/CD LAN degrades under heavy

load. In my thesis, by using the concept of network

partitioning an upgraded CSMA/CD LAN is implemented which

does not degrade the performance under heavy load.

Initially, the software model has been developed :?or

the CSMA/CD LAN. The event scheduling approach has been used

to model the protocol, the various parameters of the protocol

can be user specified or the appropriate 802.3 standards may

be used for simulation runs. the simulation result produced

by the software module are validated by comparing them with

the Schoch's measured results (6) and the analytical results.

Finally, the software model was modified to simulate the

CSMA/CD LAN with network partitioning. The simulation run

provides the mean packet delay averaged on all the nodes

in the LAN.

The simulation results of the LAN with and without

network partitioning are presented the results show that the

performance of CSMA/CD LAN improves with the network

partitioning under heavy load.

CHAPTER 1 INTRODUCTION
1.1 Local Area Networks (LAN)
1.2 Media Access Protocols in LANs

CONTENTS

1.3 Performance parameters and !vfeasures
1.4 Objectives

CHAPTER 2 CSMA/CD WITH NETWORK PARTITIONING
2.1 Network Partitioning
2.2 Partition station and its functions
2.3 States of partition station
2.4 Advantages of dynamic partitioning

CHAPTER 3 OVERVIEW OF DISCRETE EVENT SII\fULA TION
3.1 Definitions
3.2 Discrete Event Simulation techniques
3.3 Why not special purpose simulation languages
3.4 Validation and its importance
3.5 Random number generation
3.6 Simulation output Analysis

CHAPTER 4 MODELLING
4.1 Ethernet Simulation Model
4.2 Modelling Assumptions
4.3 Input and Output Parameters of Model
4.4 Validation of Simulation Model

CHAPTER 5 PROGRAMMING APPROACH FOR THE MODEL
5.1 Development of Ethernet Model
5.2 Development of Model with Network Partitioning
5.3 Major Modules defined in program .

CHAPTER 6 CONCLUSION
6.1 Validation of Ethernet Model by comparing with Schoch's Measured results

1
2
6
7

9
10
12
13

14
14
16
17
18
21

26
33
34
35

38
43
44

and \\'ith Ethernet Analytical results 51
6.2 Simulation of two segment Ethernet with Network partitioning. 52
6.3 Conclusion 54

PROGRAM LISTING

BIBLIOGRAPHY

CHAPTER. l

INTRODUCTION

1.1 LOCAL AREA NETWORKS (LAN)

Local Area Networks are widely used nowadays in the

offices.

A Local Area Network is defined as:

"A Local Area Network is a communication network that

provides interconnection of a variety of data communicating

devices within a small area".

some of the key characteristics of local area networks

are:

. high data rates (up to 100 Mbps)

. Short distances (0.1-50 km)

. low error rate (1o-8-1o-11)

. geographically confined to a small area

. generally privately owned

Local networks are characterized in terms of their

topology. Bus and ring topologies widely became popular. In

Bus topology, all devices share a common communication

medium, only one device can transmit at a time, and

transmission employs a packet containing source and

destination address fields and data. The ring topology

consists of a closed loop, with each node attached to a

repeating element.

1

1.2 MEDIUM ACCESS PROTOCOLS IN LANS

The most commonly used MAC protocols are CSMA/CD,

tokenring and tokenbus.

In the CS¥~/CD protocol, a terminal with a packet ready

for transmission senses the channel and proceeds or follows:

{1) If the channel is sensed idle, the terminal initiates

transmission of packet.

{2) If the channel is busy, then depending on the

persistence algorithm the terminal transmits. There are

mainly three persistence algorithms. They are nonpersistent,

1-persistent and p-persistent.

In the nonpersistence case, the station backsoff a

random amount of time and then senses the medium again. It is

effective in avoiding collisions; two stations wishing to

transmit when the medium is busy are likely to backoff for

different amounts of time. The drawback is that there is

likely to be a wasted idle time following each transmission.

In the 1-persistent algorithm, the station continues to

sense the medium until it is idle, and then it transmits.

This attempts to reduce the idle time by allowing a single

waiting station to transmit immediately after another

transmission. Unfortunately, if more than one station is

waiting, a collision is guaranteed.

In the p-persistent algorithm, the station continues to

2

sense the medium until it is idle, then transmits with some

pre assigned probability. Otherwise it backs off a fixed

amount of time, then transmits with probability p or

continues to backoff with probability (1-p). This algorithm

is a compromise that.attempts to minimize both collisions and

idle time.

(3). If

immediately

a collision is detected during transmission,

cease transmitting the packet and transmit a

brief jamming signal to ensure that all stations know that

there has been a collision. After transmitting jamming

signal, wait a random amount of time, then attempt to

transmit again.

For the proper operation of the CSMA/CD protocol the

packet size should be sufficient to permit collision

detection in the worstcase. For a baseband system, with two

stations that are as far apart are possible {worstcase), the

time that it takes to detect a collion is twice the

propagation delay.

The most common choice in the persistence algorithms is

1-persistent,used by the Ethernet and IEEE 802 standard. With

the 1-persistent scheme, the wasted idle time is eliminated

at the cost of wasted collision time.

The time wasted due to collisions is short if the

packets are long relative to the propagation delay. With

random backoff, two stations involved in a collision are

3

unlikely to collide on their next tri~s. To ensure stability

of this backoff, a technique known as binary exponential

backoff is used. A station attempt to transmit repeatedly in

the face of repeated collisions, but the mean value of random

delay is doubled after each c6llision. After a number of

unsuccessful attempts the station gives up and reports an

error.

Token Bus is a technique in which stations on the bus

or tree form a logical ring; that is, the stations are

assigned positions in an ordered sequence, with the last

member of the sequence followed by the first. Each station

knows the identity of the stations preceding and following

it. When a station receives the token, it is granted control

of the medium for a specified time, during which it may

tra-nsmit. When the station is done or time has expired, it

passes the token on to the next station in the logical

sequence. Hence steadystate operation consists of alternating

data transfer and token transfer phases.

In the case of token ring, a small token packet

circulates around the ring: when all stations are idle, the

token packet is labeled as 'free' token. A station wishing

to transmit waits until it detects the token passing by,

alters the bit pattern of the token from "free" token to

"busy" token and transmits the packet immediately

busy token. Since there is no free token on the

4

following

ring, all

other stations wishing to transmit must wait.

the ring will make a round trip and be

The packet on

purged by the

transmitting station. The transmitting station inserts a

"freetoken" on the ring when the station has completed

transmission of its packet and busytoken has returned to the

station. When transmitting station releases a new free token,

the next station downstream with data to send will be able to

seize the token and transmit.

The comparison between tokenring, token bus and CSMA/CD

is done by many. The analysis (3] of these comparisons

yielded the following conclusions.

(1) Token ring is least sensitive to workload.

(2) CSMA/CD offers shortest delay under light load, whereas

it is most sensitive under heavy load to the workload.

Under heavy load, the disparity between token passing

and CSMA/CD is due to the instability of CSMA/CD. As offered

load increases, so does throughput, until beyond some maximum

value, throughput actually declines as offered load

increases. This results from the fact that there is an

increased frequency of collisions. More packets are offered

but fewer successfully escape collision. Worse, those packets

that do collide must be retransmitted, further increasing the

load.

5

1.3 PERFORMANCE P~~ETERS AIID MEASURES

In the performance analysis of Local Area Network the

two most useful parameters are the Date Rate (R) of the

medium and the average signal propagation delay (D) between

the stations on the network. The product of these two terms

R X D, is the important parameter for determining the

performance of a Local Area Network.

Various measures for the analysis of LANs are

throughput and meanframe delay and utilization as a function

of network load. Network load is characterized by the number

of stations on the network, the interframe transmission

intervals of these stations and mean frame length of

transmissions.

Throughput can be defined interms of number of frames

per and time or bytes or bits per unit time. It

defined as that part of channel utilisation

can also be

used for

successful data transmission and otherpart of channel

utilization represents transmissions abandoned because of

collisions. The definition which is in use is "the part of

channel utilisation used for successful date transmission",

which is referred to as Network Throughput(S).

The mean frame delay time Td is defined from the time

at which a station first attempts to transmit a frame to the

time at which transmission of frame is successfully

6

completed. It includes the channel waiting time, collision

recovery time, backoff time and frame transmission time.

If Tf be the mean transmission time of a frame in the

absence of contention: Tf is the product of frame length in

bits and channel transfer rate in bits per sec.

normalized mean delay (D) is defined

D=Td/Tf

a .,.
""•

The Ratio of meanframe delay to the mean

transmission time.

The

frame

The load on the network is called the offered load, G.

If T· 1 is the mean interval between the time at which a

station completes transmission of one frame and the time at

which it initiates transmission of next frame and if there

are N stations in the network and if all are identical and if

the network is assumed a closed system, the offered load G is

defined as

G =
Ti+Tf

If the network is viewed as an open system, the offered

load G, is

G = A Tf

Where 'A is the arrival rate of new request at the

channel 'A= N/Ti =

Where 1\i is the arrival rate of frames at a particular

station.

7

One more parameter in the performance of CSMA/CD

networks is the ratio of end to end propagation time of the

channel to the mean frame transmission time and is denoted by

o<.

o< = T/Tf

= propagation time/frame transmission time

For a given offered load, network with large o< will

spend more time in the collision recovery, and so have lower

throughput than a network with large o<.

1.4 OBJECTIVE

The CSMA/CD protocol ~erforms well under light network

load but not well at heavy load. Network partitioning allows

the network to be partitioned in to segments when under heavy

load and the partition station acts as a bridge between

segments. By using this concept the objective is to show that

performance of CSMA/CD improves under heavy load by measuring

the throughput and average packet delay for Ethernet.

8

Parameters

Slot time

Jam size

Inter frame gap

Maximum number of
Retransmission attempts

Maximum backoff possible

Address size

Minimum Frame size

Maximum Frame Size

Values

512 bit times

32 bit

9.6 micro sec.

16

10

48 bits

512 bits

1518 bytes

Table 1.1 IEEE 802.3 standards

CHAPTER 2

CSl'lA/CD WITH NETWORK PARTITIONING

~.1 NETWORK PARTITIONING

Consider a room of people who have the ability to send

and receive data through the speech. The communication that

can take place in the room can be increased by partitioning

the room into compartments with each compartment isolated

from the other. And also each compartment can pass speech

across the partitions to adjacent compartments. Then it is

possible to have the communication taking place

simultaneously in each compartment. If the same is applied to

a CSMA/CD LAN with the room being the physical network and

the people, set of stations on the network, then it is

possible to increase the performance.

Partitioning the LAN into separate segments with each

segment isolated from the other se~ents and having the

communication taking place simultaneously in each segment.

Each segment has the capability to pass messages across

partitions to adjacent segments. This is the concept of

Network partitioning.

The following are the benefits of employing the Network

partitioning for the CSMA/CD.

1} It gives maximum aggregate throughput.

2} It does not degrade performance under light load.

9

2.2 PARTITION STATION AND ITS FUNCTIONS

The partition station has two important functions.

(1) At the place where partition station exists, putting and

removing the partition.

(2) When the partition is present i.e. when it is

in to separate segments, the function of partition

is to store and forward packets from one side

partition station to the otherside, in case

destination is on the otherside.

separated

station

of the

packets

Major components of the partition station are as shown

in Fig. 2{a). When the LAN is not separated in to segments

i.e. when the partition is not in place, the partition

station uses the collision frames input to determine when to

place the partition. When the network is under heavy load

i.e. when the number of collision frames per second exceeds

certain value, then the partition is to be put in place and

when the number of collisions per second falls below a

certain value, which indicates that the network load is

light, the partition is to be removed. If the buffer of the

partition station is full then also partition is to be

removed.

Depending on the output of the partition station, the

placement and removal of partition is controlled. The inputs

to the partition station are collisi~n frames input, pass

through traffic and buffer full condition. Onto either

10

side of partition mechanism the partition station is

connected to the network and the connection is equivalent is

the connection of a station to the network.

The partition station is itself a bridge and is a

Medium Access Control (MAC) layer bridge. The function of a

bridge is as follows: A bridge accepts an entire frame and

passes it up to the date link layer where the checksum is

verified. Then the frame is sent down to the physical layer

for forwarding on a different subnet. A.MAC layer bridge

operates below the network layer in the open system

interconnection (OS!) reference model. It operates within the

data link layer. Two IEEE approaches in the design of the

bridges exists. One among them is transparent bridge. The

transparent bridge operates in promiscuous mode, accepting

every frame transmitted on all the LANs to which it is

attached. The routing procedure for an incoming frame

depends on the LAN i·t arrives on(the source LAN) and the LAN

its destination is on (the destination LAN), as follows:

1. If the destination and source LAN's are the same,

discard the frame.

2. If the destination and source LANs are different, forward

the frame.

3. If the destination LAN is unknown, use flooding i.e.

keeping the packet on all LANs.

11

2.3 STATES OF PARTITION STATION

The different states of a partition station are shown

in Fig 2 (b).

Before partitioning, the partition station is said to

be in the 'Waiting' state.While in the waiting state

partition station is transparent to the network. When the

network is under light load, partition station stays

in 'Waiting' state. On this state, the partition station

continuously senses the number of collisions per second,

which is an ·indicator of load on the network. When it exceeds

a certain value, the partition station puts the partition in

place i.e. the partition station goes into 'bridge' state,

where it acts as a MAC layer bridge between the two sides of

the network. In this state, the partition station continues

to monitor the number of collisions per unit time on both the

sides of partition. If the total collisions per unit time

drops below a certain value, indicating that network load is

light, the partition station removes the partition and goes

in to 'empty buffer' state. In this state initially the

partition station transmits all packets in its buffer.

all the packets in partition station are transmitted,

partition station goes in to 'waiting' state. When

partition station is in 'bridge' state, if the buffer

full, then partition station removes the partition and

into 'empty buffer' state. Otherwise, the packets

overflow because of buffer full condition.

12

After

the

the

gets

goes

will

The implementation of network partitioning improves the

performance of CSMA/CD LAN and the performance varies with

the traffic patterns on the network.

2.4 ADVANTAGES OF DYNAMIC PARTITIONING

Dynamic partitioning has some advantages over building

permanent partition stations, they are :

(1) A permanent partition or bridge slightly degrades

performance under light load. The partition station takes

non zero processing time at the partition station to store

packets and forward them. When you don't want to degrade the

network performance under light load, the dynamic

partitioning is the best choice.

(2) In case a failure occurs in a permanent station or bridge

the network is at a minimum disconnected. In dynamic

partitioning partition station could be constructed in such a

way that it would handle failure by removing the partition.

Unlike a permanent partition station, after removing

partition, the network remains connected.

(3) Dynamic partitioning would be an advantage in situations

where known traffic patterns exist on a network such that

partitioning could be scheduled. For example, traffic

patterns are known for check processing in a bank.

the busy hours of bank, partition station could be

place and for other hours, partition can be removed.

13

During

put in

B us
tion connec

to segme nt 1

,
;

CONTROL INPUTS

I - - - - - - - - - - - - - I • COLUSIONS

I

I

I
I
I
I
I
--

,
~

PARTITION STATION • BUFFER FULL

PORT BRIDGE PORT
1 2

Jl\.-

'\ iJ' ' ~· ' 'iJ'

I CONTROL I
- - - - ----- -

I

I

I
I
I
I
I

- -

• PASS_THROUGH
TRAFFIC

CONTROL OUTPUT

• BRIDGE ON/OFF

l

~

Bus
con nection

egment 2 to s

J

FIG. 2(a). COMPONENTS OF A PARTITION STATION

BRIDGE

LIGHT
LOAD

BUFFER
EMPTIED

FIG. 2(b). STATE DIAGRAM OF PARTrfiON STATION

CHAPTER 3

OVERVIEW OF DISCRETE SIMULATION

3.1 DEFINITIONS

A Model of a system is a collection of entities and

their relationships. Entities are described by attributes.

For example, customer in a queueing model is an entity, and

c-ustomer is described by waiting time, service time, these

are attributes. The description of values of
/

all the

attributes of an entity at a specified instant is called
*"

state of an entity. An event denotes the change in the state

of the system entities. If the changes in the state of the

system entities occur at discrete amounts of time then the

system is called a discrete event system.

3.2 DISCRETE EVENT SIMULATION TECHNIQUES

In Discrete Event Simulation (DES), the state of the

simulated system is stored in a set of system state

variables. Event routines cause state variables to be

modified. An eventlist is used to control the execution

sequence of these event routines; the list consists of events

in chronological order. Event routines can add or delete

items from the event list and pseudo random number generators

in the event routines provide requisite randomness for

modifying and scheduling of future events. Running a

simulation is, in essence, the repeated execution of a loop,

where at each iteration the most imminent event (the one with

14

the earliest schedule time) is executed in turn. A flow

diagram for DES is as shown in Fig 3 (a).

There are three approaches for modelling a discrete

event system. Namely, the event scheduling approach, the

activity scanning approach and process interaction approach.

In the event scheduling approach, events are scheduled

in advance. Whenever an event is scheduled, data identifying

the type of the event and time at which to occur is placed in

the special list called the event list. The simulation

proceeds as follows:

(1) The list of scheduled events is searched to find the

event with the earliest scheduled time.

(2) The simulation time is advanced to that earliest

scheduled time.

(3) State changes and scheduling of new events associated

with the occurrence of the event occurred are performed.

(4) Repeat the steps 1 to 4 again.

The activity scanning approach calls for modelling of the

activities. An activity is a collection of operation that

transform the state of an entity. Each system entity that

changes state has a clock. The simulation progress as

follows:

(1) clocks of all system entities are checked to determine

the time and type of next event.

15

(2) The simulation time is advanced to the above time.

(3) The step necessary with that event are performed.

(4) Repeat steps (1) to (4).

The process interaction approach combines the event

scheduling and activity scanning approaches. It maintains a

list of future events but it also carrier out, at each event

time a scan of all activities and finds out which event can

begin or end.

3.3 Why not special purpose simulation languages for the

implementation of model:

There are languages-such as SIMSCRIPT, CSL and

GPSS, which have been designed especially for the

simulation. These languages are designed to optimize the

features unique to simulation. These languages

(1) provide a convenient representation of elements that

appear in simulation models.

(2) generate automatically the pseudo random numbers for any

statistical distribution.

(3) facilitates collection of data and statistics of the

simulated system.

Even though, these languages provide many features

required for the simulation, they have not become popular.

The main reasons for not using them widely are :

(1) Users are not familiar with these languages.

16

(2) These languages are not easily available to the users.

(3) These languages are highly complex in dealing with the

problem.

On the otherhand, highlevel languages such as PASCAL, C

and C++ have the advantage of being familiar with users, easy

availability, and the model can be chosen on the way you like

where as special purpose simulation languages cannot.

Therefore, general purpose high level languages are being

used to simulate discrete event systems.

3.4 MODEL VALIDATION AND ITS IMPORTANCE

Model validation can be defined as the

substantiating that the model is sufficiently

the intended application. It is an important

process

accurate

stage in

of

for

a

simulation experiment before simulation results can be

accepted. The objective of the validation stage is to ensure

that the simulation model is a proper representation of the

system being studied. Since no simulation model exactly

replicates the system under study in all particulars, the

question of validation of model is a difficult one. However

simulation studies are usually done with a model which

represents the real system sufficiently for the purpose for

which it is used. The efforts for validating a model can be

grouped in to two parts. One is, validation of the abstract

model it self and the other is the validation of the

implementation. The validation of the abstract model is

17

1. Uniformly generated bet\veen 0 and 1.

2. Statistically independent.

3. Reproducible.

4. Non repeating for any required length.

3.5.1 Uniform random number generator

Several methods exist for generating the uniform random

numbers. These methods are based on some recursive relation.

Each new random number is generated from the previous-value

by applying some scrambling operation. Multiplicative

congruential generator is one method for generating the

random numbers. It consists of computing

Where Xn+1 is the {n+1)th random number, Xn is the

previous random number and c is a constant multiplier. The

value of X0 is called seed of the random number generator.

With this generator, the maximum period 2b-2 is obtained when

M = 2b; b> 4

c = 8K+5 ; K=0,1,2 .••

X0 is odd

The value of M is chosen to be equal to the

largest prime number which is less than 2b. For a computer

system the value m is equal to largest prime number that can

be represented in it. If the multiplier c is a primitive root

19

modulo M, then the generator will have a maximal period of

m-1.

3.5.2 Non uniform Random number generation

It is possible to generate random numbers for any

distribution using the method of inverse transformation from

the uniform random numbers.

If X· 1
is a sequence of random numbers which are

uniformly distributed in the interval (0,1) and if Y has

probability density function f(y) and cumulative distribution

function F(y) then the sequence of random numbers

generated by the operation

------- 3.1

For example, for an exponentially distributed sequence

y.
1

are

where A is the arrival rate

and F(y)=1-e-YIA

From the inverse transformation method, if xi 's are

the uniform random numbers then the exponentially distributed

random sequence Yi are generated by Yi = - A log (1-xi)

-------- 3.2

Thus equation (3.2} will generate the exponentially

distributed random numbers.

20

3. 6 SI.MULATION OUTPUT ANALYSIS

In the simulation process the question which comes into

mind is how long should the simulation run? Hence the

approaches to estimating and controlling simulation output

accuracy is needed. The subject which deals with this is

called simulation output analysis.

If the simulation run length is determined by the

problem itself, then this type of simulation is called

terminating or transient simulation. For this type of

simulation, the question becomes how many times the

simulation must be repeated to achieve a specified accuracy.

In the steady state simulation, both the initial

conditions and the length of the simulation are determined by

the modeler, and the measure of the interest is the limiting

value reached as the length of simulation run goes to

infinity. Practically, run lengths are finite and our problem

is to determine how close the mean estimated from the sample

values is to the true mean of the distribution.

Most simulations is the computer system design

environment are steady state simulations.

The performance measure of interest is the mean

(average) value of simulation output variable.

For a discrete time random process, the simulation

21

produces a sequence of n sample values x1 , x 2 ... xn whose

mean (denoted by X) is

As n approaches infinity, X converges to a limiting value

E[X] called expectation of X. Call E(x) as distribution

mean <p>.

The variance is a measure of dispersion of a

distribution. The variance of a set of values x 1 , x 2 ... , xn

s 2 is called sample variance.

As n approaches infinity, s 2 converges to limiting

:l. denoted by cr.

The square root of variance is standard deviation.

3.6.1 Confidence interval:

How close the sample mean obtained from finite length

simulation is to the distribution mean p or how long run

lengths have to be to obtain a sample mean arbitrarily close

to p is to be estimated. This is the problem. The answer to

this can be found by computing a measure called confidence

interval.

22

Suppose \..re have a set of N sample values y 1 , y 2 , ...

- Yn from a distribution with true (but unknown) mean P·

The sample mean is Y = ~ y. I n
·j:: 1 I

By defining 1-o< as the probability that the absolute

value of the difference between sample mean and u is equal to

or less than H.

P[IY-pl <= H) = 1-o<

Then a confidence interval for the mean is defined as

P[Y-H <= p <= Y+H] = 1-o<

The interval Y-H to Y+H is called the confidence

interval. H is called the confidence interval half width, and

1-o< is called the confidence level or confidence

coefficient. Typical values of which are 0.90 or 0.95. The

confidence level 1-<>< is specified by the analyst. H then is

determined by the sample values, number of samples, and the

value of o<.

H is a function of random variables and so is a random

variable itself.

When y 1 , y 2 ... yn are independent random variables from a

normal distribution with mean p, H is given by

H = to</ 2 ;n-1 sfn 1/2

where to</ 2 ;(n-1) is the upper o</2 quantile ofa distribution

23

with (n-1) degree of freedom and s 2 is the sample variance

Estimation of a confidence interval is what the

simulation output analysis is all about.

A number of methods for estimating a confidence

interval for the mean of simulation output variable have been

described. These include methods called

1) Replication (2) Batch means (3) Regeneration (4)

Auto regression (5) spectral analysis (6) standardized time

series.

Approaches to confidence interval estimation can be

classified as fixed sample size procedures or as sequential

procedures. In a fixed sample size procedure a simulation

experiement of total fixed length is performed and the

confidence interval is estimated from the results of the

experiement upon its completion. In a sequential procedure,

the desired accuracy is specified, confidence interval

estimates are computed at selected intervals and the

experiement is continued until the desired accuracy is

obtained.

In the batch means analysis divide one long run in to a

set of K subruns of length m, called batches, computing a

seperate sample mean for each batch, and using these batch

means to compute the grand mean and confidence interval.

24

Assuming deletion is used to achieve steady state initial

conditions for the first batch, each subsequent batch begins

with the system in the steady state. Since warmup effects

have to be dealt with only once, rather than K times as in

the case of replication, the batch means method is

potentially more efficient i.e., fewer sample values are

needed to achieve a given accuracy.

25

I Use the eventlist the determine
the next event to process

~·--------------'~~~----------------~
Advance the simulation clock
to the time of the next event ··

Update the system state
using event routines

,,
Update the eventlist using

event routines

Fig 3(a) DES flow design

CHAPTER 4

MODELLING

4.1 ETHERNET SIMULATION MODEL

The effect

performance, was

simulating it.

of Network partitioning on

shown by modelling the Ethernet

network

and by

The protocol used in Ethernet is 1-persistent CSMA/CD

The simulation was written based on the 1-persistent CSMA/CD

protocol and the Ethernet specification. The model was

developed using the C++ language.

In the Ethernet model, the network is assumed to be

composed of a single bus and a set of stations on that bus.

Each station has independent packet arrival and queue.

Packets are transmitted and propagated through the bus to the

both the sides. A station will attempt to transmit the first

packet in the queue before attempting the next packet which

is present in the queue.

It is assumed that the distance between stations is

given. The model is developed by using the discrete event

simulation. An event list has been formed by taking different

events, which occur in the model. An event list is a list of

nodes arranged in ascending order, with each node having the

data relating to the type of the event, the time at which the

event has occured and the pointer to the next node in the

26

list. The type of the next event to occur is the type of the

event in node to which the event list is currently pointed to

and time at which it occurs is the event time stored in that

particular node.

The packet arrival events at each station other than

the partition station are generated from the exponentially

distributed inter arrival times. Whenever an arrival occurs

packets present count is incremented and its arrival time is

stored in a buffer. If the buffer is full, then the packet

is discarded. From the exponential distribution a random

inter arrival time is generated by using the arrival rate of

packets at a station, and the next packet arrival is

scheduled at a time equal to the sum of the current time and

randomly generated inter arrival time.

When a node has acquired the channel, and there is

going to be no collision then the time to transmit a packet

of length L is calculated and the packet transmission

completion event is scheduled after that much time i.e.

current time plus packet transmission time.

The eventlist of CSMA/CD consists of the following

events.

(1) channel idle at a upstream node event.

(2) channel idle at a downstream node event.

(3) collision backoff period completion events for the nodes

which are backlogged. (A node is called backlogged if its

27

packet transmission attempt had resulted in a collision and

it has not succeeded in transmitting that packet yat)

(4) Next packet arrival event for each node.

(5) Packet transmission completion event.

The channel idle events i.e. the events (1) and {2) are

scheduled each time after a collision and a successful

transmission. Whenever the events(1) or (2) occurs channel

status as seen by the upstream node or downstream node is set

to idle.If that node does not attempt to acquire the channel,

then the channel idle events for the next upstream or

downstream node is scheduled. When an arrival event occurs

then the next arrival event for that node is generated and is

scheduled in the eventlist and if that node is not backlogged

and the channel status as seen by that node is idle, then

attempt to acquire the channel. A node will attempt to

acquire the channel in the following conditions

(1) It has just sensed the channel idle i.e the channel

status seen by the node is idle and if any of the following

two is satisfied.

(a) It is not back logged and it has one or more

packets to transmit in its queue.

(b) It is backlogged and its backlog completion event

has completed already.

(2) If the channel is sensed idle, i.e. the channel status

seen by the node is idle and an arrival has just taken place.

28

After a node tries to acquire the channel, then the

question comes is whether the channel acquisition attempt

will result in a successful transmission or a collision. This

is simulated as follows:

Whenever a node i attempts to acquire the channel for

its packet transmission, then the list of

associated with each node other than the

scheduled events

node, which is

currently acquiring the channel i.e. node i, and whether

acquiring node is backlogged or not and number of packets

present in it are checked to find the possibility of a

collision. Let us define a collision window between node i,

which is attempting to transmit and any other node j as the

current simulation time plus the propagation delay between

the two nodes.

A collision will result under the following conditions:

(1) I£ any other node also simultaneously attempt to

acquire the channel.

(2) If any other node j will have a packet arrival event

within the collision window and the node j is not backlogged.

(3) If any other node j which is backlogged and whose

collision backoff period will be completed within the

collision window.

If the exhaustive checking at every node shows that the

packet transmission attempt by the node i will result in a

collision than the farthest upstream and downstream nodes

29

participating in the collision are found out. The collision

detection time and subsequent transmission stop times for

these nodes are calculated. From the transmission stop times

at the downstream node and upstream node participating in the

collisions, the time when the channel will again start

appearing idle is calculated and channel idle events, i.e.

events (1) and (2) are scheduled in the event list. For all

those

backoff

nodes, which have transmitted collided

periods are generated using the binary

packets the

exponential

backoff algorithm and these times are scheduled in the event

list.

In case, if no collision occurs after the exhaustive

checking at every other node other than the node, which is

currently acquired channel to transmit, then packet

transmission completion event is scheduled in the event list.

When the packet transmission completion event occurs

then the channel idle events are scheduled after a delay

equal to interframe gap and the count of the number of

successfully transmitted packets is incremented.

The backoff algorithm used in case of collision is as

follows

Backoff Algorithm The algorithm used in delaying the

retransmission attempts of the stations after the involvement

of them in a collision is called truncated binary exponential

backoff. The amount of delay due to backoff is calculated as

30

follows.

1. Retransmission attempt count is increased by one.

2. If the number of retransmission attempts is more than 16,

then discard the packet.

3. Compute the minimum of (retransmission attempt, 10) say

it k.

4. k Generate random integer r in the range [0,2 -1].

5. Set the amount of backoff delay to (r * slottime) i.e.

product of 'r' and 'slottime'.

After first collision of a packet, retransmission

is done after a backoff delay of 0 or 1 slot times, and after

the second collision of a packet, retransmission is after a

delay of from o to 3 slot times, up to a delay of from 0 to

1023 slottimes for attempt to 10-16. After 16 unsuccessful

attempts, discard the packet.

If the channel tends to become overloaded, then backoff

algorithm stabilizes it. As the load on the channel

increases, the collisions increases. Collision in effect

increases the backoff delay, reducing the load on the

channel.

By assuming that during the partition, each partition

segment is independent of the other, the partitioned network

is simulated. The traffic to each segment from the other

segment is assumed to be the offered load to the partition

31

station.By assuming the offered load of the partition station

to be equal to the passthrough traffic and then simulating

the network is equivalent to simulating the partitioned

network.

In the simulated two segment ethernet model developed,

the length of segment was set at 500 meters. The packet size

be 1000 bits per each packet and number of station to the 10.

Two segment Ethernet was shown as in Fig 4.1 this has

got 20 stations and a partition station, separating 10

stations in to segment on each side. The model, which was

described above was used to simulate the two segment

Ethernet. The network is simulated initially without network

partitioning and next with network partitioning and O%, 50%

and 100% pass-through traffic.

The transition from the partitioned network to the

nonpartitioned network or vice versa is simulated as follows:

When the number of collisions per second exceeds a

certain value, the event list is broken in to two event

lists, and two networks are run independent of each

For each packet, determine the destination.

destination is on the other side of the partition

other.

If the

station,

then store the packet in the partition station. and also try

to check the number of collisions per second on both the

sides of partition station. If the sum of these falls below a

32

certain value, then join the t\vo event lists in to the single

event list. Try to transmit the packets in the partition

station by truncating the back off algorithm to zero so that

it is always the first station to transmit after a collision.

The conversion from partition to nonpartition is done, even

if the buffer of the partition station is full.

4.2 MODELLING ASSUMPTIONS

The following assumptions are used in the modelling :

{1) Medium of transmission (channel) is completely error

free.

{2) The processing time for the packets at the stations in

the network is negligible.

(3) There is a limit on the buffer size of the stations.

(4) The packet arrival at the stations except at the

partition station are assumed to be poisson.

(5) The inter arrival times of packets at the stations is

assumed to be exponentially distributed.

(6) The length of the packets is assumed to be fixed.

(7) For the packets at the stations, the first come first

served basis is assumed.

{8) The partition station is assumed to be a two way. The

operation of partition station is each direction has been

assumed to be independent of operation in the other direction.

{9) The processing time for packets at the partition station

in the network is negligible.

33

4.3 INPUT AND OUTPUT PARAMETERS OF MODEL

4.3.1 Input parameters to the simulation model

(1) Number of stations on the network.

(2) Specify the location of the partition station.

(3) Mean inter arrival rate of packets : The average with

which packets arrive at the channel.

(4) The distance between the stations on the network in

meters.

(5) Packet size Length of the frame in bits.

(6) Channel speed Rate at which data is transferred on

channel and is given in Mbps.

(7) Jam time : When a station recognizes that a collision has

occured, it transmits a jam signal by immediately abandoning,

its transmission of data to insure that all other stations on

the network know that collision has occured. The jam is

specified to be from 32 to 48 bit times in length; assuming

the maximum. Tjam = 4.8 microseconds for the Ethernet.

(8) Interframe spacing : The delay between the time ,at which

a station recognises that the channel is free and the time at

which that station initiates a transmission. This gap between

the two transmissions makes sure that the receiving station

has time to prepare for a new transmission. From Ethernet

this delay is specified as 9.6 microseconds.

(9) Truncation of binary exponential backoff algorithm.

(10) Slottime : It is rescheduling time used by the stations

in backing off after a collision has occured.For the

34

Ethernet, in is specified to be S12 bit.times or 51.2 micro

seconds.

4.3.2. output parameters from the simulation model

1. Offered load : The offered

of individual loads of all

network.

load on the network is the sum

stations connected to the

2. Average packet delay : It is the difference between the

time at which a station first attempt to transmit a frame to

the time at which transmission of frame is completed.

3. Throughput : The ratio of number of frames which are

successfully transmitted to the number of frames which are

generated and a given in Mbits per sec.

4. Number of collisions per second Total number of

collisions 1 simulation period.

4.4 VALIDATION OF SIMULATION MODEL

In order to validate a simulation model a network with

a known throughput must be simulated. The network chosen was

Schoch's Experimental Ethernet (6].

4.4.1 Schoch's Experiemental Etherne~:

The experiemental Ethernet system, uses a coaxial cable

running at 2.94 Mbps. The length of the cable is 550 meters

and connects over 120 machines.

This uses the following parameters:

35

(1) Bus bandwidth 2.95 Mbps.

(2) The bus length is 550 meters with one way propagation

delay of 2.75 micro seconds.

(3) The slot time or round propagation delay is 5.5 micro

seconds.

(4) The system uses the binary exponential backoff

algorithm.

4.4.2 Performance unaer heavy load as found by Schoch (6J.

In an idle case, the total channel utilization increases

with the total offered load up to 100 percent.Beyond 100

percent load-under very heavy load the channel utilization

remain at 100 percent, representing full use of available

capacity.

Real systems can not perform this way. A pure Aloha

channel gets only 18 percent maximum channel utilization

and slotted aloha 37 percent. But for Ethernet system as

found by Schoch as the total offered load increases from

0.20 percent channel utilisation matches is perfectly;

all of the traffic gets out correctly. As the offered

load moves above 90 percent, channel utilisation flatters

out of a level above 96 percent for full size data packets

(512 bytes). Ehernet system under light load shows no

instability. The throughput curve doesnot decline as

total offered load increases.

36

By assuming the offered load to be equally divided

among all stations, the measurements of Schoch (6] give us

the following important points:

(1) Under normal load, transmitting stations rarely have to

defer and there are very few collisions. Thus the access

time for any station attempting to transmit is virtually

zero.

(2) Under heavy load there are more collisions, but the

collision detection and resolution mechanism work well, and

channel utilization remains very high approaching 98

percent. In addition, the utilization remains very stable.

(3) Even under extreme overload, the Ethernet channel does

not become unstable.

37

STATION
g

SEGMENT 1

lsTATI,ON I
I 10 I .
L__

I

REPEATE
PARTITION
STATION

STATION

11

SEGMENT 2

STATION

12

FIG. 4.1 TWO SEGMENT ETHERNET
CONFIGlJRATION WITH A PARTITION

STATION BETWEEN SEGMENTS

CHAPTER 5

PROGRAMMING APPROACH FOR THE MODEL

5.1 DEVELOPMENT OF ETHERNET MODEL

The major steps in the development of the model

constitutes :

(1) Generation of the arrival times for the packets.

(2) Preparation of the eventlist.

(3) Depending on the topevent of the event list, performing

the function associated with that event.

(4) Trying to acquire the channel in case the channel is

idle.

(5) Determining whether a collision occurs or not, after a

station tried to acquire channel.

(6) In case a collision occurs, find the transmission stop

times for the farthest upstream and farthest downstream nodes

participating in collision.

(7) Developing binary exponential backoff algorithm to back

off the stations, which are colliding.

(8) Developing discard algorithm in case the number of

retransmission attempts are more than 16.

(9) Developing an algorithm to determine the statistics.

(10) Employing the batchmeans analysis to determine· the

confidence intervals.

38

5.1.1 Generation of Ar.rival tines:

In the C language libraries, there is a built in

function rand{) which generates the random integers between

the 0 and RAND-MAX. By using this function, a function

generating a random number between 0 and 1 is generated.

Arrivals at a station are poisson and inter arrival

times are exponentially distributed. From the exponential

distribution with the specification of arrival rate inter

arrival times are found.

5.1.2 Representation of Eventlist:

Eventlist is defined as an object, which is linked

list. In the linked list, each node. is defined to be having

three fields, type of the event, time at which the event has

occured and the pointer to the next. The event list structure

is defined as follows:

EVENT TYPE {K)

0

1

2 <= K <= nos+1

nos+2 <= K <= 2*nos+1

2*nos+2

INDICATION

Channel idle at upstream node

Channel idle at downstream node

Arrival at station [K-1]

Backlog completion event of station
[K-nos-2]

packet completion event

(nos indicates the number of stations)

39

As shown in the event list structure, the type of the

event indicates whether the event is channel idle or arrival

or backlog completion or packet completion event. For each

type of the event, a seperate module is required to be run.

In case the top event type in the event list is channel idle

at upstream node then, perform the following steps:

(1) If that station is not backlogged and if it contains one

or more packets in its queue try to acquire the channel.

(2) Otherwise, if backlogged and its backlog completion

event completes then try to acquire the channel.

{3) If not (1) and (2) then generate a channel idle event at

the next upstream node and keep it in event list.

If the top event type the event list is channel idle at

downstream node then perform :

(1) If that downstream station is not backlogged and if it

· has got one or more packets in its queue then try to acquire

the channel. Otherwise,

(2) If that station is backlogged and its backlog completion

event ends already, then also try to acquire the channel.

Otherwise,

(3) Generate a channel idle event for the next downstream

node and add it to the event list.

If the backlog completion event at a particular station

is the top event in the event list, then see whether the

channel status as seen by that station is idle or not. If it

40

is idle, then try to acqui~e channel.

If arrival at a particular station, say i, is the event

type occurred then keep this arrival in the process queue of

that station, generate the next arrival and finally, if that

station is not backlogged and the channel status as seen by

that station is idle, then try to acquire the channel.

If the event is the packet completion type,then

increment the number of successfully transmitted packets,

update the statistics and generate the channel idle event at

time equal to current simulation clock plus the interframe

gap at the successfully transmitted station by making this

station the current upstream node. Make the current

downstream node to be the next of current upstream node, in

case it is not the final station, and set the channel idle

event at this station also.

5.1.3 Actions after channel acquisition attempt:

After trying to acquiring the channel by a station, it

sees to that no other station will send any packet within

collision window, otherwise the collision will occur, it is

implemented as follows:

1. Remove the channel idle events in case if they exists in

the event list since the channel is going to be busy if any

station is trying to acquire the channel.

2. Determine the extreme nodes from the acquiring station,

41

participated in collision and the transmission stoptimes at

these nodes.

3. If the number of transmitting stations are more than

one, then find for all the nodes which are participated in

collision, the backoff completion t.i:mes and set these times

in the event list.

{4) If the number of transmitting stations is one, then set

the packet completion event at a time equal to the current

simulation time plus packet transmission time in the event

list.

5.1.4 Detection of a collision:

Cowindow is defined as the current simulation clock

value plus the propagation delay between node i, which

attempts

node j

to transmit and any other node j.

the following checks are made to

participates in collision or not.

For every other

find whether it

1. If the node j is backlogged and its backlog completion

event ends within the cowindow.

2. If the node j is not backlogged and if it has got one or

more packets in its queue.

3. If the node j is not backlogged and if it has any arrival

within the cowindow.

if (1) or (2) or (3) happens, then the collision flag is set

to one, which means collision has occured.

42

S.l.S Calculating and Displaying the statistics:

Whenever an arrival event has occured, that packet

arrival event time is stored in ·the queue of the station at

which the arrival has occured. This arrival-time is useful

for finding the delay experienced by that packet. After that

packet is successfully transmitted, the difference between

the packet completion time and the packet arrival time is fed

to the procedure obs(). This function does the batch means

analysis of the delay. This determines the average packet

delay experienced in the network and the confidence intervals

within which this average packet delay remains. After getting

the average packet delay, the normalized packet delay is

found by dividing it with the packet transmission time.

5.2 IMPLEMENTATION OF MODEL WITH NETWORK PARTITIONING

In case of partitioned network, the passthrough traffic

to each segment is offered load to the partition stations on

that segment. If the partition flag is 1, which indicates

that the network is partitioned, then determine the offered

load from the value of passthrough traffic given.This offered

load gives the value of lambda at the partition station.

With this lambda, generate the arrivals at the partition

station and run the simulation.

To implement the transient behaviour of network

partitioning, the transition from a partitioned network in to

43

a non partitioned network, generate the two simulation clocks

and run both the segments independently. Each time find the

sum of number of collisions per second on both the sides and

this goes below a value found from the number of

collisions vs.offered load curve obtained from the simulation

nonpartitioned network, then join the simulation clocks to a

single simulation clock. Even if the buffer of partition

station is filled, then also go to nonpartition network. Now,

transmit the packets in the partition station with a backoff

of zero and until the partition station buffer is empty.

Now, if in the non-partitioned network the number of

collisions per second is greater than value found from the

curve of Ethernet Simulation, then partition. This way the

network transforms between a partitioned network to

nonpartitioned network and vice versa.

5.3 MAJOR MODULES DEFINED IN PROGRAM

5.3.1 CLASSES

To maintain the value of the current simulation clock,

a class called float counter is defined.

Class float counter

{

private double value;

public
float_counter();

void increment (double x);

double get (void) ;

44

void set (double x);

} ;

The object of this class is defined by the statement

float_counter simclk;

When the simclk object is created, the constructor

float counter causes the value to be initialized to zero.

The member function increment() is used to increment the value

of the private variable by x and get() function returns the

value and set(double x) function sets the variable value to

the specified value x.

The channel status as seen by each node is maintained

in a bus class.

class bus

{

private

public

} i

int flag (nos);

bus();

void makeidle (inti);

void makebusy (inti);

int getstatus (inti);

The constructor bus() initializes of the flags of all

stations to idle, when an object of class bus is created. The

45

member function makeit:Ue (int i) sets the flag of the station

i to idle and makebusy(int i) sets the flag of station i to

busy. The channel status as seen by the node i is returned by

the member function getstatus(int i).

The eventlist is defined as a class and is a-s follows

struct link

{

};

double time;

int type;

link * next;

class linklist

{

private link * first;

public

linklist () ;

double get time

double get time

double get type

();

(int t);

();

void assendadd (double

void remove ();

void remove (int t) ;

void display ();

} ;

46

d, int t);

The object of class linklist is created with the

statement,

linklist evlist;

When the object evlist is created, thus constructor

link list() assigns the first to NULL.

The member function ascendadd(double d, int t) is used

to add a node having the event time equal to d and event type

t to the event list and makes the eventlist in the ascending

order, with first always pointing to the node with a earliest

event time.

The member function gettirne() returns the event time of

the next imminent event, which is going to occur,and the

member function gettime(int t) return the event time of node

for which the type of the event is t.

The function gettype() returns the type of next

i~~inent event and the remove functions are used to remove an

event from the event list. Remove() removes the top event in

the event list and remove(int t) removes the event for which

type of the event is t. Display() function is used to

display the event list.

5.3.2 FUNCTIONS

FRAND Generates a floating point random

number between (0,1).

ARRIVAL TIME Generates inter arrival times.

47

SET PARAMETERS Take input parameters, takes with

Ethernet's standard parameters or Schoch's experimental

Ethernet parameters or user specified parameters.

SETSTANDARDl Sets the 802.3 standard Ethernet

parameters. ·

SETSTANDARD2

Ethernet parameters

Sets the schoch's experiemental

START SIMULATE : Intialize the buffers in the queue for

each station to empty and generate a single arrival for each

station and place all these arrivals in the event list.

CSMACD : This is the main procedure which calls

other functions depending on the top event type in the event

list.

CHANNEL_ACQUIRE : If a station is ready to transmit,

checks whether it can do it successfully, or not. If it can

transmit successfully, call function to schedule transmission

of a packet else call CHANNELIDLE to schedule

retransmission intervals of colliding stations and channel

idle events after collision.

COLLISION DETECT : It checks whenever a station j can

also attempt to acquire the channel before transmission is

heard by station j. In case of collision, it updates the

number of backoffs and number of attempts.

UPDATE STAT : This function used to update the

statistics. This finds the differences between a packet

completion time and that packet arrival time and with this

48

difference it calls the OBS(double) function.

INIT_BM(int x,int y): This is used to intialize the batch

means analysis. The values as specified by x are deleted to

reduce the warrn_up effects and the value of y specifies the

batch size.

CBS (double) It computes the confidence interval

and the average packet d·elay. At the end of the 10 batches,

the program return 1, which is used to stop the simulation

run.

5.3.3. GLOBAL VARIABLES

Par_flag Partition flag, this is set to 1 in

the case of partition, otherwise it is set to o.

Lambda Arrival rate per second per station.

Flag_backlog(i] It is set to 1 if the station i is

backlogged otherwise, it is set to o.

Retx flag[i] It is set to retransmitted otherwise

to o.

Pkttxtime Packet transmission time, and is

equal to packetsize 1 transmission speed.

Overfpkts Gives the number of overflowed

packets. 0

Atbuff(nos](BUFFSIZE]: This is used to store all the packet

arrival times for those packets which are in queue.

Topevtime Gives the topevent time of the event

list.

49

Packets

generated.

Total number of packets \vhich are

50

CHAPTER 6

CONCLUSION

This chapter provides some of the sample results

produced by running the simulation program to demonstrate the

effect. of network partitioning on the CSMA/CD LAN. The

simulation of !-persistent CSMA/CD LAN is done and its

results are compared with the analytical results produced by

(5]. Almost all the results have been obtained after

simulating more than 2000 packets on an average per each

node. The effects of transients on the mean is taken in to

consideration by leaving the initial 2000 packets generated

and the batchmeans analysis is used with a batchsize of

2000. It is assumed that there is no correlation among

successive

intervals.

output sample while generating confidence

6.1 VALIDATION OF 1-PERSISTENT SIMULATION MODEL

The utilization is found for the model developed for

a packet size of 512 bytes and the results are compared with

the Schoch's results(6] and are shown in table 6.1.

The performance characteristic of average packet delay

Vs the offeredload of the CSMA/CD network with the 20 nodes

operating at lMbps is as shown in the figure 6.1. The

average packet delays, which are obtained from the

approximate analytical calculations are also shown in the

same Figure. From this figure it is clear that the delay

51

performance obtained from the simulation results are better

than those found by the approximate~ analytical calculations.

The results are given table 6.2 .

In order the show the effect that the confidence

interval reduces as the length of the simulation run

increases, the graph showing the upper and lower confidence

limits is drawn with respect to number of packets simulated.

It is shown in Fig. 6.2 and the results in table 6.3 .

To demonstrate the effect of initial transients, the

different values of the average packet delay are found after

discarding the different percentage number of intial

observations. At the time of finding these values the

simualtion length is fixed at 2000 packets per node. This

was done at the offered loads of 0.1 and 0.5, and the results

are given in table 6.4. From the table it was found that the

transients have effect

reduce this effect at

at high offered

higher offered

simulation length should be chosen.

load values. To

load, the longer

6.2 SIMULATION OF TWO SEGMENT ETHERNET WITH NETWORK

PARTITIONING

Figure 6.3 shows the results of the simulation with the

network partitioning assuming that the pass through traffic

to each segment is offered load to the partition station and

each segment is independent after partitioning. For three

different passthrough traffics of 0%, 50% and 100% and its

52

comparision without the network partitioning for the network

having the 20 nodes and the for a packet size of 1000 bits.

From this figure, it is evident that without network

partitioning the network is saturated at 0.85 Megabits per

second offered load and with network partitioning the maximum

throughput achievable is 1.7 Megabits per second for no

passthrough traffic through the partition station. Since the

two segments act independently after partition, the

throughput has to be double. The results have shown this, and

also the results show that for the 50% pass through traffic

with network partitioning the maximum throughput achievable

is 1.1 Megabits per second. From Figure 6.3, it is known

that after the throughput crosses the 0.7 Mbps, it is better

to keep the partition in place. During the simulation run of

the Ethernet without network partitiong, the number of

collisions per second are found for each offered load, and

these results are produced in figure 6.4. From this figure,

the number of collisions per second for throughput of 0.7

Mbps is found and it is kept as a limit for keeping the

partition station. From the results, this limit is found to

be 1500 collisions per second. So when the number of

collisions per second exceeds this limit, the partition is

placed, and when it is below this value, partition is

removed. By keeping these collisions per second as the

factor for the transition between partitioned network and

nonpartitioned network and vice versa, the simulation model

53

is run and the results are as shown in Figure 6.5. The

results compare closely with the results which are shown in

Figure 6.3.

6.3 CONCLUSION

The effect of network partitioning on the CSMA/CD LAN

was shown by simulating the two segment Ethernet network.

The 1-persistent CSMA/CD protocol was developed and was

validated with the standard results. The event scheduling was

used to model the protocol. The model was then modified to

show the effect of network partitioning. The simulation

results with and without network partitioning gave the

conclusion that the performance of CSMA/CD LAN improves under

heavy load and improvement factor depends on the pass through

traffic through the partition station.

54

SCHOCH'S SIMULATION
OFFERED LOAD UTIUSATION RESULTS

70 70 70

80 80 80

90 90 90

100 94- 95.6

120 96 97

150 96 97.2

TABLE 6.1 Comparison of

simulation results with the Schoch's

results for a packet size of 512 bytes

Transmissi.on Speed = 1 Mbps
Stations == 20
Packet size = 1000 bits (constant

Normalized Delay
Offered Load

Simulation Analytical

0.05 1. 032 1.03
0.1 1.07 1.072
0.15 1. 09 1.088
0.2 1.145 1.142
0.25 1.219 1.218
0.30 1.272 1.272
0.35 1.364 1.365
0.40 1..464 1.464
0.45 1. 602 1.602
0.5 1. 706 1. 708
0.55 1.856 1.859
0.60 2.18 2.231
0.65 2.4 2.534
0.7 3.08 3.281
0.75 3.88 4.01
0.80 4.64 4.96
0.85 8.44 8.97
0.90 20.95 22.76

TABLE 6.2

Number of Mean Upper Confidence Lower Confidence
packets Delay Limit Limit

500 2.2 3.2 1.2

1000 2.13 3.03 1.23

2000 1.99 2.69 1.29

3000 1.92 2.53 1.31

4000 1.9 2.44 1.36

5000 1.88 2.27 1.49

6000 1.86 2.11 1.61

8000 1.85 2.07 1.63

TABLE 6.3 Confidence intervals

stations = 20

Transmission speed = 1 Mbps

Packet size = 1000 bits

Offered load Packet Delay { in micro sec.) -
%of discarded 0% 1% 5% 10%

packets

0.1 107.23 107.275 107.34 107.39

0.5 165.46 175.32 177.89 170.60

TABLE 6.4 Effects of transients on CSMA/CD

..
---------------------------~---------------- ---------~

25

p

a 20

c
k
e 15

t

D 10

e

1
5

a
y

0

0

Fig 6.1 Offered load vs. Average packet delay

transmission speed == 1 Mbps
packet size == 1000 bits
stations == 20 (constant)

--
analytical

simulation

0.1 0.2 0.3 0.4

Offered load
0.5 0.6 o.s 0.9 1 . I

(Delays are normalised ~

0.7

3.5

p

a
3

c
k

e2.5

t

D
e 2

1

a 1.5

y

1

0.5

(Delays are normalized)

Upper
Confidence

Limit

Mean

Lower
Confidence

Limit

Transmission speed =

Stations = 20

Offered load = 0.55
Packet size = 1000

I
I

1 ~Mbpsl

bits
(constant)

0 ~--~--~--~----~--~--~--~--~----~~
0 1 2 3 4 5 6 7 8 9 10

Number of packets (in Thousands)

FIG. 6.2 CONFIDENCE INTERVAL

100 -,---------
JV l 0

A
L

L 20

A

y

I

I
I
I

t

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
TOTAL OFFERED LOAD ~

without NP ---+- 100 %

50% ::::::; w /NP no pass through

FIG 6.3 COMPARISION OF SIMUL4TIOJV RESULTS

Tf!TH AlVD WITHOUT NETWORR~ PARTITIOl'iiJVG

Fig 6.4 Offered load vs. Number of collisions/sec

Thousands

C
5

Transmission speed == 10 Mbps
0 Packet length 1000 bits

1 4 Stations == 20

1
.

1 3

s
.

1
2

0

n

11
s
~

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Offered load ._

(Delays are normalized)

~100~1---------------~,~~--1~,--------~~

R I I
~ 80 I I
L I I
1 I

60 '
z
E
D

40 ~ 1
D I
E I I
L l i

I I
A 20 ~ I I

y 0 -l-1 _..3~~~ ~~=$~$~$ ~~~=+=~ ~+<.,..---{+---=~$~-~--,.-· -r--I)~T ----1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

TOTAL OFFERED LOAD ~

____.,.__ 100% -+-- 50% ~ 0%

FIG. 6.5 SII\1ULATION RESULTS WITH

NETW.ORK PARTITIONING - TRANSIENT MODEL

PROGRAM LISTING

II==
II PROJECT : TO DEMONST~~TE THE CSMAICD WITH NETWORK PARTITIONING
II==
#include<iostream.h>
#include <Stdio.h>
#include <graphics.h>
#include <Stdlib.h>
#include <math.h>
#define nos1 50

FILE *fp;

II number of stations

FILE *fopen(const char *,canst char *);

#define BUFFSIZE 50
#define maxbkoff 10
#define maxattempts 16

int par_flag;
int nos;
double lambda;
double lambda1;

II partition flag

//arrivalrate /sec /station
double trans_speed,prodel,slottime,inter_framegap,jamtime;
double dist(nos1] ,prop(nos1];
int flag_backlog[nos1]; II =0 not backlogged
int nofattempts[nosl]; II number of attempts
int nofbackoffs[nosl]; II number of backoffs
int retx_flag[nosl]; II retransmission flag
int txnn; //node currently transmitting
int cf; // collison fl3g
double simperiod; II simulation period
int discard; //number of packets discarded
double packetsize; II size of packet
double pkttxtime; II packet transmission time
int type; II type of the event
int ntxstn; II number of transmitting stations
unsigned int no_suctxpkt=O; II number of successfully transmitted pkts
int ncollison=O; // total number of collisions
int nofpkts[r.osl]; II number of packets in a station
double cowindow;
int csups;
int csdns;
int farupstntx;
int fardnstntx;
double txsbyfdn;
double txsbyfup;
double elk;

II
II
II
II
II
II
II

current upstream node
current do'lmstream node
farthest upstream node transmitting
farthest downstrea~ node transmitting
transmission stoptime by farthest downstream nod
transmission stoptime by farthest upstream node
clock

double cpdelay;
double pktstart;
int count,overfpkts=O;
double atbuff[nosl] [BUFFSIZE];
int last[nosl];
int oldpkt[nosl];
double topevtime;
unsigned int npkts=O;
int packets;

double sum,-,0.0;
#define siz 24
double ar_avgwtime[siz];
double offeredload[siz];
double throughput(siz];
float scale2;
int end;
int kO,mO,nO,d;
double smyO,smyl,smy2,yO,hO;

II arrival time buffer

II total number of packets generated
II avarage waiting time

II==
#define idle 0
#define busy 1
class bus
{

public:

} ;
bus channel;

int flag(nosl];

bus()
{

int j;
for(j=O;j<nosl;j++)
flag [j J =idle;

II constructor to intialise the flag
II to idle

void
{

makeidle(int i)ll to make the channel status as seen by
II station i to idle

flag[i]=idle;
}
void makebusy(int i)
{

flag [i] =busy;
}
int getstatus(int i)
{

return flag[i];

II==
I/ CLASS FLOAT-COUNTER DEFINED TO HOLD THE VALUE OF CURRENT Sit-mLATION

II CLOCK AND MEMBER FUNCTIONS TO GET AND TO SET THE VALUE OF IT

II==
class float counter
{

} i

private:
public :

double value;

float_counter ()
{
value=O.O;

}
void increment(double x)
{
value+=X;

}
double get(void)
{
return value;

}
void set(double x)
{
value=x;

}

float_counter sim_clk;

II==
struct link

double time;
int type;
link *next;

} i

class linklist
{
private
public

link *first;

linklist ()
{
first = NULL;

double gettime(int t);
double get time()
{
return first->time;

}
int get type()

} ;

return first->type;
}
void ascenda.dd(double d,int t);
void display();
void remove(int t);
void remove ()
{

}

link *templ=first;
first=first->next;
delete(templ);

int present (int t);

double linklist::gettime(int t)
{

}

link *current=first;
while ((current! =NULL) && (curre!1t- >type ! =t))
current~current->next;

if(current!=NULL)
return (current->time);
else return 0.0;

int linklist::present(int t)
{

link *current=first;
while((current!=NULL)&&(current->type !=t))

current=current->rtext;
if(current!=NULL)

return 1;
else return 0;

void linklist::ascendadd(double d,int t)

link *newlink= new link;
newlink->time=d;
newlink->type=t;
link *current=first;
link *prev=new link;
link *prl=prev;
while ((current!=NULL)&&(current->time<d))

{
prev=current;
current=current->next;

newlink->next=current;
if (prev! =prl)

prev->next=newlink;

if(current==first)
first=newlink;

delete(prl);

void linklist::display()

link *current=first;
while(current!=NULL)

{

}

cout<<endl<<current->time<<"\t"<<current->type;
current=current->next;

void linklist::remove(int t)

link *current=first;
link *prev=first;
while((current!=NULL)&&(current->type!=t))

{

}

prev=current;
current=current->next;

if(current!=NULL)
{

}

prev->next=current->next;
if (first==current)

first=current->next;
delete(current);

linklist evlist;
!!===
void set_standardl (void) ;
void set standard2 (void) ;
void channelacquire (int);
void packet_completion (void) ;
void collisondetect (int) ;
void initbackoff(int);
void channelidle(void);
void insert (int) ;
void updatestat(int);
void drawgraph(void);
int obs(double);
void init_bm(int ,int);

II======~=============================~=====================================
II THIS FUNCTION GENERATES A RANDOM NUMBER BETWEEN [0,1)
II==
double frand(void)

{
return ((double) rand()l{(double)RAND_MAX+l.O));

}
II===~==
II THIS FUNCTION GENERATES ARRIVAL TIME
II=======================~==
void arrival time (int k)

}

long double inter,f,lambda2;
f=frand();
if(k==O)

lambda2=lambdal;
else
lambda2=lambda;

inter= ((-l)*log(l-f)*l.Oe6llambda2)+1.0
if(inter<O.O) {

}

printf("error: negative inter arrival time generation\n")
exit(l);

evlist.ascendadd(sim_clk.get()+inter,k+nos+2)
npkts++;

II==
II THIS FUNCTION RETURNS RANDOM INTEGER BETWEEN 0 TO 2**TRANSATTEMPT-l
II==
int bin_exp_backoff (int trans_attempt)

return ((unsigned int) (frand ()*pow (2, trans_attempt)))
}

II==
II THIS FUNCTION IS USED TO DISCARD THE PACKET AFTER 16 ATTEMPTS
II==
void discards(int i)
{
oldpkt[i]=(oldpkt[i]+l)~BUFFSIZE;

flag_backlog[i]=O;
nofbackoffs[i]=O;
nofattempts(i]=O;
retx_flag [i] =0;
nofpkts[i]--;
discard++;

!!===-~=========~===================
// THIS FUNCTION IS USED TO SET THE INPUT PARAMETERS
//==================================~=====================================~-
void set_parameters(void)

}

int sp;
int i;

printf("Specify the distance array \n");
printf("To give Ethernet parameters give 1 \n");
printf("To give Schoch's parameters give 2 \n");
printf("To give user specified parameters give 3 \n");
scanf ("%d", &sp);

if(sp==l) set_standardl();
else
if(sp-~2) set_standard2();

else

}

for (i=O;i<nos-l;i++)
{
printf("Give the distance between station td and %d \n",i,i+l);
scanf("%f",dist[i));
}
printf("Give transmission speed in Mbps \n");
scanf("%lf",&trans_speed);
printf("slottime in micro sees. \n");
scanf("%lf",&slottime);
printf("inter frame gap in micro secs\n");
scanf("%lf",&inter_framegap);
printf("Give jam time \n");
scanf("%lf",&jamtime);

printf("the mean packetsize\n");
scanf("%lf",&packetsize);
fprintf(fp,"the mean packetsize == %f\n",packetsize);
pkttxtime=packetsize/trans_speed;
for(i=O;i<(nos-1) ;i++)

prop[i]=dist[i]*prodel;

!!===
// THIS FUNCTION IS USED FOR INTIALISATION
!!===
void start_simulate(void)
{
int i;
long double at,iat;
long double lambda2;
for(i=O;i<nos;i++)

{
nofpkts[i)=O;

}

oldpkt[i]=O;
last[i]=O;
at=frand (} ;
if ((i==O)&&(par_flag==l))

lambda2=lambdal;
else
lambda2=lambda;

iat=((-l)*log{l-at)*l.Oe6llambda2)+1;
evlist.ascendadd(iat,2+nos+i);
nofattempts[i]=O;
nofbackoffs[i]=O;
retx_flag [i] =0;
flag_backlog[i]=O;
}

..

II==~=============~============~======
II THIS FUNCTION SETS THE STANDARD ETHERNET PAP~ETERS
11==-~=-======
void set_standardl(void)
{
int i;
fprintf(fp," \nETHERNET PARAMETERS \n ");
for (i=O;icnos-l;i++)

dist[i]=lll.llllllllll;
trans_speed=l;
slottime=51.2 ;
inter_framegap=9.6;
prodel=0.0512;
jamtime=3.2;
}

1155.555555;
/

/

II==
II THIS FUNCTION SETS THE SCHOCH'S EXPERIEMENTAL ETHERNET PARAMETERS
II==
void set_standard2(void)
{
int i;

for (i=O;icnos-l;i++)
dist[i]=61.1111111;

trans_speed=2.94;
slottime=5.5;
inter_framegap=9.6;
prodel=0.005;
jamtime=3.2;
}

!!==
// THIS IS THE MAIN FUNCTION USED. DEPENDING ON THE TYPE OF THE EVENT
// OCCURED, IT MAKES DIFFERENT FUNCTIONS.
!!==
void csmacd(int k)
{
int i;
switch(k)

{
case 0:

case 1.:

i=csups;
channel.makeidle(i); //senses no carrier on channel
if ((flag_backlog [i} ==0) && (nofpkts [i} >=1)) I I if not backlogged

channelacquire(i); //and pkts are waiting then acquire
else
{
if((flag_backlog[i]==1)&&(evlist.gettime(i+2)<=sim_clk.get()))

channelacquire(i);
//if backlogged & backlog completion event completes

else // then acquire else set chidle for adjacent stn

if(i!=O)
{

csups=i-1;
evlist.ascendadd(sim_clk.get()+prop[csups},O);

break;

i=csdns;
channel.makeidle(i);
if((flag_backlog[i]==0)&&(nofpkts[i]>=1))

channelacquire(i);
else
{

if((flag_backlog[i]==1)&&(evlist.gettime(i+2)<=sim_clk.get()))
channelacquire(i);

else
{

}

if (i ! = (nos- 1))

csdns=i+l;
evlist.ascendadd(sim_clk.get()+prop[csdns-1] ,1);

break;

}
}

default:
if((k>=2)&&(k<={nos+l)))

{
if(channel.getstatus{k-2)==0) channelacquire(k-2);

}
else

if(k==(2*nos+2))

i=txnn;
no_suctxpkt++;
nofattempts[i)=O;
nofbackoffs[i)=O;
flag_backlog(i]=O;
updatestat(txnn);

oldpkt(i]=(oldpkt(i]+l)%-BUFFSIZE;
ncfpkts(i]--;
csups=txnn;
evlist.ascendadd{sim_clk.get()+inter_framegap,O);
if{txnn!={nos-1))

{
csdns=txnn+l;
evlist.ascendadd{sim_clk.get()+prop[txnn]+inter_framegap,l);
}

else
{

break;

i=k-nos-2;
if(nofpkts(i]<BUFFSIZE)

{
atbuff [i] [last [i] J =sim_clk. get ();
last[i)=(last[i)+l)tBUFFSIZE;
nofpkts[i)++;
}
else
overfpktS++;

arrival_time(i);
if ((channel.getstatus (i) ==0) && (flag_ backlog [i) ==0))

channelacquire(i);

!!===============================~==
// IF A STATION IS READY TO TRANSMIT IT CALLS THIS FUNCTION.THIS CHECKS
// IT CAN SUCCESSFULLY TRANSMIT OR NOT.INCASE OF COLLISION IT CALLS FUNCTION
// 'CHANNEL IDLE'.
!!=============================~======================================~=====
void channelacquire(int i}
{

int temp1;
double temp2,temp3;
ntxstn=1; II no.of transmitting stns
int j;
int m,n;
evlist.remove(O};
evlist.remove(1); /i remove channel idle events from eventlist
txsbyfdn=txsbyfup=sim_clk.get(}+slottime+jamtime;//intialise to worstcase
channel.makebusy(i};
farupstP.tx=fardnstntx=i;
if (i ! = (nos -1})

if extreme node participating in collison

{
clk=sim_clk.get(};
cowindow=sim_clk.get(}+prop(i];
cpdelay=prop[i];
temp1=i;
for(j=i+1;j<=(nos-1} ;j++)
{

collisondetect(j};
if (cf==1} II collison occurs
{

}

fardnstntx=j;
temp2=cowindow+jamtime;
if(txsbyfdn>temp2)

txsbyfdn=temp2;
if (temp1==i}
{

temp3=pktstart+cpdelay+jamtime;
if(txsbyfup>temp3}

txsbyfup=temp3;

temp1=j;
if(j!=(nos-1}}
{

cowindow=pktstart+prop[j);
cpdelay=prop[j];

clk=pktstart;
ntxstn++;

if (cf==O}
{
if (j! = (nos-1}}

cowindow+=prop[j];
cpdelay+=prop[j];

if(i!=O)
{

clk=sim_clk.get();
cowindow=sim_clk.get()+prop[i-1];
cpdelay=prop[i-1];
temp1=i;
for(j=i-1;j>=0;j--)
{

collisondetect(j);
if (c£==1)
{

farupstntx=j;
temp2=cowindow+jamtime;
if(txsbyfup>temp2)

txsbyfup=temp2;
if((temp1==i)&&(fardnstntx==i))
{

temp3=pktstart+cpdelay+jamtime;
if(txsbyfdn>temp3)

txsbyfdn=temp3;

temp1=j;
if(j!=O)
{

cowindow=pktstart+prop[j-1];
cpdelay=prop[j-l];

clk=pktstart;
ntxstn++;

if(cf==O)
{

if(j!=O)
{

cowindow+=prop[j-1];
cpdelay+=prop[j-1];

if(ntxstn>=2)
{

flag_backlog(i]=1;

}

retx_flag[i]=l;
ncollison++;
if(rr~xbkoff>nofbackoffs[i])

{
nofbackoffs(i]++;
nofattempts[i]++;

else
if(maxattempts>nofattempts[i])

nofattempts[i]++;
else

discards(i);
channelidle () ;

if(ntxstn==l)
{

txnn=i;
evli.st. ascendadd (sim_clk .get() +pkttxtime, 2*nos+2):

!!=======~============================~=====================================
// FUNCTION WHICH CHECKS WHETHER A COLLISION OCCURS OR NOT.
!!==
void collisondetect(int j)
{

cf=O;
if(flag_backlog[j]==l) I /if stat-ion j is backlogged check whether
{

if((evlist.present(j+2)==1)&&(evlist.gettime(j+2)<=cowindow1)
{

evlist.remove(j+2);
cf=l;
if(evlist.gettime(j+2)<=sim_clk.get())
{

if(channel.getstatus(j)==l)
pktstart=cowindow;

else pktstart=sim_clk.get();

else
{

pktstart=evlist.gettime(j+2);
}

else //if station is not backlogged
{

if(nofpkts[j]>=l)
{

cf=l;
pktstart=(channel.getstatus(j)==l)?cowindow:sim_clk.get();

}

}

retx_flag[i)=l;
ncollison++;
if(maxbkoff>nofbackoffs[i])
{

}

nofbackoffs[iJ++;
nofattempts[i)++;

else
if(maxattempts>nofattempts[iJ)

nofattempts[iJ++;
else

discards(i);
channelidle();

if(ntxstn==l)
{

txnn=i;
evlist.ascendadd(sim_clk.get()+pkttxtime,2*nos+2);

!!===============================~===========~============================~=
// FUNCTION WHICH CHECKS WHETHER A COLLISION OCCURS OR NOT.
!!============~===~=========
void collisondetect(int j)
{

cf=O;
if(flag_backlog[j)==l) //if station j is backlogged check whether
{

if((evlist.present(j+2)==1)&&(evlist.gettime(j+2)<=cowindow))
{

evlist.remove(j+2);
cf=l;
if(evlist.gettime(j+2)<=Sim_clk.get())
{

if(channel.getstatus(j)==l)
pktstart=cowindow;

else pktstart=sim_clk.get();

else

pktstart=evlist.gettime(j+2);

else //if station is not backlogged

if(nofpkts[j)>=l)
{

cf=l;
pktstart=(channel.getstatus(j)==l)?cowindow:sim_clk.get();

else
if(evlist.gettime(nos+j+2)<=cowindow)
{

Cf=l;
pktstart=(channel:getstatus(j)==l)?cowindow:evlist.gettime(nos+j+2);

channel.makebusy(j);
if (cf==l)
I
l

if(pktstart<sim_clk.get())
printf("error: pkt start is less \n");

flag_backlog[j]=l;

}

retx_flag[j)=l;
if(maxbkoff>nofbackoffs[j])
{

else

nofbackoffs[j]++;
nofattempts[j]++;

if (ma.xattempts>nofattempts [j J)
nofattempts[j]++;

else discards(j);

II==
II THIS SETS TrlE RETRANSMISSION BACKOFF TIME FOR THE STATIONS WHICH ARE
II BACKLOGGED
1/==================================-==
void channelidle(void)~ II set the backoff completions for collided packets

II and set channel idle events

float delay=O.O;
double templ,temp2,temp4;
int temp3,j;
double time,timedn,timeup;

for(j=farupstntx;j<fardnstntx;j++)
delay+=prop[j];

if(txsbyfup<sim_clk.get())

II distance between extreme nodes
II participating in collison

printf(" txsby f up node is less than sim_clk\n");
if(txsbyfdn<sim_clk.get())

printf(" txsby fdown node is less than sim_clk\n");

if(abs(txsbyfup-txsbyfdn)>delay)
{
if(txsbyfup>txsbyfdn)

txsbyfup=txsbyfdn+delay;
else

txsbyfdn=txsbyfup+delay;

timedn=txsbyfup;
timeup=txsbyfdn+delay;
for(j=farupstntx;j<=fardnstntx;j++) II this g-ives transmission stoptime

II at a node {
if((timeup+0.001-timedn)>=0.0)
{

}

csups=j;
csdns=j+l;
time=timeup;
templ=timeup;
temp2=timedn+prop(j];

else
time=timedn;

if(j!=fardnstntx)
{
timeup-=prop[j];
timedn+=prop [j] ;
}
if(retx_flag[j]==l) II set the backoff completion event
{

retx_flag[j]=O; II for nodes which are backlogged
temp3=bin_exp_backoff(nofbackoffs(j]);
if (temp3<0)
{

printf("\nerror: in backlog time generation \n");
exit(l);

evlist.ascendadd(time+temp3*slottime+l,j+2);
if(evlist.gettime(j+2)<sim_clk.get())
{

printf("\n error: in setting backlog \n");
exit(l);

ncollison++;

evlist.ascendadd(templ,O);
if(evlist.gettime(O)<sim_clk.get())
{

printf(" error: ch idle 0 is set to less \n");
exit(l);

II set channel idle events since col;
if(csdns<nos)
{

evlist.ascendadd(temp2,1);
if(evlist.gettime(l)<sim_clk.get())

}
}

printf(" error: ch idle 1 is set to less \n")
exit (1);

II=================================~======~==================~==============
I I UPDATING THE STATISTICS (AVERAGE PACKET WAITING TI!-1E)

II==
void updatestat(int i)
{

}

double pwtime; II packet waiting time
pwt:ime=sim_clk.get () -atbuff (i] [olopkt [i]]
end=obs (pwtimei;
SUID=SUID+pwtime;
packets++;

II==
I/ INTIALIZATION OF THE BATCH PARAMETERS

II==~=======================
void init_bm(int ma,int mb)
{

}

d=ma;
mO=mb;
smy0=smy1=smy2=0.0;
k0=n0=0;

II==
I/ BATCH MEANS ANALYSIS
!!==~=====================
int obs(double y)

int r-o;
double var;
if(d)

{ d--;
return r;

smyO+=y;
nO++;
if (n0==m0)

{
smyOI=nO;
smy1+=smy0;
smy2+=smyO*smyO;
k0++;
smy0-0.0;
nO=O;

if (k0>=10)
{

}

yO=smyl/kO;
var=(smy2-kO*yO*yO)/k0-1;
h0=1.65*sqrt(var/k0);
r=l";

return r;

!!==
// FOR DRAWING GRAPHS
!!====================~============================~=====~==================
void rgraph(double *xl,double *yl)
{
int x[siz];
int y[siz];
int scale1=200/siz;
setbkcolor(GREEN);
int i;int k;
for(i=O;i<siz;i++)

{
x [i] = ((int) (* (xl+i) *scalel*siz));
y[i] = ((int) (* (yl+i) *scale2));

}
line(20,460,20+400*1.2,460);
line(20,60,20,460);
for(i=l;i<=siz;i++)
{
k=scalel*i*1.2;
putpixel(20+k,460,4);
if(i<=lO)
putpixel(20,60+k,4);
}
line(20,460,20+x[O] ,460-y[O]);
for(i=O;i<(siz-1) ;i++)

}

{
circle(20+x[i] ,460-y[i] ,2);
putpixel(20+x[i] ,460-y(i] ,4);
line (20+x [i], 460-y(i], 20+x [i+l], 460-y[i+ll);
}
circle(20+x[i] ,460-y[i] ,2);

II==
II THIS IS THE MAIN FUNCTION WHICH INTIALIZES ,FINDS THE EVENT WITH EARLIEST
II SCHEDULE TIME AND CALLS 'CSMACD' FUNCTION
II==
int main(void)

int stop;
int i;
double offload=O.O;
double ncollisonsps(siz];
double offeredloadO[siz];
double throughputO[siz];
double ar_avgwtimeO(siz];
double ncollisonspsO[siz];
double offeredloadl[siz];
double throughputl[siz];
double ar_avgwtimel[siz];
double ncollisonspsl(siz];
double offeredload2[siz];
double throughput2[siz];
double ar_avgwtime2[siz];
double ncollisonsps2[siz];
double pass thr_traffic;

fp = fopen{"c:\\rama\\res2.cpp","a");

int gdriver = DETECT;
int gmode=EGALO;
initgraph(&gdriver,&gmode,"c:\\borlandc\\bgi");

int k;
randomize();
for(i=O;i<3000;i++)

k=rand();
int j;

do
{

If leave first 3000 random nos.

printf("Indicate with network partitioning(give 1) or without(give 0) \n");
scanf("td",&par_flag);
printf ("td\n", par_flag) ;
if (par_flag==l)
{

}

printf(" Give the pass through traffic \n");
scanf("tlf",&pass_thr_traffic);
printf("tlf\n",pass_thr_traffic);
nos=nosl/2;

else nos=nosl;

fprintf(fp,"\n==~============•============\n"
fprintf(fp,"NUMBER OF STATIONS == ~d \n ",nos);
set_parameters();

0

printf("\n===================•==~=========\n"
printf("offeredload throughput avg.waiting time no.collisonspersec."
printf("\n=================~=================================~====~=============\n"]
double otflimit; 0

i

if (par_flag-=1)
offlimit=2. 01;

else offlimit=l.Ol;
j=O;
offload=O.O;
while(offloadcofflimit)
{
end=O;
npkts=O;
init_bm(2000,2000);
offload+=0.05;
if (par_flag==l)
lambdal=(offload/pkttxtime/nos*1.0e6)*(pass_thr_traffic*nos+l);

else
lambda1=offload/pkttxtime/nos*l.Oe6;
lambda= offload/pkttxtime/nos*l.Oe6;

start_simulate();
no_suctxpkt=O;
ncollison=O;
packets=O;
for(i=O;i<nos;i++)
{
channel.makeidle(i);

}
sum=O.O;
sim_clk.set(O.O);
simperiod=l.Oe6;
kO=O;
smy0=smyl=smy2=y0=h0=0.0;
while (!end)
{

topevtime=evlist.gettime();
type=evlist.gettype();
evlist. remove();
sim_clk.set(topevtime);
csmacd (type);

fprintf(fp,"BUFFER SIZE=== %d \n",BUFFSIZE);
fprintf(fp,"SIMULATION PERIOD=== ~lf \n",sim_clk.get());
int s,n;

if (par_flag==l)
{

s=2*nos;
n=2;

else

s=nos;
n=l;

printf(" tlf \t",npkts*pkttxtime/sim_clk.get()};
printf ("%lf \t", ((double) no_suctxpkt) *n*pkttxtime/sim_clk. get ());
fprintf(fp,"OFFERED LOAD== tlf ",npkts*pkttxtime/sim_clk.get()};
fprintf(fp,"throughput=tlf \n", ((double}no_suctxpkt}*n*pkttxtime/sim_clk.get());
fprintf(fp,"no.of packets=tu \n",npkts}; ·
fprintf(fp,"successfully trans. pkts=tu \n",no_suctxpkt);
fprintf (fp, "overflow packets td \n" ,overfpkts);
fprintf(fp,"discarded packets=td \n",discard};
fprintf(fp,"collisons per second ==td \n", (int} (ncollison*le6/sim_clk.get()));
printf("tlf +/- tlf \t",sum/packets/pkttxtime,hO/pkttxtime);
printf("td \n", (int) (ncollison*le6/sim_clk.get ()});
if((par_flag==l}&&(pass_thr_traffic--0.0))
{

}

ar_avgwtimeO[j]=(sum/packets)*le-4;
offeredloadO[j]=lambda*s*pkttxtime/sim_clk.get();
throughputO[j]=no_suctxpkt*n*pkttxtime/sim_clk.get();
ncollisonspsO[j)=(double)ncollison*le5/sim_clk.get(};

if((par flag==l}&&(pass thr traffic==O.S))
{ - - -

ar_avgwtimel[j]=(sum/packets);
offeredloadl[j]=lambda*s*pkttxtime/sim_clk.get(};
throughputl [j] =no_suctxpkt*n*pkttxtime/sim_clk.get (};
ncollisonspsl[j]=(double)ncollison*leS/sim_clk.get(};

if((par_flag==l}&&(pass_thr_traffic==l.O))
{

ar_avgwtime2[j]=(sum/packets);
offeredload2[j]=lambda*s*pkttxtime/sim_clk.get();
throughput2[j]=no_suctxpkt*n*pkttxtime/sim_clk.get();
ncollisonsps2[j]=(double)ncollison*le5/sim_clk.get();

if (par_flag-=0)
{

}

ar_avgwtime[j]=(sum/packets);
offeredload[j]=lambda*s*pkttxtime/sim_clk.get();
throughput[j]=no_suctxpkt*n*pkttxtime/sim_clk.get();
ncollisonsps(j]=(double)ncollison*le5/sim_clk.get();

j++;
} // end of for loop
printf{" If you want to stop press 0 else any key \n");
scanf("%d",&stop);
printf("%d\n",stop);
}
while (stop!=O);
int graphd;

while (1)
{
printf(" IF YOU WANT THE GRAPH BETWEEN OFFERED LOAD VS. THROUGHPUT giVe: 1\n");
printf(" OFFERED LOAD VS. AVG.WAIT.TIME give 2 \n");
printf(" OFFERED LOAD VS. NO.COLLISONS PER SEC. give 3 \n");
scanf("%d",&graphd);

cleardevice();
if (graphd==l}

{
scale2=1.0;
outtextxy(80,20,"offeredload vs. throughput");
rgraph\offeredload,throughput);
rgraph(offe~edloadO,throughputO);

rgraph(offeredloadl,throughputl);
rgraph(offeredload2,throughput2);
} .

else if (graphd==2)
{
scale2=1.0;
outtextxy{80,10,"offeredload vs. average waitingtime");
rgraph(offeredload,ar_avgwtime);
rgraph(offeredloadO,ar_avgwtimeO);
rgraph(offeredloadl,ar_avgwtimeli; ·
rgraph(offeredload2,ar_avgwtime2);
}

else if (graphd==3)
{

}

scale2=1.0;
rgraph(offeredload,ncollisonsps);

else exit(O);

return 0;

BIBLIOGRAPHY

(1] w. stallings, " Local networks performance", IEEE

communications Magazine, 22(1984) 27-35.

(2] W. Stallings," Local Networks", Computing Surveys, 1·6:

3-41, March 1984.

(3] W. Bux, "Performance issues in local area networks", IBM

system Journal, 23(1984) 351-374.

[4] R.M. Metcalfe and D.R. Boggs, " Ethernet: distributed

packet switching for local computer networks", Communications

of ACM 19(1976) 395-404.

(5] F.A. Tobagi and V.B. Hunt," Performance analysis of

carrier, sense multiple access with collision detection",

Computer networks 4(1980} 245-259.

[6] · J. F. Shoch and J. Hupp, "Measured performance of an

Ethernet local network", Communications of ACM 23(1980} 711-

721.

[7] Robert A.Pitts, Ralph Martinez and Larry c. Schooley,

"CSMA/CD with network partitioning", Computer networks and

ISDN systems, 26(1993) 423-432.

[8) David L.Eldredge John D.McGregor and Marguerite

K.Summers," Applying the Object Oriented paradigm to discrete

event simulations using the C++ language ",Simulation,Feb

1990,83-91.

[9] Andre\-t s. Tanenbaum, "Computer Networks", Prentice Hall

of India, 1988.

(10] H. Kobayashi, "Modelling and Analysis", An Introduction

of system Performance Evaluation Methodology", Addison-Wesley

publishing company, 1978.

(11) Francis Neelamkavil, "Computer

Modelling", John Wiley and Sons, 1987.

Simulating and

[12] Me Dougall, "Simulating Computer Systems: Techniques and

tools", MIT Press.

[13] D. Bertasakas and R. Gallager," Data Networks", Prentice

Hall, 1989.

[14] Kernighan and Ritchie, "The c programming language",

Prentice Hall of India, 1990.

(15] Stroustrup,Bjarne, " The C++ Programming language",

Addison-Wesley Publishing co.,1988.

(16] Tanenbaum, Langsam and Augestein," Data structures using

C", Prentice Hall of India 1994.

(17] Robert Lafore, "Object oriented Programming in Turbo

C++", GALGOTIA Publications, 1993.

	TH56010001
	TH56010002
	TH56010003
	TH56010004
	TH56010005
	TH56010006
	TH56010007
	TH56010008
	TH56010009
	TH56010010
	TH56010011
	TH56010012
	TH56010013
	TH56010014
	TH56010015
	TH56010016
	TH56010017
	TH56010018
	TH56010019
	TH56010020
	TH56010021
	TH56010022
	TH56010023
	TH56010024
	TH56010025
	TH56010026
	TH56010027
	TH56010028
	TH56010029
	TH56010030
	TH56010031
	TH56010032
	TH56010033
	TH56010034
	TH56010035
	TH56010036
	TH56010037
	TH56010038
	TH56010039
	TH56010040
	TH56010041
	TH56010042
	TH56010043
	TH56010044
	TH56010045
	TH56010046
	TH56010047
	TH56010048
	TH56010049
	TH56010050
	TH56010051
	TH56010052
	TH56010053
	TH56010054
	TH56010055
	TH56010056
	TH56010057
	TH56010058
	TH56010059
	TH56010060
	TH56010061
	TH56010062
	TH56010063
	TH56010064
	TH56010065
	TH56010066
	TH56010067
	TH56010068
	TH56010069
	TH56010070
	TH56010071
	TH56010072
	TH56010073
	TH56010074
	TH56010075
	TH56010076
	TH56010077
	TH56010078
	TH56010079
	TH56010080
	TH56010081
	TH56010082
	TH56010083
	TH56010084
	TH56010085
	TH56010086
	TH56010087
	TH56010088
	TH56010089
	TH56010090
	TH56010091
	TH56010092
	TH56010093
	TH56010094
	TH56010095
	TH56010096

