
A COMPARA'fiVE STUDY OF MODIFIEI) AND
EXISTING ARPANET

ROUTING ALGORITI-IM USING SIMULATION

DiS.\l'IW/iOII .11/hlllilffll /()

}awalzarlal Nehru University
in parrial.fiilfillmenr o(!he requircmenr.'

for rhc award o(rhe Degree o(

MASTER OF TECHNOLOGY

·~
' :OMPUTER SCIENCE AND TECHNOLOGY

DHARMESH KR. SRIVASTAVA

SCHOOL OF COMPUTER AND SYSTEM SCIENCES
JAW AHARLAL NEHRU UNIVERSITY

NEW DELHI - 110.067

JANUARY, 1995

CERTIFICATE

This is to certify that the thesis entitled "A COMPARATIVE

STUDY OF MODIFIED AND EXISTING ARPANET ROUTING ALGORITHM USING

SIMULATION" being submitted by me to Jawaharlal Nehru University,

in partial fulfillment of the requirements for the award of the

degree of Master of Technology in Computer Science and Technology

is a record of original work done by me under the supervision of

Prof. Karmeshu & Dr. Madan, School of Computer and system

sciences during the Monsoon Semester, 1994.

The result reported in this thesis have not been submitted

in part or full to any other University or Institution for the

award of any degree etc.

'1'7
- - \ "-- --

\k'
Prof. K.K. Bharadwaj
Dean, SCSS,
J.N.U, New Delhi

~~
(DHARMESH KR. SRIVASTAVA)

\Co.. W'-
Prof. Karmeshu

Professor, SCSS
J.N.U., New Delhi

P'f· s. Madan
Asst. Professor,

SCSS, JNU
New Delhi

ACKNOWLEDGEMENT

I express my de~p sense of gratitude towards my project

guide Dr. Karmeshu & Dr. s. Madan of Computer Science Department,

J.N.U Delhi under whose invaluable guidance and incessant

encouragement my work has taken its present shape. I gratefully

acknowledge the facilities provided by the Compu"ter Science

Department.

I am indebted to Dr. s. Madan, under whose dynamic guidance,

cooperation and constant encouragement this project has seen the

light of the day.

My thanks are also due to those who are not mentioned but

have been associated with this work.

Date th 11 January, 95

'Jf~
(Dharmesh Kr. Srivastava)

ABSTRACT

In this desertation the routing algorithm of ARPANET has

been studied and a modified algorithm suggested to improve its

performance measures of throughput and delay.

In the presently running algorithm when the cost of a link

changes significantly several routes passing through it are re­

routed. It is felt that by doing so several of the re-routes may

pass through the same link (which previously had less traffic),

raising its traffic significantly. This may cause deterioration

in throughput and delay. This has been overcome in the modified

routing algorithm suggested by rerouting only one path at a time.

The present algorithm uses delay over links as a cost metric

to determine the shortest paths for the purpose of routing. Such

a metric has been found to be inadeqauate as the increase in

delay is disproportionate in relation to increase in resource

utilization causing uneven distribution of traffic leading to

deterioration in performance. An alternative cost metric using

the link utilizations and the number of hops in the path has been

suggested.

Since performance of an adaptive routing algorithm (as in

ARPANET) is difficult to determine analytically, the performance

evaluation is carried out by simulation models any by comparing

with the results of the simulation model of the existing routing

algorithm in ARPANET.

Various combination of the routing algorithm and cost

functions were simulated and their performance was examined.~The

model with the cost function taken as the product of maximum

utilization of a link in the path and number of hops in the path

with the routing algorithm taken as the single re-route algorithm

suggested, was found to give the best results.

1.

2.

3.

< CONTE!It""TS

BASICS OF COMPUTER NETWORKS

1.1 WHY ARE NETWORKS REQUIRED

1.2 COMPUTER NETWORK CLASSIFICATION SCHEMES

1.3 THE ISO OSI SEVEN LAYER ~ODEL

1.4 CIRCUIT SWITCHING AND PACKET SWITCHING

1.5 ROUTING IN PACKET SWITCHED NETWORKS

1.6 FUNCTIONS OF ROUTING PROCEDURES

1.7 CLASSIFICATION OF ROUTING ALGORITHMS

ARPANET ROUTING ALGORITHM

2.1 ORIGINAL ROUTING ALGORITHM

2.2 NEW ROUTING ALGORITHM

2.3 SHORTEST PATH FIRST ALGORITHM

2.4 ADDITION TO BASIC.ALGORITHM

2.5 DELAY MEASUREMENT

2.6 UPDATING POLICY

2.7 COMPARISON OF OLD AND NEW ALGORITHM

SIMULATION OF PROPOSED ARPANET ALGORITHM

3.1 INADEQUACIES IN NEW ROUTING ALGORITHM

3.2 MODIFIED ARPANET ALGORITHM

3.3 SIMULATION MODEL

3.4 SIMULATION TECHNIQUES

1

1

2

5

7

8

9

11

15

15

15

19

21

22

23

23

25

25

25

29

33

3.5 IMPLEMENTATION DETAILS 36

3.6 SIMULATION RESULTS 37

4. CONCLUSION 54

APPENDIX - I

BIBLIOGRAPHY 58

APPENDIX - II

LISTING 61

CHAPTER - 1

BASICS OF COMPUTER NETWORKS

1. 1 Why Are Networks Required Most computer have serial

interface referred as "asynchronous interface" or RS-232 port.

If terminal emulation software is run on the personal computer,

the serial port can be connected to a serial port of another

computer. The personal computer can then act as though it is a

terminal and operate the other computer.

There are problems with this sort of set-up_ Firstly, the

computer must be close together, as the Rs-232 electrical

signalling cannot be driven over very long distances. Secondly,

the transfer is limited by the maximum speed at which the serial

interface can transfer data. The first problem can be solved with

devices called line drivers and moderns. These. allow much longer

links between the computers. Most moderns are designed to be

connected to the Public switched Telephone Network (PSTN).

Moderns tend to be limited in the rate that they transfer

data due to the very low capacity of telephone lines (11].

The solution is to use a network. All of the computers that

need to communicate with each other are connected into the

network. A link to the remote site is also connected to the

network while another network at the remote site connects all the

computers there to the remote link. A Computer Network is a set

of one or more computers, communication links and terminals

interconnected to provide service to a set of users. A node is

a computer system that is attached to, or part of a computer.,

networ_k. Transmission 1 inks connect the hosts, nodes, and

terminals together to form a network. A path is a series of end-

to-end links that establishes a route across a part of the

network. The links and nodes along with the essential control

software make up the communication subnet, or data network. [4]

2

I
_,

1.2 COMPUTER NETWORK CLASSIFICATION SCHEMES [4]

' ' ' ,-
' 1

FUNCTIONAL VIEW DESIGNER'S OR MANAGER'S TOPOLOGICAL OPERATIONAL VIEW COMMUNICATIONAL VIEW HYBRID CLASSIFICATION

f
SWITCHING FUNCTION VIEW

l J
(COMBINED ROUTING &

VIEW ' TOPOLOGICAL VIEW)
I) REMOTE ACCESS 1) CIRCUIT SWITCHING 1) CENTRALIZED 1) RESOURCE SHARING

NETWORK

2) VALUE ADDED 2) MESSAGE SWITCHING 2) DECENTRALIZED . 2) DISTRIBUTED COMPUTATION
NETWORK

3) MISSION 3) PACKET SWITCHING 3) DISTRIBUTED 3) REMOTE COMMUNICATION
ORIENTED
NETWORK

4) HYBRID SWITCHING

f t I
DETERMINISTIC ALGORITHMS STOCHASTIC ALGORITHM FLOW CONTROL ALGORITHM

f ~ ALL KINDS
1) FLOODING ___!

1. SELECTIVE

J
1) ISORITHMIC
2) BUFFER STORAGE ALLOCATION

2) FIXED 3) SPECIAL ROUTE ASSIGNMENT
3) TRAFFIC
4) SPLIT TRAFFIC
5) IDEAL OBSERVER
6) SHORTEST PATH

1) RANDOM
2) ISOLATED
3) DISTRIBUTED

-----------------·

FIXED ROUTING

CENTRALIZED,-----• NETWORK ROUTING CENTRE

NETWORK TOPOLOGY -< I
DISTRIBUTED

' FLOODING

I 1..... IDEAL OBSERVER ROUTING

RANoa! ROUTING I ISOLATED,ROUTING WITH
LOCAL DELAY ESTIMATES

ISOLATED ROUTING WITH SHORTEST QUEUE

' ASYNCHRONOUS
UPDATING

- 1
UPDATE ROUTING TABLE

' PERIODIC
UPDATING ' COOPERATIVE

UPDATING

1.3 The ISO OSI seven Layer Model

The task of implementing communication sys'll:ems to cope with

the problems encountered in the real world is very large. In

order to make things manageable, the task has to be broken down

into number of sub-tasks. One such subdivision is the ISO seven

layer model. (11]

Layer 7 :
Application Layer

Layer 6 . .
Presentation Layer

Layer 5 :
Session La_yer

Layer 4 :
Transport Layer

Layer 3 . .
Network LC!_Yer

Layer 2 :
Link Layer

Layer 1 :
Physical Layer

ISO OSI SEVEN LAYER MODEL

1. 3.1 LAYER 1 - THE PHYSICAL LAYER

The physical layer deals with the most fundamental aspect

of network connection, i.e. connector types, connector pin-outs

electrical signalling and signalling conventions.

1.3.2 ~AYER 2 - THE LINK LAYER

The link layer is responsible for transporting information

from the higher layer protocols across the physical layer

interface between two devices connected together. The link layer

provides mechanisms for detecting errors in the information

transferred.

' 'I

1.3.3 LAYER 3 - THE NETWORK LAYER :

LAYER 3 deals with 'end-point devices' connected to each

other across a network that may incorporate many device-device

links. It is used to establish connections between end-point

devices across a network or interconnected networks [11).

1. 3. 4 LAYER 4 - THE TRANSPORT LAYER :

The transport layer provides a standard interface between

the higher level protocols and the underlying network. It is

needed because different network and link layers may have

different characteristics.

1. 3. 5 LAYER 5 - THE SESSION LAYER

The sessi-on layer is the lowest layer that deals with the

abstract v·iew of the underlying network. It- provides support for

the informat-ion tra:nsfer betwe-en applications. This includes a

mechanism for restarting information tran-sfer at the correct

point a_fter a failure that cannot be transparently corrected at

the lower levels.

1.3.~ LAYER 6 - THE PRESENTATION LAYER

The pre-sentation layer d-eals with the way in. wb.ich

inf"o:r:nratio:nc being_ transferred is represented. It inc-arp-era-t:e .a

''t:r.ans-f-:er syntax' to define rules fur how the infor.matio'n is t:o

be r-ep:res-,ented so that -OSI applica-tion can \,H~ders.t:a-nd ·th--e

in-formation . [.11]

1. 3. 7 LAYER 7 - THE APPLICATION LAYER :

This layer provides the ultimate in high level support for

the application using network. It includes facilities like file

transfer, job transfer and message handling.

1.4 CIRCUIT SWITCHING AND PACKET SWITCHING :

There are two fundamentally and competiting approaches to

communications ; pre-allocation and dynamic allocation of

transmission bandwidth. The former is called 'circuit switching'

and latter 'packet switching'. [7]

Circuit switching is analogous to the telephone (Voice)

network call and message routing are set up prior to commencement

of message transmission. Once a complete circuit or route is

established the message is ready for transmission. It can be

either manual or automatic. In the manual mode, the user dials

a sequence of digits to obtain access to a particular computer

system. In the automatic switching mode, the required path is

established on the basis of information in the data stream.

In message switching a message works its way through the

network from link to link, queuing at specific nodal points.

Small computer:s located at message concentration centres and

routing points perform the necessary message coding for entry

into the network and combine buffer and route messages to the

next destination. The networks introduce buffering or queuing

delay and thus, delay time or response time plays a critical role

in their design. The main advantage of message switching over

circuit switching is increased circuit utilization.

Packet switching attempts to solve the problems of variable

length messages in message switching by dividing a ' message'

into 'packets'. A packet is a subdivision of a message prefaced

with an identifier containing suitable address information and

information which will the message to be reconstructed. [4]

To use cs or PS depends on a number of factors including

mean message size, intermessage arrival, and conversation length.

Hybrid switching is a switching approach which combines cs

and PS within a single data network and thus can handle each

category of traffic. Networks, providing hybrid switching

capabilities apply dynamic time-division multiplexing techniques

to allocate a portion of channel bandwidth to cs applications.

The remaining channel bandwidth is then available for PS

traffic. [4)

1.5 ROUTING IN PACKET SWITCHED NETWORKS :

Routing implies finding the optional path from each node

treated as source node to all other nodes treated as destination

nodes. The two main functions performed by a routing algorithm

are the selection of routes for various origin-destination

pairs and the delivery of messages to their correct destination

once the routes are selected. [11]

The ideal routing algorithm should use little CPU time and

network bandwidth. It must base its decisions on the current

state of the network and not on the state of the network some

time back. Also it must minimize its use of network bandwidth

to keep its data upto date. Routing determines the response time

seen by the user, and in part the efficiency of node and link

utilizations.

Routing interacts with flow control in determining

throughput (quantity of service) and average packet delay

(quality of service) measures, by means of feedback mechanism.

When the traffic load offered by the external sites to the

subnet is relatively low, it will be fully accepted into the

network. When the offered load is excessive, a portion will be

rejected by the flow control algorithm. As the routing algorithm

is more successful in keeping delay low, the flow control

algorithm allows more traffic into the network. [1]

The effect of good routing is to increase throughput for the

same value of average delay per packet under high offered load

conditions and to decrease average delay per packet under low

and moderate offered load conditions.

1.6 FUNCTIONS OF ROUTING PROCEDURES

Any adaptive routing procedure must perform a number of

functions :

i) Measurement of the network parameters pertinent to the

routing strategy.

ii) Forwarding of the measured information to the points

[Network Control Centre (NCC) or nodes] at which routing

computation takes place.

REJECTED LOAD

OFFERED LOAD

FLOW CONTROL ~

THROUGHPUT

ROUTING

------------------,

I
I
I
I
I
I
I
I
I
I
I

I I , ____________________________ ,

DELAY

FEEDBACK
MECHANISM

INTERACTION OF ROUTING AND FLOW CONTROL

iii) Computation of routing tables.

iv) Conversion of routing table information to packet routing

decisions.

Typical information that is measured and used in routing

computation consists of states of communication lines, estimated

traffic link delays & available resources (line capacity, nodal

buffers, etc.). The pertinent information is· forwarded to the

NCC in a centralized system

distributed system. (5]

and to the various nodes in a

1.7 CLASSIFICATION OF ROUTING ALGORITHMS :

There are number of ways to classify routing algorithms. One

way is to divide them into centralized and distributed. In

centralized algorithms, all route choices are made at a central

node, while in distributed algorithms, the computation of routes

is shared among the network nodes with information exchanged

between them as necessary.

Another classification of routing algorithms relate to

whether they change routes in response to the traffic-input

patterns.

(i) Static Routing : In static routing algorithms, the

path used by the sessions of each origin-des~ination

pair is fixed regardless of traffic conditions. It

can only change in response to a link or node failure.

II

D F

E

A

c B

NETWORK TOPOLOGY

(ii) Adaptive Routing : In adaptive routing the paths used

to route new traffic between origins and destinations

change occasionally in response to congestion. [1]

There are fundamentally two different types of routing

strategy:

(i) Fixed Routing : Fixed routing is the simplest routing

strategy in that the packet switches forming the

network contain fixed routing tables. These routing

tables provide them with all the information that they

need to be able to route packets around the network.

The routing table consists of a number of entries one

for each end-point device connected to the network. In the above

network, ·there are six end-point devices, so the routing table

will have six entries. Each entry contains two pieces of

information. The first is the address of the endpoint device, the

sec"ond is the link down which .packets for that end-point device

should be routed.

S2's ROUTING TABLE

Address of end- Link
point device

A 3

B 3

c 4

D 1

E 2

F 2

The disadvantage in this process of building.routing tables

is that it requires quite detailed knowledge of the topology of

the network. (11]

(ii) Dynamic Routing In dynamic routing, the packet

switches are able to make routing decisions based on

conditions in the network when packets are switched.

Advantages of dynamic routing over fixed routing

(a) In many network, availability is important. It is

important that paths between end point devices should

be available as much of the time as possible. To

increase availability, the network should be able to

automatically use alternate routes between end-point

devices in case of link or packet switch failure.

(b) Another advantages is 'load sharing'. A dynamic routing

strategy may well be able to adjust the loading of

each route to ensure that maximum use is made of the

links and that delay to packets is kept as low as

possible.

Distributed Adaptive Routing gets full benefit of dynamic

routing, in the sense that the packet switches in the network

have information from other parts of the network. The packet

switches exchange information about the state of the network,

modifying their routing strategies as appropriate.

CHAPTER - 2

ARPANET ROUTING ALGORITHM

ARPANET, a computer network is the acronym for ADVANCED RESEARCH

PROJECT AGENCY's NETWORK. It was created in 1969 under U.S.

Department of defence. Beginning with four nodes, it now runs aS

an operational system with over 100 computers connected to 56

nodes throughout the continental United States, Hawaii and

Europe. It is a distributed network with at least two paths

between any pair of nodes. Most of its lines are 50-K bit/ s

synchronous links. It is a store-and-forward packet switched

network in which the transport protocol is message oriented.

Message longer than the maximum packet length are segmented into

up to 8 packets at the source node and are reassembled at the

destination node. [5)

The original ARPANET routing algorithm suffered with various

problem and a new routing algorithm was implemented later which

is being used till date.

2.1 ORIGINAL ROUTING ALGORITHM :

Each packet is directed towards its destination along a path

for which the total estimated transit time is smallest. This path

is not determined in advance. Each interface message processor

(IMP} individually decides which line to use in transmitting a

p~qket, a4dressed to .. another destination. ~his ·selection is made

by a simple table look-up procedure. For each possible

destination, an entry in the routing directory at each IMP

designates the appropriate next line in the path.

15

Each IMP also maintains a network delay table which gives

an estimate of the delay it expects a packet to encounter in

reaching every possible destination over each of its output

lines.

Periodically, every 2/3 of a second, the IMP selects the

minimum delay to each destination and puts it in a minimum delay

table. Since all of the neighbours of an IMP are also sending out

their minimum delay tables every 2/3 second, an IMP receives a

minimum delay table from each of its neighbors every 2/3 second.

As each table arrives it is read in over the row of the delay

table corresponding to the line it arrived on. After all the

neighbour's estimates have arrived, the IMP ad& its own

contribution to the total delay to each destination, to each

column of delay table. Thus the IMP has an estimate of the total

delay of each destination over the best path. (9]

Advantages of original routing Algorithm :

{i) The strongest point is that it is simple. The IMP does

not have to know the topology of the network. When

IMPs and lines go down, the algorithm functions as

usual, and the new routing information propagates

through the network by a process of exchange between

neighbours.

{ii) It is not costly one in-te~ms of network resources.

The program in the IMP picks the minimum delay and hop

counts from the routing messages received from each

neighbour for all destinations. Thus, the calculation

I~

is proportional to the number of IMP's in the network

and number of lines connected to each IMP. The routing

computation takes 5% of CPU bandwidth of the IMP.

Disadvantages of Original routing Algorithm :

(i) The strong bias towards the shortest path is good

idea, but the bias makes the algorithm somewhat

insensitive to changes in traffic patterns, so that

global optimization of delay and throughput is not

likely as network load increases.

(ii) A second fault is that the algorithm maintains only

one route per destination, updated every 2/3 second.

This means little traffic bifurcation is possible.

Some of the other serious problem encountered are :

(i) The routing tables were long and increased with the

size of the network, leading to an increase in the

size of the packets. Transmission of these packets

would take considerable time adversely affecting the

flow of network traffic.

(ii) The rate of exchange of routing tables and the

distributed nature of calculations causes a dilemma,

the network is too slow i~ adapting to congestion and

to important topology changes because of the time

taken in such information reaching all nodes, yet it

can respond too quickly to minor changes.

17

The delay measurement process of the old algorithm

involves counting the number of packets queued for transmission

on its lines and adds a constant to these counts, the resulting

number is the 'length' of the line for purpose of routing.

Drawbacks of such scheme

i) Suppose two lines have different speeds or different

propagation delays, yet the scheme gives the same time

delay for both if their queue length are equal.

ii) There are number of resources e.g. CPU, output line

buffer for which a packet may have to wait for

significant amount of line before it is queued. Thus

queue length is a poor indicator of delay.

iii) An instantaneous measurement of queue length does not

accurately predict average delay because there is

significant real time fluctuation in queue length at

any traffic level.

The shortcomings have been overcome in the new routing

Algorithm. [10]

2.2 NEW ROUTING ALGORITHM :

Each node in the network maintains a database describing

the network topology and the line delays. Using this database,

each node independently calculates the best path to all other

nodes, routing outgoing packets accordingly. Because the traffic

18

in the network can be quite variable, each node periodically

measures the delays along its outgoing lines and forwards this

information to all other nodes. A routing update generated by a

particular node contains information only about the delay on the

lines emanating from that node. Hence an update packet is quite

small (176 bits on an average) and its size is independent of the

number of nodes in the network. An update generated by a

particular node travels unchanged to all nodes in the network.

Thus updates are small and since they are handled with highest

priority, they propagate very quickly through the network, so

that all nodes can update their databases rapidly and continue

to route traffic in consistent and efficient manner.

2.3 SHORTEST PATH FIRST ALGORITHM :

Routing algorithm used for finding shortest path in the

network is SPF (Shortest Path First) algorithm. The basic SPF

algorithm uses a database describing the network to generate a

tree representing the minimum delay paths from a given root node

to every other node of the network. The figure below shows a

flowchart of the algorithm.

The da~abase specifies which nodes are directly. connected

to which other nodes and what the average delay per packet is on

each network line. The tree initially consists of just the root

node. The tree is then augmented to contain the node that is

closest (in delay) to the root artd that is adj~cent to a node

already on the tree. The process continues by repetition.

Eventually, the furthest node from the root is added to the tree,

and the algorithm terminates. (10]

IS

2..0

MARK ALL NODES
NOT ON LIST

'

PUT ROOT ON LIST

REMOVE NODE CLOSEST NONE
TO ROOT FROM LIST:

__. DONE

PUT NODE ON TREE

FOR ALL NEIGHBOURS OF
NODE : IF ON TREE,

DO NOTHING.IF ON LIST,
UPDATE DIST. ELSE PUT ON

LIST

•

SHORTEST PATH FIRST ALGORITHM

2.4 ADDITION TO BASIC ALGORITHM :

To handle various possible changes in network status without

having to recalculate the whole tree, certain additions are done.

For each change, we assume that the shortest path tree rooted

at node 'I' prior to the change is known.

(i) considering the case where the delay of the line AB

from node A to node B increases. If the line is not in

the tree, nothing need be done. If the line is in the

tree, the delay to B increases, as does the delay to

each node whose route from 'I' passes through B.

The first two steps for handling an increase of X in the

delay from A to B are as follows:

(a) Identify nodes in B's subtree and increase their delay

from 'I' by X.

(b) For each subtree node s, examine S's neighbours which

are not in the subtree to see if there is a shorter

path from 'I' to S via those neighbours.

is found , put node S in list.

(ii) Consider the case where the delay on AB

X. If this line is in the tree, then paths to the

nodes of the subtree which have B ~s its root will be

unchanged because the subtree nodes were already at

minimum delay, and hence the decreased delay will only

short~ their distances from 'I'. However nodes which

are not in the subtree and which are farther from 'I'

may have a shorter distance via one of the subtree

nodes.

2\

2.5 DELAY MEASUREMENT :

When packet arrives at an IMP it is time stamped with its

arrival time. When the first bit of the packet is transmitted to

the next IMP the packet is stamped with its sent time. Delay time

being calculated as

Delay Time (Sent Time - Arrival Time + Propagation Delay +

Transmission Delay).

Routing update is generated only if the average delay

measured is significantly different from the last update that was

sent.

Since any significant change should be reported and any

small change in delay which lasts for a long time should also be

reported a threshold is maintained and if the change is greater

than or equal to this threshold an update is generated.

The threshold is initially set to 64 m sec. After each

measurement period, the newly measured average delay is compared

with the previously reported delay. If the difference does not

exceed the threshold, the threshold is decreased by 12.8 msec.

Whenever a change in average delay equals or exceeds the

threshold an update is generated and the threshold is reset to

64 m sec. Since the threshold will eventually decay to zero an

update will always be sent·afte~ a mirtut~. [10];·- - ·

22

2.6 UPDATING POLICY :

Each node measures the actual delay of each p~ket flowing

over each of its outgoing lines and calculates the average delay

every 10 sec. Only if this delay is significantly different from

the previous one, it is reported to all other nodes unlike the

earlier algorithm which allowed the delay estimates to change

every 128 ms. Such a small period is inappropriate for obtaining

on accurate estimate of delay.

Each update is transmitted to all nodes by the simple method

of transmitting it on all lines adjacent to a node. When a node

receives an update, if first checks if it has processed that

update before. If not, it is immediately ·forwarded to all

adjacent nodes.

As the updates are short and are generated infrequently this

procedure uses little line or node bandwidth. since all nodes

perform the same calculation on an identical database there are

no permanent routing loops. Transient loops however formed when

a change is being processed. (10)

2 ·• 7 COMPARISON OF OLD AND NEW ALGORITHM :

(.i) . The old algorithm was distributed in the sense that the

routing computation was performed by every node. The inputs

to the computation at one node were the outputs at

neighboring nodes. Thus old routing was global with each
.. ,

'
node performing part of it. The SPF is a local computation.

Thus the advantages of distributed routing are kept while

dispensing with the disadvantages of distributed

computation.

(ii) An important deficiency of old algorithm was its slow

response to topological changes. The old algorithm took

many seconds to respond to node or link failure. The new

algorithm did not observe any congestion arising due to

slow response.

iii) The update of the old routing algorithms were over 1200

bits long. The new routing update averages 176 bits.

(iv) The old routing algorithm took a fixed amount of time (15-

20 ms) to process an update. The new algorithm takes a

variable amount of time with the amount of time

·proportional to the size of routing change necessitated by

the update. This result in a much more efficient use of

CPU.

(v) The old algorithm was prone to form loops. A given packet

might be trapped in such a loop for a significant amount

of time. While the new algorithm cannot be said to be loop­

free the loops that form occur only as transients while

the network is adapting to routing changes.

(vi) The new algorithm does take about three times the memory as

the old one, but conservation of memory is not generally

considered to be important desideratum. [9,10]

CHAPTER 3

SIMULATION OF PROPOSED ARPANET ALGORITHM

3.1 INADEQUACIES IN NEW ROUTING ALGORITHM :

(i) Increase in resource utilization results in a

disproportionate increase in delay. Consequently the

distribution of the traffic through the network becomes

uneven which may lead to congestion even if the network

load is far below its capacity, as due to uneven

distribution the load at some switches may increases

disproportionately which may cause the packet arrival rate

at a link to be greater than the mean delay time, queues

would then grow effecting the throughput and delay.

(ii) In the new algorithm, when the cost of a link AB increases,
\

all the nodes in the subtree of node B are re-routed. And

when the cost of the link decreases all nodes, for which

the cost decreases are rerouted. In such a scheme several

rerouted routes may pass through the same link, raising the

system cost to vary arbitrarily. In trying to reduce the

cost of one link the cost of some other link may be raised

arbitrarily. Thus the centre of congestion shifts from one

area of network to another. Thus moving from one unstable

condition to another.

3.2 MODIFIED ARPANET ALGORITHM :

To overcome the above~dequacies, a modified algorithm has

been suggested:

(i) The time delay used as cost metric i~ an inappropriate

measure as it does not proportionately vary with resource

utilization causing uneven distribution of traffic.

In the proposed cost function link utilization has been used

as a cost metric instead of delay. The cost function proposed by

BACHINI and SHEN uses maximum cost of the link in the path as

cost function. In such a case two paths with different number of

links but the same maximum utilization will have the same cost.

To overcome this, the cost function is proposed to be the

product of maximum link utilization in a path and the number of

hops.

C(P) = (Uij) x (no. of hops in P)

where P is a path from source to destination.

Uij denotes utilization of link ij where lij E P.

If two paths are found to have the same cost then the

distinguishing criterion will be the number of hops when maximum

utilization is less than 0.8 and utilization alone for maximum

utilization greater than 0.8. The value 0.8 is taken as beyond

this the system tends to saturate.

(ii) In new algorithm, when the cost of link AB increases,

all the nodes in subtree of node B are rerouted. Similarly when

the cost of link decreases, all the nodes for which the cost

decreases are rerouted. Since all the node are re-routed

simultaneously, the centre of congestion shifts from one area to

another.

To overcome the above problem, it is preferable to re-route

only one route at a time.

The modified algorithm is as follows:

(i) When utilization of link AB increases,

(a) If the line AB is not in the tree, nothing need to be

done.

(b) If the line AB is in tree, then the cost of reaching

node B and it subtree nodes increase, thus the cost of

node B and its subtree nodes is updated.

(c) As the cost of only subtree nodes of B has increased

only they need be considered ~r rerouting. The

rerouting being considered in the descending order of

link utilizations of links leading to the subtree

nodes. Once a single reroute is found rerouting is

stopped.

(ii) When utilization of line AB decreases,

(a) If this line is not in the tree, compute cost of B via

AB and reroute B if the cost computed is less than

previous cost.

(b) If the line AB is in the tree recompute costs of node

B and its subtree nodes as it has decreased.

2/

28

(c) Since the cost of B and its subtree nodes decreases

theae is no need to reroute them. Only the non-subtree

nodes of B may be rerouted through the subtree nodes

of B if the cost of these nodes decreases. The

rerouting is stopped once a single reroute is found.

3.3 SIMULATION MODEL

Analysis of adaptive routing algorithms is extremely

complex; in a distributed network the study of adaptive routing

involves the study of time varying behaviour of a set of

interactive queues. Due to the involved complexity, simulation

is relied on almost exclusively to investigate various algorithms

and to carry out comparative studies of different strategies.

The performance of the proposed algorithm is thus evaluated.

Using the proposed cost function, sum of utilizations of links

in a path as another cost function and the time delay cost

function used in ARPANET as another, in combination with the

presently running routing algorithm suggested four simulation

models that have been developed.

Model 1

Model 2

Model 3

Model 4

replicates the ARPAN£T routing algorithm and cost

function,

uses the proposed cost function and modified

routing algorithm.

uses the sum of link utilizations as a cost

function and the ARPANET routing algorithm.

uses the sum of link utilizations as a cost

function and the modified routing algorithm.

The performance of these models has been evaluated on the

basis of throughput and delay measures obtained from the

simulated models.

3.3.1 THE SIMULATION PROBLEM

The simulation model developed should represent a real time

network as closely as possible thus the simulation model should

randomly generate packets at the various nodes in the network.

Generate update packets according to the update procedure

followed as explained in chapter II. Route the data and update

packets, adaptively compute the routing tables and update the

destination tables and it also has to maintain statistical data

for performance evaluation.

The input information required for the model is

i) The Network Topology

ii) Link capacities in bitsjsec

iii) Average interarrival rate at the nodes (in pktsjsec).

iv) Update packet size (in bits)

v) Data packet size (in bits)

vi) The type of routing algorithm to be used.

vii) The updating interval in sees.

viii)Simulation period in sees.

The statistical information to be computed is

i) Total percentage of packets delivered.

ii) Total percentage of packets rejected.

iii) Average waiting time per packet in each queue.

iv) Average number of packets carried per link.

v) Average number of hops per packet.

vi) Average time per packet spent in the network.

vii) Throughput of the network

viii)Link utilizations and delay on each link.

3.3.2 CONSTRAINTS OF THE SIMULATION MODEL :

The simulation model can not truly represent a real time

system. Features of the real time system which do not have a

significant affect on the simulation model may be omitted. For

eg. CPU processing delay may be neglected for small line

capacities as in this case the mean packet interarrival time is

essentially greater than the real processing delays.

s1

The simulation of line faults or malfunctions of other

components of the system are only of interest when the

reliability, availability or security are investigated.

The simulation carried out is only at the network layer as

the objective is to evaluate the performance of the routing

algorithm only.

Various assumptions have been made for the simulation model:

i) All links are fully duplex.

ii) Each link contains one channel only.

iii) Parallel links are not permitted

iv) Each node has buffer with finite storage and queues are

formed within the buffer area.

v) Queues are served on first come first serve basis.

vi) All data packets are of same length and update packets are

also of the same length.

vii) Poisson arrival of packets is taken at the nodes.

viii) Destination for each packet is generated from a uniform

disribution.

ix) Highest priority is given to update (routing) packets. Next

highest priority is given to packets already in the network

and then new packets arriving at a node from the terminals.

x) If the number of packets become more than the network can

handle they are dumped.

xi) A constraint is provided regarding maximum hops a packet

can take in the network to prevent indefinite looping.

3.4 SIMULATION TECHNIQUES

To obtain the throughput - delay characteristics of the

modified algorithm a discrete - event simulation mode~ has been

designed and developed. Before description of the discrete event

simulation model, expl~nation of certain keywords used are given

below :

a)

b)

c)

State

Event

Discrete
system

is the collection of variables necessary to

describe a system eg. the number of nodes in

the network, the queue lengths at various

links etc.

is instantaneous occurrance that may alter

the system state eg. arrival or departure of

a packet from a node.

is a system where the state changes at only

finite number of points in time.

d) Dynamic simulation
model is a representative of a system as it

evolves over time.

e) Stochastic simulation
model is a model that contains one or more random

variables.

Since, the network has a finite number of nodes, the

simulation model is required to keep many random variables and

hence is necessarily stochastic. The state of the network changes

only at a finite time, and it does so in a dynamic manner when

an event occurs, therefore a discrete-event simulation model has

been used.

The simulation is controlled by means of a simulation block.

There are two basic techniques to update time during simulation.

a} Next event time advance : here the clock is advanced to the

time of occurrance of the next event at which the system

stae changes; and the next time of occurrance of an event

resulting from the event being serviced is determined. The

process repeats until a prespecified condition is

satisfied. Periods of inactivity are thus skipped.

b) Fixed increment time advance : here simulation clock is

incremented in finite intervals' and any -occurra:nce of an

event in the interval is serviced.

For event scanning of a sequence of events, there are three

general approaches.

a) Event Scheduling Approcch

b) Process Interaction Method &

c) Activity Scaning Approach

Next event time advancing scheme has been used for the

simulation model developed as it minimises simulation time by

skipping periods of inactivity. In this approach events are

sched~d by maintaining a linked list of events to be performed

in increasing order of their instants of occurrance. The first

event in the list thus always being the next event to be

performed and any events arising out of it are scheduled by

placing them in the list at an appropriate position.

The above is in brief the discrete event .simulation model

developed. The details are discussed in section (3.5)

There are·two approaches to handle this type of simulation.

1) Language based approaches.

2) Model based approaches.

'"'2 c
... J .~

The language based approaches (eg. Simula, Simscript)

provide users with specialized programming language constructs

to support modelling and simulation. The key advantage of these

approaches is their generality of applications.

Model based approaches (eg. queueing network simulators)

provide users with extensive collection of tools supporting a

particular simulation modeling technique. The key advantage of

model based approaches is the efficiency with which they may

handle large scale simulations by utilizing model specific

techniques. The drawbacks of such a scheme are the narrower scope

of application of such models and of requiring users to develop

an indepth understanding of the modelling techniques.

M/M/ 1 queueing system was used a·s a queueing model for the

network nodes.

3.5 IMPLEMENTATION DETAILS

The network configuration, capacities of the links, packet

arrival rates at nodes, packet size and simulation period are

read from the keyboard or input file. It is then checked whether

the network is connected or not. If the network is not connected

the input data is read again.

-A-fter- --checking· the connectivity of the network, the

shortest path algorithm is used to find all shortest paths

between all pairs of nodes in the network.

Initially all nodes are waiting for the packets. First

arrival time for each node is generated randomly and the event

scheduled in the event list. Events are then fetched from the

event list and serviced conforming to next event time advance

scheme until simulation time is reached.

If a packet is generated at a node, the destination assigned

to packet is also randomly generated. The arrival and departure

of packets is carried out by the arrival and departures functions

developed.

3.6 SIMULATION RESULTS

The discrete event simulation model technique described in

the previous sec 3.4 was used to develop four simulation models

described in sec. 3.3.

The simulation models gave various statistics like link

utilizations, waiting time per queue average waiting time per

queue, average waiting time for all queues, mean delay, number

of packets generated and that delivered et al. as tabulated in

table 3.1

Througput and delay being the major performance measures

have been used for evaluation. They have been measured for

different arrival rates of packets at nodes.

The throughput and delay for several topologies was

examined, the results on an eight node mesh topology and a six

node fully connected network topology are given below.

(i) S!x node fully connected network

(ii) Eight node mesh network

TOPOLOGIES LJSED

FIG 3.01

fHE f\IETWURK CCJNF 1 hUI~IH I UN l S
Number of nodes : 6
NETWORK CONNECTI\.'JTY (ad_i;,,cE·ncy mc:~tri>:)

f:Jour-ce () ··-·

Source l -·~· : 1
Sour-ce r·,

..::. ·- ; 1
Sou,~cp - ; 1
Sotlr·cc·~ 4 --· ; l
~3ource 5 - : 1

.

.

.

.

.

()

00
00
(l(l

..
()(J

()(I

1.00

1.00
1 • 00
1.00
1. 00

.... ----~----- ----·-·. ------·--·····--·-···--·-------------------------

,, 4 ..::.

1 .00 1 (l(l L 00
J . (l() 1 .0(1 l .00

l .on l .00

1 • (l(J 1. • (H)

l .00 l "
(10

1 . 00 1 . 00 1 .ou

1.00
1..00
1.00
1. 00
1..00

···--· ·---· ----··----- ·-·---------------· ---- -------···--·-·--------··---- ···-··--··-·-·- -----------·-··-·-···-·

L l tH CAF'AC IT I ES AI~ E._

Source
Sour-ce
Sour··cE?
Sour·c:e
Sour·ce
~::=:ource

0
0 ·- '>
1 - > ~·0000. 00
2 ->50000.00
._:, ·- > 50000 . 00
LJ. -- > :'::10000 • 00
~.i ·- > :'::·0000. 00

j

~d)(l(l(J. 00

~10(100 • (:(i

~:iOOOU. 00
50000. or:•
:'·0000. 00

50000.00 50000.00
50000.00 50000.00

:~oooo. oo
:':'·0000. 00
50000.00 50000.00
50000.00 50000.00

Me;:;..n interar·ri-...:al ra.t.e (pkt./sec) .c;t. nodes:; ar-E·

0
10U.OO

1.
100.00 100.00

-··--------- ------

. .:_.·,

100.00
4

1.00,00

Packet Size is : 1008 bits/sec
Network Simulation time is :5 sees

OUTPUT STATISTICS

100.00

Total number of_ message pacf...:ets gener-ated : 3016

4
500r.)0. 00
50000.00
::iOOOO. 00
~·0000 . 00

50000.00

Average number of packets gen~rated : 603.2 packets/sec.

·:':.oo•.: •(J • (· (_'

'j(i(i<)•.). l~:-)

"_'r(l;)(l(i. oc
~r(l(H)(l • <>:;

Average number of packets rejected at source: 0.8 packets/sec
Average number of packets rejected in the network: 0.2 packets/sec
Average number of pack~ts delivered (THROUGHPUT) : 599.2 packets/sec
Total % of packets delivered :99.3369
Total %of packets rejected :0.165782

_Average number of hops taken per packet·;:1.0267
Average time spent by each packet delivered in the network

LINK ~3TATISTICS
Average packets delivered by each link in packets/sec

Sour-c:p
Sourer::?
Sou r-ef~
SourcE~

0
u -::
1 > 32.60

26.60 ~-~- -.:-

-~·
·-· ·· .. 33.80

Source 4 -~ 34.00
~:3C)UI-Cl7~; c:::• ·-·.> ::::,;) .. 6<)

-----------·--·--··-·-··-· ---
.1

40.00
::.1. 80
::.:~. 4()

DE:ST I f\U:rr I CJNS
.. :::

:?q. 4(i

4(; .. ~;(l

1 i.; .. t_,()

3~Z. 6Ci
::::.2.40

~. ·::. 4(l

4
28.00
::-.:::: .• 80

~s

~~::2 .. l)(J

~::2. l+(r

~~:. :!, • :20
3.tl. /-:,(\

Average ~ai t ing time per packet in QUEUE for

DESTINATIONS
0 1 2 3

Source 0 -> 0.00 0.00 0.00
Source 1 -> 0.00 0.00 0.00
Source 2 -> 0.00 0.00 0.00
Source 3 -.> 0.00 0.00 0.00
Source 4 -> 0.00 0.00 0.00 0.00
Source 5 -> 0.00 0.00 0.00 0.00

LINK UTILIZATION

DESTINATIONS
0 1 2 3

Source 0 -> 0.47 0.38 0.43
Source 1 -> 0.44 0.62 0.45
Source 2 -> 0.34 0.46 0.34
Source 3 -> 0.45 0.62 0.20
Source 4 -> 0.45 0.38 0.40 0.42
Source 5 -> 0.45 0.42 0.40 0.36

Average ~aiting time per Queue : 0.415296

COMPREHENSIVE OUTPUT STATISTICS

INPUT PARAMETERS

Number of nodes
Simulation Time
Packetsize is

6
5 sees
1008 bits

each link

4
0.00
0.00
0.00
0.00

0.00

4
0.34
0.41
0.42
0.46

0.39

--
OUTPU1 STATISTICS :
Total no. of message pkts generated
Total X of packets delivered
Total X of packets rejected
Average waiting time per Queue
Average number of hops taken I packet
Average no.of pkts dvd/sec (THROUGHPUT):

3016
99.3369
0.165782
0.415296
1.0267
599.2

PLEASE ENTER :
TO UPDATE : 1
TO RESTART : 2
TO EXIT ANY KEY EXCEPT 1 & 2
Enter

5
0.00
0.00
0.00
0.00
0.00

5
0.36
0.42
0.42
0.44
0.33

Since models 3 and 4 have the same cost metric and

differ in their routing algorithms only, comparision between

the performance measures of throughput and delay of the two

models refelectz on the differencie in performance of the two

routing algorithms.

Compariston$Jbetween the results of models 3 and 4

with 2, reflects on the affect of the cost metric.

Finally the comparison between models 1 and 2 is

done to identify the better performance model.

3.6.1 RESULTS OBTAINED USING A SIX NODE FULLY CONNECTED

NETWORK TOPOLOGY.

Throughput and delay compari~!on graphs with

respect to arrival rate have been shown for models 3 and 4

in fig 3.1(a) & (b) respectively. It is observed from fig.

3.1(a) that the throughput increases with increase in arrival

rate for both the models, however the throughput shown by

model 4 which has the modified algorithm is better than that

shown by model 3.

From fig 3.l(b) it is observed that the mean delay

rate and then later increases with increaze in arrival

decreases. The nature of the change in .delay with arrival

same: The high' delay

interval of 80 to 120

rate shown by bot~ the models is the

corresponding to the arrival rate

THROUGHPUT COMPARISON
t
h 1000
r
0
u

800 g
h
p·
u 600 t

p
a 400 c
k
e
t 200
s .
I
s '
e 0
c 0 20 40 60 80 100 120 140 160

arrival packets/sec

-Modified -t- Present

~!1odel 3 \Is tv1odel 4 F:g 3.1 (a)

DELAY COMPARISON

0.06 .----------------------.,

0.05 +
d
e
I

0.04 [a
.y

I 0.03
n

s 0.02
e
c

0. 0 1 :-

o~-~--~--~--~-~--~-~-~

0 20 40 60 80 100 120 140 160

arrival rate pkts/sec

---Modified --+-Present
.

~~odel 3 \ls tv~odel 4 Fig 3.1 (b)

~s I

pkts/sec and the decrease in delay beyond the arrival rate of

100 pkts/sec may be due to the random generation pattern of

packets which may have led to high traffic on a particular

link used by several routes in that interval. However the

delay shown by the modified routing al~orithm is found to be

less than that of the presently running algorithm on ARPANET.

This indicates that the modified routing algorithm

gives better performance than the presently running

alogorithm.

The throughput and delay comparisions of model 1
.

replicating ARPANET and model 2 having the modified routing

algorithm and cost function is shown in figs 3.l(c) & (d)

respectively.

The throughput as observed from fig.3.1(c)

increases with increase in arrival rate for both the models .
•

However at high traffic beyond 80 packets/sec, the

throughput of model 2 is much higher than that of model 1

which approaches congestion as arrival rate is increased to

140 packets/sec.

The delay comparision of the two models shown in

fig 3.1(d), shows that the delay increases with increase in

arrival rate. The delay being slightly higher for the

modifi~d algorithm at low traffic than the presently running

algorithm, however at high traffic the delay of the modified

t
h
r

u
g
h
p
u
t

THROU<3HPLJT COMPARIISON

1000 ---

800 -

600

400

200

(I ,_.

__ _L_

40 80 100

art·i \/ELl pkt./ s(sc

------ PrE?.:S en t --1- ~v1 o di fi. ed

F .. •--.:(1 (l IQ ; ... ~'· C)

.+
/

..J..

140

DELAY COMPARISON

(..06 ,.------------------------,

'0.05

d
e 0.04
I
a
y 0.03 •

8
e

0.02 c
8

0.01

o~-~----~-~---~-~---~----~--~

0 20 40 60 80 100 120 140 160

arrival rate pkts/sec

---Present -+- t\~odi fied

tvlodel 1 'Js ~lode! 2 Fig 3.1 (d)

algorithm is much less than that of presently running

algorithm.

The above comparisons indicate that model 2 gives

better performance of all the models .

3.6.2 RESULTS OBTAINED USING AN EIGHT NODE MESH NETWORK

The throughput and delay comparison graphs of

models 3 and 4 are shown in fig 3.2(a) & (b). The throughput

as observed from fig.3.2(a) is found to increase with arrival

rate for both the models. At high traffic it is found to be

nearly the same for both the models, but at low traffic model

4 shows better performance (higher throughput) than model 3.

The delay comparision.shown in fig. 3.2(b) for

models 3 and 4 shows almost ~imilar results, however model 4

shows better results (less delay) at low traffic than model 3

The throughput for models 1 and 2 is found to

increase with arrival rate as noticed from fig 3.2(c) with

model 2 showing better results (higher throughput) at low

traffic.

The delay as observed from fig.3.2(d) is found to

increase with arrival rate for both models. Model 2 however

shows better performance, significantly at lower traffic.

It is thus observed that model 2 with the proposed
•·.··• '•k··

cost function and modified routing algorithm gives the best

results of the four models compared .

THROUGHPUT COMPARISON

500~--------------------------------------~
t
h
r
0 400
u
g
h
p 300
u
t

p
k
t
s
I
s
e
c

200

100

0

t
I

~·
0 20

~',ilodel 3 \Js rv~odel 4

40 60 80 100 120
arrival rate pkts/sec

-PRESENT -t- t\~ODIFIED

:-ig 3.2 (a)

140 160

LO

DELAY COMPARISON

0.16

0.14

d 0.12
e
I 0. 1·
a
y 0.08

s
e 0.06
c
s 0.04

0.02

0
0 20 40 60 80 100 120 140

a r· r i val rate p k t sIs e c

--PRESENT --+-MODIFIED

t\~odel :3 Vs ~!1odel 4 Fig 3.2 (b)

·t
h
r
0 400
u
g
h
p 300
u
t

p 200
. k

t
s
1 100
s
e

THROUGHPUT COMPARISON

c
o~--~----~--~----~--~----~--~----~

0 20 40 60 80 100 120 140

arrival rate pkts/sec

--PRESENT --+-MODIFIED

~ .. ~odel 1 Vs ~~1odel 2 Fi·;J 3. 2 (c)
l)

1--

d
e
I
a
y

n

s
e
c
8

0.16

0.14

0.12

0. 1·

0.08

0.06

0.04

0.02

0
0 20

~,/1 ode I 1 \1 s rv1 ode I 2

DELAY COMPARISON

40 60 80 100 120

arrival rate in pkts/sec
'

-- PRESEi~T -+- tvlODIFIED

Fig 3.2 (d)

_,) 0
!~ .

'lr
.~

Model No. Cost Metric Routing Algorithm Performance

1. Time Delay Shortest Path First

2. Max. 0. ·* No. q
of Hops Modified Algorithm Best Performance

3. Sum of Link Utilizations Shortest Path First Better than 1

but less than 2

4 . Sum of Link.Utilizations Modified Algorithm Better than 3

but less than 2

RELATIVE PERFORMANCE

Table 3.2

CHAPTKR-IV

CONCLUSION

Rapid advance~ in the field .of &lectronics and

communication has made high speed data transmission possible.

Computer Networks have kept pace with these advancements.

Consequently the traffic carried by them ha5 increased

significant!)•. A major criterion for evaluation of the

performance of a computer network is its traffic carrying

capability (throughput) and the mean delay ~ncurred by a

packet to reach from a source to a destination. Routing plays

a pivtol· role in improvin~ the~e performance measures.

In this desertation an attempt has been made to

improve. these performance measures for ARPANET by using a

cost function based on link utilization and a modified

routing algorithm has been proposed.

The routing strategy suggested differs from the·

presently running algorithm on ARPANET in

* the routing algorithm

* on the basis for cost metric and

* the cost function

Since the evaluation of the performance of an

adaptive routing algorithm is a complex task, simulation is

S5

relied on exclusively. Four simulation models with different

combinations of cost function and routing algorithms were

developed.

It was observed that the proposed cost function

and modified routing algorithm gave much better performance

than the presently running algorithm on ARPANET. The

difference in performance was observed to be more prominent

network in the case of a six node fully connected

than an eight mode mesh topology.

3.6)tabulates the performance of

Table

the four

comprehensively.

topology

3.2 (sec

models

The improvement in performance can be attributed

to the better correlation between routing and congestion.

This is important because routing affects congestion as it

decides which resourc~s will be used to transport messages. A

lack of co-ordination between the two can easily lead to the

selection of a congested route. such an action if. cumulative

could lead to deterioration in system performance

considerably. This has been overcome by using a cost function

based on utilization.

On the basis of the study carried out and results

obtained it is noticed that the proposed cost function and

the modified routing al~orithm ~ugge~ted if used on ARPANET

should yield better performance.

4.1 SCOPE FOR FURTHER INVESTIGATION :

The work can be extended further to the

1.. Study of the performance of the modified

routing algorithurn on a network with higher number of nodes

and different topologie~.

2.Study of the affect of congestionon on the

modified routing algorithm suggested.

3.Study of the performance of the suggested

algorithm with variation in update methodologies.

APPENDIX- I

BIBLIOGRAPHY

1. DIMITRI BETSEKAS- & ROBERT GALLAGER, DATA NETWORKS,

Prentice hall, second edition, pp. 363-403.

2 . E. C. ROSEN "THE UPDATING PROTOCOL OF ARPANET ROUTING

ALGORITHM". Computer Networks 4, 1980, pp. 11-19.

3. ANDREW S. TANENBAUM & WISKUNDIG SEMINARIUM "NETWORK

PROTOCOLS", Computing Survey Dec. 1981, pp. 191-196.

4. INDER M. SOI and KRISHAN K. AGGARWAL, "A REVIEW OF COMPUTER

COMMUNICATION NETWORK CLASSIFICATION SCHEMES," IEEE

Communications, March 1981, pp. 16-23.

5. MISCHA SCHWARTZ and THOMAS E. STERN, "ROUTING PROTOCOLS,"

pp. 327-343.

6. PARVIZ KERMANI and LEONARD KLEINROCK, "VIRTUAL-CUT-

THROUGH: A NEW COMPUTER COMMUNICATION SWITCHING TECHNIQUE"

Computer Networks 3, 1979.

7. LAWRENCE,_G. ROBERTS, "THE EVOLUTION OF PACKET SWITCHING,"

IEEE, 1978.

8. ROBERT E. KAHN and WILLIAM R. CROWTHER, "FLOW-CONTROL IN

RESOURCE SHARING COMPUTER NETWORK," IEEE 1971, pp. 539-546

9. JOHN Me. QUILLAN, GILBERT FALM & IRA RICHER, "A REVIEW OF

THE DEVELOPMENT AND PERFORMANCE OF ARPANET ROUTING

ALGORITHM," IEEE 1978, pp. 1802-1811.

10. JOHN. M. QUILLAN, IRA RICHER & ERIC. C. ROSEN, "THE NEW

ROUTING ALGORITHM FOR THE ARPANET, 11 IEEE On Communications,

May 1980, pp. 711-719.

11. RICHERS BARNETT & SALLY M. SMITH. PACKET -SWITCHED

NETWORKS, Sigma Press, pp. 2-41.

~q
<._) • _J

12. ED. SHOEMAKER, COMPUTER NETWORKS & SIMULATION I & II.

13. TANENBAUM, COMPUTER NETWORKS.

14. WILSHOW CHOU, "COMPUTER COMMUNICATI0N NETWORKS : THE PARTS

MAKE UP THE WHOLE," Proc. AFIPS Nat Computers Conference,

May 1975.

· 15. D.W. GLAZER & C. TROPPER, "A NEW METRIC FOR DYNAMIC ROUTING

ALGORITHM," IEEE Trans Communications; March 1990.

16. M. GERLA, "DETERMINISTIC AND ADAPTIVE ROUTING POLICIES IN

PACKET SWITCHED COMPUTER NETWORK," IEEE Data communication

system, November 1973.

17. FRANCIS NEELAMKAVIL, COMPUTER SIMULATION & MODELLING, John

Willey & Sons, 1987.

APPENDIX- ll

/* DEF.H *I

I* DECLARATIOtiS *I
!*---*/

/*FILES TO BE INCLUDED *I

~include <stdio.h>

~include <math.h>

1*---*l

I* GLOBAL ARRAYS */

EXTERN float link[20][20];

EXTERN int destination[20][20];/** routing table**/

EXTERN int precede[20][20]; ·/** do **I
EXTERN int ccost[20][20]; I* indicates change in cost*/

. EXTERN int cpktrd[20][20][20];/* control pkt received num. *I
.EXTERN float capacity[20][20];/* of links in bits/sec *I
EXTERN float lambda[20]; I* mean inter arrival rate *

EXTERN float cost[20][20]; /*cost of transmission on link*/

EXTERN float distance[20][20];/*distance of node from root node*/

EXTERN float ncost[20](20]; I* the changed cost calculated *I

EXTERN float delta[20][20]; /*change in time delay permissible*/

l*---*1

I* STRUCTURE DEFINITIONS */ ·.

EXTERN struct packet {

struct

float

float

int

int

int

int

int

int

int

packet *next;/*pointer to form link list*/

pkgntm;/*packet generation time *I
inttm;/*intermediate time for arrival*/

~ourcend;/* source node*/

dest;/*final destination node *I

intsnd;/* intermediate source node */

intdnd;/*intermediate destination node *I
cpktnu;/* control pkt num. *I
inorexorc;/*lnternal=l,node =3,ext=O,cont=2*/

nhps;/* number of hops *I

} *linkqueue[20][20][5] ;/*link queues *I

EXTERN struct {

int linkbusy;/*busy =l,else =0*/

float pktdvd;/*no. of pkt~ delivered on link */

int f,r;/*front & rear pointers for linkqueue*/

float linkcmpt;/* expected time for link to get free */

float trf;/*traffic in stipulated interval *I

float tottrf;/*total traffic on link */

float delay; /* the time delay per link *I

float intpktdvd; /* no. of pkts generated in cpgint */

float wttim;/*waiting time*/

struct packet *cpkt;/*pointer to control packet link list */

}llst20;

EXTERN struct nslist {

int father;

int son ;

float dist;

struct strshp *next

} .
EXTERN struct {

float maxul;

float cost;

int nhps;

} dist[20][20]

l*---*1

/*GLOBAL VARIABLES*/

EXTERN int nonds;/* number of nodes *I

EXTERN float mainclock;

EXTERN flollt ~ktsize;/*variable packet size in

EXTERN float cpktsize . I* control pkt s:ize *I

EXTERN float mgsreJected;/* number of external

EXTERN flont imgsrejected;/*number of internal

bits*/

m.gs rejected *I
rngs reJected *I

EXTERN float rngsdvd;/*number of mg!3 delivered *I
EXTERN float cmgdvd;/*no. of control mgs delivered

I~XTI..:HN floot rng~gen; /*number of mg!3 generated *I
EXTERN int routal;l*routing algorithm number *I I

EXTERN float simtim;/*simulation time *I
EXTERN float timnk;/*time !3pen1; by pkt!3 delivered

EXTE_RN .float cpgint ;/*control pkt gen interval *I
EXTERN float cpkgtim ;/* control pkt gen time *I
EXTERN float updtim ;/*update time after cpkt gen

EXTERN !3truct packet *li!3t;/*pointer to event li!3t

EXTERN int tnhp!3 ;/* total no. of hop!3 *I
EXTERN int cpktnum ;/* control pkt num. */

EXTERN float genrand();

*I

in network *I

*I
*I

l*---~---------*1

I* GLOBAL CONSTANTS */

ttdefine MAXNODE 20

ttdefine QUEUES 5

#define TRUE I 1

ttdefine FALSE '0
I

ttdefine PKTSZ ,80

ttdefine NUL 0

ttdefine INFINITY 999

ttdefine MEMBER 1

ttdefine NONMEMBER 0

#define new(p)p=(struct packet*) malloc(!3izeof(!3truct packet))

#define aloc(p) p=(struct nslist *) malloc(sizeof(struct nslist))

l*------------~--*1

1*---- - -- --~

/*MODIFIED ROUTING ALGORITHM*/

I* - ------ -- ---~

Udefine EXTERN extern

Hinclude"def.h"

I** To find the maximum of two given floating point numbers **/

float max(a,b)

float a,b;

{

}

float c;

c = { b>a) ? b : a

return(c);

l*---~1

I*** If t~o paths are of equal cost --- used in reroutel **

int equal{l,i,j)

!+--

int l,i,j;

{

float u;

u = max(dist(l](i].maxul , co~t(i][j]);

if u*(dist[l][i].nhp~ + 1) == dist[l](j].cost)

if u) 0.8)

{

}

if (di~t[l)[i].maxul > dist[l)(j].maxul)

return (0) ;

else return(l);

else {

if ((di~t[l)[i].nhp~ + 1) > di~t[l](j].nhp~)

return(0);

else return(l);

}

else return(O);

------------- ------- ----------*1

I* Shortest path algorithm modified for uil*nhps model *I
int allmem(x)

int x[l;

{

in t i = -1;

do {

l

i=i~l;} while(i<nond~ && (x[i] == 1));

if (i < (nonds -1)) return(FALSE);

else return(TRUE);

void shpdijk(s)

int s;

{

int current,i,k;

int perm[20) ;

•

float dc,smalldist,newdist;

I* Initialization *I
for(i=O; i<20; i++){

perm[i] = NONMEMBER ;

dist[s)[i].maxul = 0

dist[s][i].cost = INFINITY

dist[s)[i).nhps = 0

precede[s)(i]= -1;

}/* end for *I

perm[s] = MEMBER;

dist[s](s].cost = 0;

current = s;

while (allmem(perm) == FALSE)

{

smalldist = INFINITY

de= dist[s)[current].cost;

~51

for(i=O;i< nonds ; 1++)

if { perm(i] == NONMEMBER

{ newdist = max{dist[s][currentl.maxul ,

cost(curre~t][i])*(dist[s][current].nhps);

if (newdi~t < di~t(~](i].cost)

{

I* distance from s to i through current is smaller than

dist[s][i].cost *I
dist[s)[i).cost = newdist;

dist[s](i].maxul= max{dist[s][current].maxul ,

cost[current][i]);

dist[s][i].nhps = dist[s][current].nhps + 1 ;

precede[s)[i] = current;

} /* end if */
I* determine the smallest distance *I

if (dist[s)[i].co~t < smalldist)

{

smalldist = dist[s][i].cost ;

k = i;
} /* end if */

} I* end for --- if *I

current = k;

perm[current) = MEMBER

} /* end while *I
return;

}

I* Precede matrix is now ·used to generate the routing table at node

I* void destb()

{

int i,s,dl,d2;

for(s=C;s<nonds;s++)

}

for(i=O ; i < nonds i++)

if(i!= s)

d2 = precede(s][il;

if d2 == s) destination[s)[i] = i

else {while(d2 != s)

{

dl = d2

d2 = precede[s][dl]

}

destination[s][i] = dl

}

return;

}*/

l*---~1

I* reroute() used to update the minimum spanning tree- shortest ~e~

first algorithm *I

void reroute2()

{

struct nslist *npl , *np2 , *np3 ,*np4

float delta,del;

int i,j,k,l,m,current,n,o,flag,flagl;

int subtree[20);

struct nslist* a~dnpl();

for(i = 0 ; i < nonds ; i++)

for (j =0 ; j< nonds ; j++)

if ((ccost[i)(j) == 1) && (i !=J))

{

del = ncost[i][j) - cost[i)[j]

cost[i][j] = ncost(i](j];

ccost[i](j] = -1;

for(l = 0 ; 1 < nonds ; 1++)

f
npl = N!JL ;

if (precede [l][j) i)

delta = del

else

{ delta = distance(l][i] + cost[i)[j] - distance[l][j];

if (delta >= n) continuo

else if (precede[l](i) != j)

precede[l)(j) = i ;

el~e continue ;

}

dist[l][j].maxul = max(dist(l)[i].maxul • cost[i][j]);

dist[l)[j].cost = dist(l][j].maxul*(dist[l][i].nhps + 1);

dist[l][j].nhps = dist(l](i].nhps + 1 ;

for(m = 0 ; m < 20; m++)

subtree(m] = -1 ;

k= 0 ;

for(m=O;m<nonds;mt+)

if(precede[l](m] == j)

{ subtree[k] = m ;

}

dist[l)[m].maxul = max(dist[l][j].maxul , cost[j][m]);

dist[l][m].nhps = di~t(l][j].nhps + 1 ;

dist[l][m).cost = dist[l)[m].maxul * dist[l][m].nhps ;

k++ ;

current = 0 ;

while (current < k)

{ for (m=O; m < nonds;m++)

if (precede[l)(m] == subtree[current]}

{ flag =1;

for(n =0 ; n < k ;n++)

if (subtree[n) m) flag =0;

if(flag == 1)

{ subtree(k] = m;

dist[l](m].maxul =
max(dist[l)[subtree[current]].maxul , cost[subtree[current)[m])

dist[l][m].nhps = dist[l][subtree[current]).nhps + 1

dist[l][rn].cost = dist(l][rn].maxul- * dtst[l][rn].nhps

k+-+;

}

}

current+-+;

} I* end while *I

if (delta > 0)

for(m=O; m<k m++)

for(n=O ; n < nonds ; n++)

if(link[n][subtree(~JJ > 0)

if((max(dist[l](n].maxul ;

cost[n][subtree[m]))*(dist[l][n].nhps + 1)) <

I* n should not be in the subtree *I
{flag.= 0 ;

for(o = 0 ; o < k o ++)

if (subtree[o] == n) flag= 1;

~f flag == 0)

{ aloc(np2);

np2->father = n ;

np2->son = subtree[m]

dist[l][subtree[m]).cost

np2->dist =(max(dist[l][n].mqxul , cost[n][subtree[m]])

}

}

np2->next = NUL;

np1=addnpl(npl,np2);

if (delta < 0)

for(m=O; m<k ; m++)

for(n=O ; n < nonds ; n++)

if(link[subtree[m]][n] >0)

*(dist[l][n].nhps + 1);

if (max(dist[l][subtree(m]].maxul , cost(subtree[m]][n])*

(dist[l][subtree[m)].nhps + l)<dist[l][m].cost)

I* n should n9t be in the subtree *I

{

}

flag = 0

for(o = 0 ; o < k o ++)

if subtree[o] == n) flag = 1;

if (flag == 0)

{ aloc(np2);

np2-~father = subtree[m];

np2->son = n ;

np2->dist = (m~x(dist[l)[subtree[m]].maxul

,cost[~ubtree[m)][n])*(dist[l][subtree[m]].nhps + 1)

np2->next = NUL;
npl=addnpl(npl,np2);

}

while (npl != NUL)
{ np2 =npl;

npl = npl->next;

np2->next = NUL ;

7D

if ((dist[l][np2~>son].cost < np2->dist)! !(np2->son == 1)!:

(precede[l](np2->father] == np2->son))

free((char *)np2);

else {

precede[l][np2->son] = np2->father;

dist[l][np2->son].cost = np2->dist;

dist[l][np2->sonl.maxul= max(dist[l](np2->father].maxul ,

cost(np2->father](np2->son])

dist[l](np2->son].nhps = di~t[l)[np2->father].nhps + 1 ;

I* Check whether any neighbours of this node added can be

rerouted. If the neighbour is already present in the shortest

path tree checking *I

for(m=O;m<nonds;m++)

if (link(np2->son][m] >0)

{ np3 = np4=npl ;

while ((np3 != NUL) && (np3->son)= m))

{

(l

np4 = np3;

np3 = np3->next;

}

if(np3 == NUL)

{ if (max(dist(l](np2->son].maxul , cost[np2->son][m])*

{

(dist(l](np2->son].nhps + 1) < dist[l][m].cost)

aloc(np3);

np3->son = m ;

np3->father = np2->~on

np3->dist =(max(dist(l)(np2->son].maxul , cost(np2->son][m)}*"

}

}

}

np3-)next = NUL ;

npl=addnpl(npl,np3);

}

(dist[l](np2->son].nhps + 1);

else {

if (max(dist[l](np2->~on].maxul • cost(np2->son][m])*

(dist(l](np2->son].nhps + 1) < dist(l][m].cost)

{ if (npl == np3) npl=npl->next;

np4->next = np3->next ;

np3->father = np2->son

}

}

}

np3->di~t= np2->dist + cost(np2->son][m];

np3->next = NUL;

npl=addnpl(npl,np3);

}

free((char *)np2);

}/*end ~hile (npl!=NUL)*/

72.

1*---*l
I* Present Arpanet Algo *I

l*---*1

UdefineEXTERNextern

tfinclude "def. h"

.1----~---------------------------------~----------------------*l

I* reroute() U3ed to update the minimum ~panning tree - shortest

path first algorithm *I

void reroute()

{

struct nslist *npl , *np2 , *np3 ,*np4

- float delta,del;

int i,j,k,l,m,current,n,o,flag,flagl;

int subtree[20];

struct nslist* addnpl();

for(i = 0 ; i < nonds i++)

for (j =0 ; j< nonds j++)

if ((cco~t[i][j] == 1) && (i I=J))

{

del = ncost[i][j) - co3t[i)[j]

cost(i][j) = ncost[i)[j];

ccost[i)[j] = -1;

for(l = 0 ; 1 < nonds ; l++)

{

npl= NUL ;

·if (precede (l)[j] == i)

else

{ delta = del

di3tance(l][j] += delta

}

{ delta = di~tance(l](i] + co~t(i](j) - di~tance(l][j];

if (delta >= 0) continue

el~e if (precede[l](i] != J) {

precede[l)[j] = i ;

distance[l][j] = distance[l)[i] + cost[i)[j]

}

else continue

for(m = 0 ; m < 20; m++)

subtree[m] = -1 ;

k= 0 ;

for(m=O;m<nonds;m++)

if(precede(l](m] == j)

{ subtree(k] = m ;

k++ ;

}

current = 0

while (current < k)

{ for (m=O; m < nonds;m++)

if (precede[l][m] == subtree[current])

{ flag =1;

for(n =0 ; n < k ;n++)

if (subtree(n] m) flag =0;

if(flag == 1)

{ subtree(k] = m;

k++;

}

}

current++;

} /* end while */

for(m = 0 ; m < k ;m++)

distance[l][subtree[m]] += delta;

if (delta > 0

for(m=O; m<k m++)

for(n=O ; n < nonds ; "n++)

if(link[n][subtree[m]] > 0)

if ((distance[l][n] + cost[n][subtree[m)]) <

73 I

distance[l][subtree[m)])

I* n should not be in the subtree *I

{ flag = 0 ; /*Vexis.c*/

/*Vexi5.c*/

for(o = 0 ; o < k o ++)

if 5ubtree(o] == n) flag = 1;

if (flag == 0)

{ aloc(np2);

np2->father-= n ;

· np2-)son = subtree(m]

np2->dist = distance[l](n] + cost[n](subtree[m]]

np2->next = NUL;
np1=addnpl(npl,np2);,

}

}

if (delta < 0)

for(rn=O; rn<k ; rn++)

for(n=O ; n < nonds ; n++}

if(link(subtree[rn]](n] >0 }

if ((distance(l][5ubtree[m]] + costfsubtree(rn]][n]} <

I* n should not be in the subtree */

{

flag = 0

for(o = 0 ; o < k o ++)

if (subtree(o] == n } flag = 1;

if (flag == 0)

{ aloc(np2);

np2->father = subtree[rn];

np2->::wn ::: n ;

distance(l][n])

np2->dist = distance[l)[subtree[rn]] + cost[subtree[rn])[n]

np2->next = NUL;
npl=addnpl(npl,np2);

}

}

while (npl != NUL)
{ np2 ::::npl;

npl = npl->next;

np2->next = NUL ;

if ((distance(l][np2->son] < np2->dist >: :Cnp2->son --

1): :Cprecede[l][np2->father] == np2->son})

·free((char *)np2);

else {

precede[l][np2->son] = np2->father;

distance[l)[np2->son] = np2->dist;

75

I* Check whether any neighbours of this node added can be

rerouted. If the neighbour is already present in the shortest

path tree checking *I

for(rn=O;rn<nonds;rn++)

if (link[np2->son][rn] >0)

{ np3 = np4=npl
'

while ((np3 ,_
NUL) .- && (np3->son != rn))

{

np4 = np3;

np3 = np3->next;

}

if(np3 == NUL)

{ if {(distance[l][np2->son] + cost[np2->son][rn])

{

}

}

else {

aloc(np3);

np3->son = m ;

np3->father = np2->son

< distance[l][rn])

np3->dist = np2->dist + cost[np2->son][rn];

np3->next = NUL ;

npl=addnpl(npl,np3};

if ((np2->dist + cost[np2->son][rn]) < np3->dist}

{ if(npl == np3} npl = npl ->next;

np4->next = np3->next

np3->father = np2->son ;

}

}

}

}

np3->dist= np2->dist + co3t[np2->son][m];

np3->next = NUL;

npl=addnpl(npl,np3);

}

free((char *)np2);

}/* end while (npl!=NUL)*/

}

/*Vexi5.c*/

I* addnpl() add5 the node in the list with starting pointer npl

in the increasing order of their distances */

5truct n5li5t* addnp~(npl,np2)

struct nsli5t *npl,*np2 ;

. {

5truct n3li5t *np3,*np4;

if(npl == NUL) npl = np2;

el3e {

np3 = npl;

if (npl->di3t >= np2->dist)

(np2->next = npl;

npl = np2

}

el5e {

while ((np3->dist < np2->dist) && (np3!= NUL))

{

}

np4=np3;

np3 = np3->next;

if(np3 NUL){

np2->next = NUL

np4->next = np2

}

}

np2->next=np3;

np4->next=np2;

}

np2 = NUL

np3 = NUL

}

return(npl);

/*Vexis.c*/

} /*Vexis.c*/

ll

l*---*1

78 ..

l*---*1
I* MAIN SIMULATION MODULE *I
1*--------------------------------~------~------------~-------*l

tfdefineEXTERN

tfinclude "def.h"

I* Initialisation of various data structures and costants used *I
I* for restarting the entire 3imulation .*I

void initialise()

{

}

void varinit();

int i,j;

for (1=0;1<20 ;i++)

for (J=O;j<20;j++)

{

link[i](JJ = -1;

capacity(i][j] = 0.0;

lambda(j] = 0.0;

}

nond3 = 0;

pktsize = 0;

routal = 0;

3imtim = 0.0;

cpgint = 0.0;

varini t();

I* Initiali3ing variable3 not data read *I
void varinit ()

{

int k,l,rn;

3truct packet *nptr,*ndp;

for (k=O;k<20;k++}

for(l=O;l<20;1++ }

(

ll3t[k)[l).linkbu3Y = 0;

.....

llst(k][l].linkcmpt = 0.0;

llst[k)[ll.tottrf=O.O;

llst(k][ll.trf=O.O;

llst[k)[l].pktdvd=O;

llst(k][l].wttim=O.O;

llst[k][l].f=O;

llst[k](ll.r=O;

llst(k][l].delay = 0.0

llst(k][l].intpktdvd = 0.0;

ncost[k](1] = 999.0;

del ta(k][1] = 999.0;

cost(k][l] = 999.0;

ccost[k](l] = 0 .
J

destination[k](l] = 0

precede[k][1] = -1;

nptr = llst[k)[l).cpkt;

llst[k](l].cpkt=NUL;

while (nptr != NUL)

{

ndp = nptr;

nptr = nptr->next;

free((char *)ndp);

}

for (rn= 0 ;rn<20;m++)

cpktrd[k](l][rn] = -1

for (m=O;rn<5;rn++)

{

nptr=linkqueue[k)[l][m];

linkqueue[k][l][m]=NUL;

while(nptr!=NUL)

{ ndp=nptr;

nptr=nptr->next;

free((char *)ndp);

}

71

}

i£ (li!3t == NUL)

{new(list);

li~t->nr;xt=NUL;

list->inorexorc = 0;

list->inttm=9999.0;

}

else {

while.(list->next J= NUL)

{

}

}

nptr=list;

list=list->next;

free((char *)nptr);

I** Initialising Global Variables **I

}

mainclock =0.0;

mgsrejected =0;

imgsrejected =0;

mgsdvd=O;

cmgdvd=O;

cpkgtim = 0.0

cpktnum = 0 ;

mgsgen=O;

timnk=O.O;

tnhps=O;

l*---------------------~---~----------------------------------*1

I* Reads input : Network config , Link Capacities and *I
void readinput()

{ int k,l,flag;

while ((nonds == O)~:(nonds >20))

{ printf(- Enter the number of nodes in the Network.");

}

}

}

8!

printf(- (Max. no. of permi~~ible nodes iB %d)'',MAXNODE);
printf(- Enter :-);

scanf(-%d",&nonds);}

for (k=O; k<nonds;k++)

{ for (1=0 ; l < nond~ ;l++ }

{if (k == l)

{

}

link[k)[l) = 0;

capacity(k][l] = 0

else if(k>l)

{ ~ink[k)[l] = link[l](k];

capacity[k)(l] = capacity[l][k];

}

else {

if (link(k](l]== 1 l ll~nk[k][l]==O) flag =TRUE

else flag = FALSE;
while(!flag)

{ printf(" Enter 1 if link %d %dis pre~ent else 0 :",k,l);

scanf("%f",&link[k][l]);

if(link[k][l]==l :: link(k)[l]==O) flag =TRUE;

}

while (link[k](l] == 1 && capacity [k][l]<=O)

{

printf(" Enter the capacity of links in bits/sec (>0) ");

scanf("%f",&capacity[k)[l]);

}

for(k = 0

{

k < nonds; k++)

printf(" Enter the mean interarrival rate (pkt/~ec) lambda at

vrintf(" Enter lambda for node %d

scanf("%f-,&lambda[k));

}

each node .");

... k);

printf(" Enter packet size (in bits) : ");

/*packetsize in bits if capacity of channel is in bits/sec *
scanf("%f",&pktsize);

/*Reading the simulation period & updating interval *I

82

printf(" Entet· the period for which simulation is to be carried

out in sees: ");

scanf("%f" ,&simtim);

printf(" Enter the UPDATING INTERVAL in sees ");

scanf ("%f". &cpgint);

}

l*--*1

I* To check whether the given network configuration is connected

or not *I
int connectedornot()

{

int f,j,i,l=O,k= -l,flag=O;

int fvt[20],svt[20];

for(i=O

{

i< 20 ;i++)

fvt[i] = 0

svt[i] = 0

}

i = 0;

for(J=l;J<nonds;j++)

if (link[i](j]==l)

{

}

fvt[j]=l;

k++;

svt[k]=j;

f=l;

if (f==l) fvt[O]=l;

while (l<=k)

{

i=!3Vt[l];

1++;

for(j=O;j<nonds;j++)

if((link[i][jJ==l)&&(fvt[j]!=l))

{fvt[j)=l;

k++;

svt[k]=j;

}

}

for(i=O;i<nonds;i++)

{

}

if(fvt[i] != 1)

{

}

printf(" Network i~ not. connected .");

flag=!;

break;

return (flag);

}

I* In the main prg if flag =1 read network config again */

l*--*1

)
83.

I* Random number generation in an interval [0,1] , rand() gives a

random number normalised in the interval 0,1 *I

float genrand ()

{

float x;

do{ x=(float) rand()l32767.0

}while(x== ().0);

return (x) ;

)

1*---------------·---*l

I

I* Inserts packets in event list *I

I* Insert function including the cpkt gen and updating nodes in

event list *I

void loopl(nptr,nrf.nrfl)

struct packet *nptr,*nrf,*nrfl;

{ void inst (nptr,nrf,nrfl);

nrfl= nrf;

}

nrf= nrf->next;

inst(nptr,nrf,nrfl);

return;

void loop2(nptr,nrf,nrfl)

3truct packet *nptr, *nrf , *nrfl;

{

nptr->n~xt = nrf;

nrfl->next = nptr;

return;

}

void inst(nptr.nrf,nrfl)

3truct packet *nptr,*nrf,*nrfl;

{

if (nrf->inttm > nptr->inttm :: nrf->next

{ nptr->next - nrf;

nrfl->next = nptr;

return;

}

else if (nrf->inttm == nptr->inttm)

switch (nptr->inorexorc)

{

case 5

case 4

loop2(nptr,nrf,nrfl);

return;

if(nrf->inorexorc < 4)

{

NUL)

case 3

case 2

case 1

}

}

loop2(nptr,nrf,nrfl);

return;

}

else {

loopl(nptr,nrf,nrfl);

return;

}

loopl(nptr,nrf,nrfl);

return;

if (nrf->inorexorc > 3 : :

nrf->inorexorc== 2)

{ loopl(nptr,nrf,nrfl);

return;

}

else loop2(nptr,nrf,nrfl);

return;

if (nrf->inorexorc != 3)

{ loopl(nptr,nrf,nrfl);

return;

}

el~e loop2(nptr,nrf,nrfl);

return;

void insert(nptr)

{

struct packet *nptr;

struct packet *nrf,*nrfl

nrf=nrfl=list;

if(nrf->inttm > nptr ->inttm)

(list = nptr;

nptr->next = nrf;

return;

}

while ((nrf->next != NUL) && (nrf->inttm < nptr->inttm))

85

{

}

nrfl = nrf ;

nrf - nrf->next

}

inst(nptr,nrf,nrfl);

return;

8G

l*---*1

/**Initial generation of event li~t **/

void genevlst()

{ ~truct packet *nptr;

int i;

float ft;

for(i=O;i<nonds;i++)

{ new(nptr);

nptr->sourcend = i;
nptr->inorexorc = 3

}

nptr->inttm = - 1.0/lambda(i])*(float)log(genrand());

insert(nptr);

nptr=NUL;

I* Finding the last time assigned to the event in list */

nptr = li~t;
do { ft = nptr->inttm;

nptr = nptr-> next;

}while (nptr->next !=NUL);

I* generating cpkt gen and update nodes *I

new (nptr);

nptr->inorexorc = 4 ;

nptr->inttm = ft + cpgint

insert(nptr);

new(nptr);

nptr->inorexorc = 5 ;

nptr->inttm = ft + cpgint + updtim;

i nscrt (nptr) ;

nptr = NUL ;

return;

}

/~---*1

I* To get next event to be performed *I

~truct packet *getevent()

{

~truct packet *nptr, *ndp;

int de~tin;

ndp=li~t;

if(list->next==NUL)

{ printf(" No event in li.~t . ··);

return (NUL) ;

}

el~e

{ li~t =li~t->next;

ndp->next =NUL;

if (ndp->inorexorc != 3)

return(ndp);

el~e {

mgsgen++;

new (nptr);

nptr->next = NUL ;

nptr->pkgntm = ndp->inttm;

nptr->inorexorc=O;

nptr->nhps =0;

nptr->sourcend=ndp->sourcend;

nptr->intsnd=ndp->sourcend;

nptr->inttm =ndp->inttm;

do {

destin=(int)(genrand()*nonds);

}while(destin >= nonds :: destin== ndp->sourcend);

nptr->dest = destin;

ndp->inttm += -(1.0/lambda[ndp->~ourcend])*log(genrand());

insert (ndp);

return(nptr);

88

}

}

}

l*~--------------------------~-----------------------~----------*1

I* If queue i~ empty the packet i~ directly put into link li~t *I
void departlf(nptr)

~truct packet *nptr;

}

{ int i,j ;

float .5izepkt ;

i = nptr->intsnd;

j = nptr->intdnd;

if (nptr-> inorexorc == 1)

sizepkt = pktsize ;

else sizepkt = cpktsize ;

llst[i](j].linkbusy = 1;

11 s t [i][j] . !"- r f + = ~ i z e pk:t/ c apa_c i ty [i](j] ;

llst[i][j].tottrf += ~izepkt/capacity[i](j];

nptr->inttm = mainclock + .5izepktlcapacity[i][j];

nptr->nhps++;

llst[i][j].linkcmpt = nptr->inttm;

ll~t[i][j].pktdvd++;

llst[i)(j].delay += ~izepktlcapacity[i)[j];

llst[i][j].intpktdvd++;

insert(nptr);

return;

l*--*1

I* Control Packet Generation *I
void cpkgen()

{

int gf;

int i,j;

struct packet *nptr ;

str~ct packet *cpktrout(nptr);

I* Updating the cost matrix *I
for(i =0 i<nond~ ; i++)

for(j =0 ; j <nok_b ; j++)

if (link(i}(j] 1)

{

}

ncost(i](j] = llst[i][jl.trf I cpgint

llst(i][j].trf = 0 ;

llst[i][j].delay = 0.0;

ll5t[i)[Jl.intpktdvd = 0.0

cpktnum++;

I* Generating the pkts & transmitting I putting in queue *I
for(i=O; i<nonds ;i++)

for (j=O;j<nonds;j++)

if (link[i)(j] == 1)

{

if((float)fabs(ncost[i][j] - cost[i][j]) < delta(i][j))

{

delta[i)[j] = 0.0128

else

{

delta[i](j] = 0.064

ccost(i][j] = 1 ;

new(nptr);

nptr->sourcend = i;

nptr->dest = j

nptr->pkgntm = maine lock

nptr->intdnd = i

nptr->intsnd = i
nptr->inorexo~c = 2

nptr->cpktnu = cpktnum;

nptr->nhps = 0;

nptr = cpktrout(nptr);

free((char *)nptr);

}

}

el5e continue

return;

}

l*---------------·---*1

I* Routing of control packets *I
struct packet *cpktrout(nptr)

struct packet *nptr ;'

{

int s,j,k,l;

struct packet *npd,*cnp;

s = nptr-~intdnd;
if(cpktrd(~][nptr~>~6urcend](nptr->de~t] >= nptr->cpktnu)·

return (nptr);

else (

cpktrd(~](nptr->~ourcend][nptr->de~t] = nptr->cpktnu

for(J=O;j<nonds;j++}

if(link(s][j] == 1)

{

new { npd);

npd->sourcend=nptr->sourcend;

npd->intsnd = ~

npd->de~t = j

npd->intdnd = j;

npd->pkgntm = mainclock;

npd->inorexorc = 2;

npd->nhps = 0;

npd->next = NUL;

npd->cpktnu = nptr->cpktnu

k = s

1 = j

if (llst(k](l].linkbu~y 0)

departlf(npd);

else {

cnp = ll5t[k](l].cpkt

.if (cnp == NUL)

{ cnp = npd;

ll~t(k][l).cpkt = cnp

}

else { while (cnp->next != NUL)

cnp = cllp->next;

cnp->next = npd;

}

}

}

}

n:pd = NUL;

cnp = NUL ;

return(nptr);

}

31

l*--*1

I* Departure of control packet~ maintained as link li~t by

pointer in ll~t[](] array *I

int cpktdp(i,j)

int i,j;

{ int flag = 0 ;

}

struct packet *cnpt= NUL;

if (llst[i)(j].cpkt ==NUL)

return (flag);

else

{

}

cnpt = llst[i][j].cpkt;

ll~t[i][j].cpkt = cnpt->next

cnpt->next = NUL;

llst[i)(j].wttim = mainclock- cnpt->inttm;

departl f (cnpt) ;

flag = 1 ;

return (flag);

1*---*l
I* Shorte~t path algorithm *I

void ~hpdi jkl(~)

int ~;

{

tnt current,i,k;

int perm[20] ;

float dc,smalldist,newdist;

I* Initialization *I
for(i=O; i<20; i++){

perm[il = NONMEMBER ;

di~tance[3][i] = INFINITY

precede[.s](i]= -1;

}I' end t:or *I
perm[~] = MEMBER;

di.stance[5][s) ~ 0;

current = .s;

while (allmem(perm)

{

FALSE)

smalldist = INFINITY ;

de = distance[s][current];

for(i=O;i< nonds ; i++)

if (perm[i] == NONMEMBER)

{ newdist = de + cost[current][i]

if (newdi~t < distance[~][f])

{

I* distance from s to i through current i~ ~maller than

distance[s][i] = newdi.st;

precede[s][i] = current;

} /* end if *I
I* determine the smallest distance */

if (distance[~][i] < smalldist)

{

.smalldist = distance[s][i]

k = i;

} /* end if */

} I* end for --- if *I
current = k;

perm[current] = MEMBER

} /* end while *I
return;

}

distance[s)[i) */

int umodi(x,y)

int x,y;

{

int k;

k = (X < Y

return(k};

}

? x : x - ((int)(x/y)*y)

l*---*1

void departure(i,j)

int i,j;

{

int k;

struct packet *nptr;

float sizepkt ;

if(llst(i)[j].f==llst[i][j].r)

llst-[i](j]. linkbusy =0;

else {

k=llst[i][j].f;

k= umodi((k+1},5};

llst[i)(j].f = k ;

nptr = linkqueue[i)[j][k);

linkqueue[i](j][k)=NUL;

if (nptr-> inorexorc == 1)

sizepkt = pktsize ;

else sizepkt = cpktsize ;

llst[i][j).linkbusy = 1

llst(i][j].trf += sizepkt/capacity(i][j];

llst[i)(j).tottrf += sizepkt/capacity(i][j];

llst[i)[j].wttim = mainclock- nptr->inttm;

llst[i)[j).delay += mainclock- nptr->inttm +

sizepkt/capacity[i](j];

nptr->inttm = mainclock + sizepkt/capacity[i](j];

nptr->nhps++;

}

llst[i)(j).linkcmpt = nptr->inttm;

insert{nptr);

}

ll3t[i)[J).pktdvd++;

ll3t[i][j].intpktdvd++;

return;

l*-----------------~--*1

I* The routine on occurence of an event carrie3 out the departure

functions ,routedecision for incoming packet and its placement in

queue or link *I

void arrival(nptr)

struct packet *nptr;

{

int i,j,k,flag=O;

if(nptr->inorexorc -- 1 :: nptr->inorexorc 2)

{ i = nptr->intsnd;

j = nptr->intdnd;

llst[i][j].linkbusy = 0

flag= cpktdp(i,j);

if (flag== 0) departure(i,j);

if(nptr->de3t == nptr->intdnd)

{ if (nptr->inorexorc == 1)

{ mg3dvd++;

}

timnk += mainclock - nptr->pkgntm;

tnhps += nptr->nhps ;

free ((char*) nptr);

return;

el3e

{ cmgdvd++;

}

}

nptr = cpktrout(nptr)

free((char *)nptr);

return;

I* Checking for max. no. of hops condition . *I
if (nptr->nhps > (nond~ + 2))

{ img 3rejected ++ ; /**Could be control pkt3 also **/

free ((char*) nptr);

951

return;

}

I*** Since packet has reached it5 intermdiate destination ***/

nptr->intsnd = nptr->intdnd

} I* end of if *I
/**According to routing deci~ion intdnd 1~ updated ***/

nptr->intdnd = de5tination(nptr->intsnd][nptr->de5t]

if (nptr->inorexorc -- 0 :: nptr->inorexorc 1)

{ i = nptr->intsnd;

j = nptr->intdnd;

if(ll5t[i)[j].linkbu5y 0)

{nptr->inorexorc = 1;

departlf(nptr);

return;

}

k = llst[i][j].r; /**Circular Queue **/

k = umodi((k+l).5); I** Rear Pointer **I
if(k== ll5t[i][j).f) /**Queue full condition**/

{ if (nptr->inorexorc == 1)

{imgsrejected ++;

}

free((char *)nptr);

return;

}

if (nptr->inorexorc 0)

{mgsrejected ++;

free((char *)nptr);

return;

}

else

(ll~t[i)[j].r = k ;

nptr->inorexorc=l;

linkqueue[i)[j)[k] = nptr;

nptr = NUL;

}

return;

}

}

l*---*1
I* To print output re3ult */

void display()

{

int i, j;

float temp[20][20],totl=O;

float tol2 = 0;

void disptb(array);

for (i=O; i<20; i++)

for(j=O;j<20;j++)

temp [i][j] = 0 ;

printf(" THE NETWORK CONFIGURATION IS ");

printf(" Number of nodes : %d ".nonds);

printf(" NETWORK CONNECTIVITY (adjacency matrix)");

disptb(link);

printf(" LINK CAPACITIES ARE ");

disptb(capacity);

printf(" Mean interarrival rate (pkt/sec) at nodes are :");

printf(" ");

for(i =O;i<nonds;i++)

printf("%4d ",i);

printf("");

for(j=O;j<nonds;j++)

printf("%4.2f ",lambda[j]);

printf ("-------------------------");

printf("" Packet Size is: %f bits/sec ".pktsize);

printf (·· Network Simulation time is : %f sees ", 3irotiro);

printf(" OUTPUT STATISTICS");

printf("*************************");

printf(" Total number of message packets generated : %d ",

(int)mg5gen);

printf(" Average number of pae;ket3 generated : %fpackets/sec.

" , mgsgen/simtim) ;

printf(" Average number of packets rejected at source: %f

packets/sec ",mgsrejected/simtim);

printf(" Average number of packets rejected in the network:

%fpackets/sec ",imgsrejected/simtim);

print£(" Average number of packets delivered (THROUGHPUT) :

%f packets/sec "mgsdvd/simtim);

printf(" Total%% of packets delivered :%f ",

mg~dvd*l00.0/mg!3gen);

printf(·· Total %% of packets rejected : %f ··, (imgsrejected +

mgsrejected)*lOO/simtim);

printf(·· Average number of hops taken per packet : %f ",

tnhps/(mgsdvd+cmgdvd));

printf(" Average time spent by each packet delivered in the

network : %f ",tlmnk/mg~dvd);

printf(" LINK STATISTICS '");

printf(" Average packets delivered by each link in packets/sec ");

for (i=O; i<nond!3; i++)

for (j=O;j<nonds;j++)

temp[i][J)= (float)llst[i)[j].pktdvd/simtim

disptb(temp);

printf("Average waiting time per packet in QUEUE for each link ");

for (i=O;i<nonds;i++)

{

for (j=O; j<nond!3 ; j++)

temp(i][j] = llst[i][j].wttim/(float)llst[i](j).pktdvd

disptb(temp);

printf(" LINK UTILIZATION");

for(i=O;i<nond!3;i++)

for(j=O;j<nond!3;j++)

if (link[i)[j] == 1)

temp[i][j) = ll~t[i][j].tottrf/simtim

totl += temp[i][j];

tot2++;

}

dl~ptb(temp);

printf(" Average waiting time per Queue ; %f ",totl/tot2};

printf(" -·--");

printf(" COMPREHENSIVE OUTPUT STATISTICS ");

printf(" ******************************* ");
printf(" INPUT PARAMETERS ");

printf(" Number of nodes %d ", nonds);

printf(" Simulation Time %f sees ",simtim);

printf(" Packetsize is %f bits ",pktsize);

printf("--");

printf(" OUTPUT STATISTICS :");

printf(" Total no. of message pkts generated

(int) mgsgen) ;

printf(" Total%% of packets delivered: %f ",

mgsdvd*lOO.O/mgsgen);

printf(" Total%% of packets rejected: %f ",(imgsrejected +

mgsrejeccted)lmgsgen);

printf(" Average waiting time per Queue : %f ",totlltot2);

printf(" Average number of hops taken I packet %f ",

tnhps/(mgsdvd+cmgdvd));

printf(" Average no.of pkts dvdlsec (THROUGHPUT): %f ",

mgsdvdl.simtim);

printf(·· --");

return;

}

l*---*1

I* For displaying in table format *I
void disptb(array)

float array[20][20]

{

int k,l;

printf(" ______________________ ..);

printf(" DESTINATIONS ");

printf(" ");

for (1=0; l<nonds; !++)

printf(" %d",l);

for (k = 0 ; k < nonds k++)

{

printf(" Source %2d ->",k);

for (l = 0 ; l<nonds ; l++)

if(link(k](l] == 1)

printf("%6.2f ··,array[k](l]);

el5e printf(" ");

}

}

printf("
__ ..);

return;

}

l*------------------~--~------------------------------------*1

I* Main function */

main ()

{

int flag = 1 ;

int i,j,rd,flagl=O;

long 1;

struct packet *nptr;

void update();

void clear();

updtim=0.2;

cpktsize=176.0;

while (flag == 1)

{

}

initiali5e();

readinput();

flag= connectedornot();

genevl5t();

for(i= 0; i<nond5 ;i++)

for(j = O;J<nond5;j++)

if (link[i](j] == 1)

{

cost[i][j] = 1;

delta[i)[j] = 0.064;

}

for(i=O ; i < nonds;i++)

shpdijk(i);

destb();

next : nptr = getevent();

clear();

printf("\n\n\n\n\n\n");

printf(·· CLOCK = %f ".mainclock);

printf("type is %d " .nptr->inorexorc);

if(nptr == NUL) goto terminate;

else {

mainclock = nptr->inttm;

if(mainclock >= 5imtim) goto tetminate

else{

switch(nptr->inorexorc){

case 5 :

case 4

nptr->inttm += updtim;

in5ert{nptr);

de5tb() ;

break;

nptr->inttm += cpgint;

insert(nptr);

if (flag! < 2)

{for(i =0 ; i<nonds i++)

for(j =0 ; j <nonds j++}

if (link[i](j] == 1

{

I cr-a

nco5t[i)[j) = llst[i)(J].trf I cpgint

llst(i][j).trf = 0 ;

llst[i][j].delay = 0.0;

llst[i](j).intpktdvd = 0.0

}

for (i=O ;i<nonds;i++)

for ()=0 ;j<n~nds;j++)

cost(i][j] = ncost[i)(j];

for (i=O ;i < nonds i++)

shpdijk(i);

flagl++;

}

else { cpkgen();

reroute();

}

default:

break;

arrival(nptr);

terminate

printf("

}

}

goto next;

; display () ;

PLEASE ENTER ..) ;

}

printf(" TO UPDATE 1 ..) ;

printf(" TO RESTART

printf(" TO EXIT

printf(" Enter :

scanf("%d", rd);

switch (rd) {

ca~e 1

case 2

ANY

..) ;

2 ..) ;
KEY EXCEPT

break;

main () ;

break;

default: break;

}

}

1 & 2 ..) ;

l*---*1
I* To update the network parameters *I
void update()

{

int i , ch,J ,k,l,flag;

printf ("Do You want to change SIMULATION PARAMETERS

scanf("%d" ,&ch);

if (ch !=1) e~it(l);

varini t();

(110)=");

printf(" Do You t.~ant to change NETWORK CONFIGURATION 1/0=");

scanf("%d" .&ch);

if (ch == 1)

{

printf (.. Number of nodes is %d ". nonds .) ;

printf(" Do You t.~ant to.CHANGE it : 1/0 ");

scanf("%d" .&ch);

if (ch == 1)

{ nonds =0;

t.~hile(nonds > 20 :: nond~ == 0)

{ printf (" Enter the no. of nodes (< 20) ");

scanf("%d".&nond~);

} ;

goto nextl;

}

printf(" Do You want to change the NETWORK TOPOLOGY :Y/N ");

scanf("%d" ,&ch);

if (ch == 1)

{

nextl for(i = 0

for(j = 0

{

i < nonds ; i++)

j< nond~ ; j++)

link[i](j] .= -1 ;

capacity(i)(j] = 0.0

}

for (k=O; k<nonds;k++)

{for (1=0; 1 < nonds ;1++)

{if (k == 1)

{

}

link[k](l] = 0;

capacity[k][l] = 0

else if(k>l)

{ link[k)(l] = link[l)[k];

capacity(k](l] = capacity[l](k];

}

else {

if (link(k][l]== 1 : !link[k](l]==O) flag =TRUE

else flag = FALSE;

while(!flag)

{ printf (.. Enter 1 if 1 ink %d %d i3 pre3ent .el,3e 0 : .. ,.k, 1);

scanf("%f'' ,&link[k](iJ);

if(link(k](lJ==1 ! ! link(k][l]==O) flag =TRUE;

}

while (link[k][l] == 1 && capacity [k][l]<=O)

{

printf(" Enter the capacity of link3 in bit3/sec (>0) ");

scanf("%f" ,&capacity[k)[l]);

}

}

}

}

for(k = 0 k < nond3; k++)

{

printf(" Enter the mean interarrival rate (pkt/sec) lambda at ea~h nJ
printf(" Enter lambda for node %d : ", k); [

scanf ("%f", &lambda [k]);

flag = TRUE

}

}

if (flag !=TRUE)

{

}

printf(" Mean interarrival rate (pkt/5ec) at node5 are ");

for(i =O;i<nond3;i++)

printf("%4d ",i);

printf("\n");

for(j=O;j<nonds;j++)

printf("%2.2d ",lambda[i]);

printf(" Do You want to CHANGE it

{

5Canf("%d" ,&ch);

if (ch == 1)

1/0 ");

for(k = 0

f

k < nonds; k++)

printf(" Enter the mean interarrival rate (pkt/~ec) lambda at

lOLl
J

each _pode ") ;

printf(.. Enter lambda ·for node-%d : · ;,<,k);

scanf("%f" ,&lambda[k]);

}

}

}

printf(" Packet Size is : %f bits/sec ",pktsize);

printf(" Do You want to CHANGE it : 1/0 ");

scanf("%d" ,&ch);

if (ch == 1)

{

printf (.. Enter packet size (_in bits) ");

scanf("~f",&pktsize);

}

printf(" Network Simulation time is :%f sees ",simtim);

printf(.. Do You want to CHANGE it : 1/0 ··); ·

scanf ("%d", &ch) ;

if (ch == 1)

{

/*Reading the simulation period & updating interval *I

printf(" Enter the period for which simulation is to be

scanf("%f" ,&simtim);

}

carried out in sees");

printf(" The UPDATING INTERVAL is= %f ",cpgint);

printf(" Do You want to CHANGE it 1/0 ");

scanf("%d" ,&ch);

if (ch == 1)

{

printf(" Enter the UPDATING INTERVAL in sees ");

scanf ("%f" ,&cpgint);

}

printf(" The routina algorithm being used is ");

}

\OS

I* Add switch statement to choose routing algorithm.*/

printf(·· Do You want to CHANGE 1 t : 1/0 ··);

scanf(""%d"" ,&ch);

if (ch == 1)

{ printf(""******"');

I* Add switch statement to choose routing algorithm.*/

}

void clear()

{

}

putchar(Oxlb);

putchar(Ox5b);

putchar(Ox48);

putchar (Oxll));

putchar (Ox5b);

putchar(Ox4a);

	TH56040001
	TH56040002
	TH56040003
	TH56040004
	TH56040005
	TH56040006
	TH56040007
	TH56040008
	TH56040009
	TH56040010
	TH56040011
	TH56040012
	TH56040013
	TH56040014
	TH56040015
	TH56040016
	TH56040017
	TH56040018
	TH56040019
	TH56040020
	TH56040021
	TH56040022
	TH56040023
	TH56040024
	TH56040025
	TH56040026
	TH56040027
	TH56040028
	TH56040029
	TH56040030
	TH56040031
	TH56040032
	TH56040033
	TH56040034
	TH56040035
	TH56040036
	TH56040037
	TH56040038
	TH56040039
	TH56040040
	TH56040041
	TH56040042
	TH56040043
	TH56040044
	TH56040045
	TH56040046
	TH56040047
	TH56040048
	TH56040049
	TH56040050
	TH56040051
	TH56040052
	TH56040053
	TH56040054
	TH56040055
	TH56040056
	TH56040057
	TH56040058
	TH56040059
	TH56040060
	TH56040061
	TH56040062
	TH56040063
	TH56040064
	TH56040065
	TH56040066
	TH56040067
	TH56040068
	TH56040069
	TH56040070
	TH56040071
	TH56040072
	TH56040073
	TH56040074
	TH56040075
	TH56040076
	TH56040077
	TH56040078
	TH56040079
	TH56040080
	TH56040081
	TH56040082
	TH56040083
	TH56040084
	TH56040085
	TH56040086
	TH56040087
	TH56040088
	TH56040089
	TH56040090
	TH56040091
	TH56040092
	TH56040093
	TH56040094
	TH56040095
	TH56040096
	TH56040097
	TH56040098
	TH56040099
	TH56040100
	TH56040101
	TH56040102
	TH56040103
	TH56040104
	TH56040105
	TH56040106
	TH56040107
	TH56040108
	TH56040109
	TH56040110
	TH56040111
	TH56040112

