
A NEURAL NETWORK BASED EXPERT SYSTEM FOR
ANALOG CIRCUIT FAULT DIAGNOSIS

Dissertation submitted to The Jawaharlal Nehru University

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

IN

COMPUTER SCIENCE

V KRISHNA REDDY

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI-11 0 067

JANUARY 1994

CERTIFICATE

This is to certify that dissertation entitled "A NEURAL

NETWORK BASED EXPERT SYSTEM FOR ANALOG CIRCUIT FAULT DIAGNOSIS",

being submitted by v. KRISHNA REDDY to Jawaharlal Nehru

University in the partial fulfillment of the requirement for the

award of degree of Master of Technology in Computer science is a

record of original work done by him under the supervision of

Prof.P.C.SAXENA, Professor, School. of computer and systems

sciences,Jawaharlal Nehru University during the year 1993

monsoon semester.

The results reported in this dissertation have not been

submitted in part ·or full to any other University or Institute

for the award of any degree or diploma.

. "'/\
/ ~~

(Prof.K.K.BHARADWAJ)
~ SCSS, J.N.U.,

I NEW DELHI.

(~.t~~
(Prof.P.C.SAXENA)

SCSS, J.N.U.,
NEW DELHI.

ACKNOWLEDGEMENTS

I feel pleasure to express my heartful gratitude to my guide

Prof. P.C. SAXENA for his uncompromising guidance, constant

supervision and cons~ructional help. This effort would not have

succeeded without the valuable discussion, encouragement to

pursue my thoughts in my own way, apt criticism and excellent

guidance.

I extend my sincere thanks to Dean Prof. K.K.

BHARADWAJ, for providing me the opportunity to undertake this

project. I would like to thank the staff and authorities of our

school for providing me the necessary facilities to complete my

project.

I would like to thank some of my friends, Ramana, Govardhan,

who helped me in completing this project successfully. Last but

not the least , I would like to thank my classmates, for the

encouragement they gave me in completing this project.

(V. KRISHNA REDDY)

ABSTRACT

The Neural Network application to Analog Circuit Fault

Diagnosis js considered. The ~ultilayer feedforward network with

BackPropagation algorithm is chosen for this application. The

circuit can be simulated for different faults using any simulator

and nodal voltages under the different fault.conditions can be

obtained. These nodal voltages along with the fault numbers were

formulated into a table, called as Fault Dictionary. The Neural

Network is trained for all sets of the nodal voltages as input

patterns and wit~ the respective Binary coded fault numbers as

output. Two approaches were followed in using the Neural Net-

works in Fault-Diagnosis. Software is developed for both the

approaches. In the first approach the nodal voltages are di

rectly applied as input patterns. In this all the accessible

nodes of a circuit are to be considered as inputs for the neural

network. In the second method using Lin & Elcheriff's approach,

minimum number of test nodes are obtained for fault isolation and

an unique integer code is obtained for all fault conditions.

This approach isolated the faults from other faults to eliminate

the ambiguities caused by tolerance limits of components of the

circuit. Here the coded ambiguity values are given as the inputs

and binary coded fault numbers as output values. Both the ap-

preaches were working satisfactorily. The Neural Network is

converging to the specified error in reasonable number of itera

tions.

INDEX

Chapter

1. Introduction

2. Neural Networks

3. Backpropagation Algorithm

4. Analog Circuit Fault-Diagnosis

5. Application of ANNs to Faultdiagnosis

6. Results and Conclusions

References

Appendix 1

Boltzmann Machine

Appendix 2

PARAS-PARAM

Appendix 3

Taxonomy

Page No

1

12

21

31

35

56

60

62

67

72

CHAPTER 1

INTRODUCTION

Rapid advances in Neuroscience and in Computer Science are

arousing renewed interest in Artificial Neural Networks as

potentially new problem-solving architectures. The neural

networks' derived its name from th~ network of neurons, which is

the basic fundamental unit of nervous system, especially the

brain. Human Brain has more than ten billion nerve cells or
. I

neurons interconnected in a massively parallel fashion. The
\

brain's capabilities inspired many scientists to attempt computer

modelling of its operation and the result has been the study of

neural networks. It is common,to refer to such networks as

Artificial Neural Networks to distinguish them from the natural

neural networks that are in human brain.

Analogy to the Brain

J

The neuron is the fundamental unit of the nervous system and

in particular the brain. Its nucleus receives and combines

signals from many other neurons through input paths called

Dendrites. If the signal is strong enough it activates the

neuron which produces an output signal. The path of the output

signal is called Axon. The axon splits up and connects to the

dendrites of other neurons through a junction called Synapse.

The amount of signal transferred depend on the Synaptic strength.

This simple transfer of information is chemical iry nature but has

1

electrical side effects which can be measured. The structure of

a neuron is as shown in Fig. 1.

,i.)I(ON

I

Figure 1 Structure of Biological Neuron

Artificial Neuron

·Artific~al Neural Networks (ANNs) are made up of processing

elements or nodes which resemble the neurons of human brain. A

processing element (PE) has several input connections and a

single output. The PE receives input signal through its input

connections from other PEs. Each connection from one processing

element to another processing element has some value called

connection weight. The processing element calculates the

weighted sum of its input signals according to a function to

determine its output. The transfer function is generally a non-

2

linear function like hard limiters, threshold or sigmoid

function. Positive weights which increase the strength of

connection represent excitatory connection while negative weights

which represent inhibitory connections decrease the strength of

connection. The output is sent to other PEs through output

terminal.

The structure of processing element is as shown in the

figure 2. In this figure, x1 , x2 , x3 , x 4 , xn represent the

input values from other neurons. And w1 , w2 , w3 , w4 , ... ,wn

represent the corresponding connection weights. The processing

element calculates the weighted sum w1 .x1+w2 .x2+w3 .x3+ ... +wn.xn

of all these inputs, and then calculates its output using some

transfer function Fn.

Figure 2 Structure of Artificial Neuron (Processing Element)

Artificial Neural Networks

Artificial Neural Networks are dynamic systems composed of

highly interconnected layers of simple neuron-like processing

3

elements as shown ir figure 3. These layers are categorized as

input layers where patterns are presented to the network and

output layers which contain the response to a given input.

Further more they may contain intermediate layers or ·:hidden

layers between input and output layers.

-
Neural network operations consists of a learning or training

phase, recall phase, and generalization phase. During the

learning phase the network is repeatedly presented with a set of

input-output patterns. Learning is accomplished by a general

rule which dynamically modifies the weights of all

interconnections in ~n attempt to generate the desi~ed output

pattern for each presented input pattern. After the learning is

complete~ the network operates in a recall phase where it

generates response to input patterns used in the training. It

also operates in a generalization phase where it generates
'·

response to similar or novel input patterns.

J
/ '·,

t
i our PuT

/
J r------. 1... A 'I'(I<

:--- ••• j •

HIODt:N
/

. ~ \ INPUT

<,, __)-- - \...,--' LAVER

I I

.I I

Figure 3 structure of Artificial Neural Network

4

Neural network computations are collectively performed by

the entire network with knowledge represented in the connection

weights between processing elements. Consequently, the.

collective operations result in a high degree of parallel

computation which enables the network to solve complex problems
-·

rapidly. In addition, the distributed representation leads to

greater fault tolerance and to graceful degradation when problems

are encountered beyond its range of experience.

In the following table 1, comparison is made between

human brain and artificial neural networks.

Table 1 Comparison Between Brain and ANN

Element Brain ANN

1. Organization Network of neurons Network of Processing

elements

2. Components Dendrites, Axons, Inputs, outputs, weight

synapses, Summer, summation function,

Threshold. Threshold function.

' 3. Processing Analog. Analog or Digital.

4. Architecture 10 to 100 billion 1 to 1,000,000 PEs

neurons

5. Hardware Neuron switching Device.

6. switching Speed 1 milli second 1 n.sec. to 1 m.sec.

7. Technology Biological Silicon, optical.

5

Comparison to AI :

1. In AI knowledge is explicit in the form of rules. To

create an AI an expert is needed to evaluate the problem and to

define the rules. Where as in artificial neural networks we need

not define any rules. ANNs can generate their own rules by

learning from the examples.

Advantages of Neural Networks

Because of its structure and the organization or processing

of information, the neural networks offer some unique advantages

over other conventional systems. The advantages are as follows:

1) ADAPTIVE LEARNING: An ability to learn how to do tasks

based on the data given for training or for initial experi-

ence.

Adapt1ve learning is one of ttie most attractive features of

neural networks; that is, they learn how to perform certain tasks

by under going training with illustrative examples. Because the

ANNs can learn to discriminate patterns based on examples and
-

training, we do not need to elaborate training models, nor we

need to specify the probability distribution functions. The

designers sole concern is to select apprdpriate architecture,

learning algorithm, training patterns, and network dynamics.

2) SELF ORGANIZATION : A neural network can create its own

representation of information it receives during learning and

operation.

6

Neural networks use their adaptive learning capabilities to

self-organize the information received during learning. When

the neural network self organizes, it creates representation of

' distinct features of the training data. Even when the ANNs are

taught to learn certain classes of patterns, they self organize

the information such that it is used for pattern recognition.

3) FAULT TOLERANCE 'VIA REDUNDANT INFORMATION CODING: Partial

destruction of NN leads to degradation of performance. However,

some network capabilities may be retained even after major

damage.

NNs are the first computational methods, available which are

fault tolerant. There are two distinct aspects of fault

tolerance. First, NNs can learn to recognize patterns which are

noisy, distorted, even incomplete. This fault tolerance is with

regard to data. Second, they continue to perform even after some

part of the network itself is destroyed. This fault tolerance to

damage within themselves.

This tolerance is due to that NNs have distiibuted (or

redundant) information encoding. When neural network store

information it is not localized. Instead it is shared by all

interconnections and weights. Where as most computer algorithms

and data retrieval systems store each piece of information in a

localized addressable space.

7

4) REAL TIME OPERATION : NN computations can be carried out in

parallel, and special hardware devices are being designed and

manufactured, which can ~ake advantage of this capability. NNs

are well suited for parallel implementation. Their structure is

such that only a few steps need to be performed per neuron. That

is, only it has to perform weighted sum of inputs and applies

some transfer function to the sum~ Thus massive parallelism can

achieved through VLSI technology.

S) EASE OF INSERTION INTO EXISTING TECHNOLOGY : An individual

network can be trained to perform a sing~e, well defined task.

Because a network can be rapidly prototyped, trained, tested, and

verified, and translated into low cost hardware implementation,

it is easy to insert neural networks for specific purposes into

existing systems.

Because of these advantages, artificial neural networks are

emerging computational technology which can significantly enhance

a number of applications. ANNs are finding use in many real

world applications such as speech processing,

recognition, image processing, diagnosis, natural

pattern

language

processing, combinatorial problems, noise filtering, medical

diagnosis and control systems.

Software is developed for analog circuit fault diagnosis

using fault dictionary approach. A new method of using Artificial

neural network for the fault diagnosis is carried-out under this

dissertation work. For this we have chosen D.C. fault dictionary

method, which can be used for diagnosing hard failures in the

circuits.

8

The essence of fault dictionary is, for each fault, its

symptom or signature (usually voltages of some test nodes) is

determined through a software simulation program and stored in a

dictionary. Before simulating the network a set of test nodal

voltages and also same set of faults are selected which are

likely to occur in the actual usage of the circuit. Then the

circuit is simulated for all the predetermined faults and the

test nodal voltages corresponding to each fault are determined.

Given a faulty circuit, one makes test measurements and then

compares the result with those stored in the dictionary to

{dentify the fault. Thus D.C. Fault dictionary approach is

simulation before test (S.B.T.) method, since we are simulating

the circuit before use. There is another method for fault

diagnosis is simulation After Test (S.A.T.) .. But the main

problem with direct comparison of nodal voltages, with those in

the dictionary is, here we are assuming the values of components

of the circuit as constant (absolute value) while simulating.

But in practice, the values of components ~ill vary within some

tolerable band of values. Because of these tolerance values one i

set of nodal values may fall into another set of fault
'

conditions. So it is difficult to determine the fault just by

comparison to fault dictionary. So to distinguish different

faults, these faults must be isolated from one another.

For this I have used two approaches., In the first approach

I have used Back Propagation Neural Network for isolation. In

this method first the circuit is simulated for different fault

conditions and these nodal voltages are formed into a fault

9

dictionary. In the fault dictionary each nodal voltage will be.

given some address. The back propagati?n Neural Network is

·trained with these patterns, i.e., the nodal voltages are as
·'

input values and the corresponding address as output valu~s.

After training, the network will give the corresponding fault

number for a given set~of input node voltages in RUN mode.

In the second approach, the test nodal voltages are isolated
(

from one another by using some logical procedure (Lin &

Elcheriff's method}. By using this procedure we can, not only

isolate faults but also determine the minimum number of nodes

required for isolation. The input to the isolation procedure is

the test nodal voltages. The output is an unique integer code

corresponding to different sets of nodal voltages. This integer

code is formed into fault dictionary. The address of faults are

placed against the integer code. Then this table is applied as

training patterns to the neural network. After training the

neural network it gives address of fault as output corresponding

to the integer code as input.

It is found that both approaches were working

satisfactorily. For the two approaches, I have developed

software for BP algorithm and for isolation procedure in second

approach. The Neural Network is converging to the specified

error in reasonable number of iterations.

The remainder of the paper is organized in the following

manner. The Basics of Neural Networks, its analogy to brain, and

its advantages are discussed, and also its application to Analog

10

Circuit Fault-diagnosis is introdu2ed in Chapter 1. In chapter 2

representation of neural networks and their applications are

discussed. In chapter 3 the Back 'Propagation network is

discussed. In the fourth chapter fault dictionary method of

analog circuit fault diagnosis is described. In chapter 5 the

concept of ambiguity s~ts and the applications of Neural Network

to the analog circuit fault diagnosis is given. Both methods are

discussed in detail in that chapter. Subsequently the results

and conclusions of the neural network based approach is presented

in chapter 6. In the appendix 1, Boltzmann machine algorithm is

presented. In appendix 2, introduction on Parallel Programming

on transputer based Parallel Super Computer PARAM is discussed.

In appendix 3 Taxonomy of different neural networks is presented.

11

CHAPTER2

NEURAL NETWORKS

Any neural network structure is represented in terms of

three fundamental descriptors. They are

a) Interconnection architecture between processing ele-

ments.

b) Rules that determine whether or not a particular proc

essing element will fire(or Transfer Function).

c) Training laws(or Learning laws).

a) Architectures In this the physical organization and

arrangement of the neurons is considered. Meso-structural

(i.e.,architectural) considerations are especially important in

that they help us to distinguish different classes or types of

network architectures. These considerations help us to make

distinctions between different types or classes of networks

which are currently in use. There are some basic distinctions

which allow us to form categories of networks.

The first distinction is in the number of layers in a net

work. We classify networks as being single-layered, bi-layered or

multilayered. Within this first distinction, we note that the

type of connectivity allowed creates the possibility of different

structures. We identify two major types of single-layered net

works: those that are explicitly laterally connected, and those

which have only implicit ~onnectivity. Bi-layered networks typi

cally have both feedforward and feedback connections. There is a

12

large class of multilayered networks which have strictly feed-

forward connections, and there are a number of multilayered

networks with complex connectivities (feedforward, feedback, and

lateral) . Based on these distinctions, the networks are divided

into different types, as following

-
• Multilayer, feedforward networks

• Single-layer, laterally-connected works

• Single-layer topologically ordered (vector matching) networks

• Bi-layer, feedforward 1 feedback networks & Multilayer,

Cooperative networks

• Hybrid networks.

Six Basic Typologies of Neural Network Meso-Structures

Figure 4

I

i
I
I

~Oif~W'\I(I~J . ~. I

1:-1 __ .!
P1,\J{,_~~
~-vu"J

j • j j
I I 1 ;

S-nrJ•Lt""
u-.... ~~:we~t-orto

(bl

""-'•..u
C..000.t"JL.,tlc...c.mc..llll...,...,...fw0o'l

'"

...

TOCJOCr.I:;"U.:J-11• OrCI:f'lo:«
~Cf'fPC'!O'l

j:l

Sub t4~1 1

SvCN~I] J

Different Architectures of Networks

13

b) Transfer functions : The most common distinguishing factor

among most of the artificial neurons being used today is their

transfer function. This function specifies how the neuron will

scale its response to incoming signal, and produces it activa-

tion. If the activation is strong enough, then the artificial

neuron will output a pignal to the neurons to which it is con-

nected. Four ,typical transfer functions are

i) Threshold logic nodes.

ii) Hard-limit nodes

iii) Continuous function(sigmoid) nodes.

iv) Radial basis functions.

Neural Network Transfer Functions

0 0

0< 0'

,h y

112

0

·1

(d) (a)
Thres;h~d logic

(b)
Hefd-Liml1

(C)
Sigmoid ~d~l Buls Func11on

Figure 5 Different Transfer functions

i) THRESHOLD LOGIC: Threshold logic nodes create binary state

neurons by applying simple transfer function.

14

If Weighted sum > Threshold

Then Activation 1.

Otherwise o.

* Easy to implement in hardware.

* Limited learning capability.

* Used in Hopfield/Tank network.

ii) HARDrLIMIT NODES: In this both upper and lower limits are set

on the summed input from other neurons, plus the thresholds.

If the total sum > upper limit, activation = 1.

< lower limit, activation o.

Between these two limits the output is linear function of weight

ed sum. At the transition points the function is not differen

tiable. This limit their use in applications which require

sophisticated learning capabilities.

iii) CONTINUOUS FUNCTION NODES: Werbos suggested this Sigmoid

transfer function for improved learning in Back propagation

network. The transfer function is smoothly varying and is dif

ferentiable at all points. Back propagation network requires the

differentiation output activation as a function of input.

The equation of sigmoid is

Y = 1/(1 + e(-kX))

where X = weighted sum, Y

and k = constant.

output activation of neuron,

15

Derivative of sigmoid is always positive, and is close to zero

for either large positive or large negative values of X. And is

at its maximum value when X is zero.

iv) RADIAL BASIS FUNCTIONS: This is ~ypically a Gaussian func

tion, which is useful when creating a neural network for continu

ous function mappings. The centers and widths of these functions

may be adapted, which makes them a more adaptive function than

sigmoid function. Mappings which may require two hidden layers

of sigmoid function units can some times be accomplished by a

single layer of neurons using radial basis functions.

c) Learning : Learning is the process of adapting the coefficient

weights in response to stimuli being presented at the input

buffer and optionally at the output buffer. An ANN can learn in

supervised or unsupervised mode.

SUPERVISED ANN: ANN which requires a supervisor for learning is

called supervised ANN. The ANN is provided with sets of inputs

and corresponding desired output sets. After each trial the

output obtained is compared with desired output and the differ

ence corrected using some learning algorithm till actual output

matches to an acceptable level.

UNSUPERVISED ANN: ANN's which do not require a supervisor for

learning are called unsupervised ANN. Unsupervised ANN can be

trained in two ways graded training and self organization train

ing. In graded training inputs are given and occasionally grade

is given according to performance of network. In self organiza-

16

tion learning network itself organizes into some useful configu

ration based on the inputs ...

PRACTICAL APPLICATIONS :

Artificial Neural Networks are finding use in many real

world applications such as speech processing, pattern recogni

tion, image processing, diagnosis, finance, etc. Sometimes it may

be necessary to combine ANN techniques with traditional tech

niques to solve the problems.

1. SPEECH PROCESSING : Speech processing problems include speech

recognition, text to speech conversion. In speaker recognition

problems, speech samples of some speakers are collected. The

collection of features of speech like pitch period, zero crossing

etc., forms a template which is stored in memory. Several such

templates are stored in memory. When a test sample is given as

input, it creates a template and recognizes the speaker if it

finds a match in the memory. Kohonen devised a phonetic type

writer which could type from dictation. Sejnoviski and Rosenberg

developed NETtalk which could change text into spoken language.

NETtalk was used on Back Propagation algorithm.

2. NATURAL LANGUAGE PROCESSING : Natural language processing

involves studying how we construct rules about language. Cogni

tive scientists Rumelhart and Mcckekabd devised a neural comput

ing system which learns the past tense of English verbs.

3. IMAGE COMPRESSION : Image compression refers to transforming

image data to a different representation which requires less

17

memory but from which origina~ image can be reconstructed. cot

trell Munro and Zipser designed a three level neural network and

achieved compression ratio of 8:1 with high fidelity.

4. PATTERN RECOGNITION: ANN's are finding applications in

nition of hand written characters. Nestor developed a

which accepts handwriting on a digitized pad. After

trained for interpreting a set of handwriting types, the

recog

system

being

neural

system is able to interpret a type of handwriting it has never

seen before. Some advanced pattern recognizing systems use neo

cognitron which is a multi-layer pattern recogniser that simu

lates the way visual information feeds forward in the cortex of

the human brain.

5. COMBINATORIAL PROBLEMS : Neural computing system also solve

certain combinatorial problems such as travelling salesman

lem in which the goal is to find the shortest possible route

prob

the

salesman can take to cover a certain number of cities in a speci

fied area. Hopfield and David Tank h~ve develbped a system to

solve this problem.

6. PATTERN RECOGNITION IN IMAGES : Groman and Sejnowski applied

back propagation networks to classify sonar targets. David Gloer

used back propagation in machine vision applications. This had

two benefits a) minimal operators used for training th~ classifi

er and b) no assumptions were made.

7. SIGNAL PROCESSING : Lapedes and Farber used back

networks for doing prediction and system modeling.

propagation

They showed

that for chaotic time series back propagation exceeds convention-

18

al linear and polynomial predictive methods by many orders of

magnitude.

a. NOISE FILTERING : Neural networks can also be used for noise

filtering. They are able to preserve a greater depth of struc-

ture in detail than traditional filters while removing noise.

9. SERVO CONTROL : It is very difficult to control complex me-

chanica! servo systems. Errors are in~roduced due to some physi

cal variation. It is impossible to measure the variations accu-

rately and solving is very complex. Neural networks have been

trained 'to predict the error in the final position of a robot

from the joint angles. The error is combined with desired output

to provide correction and to improve accuracy.

10. DIAGNOSIS Diagnosis is the recognition and identifica-

tion of the cause of problem. Diagnosis may be made to identify

medical conditions, machine fault or similar problems. The

ability to.deal with large data based, incomplete data and situa-

tions in which diagnostic rules are not known in advance makes

ANNs suitable for diagnosis problems. Here the input is the data

about the fault conditions and the output is the diagnosis of the

problem. DESKNET which uses Back propagation Algorithm is able
'

to diagnos~ different skin diseases.

11. CONTROL SYSTEMS : Broom stick balancing system is one of the

proven applications of adaptive control. A broom stick with

several sensors is pivoted of a cart upside down on its handle.

The ANN is trained to move the cart back and forth so that broom
/

19

is balanced on its handle top. During trial and error

the system uses the feedback to control the movement

balancing platform.

learning,

of the

12. OTHER APPLICATIONS : Two other major areas in which ANNs are

used are A) Financial and Economic Modeling and b) Functional

synthesis.

20

CHAPTER3

BACKPROPAGATION ALGORITHM

The network 'gets its name from how it handles the errors.

Actually the network is developed from the network Perceptron,

which is a single layer network. But this is able to train the

output units to learn to classify the patterns of inputs,

provided they are linearly separable.

More complex and non-linearly separable classes can be

separated with a multi-layer network. However, if there is any

error in the output layer, the Back Propagation algorithm solves

the problem by processing element or inter-connection to adjust

to reduce the error, by assuming that all processing elements and

connections are responsible for the erroneous result.

Responsibility for errors is affixed by propagating the

output err0r backward through the connections to the previous

layer. This process is repeated until input layer is reached.

The name BackPropagation derives from this method of di~'ting
,ft.l - ~.'~

the blame for errors. t!"~ ;;\
t, f:'!- J ;:-
,~~- -- .e;-

The key distinguishing characteristic of the bac~Opaga~ion
is that if forms a mapping from a set of input stimuli to a set

of output nodes using features extracted from the input pattern.

This network can be designed and trained to accomplish · a wide

variety of mappings, some of which are very-complex. This is

because the nodes in the hidden layer(s) of the network learn to

respond to features found in the input.

21

Because nodes in the back-propagation network learn to

respond to featur~s as the network is trained with different

examples, the network develops the ability to generalize. For

example, a back-propagation network is learned to distinguish

between straight, concave, and convex curved lines. Even if the

lines to be tested occur in different locations, or mixed with

some noise or even some part of the line is missed, the network
I

would be able to distinguish them. The network would probably

respond correctly even if it is presented with a pattern which it

has never seen before. The ability to make such complex

distinctions, even when the presented pattern is different from

those on which the network was trained, is due to the feature-

detection and generalization abilities which are trained into the

middle or hidden layer nodes.

In order for a back-propagation network to be successful for

-applications, the key issue is that the hidden layer nodes must

be trained to recognize the right sets of features. These

features must be sufficiently general, so that the network can

respond correctly, even when its input is different from those it

has previously encountered.

Backpropagation network can be represented in terms of three

common descriptors as :

i) Architecture.

ii) Transfer function.

iii) Learning laws.

22

1) ARCHITECTURE The BackPropagation Network is a fully

connected feedforward network as shown in following figure.

F4lly connected Network means each nodes of each layer is

connected to each node of the next higher layer.
I

In the

feedforward network the output is calculated in the forward

direction only. No part of the output is feed back to the input.

There are some algorithms, in which output is fed back to the

input in run mode (e .

Figure 6 Back Propagation Network

ii) TRANSFER FUNCTION : Backpropagation learning law requires

that the transfer function for each nodes be defined by a

continuous function. This function should be asymptotic for both

infinitely large positive and negative values of independent

variables (typically, the weighted sum of inputs). These

conditions usually lead to a modified Sigmoid shape for transfer
'

function. The use of th!s kind of transfer function is one of

the major differences between BP and its
(

predecessors, the

Perceptron and ADALINE. Each of these earlier networks used

23

nodes with simpler transfer functions, and this limited their

ability to be useful in the more complex pattern recognition

problems.

One important factor about the sigmoid function is that its

derivative is always positive, and is close to zero for large

positive or negative values of X. The derivative has maximum

when X is o. This is important in helping the backpropagation

learning law work effectively. This is because, the changes made

to the weights is proportional to the derivative of the

activation. If the derivative is near zero, then the changes are

small. This is desirable, because the derivative is near 0 when

the activation value is near 0 or 1, one of the two stable

states. When the activation of the neuron is in the middle

range, the activation must be changed such that it produces a

value near one of the stable states (0 or 1). The derivative is

large when the activation is in the middle range. So the changes

in the weights is also fairly large. Thus the transfer function

not only gives smooth and differentiable behavior, it also helps

1():

:(.,

Figure 7 Sigmoid Transfer Function and its Derivative.

24

iii) LEARNING LAW : The backpropagation algorithm uses Gener

alized Delta Rule for its learning. In this procedure it uses

Gradient Descent algorithm to adjust the weight values. The main

advantage of gradient descent is that it makes changes to the

weights such that the error drops most steeply. The idea of

gradient descent is to make a change in the weight proportional

to the negative of the derivative of the error, as measured on

the current pattern, respect to each weight. Thus the learning
(

rule becomes

W[i][j] - k * dEp/dW[i](j]

If we change each weight according to this rule, each weight

is moved towards its own minimum and we think of as the system is

moving down hill in weight space until it reaches it minimum

error value. When all the weights have reached their minimum.

points, the sys~em has reached equilibrium. If the system is

able to solve the problem entirely, the system will reach zero

error and weights will no longer be modified. on the other

hand, if the system couldn't solve the problem exactly, it will

find a set of weights that produce as small an error as possible.

The basic idea of backpropagation method of learning is to

combine a non-linear perceptron like system capable of making

decisions with the error function as LMS and Gradient descent.

To do this we must be able to readily compute the derivative of

the error function with respect to any weight in the network and

then change the weight according to the rule.

25

After calculating the derivative of an appropriate choice of

non-linear function, the learning rule becomes

W· · = e * $[i] * a(j] lJ

Essentially, the term $[i] represents the effect of a change

in the net input to unit j on the output of unit i in pattern p.

The determination of ~ is a recursive process that starts with

the output nodes. If the unit is an output unit, then the value

of $ becomes

$[i] = (T[i]- a[i]) f'i (neti)

where net(i]

The $ term for hidden units for which there is no specified

target is determined recursively in terms. of the $ terms of the

units to which it directly connects and the weights of those

connections. That is

The application of the ·sp rule involves two phases: during

the first phase the input is presented and propagated forward

through the network to compute the output value a(j] for each

output node. This is compared with the target values and

calculates the values of $ for all output nodes.

The second phase involves a backward pass through the

network during which the delta term is computed for each unit in

the network. Finally by using these $s we can easily compute the

values that are to be applied to weights.

26

If the activation function used is Sigmoid,

a[i] = 1/(1+e(-net[i])

Theri the above equation becomes

da[i]/dnet[i] = a[i] * (1-a(i])

For ofp unit $[i] = (T[i] - a(i]) * a(i] * (1-a(i])

For hidden units-$[i] = a[i] * (1-a[i]) Ek$[k]*W[j][k]

ALGORITHM :

Step 1 : Initialize the weights and offsets.

Set all weights and node offsets to small random values.

Step 2 Present input and desired output patterns used for

the training of network.

Present a continuous

xO,x1,x2,x3, ... x(n-1) and specify

valued
)
I

the

input

desired

t1,t2,t3, ... t(m-1) for different sets of patterns.

vector

outputs

The input

could be new on each trial from the training set that could be

presented cyclically until weights stabilizes.

Step 3 : Calculate the outputs.

Use the sigmoid non-linearity to calculate the outputs.

The sigmoid or logistic function is given by

F(x) = 1/(1+e-z)

Net input to i th unit from the other j units is given by

I[i][s] = W[i][j](s] * X[[j][s-1) + Bias[i]

After calculating the net input to any processing element,

the activation of the P.E is calculated by using sigmoid

X[i] [s] = F(I[i)[s]) = 1/(1+e(I[i][s)))

27

Like that the activation of the output layer (ojp of N.W)

will be calculated.

Step 4 : Adaptive Weights.

Use

work back

recursive algorithm starting at the output nodes

to the first hidden layer~ Adjust the weights

descent algorithm. The LMS finds the values of

and

by

all gradient

weights that minimizes this output error function is called

gradfent descent.

The idea of gradient is to make change in the weight

proportional to the negative of the derivative of the error as

measured on current pattern, with respect to each weight.

Thus W[i) [j] [s] - e * $[i] [s) * x[j] (s-1]

The determination of $ is a recursive process that starts

from the output units. The $ for output units is given by

$[i] (s] = (t[i) - o[i)) * o(i) * (1- o[i)).

For hidden units

$[i] (s] = X(i] [s] * (1-X(i] (s]) L:k $(k] (s+l] * W[k) [i] (s+l]

And W [i) [j] [s] = e ~~ $ [i J (s] * X [j J [s)

Where e : Training rate parameter

This is called Generalized Delta Learning Rule.

Step 5 : Repeat by going to step2 until output error is below

c~rtain tolerable value.

28

MOMENTUM In BP learning procedure the change in weight is

proportional to weight error derivative. True gradient requires

infinitesimal steps. The larger the leaning rate (E), epsilon,

the larger the changes in weights. For practical purposes one

would like use learning as large as possible. In this way rapid

learning· rates can be achieved. But in practice when the

learning rate is large the network goes into oscillations. One

way to increase the learning rate without leading to oscillations

is to modify the Backpropagation learning rate to include a

Momentum (n) term. This can be accomplished by the following

rule :

W(i][j](n+l) = € * ($(p](i] * a(p](j] + n * W[i][j](n).

The subscript n indexes the presentation number and momentum

is a constant that determines the effect of past weight changes

on the current direction of movement in weight space. This

provides a kind of momentum in weight space that effectively

filters out high-frequency variations of the error surface in the

weight-space. In most of the'simulations the value of momentum

used is 0.9. With the larger values of momentum and training rate

the system learns much faster.

SYMMETRY BREAKING : The BP learning has one more problem that can

be readily overcome and this is the problem of symmetry breaking.

If all weights start out at equal values and if the solution

requires that unequal weights be developed, the system can never

learn. This is because error is back propagated through the

weights in proportion to the values of the weights. This means

29

all the hidden units connected directly to the output units will

get identical error signals, and since the weight changes are

dependent on error signals, the weights from those units to the

output units must always be the same. The system is starting out

at a kind of unstable equilibrium point that keeps the weights

equal. But it is higher than some neighbouring points on the

error surface, and once it moves away to one of these points. it

will never return. This prbblem can be eliminated by starting

the system with small random weights. Under these conditions

the symmetry problem of this kind do not arise.

LEARNING BY PATTERN or BY EPOCH : In learning by Epoch method the

derivative of an error function is summed over all patterns. In

this case, I would present all patterns and sum the derivatives

before changing the weights. Instead we can compute the

derivatives on each pattern and make changes to the weights

after each pattern rather than after each epoch.

30

CHAPTER4

ANALOG CIRCUIT FAULT-DIAGNOSIS

Today the Analog Circuit Fault-Diagnosis field is

still in its infancy, as there is not yet any user-orient

ed publicly available computer program for circuit diagno

sis purposes such as those for circuit simulation purposes.

Research is being carried out by many in this area. The

importance of the diagnosis problem is now widely recog

nized. Traditionally circuit theory is centered on two

aspects only - analysis and synthesis.

add a third and equally important

diagnosis.

To these

aspect,

we may

namely

Depending on whether the circuit simulation takes place

before or after testing process, analog circuit diagnosis methods

are classified into two main categories, The simulation before

test (SBT} and the simulation after test (SAT} approach.

Most of the techniques used in SAT are based on parameter

identification, and most of these techniques are applicable only

to linear circuits. But in this the numerical difficulty is

enormous when large circuits are considered.

The present trend in SAT is not to solve for parameter

values, but to simulate the circuit under different conditions

and use some decision algorithms to locate the faulty components

(the parameter values are not found}. This branch of SAT

approach may be called fault verification techniques.

31

In SBT, the circuit is simulated by suing some network

simulator like SPICE. For each fault the network is simulated and

its signature or symptom (usually voltages of some nodes) is

determined and is stored in a dictionary. Given a fault circuit,

one can make test measurement and compare the result with those

stored in the dictiona:r-y to identify the fault. The technique of

SBT is called Fault dictionary approach. Similar approach is

followed for trouble shooting of electronic equipment manually as

given in service manuals where a step by step testing

is described, together with a table of symptoms and

procedure

possible

causes. That is in essence a fault dictionary approach. In SAT

approach a great amount of computing power is required after the

testing process. In sharp contrast, the SBT approach requires

negligible amount of computing power after the test process to

locate the faults. However a comparable or even greater amount

of computing power is needed before the test process in order to

compile the fault dictionary.

Fault Dictionary is mainly meant for hard failures only. It

is incapable of diagnosing soft failures, that is element value

drifts. However, the fault dictionary will remain a very

valuable part of the overall scheme for the following reasons:

i)

difficulty

example,

Catastrophic failures usually

in the parameter identification

cause numerical

techniques, for

if a resistor characterized by its conductance G,

becomes short circuited, then the solution should be G-~. Now

if an iterative algorithm is used to solve the nonlinear

32

equations, the computer program, seeing the ever increasing value

-of G, might interpret the phenomena as a divergence of the

algorithm and terminate (possibly giving the result of last

iteration).

ii) The fault dictionary approach is well suited for

diagnosing short circuits and open circuits. Although the

initial effort to compile the fault dictionary is quite

demanding, that task is done once for all.

iii) Statistics show that short circuits and open circuits

account for about 70-80% of the faults in analog equipment.

Various types of inputs have been proposed for the fault

dictionary method. These include the DC, AC and piecewise
\

constant inputs. Unfortunately, most of these methods either are

limited to linear networks or have not progressed beyond the

feasibility study stage. At_present the DC fault dictionary is

the only one that is used in practice with some degree of

success. For these reasons we have chosen the DC fault

dictionary approach.

The DC fault dictionary approach consists of two distinct

stages.

Stage 1: Pre-test analysis to compile the fault dictionary.

In this stage the analog circuit is simulated by a

digital computer program under nominal as well as all preselected

catastrophic faults. Judiciously chosen DC input voltages are

applied. The induced DC voltages at a selected set of test nodes

33

are calculated. These voltages are then stored in the automatic

test equipment (ATE) and constitute the fault dictionary.

State 2: Post-test analysis to identify the fault.

In this stage, measurements of test node voltages have

been made on the circuit, and the measured values are compared

with those stored in the fault dictionary. First, a fault

detection algorithm is applied to determine whether the circuit

is faulty at all. If the answer is affirmative, then the fault

is identified by the application of some fault isolation

algorithm (e.g. minimum sum of squared errors).

34

CHAPTERS

APPLICATION OF NEURAL NETWORK TO
FAULT DICTIONARY METHOD

Two approaches are followed while using Neural Networks in

the field of Analog Circuit Fault-diagnosis. In both the

cases _the output of the neural network directly gives whether the

circuit is faulty or not and also which component of the circuit

is faulty.

1) DIRECT APPROACH: In the first approach the test nodal volt-

ages of the circuit are applied as input to the neural network.

The output of the neural network directly gives the fault of the

component. First, the neural network is trained with different

sets of test nodal voltages corresponding to different fault

conditions and its s output to the Neural

Network. INPUTS OUTPuTS

TE.5T
BAC.K-

PROPA6ATION
BINARY

NODAL CODED

VOLTA6ES
t\JEU R,A L f:AUL T

NETWORK NUMBERS

Figure 7 Block Diagram of Direct Approach.

35

For training of the network, the test nodal voltages are

obtained through some network simulator CAD program. First the

circuit is simulated 'in a network simulator, SPICE. Before we

simulate the circuit for different sets of nodal voltages, we

have to select some test nodes for this circuit such that those

nodal voltages are obtained, when the circuit is in practical

use. We also have to select some fault conditions which are

likely to occur in practice. Then the circuit is simulated by

using some network simulator for all those predetermined fault

conditions and then the test nodal voltages are determined at

these nodes for nominal and fault conditions. All these differ-

ent sets of nodal voltages are formed into a fault dictionary.

These must correspond to both nominal and fault conditions. The
'\

address of each fault'is tabulated against its nodal voltages in

the fault dictionary.'

To test the network, we have taken simple example.
'-

It is

having four test nodes and eight faults. The test nodal voltages

for all the fault conditions (F1 to F8) along with the nominal

condition(FO) are tabulated below.

Table 2 Example test nodal voltages

FO F1 F2 F3 F4 F5 F6 F7 F8

Vl 5.0 7.0 7.4 7.3 7.2 9.6 9.7 9.8 5.2

V2 9.0 5.0 6.0 6.4 6.2 5.1 5.2 5.3 9.2

V3 9.5 6.0 6.1 6.2 8.0 6.3 6.4 5.3 4.0

V4 5.0 5.1 5.2 8.8 6.0 6.1 9.0 5.3 6.2

36

After getting the test nodal voltages these must be present

ed to some neural network which can produce the desired results.

This is required because there are sd many neural network para

digms available, and each neural network architecture and train

ing system is better at some kinds of problems than others, and

each network requires different types of data from the system for

proper operation. For example, Back Propagation networks make

wonderful mapping networks but may not be quite as good as coun

ter propagation networks for some associative problems. So to

select the suitable paradigm for the problem from the above

paradigms the problem must be clearly defined.

There are so many paradigms available

works, suitable 'tor d~fferent applications.

in the Neural Net

To use any Neuial

Network it requires the information of the problem in terms 6f

1. What type of input, output are used. -That is continuous

values or binary values.

2. Type of learning. Whether it is Supervised or Unsuper

vised learning.

3. Type of application. That is Mapping, Associative Memo

ry, Categorization, Temporal Mapping or Image Processing.

In this problem, Analog Circuit Fault Diagnosis, the input

values used for training and recall are analog values, because

the test nodal voltages of the circuit under test are (after

normalization) to the network as input values. The output values

are always binary values, which represent the address of various

faults. The type of learning used is Supervised learning, be-

37

cause each

corresponding

application

set of input test nodal, voltages are mapped to

binary coded addresses as output. The type

is of Mapping type because the input voltages

mapped to output addresses.

the

of

are

By considering the characteristics of the problem, Analog

Circuit Fault-Diagnosis, and the characteristics of di"fferent

Neural Network algorithms it is found that Back Propagation

algorithm can be used to solve the above pro~lem effectively.

The Back Propagation algorithm is developed in c, in which

various parameters can be changed. These parameters determine.

1. The rate at which the output error converges to the re

quired error.

2. How frequently the network goes into local minima.

The main parameters that are to be considered for the above

are Training rate parameter and Momentum term. As we have al

ready seen, the rate of convergence increases with the increase

of training rate parameter. but, as we increase the values of

training rate parameter the network more frequently struck out in

local minima. This can be overcome with the introduction of the

Momentum term. But still there is threat from local minima.

This local minima occurs when the output values of any node(s)

reaches nearer to 1 or o instead of reaching 0 or 1. This can

be explained as follows:-

38

In the ou~put layer, the weight-change formula for the

weight running from output unit j to a lower level unit i is:

W[i][j) = k *(t(j)-o[j]) * o[j] * (1-o[j]) * o[i]

Where t[j] is target value, o[j] is the target value of the

output unit, o(i] is the activation value of unit i, and k is the

learning rate. The o(j]*(1-o[j]) term is the derivative of the

activation function. A serious problem arises here in that when

o(j] is close to 1 or 0 the term o(j]*(1-0(j]) is small and very

little learning takes place. When some output is registering a 1

when it should be registering a 0 or registering a o when it

should be a 1, it will take a very long time to undo this prob

lem. To cope with this problem we have added the value 0.1 to

output derivative term. Then it becomes

0.1 + o[j] *(1-o[j])

Now the term never approaches zero. So the learning rate becomes

very fast without any local minima.

the

We have trained the Back Propagation network directly

normalized values of the above voltages as inputs and

with

the

binary coded fault numbers as out output numbers. The training

patterns presented to the network are shown in the Table(3). The

network could be able to map the input voltages to the output

binary values in reasonable number of iterations.

39

Table 3 The training patterns

Input patterns output Patterns

.50 .90 .95 .50 0 0 0 0

.70 .50 .60 • 51 - 0 0 0 1

.74 .60 .61 .52 0 0 1 0

.73 .64 .62 .88 0 0 1 1

.72 .62 .80 .60 0 1 0 0

.96 .51 .63 .61 0 1 0 1

• 97. .52 .64 .90 0 1 1 0

.98 .53 .53 .53 0 1 1 1

.52 .92 .40 .62 1 0 0 0

After training of the network is completed, the network can

be used recall mode. In this mode when we present network with

the test nodal voltages, the network gives the fault number.

2) INTEGER CODED APPROACH: In this approach, instead of directly

applying the test nodal voltages to the neural network for

training as in the direct approach, we have used some isolation

procedure (Lin and Elcherif) which not only isolates one fault

from the other but also gives optionally minimum number of nodal

voltages required for isolation. The isolation procedure pro-

duces as unique integer code for all the nodal voltages. Then

this integer code is used as training patterns to the neural

network as in the direct approach. The output of neural network

40

is the address of the fault. The block diagram is shown in the

following figure.

IN P1.JT

J
ltST FAULT

NOOP.L I SOL AT tON

VOL 1' P.~\O.S PROCE(XJI<t

Oulf'UT INPVT OLJ1 i'vl

BIN-'\.'"'_'{
I'

(ODt:l)

I="AULT

NUMI!,t:.RS

Figure 8 Block Diagram of Integer Code Technique

This isolation is required because of the ambiguities caused

by the variations in values of the components. This variation in

values of components is caused by the tolerance limits of the

components. Because of the tolerance limits one set of nodal

voltages may fall into another set of nodal voltages. This

causes some ambiguity in recognizing or isolating one fault from

other. So some form of isolation procedure must be used to

diagnose these faults, i.e. to isolate or recognize one fault

from other fault. For that we have used some logical procedure

which not only isolates the faults but also determines how many

number of minimum nodes which is not required. In this we can

set our own tolerance limits according to the circuit components.

Before we go into the details of how the isolation procedure

works, what is ambiguity set and how it will be formed must be

studied.

41

Consider a hypothetical case of a circuit with two test

nodes and six faults. suppose that the circuit of a CAD program

yield the results shown in Table(4).

Vl

V2

Table 4 Voltages of-two test nodes of hypothetical circuit

Nom

5.5

4.0

Fl

9.0

8.0

F2

6.8

5.0

F3

6.4

5.2

F4

6.6

7.~

F5

5.1

7.6

F6

2.0

5.0

These voltage values are obtained under the assumption of

exact element values. In reality, the value of any element may

vary within some tolerance range. If the measured value of Vl is

5.3 volts, we really cannot be certain whether the circuit is

under nominal or fault 5 condition. Thus in. this case, NOM and

F5 form what is called an 'ambiguity set'. Suppose if we define

the voltage of an ambiguity set to have a range of +/-7 volts

about its center value and stipulate that different ambiguity set

voltage ranges do not overlap in the present example the ambi

guity sets obtained are tabulated as shown~

42

Table 5 Tabulation of Ambiguity Sets

(node, ambiguity set) Circuit condition Voltage Range

(1, 1) NOM,F5 4.6-6.0

(1,2) F2,F3,F4 5.7-7.1

(1,3) F1 8.3-9.7

(1,4) F6 1.3-2.7

(2 I 1) NOM,F6 2.8-4.2

(2,2) F1,F4,F5 7.1-8.5

(2,3) F2,F3 4.4-5.8

In this example test node 1 has 4 ambiguity sets and test

node two has three ambiguity sets. Examination of the above

table shows that fault F4 cannot be isolated from ~2 and F3 if we

use test node 1 only. Similarly, fault F4 cannot be isolated

from F1 and F5 if we use test node 2 only. However, if both test

nodes 1 and 2 are used then F4 can be isolated. This is because

F4 is the only fault that occurs in both ambiguity sets (1,2) and

(2,2). On the other hand the, faults F2 and F3 cannot be

isolated even if both test nodes are used.

According to the above procedure, first ambiguity sets will

be formed corresponding to the test nodal voltag~s. For example,

take the test node 1 voltages used· in the first procedure. One

input vector and four test nodes (Vl,V2,V3,V4) have been chosen.

Test nodes have been determined by the use of circuit simulation

43

program. Tl}e origin of data is immaterial for the intended fault

isolation. The voltages are given in Table (1).

For each test node we can define ambiguity sets, voltage

ranges and circuit conditions. This process becomes very clear

if we present the information of node 1 voltages in Table (1) in

the· form of plots as shown in Fig. 8 below. circuit conditions.

that belong to the same ambiguity set correspond to the points in

fig.8 ·that form a cluster. The ambiguity set table that is

obtained is with the aid of the above figure is shown in Table(4}

ro rs FlFJ rs F7
Yl

F• r2 F6

Fl ro F2 F3 ro rs
Y2

FoF7 F4

F8 F7 FI F3FII F4 FO
Y3

F2 F~

FO F2 F4 F8 F3 FO ·
Y4

Fl F7 , FS 7 10
volta

Figure 9. Formation of Ambiguity Sets.

44

Table 6 Ambiguity sets' Contents and Voltage Ranges

(Node, Ambiguity set) Circuit Condition Voltage Range

(1, 1) FO,F8 4.4-5.9

(1' 2.) F1,F2, F3 F4 6.4-7.8

(1,3) F5, F6,F7 9.0-10.4

(2' 1) F1,F5,F6,F7 4.5-5.6

(2, 2) F2,F3,F4 5.7-6.9

(2' 3) FO,F8 8.4-9.8

(3' 1) F8 3.3-4.4

(3,2) F7 4.6-5.7

(3,3) F1,F2,F3,F5,F6 5,8-6,9

(3,4) F7 7.3-8.7

(3,5) FO 8.7-10.2

(4, 1) FO,F1,F2,F7 4,5-5,5

(4,2) F4,F5,F8 5.7-6.8

(4,3) F3,F6 8.2-9.6

It is observed from the table that node 3 has five ambiguity ..
sets, while nodes 1,2, and 4 each have three ambiguity sets. The

range of each ambiguity set in Table (6) is determined in the

following manner. First, the center of each cluster is taken to

be the average of the two extreme values of the cluster. Next a

range of +/-0.7 volt from the center is tentatively set. After

the tentative ~anges for all ambiguity sets have been calculated,

a check is made to see whether the ranges of any two ambiguity

sets (of the same test node) overlap. If so both ranges are

45

reduced by an equivalent, until a gap of 0.1 or 0.2 volt is

obtained. After such revisions, the ranges are accepted for use.

As an example, consider ambiguity sets (3,2) and (3,3) in Table

(4) . .The second ambiguity set of node three has only one value

5.3 volts(correspond to F7), which is then also the centre value.

Therefore, ambiguity set (3,2) has tentative range of 4.6 to 6.0

volts. The third ambiguity set of node three has two extreme

values, 6.0 and 6.4 (corresponding Fl and F6, respectively), and

hence a center value of 6.2 volts. Therefore, ambiguity set

(3,3) has a tentative range from 5.5. to 6.9. These ranges

overlap. So we decrease the upper boundary of set (3,2) from 6.0

to 5.7 and increase the lower boundary of set (3,3} from 5.5 to

5.8. Each range is reduced by 0.3 volts. And a gap of 0.1 volt

has been created. This explains how the range from 5.8 to 6.9 is

obtained for ambiguity set (3,3). Similar adjustments are made

for all ambiguity set ranges.

Fault Isolation By Intersection of Ambiguity Sets:

Suppose some ambiguity set of some test node VJ contains

only one circuit condition FK; then whether that circuit condi

tion has occured can be determined by measuring node voltag~ VJ

only. In this case, we can say the fault FK has been isolated.

For example, let the measured value of V3 is 8.3 volts. Then

table 6 indicates that the value belongs to ambiguity set (3,2}.

Since it has only one element, namely F4, the circuit must be

under the condition of fault 4.

46

On the other hand, if we measure one node voltage only and

obtain V3 = 6.5 volts, we will not be able to isolate the fault.

Table(6) indicates that 6.5 volts belongs to ambiguity set

(J,J),and the circuit may be under any one of the following

conditions: F1, F2, F3, F5, or F6. /

Let us see how the use of additional test nodes can help in

isolating the faults. First we have constructed an "ambiguity

sets intersection table" as shown in Table{?).

Table 7 Intersection of ambiguity sets of VJ and V4.

V4

V3 FO,F1,F2,F7 F4,F5,F8 F3,F6

F8 @ F8 @

F7 F7 @ @

F1,F2,F3,F5,F6 F1,F2 F5 F3,F6
F4 @ F4 @

FO FO @ @

In table 7 the row headings contain ambiguity sets of node 3,

whereas the column headings contain those of node 4. Each (i,j)

block of the matrix con~ains the result of intersection-of ambi-

guity sets (3,i) and (4,j) with @ denoting a null set. For

example, the content of the (3,1) block is determined as follows:

amb. set (3,3) amb. set (4,1)

=(F1,F2,F3,F5,F6) (FO,F1,F2,F7) = (F1,F2)

47

We node that this intersection yields a total of seven

ambiguity sets: (F8) I (F7) I (F,4) I (F5) I (F,l ,F2) (F3, F6) .

In particular, F5 has been isolated with the addition of test

node 4. For example, if the measured values are V3 = 6.5 volts

and V4 = 6.2 volts, then the circuit condition belongs to ambi-

guity sets (3,3) and (4,2), according to Table 7. But Table 7

shows that the only fault which occurs in both ambiguity set

(3, 3) and (4, 2) is F5. Therefore we conclude that the circuit is
'

under condition F5.

With two test nodes V3 and V4, we have isolated faults F4,

F5, F7 and F8 - a 50% isolation. We note that Fl has not been

separated from F2, nor has F3 been separated from F6.

More test nodes must be used to achieve a higher percentage of

isolation.

Suppose that we decide to add test node Vl with the hope of

resolving the ambiguity in (Fl, F2) and also in (F3, F6). /The

effect of adding Vl can be seen from Table 8.

Table 8 Intersection of (V3,V4) with VI

VI

(V3, V4) FO,F3 Fl,F2,F3,F4 F5,F6,F7

Fl,F2 @ Fl,F2 @

F3,F6 @ F3 F6

5 Singletons 5 Singletons

48

An ambiguity set with only one element is called a Single

ton. Observe that in Table 8 F3 and F6 have been isolated, but

F1 and F2 have not. Let us further add test node 2. The inter

section operation is shown in Table 9.

Table 9 Intersection of (V3,V4,VI) with V2

V2

(VJ,V4,VI) F1,F5,F6,F7 F2,F3,F4 FO,F8

Fl, F2 F1 F2 @

7 Singletons 7 Singletons

The faults F1 and F2 are now isolated. This indicates that

if we use all of the four test nodes, we can have 100%

isolation. but the result does to imply that one must use

fault

all

four test nodes to achieve 100% isolation~ For example, if the

node to be added after (V3,V4) is V2 instead of VI we will have

the intersection table shown in Table 10.

Table 10 Intersection of (V3,V2) with V2

(V3,V4)

Fl,F2

F3,F6

5 Singletons

F1,F5,F6,F7

Fl

F6

V2

F2,F3,F4

F2

F3

5 Singletons

49

FO,F8

@

@

)

The result indicates that 100% fault isolation can also be

achieved without test node 1.

Reduction of the Number of Test Nodes

In the general case, the determination of a minimum set of

test nodes to achieve the highest percentage of isolation is a

very time-consuming process for large circuits. Fortunately, for

practical applications, we need not insist on getting the theo-

retical minimal number of test nodes. Any near-m~nimum solution

will serve our purpose if the solution is simple. In other

words, a heuristic method might be more useful for solving prac

tical problems.

We present two heuristic procedures for reducing the number

of test nodes.

PROCEDURE 1

Select the node that has the largest number of

ambiguity sets. , If a tie occurs, arbitrarily select one among

them.

step ~ Select the next node whose intersection with previ-

ously selected nodes will result in the largest number of ambi-

guity sets.·In case of a tie, arbitrarily select one.

Step ~ If the number of the resultant ambiguity sets is

equal to the number of circuit conditions stop. Otherwise go to

step 2.

50

Consider the previous example of Table 6. Node 3 is select-

ed first, because it has five ambiguity sets, the largest

Vl,V2, V3 and V4. Next, one node from Vl,V2 and V4 is

selected. The intersection of VJ with V4 yields a total of

ambiguity sets (see Table 7). Similarly, V3 Vl yields six

among

to be

seven

sets,

and so does V3 V2. Therefore V4 is chosen as the second test

node. The third test node is to be selected from Vl and V2. Now

(VJ I

(V3

V4) V2 yields nine ambiguity sets (see Table

V4) Vl yields only eight sets (see Table 8}.

10}, whereas

Therefore V2

fault isolation is achieved. Test node Vl is seen to be redun

dant.

Procedure 1 will often lead to a near-optimum selection of

test nodes. But even this procedure may be too time-consuming

for large circuits. This is because that in step 2 every node

has to be intersected with the previously selected group of

nodes. Therefore, a further simplified procedure is given

below.

PROCEDURE 2

Select the node that has the largest number of

ambiguity sets. If a tie occurs, arbitrarily select one among

them.

Step h In the remaining nodes, tentatively select one

having the largest number of ambiguity sets. If a tie occurs,

51

pick any one among them. Now obtain the intersection of this

node, VJ, with the previous selected group of nodes. ,If the

intersection increases the total number of ambiguity sets, then

select VJ as a test node. Otherwise, disregard VJ.

Step h If the number of resultant ambiguity sets is equal to

the number of circuit-conditions, stop. Otherwise, go to step

2. ,_

Let us illustrate 2 with the previous example of Table 6.

In step 1, we select V3 since it has five ambiguity sets, the

largest among V1, V2, V3, V4. Each of the remaining nodes, V1,

V2, and V4, has three ambiguity sets. According to step 2, we

may arbitrarily pick one. Suppose that node 1 is picked. The

intersection V3 V1 has six ambiguity sets, one more than that of

V3 alone. Therefore, V1 is selected as the second test node.

The third test node is to be arbitrarily selected from V2 and V4.

Suppose that we tentatively pick V2.

The intersection V2 (VJ V1) has seven ambiguity sets, one

more than (V3, V4) . Therefore V2 is selected as the third test

node.- There is a total of nine circuit conditions (one nominal

plus eight faulty conditions). Since 7 < 9, we go through step

2 another time and include V4 as the fourth test node. As shown

previously, with V1, V2, V3 and V4 all selected as test nodes, we

achieve 100% fault isolation. But this clearly is not an opti-

mum solution, since three test nodes V3, V4, and V2 will achieve

the same goal.

52

In most cases procedure 2 will produce a satisfactory solu

tion to the reduct~on of test nodes. Since its computational

effort is much less than that of procedure 1, we have implemented

procedure 2 in our present computer program.

Compilation of Fault-Dictionary: Once the test nodes have been

selected using Procedure 1 or Procedure 2 described above, we can

determine a unique integer code for each circuit condition (both

fault & nominal). For this we need only the ambiguity set table

as given in table 6. Each fault Fj belongs to exactly one ambi

guity set of every test node.

This information is tabulated as shown below:-

Table 11 Integer Codes for All Faults

Circuit condition V3 V4 V2

FO 5 1 3

F1 3 1 1

F2 3 1 2

F3 3 3 2

F4 4 2 2

F5 3 2 1

F6 3 3 1

F7 2 1 1

FB 1 2 3

Here we assume that V3, V4, and V2 have been selected as the

test nodes. As an illustration, consider the case 3,1,2 for F2.

53

This means that F2 is in third ambiguity set of V3, the first set

of V4, and second set of V4. We can get other codes in the same

way.

After obtaining the integer codes as above, Integer coded

fault dictionary is formed to train the neural network. The

fault dictionary or th~ training patterns contain the normalized

values of integer code as input values. The integer coded fault

dictionary that is used for training corresponding to the table.

6 & Tabl~ 11 is shown in the following table 12.

Table 12 Integer Coded Fault Dictionary

Input Patterns output Patterns

5 1 3 0 0 0 0
3 1 1 0 0 0 1
3 1 2 0 0 1 0
3 3 2 0 0 1 1
4 2 2 - 0 1 0 0
4 2 1 0 1 0 1
3 3 1 0 1 1 0
2 1 1 ·a 1 1 1
1 2 3 1 0 0 0

The Backpropagation network is trained with the above pat-

terns. After the training is completed the network can be used

in run mode. In this mode first the test nodal voltages are

applied to the isolation procedure, which gives a unique integer

code. This integer code is applied as input to the BP network

which gives the fault number as the output.

54

In our present approaches, there is no distinction between

fault detection and fault isolation i,e, requires no additional

computational effort. We include the nominal circuit (designated

by FO or NOM} in the ambiguity set manipulations. Separation of

a fault FJ fro NOM amount to fault detection, while separation

among faults is the usual fault isolation.

55

CHAPTER6

RESULTS AND CONCLUSIONS

For the purpose of using BP network -in analog circuit fault

diagnosis, I have developed a program for BP algorithm in 'C'

This program will accept different neural network parameters,

which gives the flexibility to the user to have his own network

configuration and he can define his own network parameter values,

which determine the rate of convergence of the network. We can

vary the number of layers, no. of nodes in each layer .
•

We can

also vary the learning rate parameter, and the momentum term. As

we increase the learning rate, the rate of convergence increases.

Similarly as we increase the momentum term, the rate of conver-

gence increases. Some of the results that are obtained by vary-

ing learning rate parameter and momentum term are presented in

the tables 12 & 13 respectively. From the table we can observe

that the rate of convergence is proportional to momentum term and

learning rate parameter.

In the direct approach, in which we train the BP network

directly with test nodal voltages; if the tolerance values are in

the range ± 0.1 volt, we have trained the network with input.

values having ± 0.1 volt error. After training the network with

error, we RUN the network for all possible patterns with ± 0.1

volt error. It is giving correct results for all patterns. If

the toler:-ance value is .2 volts, we have used ± o. 2 volt

56

error. If the tolerance is 0.3 volts, ± 0.3 error is used in

the training·patterns. In all the above cases it is found that

the network is working satisfactorily. By setting the values of

error in the training patterns, we can set the tolerance limits

of the components of the circuits. The main drawback of this

procedure is all test-nodal voltages are to be considered for

isolation.

In the integer code approach, the isolation procedure not

only isolate different faults, but also determine the minimum

number of nodal voltages required for isolation. The results

that are obtained for (4 nodes, 9 faults) network are given in

chapter 5. In this procedure also we can set different values of
'

tolerance limits. In this procedure, the neural network need not

be trained with error values, as in first procedure. The isola-
'

tion already takes place in the isolation procedure.

57

Table 12 Results for various values of Momentum with Learning

Rate = 0.8 and RMS Error= 0.1

MOMENTUM NO. OF ITERATIONS

0.1 2945

0.2 2704

0.3 2500

0.4 2325

0.5 2171

0.6 2045

0.7 1949

0.8 1872

0.9 1825

1.0 1776

58

T~ble 13 Results for various values of Training Rate. with Moments

= 0.9 RMS Error=O.l

LEARNING RATE NO. OF ITERATIONS

0.3 4548

0.4 3419

0.5 2742

0.6 2316

0.7 2026

0.8 1825

0.9 1678

1.0 1588

1.5 1490

2.0 1039

2.5 872

3.0 767

3.5 727

4.0 711

4.5 617

59

REFERENCES

1. Richard Lippmann, "An introduction to computing with neural

nets", IEEE ASSP Magazine, April 1987.

2. James L.McClelland and David E.Rumelhart, "Explorations in

parallel distributed processing A handbook of models, pro

grams, and exercises", pub. The MIT Press.

3. Maureen Caudill, "Avoiding the great backpropagation trap",

Don Tveter, "Getting a fast break with backprop",
) .
JeSSlCa

Keyes, "Getting Caught in Neural Network" A. I. Expert, JULY

1991.

4. Alianna Maren, Craig Harston, Robert Pap, "Hand Book of

Neural Computing Applications", Academic Press, INC.

5. Igor Aleksander, "Neural computing architectures", Pub. North

Oxford Academic r

6. John J. Hopfield, "Artificial Neural Networks", IEEE Circuits

and Devices Magazine, Sept., 1988

7. Maureen Caudill, "Neural networks Primer Part 1&2, AI Expert

Dec., 1987

8. Tom J. Schwartz "Parables of Neural Networks'', AI Expert,

Dec., 1989.

9. Philip Treleaven, Macro Pacheco, Marley Vellasco, "VLSI

Architectures of Neural Networks", IEEE Macro, Dec., 1989

60

10. P.M. Lin and Y.S. Elcheriff, "Analog circuits fault d~ction-

ary New approaches and implementation" Int. Journal of

circuit theory and applications vol. 13, pp149-172, 1985.

11. P. Duhamel and J .c. Rault, "Automatic test generation tech

niques for analog circuits and systems - A review", IEEE

Transactions on Circuits and Systems, Vol. CAS-26, pp.410-

440. July 1979.

12. Samuel N. Stevens and P.M. Lin, "Analysis of Piecewise-Linear

Resistive Networks".

IEEE Transactions on Circuits and Systems.

13. Walter Hochwald and John D. Bastian, "A D.C. Approach for

Analog fault dictionary determination", IEEE Transactions on

circuits and systems", July 1979.

14. William J. McCalla, "Fundamentals of computer aided circuit

simulation" pub. Kluwer Academic Publishers.

15. Heinz H. Schreiber, "fault Dictionary Based Upon Stimulus

Design", IEEE Transactions on circuits and Systems, July

1979.

61

APPENDIX I

THE BOLTZMANN MACHINE

The Boltzmann machine is structurally and dynamically

similar to the Backpropagation algorithm, and which can perform

similar tasks. It differs from perceptron like networks in that

they use an energy state optimization method derived from

statistical considerations, rather than a Delta rule. This

approach to learning allows them to perform optimization tasks as

well as pattern recognition.

The Boltzmann machine has both conceptual and

similarities to Back-propagation network. Both

performance

have hidden

nodes, and both need to be trained to match input patterns to

previously determined categories. Both networks were developed

at about the same time, and were applied to the same type of

problems. But the Boltzmann machine is not as popular as

Backpropagation.

There are several' reasons why the Boltzmann machine never

achieved the popularity of the back-propagation network. First,

the performance of the two networks was very similar, so there

was no need to favour one over the other because of performance

or capability considerations. Thus, the main criteria for

selecting a network became ease of learning and ease of using it

for a particular application. The back-propagation network was

easier to both learn and to use.

62

The back-propagation concepts and learning rules come out of

a fairly direct approach of minimizing an energy using

differential calculus. In contrast, the Boltzmann machine

concepts come out of statistical mechanics, expressed in either

information theoretic and/or statistical thermodynamic

formalisms. Not many people in the neural networks field have

the background to understand either of these approaches. Its

learning rule takes much longer to write down than the

backpropagation learning rule, as it is more complex, and takes

more time when training a network. As a result an explosion of

applications of the back-propagation method has occured, while

interest in the Boltzmann machine has dwindled. But the problem

with the back-propagation network is sometimes the connection

weights take on values which trap the network in a local minimum.

The goal of using the simulated annealing method is to avoid such

local minima trapping.

The learning method for Boltzmann machines is called

Simulated Annealing. The simulated annealing approach to learning

is sometimes called stochastic or statistical, because it relies

on generating random events and evaluating their effect in terms

of desired goals and probability distributions.

The essence of the simulated annealing learning law is that

we make an analogy between the energy state of the entire network

and the energy state of a physical solid which is slowly cooled.

We will pretend that each individual unit in the solid (atoms,

molecules, etc.) can take on one of two possible states: a high

energy state(l} or a low energy state(O). The free energy a

63

term fo~ thermodynamics) of the solid is a combination of two

factors; the combined energies of the individual units and the

negative of the entropy (the disorder among the units) times the

temperature of the solid.

The key to this analogy is that whether a solid is in a

high-energy or low-energy state, it is always in equilibrium.

Equilibrium is found at the lowest point on the free energy

curve. If we lower the temperature slowly, the solid will hav.e an

opportunity to find this lowest point, even if there are many ·

other shallow minima. We want to accomplish the same thing with

the Boltzmann machine network. We want to create some sort of

artificial temperature so that as we slowly reduce this

temperature, the connection weights take on values that put the

network at the global minimum for the energy curve, and don't get

trapped in one of the local shallow minima.

Let's make a physical analogy to this energy surface.

Suppose that we hold in our hands a large tray of firm plastic

that has some pockets or indentations in it. This would be like

the bottom half of one of those cartons of eggs. Now, some of

those indentations are very shallow, and some' are very deep.

This represents the energy surface (which is really

multidimensional). Let's suppose that we have a single egg-sized

ball in this tray. Although this is just a single, one, we want

to think of it as corresponding to the entire collection of

weights that we want to optimize. Our goal is to shake the tray

so that the ball goes into the deepest of the indentations.

64

We could shake the tray continuously, and hope that just by

keeping this up, the ball will fall into the hole. But how will

we know when the ball has reached the deepest indentation? This

can be tricky, especially if we don't know in advance

the indentations is deepest. So we adopt a strategy.

the tray, pretty hard at first. Shake it some more.

which of

We shake

Shake some

more, a bit more gently. Then more gently yet. Finally, just- the

barest of tremors. Now, let's look into the tray. Chances. are,

the ball is in the deepest pocket. That's because as we shook

the tray more and more gently, the ball could be shaken into out

of shallow indentations, but not the deepest ones. There's no

absolute guarantee that it would have fallen into the very

deepest one in the tray, but it is very likely to fall into in

one of the deepest.

We want to take this idea and apply it to finding optimal

connection weights in a neural network. To do this, we return .to

our original analogy, that of a solid which will undergo

simulated annealing. We need to see how the shaking of the tray

strategy fits in with annealing a solid, because this leads

directly to the neural network.

Recall that our hypothetical solid was composed of identical

units, each of which could be in one of two possible energy

states, high(l) or low(O). The proportional number of units in

each state is a function of temperature. At high

temperatures, there are more high-energy units than there are at

low temperatures. This proportion can be expressed as a

65

probability distribution. This temperature dependent probability

distribution will be a key factor in the simulated annealing

process. Shaking the tray corresponds to setting the te~perature

of the solid. Shaking the tray hard corresponds to high

temperature, with high kinetic energy for the ball in the

Shaking the tray gentlz corresponds to low temperature. The

tray.

ball

has low

pocket .

the free

kinetic energy, and cannot easily move out of a deep

The pockets in the tray corr,espond to energy minima in

energy surface. There are numerous local :minima, but

relatively few deep minima. These :minima represent equilibrium

states for a solid, and cor~espond to optimal connection weight

values in the neural network.

66

APPENDIX2

PARAS - P ARAM

PARAM is a statically reconfigurable multicomputer with the

transputer as the processing nodes. It has a switch and an

exchange to provide reconfigurability of nodes depending upon

specific communication demands of an application. Further

provision for allocating the availability nodes to many users

gives multi-user support. Optionally, PARAM can have

PFS(Parallel File System), for fast and high capacity secondary

storage.

These machines are best described as consisting of two parts:

the front and host and back and compute engine. The back end

compute engine is usually a network of transputers whereas the

host can,be either of PC, a SUN, or a VAX. All the development

work is done on the host machine and the bootable image of the

parallel program is down loaded to the back-end network for

actual execution.

The T800 transputer incorporates ~ floating-point unit (FPU)

together with a 30 MIPS (peak) CPU, 4 fast serial 'communication

links and 4 Kbytes of fast SRAM, all on a single chip. The links

can support 2.4 Mbytesjsec bidirectional communication on each of

the four links, concurrently with the operation of the FPU and

the CPU. The concurrent operation of the FPU and the CPU gives a

sustained rating of 1.5 Mflops at a processor speed of 20 MHz.

PARAS is a software development environment for message passing

67

machines built around transputers. These message passing

machines are general purpose MIMD (Multiple Instruction Multiple

Data) machine which employ a network of processing nodes to solve

a single problem. Processing nodes execute sequential programs

asynchronously and co-operate by sending data in the form of

messages. The collection of interacting sequential programs which

collectively perform a single job is called a parallel program.

The development of ~uch a program is greatly assisted by the

PARAS environment.'

PARAS has program development tools like compilers (for c

and FORTRAN), linker, configurer, Collector, librarian and

decoder to convert the source code into executable code.

Besides, it provides a -rich and powerful runtime environment

Concurrent Runtime Environment) CORE. CORE includes facilities

for message communication, process management, file and

I/O, graphics and other miscellaneous services.

A typical (parallel) application program under

screen

PARAS

consists of a set of processes working together to solve a

particular problem. These processes may either be executing on

different nodes of the network or on the same node. Some

process, after doing a portion of the job, may need to give the

result of its computation to other processes. Such a

communication is accomplished by explicitly passing a message

from one process to another.

The communication model of PARAS is based on abstract

objects called ports. A port is basically a repository for

68

messages.

letter-box

The concept of a port is very similar to that of

attached to a house where the letters addressed

that particular

address of the

received would

house-owner.

house are delivered. Any person who knows

house can post a letter. All the letters

be lying in the letter-box till cleared by

a

to

the

so

the

Similarly, a process owns a port -that it creates. A sender

process, which has to send to the receiver, knows the descriptor

of a receiver's port. It sends it message with the descriptor as

address. All messages to a particular port get queued up for the

receiver to receive in first-in-first-out order. Any process

which knows the receiver port's descriptor (address) can send

messages to it.

The placement of tasks to processors has to be done at the

configuration stage, before execution of the program. More than

one task can be placed on the same processor if there is

sufficient memory available. When the program starts execution,

all the. tasks start their execution simultaneously on their

respective processors.

When a task starts execution, it has a single line of

control and executes sequentially. This sequence of code in

execution is called a thread. A thread is the actual active

entity within a task. The starting thread of a tasks, is called

the main thread. The user might wish to achieve more concurrency

within a tasks on a particular processor. Since tasks have to be

statically defined, a facility for dynamically spawning threads

69

within a task is provided. A processor is time-shared by the

threads executing on it. Threads of the same task can share

global resources like global variables (common block variables),

file buffers, etc. consequently, threads of the same task an

share the Global variables. This should be contrasted with two

tasks placed on the same processor. Although they run on the

same node they cannot share variables. Concurrency on a single

processor can be achieved either by placing more than one task on

that processor or by dynamically spawning more threads within the

task.

The Program Development Environment comprises a set of tools

which include the compilers, the linkers, the configurer, the

collector, the debugger, the decoder and the librarian. These

tools run on the front-end host machine (with UNIX or DOS).

Hence, the complete development can be.done on the more familiar

host and only for executing the program the user needs to go to

the parallel machine.

Since PARAS allows writing parallel programs in a hardware

independent manner, when the program has to run on a specific

hardware, it has to go through a state of configuration. Here,

in the configuration file the actual details of the hardware in

terms of number of processors and the way their communication

links are connected are specified. This file and the linked

modules for the tasks are given as input to the configurer. The

different compiled and linked units of the parallel program are

given together with a configuration specification file to the

70

configurer, which produces a binary file to be given as input to

the collector. The collector, in turn,·produces a boatable image

of the parallel program for the specified machine. The boatable

file has the code to be executed by the tasks alongwith the code

to load them onto the different processors to the networks ~s per

the user specification. This file is given to a server (running

on the host) for loading the code .onto the processors and

executing. it.

Thus, the

executable form

basic tools.

Collector.

application program is developed into

(as a boatable file) using the following

1. Compiler 2. Linker 3. Configurer

71

an

four

4.

.APPENDIX 3

TJ.XONOKY

TAXONOMY OF NEURAL NETWORKS

81NA RY INPUT

A
CONnNUCVS VALUGD

INP~

SUPER \J I .SED UtJ5UPE VtSED

I
SuPER. v• sE o VNSUPER uJSEo

~
HOP~IELD

N£T
HAMMIN6 CORPENTER.

'
N£T ~ R.o55&: R9

CLA SS1 FIER

72-

~ I
PERCEP- MULTI· KOHONE~

LA 'fER.._ SELJ: oR4.
PERCE.PTRDN FEATURE

MAPS

Some-Applications of Well-Known Networks: I
Network Year Inventors/ Primary Advantages Disadvantages Mosl Relevant

Introduced Developers · Applications ChJ p lcr

ADALINEJ 1960 B. Wdrow Adaptive si9nal r.Mering, Fast, easy to implement, can Linear relationship bl'lw~.:~.:n 7
MADALINE adaptive equalization be done using analog 01 VLSI input & output a:;surn~d Only

circvitry. linear S!!p.1rC1ble d.lss•f.c;~lion
Sp<JCC'S JX)SStble.

-
Nlaptive IS83 G. Carpenter & Pan em reccx}nition Able to learn new p;lt1ems, Nature ol c;~tegoric;~l 11
R e son.1nca S. Grossbefg 101m new panern C<JI~ories, exemplars mily d1,1n'11' wi:h
Theory and relain learned CJit'QOiics. lcarn•ng.

E1"Kk·Propacpling 1 g74·193G P. J. Werbos, Pan em r C'CO')nrtion. ~gr...1l Fast opcr a lion. Good 21 long lcwninq time 1
Pcrceplrons: 0 Patker, liheri[)], noise removal. lorming internal represent·

Basic D. Rume~ar1 si;Jna!f•ll'l.)Q e s l'<)mentali()"l, ations ollealures in input data
cl.lssification. mapping, 01 dassillcation and other
adaptive rooohc ron\rol. dat, tasks. Well studied. Many
compression successlul apptie<~tions.

--
Rerurrenl 1S87 Almeida, Robotic rontrot. speech Best network so far !01 Complet nelw01ll. m.Jy b'? 1 7

Pineda re<:ogoition, sequence classifying, mapping dilf•culllo \ra•n arxl op!irr,•ze
element pre<!Ction time-varying inlormation. -

Time·Defay lSa7 D. W. Tank& Speed'! recognition' Perf01mance equivalent to Fixed window oltempcral I 7
J. J. Hop~eld best conventional methods, activily represented. rP~ronds

faster opec ation. awkwardly 10 dtllerences in
scale of inpul.

FunoiMai·Unk 1988 Y. H. Pao Classir.:.ltion. mappnq Only two layers (tnput & No clear way 10 idr.nltly 15
Networ'K oulpul) roeeded: laster 10 !rain. !unctions f01 lunc1t0n;~llin~. s.

Radial Basis ISS7· Muhipe Classirre.atiro, mapping Networi< with single hidden Not yet r!1own. 15
Function 1988 AeseaJcher~ layCf ol RBF n~rons
Netwock per1orms equivalent to basic

. BP ne!WOo'k with two hidden
layers. ..

B.rl· 1974 P. J. Werbos Maximze pertormance inde Most comprehensive neural Can use only ill1N 22
PropaQJiion 01 u1iiry II.Tdion over time. approad1l01 model·bJsc<l dillcrentiable model ictent·lt~c.

'o1 Utility neuoc::ctl1!d (e 9. roOOtics) prcdicfon and/01 contJ~. must adapt oil tine it model i~
FU'ldioo dynamic. and :1swmes model

I lli{),VJh Time is E'J:ld.

':"'1.......,"'-' • ..-.c"'" -
. ,.. _ __..

-··· -- ·------- ~· -·-----·---· .. --- ~-'- -·- .. ------ .~- --··

Some Ap.plications of Well-Known Networks: l\
Network Year Inventors/ Primary Advantages Disadvantages '-lost Relevant

lntroduct><:! Developers Apptica lions Chapter

.
Bidirectional 1987 B. Kosko Heteroassodatr.-e Simple, dear learning r\Je, Pro stora:Je capac:ty, poor II
Assodative (CO'ltent·addt essat) e) ardlilectvre,&ctynamics. retrieval a<"...ClJracy.
Me tTl()()' memory Clear prool of dynamic

stabaity.

Boltzmann 1984, 1986 G. Hinton. Panem r~tion [mages ~e to letm optimal Boltz mann rrcy-.)1i n e · very ~ IYJ 8
Madline. Cai.JChy T. Sejnowski. sonat, radar). oplimzati01 representation of pa"ern leamirq time. Caudly
Madline D. Ackley: leal\.wes. Follows energy m..1dlinc oll<:'fs laster l~i\lnirYJ

H.Szu ~rlace 10 obtain oplmzation
mil'llmJ

Boundary Contour 1985 S. Grossberg, Low~ev~ mage procesSing S.ologQIIy·based app.-oadl Comrex. multilayered 12
System E. Mingolla 1o excellent seQmen!Jtion. arcllileclure.

- --------·
Orain·SIJIC·in·J· 1977 J AMcrs01 Auloassociative recall Possibly bcllcr pcr1ormMce lf'1C!)'Tlplctrly explorN.l •n 9
Oox !tiM Hopi• rid nc ~"'ork. lcrms,ol redorm.)n(.f! arorl

arplic.l~·ons potr.nti.ll

Hopfiefd 1982 J Hoplield Auloassociate recall, Simple rorcl'f)l. proven Unable to !cam new !;tales 9

I optimizati01 dynamic slabtl•ty, e01sy to (l•rcd we•c;t115 for disar.l~
rnplemenl in VLSI. Hopl•rld). r-::o mcll'l()(y

5lorage. many spuriQuS ~1~\es
relurn':.'d.

Learning 11j81 T. Kohonen Auloassociative re-call Nje to self-organize vedor Urve:,o~vt'd ISSU€5 in selecting tO
Vee! or (pan ern cb'nplet()n ()iven represef11ali01s ol probJMty numbo:'!S ol vectors to use and
CNanlization pal'1ial panem). data cSstributons in data. ~pd ICIX)Ih ol bme lor aroroprialo

compression execution alter training is lr(l!IL!ng. Slow trainlflg.
completed.

Neocognitron 1975-1982 K. Fukushima Recog,_!ion of hard -drawn ~e 1o perfOfm s.cale, Requites many processing 12
charaaets ard Olher lrat1sJation and rotatoo elements and tayt'fs, o:mplex
lilea.r~ine f9~es ilvariant panem reccx)l'ition. s trudiJ(es. scalioq issues lor

re<U-world use stil need to be
resolved.

Self -OrganiziNJ 1981 T. Kohonen Complex mapping (tnvoi-Nw; Nje to seK-Ot'ganize ve-ctor Urve:,olvN:l issues in selecting 10
TopoJo9y· neighbothood represefltations ol data .,..;ttl a numbers ol vee-too lo u~e and
Preservi"9 Map retatoost'ips). data mear-Vnglli ordering amoog lenoth of time lor tr M'llnQ.

compressiet1. optimzation ltle represeotati011s . Sl::l;., v <llnir>q. .
.... ~..._.._ ,-.·-: -

	TH51320001
	TH51320002
	TH51320003
	TH51320004
	TH51320005
	TH51320006
	TH51320007
	TH51320008
	TH51320009
	TH51320010
	TH51320011
	TH51320012
	TH51320013
	TH51320014
	TH51320015
	TH51320016
	TH51320017
	TH51320018
	TH51320019
	TH51320020
	TH51320021
	TH51320022
	TH51320023
	TH51320024
	TH51320025
	TH51320026
	TH51320027
	TH51320028
	TH51320029
	TH51320030
	TH51320031
	TH51320032
	TH51320033
	TH51320034
	TH51320035
	TH51320036
	TH51320037
	TH51320038
	TH51320039
	TH51320040
	TH51320041
	TH51320042
	TH51320043
	TH51320044
	TH51320045
	TH51320046
	TH51320047
	TH51320048
	TH51320049
	TH51320050
	TH51320051
	TH51320052
	TH51320053
	TH51320054
	TH51320055
	TH51320056
	TH51320057
	TH51320058
	TH51320059
	TH51320060
	TH51320061
	TH51320062
	TH51320063
	TH51320064
	TH51320065
	TH51320066
	TH51320067
	TH51320068
	TH51320069
	TH51320070
	TH51320071
	TH51320072
	TH51320073
	TH51320074
	TH51320075
	TH51320076
	TH51320077
	TH51320078
	TH51320079

