A NEURAL NETWORK BASED EXPERT SYSTEM FOR
ANALOG CIRCUIT FAULT DIAGNOSIS

Dissertation submitted to The Jawaharlal Nehru University
in partial fulfilment of the requirements
for the award of the degree of
MASTER OF TECHNOLOGY

IN

COMPUTER SCIENCE

V KRISHNA REDDY

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY
NEW DELHI-110 067

JANUARY 1994

CERTIFICATE

This is to certify that dissertation entitled "A NEURAL
NETWORK BASED EXPERT SYSTEM FOR ANALOG CIRCUIT FAULT DIAGNOSISY,
being submitted by V. KRISHNA REDDY to Jawaharlal Nehru
University in the partial fulfillment of the requirement for the
award of degree of Master of Technology in Computer science is a
record of original work done by him under the supervision of
?rof.P.C.SAXENA; Professor, School of computer and systems
sciences,Jawaharlal Nehru University during the year 1993
monsoon semester.

The results reported in this dissertation have not been
submiﬁted in part ‘or fuli to any other University or Institute

for the award of any degree or diploma.

(:vvv Choxot

(Prof.K.K.BHARADWAJ) (Prof.P.C.SAXENA)
‘Dm SCSS’ J.N.Ul' ’ SCSS, J.NGU.’
NEW DELHI. NEW DELHI.

ACKNOWLEDGEMENTS

I feel pleasure to express my heartful gratitude to my guide
Prof P.C. SAXENA for his uncompromising gquidance, constant
supervision and constructional help. This effort would not have
succeeded without the valuable discussion, encouragement to
pursue my thoughts in my own way, apt criticism and excellent
guidance.. | |

I = extend my sincefe - thanks to Dean Prof. K.K.
BHARADWAJ, for providing me the opportunity to undertake this
project. I would like to thank the staff and authorities of our
school for providing me the necessary facilities to complete my
project. “

I would like to thank some of my friends, Ramana,rGovardhan,
who helped me in completing this project sﬁccessfully. Last but
not the least , I would like to thank my classmates, for the
éncouragement they gave me in completing this project.

N

(V. KRISHNA REDDY)

ABSTRACT

The Neural Network application to Analog Circuit Fault-
Diagnosis is considered. The multilayer feedforward network with
BackPropagation algorithm is chosen for this application. The
circuit can be simulated for different faults using any simulator
and nodal voltages under the different fault conditions can be
obtained. These nodal voltages along with the fault numbers_were
formulated into a table, calléd as Fault Dictionary; .The Neural
Network is trained for all sets of the nodal voltages as input
pattérns and with the respective Binary_coded fault numbers as
ouﬁput. Two approachés were followed in uéing the Neﬁral Nét—
works in Fault4Diagnosis. Software is developed for both the
approaches. In the first approaéh the nodal voltages are di-
rectly applied as input patterns. 1In this all the accessible
nodes of a circuit are to}be considered asvinputs for the neural
network. 1In the second method using Lin & Elcheriff's approach,
minimum number of test nodes are obtained for fault isolation and
an unique integer code is 6btained for-all fault conditions.
This approach isolated the faults from other/faults to-eiiminate
the ambiguities caused by tolerance limits of components of the
circuit. Here the coded ambiguity values are given as the inputs
and binary coded fault numbers as output values. Both the ap-
proaches were working satisfactorily. The Neural Network is
converging to the specified error in reasonable number of itera-

tions.

INDEX

Chapter

Introduction
Neural Networks
Backpropagation Algorithm
Analoé Circuit Fault-Diagnosis
Application of ANNs to Faultdiagnosis
Results and Conclusions
References
Appendix 1

Boltzmann Machine
Appendix 2

PARAS—PARAM
Appendix 3

Taxonomy

Page No

12
21
E
35
56

60

62

67

72

CHAPTER 1
INTRODUCTION

7

Rapid advances in Neuroscience and in Computer Science are
arousing renewed interest in Artificial Neural Networks as
potentially new pfoblem—solving architectures. fhe neural
networks'! derived its name from the network of neurons,'which is
the basic fundamental unit of nervous system, especially the
brain. Human _Brain has more than ten billion nerve cells -or
neurons interconnected in a massively parallel fashion. The
brain's capabilities inspired many sciéntists to a%tempt computer
modelling of its operation and the result has been the study of
neural networks. It is common to refer to such networks as
Artificial‘ Neural Networks to distinguish them from the nafural

neural networks that are in human brain.

Analogy to the Brain

J
The neuron is the fundamental unit of the nervous system and

in particular the brain. Its nucleus receives and combines
signals from many other neurons through input paths called
Dendrites. If the signal is strong enough it activates the
neuron which produces an output signal. The path of the output

signal 1is called Axon. The axon splits up and connects to the |
dendrites of other neurons through a junction called Synapse.
The amount of signal transferred depend on the Synaptic Strength.

This simple transfer of information is chemical in nature but has

electrical side effects which can be measured. The structure of

a neuron is as shown in Fig. 1.

o

\,___. SYNAPSE

NUcLEUS AXON

/
]

PATH OF O]y SienaL

OENDRITE

Figure 1 Structure of Biological Neuron

Artificial Neuron

‘Artificial Neural Networks (ANNs) are made up of processing
elements or nodes which resemble the neurons of human brain. A
processing - element (éE) has several input connections and a
single output. The PE receives input signal through its input
connections from other PEs. Each connection from one processing
element to another processing element has some value called
connection weight. The processing‘ element calculates the
weighted sum of its input signals according to a function to

determine its output. The transfer function is generally a non-

/

linear function 1like hard limiters, threshold or sigmoid
function. Positive weights which increase the strength of
connection represent excitatory connection while neg;tive weights
which represent inhibitory connections decrease the strength of

connection. The output is sent to other PEs through output

terminal.

The structure of processing element is as shown in the
figure 2. 1In this figure, X1 x2,>x3, Xgs++++X, Trepresent the
input values from other neurons. And Wi, Wy, W3, Wyu,...,W,
represent the corresponding connection weights. The processingi
element calculates the weighted sum WpeXqHWy o XotWa Xat oL WL X,
of all these inputs, and then calculates its output using some

transfer function F-

output = Fn(zni=1 WieX;)

v - ;“@; W An)

Figure 2 Structure of Artificial Neuron (Processing Element)

s

Artificial Neural Networks

Artificial Neural Networks are dynamic systems composed of

highly interconnected 1layers of simple neuron-like processing

elements as shown in figure 3. These layers are categorized as
input‘ layers where patterns are presented to the network and
output 1layers which contain the response to a given .input.
Further more they may contain intermediate 1layers or Ghidden

layers between input and output layers.

Neural network opéfations consisté of a learning or training
phase, récall phase, and generalization phase. During the
learning phaée the network is repeatedly presented with a set of
input-output patterns. Learning is accomplished by a general
rule which dynamically modifies | the weights of all
interconnections in an attempt to generate the .desired output
pattern for each presented input pattérn. After the learning is
completed’ the vnetwork operates 1in a recall phase where it
generates response to input patterns used in the training. It
also operates 1in a generalization phase where it generates

response to similar or novel input patterns.

. LAYER

AZ/<}HEmum

el . HI0DEN
LAYER

J J i OUT PUT
T e /‘l\\

WEIGHTS

. ; {) N aNPyT
\1-./ _,’ ~. .7 . /" LAYER
'
I

Figure 3 Structure of Artificial Neural Network

Neural network computations are collectively performed by
the entire network with knowledge represented in the connection
weights between processing elements. Consequently, the
collective operations result in a high degree of parallel
computétion which enables the network to solve complex problems
rapidly. In addition: the distributed representation leads to
greater fault tolefance and to graceful degradation when problens

/
are encountered beyond its range of experience.

In the following table 1, comparison is made between

human brain and artificial neural networks.

Table 1 Comparison Between Brain and ANN

Element S Brain- ANN

1. Organization Network of neurons Network of Processing
elements

2. Components. Dendrites, Axons, Inputs, outputs,weight
Synapses, Summer,' Summation function,
Threshold. Thréshold function.

3. Processing Analog. Analog or Diéital.

4. Architecture 10 to 100 billion 1 to 1,000,000 PEs

neurons

5. Hardware Neuron Switching Device.

6. Switching Speed 1 milli second 1 n.sec. to 1 m.sec.

7. Technology Biological Silicon, optical.

Comparison to AI :

1. In AI knowledge is explicit‘in the form of rules. To
create an AI an expert is needed to evaluate the problem and to
define the rules. Where as in artificial neural networks we need
not define any rules. ANNs can generate their own rules by

learning from the examples.

’

Advantages of Neural Networks
Because of its structure and the organization or processing
of information, the neural networks offer some unique advantages

over other conventional systems. The advantages are as follows:

1) ADAPTIVE LEARNING: An abilityito learn how to do tasks
based on the data given for training or for initial experi-

ence.

Adaptive learning is one of the most attractive features of
neural networks; that is, they learn how to pefform certain tasks
by under going training with illustrative examples. Becaﬁse the
ANNs can 1learn to discriminate patterns based on examples -and
training, we do not need to elaborate training models, nor we
need to specify the probability distribution functions. The

designers sole «concern is to select appropriate architecture,

learning algorithm, training patterns, and network dynamics.

2) SELF ORGANIZATION : A neural network can create its own
representation of information it receives during learning and

operation.

,

Neural networks use their adaptive learning capabilities to
self-organize the information .received during 1learning. When
the neural network self organizes, it creates representation of
distinct features of the training data. Even when the ANNs are
taught to learn certain classes of patterns, they self organize

the information such that it is used for pattern recognition.

3) FAULT TOLERANCE VIA REDUNDANT INFORMATION CODING: Partial
destruction of NN leads to degradétion of performance. However,
some network capabilities may be retained even after major

damage.

NNs ére the first Computational methods available which are
fault tolerant. There are two distinct aspects of fault
tolerance. First, NNs can learn to recognize patterns which are
noisy, distorted, even incomplete. This fault tolerance is withv
regard to data. Second, they continue to perform even after some
part of the network itself is destfoyed;i This fault tolerance to

damage within themselves.

This tolerance is due to that NNs have distributed (or
redundant) information encoding. When neural network store
information it is not localized. 1Instead it is shared by all
interconnections and weights. Where as most computer algorithms
and data retrieval systems store each piece of information in a

localized addressable space.

“4) 'REAL TIME OPERATION : NN computations can be carried out in
parallel, and special hardware devices are being desigﬁed and
manufactured, which can take advantage of this capability. NNs
are well suited for parallel implementation. Their structure is
such that only a few steps need to be performed per neuron. That
is, only it has to perform weighted sum of inputs and apﬁlies

some transfer function to the sum. Thus massive parallelism can

achieved through VLSI technology.

5) EASE OF INSERTION INTO EXISTING TECHNOLOGY : An individual
network can be trained to perform a sing}e, well defined task.
Because a network can be rapidly prototyped, trained, tested, and
verified, and translated into low cost hardware implepentation,
it 1is easy to insert neural networks for specific purposes into

existing systems.

s

Because of\these advantages, artificial neural networks are
emerging computational technology whiéh can significantly enhance
a number of applications. ANNs are finding use in many real
world applications such | as speech processing, pattern
recognition, image processing, diagnosis, natural language
processing, combinatorial problems, noise filtering, \medical
diagnosis and control systens.

Software 1is developed for analog circuit fault diagnosis
using fault dictionafy approach. A new method of using Artificial
neural network for the fault diagnosis is carried-out under this
dissertation work. For this we have chosen D.C. fault dictionary
method, which can be used for diagnosing hard failures in the

circuits.

The essence of fault dictionary is, for each fault, its
symptom or signature (usually voltages of somé test nodes) is
determined through a software simulation program and stored in a
dictionary. Before simulating the network a set of test nodal
voltages and also same set of faults are selected which are
likely to occur in the actual usage of the circuit. Then the
circuit is simulated.for all the predetermined faults and the
test nodal voltages corresponding to each fault are determined.
Given a faulty circuit,.one makes test> measurements and then
compares the result with those stored in the dictionary to
identify the fault. Thus D.C. Fault dictionary approach is
simulation before test (S.B.T.) method, since we are simulating
the circuit before use. There is another method for fault
diagnosis is simulation After Test (S.A.T.).. But the ~main
problem with direct éomparison of nodal voltages, with those in
the dictionary is, here we are assuming the values of components
of the circuit as constant.(abéolute value) while simulating.
But in practice,'the values of components yill vary within somne
tolerable band of values. Because of these tolerance values one
set of nodal‘ values may fall into anothef set of fault
conditions. So it is difficult to determine the fault jﬁst by
comparison to fault dictionary. So to distinguish different

faults, these faults must be isolated from one another.

For this I have used two approaches. . In the first approach
I have used Back Propagation Neural Network for isolation. In
this method first the circuit is simulated for different fault

conditions and these nodal voltages'are formed into a fault

1

dictionary. 1In the fault dictionary -each nodal voltage will be
given some address; The back propagation Neural Network is
trained with these patterns; i.e., the nodal voltages are -as
~input values and the.;orresponding address as output values.

After training, the network will give the corresponding fault

number for a given set-of input node voltages in RUN mode.

In the second approach, the test ﬁodal voltages are isolated
from one another by using some logical procedure (Lin &
Elcheriff's methbd). By using this procedure we can, not only
isolate faults but aiso determine the minimum number of nodes
| required for isolation. The input to the isolation procedure is
the test nodal voltages. The.output is an unique integer code
corresponding to differeht sets of nodal voltages. This integer
code is formed into fault dictionary. The address of faults are
placed against the integer code. Then this table is applied as
training patterné to the neural network. After training the
neural network it gives address of fault.as output corresponding.

to the integer code as input.

It is found that | both approaches were working
satisfactorily. For the two approaches, I have developed
software for BP algorithm and for.isolatioﬁ procedure in second
approach. The Neural Network is conﬁerging to the specified

error in reasonable number of iterations.

The remainder of the paper is organized in the following
manner. The Basics of Neural Networks, its analogy to brain, and

its advantages are discussed, and also its application to - Analog

10

Circuit Fault-diagnosis is introduced in Chapter 1. In chapter 2
representation of neural networks and their applications are
discussed. In éhapter 3 the Back 'Propagation network is
discussed. In the fburth chapter fault dictionary method of
analog circuit fault diagnosis is described. In chapter & the
concept of ambiguity sets and the applications of Neural Network
to the analog circuit fault diagnosis is given. Both methods are
discussed in detail in that chapter. Subsequently the results
and‘conclusioné of the neural network based approach is presented
in chapter 6. 1In the appendix 1, Boltzmanﬁ machine algorithm is
presented. 1In appendix 2, introduction on Parallel Programming
on transputer based Parallel Super Computer PARAM is discussed.

In appendix 3 Taxonomy of different neural networks is presented.

~

11

CHAPTER 2
NEURAL NETWORKS

Any neural network structure is represented in terms of
three fundamental desc;iptors. They are

a) Interconnection architecture between processing ele-
ments.

b) Rules that determine whether or not a particular proc-
essing element will fire(or Transfér Function). -

c) Training laws(or Learning laws).
a) Architectures : 1In this the physical organization and
arrangement of the neurons is considered. Meso-structural
(i.e.,architectural) considerations are especially important in
that thef help us to distinguish different classes or types of
network architectures. These‘considerations help us to make
distinctions between different types or classes of networks

which are currently in use. There are some basic distinctions

which allow us to form categories of networks.

The first distinction is in the number of layers in a net-
work. We classify networks as being single-layered, bi-layered or
multilayered. Within this first distinction, we néte that the
type of connectivity allowed creates the possibility of different
structureé. We identify two major types of single-layered net-
works: those that are explicitly laterally connected, and those
which have only implicit connectivity. Bi-layered networks typi-

cally have both feedforward and feedback connections. There is a

12

large class .of multilayered networks which have strictly feed-
forward connections, and there are a number of multilayered
networks with éomplex connectivities (feedforward, feedback, and
lateral). Based on these distinctions, the networks are divided

into different types, as following

*# Multilayer, feedforward networks
* Single~layer, laterally-connected works
* Single-layer topologically ordered (vector matching) networks

* PBi-layer, feedforward / feedback networks & Multilayer,

Cooperative networks

* Hybrid networks.

Six Basic Typologies of Neural Network Meso-Structures

A QUDU

yt yy : !

\j/ (% i EoN

[4 [A , S

1 i 0 i i &

b S
Sngu-Lave

Loy Lonvecue Retwors

ﬂ

Topograsuzatty Orcancred
Set ot Yecion
©

4 ! 4

: Sud tiet 2 i
‘(\ ‘ B
L L

\
\
L \»—4‘%« '——‘—l—l
/:\‘):\) | Subner 7]
i i ~——I——-—
i '] i '
. buape | "o)
‘”";—wwv Neteon i Cooparates | Comimires retwony My hetwon
' o : [
i

Figure 4 Different Architectures of Networks

13

b) Transfer functions : The most comﬁon distinguishing factor
among most of the artificial neurons being used today is their
transfer function. This function specifies how the neuron will
scale its response to incoming signal, and produces. it activa-
tion. If the activation is strong enough, then the artificial
neuron will output a signal to the neurons to which it is- con-
nected. Four typical transfer functions are
i) Threshold logic nodes.
ii) Hard-1limit nodes
iii) continuous function(sigmoid) nodes.

iv) Radial basis functions.

Neural Network Transfer Functions -

0 x 0 * 1y
o o or 0 x
1 h—- 1 >-Y Y
Alz4
- 4
0 x [} 5 0 T
1 f ar|”
\
{s) . (d) (c) (g}
Thresnhold Logic Hard-Limit Slgmold < Radlal Basis Function

Figure S Different Transfer functions

i) THRESHOLD LOGIC: Threshold logic nodes create binary state

neurons by applying simple transfer function.

14

If Weighted sum > Threshold
Then Activation = 1.
Otherwise = 0.
* Easy to implement in hardware.
* LLimited learning cagability.

* Used in Hopfield/Tank network.

ii) HARD' LIMIT NODES: In this both upper and lower limits are set

on the summed input from other neurons, plus the thresholds.

If the total sum > upper limit, activation 1.

o.

< lower limit, activation

Between these two limits the output is linear function of weight-
ed sum. At the transition points the function is not differen-
tiable. This 1limit their use in applications which require

sophisticated learning capabilities.

iii) CONTINUOUS FUNCTION NODES: Werbos suggested this Sigmoid.
transfer function for improved learning in Back propagation
network. The transfer function is smoothly varying and is dif-
ferentiable at all points. Back propagation network requires ﬁhe

differentiation output activation as a function of input.

The equation of sigmoid is
Y = 1/(1 + e(7KX)y

weighted sum, Y = output‘activation of neuron,

where X'

and k constant.

15

Derivative of sigmoid is always positive, and is close to zero
for either large positive or large negative values of X. And is

at its maximum value when X is zero.

iv) RADIAL BASIS FUNCTIONS: This is ;ypically a Gaussian func-
tion, which is useful when creating a neural network for continu-
ous function mappings./ The centers and widths of these functions
may be adapted, which makes them a more adaptive function than
éigmoid function. Mappings which may require two hidden layers
of sigmoid function units can some times be accomplished by a

single layer of neurons using radial basis functions.

c) Learning : Learning is the process of adapting the coefficient
weights in response to stimuli being presented at the input
buffer and optionally at the output buffer. An ANN can learn in

supervised or unsupervised mode.

SUPERVISED ANN: ANN which requires a supervisor for learning is
called supervised>ANN. The ANN is provided with sets of inputs
and corresponding desired‘output sets. After each trial the
output obtained is compared with desired output and the differ-
ence corrected using some learning algorithm till actual output

matches to an acceptable level.

UNSUPERVISED ANN: ANN's which do not require a supervisor for
learning are called unsupervised ANN, Unsupervised ANN can be
trained in two ways graded training and self organization train-
ing. 1In graded training inputs are given and occasionally grade

is given according to performance of network. In self organiza-

16

tion learning network itself organizes into some useful configu-

ration based on the inputs.z

PRACTICAL APPLICATIONS :

Artificial Neural Networks are finding use in many real
world applications such as speech processihg, pattern recogni-
tion, image processing, diagnosis, finance, etc. Sometimes it may

be necessary to combine ANN techniques with traditional tech-

niques to solve the problems.

1. SPEECH PROCESSING : Speech processing problems include speech
recognition, text to speech conversion. In speaker recognition
problems, speech samples of some speakers are collected. The
collection of features of speech like pitch period, zero crossing
etc., forms a template which is stored in memory. Several such
templates are stored in memory. When a test sample is given as
input, it creates a template and recbgnizes the speaker if it
finds a match in the memory. Kohonen devised a phonetic type-
writer which could type from dictation; Sejnoviski .and Rosenberg
developed NETtalk which could change text into spoken language.

NETtalk was used on Back Propagation algorithm.

2. NATURAL LANGUAGE PROCESSING : Natural language processing
involves studying how we construct rules about language. Cogni-
tive scientists Rumelhart and Mcckekabd devised a neural comput-

ing system which learns the past tense of English verbs.

3. IMAGE COMPRESSION : Image compression refers to transforming

image data to a different representation which requires less

17

memory but from which original image can be reconstructed. Cot-
trell Munro and Zipser designed a three level neural network and

achieved compression ratio of 8:1 with high fidelity.

4. PATTERN RECOGNITION: ANN's are finding applications in recog-
nition of hand written characters. Nestor developed a system
which accepts handwriting on a digitized pad. After being
trained for interpreting a set of handwriting types, the neural
system is able to interpret a type of handwriting it has never
seen before. Some advanced pattern recbgnizing systems use neo-
cognitron which is a multi-layer pattern recogniser that simu-
lates the way visual information feeds forward in the cortex of

the human brain.

5. COMBINATORIAL PROBLEMS : Neurél éomputing system also solve
certain combinatorial problems such as travelling salesman prob-
lem in which the goal is to find the éhortest possible route the
salesman can take to cover a certain number of cities in a speci-
fied area. Hopfield and David Tank have developed a system to

solve this problem.
\

6. PATTERN RECOGNITION IN IMAGES : éroman and Sejnowski applied
back propagation networks to classify sonar targets. David Gloer
used back propagation in machine vision applications. This had
two benefits a) minimal operators used for training the classifi-

er and b) no assumptions were made.

AN

7. SIGNAL PROCESSING : Lapedes and Farber used back propagation
networks for doing prediction and system modeling. They showed -

that for chaotic time series back propagation exceeds convention-

18

al 1linear and polynomial predictive methods by many orders of

magnitude.

8. NOISE FILTERING : Neural networks can also be used for noise
filtering. They are able to preserve a greater depth of struc-

ture in detail than traditional filters while removing noise.

9. SERVO CONTROL : It is very difficult to control complex me-
chanical servo systems. Errors are introduced due to some physi-
cal variation. It is impossible to meésure the variations accu-
rately and solving is very complex. Neural networks have been
trained 'to predict the error in the final position of a robot
from the joint angles. The error is combined with desired output

to provide correction and to improve accuracy.

10. DIAGNOSIS : Diagnosis is the recognition and identifica-
tion of the cause of problem. Diagnosis may be madé to identify
medical conditions, machine fault or similar problens. The
ability to .deal with large data based, incomplete data and situa-
tions 1in which diagnostic rules are not known in advance makes
ANNs suitable for diagnosis problems. Here the input is the data
.about the fault conditions and the output is the diagnosis of the
problem. DESKNET which uses Back propagation Algorithm is able

to diagnosé different skin diseases.

11. CONTROL SYSTEMS : Broom stick balancing system is one of the
proven applications of adaptive control. A broom stick with:
several sensors is pivofed of a cart upside down on its handle.
The ANN is trained to move the cart back and forth so that broom

s

19

is balanced on its handle top. During trial and error learning,
the system uses the feedback to control the movement of the -

balancing platform.

12. OTHER APPLICATIONS : Two other major areas in which ANNs are
used are A) Financial and Economic Modeling and b) Functional

Synthesis.

20

~ CHAPTER3 \,‘
BACKPROPAGATION ALGORITHM

The network gets its name from how it handles the errors.
Actually the network is developed from the network Perceptron,
which 1is a single layer network. But this is able to train the
output units to 1learn to classify the pattérns of 1inputs,

provided they are linearly separable.

More complex and non—lihearly separable classes <can be
separated with a multi-layer network. However, if there 1is any
error in the output layer, the Back Propagation algorithm solves
the problem by processing element or inter-connection to adjust
to reduce the error,‘by assuming that all processing elements and

connections are responsible for the erroneous result.

Responsibility for errors is affixed by propagating the
output error backward through the connections to the previous
layer. This process is repeatéd until input layer 1is reached.

The name BackPropagation derives from this method of dig%giﬁﬁting

FEiE

)

the blame for errors. U e o z
i :

b8 SRS As
3
[

The key distinguishing characteristic of the backé}aﬁagation
is that if forms a mapping from a set of input stimuli to a set
of output nodes using features extracted from ﬁhe input pattern.
This network can be designed and trained to accomplish - a wide
variety of mappings, some of which are very-complex. This is
because the nodes in the hidden layer(s) of the network learn to

respond to features found in the input.

21 TH—4932

Because nodes in the back-propagation network 1learn to
respond to features as the network is trained with different
examples, the network develops the ability to generalize. For
example, a back-propagation network is learned to distinguish
between straight, concave, and convex curved 1ines.‘ Even if the
lines to be tested occur in different locations, or mixed with
some. noise or even some part of the line is missed, the network
would be able to distinguish them. The %etwork would probably
respond correctly even if it is presented with a paftern which it
has never seen befdfg. The ability to make such complex
distinctions, even when the presented pattern is different vfrom
those on which the network was trained, is due to the feature-
detection and generalization abilities which are trained into the

middle or hidden layer nodes.

In order for a back-propagation network to be successful for
-applications, the key issue is thét the hidden layer nodes nmnust
be trained . to recognize the right sets of features. These
features must be sufficiently general, so that the network can
réspond correctly, even when its input is different from those it

has previously encountered.

Backpropagation network can be represented in terms of three
common descriptors as :
i) Architecture.
ii) Transfer function.

iii) Learning laws.

22

1) ARCHITECTURE : The BackPropagation WNetwork is a fully
connected feedforward ‘network as shown 1in following figure.
Fully connected Network means each nodes of each layer is
connected to each node of the n%xt higher layer. In the
feedforward network the output is calculated in the forward
direction only. No part of the output-is feéd back to the input.

‘There are some algorithms, in which output is fed back to the

input in run mode (eq. Bidiregtional Agsociative memory).

Figure 6 Back Propagation Network

ii) TRANSFER FUNCTION : Backpropagation learning law requires
that the transfer function for each nodes be defined by a
continuous function. This function should be asymptotic for both
infinitely 1large positiye and negative values of independent
variables (typically, the Aweighted sum of inputs). These
conditions usually lead to a modified Sigmoid shape for transfer
function. The use of this kind of transfer function is one of
the major differenceé between BP and its prededéssors, the

Perceptron and ADALINE. Each of these earlier networks used

23

nodes with simpler transfer functions, and this 1limited their
ability to be useful in the more complex pattern recognition

problems.

One important factor about the sigmoid function is that its
derivative is always positive, and is close to zero for large
positive or negativefvalues of X. The derivative has maximum
when X is 0. This‘is important in‘helping the backpropagation
learning law work effectively. This is because, the changes made
to the weights 1is proportional to the derivative of . the
activation. If the derivative is near zero, then the changes are
small. This is desirable, because the derivative is near 0 when
the activation wvalue 1is near 0 or 1, one of the two ;table
states. When the activation of the neuron is in the middle
range, the activation must be changed such that it produces a
value near one of the stable states (0 or 1). The derivative is
large when the activation is in the middle range. So the changes

in the weights is also fairly large. Thus the transfer function

not only gives smooth and differentiable behavior, it also helps

toygiveistability to the network. . weipf-ou 1 devivatow o}
The Sig?ﬂofc‘o\ 'f?dﬂ\S}(V ‘e'n, ; T (_m’)l— S,'er-rnc‘\(.ldl hw&f/b"\fm

I+ exp(-uzx)

(oo —

i L1 0

Figure 7 Sigmoid Transfer Function and its Derivative.

24

iii) LEARﬁING LAW : The backpfopagation algorithm uses Gener-
alized Delta Rule for its learning. In this procedure it uses
Gfadient Descent algorithm to adjust the weight values. The main
advantage of gradient descent is that it makes changes to the
weights such that the error drops most steeply. The idea of
gradient descent is to make a change in the weight proportional
.to the negative of the derivative of the error, as measured on
the current pattern, respect to each weigh?. Thus the learning

rule becomes
W[il(J) = - k * dEp/dW([i]([]]

FIf we change each weight accorqing.to this rule, each weight
is ms;ed towards its ownvminimum and we think of as the system is
moving down hill in weight space until it reaches it minimum
erfor value. When all the weights have'reached. their minimum,
points, the sys@em has reached eguilibrium. If the system is
abie to solve the problem entirely, the systeﬁ will reach zero
error and weights will no ionger be modified. on the other

hand, if the system couldn't solve the problem exactly, it will

find a set of weights that produce as small an error as possible.

The basic idea of backpropagatioﬁ method of learning is to
combine a non—linear perceptron like system capable of making
decisiohs with the error function as LMS and Gradient descent.
To do this we must be able to readily compute the derivative of.
the error function with respect to any weight in the network and

then change the weight according to the rule.

25

After calculating the derivative of an appropriate choice of
non-linear function, the learning rule becomes

Wiy =e* $[i] * afj]

Essentially, the term $[i] represents the effect of a change
in the net input to unit j on the output of unit i in pattern p.
The determination of $ is a recursive process that starts with~
the output nodes. If the unit is an output unit, then the value
of $ becomes
$(i] = (T[i] - a[i]) £'j (net;)

where net{i] = zjwij.aj + Biasi

The $ term for hidden units for which there is no specified
target is determined recursively in terms of the $ terms of the
units to which it directly connects and the weights of those
connections. That is

The application of the BP rule involves two phasesé during
the first phase the input is pfesented and propagated forward
through the network to compute the output value a(j] for each
output node. This is \compared with the target values and

calculates the values of $ for all output nodes.

The second phase involves a backward pass through the
network during which the delta term is computed for each unit in
the network. Finally by using these $s we can easily compute the

values that are to be applied to weights.

26

If the activation function used is Sigmoid,

a(i] = 1/(1+e("Metli])

Then the above equation becomes
da({i]/dnet(i] = a[i] * (1-a[i])
For o/p unit $[i] = (T[i]) - a[i]) * af{i] * (1-a(i}])

For hidden units ${i] = a[i] * (1-a[i]) Z$[(KI*W[Jj][k]

ALGORITHM :
Step 1 : Initialize the weights and offsets.

Set all weights and node offsets to small random values.
Step 2 : Present input and desired output patterns used for

the training of network.

Present a continuous valqu input vector

: ‘ ,
xX0,x1,x2,%3, ...x(n-1) and specify the desired outputs
t1,t2,t3,...t(m-1) for different sets of patterns. The input

could be new on each trial from the training set that could be

presented cyclically until weights stabilizes.

Step 3 : Calculate the outputs.
Use the sigmoid non-linearity to calculate the outputs.

The sigmoid or logistic function is given by
F(x) = 1/(1+e”?)

Net input to i th unit from the other j units is given by
I[i)[(s] = W[i][J]1[s) * X[(J][s-1] + Bias[i]
After calculating the net input to any processing element,
the activation of the P.E is calculated by using sigmoid

X{i][s] = F(I[(i][s])) = 1/(1+e(T[11[S]),

27

Like that the activation of the output layer (o/p of N.W)
wili be calculated.

Step 4 : Adaptive Weights.

Use recursive algorithm starting at the output nodes and
work back to the first hidden layer. Adjust the weights by
gradient descent algorithm. The LMS finds the values of all
weights that minimizes this output error function 1is called

gradient descent.

The idea of gradient 1is to make change 1in the weight
proportional to the negative of the derivative of the error as

measured on current pattern, with respect to each weight.

A

Thus Wi{il[j1(s] - e * $[i]l[s] * x[J])[s-1]

The determination of $ is a recursive process that starts
from the output wunits. The $ for output wunits is given by
$(11(s) = (t[i] - o[i]) * o[i) * (1- o[i]).

For hidden units
$(11(s) = X[i][s] * (1;X[i](S]) T $[KR][s+1] * W(k][1i]([s+1]
And Wil[31s] = e * $[il(s] * X[3][s]

Where e = Training rate parameter

This is called Generalized Delta Learning Rule.

Step 5 : Repeat by going to step2 until output error is below

certain tolerable value.

28

kOMENTUM : In BP learning procedure the change in weight is
proportional to weight error derivative. True gradient requires
infinitesimal steps. The larger the leaning rate (€), epsilon,
the larger the changes in weights. For practical purposes one
would like use learning as large as possible. 1In this way rapid
learning: rates can be achieved. But 1in practice when the
learning rate is large the network goes into oscillations. One
way to increase the learniné rate without iéading to oscillations
is to modify the Backpropagation learning rate to include a

Momentum (n) term. This can be accomplished by the following

rule :
W(i](3)(n+1) = € * ($[(p)[i] * a[p](j] + = * W(1)(JI1(n).

The subscript n indexes the preseﬁtation number and momentum
is a éonstant that determines the effect of past weight changes
on the current direction of movement in weight space.. This
provides a kind of momentum in weight space that effectively
filters out high-frequency variations of the error surface in the
weight-space. In most of the simulations the valué of nmomentum
used is 0.9. With the larger values of momentum and training rate

the system learns much faster.

SYMMETRY BkEAKING : The BP learning has one more problem that can
be readily overcome and this is the problem of symmetry breaking.
If all weights start out at equal values and if the solution
requires that unequal weights be developed, the system can never
learn. This is because error is back propagated through the

weights 1in proportion to the values of the weights. This means

29

all the hidden units connected directly to the output units will
get identical error signals, and since the weight changes are
dependent on error signals, the weights from those units to the
output units must always be the same. The system is starting out
at a kind of unstable equilibriumlpoint that keepé the weights
equal. But it is hiéher than some neighbouring points on the
error surface, and once it moves away to one of these points. it
will never return. This problem can be eliminated by starting
the system with small random weights. Under these conditions

the symmetry problem of this kind do not arise.

LEARNING'BY PATTERN or BY EPOCH : In learning by Epoch method the
derivative of an error function is summed.over all patterns. In
this case, I would present all patterns and sum the derivatives

before changing the weights. Instead we <can compute the
derivatives on each pattern and make changes to the weights

after each pattern rather than after each epoch.

5

30

CHAPTER 4
ANALOG CIRCUIT FAULT-DIAGNOSIS

Today the Analog Circuit Fault-Diagnosis field is
still in its infancy,fas there is not yet any user-orient-
ed publicly available computer program for circuit diagno-
sis purposes such as those for circuit simulation purposes.
Research is being carried out by many in this area. The

importance of the diagnosis problem is - now widely recog-

nized. Traditionaiiy circuit theory 1is centered on two
aspects only - analysis and synthesis.“_To these we may
add a third and equally important aspect, namely
diagnosis. |

Depending on whether the circuit simulation takes place -
before or after testing process, analog circuit diagnosis methods
are classified into two main categories, The simulation before

test (SBT) and the simulation after test (SAT) approach.

Most of the techniques used in SAT are based on parameter
identification, and most of these techniques are applicable only
to 1linear «circuits. But in this the numerical difficulty is

enormous when large circuits are considered.

The present trend in SAT is not to solve for parameter
values, but to simulate the circuit under different conditions
and use some decision algorithms to locate the faulty components
(the parameter values are vnot found). This branch of SAT

approach may be called fault verification techniques.

- 31

In SBT, the circuit is simﬁlated by suing some network
simulator like SPICE. For each fault the network is simulated and
its signature or symptom (usually voltages of some nodes) is
determined and is stored in a dictionary. Given a fault circuit,
one can make test measurement and compare the result with those
stored in the dictionary to identify the fault. The technique of
SBT is called Fault dictionary approach. Similar approach is
foilowed for trouble shooting of electronic equipment manually as
given 1in service manuals where a step by step testing 4procedure
is described, together with a table of symptoms and possible
causes. That is in essence a fault dictionary approach. In SAT
approach a gregt amount of computing power is required after »the
testing process. In sharp contrast, the SBT appfoach requires
negligiblé amount of computing power after the test process to
locate the faults. However a.comparable or evén greater amount
of computing power is needed before the test process in order to

compile the fault dictionary.

Fault Dictionary is mainly meant for hard failures only. It
is incapable of diagnosing soft failures, that is element value
drifts. However, the fault dictionary will remain a very

valuable part of the overall scheme for the following reasons:

i) Catastrophic failures usually cause numerical
difficulty 1in the parameter identification techniques, for
example, 1f a resistor charaéterized by 1its conductance G,
becomes short circuited, then the solution should be G--w, Now

if an iterative algofithm is used to solve the nonlinear

32

equations, the computer program, seeing the ever increasing value
-of G, might intefpret the phenomena as a divergence of the

algorithm and terminate (possibly giving the result of last

iteration).
ii) The fault dictionary approach is well suited for
diagnosing short circuits and open circuits. Although the

initial effort to compile the fault dictionary is quite

demanding, that task is done once for all.

iii) Statistics show that short circuits and open circuits

account for about 70-80% of the faults in analog equipment.

Various types of inputs have been propoéed for the fault
dictionary method. These include the DC, AC and piecewise
constant inpﬁts. Unfortunately, most of these methods either are
limited to 1linear networks or have not progfessed beyond the
feasibility study stage. At present the DC fault dictionary is
the only one that is used in practice with some degree of
success. For these reasons we have chosen the DC fault

dictionary approach.

The DC fault dictionary approach consists of two distinct

stages.

Stage 1: Pre-test analysis to compilebthe fault dictionary.
In this stage the analog circuit is simulated by a
digital computer program under nominal as well as all preselected
catastrophic faults. Judiciously chosen DC input voltages are

applied. The induced DC voltages at a selected set of tesé nodes

33

are calculated. These voltages are then stored in the automatic

test equipment (ATE) and constitute the fault dictionary.

State 2: Post-test analysis to identify the fault.

In this stage, measurements of test node voltages have
been made on the circuit, and the measured values are eompared
. with those stored >iﬁJthe fault dictionary. First, a fault
detection algorithm is applied to determine whether the circuit
is faulty at all. If the answer is affirmative, then the fault

is identified by the application of some fault isolation

algorithm (e.g. minimum sum of squared errors).

34

CHAPTER §

APPLICATION OF NEURAL NETWORK TO
FAULT DICTIONARY METHOD

Two approaches are followed while using Neural Networks in
the field of Analog Circuit Fault—diagnésis. In both the
cases .the output of the neural network directly gives whether the
circuit is faulty or not and also which component of the circuit

is faulty.

1) DIRECT APPROACH: In the first approach the test nodal volt-
ages of the circuit are applied as input to the neural network.
The output of the neural network directly gives the fault of the
component. First, the neural networkl is trained with different

sets of test nodal voltages corresponding to different fault

conditions and its correppending—address—as output to the Neural

Network. |NPUTS L OLTPUTS
TEST BACK-~ | ' ‘
' BINA
__Jl PropacaTion |, °/NARY
NODAL - CookD
VouTaces NEURAL o FAULT
NET NUMBERS
. WORK | 7
—_— >
D e p——p

Figure 7 Block Diagram of Direct Approach.

35

For training of the network, the test nodal voltages are
obtained through some network simulator CAD program. First the
circuit is simulated‘inva network simulator, SPICE. Before we
simulate the circuit for different sets of nodal voltages, we
have to sélect some test nodes for this circuit such that those
nodal voltages are obtained, when the circuit is 1in practical
use. We also have to select some fault conditions which are
likely to occur in practice. Then the circuit is simulated by
using some network simulator for all those predetermined fault
conditions and then the test nodal voltages are determined ‘at
these nodes for nominal and fault conditions. All these differ-
ent sets of nodal voltages are formedvinto a fault dictionary.
These must correspond to both nominal and fault conditions. The
address of each fault 'is fabulated against its nodal voltages in

the fault dictionary.

To test the network, we have taken qimple example. It is
having four test nodes and eight faults. The test nodal voltages
for all the fault conditions (F1 to F8) along with the nominal

condition(FO) are tabulated below.

Table 2 Example test nodal voltages

FO F1 F2 " F3 F4. F5 F6 F7 F8
V1 5.0 7.0 7.4 7.3 7.2 9.6 9.7 9.8 . 5.2
v2 9.0 5.0 6.0 6.4 6.2 5.1 5.2 5.3 9.2
V3 9.5 6.0 6.1 6.2 8.0 6.3 6.4 5.3 4.0
V4 5.0 5.1 5.2 8.8 6.0 6.1 9.0 5.3 6.2

36

After getting the test nodal voltages these must be present-
ed té some neural network which can produce the desired results.
This 1is required becausé there are so many neural network para-
digms available, and each neural network architecture and train-
ing system is better at some kinds of problems than others, and
each network requires different types of data from the system for
proper operation. For example, Back Propagation networks make
wonderful mapping networks but may not be quite as good as coun-
ter propagation networks for some associative problems. So to
select the suitable paradigm for the problem from the above

paradigms the problem must be clearly defined.

There are so many paradigms available in the Neural Net-
works, suitable for different applications. To use any Neural

Network it requires the information of the problem in terms of

1. What type of input, output are used. ~“That is continuous
values or binary values.

2. Type of learning. Whether it is Supervised or Unsuper-
vised learning.

3. Type of application. That is Mapping, Associative Memo-

ry, Categorization, Temporal Mapping or Image Processing.

In this problem, Analog Circuit Fault Diagnosis, the input
values used for training and recall are analog values, because
the test nodal voltages of the circuit under test are (after
normalization) to the network as input values. The output values
are always binary values, which represent the address of various

faults. The type of learning used is Supervised learning, be-

37

cause each set of input test nodal voltages are mapped to the
corresponding binary coded addresses as output. The type of
application is of Mapping type because the input voltages are

mapped to output addresses.

"By considering the characteristics of the problem, Analog
Circuit Fault-Diagnosis, and the characteristics of different
Neural Network algorithms it is found that Back Propagation

algorithm can be used to solve the above problem effectively.

The Back Propagation algorithm is developed in €, in which

various parameters can be changed. These parameters determine.

1. The rate at which the output error converges to the re-
quired error.

2. How frequently the network goes into local minima.

The main parameters that are to be considered for the above
are Training rate parameter and Momentum term. As we have al-
ready seen, the rate of conVergence increases with the increase
of training rate parameter. but, as we increase the values of
training rate parameter the netﬁork more frequently struck out in
local minima. This can be overcome with the introduction of the
Momentum term. But still there is threat from 1local minima.
This 1local minima occurs when the output values of any node(s)
reaches nearer to 1 or 0 instead of reaching 0 or 1. This can

be explained as follows:-

38

In the output layer, the weight-change formula for the

weight running from output unit j to a lower level unit i is:
W{i)[J] = k *(t[(j]-o[j}) * o[]] * (1-o[Jj]) * o[i]

Where t[j] is target value, o[j] 1is the target value of the
output unit, o[i] is the activation value of unit i, and k is the
learning rate. The o[j]*(1-0([]j]) term is the derivative of the
activation function. A serious problem arises here in that when
o{j] is close to 1 or 0 the term o[]j]*(1-0([j]) is émall and very
little 1earﬁing takes place. When some output is registering a 1
when it should be.registering a 0 or registering a 0 when it
should be a 1, it will take a very long time to undo this prob-

lem. To cope with this problem we have added the value 0.1 to

output derivative term. Then it becomes
0.1 + o[j] *(1-o[3])

Now the term never approaches zero. So the learning rate becomes

very fast without any local minima.

We have trained the Back Propagation network directly with
the normalized values of the above voltages as inputs and the
binary coded fault numbers as out output numbers. The training
patterns presented to the network are shown in the Table(3). The
network could be able to map the input voltages to the output

binary values in reasonable number of iterations.

39

Table 3 The training patterns

Input patterns Output Patterns
.50 .90 .95 .50 0 00O
.70 .50 .60 .51- 0 001
.74 .60 .61 .52 0010
.73 .64 .62 .88 ' 0011
.72 .62 .80 .60 0100
.96 .51 .63 .61 ' . 0101
.97. .52 .64 .90 0110
.98 .53 .53 .53 0111
.52 .92 .40 .62 1000

After training of the network is completed, the network can
be used recall mode. 1In this mode when we present network with

the test nodal voltages, the network gives the fault number.

2) INTEGER CODED APPROACH: 1In this approach, instead of directly
applying the test nodal voltages to the neural network for
training as in the direct approach, we have used some isolation‘
procedure (Lin and Elcherif) which not only isolates one fault
from the other but also gives optionally minimum number of nodal
voltages required for isolation. The isolation procedure pro-
duces as unique integer code for all the nodal voltages. Then
this integer code is used as training patterns to the neural

network as in the direct approach. The output of neural network

40

is the address of the fault. The block diagram is shown 1in the

following figure.

INPUT "—*—ﬁ outTPuTl INeuT ’__ﬁ ouUtry]
—nd :

; BACK- ‘r_‘
o) ‘
. | PROPAGATION | .
_ . - I Binany
TEST FAOULT INTEGQIK g CNEURAL i QODEOM
— T e o = —‘: € -
NODAL | SOL ATION Cooe | NETwoRx FAOLY
VOLTAGE PROCE DURE | 3
CTAGES . i NUMRERS
)

Figure 8 Block Diagram of Integer Code Technique

This isolation is required bedause of the ambiguities caused
by tﬁe vafiations in values of the components. This variation in
values of components is caused by the tolerance limits of the
- components. Because of the tolerance limits one set of nodal
voltages may fall into another set of nodal voltages. This
causes some ambiguity in recognizing or isolating one fault from
other. So some form of isolation procedure\must be used to
diagnose these faults, i.e. to isolate or recognize one fault
from other fault. For that we have used some 1qgical procedure
which not only isolates the faults but also determines how many
number of minimum nodes which is not required. 1In this we can
set our own tolerahce limits according to the circuit components.
Before we go into the details of how the isolation procedure
works, what is ambiquity set and how it will be formed must be

studied.

41

Consider a hypothetical case of a circuit with two test
nodes and six faults. Suppose that the circuit of a CAD program

yield the results shown in Table(4).

)

Table 4 Voltages of two test nodes of hypothetical circuit

Nom F1 F2 F3 F4 F5 Fé
V1 5.5 9.0 6.8 6.4 6.6 5.1 2.0
A\ 4.0 8.0 5.0 5.2 7.8 7.6 5.0

These voltage values are obtained under the assumption of
exact element values. In reality,‘the value of any element may
vary within some tolerance range. If the measured value of V1 is
5.3 volts, we really cannot be certain whether the circuit is
under nominal or fault 5 condition. Thus in this case, NOM and
F5 form what is called an “ambiguity set'. Suppose if we define
the voltage of an ambiguity set to have a range of +/-7 volts
about its center value and stipulate that different ambiguity set
voltage ranges do not overlap 1in the present example the ambi-

guity sets obtained are tabulated as shown:

42

Table S5 Tabulation of Ambiguity Sets

(node, ambiguity set) Circuit Condition Voltage Range

(1,1) - NOM, F5 4.6-6.0
(1,2) F2,F3,F4 5.7-7.1
(1,3) ’ F1 8.3-9.7
(1,4) F6 1.3-2.7
(2,1) NOM, F6 2.8-4.2
(2,2) F1,F4,F5 7.1-8.5
(2,3) F2,F3 4.4-5.8

In this example test node 1 has 4 ambiguity éets and test
node two has threé ambiguity sets. Examination of the above
table shows that fault F4 cannot be isolated from F2 and F3 if we
use test node 1 only. Similarly, fault F4 cannot be isolated
from F1 and F5 if we use test node 2 only. However, if both test
nodes 1 and 2 are used then F4 can be isolated. This is because
F4 is the only fault that occurs in both ambiguity sets (1,2) and
(2,2). On the other hand the, faults F2 and F3 cannot be

isolated even if both test nodes are used.

According to the above procedure, first ambiguity sets will
be formed corresponding to the test nodal voltages. For example,
take the test node 1 voltages used in the first procedure. One
input vector and four test nodes (V1,V2,V3,V4) have been chosen.

.Test nodes have been determined by the use of circuit simulation

43

program. The origin of data is immaterial for the intended fault

isolation. The voltages are given in Table (1).

.

For each test ﬁode we can define ambiguity sets, = voltage
ranges and circuit conditions. This process becomes very clear
if we present the information of node 1 voltages in Table (1)f in
the form of plots ‘as/éhown in Fig. 8 below. Circuit conditions
that belong to the same ambiquity set correspond to the points in

fig.8 that form a cluster. The ambiguity set table . that is

obtained is with the aid of the above figure is shown in Table(4)

FOFS8 . F1F3 Fs F7
L ¥ S : dooe - - ~—V1i
Fe4 F2 Fe
Fi1Fo F2 F3 . FOoFs8
i JOPR ! PN 1 PN V2
F6 F7 F4
Fs8 F7 F1F3Fs Fd¢ Fo
: 1 . doooe 1 > | - V3
F2F5 ’
FOF2 F4 F8 F3 Fo6 -
{ d - doe D .) -—3 1 Ve
4 F1F7 . F5 7 - 10
* volts

Figure 9. Formation of Ambiguity Sets.

44

Table 6 Ambiguity sets' Contents and Voltage Ranges

(Node, Ambiguity Set) Circuit Condition Voltage Range

(1,1) | FO,F8 4.4-5.9
(1,2) F1,F2, F3 F4 6.4-7.8
(1,3) / F5, F6,F7 © 9.0-10.4
(2,1) F1,F5,F6,F7 4.5-5.6
(2,2) F2,F3,F4 5.7-6.9
(2,3) FO,F8 8.4-9.8
(3,1) . F8 3.3-4.4
(3,2) F§ 4.6-5.7
(3,3) F1,F2,F3,F5,F6 5,8-6,9
(3,4) . F7 7.3-8.7
(3,5) FO' - 8.7-10.2
(4,1) FO,F1,F2,F7 - 4,5-5,5
(4,2) F4,F5,F8 _ 5.7-6.8
(4,3) F3,F6 “ 8.2-9.6

\

It is observed from the table that node 3 has five ambiguity
sets, while nodes 1,2, and 4 eaéh héve three ambiguity sets. The
range of each ambiguity set in Table (6) is determined in the
following manner. First, the center of each cluster is taken to'
be the average of the two extreme values of the cluster. Next a
range of +/-0.7 volt from the center is tentatively set. After
the tentative ranges for all ambiguity sets have been calculated,
a check is made to see whether the ranges of any tﬁo ambiguity

sets (of the same test node) overlap. If so both ranges are

45

reduced by an equivalent, until a gap of 0.1 or 0.2 volt |is
obtained. After such revisions, the ranges are accepted for use.
As an example, consider ambiguity sets (3,2) and (3,3) in Table
(4). The second ambiguity set of node three has only one value
5.3 volts(correspond to F7), which is then also the centre value.
Therefore, ambiquity set (3,2) has tentative range of 4.6 to 6.0

volts. The third ambiguity set of node three has two extreme

values, 6.0 and 6.4 (corresponding F1 and F6, respectively), and -
hence a center value of 6.2 volts. Therefore, ambiguity set
(3,3) has a tentative range from 5.5. to 6.9. These ranges

overlap. So we decrease the upper boundary of set (3,2) from 6.0
to 5.7 and increase the lower boundary of éet (3,3) from 5.5 to
5.8. Each range is reduced by 0.3 volts. And a gap of 0.1 volt
has been created. This explains how the range from 5.8 to 6.9 is
obtained for ambiguity set (3,3). Similar adjustments are ﬁade

for all ambiguity set ranges.

Fault Isolation By Intersection of Ambiguity Sets:

Suppose some ambiguity set of some test node VJ contains
only one circuit condition FK; then whether that circuit condi-
tion has occured can be determined by measuring node voltage VJ
only. In this case, we can say the fault FK has been isolated.
For example, 1let the measured value of V3 is 8.3 volts. Then
table 6 indicates that the value belongs to émbiguity set (3,2).
Since it has only one element, namely F4, the circuit must be

under the condition of fault 4.

46

On the other hand, if we measure one node voltage only and
obtain V3 = 6.5 volts, we will not be able to isolate the fault.
Table(6) indicates that 6.5 volts belongs to ambiguity set
(3,3),and the circﬁit may be under any one of the following

conditions: F1, F2, F3, F5, or Fe.

.

Let us see how the use of additional test nodes can help in
isolating the faults. First we have constructed an "ambiguity

sets intersection table" as shown in Table(7).

~

- Table 7 Intersection of ambiquity sets of V3 and V4.

va

V3 FO,F1,F2,F7 F4,F5,F8 F3,F6
g F8 @ F8 e
. F7 F7 ‘ e @
F1,F2,F3,F5,F6 F1,F2 " F5 F3,F6
F4 Q F4 - e
FO FO e e

In table 7 the row headings contain ambiguity sets of node 3,
whereas the column headings contain those of node 4. Each (1i,3)
block of the matrix contains the result of intersection of ambi-
guity sets (3,i) and (4,j) with @ denoting a null set. For

example, the content of the (3,1) block is determined as follows:
amb. set (3,3) amb. set (4,1)

=(F1,F2,F3,F5,F6) (F0,F1,F2,F7) = (F1,F2)

47

We node that this intersection yields a total of seven
ambiguity sets: (F8), (F7), (F,4), (F5), (F,1 ,F2) , (F3, Fe).
In particular, F5 has been isolated with the addition of test
node 4. For example, if the measured values are V3 = 6.5 volts
and V4 = 6.2 volts, then the circuit condition belongs to ambi-
guity sets (3,3) and (4,2), according to Table 7. Bu£ Table 7
shows that the only Eault which occurs in both ambiguity set
(3,3) and (4,2) 1is F5. Therefore we conclude that the circuit is

under condition FS.

With two test nodes V3 and V4, we have isolated faults F4,
F5, F7 and F8 - a 50% isolation. We note thaﬁ F1 has not been
separated from F2, nor has F3 been separated from F6.
More test nodes must be used to achieve a higher percentage of

isolation.

Suppose that we decide to add test node V1 with the hope of

~

resolving the ambiguity in (F1, F2) and also in (F3, F6). The

effect of adding V1 can be seen from Table 8.

Table 8 Intersection of (V3,V4) with VI

VI
(V3,V4) : FO,F3 F1,F2,F3,F4 FS,F6,F7
F1,F2 @ F1,F2 @
F3,F6 @ F3 F6

5 Singletons - 5 Singletons

48

An ambiguity set with only one element is called a Single-
ton. Observe that in Table 8 F3 and Fé have been isolated, but

~F1 and F2 have not. Let us further add test node 2. The inter-

section operation is shown in Table 9.

Table 9 Intersection of (V3,V4,VI) with V2

A\

(V3,V4,VI) F1,F5,F6,F7 F2,F3,F4 FO,F8

F1,F2 F1 | F2 @

7 Singletons ‘ 7 Singletons

The faults F1 and F2 are now isolated. This indicates that
if we use all of the four test nodes, we can have 100% fault
isolation. but the result does to imply that one must use all
four test nodes to achieve 100% isolation. For example, if the
node to be added after (V3,V4) is V2 instead of VI we will have

the intersection table shown in Table 10.

Table 10 Intersection of (V3,V2) with V2

V2
(V3,V4) F1,F5,F6,F7 F2,F3,F4 FO,F8
F1,F2 F1 F2 @
F3,F6 o F6 F3 e
5 Singletons 5 Singletons

49

The result indicates that 106% fault isolation can also be
achieved without test node 1.

Reduction of the Number of Test Nodes

In the general case, the determination of a minimum set of
test nodes to achieve the highest percentage of isolation 1is a
very time-consuming précess for large circuits. Fortunately, for
practical applications, we need not insist on getting,the theo-
retical minimal number of test nodes. Any near—m;nimum solution
will serve our purpose if the solution is simple. In other
words, a heuristic method might be more useful for solving prac-

tical problems.

We present two heuristic procedures for reducing the number

of test nodes.

PROCEDURE 1

Step 1. Select the node that has the largest number of
ambiguity sets. (If a tie occurs, arbitrarily select one among

them.

Step 24 Select the next node whose intersection with previ-
ously selected nodes will result in the largest number of ambi-

guity sets..In case of a tie, arbitrarily select one.

S8tep 3. If the number of the resultant ambigquity sets is

equal to the number of circuit conditions stop. Otherwise go to

step 2.

50

Consider the previous example of Table 6. Node 3 is select-
ed first, because it has five ambiguity sets, the 1largest among
V1i,vV2, V3 and V4. Next, one node from V1,V2 and V4 1is to be
selected. The intersection of V3 with V4 yields a total of seven
'ambiguity sets (see Table 7). Similarly, V3 V1 yields six sets,

and so does V3 V2. Therefore V4 is chosen as the second test

node. The third test node is to be selected from V1 and V2. Now
(V3, V4) V2 yields nine ambiquity sets (see Table 10), whereas
(V3 V4) V1 yields only eight sets (see Table 8). Therefore V2

fault isolation is achieved. Test node V1 is seen to be redun-

dant.

Procedure 1 will often lead to a near-optimum selection of
test nodes. But even this procedufe mayvbe too time-consuming
for 1arge circuits.- This is because that in step 2 every node
has to be intersected»with the previously selected group of
nodes. Therefore, a further simplified procedure 1is given

below.

PROCEDURE 2

Step 1. Select the node that has the largest number of
ambiguity sets. If a tie occurs, arbitrarily select one among

them.

<

Step 2. In the remaining nodes, tentatively select one

having the largest number of ambiguity sets. If a tie occurs,

51

pick any one among them. Now obtain the intersection of this
node, VJ, with the previous selected group of nodes. ,If the
intersection increases the total number of ambiguity sets, then

‘'select VJ as a test node. Otherwisé, disregard VJ.

Step 3. If the number of resultant ambiguity sets is equal to
the number of circuit ‘conditions, stop. Otherwise, go to step

2.

Let wus illustrate 2 with the previous example of Table 6.
In step 1, we select V3 since it has five ambigquity sets, the
largest among V1, V2, V3, V4. Each 6f the remaining nodes, V1,
V2, and V4, has three ambigquity sets. Acchdiné/to step 2; we
may arbitrarily pick one. Suppose that node 1 is picked. The
intersection V3 V1 has six ambiguity sets, one more than that of
V3 alone. Therefore, V1 is selected as the second test node.

The third test node is to be arbitrarily selected from V2 and V4.

Suppose that we tentatively pick V2.

The intersection V2 (V3 V1) has séven ambiguity sets, one
more than (V3, V4) . Therefore V2 is selected as the third test
node.” There is a total of nine circuit conditions (one nominal
plus eight faulty conditions). Since 7 < 9, we go through step
2 another time and include V4 as the fourth test node. As shown
previously, with V1, V2, V3 and V4 all selected as test nodes, we
achieve 100% fault isolation. But this clearly is not an opti-
mum solution, since three test nodes V3, V4, and V2 will achieve

the same goal.

52

In most cases procedure 2 will produce a satisfactory solu-
tion to the reduction of test nodes. Siﬁce its computational
effort is much less than that of procedure 1, we have implemented

procedure 2 in our present computer program.

Compilation of Fault-Dictionary: Once the test nodes have been
selected using Procedure 1 or Procedure 2 described above, we can
determine a unique integer code for each circuit condition (both
fault & nominal). For this we need only the ambiguity set table
as given in table 6. Each fault Fj belongs to exactly one ambi-

guity set of every test node.
This information is tabulated as shown below:-

Table 11 Integer Codes for All Faults

Circuit condition V3 \'L:) V2
FO | 5 1 ’ 3
F1 , | 3 1 : 1
F2 ' | 3 1 2
F3 3 3 2
F4 4 2 2
F5 _ 3 2 1
Fé 3 3 1
F7 2 ‘ 1 1

F8 1 2 3

Here we assume that V3, V4, and V2 have been selected as the

test nodes. As an illustration, consider the case 3,1,2 for F2.

53

This means that F2 is in third ambiguity set of V3, the first set

of V4, and second set of V4. We can get other codes in the same

way.

After obtaining the integer codes as above, Integer coded
fault dictionary is formed to train the neural network. The
fault dictionary or the training patterns contain the normalized
‘values of integer code és input values. The integer coded fault
dictionary that is used for training corresponding to the table

!

6 & Table 11 is shown in the following table 12.

Table 12 Integer Coded Fault Dictionary

Input Patterns Output Patterns

5 1 3 . 0000

3 1 1 0001

3 1 2 0010

3 3 2 0011

4 2 2 - 0100 R
4 2 1 0101

3 3 1 0110

2 1 1 0111

1 2 3 1000

The Backpropagation network is trained with the above pat-
terns. After tﬁe training is completed the network can be used
in run mode. In this mode first the test nodal voltages are
applied to the iso;ation procedure, which gives a unique ‘integer
code. This integer code is applied as input to the BP network

which gives the fault number as the output.

54

In our present approaches, there is no distinction between
fault detection and fault isolation i,e, requires no additional
computational effort. We include the nominal circuit (designated
by FO or NOM) in the ambigquity set manipulatioﬁs. Separation of
a fault FJ fro NOM amount to fault deﬁection, while separation

among faults is the usual fault isolation.

55

CHAPTER 6

RESULTS AND CONCLUSIONS

b

For the purpose of using BP network in analog circuit fault
diégnosis, I have developed a program for BP algorithm in °“C'
This program will accept different neural network parameters,
which gives the flexibility to the user to have his own network
configuration and he can define his own network parameter values,
which determine the rate of converdence of the network. We can
vary the number og layers, no. of nodes in each layer. We can
also vary the learning rate parameter, and the momentum te:m. As
we increase the learning rate, the rate of convergence ihéreases.
Similarly as we increase the momentum term, the rate of conver-
gence increases. Some of the results that are obtained by vary-
ing learning rate parameter and momentum term are presented in
the tables 12 & 13 respectively. From the table we can observe
that the rate of convergence is proportional to momentum term and

learning rate parameter.

In the direct approach, in which we train the BP network
directly with test nodal voltages; if the tolerance values are in
 the range * 0.1 volt, we have trained the network with input
values having * 0.1 volt error. After training the network with
error, we RUN the network for all possible patterns with * 0.1
volt error. It is giving correct results for all patterns. If

the tolerance value is .2 volts, we have used * 0.2 volt

56

1

error. If the tolerance is 0.3 volts, * 0.3 error is used in
the training patterns. In all thé above cases it is found that
the network is working satisfactorily. By setting the values of
~error in the training patterns, we can se£ the tolerance limits
of the components of the circuits. The main drawback of this
procedure is all test-nodal voltages are to be considered for

isolation.

In the integer code approach, the isolation procedure not
only iéolate different faults, but also determine the minimum
number of nodal voltages required for isolation. The results
that are obtained for (4 nodes; 9 faults) network.are‘given in
chapter 5. In this procedure also we can set different values of
tolerance limits. In this procedure, the neural network need not
be trained with error values, as in first procedure. The isola-

"~ tion already takes place in éhe isolation procedure.

57

Table 12 Results for various values of Momentum with Learning

Rate = 0.8 and RMS Error = 0.1

MOMENTUM NO. OF ITERATIONS
0.1 2945
0.2 2704
0.3 2500
0.4 2325
0.5 2171
0.6 2045
0.7 1949
0.8 1872
0.9 1825
1.0 1776

58

Table 13 Results for various values of Training Rate with Moments

= 0.9 RMS Error=0.1

LEARNING RATE NO. OF ITERATIONS

0.3 4548

0.4 3419
0.5 2742
0.6 2316
0.7 2026
0.8 ' 1825
0.9 1678
1.0 1588
1.5 1490
2.0 1039
2.5 872
3.0 767
3.5 727
4.0 711
a5 617

59

REFERENCES

Richard Lippmann, "An introduction to computing with neural

nets", IEEE ASSP Magazine, April 1987.

James L.McClelland and David E.Rumelhart, "Explorations in
parallel distributed processing A handbook of models, pro

grams, and exercises", pub. The MIT Press.

‘"Maureen Caudill, "Avoiding the great backpropagation trap",

. .) .
bon Tveter, "Getting a fast break with backprop'", Jessica
Keyes, "Getting Caught in Neural Network" A.I. Expert, -~JULY
1991.) ,

Alianna Maren, <Craig Harston, Robert Pap, "Hand Book of

Neural Computing Applications", Academic Press, INC.

Igor Aleksander, "Neural computing architectures", Pub. North

Oxford Acadenmic -

John J. Hopfield, "Artificial Neural Networks", IEEE Circuits

and Devices Magazine, Sept., 1988

Maureen Caudill, "Neural networks Primer Part 1&2, AI Expert

Dec., 1987

Tom J. Schwartz "Parables of Neural Networks", AI Expert,

\

Dec., 1989.

Philip Treleaven, Macro Pacheco, Marley . Vellasco, "VLSI

Architectures of Neural Networks", IEEE Macro, Dec., 1989

60

10.

11.

12.

P.M. Lin and Y.S. Elcheriff, "Analog circuits fault diction-
ary - New approaches and implementation" Int. Journal of

circuit theory and applications vol. 13, ppl49-172, 1985.

P. Duhamel and J.C; Rault; "Automatic test generation tech-
niques for analog circuits and systems - A review", IEEE
Transactions on Cifcuits and Systems, Vol. CAS—26, pPp.410-
440. July 1979. |

Samuel N. Stevens and P.M. Lin, "Analysis of Piecewise-Linear

Resistive Networks".

IEEE Transactions on Circuits and Systems.

13.

14.

15.

Walter Hochwald and John D. Bastian, "A D.C. Approach for
Analog fault dictionary detefmination", IEEE Transactions on

circuits and systems", July 1979.

William J. MccCalla, "Fundamentals of computer aided circuit

simulation" pub. Kluwer Academic Publishers.

Heinz H. Schreiber, "fault Dictionary Based Upon Stimulus
Design'", IEEE Transactions on circuits and Systems, July

1979.

61

APPENDIX 1
THE BOLTZMANN MACHINE

The Boltzmann machine is structurally and dynamically
similar to the Backpropagation algorithm, and which can perform'
similar tasks. It differs from perceptron like networks in that
they wuse an energy state optimization method derived from
statistical considerations, rather than a Delta rule. This
approach to learning allows them to perform optimizatioh tasks as

well as pattern recognition.

The Boltzmann machine has both conceptual and performance
similarities to Back-propagation network. Both have hidden
nodes, and both need to be trained to match input patterns to
previously determined categories. Both networks weré developed
at about the same time, and were applied to the same type of
problems. But the Boltzmann machine is not as popular as

Backpropagation.

There are several reasons why the Boltzménn. machine never
achieved the popularity of the back—propagation network. First,
the performance of the two networks was very similar, so there
was no need to favour one over the)other because of performance
or capability considerations. Thus, the main criteria for
selecting a network became ease of learning and ease of using it
for a particular application. The back-propagation network was

easier to both learn and to use.

62

The back-propagation concepts and learning rules come out of
a fairly direct approach of minimizing an energy using
differential calculus. In contrast, the Boltzmann machine

concepts come out of statistical mechanics, expressed in either

information theoretic and/or statistical thermodynamic
formalisms. Not many people in the neural networks field have
the background to understand either of these approaches. Its

learning rule takes much longef to write down than the
backpropagation learning rule, as it is more complex, and takes
more time when training a network. As a result an explosion of
applications of the back-propagation method'has occured, while
interest in the Boltzmann machine has dwiﬁdled. But the problen
with the back-propagation network is sometimes the connection
weights take on values which trap the network in a local minimum.
The goal of using the simulated annealing ﬁethod is to avoid such

local minima trapping.

The learning method for Boltzmann machines is called
simulﬁted Annealing. The simulated annealing approach to learning
is sometimes called stochastic or statistical, because it relies
on generating random events and evaluating their effect in terms

of desired goals and probability distributions.

The essence of the simulated annealing learning law is that
we make an analogy between the energy state of the entire network
and the energy state of a physical solid which is slowly cooled.
We will pretend that each individual unit in the solid (atoms,
molecules, etc.) can take on one of two possible states: a high-

energy state(l) or a low energy state(0). The free energy (a

63

term for thermodynamics) of the solid is a combination of two
factors; the combined energies of the individual units and the
negative of the entropy (the disorder among the units) times the

tenperature of the solid.

The key to this analogy is that whether a solid is in a
high-energy or 1ow—enéfgy state, it is' always in equilibrium.
Equilibrium is found at the lowest point on the free energy
curve. If we lower the temperature slowly, the solid will have an
opportunity to find this lowest point, even if there are many"
other shallow minima. We want to accomplish the same thing with
the Boltzmann machine netwdrk. We want to create some sort of
artificial temperature so that as we slowly reduce this
temperature, the connection weights-take on values that put the

network at the global minimum for the enefgy curve, and don't get

trapped in one of the local shallow minima.

Let's make a physical analogy to this energy surface.
Suppose that we hold in our handé a large tray of firm plastic
that has some pockets or indentations in it. This would be 1like
the bottom half of 6ne of those cartons of eggs. ‘Now, some of
those indentations are very shallow, and some ' are very deep..
This represents the energy surface (which is really
multidimensional). Let's suppose that we have a single egg-sized
ball in this tray. Although tﬁis is just a single, one, we want
to think of it as corresponding to the entire collection of
weights that we want to optimize. Our goal is to shake the tray

so that the ball goes into the deepest of the indentations.

64

We could shake the tray continuously, and hope that just by
keeping this up, the ball will fall into the hole. But how will
we know when the ball has reached the deepest indentation?. This
can be tricky, especially if we don't know in advance which of
the indentations is deepest. So we adopt a strategy. We shake
the tray, pretty hard at first. Shéke’it some more. Shake somne
more, a bit more gently. Then more gently.yet. Finally, just- the
barest of tremors. Now, let's look into the tray. Chances. are,
the ball is in the deepest pocket. That's because as we shook
the tray mofe and more gently, the ball could be shaken into out
of- shallow indentations, but not the deepest ones. There;s no
absolute guarantee thaf it would have fallen into the very
deepest one in the tray, but it is very likely to fall into in

one of the deepest.

We want to take this idea and apply it to finding optimal
connection weights in a neural network. To do this, we return to
our original analogy, that of a éolid “which will undergo
simulated annéaling. We need to see how the shaking of the tray
strategy fits 1in with annealing a solid, because this 1leads

directly to the neural network.

Recall that our hypothetical solid’was composed of identical
units, each of which could be in one of two possible energy
states, high(1) or low(0). The proportional number of units in
each state .is a function of temperature. At high
temperatures, there are more high-energy units than there are at

low temperatures. This proportion can be expressed as a

65

probability distribution. This temperature dependent probability
distribution will be a key factor in the simulated annealing
proceés. Shaking the tray corresponds to setting the temperature
of the solid. Shaking the tray hard corresponds to high
temperature, with high kinetic energy for the ball in the tray.
Shaking the tfay gently corresponds to low temperature. The ball
has 1low kinetic energy, and cénnot easily move out of a deep
pocket . The pockets in the tray correspopd to energy minima in
the free ener@y.surface. There are nﬁmerous local minima, but
relatively few deep minima. The;e minima represent equilibrium
states for a solid, and correspond to optimal connection weight

values in the neural network.

66

APPENDIX 2
PARAS - PARAM

PARAM is a statically reconfigurable multicomputer with the
transpuﬁer as the processing nodes. It has a switch and an
exchange to provide ;econfigurability of nodes depending upon
specific communication démands of an application. Further
provision for allocating the availability nodes to many users
gives multi-user support. Optionally, PARAM can have
PFS(Parallel File System), for fast and high capacity secondary

storage.

These machines are best described as consisting of two parts:
the front and host and back and compute engine. The back end
compute engine is usually a network of transputers whereas the
host «can . be either of PC, a SUN, or a VAX. All the development
work is done on the host machine and the bootable image of the
parallél program is down loaded to the back-end network for

actual execution.

The T800 transputer incorporates a floating-point unit (FPU)
together with a 30 MIPS (peak) CPU, 4 fast serial ‘communication
links and 4 Kbytes of fast SRAM, ail on a single chip. The links
can support 2.4 Mbytes/sec bidirectional communication on each of
the four links, concurrently with fhe opération of the FPU and
the CPU. The concurrent operation of the FPU and the CPU gives a
sustained rating of 1.5 Mflops at a processor speed of 20 MHz.

PARAS is a software development environment for message passing

67

machines built around transputers. These message passing
machines are general purpose MIMD (Multiple Instruction Multiple
Data) machine which employ a network of processing nodes to solve
a single problemn. Processing nodes execute sequential programs
asynchronously and co-operate by sending data in the form of
mességes. The collection of interacting sequential programs which
collectively perform a single job is calledva parallel program.
The development of eucﬁ a program is greatly assisted by the

PARAS environment.

PARAS has program development tools like compilers (for C
and AFORTRAN), linker, configurer, c¢ollector, 1librarian and
decoder to convert the source code into executable code.
Besides, it provides a rich and powerful runtime environment
Concurrent Runtime Environment) CORE. CORE includes facilities
for message communication, process management, file and screen

I/0, graphics and other miscellaneous services.

A typical (parallel) application program under PARAS
consists of a set of processes working together to solve a
particular problem. These processes may either be executing on
different nodes of the network or on the same node. . Some
process, after doing a portion of the job, may need to give the
result of its computation to otﬁer processes. Such a
communication 1is accomplished by explicitly passing a message

from one process to another.

The communication model of PARAS 1is based on abstract

objects <called ports. A port is basically a repository for

68

messages. The concept of a port is very similar to that of a
letter-box attached to a house where the letters addressed to
that particular house are delivered. Any person who knows the
address of the house can post a letter. All the 1letters so

received would be lying in the letter-box till cleared by the

house-owner. -

Similarly, a process owns a port that it creates. A sender
process, which has to send to the receiver, knows the descriptor
of a receiver's port. It sends it message with the descriptor as
address. All messages to a particular port get queued up for the
receiver to receive in first-in-first-out order. Any process
which knows the receiver port's descriptor (address) can send

-messages to it.

The placement of tasks to processors haé to be done at ‘the
configuration stage, before execution of the program. More than
one task can be placed on the same processor if there is
sufficient memory available. When the program starts execution,
all the tasks start their execution simultaneously on their

respective processors.

When a task starts execution, it has a single 1line of
control and executes sequentially. This sequence of code in
execution is <called a thread. A thread is the actual active
entity within a task. The starting thread of a tasks, is called
the main thread. The user might wish to achieve more concufrency
within a tasks on a particular processor. Since tasks have to be

statically defined, a facility for dynamically spawning threads

69

within a task is provided. A processor is time-shared by the
threads executing on it. Threads of\the same task can share
global resources like global variables (cbmmon bloék variables),
file buffers, etc. consequently, threads of the same task an
share the Global variables. This shouid be contrasted with two
tasks placed on the same processor. Although they run on .the
same node they cannot share variables. Concurrency on a single
prbcessor can be achieved either by blacing mdre than one task on
that processor or by dynamically spawning more threads within the

task.

The Program Development Environment comprises a set of tools
which include the compilers, the linkers, the configurer, the
collector, the debugger, the decoder and the librarian. These
tools run on the front-énd host machine (with UNIX or DOS).
Hence, the complete development cah be done on the more familiar
host and only for executing the program the user needs to go to

the parallel machine.

Since PARAS allows writing parallel programs in a hardware-
independent manner, when the program has to run on a specific
hardware, it has to go through a state of configuration. Here,
in the configuration file the actual details of the hardware in
terms of number of processors and the way their communication
links are connected are specified. This file and the linked
modules for the tasks are given as input to the configurer. The
different compiled and linked units of the parallel program are

given together with a configuration specification file to the

70

configurer, which produces a binary file to be given as input to
the collector. The collector, in turn, produces a bootable image
of the parallel program for the spécified machine. The bootable
file has the code to be executed by the tasks alongwith the code
to load them onto the different processors to the networks as per
the user specifiéation; This file is given to a server (running

on the host) for 1loading the code .onto the processors and

executing. it.

Thus, the application program is developed into an
executable form (as a bootable file) using the following four
basic tools. 1. Compiler 2. Linker 3. Configurer 4.

Collector.

71

APPENDIX 3

TAXONOMKY

TAXONOMY OF NEURAL NETIWORKS

BINARY INPUT CONTINUOUS VALUED

N N

SUPERVISED UNSUOPEVISED SUPERVISED UNSUPERVISED

/S~ /N

HOPFIELD HAMMING = CORPENTER, PERCEP. MULTY KOHONEN
NET NET GROSSBERG TRON LAYER SELF ORg.

CLASSIFIER PERCEPTRON Fef&’ﬁg

72

SomeAppIications of Well-Known Networks: |

Network

Year

Most Relevant \

R YT

Thvough Time

L ek —

1 1A,

Inventors/ Primary Advanlages Disadvantages
Introduced | Developers - | Applicalions Chapler
ADALINE/ 1960 B. Widrow Adaptive signal fitering, Fast, easy toimplement, can | Linear refationship between 7
MADALINE adapive equalization be done using analog or VLSH | inpul & oulput assumed Only
crouilry. linear separable dassiication
spaces possible.
- Adaptive 1983 G. Capenter & | Patlem recognilion Able 1o leam new patiems, Nalure of categoncal "
Resonance S. Grossberg ’ lorm new pattern calegories, | exemplars may change with
Theory and relain learned caleqovies. | learning.
Back-Propagating | 1974-1986 | P_J Werbos, | Panem recognition, signal | Fast operation. Good 2! . Long learning me. /
Perceptions: 0. Pasker, fihering, noise removal, forming internal represent- ~
Basic 0. Rumehant | signalimage segmentation, | ations ol lealures ininput data
classihicabon, mapping, or dassilication and other
adapve robotic control, datd 1asks. Well siudied. Many
Compr e$ SIon successiul applicalions.
Recurrent 1987 Almeida, Robotic conlrol, speech Besl network so far for Complex nelwork, may be 17
Pineda recognition, sequence classilying, mapping dilficult to \rain and optimize,
element predicion lime-varying information. -
Time-Delay 1987 | 0.W.Tank& | Speech recognition® Pedormance equivalent lo Fixed window ol temporal 17
J. J. Hophield ' best conventional methods, aclivity represented, responds
: _ lasler operation. awkwardly to dillerences in
scale ol inpul.

Functional-Unk 1388 Y.H.Pao Classification, mapping Only two layers {input & No clear way 1o idenlity 15

Network ' oulpul) needed: faster to train. | functions for functional tinks.

Radial Basis 1987. Muhiple Classification, mapping Network with single hidden Not yet known. 15

Function 1988 Researchers layer ol RBF neurons

Network perorms equivalent lo basic

- BP network with two hidden
layers. -

Back- 1974 P.J. Werbos | Maximiza performance index Mos! comprehensive neurdl | Can use only after 22
_Propagation o¢ Wlifity function over time, | approach for model-based dilferentiable model entitinc :
‘ol Utlity newoconird (e g. robotics) | prediction and/or conbrol. must adapt of ! line it made! ¢

Function dynamic, and assumes model

Some Applications of Well-Known Networks: |l

Network Year Inventors/ Piimary Advanlages Disadvaniages Most Relevant]
Intoduced | Developers Applications Chapler

Bidirectional 1987 B. Kosko Hetercassooative Simple, dear leaning rue, Poor storage capacily, poor Al

Assocalive (content-addressable) architecture, 8 dynamics, reirieval acouracy.

Memory memory Clear proo! ol dynamic

stabdity.
~ Bolzmann 1984, 1986 | G. Hinton, _Pattern recognition (mages| Able 1o form optimal Bolzmann machine-very bong 8
Machine, Cauchy T.Sejnowski, | sonar, radar), oplimization | representation of paftern leaming lime. Cauchy
Machine D. Ackley; fealures. Follows energy maching ollers faster teasning
H. Stw surface 10 obtain oplimization
Minmy. 7

Boundary Contour 1985 S.Grossberg, | Lowdevel image processing &dogica|ly-ba§ed appxoach Complex, myhilayered 12

System E. Mingolla 1o excellent segmentation. architecture.

Brain-State-in-3- 1977 J. Anderson Autoassociative recall Possitdy belter pefformance Incompletely explored in 9

Box than Hopheld network, terms of pedormance and

applicatons potential
Hoplield 1982 J. Hoplield Autoassocate recall, Simple concept, proven Unable to feam new slates 9
\ oplimization dynamic stabiity, easy to (frred weights lor disorete
mplement in VLS! Hoplield), poor memory
510890, many spurnous states
returned.

Learning 1981 T. Kohonen Autoassociatve recal Able 1o seff-organize vector Urvesolved issues in selecting 10

Vedo’. . {panern completion given representations of probability | numters ol veclors fo use and

Quantization panial panem), dala astroutions in data. Rapid length of bme for approprate
compression execubon aller training is trarung. Slow Lainng.

compleled.

Neocognitron 1975-1982 | K. Fukushima | Recognition ol hand drawn | Able to perdorm scale, Requies many processing 12
characters and other vandation and rotalion elements and layers, complex
linear-outline figures nvanani patiem recogniton. struclures, scaling issues for

real-wodd use slid need 1o ba
resolved.

Scll-Organizinq 1981 T. Kohonen Complex mapping (involving ' Ablg to sell-organize vector Urvesolved issues in selecting 10

Topology- neighborhood representalions of dala with a | numbers of vectors to use and

Preserving Map relationships), data ~ meaninglu ordenng among length of bme for v aning.

v e ~ e

COMpression, 0PEMizaton

the representations.

Stow yanng.

	TH51320001
	TH51320002
	TH51320003
	TH51320004
	TH51320005
	TH51320006
	TH51320007
	TH51320008
	TH51320009
	TH51320010
	TH51320011
	TH51320012
	TH51320013
	TH51320014
	TH51320015
	TH51320016
	TH51320017
	TH51320018
	TH51320019
	TH51320020
	TH51320021
	TH51320022
	TH51320023
	TH51320024
	TH51320025
	TH51320026
	TH51320027
	TH51320028
	TH51320029
	TH51320030
	TH51320031
	TH51320032
	TH51320033
	TH51320034
	TH51320035
	TH51320036
	TH51320037
	TH51320038
	TH51320039
	TH51320040
	TH51320041
	TH51320042
	TH51320043
	TH51320044
	TH51320045
	TH51320046
	TH51320047
	TH51320048
	TH51320049
	TH51320050
	TH51320051
	TH51320052
	TH51320053
	TH51320054
	TH51320055
	TH51320056
	TH51320057
	TH51320058
	TH51320059
	TH51320060
	TH51320061
	TH51320062
	TH51320063
	TH51320064
	TH51320065
	TH51320066
	TH51320067
	TH51320068
	TH51320069
	TH51320070
	TH51320071
	TH51320072
	TH51320073
	TH51320074
	TH51320075
	TH51320076
	TH51320077
	TH51320078
	TH51320079

