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ABSTRACT 

The Neural Network application to Analog Circuit Fault­

Diagnosis js considered. The ~ultilayer feedforward network with 

BackPropagation algorithm is chosen for this application. The 

circuit can be simulated for different faults using any simulator 

and nodal voltages under the different fault.conditions can be 

obtained. These nodal voltages along with the fault numbers were 

formulated into a table, called as Fault Dictionary. The Neural 

Network is trained for all sets of the nodal voltages as input 

patterns and wit~ the respective Binary coded fault numbers as 

output. Two approaches were followed in using the Neural Net-

works in Fault-Diagnosis. Software is developed for both the 

approaches. In the first approach the nodal voltages are di­

rectly applied as input patterns. In this all the accessible 

nodes of a circuit are to be considered as inputs for the neural 

network. In the second method using Lin & Elcheriff's approach, 

minimum number of test nodes are obtained for fault isolation and 

an unique integer code is obtained for all fault conditions. 

This approach isolated the faults from other faults to eliminate 

the ambiguities caused by tolerance limits of components of the 

circuit. Here the coded ambiguity values are given as the inputs 

and binary coded fault numbers as output values. Both the ap-

preaches were working satisfactorily. The Neural Network is 

converging to the specified error in reasonable number of itera­

tions. 
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CHAPTER 1 

INTRODUCTION 

Rapid advances in Neuroscience and in Computer Science are 

arousing renewed interest in Artificial Neural Networks as 

potentially new problem-solving architectures. The neural 

networks' derived its name from th~ network of neurons, which is 

the basic fundamental unit of nervous system, especially the 

brain. Human Brain has more than ten billion nerve cells or 
. I 

neurons interconnected in a massively parallel fashion. The 
\ 

brain's capabilities inspired many scientists to attempt computer 

modelling of its operation and the result has been the study of 

neural networks. It is common,to refer to such networks as 

Artificial Neural Networks to distinguish them from the natural 

neural networks that are in human brain. 

Analogy to the Brain 

J 

The neuron is the fundamental unit of the nervous system and 

in particular the brain. Its nucleus receives and combines 

signals from many other neurons through input paths called 

Dendrites. If the signal is strong enough it activates the 

neuron which produces an output signal. The path of the output 

signal is called Axon. The axon splits up and connects to the 

dendrites of other neurons through a junction called Synapse. 

The amount of signal transferred depend on the Synaptic strength. 

This simple transfer of information is chemical iry nature but has 
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electrical side effects which can be measured. The structure of 

a neuron is as shown in Fig. 1. 

,i.)I(ON 

I 

Figure 1 Structure of Biological Neuron 

Artificial Neuron 

·Artific~al Neural Networks (ANNs) are made up of processing 

elements or nodes which resemble the neurons of human brain. A 

processing element (PE) has several input connections and a 

single output. The PE receives input signal through its input 

connections from other PEs. Each connection from one processing 

element to another processing element has some value called 

connection weight. The processing element calculates the 

weighted sum of its input signals according to a function to 

determine its output. The transfer function is generally a non-
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linear function like hard limiters, threshold or sigmoid 

function. Positive weights which increase the strength of 

connection represent excitatory connection while negative weights 

which represent inhibitory connections decrease the strength of 

connection. The output is sent to other PEs through output 

terminal. 

The structure of processing element is as shown in the 

figure 2. In this figure, x1 , x2 , x3 , x 4 , .... xn represent the 

input values from other neurons. And w1 , w2 , w3 , w4 , ... ,wn 

represent the corresponding connection weights. The processing 

element calculates the weighted sum w1 .x1+w2 .x2+w3 .x3+ ... +wn.xn 

of all these inputs, and then calculates its output using some 

transfer function Fn. 

Figure 2 Structure of Artificial Neuron (Processing Element) 

Artificial Neural Networks 

Artificial Neural Networks are dynamic systems composed of 

highly interconnected layers of simple neuron-like processing 
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elements as shown ir figure 3. These layers are categorized as 

input layers where patterns are presented to the network and 

output layers which contain the response to a given input. 

Further more they may contain intermediate layers or ·:hidden 

layers between input and output layers. 

-
Neural network operations consists of a learning or training 

phase, recall phase, and generalization phase. During the 

learning phase the network is repeatedly presented with a set of 

input-output patterns. Learning is accomplished by a general 

rule which dynamically modifies the weights of all 

interconnections in ~n attempt to generate the desi~ed output 

pattern for each presented input pattern. After the learning is 

complete~ the network operates in a recall phase where it 

generates response to input patterns used in the training. It 

also operates in a generalization phase where it generates 
'· 

response to similar or novel input patterns. 

J 
/ '·, 

t 
i our PuT 

/ 
J r------. 1... A 'I'( I< 

:--- ••• j • 

HIODt:N 
/ 

. ~ \ INPUT 

<,, __ )-- - \...,--' LAVER 

I I 

.I I 

Figure 3 structure of Artificial Neural Network 
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Neural network computations are collectively performed by 

the entire network with knowledge represented in the connection 

weights between processing elements. Consequently, the. 

collective operations result in a high degree of parallel 

computation which enables the network to solve complex problems 
-· 

rapidly. In addition, the distributed representation leads to 

greater fault tolerance and to graceful degradation when problems 

are encountered beyond its range of experience. 

In the following table 1, comparison is made between 

human brain and artificial neural networks. 

Table 1 Comparison Between Brain and ANN 

Element Brain ANN 

1. Organization Network of neurons Network of Processing 

elements 

2. Components Dendrites, Axons, Inputs, outputs, weight 

synapses, Summer, summation function, 

Threshold. Threshold function. 

' 3. Processing Analog. Analog or Digital. 

4. Architecture 10 to 100 billion 1 to 1,000,000 PEs 

neurons 

5. Hardware Neuron switching Device. 

6. switching Speed 1 milli second 1 n.sec. to 1 m.sec. 

7. Technology Biological Silicon, optical. 
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Comparison to AI : 

1. In AI knowledge is explicit in the form of rules. To 

create an AI an expert is needed to evaluate the problem and to 

define the rules. Where as in artificial neural networks we need 

not define any rules. ANNs can generate their own rules by 

learning from the examples. 

Advantages of Neural Networks 

Because of its structure and the organization or processing 

of information, the neural networks offer some unique advantages 

over other conventional systems. The advantages are as follows: 

1) ADAPTIVE LEARNING: An ability to learn how to do tasks 

based on the data given for training or for initial experi-

ence. 

Adapt1ve learning is one of ttie most attractive features of 

neural networks; that is, they learn how to perform certain tasks 

by under going training with illustrative examples. Because the 

ANNs can learn to discriminate patterns based on examples and 
-

training, we do not need to elaborate training models, nor we 

need to specify the probability distribution functions. The 

designers sole concern is to select apprdpriate architecture, 

learning algorithm, training patterns, and network dynamics. 

2) SELF ORGANIZATION : A neural network can create its own 

representation of information it receives during learning and 

operation. 
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Neural networks use their adaptive learning capabilities to 

self-organize the information received during learning. When 

the neural network self organizes, it creates representation of 

' distinct features of the training data. Even when the ANNs are 

taught to learn certain classes of patterns, they self organize 

the information such that it is used for pattern recognition. 

3) FAULT TOLERANCE 'VIA REDUNDANT INFORMATION CODING: Partial 

destruction of NN leads to degradation of performance. However, 

some network capabilities may be retained even after major 

damage. 

NNs are the first computational methods, available which are 

fault tolerant. There are two distinct aspects of fault 

tolerance. First, NNs can learn to recognize patterns which are 

noisy, distorted, even incomplete. This fault tolerance is with 

regard to data. Second, they continue to perform even after some 

part of the network itself is destroyed. This fault tolerance to 

damage within themselves. 

This tolerance is due to that NNs have distiibuted (or 

redundant) information encoding. When neural network store 

information it is not localized. Instead it is shared by all 

interconnections and weights. Where as most computer algorithms 

and data retrieval systems store each piece of information in a 

localized addressable space. 
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4) REAL TIME OPERATION : NN computations can be carried out in 

parallel, and special hardware devices are being designed and 

manufactured, which can ~ake advantage of this capability. NNs 

are well suited for parallel implementation. Their structure is 

such that only a few steps need to be performed per neuron. That 

is, only it has to perform weighted sum of inputs and applies 

some transfer function to the sum~ Thus massive parallelism can 

achieved through VLSI technology. 

S) EASE OF INSERTION INTO EXISTING TECHNOLOGY : An individual 

network can be trained to perform a sing~e, well defined task. 

Because a network can be rapidly prototyped, trained, tested, and 

verified, and translated into low cost hardware implementation, 

it is easy to insert neural networks for specific purposes into 

existing systems. 

Because of these advantages, artificial neural networks are 

emerging computational technology which can significantly enhance 

a number of applications. ANNs are finding use in many real 

world applications such as speech processing, 

recognition, image processing, diagnosis, natural 

pattern 

language 

processing, combinatorial problems, noise filtering, medical 

diagnosis and control systems. 

Software is developed for analog circuit fault diagnosis 

using fault dictionary approach. A new method of using Artificial 

neural network for the fault diagnosis is carried-out under this 

dissertation work. For this we have chosen D.C. fault dictionary 

method, which can be used for diagnosing hard failures in the 

circuits. 
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The essence of fault dictionary is, for each fault, its 

symptom or signature (usually voltages of some test nodes) is 

determined through a software simulation program and stored in a 

dictionary. Before simulating the network a set of test nodal 

voltages and also same set of faults are selected which are 

likely to occur in the actual usage of the circuit. Then the 

circuit is simulated for all the predetermined faults and the 

test nodal voltages corresponding to each fault are determined. 

Given a faulty circuit, one makes test measurements and then 

compares the result with those stored in the dictionary to 

{dentify the fault. Thus D.C. Fault dictionary approach is 

simulation before test (S.B.T.) method, since we are simulating 

the circuit before use. There is another method for fault 

diagnosis is simulation After Test (S.A.T.) .. But the main 

problem with direct comparison of nodal voltages, with those in 

the dictionary is, here we are assuming the values of components 

of the circuit as constant (absolute value) while simulating. 

But in practice, the values of components ~ill vary within some 

tolerable band of values. Because of these tolerance values one i 

set of nodal values may fall into another set of fault 
' 

conditions. So it is difficult to determine the fault just by 

comparison to fault dictionary. So to distinguish different 

faults, these faults must be isolated from one another. 

For this I have used two approaches., In the first approach 

I have used Back Propagation Neural Network for isolation. In 

this method first the circuit is simulated for different fault 

conditions and these nodal voltages are formed into a fault 
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dictionary. In the fault dictionary each nodal voltage will be. 

given some address. The back propagati?n Neural Network is 

·trained with these patterns, i.e., the nodal voltages are as 
·' 

input values and the corresponding address as output valu~s. 

After training, the network will give the corresponding fault 

number for a given set~of input node voltages in RUN mode. 

In the second approach, the test nodal voltages are isolated 
( 

from one another by using some logical procedure (Lin & 

Elcheriff's method}. By using this procedure we can, not only 

isolate faults but also determine the minimum number of nodes 

required for isolation. The input to the isolation procedure is 

the test nodal voltages. The output is an unique integer code 

corresponding to different sets of nodal voltages. This integer 

code is formed into fault dictionary. The address of faults are 

placed against the integer code. Then this table is applied as 

training patterns to the neural network. After training the 

neural network it gives address of fault as output corresponding 

to the integer code as input. 

It is found that both approaches were working 

satisfactorily. For the two approaches, I have developed 

software for BP algorithm and for isolation procedure in second 

approach. The Neural Network is converging to the specified 

error in reasonable number of iterations. 

The remainder of the paper is organized in the following 

manner. The Basics of Neural Networks, its analogy to brain, and 

its advantages are discussed, and also its application to Analog 
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Circuit Fault-diagnosis is introdu2ed in Chapter 1. In chapter 2 

representation of neural networks and their applications are 

discussed. In chapter 3 the Back 'Propagation network is 

discussed. In the fourth chapter fault dictionary method of 

analog circuit fault diagnosis is described. In chapter 5 the 

concept of ambiguity s~ts and the applications of Neural Network 

to the analog circuit fault diagnosis is given. Both methods are 

discussed in detail in that chapter. Subsequently the results 

and conclusions of the neural network based approach is presented 

in chapter 6. In the appendix 1, Boltzmann machine algorithm is 

presented. In appendix 2, introduction on Parallel Programming 

on transputer based Parallel Super Computer PARAM is discussed. 

In appendix 3 Taxonomy of different neural networks is presented. 
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CHAPTER2 

NEURAL NETWORKS 

Any neural network structure is represented in terms of 

three fundamental descriptors. They are 

a) Interconnection architecture between processing ele-

ments. 

b) Rules that determine whether or not a particular proc­

essing element will fire( or Transfer Function). 

c) Training laws(or Learning laws). 

a) Architectures In this the physical organization and 

arrangement of the neurons is considered. Meso-structural 

(i.e.,architectural) considerations are especially important in 

that they help us to distinguish different classes or types of 

network architectures. These considerations help us to make 

distinctions between different types or classes of networks 

which are currently in use. There are some basic distinctions 

which allow us to form categories of networks. 

The first distinction is in the number of layers in a net­

work. We classify networks as being single-layered, bi-layered or 

multilayered. Within this first distinction, we note that the 

type of connectivity allowed creates the possibility of different 

structures. We identify two major types of single-layered net­

works: those that are explicitly laterally connected, and those 

which have only implicit ~onnectivity. Bi-layered networks typi­

cally have both feedforward and feedback connections. There is a 
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large class of multilayered networks which have strictly feed-

forward connections, and there are a number of multilayered 

networks with complex connectivities ( feedforward, feedback, and 

lateral) . Based on these distinctions, the networks are divided 

into different types, as following 

-
• Multilayer, feedforward networks 

• Single-layer, laterally-connected works 

• Single-layer topologically ordered (vector matching) networks 

• Bi-layer, feedforward 1 feedback networks & Multilayer, 

Cooperative networks 

• Hybrid networks. 

Six Basic Typologies of Neural Network Meso-Structures 

Figure 4 
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b) Transfer functions : The most common distinguishing factor 

among most of the artificial neurons being used today is their 

transfer function. This function specifies how the neuron will 

scale its response to incoming signal, and produces it activa-

tion. If the activation is strong enough, then the artificial 

neuron will output a pignal to the neurons to which it is con-

nected. Four ,typical transfer functions are 

i) Threshold logic nodes. 

ii) Hard-limit nodes 

iii) Continuous function(sigmoid) nodes. 

iv) Radial basis functions. 

Neural Network Transfer Functions 

0 0 

0< 0' 

,h y 

112 

0 

·1 

(d) (a) 
Thres;h~d logic 

(b) 
Hefd-Liml1 

(C) 
Sigmoid ~d~l Buls Func11on 

Figure 5 Different Transfer functions 

i) THRESHOLD LOGIC: Threshold logic nodes create binary state 

neurons by applying simple transfer function. 
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If Weighted sum > Threshold 

Then Activation 1. 

Otherwise o. 

* Easy to implement in hardware. 

* Limited learning capability. 

* Used in Hopfield/Tank network. 

ii) HARDrLIMIT NODES: In this both upper and lower limits are set 

on the summed input from other neurons, plus the thresholds. 

If the total sum > upper limit, activation = 1. 

< lower limit, activation o. 

Between these two limits the output is linear function of weight­

ed sum. At the transition points the function is not differen­

tiable. This limit their use in applications which require 

sophisticated learning capabilities. 

iii) CONTINUOUS FUNCTION NODES: Werbos suggested this Sigmoid 

transfer function for improved learning in Back propagation 

network. The transfer function is smoothly varying and is dif­

ferentiable at all points. Back propagation network requires the 

differentiation output activation as a function of input. 

The equation of sigmoid is 

Y = 1/(1 + e(-kX)) 

where X = weighted sum, Y 

and k = constant. 

output activation of neuron, 
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Derivative of sigmoid is always positive, and is close to zero 

for either large positive or large negative values of X. And is 

at its maximum value when X is zero. 

iv) RADIAL BASIS FUNCTIONS: This is ~ypically a Gaussian func­

tion, which is useful when creating a neural network for continu­

ous function mappings. The centers and widths of these functions 

may be adapted, which makes them a more adaptive function than 

sigmoid function. Mappings which may require two hidden layers 

of sigmoid function units can some times be accomplished by a 

single layer of neurons using radial basis functions. 

c) Learning : Learning is the process of adapting the coefficient 

weights in response to stimuli being presented at the input 

buffer and optionally at the output buffer. An ANN can learn in 

supervised or unsupervised mode. 

SUPERVISED ANN: ANN which requires a supervisor for learning is 

called supervised ANN. The ANN is provided with sets of inputs 

and corresponding desired output sets. After each trial the 

output obtained is compared with desired output and the differ­

ence corrected using some learning algorithm till actual output 

matches to an acceptable level. 

UNSUPERVISED ANN: ANN's which do not require a supervisor for 

learning are called unsupervised ANN. Unsupervised ANN can be 

trained in two ways graded training and self organization train­

ing. In graded training inputs are given and occasionally grade 

is given according to performance of network. In self organiza-

16 



tion learning network itself organizes into some useful configu­

ration based on the inputs ... 

PRACTICAL APPLICATIONS : 

Artificial Neural Networks are finding use in many real 

world applications such as speech processing, pattern recogni­

tion, image processing, diagnosis, finance, etc. Sometimes it may 

be necessary to combine ANN techniques with traditional tech­

niques to solve the problems. 

1. SPEECH PROCESSING : Speech processing problems include speech 

recognition, text to speech conversion. In speaker recognition 

problems, speech samples of some speakers are collected. The 

collection of features of speech like pitch period, zero crossing 

etc., forms a template which is stored in memory. Several such 

templates are stored in memory. When a test sample is given as 

input, it creates a template and recognizes the speaker if it 

finds a match in the memory. Kohonen devised a phonetic type­

writer which could type from dictation. Sejnoviski and Rosenberg 

developed NETtalk which could change text into spoken language. 

NETtalk was used on Back Propagation algorithm. 

2. NATURAL LANGUAGE PROCESSING : Natural language processing 

involves studying how we construct rules about language. Cogni­

tive scientists Rumelhart and Mcckekabd devised a neural comput­

ing system which learns the past tense of English verbs. 

3. IMAGE COMPRESSION : Image compression refers to transforming 

image data to a different representation which requires less 

17 



memory but from which origina~ image can be reconstructed. cot­

trell Munro and Zipser designed a three level neural network and 

achieved compression ratio of 8:1 with high fidelity. 

4. PATTERN RECOGNITION: ANN's are finding applications in 

nition of hand written characters. Nestor developed a 

which accepts handwriting on a digitized pad. After 

trained for interpreting a set of handwriting types, the 

recog­

system 

being 

neural 

system is able to interpret a type of handwriting it has never 

seen before. Some advanced pattern recognizing systems use neo­

cognitron which is a multi-layer pattern recogniser that simu­

lates the way visual information feeds forward in the cortex of 

the human brain. 

5. COMBINATORIAL PROBLEMS : Neural computing system also solve 

certain combinatorial problems such as travelling salesman 

lem in which the goal is to find the shortest possible route 

prob­

the 

salesman can take to cover a certain number of cities in a speci­

fied area. Hopfield and David Tank h~ve develbped a system to 

solve this problem. 

6. PATTERN RECOGNITION IN IMAGES : Groman and Sejnowski applied 

back propagation networks to classify sonar targets. David Gloer 

used back propagation in machine vision applications. This had 

two benefits a) minimal operators used for training th~ classifi­

er and b) no assumptions were made. 

7. SIGNAL PROCESSING : Lapedes and Farber used back 

networks for doing prediction and system modeling. 

propagation 

They showed 

that for chaotic time series back propagation exceeds convention-
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al linear and polynomial predictive methods by many orders of 

magnitude. 

a. NOISE FILTERING : Neural networks can also be used for noise 

filtering. They are able to preserve a greater depth of struc-

ture in detail than traditional filters while removing noise. 

9. SERVO CONTROL : It is very difficult to control complex me-

chanica! servo systems. Errors are in~roduced due to some physi­

cal variation. It is impossible to measure the variations accu-

rately and solving is very complex. Neural networks have been 

trained 'to predict the error in the final position of a robot 

from the joint angles. The error is combined with desired output 

to provide correction and to improve accuracy. 

10. DIAGNOSIS Diagnosis is the recognition and identifica-

tion of the cause of problem. Diagnosis may be made to identify 

medical conditions, machine fault or similar problems. The 

ability to.deal with large data based, incomplete data and situa-

tions in which diagnostic rules are not known in advance makes 

ANNs suitable for diagnosis problems. Here the input is the data 

about the fault conditions and the output is the diagnosis of the 

problem. DESKNET which uses Back propagation Algorithm is able 
' 

to diagnos~ different skin diseases. 

11. CONTROL SYSTEMS : Broom stick balancing system is one of the 

proven applications of adaptive control. A broom stick with 

several sensors is pivoted of a cart upside down on its handle. 

The ANN is trained to move the cart back and forth so that broom 
/ 
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is balanced on its handle top. During trial and error 

the system uses the feedback to control the movement 

balancing platform. 

learning, 

of the 

12. OTHER APPLICATIONS : Two other major areas in which ANNs are 

used are A) Financial and Economic Modeling and b) Functional 

synthesis. 
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CHAPTER3 

BACKPROPAGATION ALGORITHM 

The network 'gets its name from how it handles the errors. 

Actually the network is developed from the network Perceptron, 

which is a single layer network. But this is able to train the 

output units to learn to classify the patterns of inputs, 

provided they are linearly separable. 

More complex and non-linearly separable classes can be 

separated with a multi-layer network. However, if there is any 

error in the output layer, the Back Propagation algorithm solves 

the problem by processing element or inter-connection to adjust 

to reduce the error, by assuming that all processing elements and 

connections are responsible for the erroneous result. 

Responsibility for errors is affixed by propagating the 

output err0r backward through the connections to the previous 

layer. This process is repeated until input layer is reached. 

The name BackPropagation derives from this method of di~'ting 
,ft.l - ~.'~ 

the blame for errors. t!"~ ;;\ 
t, f:'!- J .............. ......... ;:-
,~~- -- .e;-

The key distinguishing characteristic of the bac~Opaga~ion 
is that if forms a mapping from a set of input stimuli to a set 

of output nodes using features extracted from the input pattern. 

This network can be designed and trained to accomplish · a wide 

variety of mappings, some of which are very-complex. This is 

because the nodes in the hidden layer(s) of the network learn to 

respond to features found in the input. 
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Because nodes in the back-propagation network learn to 

respond to featur~s as the network is trained with different 

examples, the network develops the ability to generalize. For 

example, a back-propagation network is learned to distinguish 

between straight, concave, and convex curved lines. Even if the 

lines to be tested occur in different locations, or mixed with 

some noise or even some part of the line is missed, the network 
I 

would be able to distinguish them. The network would probably 

respond correctly even if it is presented with a pattern which it 

has never seen before. The ability to make such complex 

distinctions, even when the presented pattern is different from 

those on which the network was trained, is due to the feature-

detection and generalization abilities which are trained into the 

middle or hidden layer nodes. 

In order for a back-propagation network to be successful for 

-applications, the key issue is that the hidden layer nodes must 

be trained to recognize the right sets of features. These 

features must be sufficiently general, so that the network can 

respond correctly, even when its input is different from those it 

has previously encountered. 

Backpropagation network can be represented in terms of three 

common descriptors as : 

i) Architecture. 

ii) Transfer function. 

iii) Learning laws. 
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1) ARCHITECTURE The BackPropagation Network is a fully 

connected feedforward network as shown in following figure. 

F4lly connected Network means each nodes of each layer is 

connected to each node of the next higher layer. 
I 

In the 

feedforward network the output is calculated in the forward 

direction only. No part of the output is feed back to the input. 

There are some algorithms, in which output is fed back to the 

input in run mode (e . 

Figure 6 Back Propagation Network 

ii) TRANSFER FUNCTION : Backpropagation learning law requires 

that the transfer function for each nodes be defined by a 

continuous function. This function should be asymptotic for both 

infinitely large positive and negative values of independent 

variables (typically, the weighted sum of inputs). These 

conditions usually lead to a modified Sigmoid shape for transfer 
' 

function. The use of th!s kind of transfer function is one of 

the major differences between BP and its 
( 

predecessors, the 

Perceptron and ADALINE. Each of these earlier networks used 
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nodes with simpler transfer functions, and this limited their 

ability to be useful in the more complex pattern recognition 

problems. 

One important factor about the sigmoid function is that its 

derivative is always positive, and is close to zero for large 

positive or negative values of X. The derivative has maximum 

when X is o. This is important in helping the backpropagation 

learning law work effectively. This is because, the changes made 

to the weights is proportional to the derivative of the 

activation. If the derivative is near zero, then the changes are 

small. This is desirable, because the derivative is near 0 when 

the activation value is near 0 or 1, one of the two stable 

states. When the activation of the neuron is in the middle 

range, the activation must be changed such that it produces a 

value near one of the stable states (0 or 1). The derivative is 

large when the activation is in the middle range. So the changes 

in the weights is also fairly large. Thus the transfer function 

not only gives smooth and differentiable behavior, it also helps 

1(): 

:(., 

Figure 7 Sigmoid Transfer Function and its Derivative. 
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iii) LEARNING LAW : The backpropagation algorithm uses Gener­

alized Delta Rule for its learning. In this procedure it uses 

Gradient Descent algorithm to adjust the weight values. The main 

advantage of gradient descent is that it makes changes to the 

weights such that the error drops most steeply. The idea of 

gradient descent is to make a change in the weight proportional 

to the negative of the derivative of the error, as measured on 

the current pattern, respect to each weight. Thus the learning 
( 

rule becomes 

W[i][j] - k * dEp/dW[i](j] 

If we change each weight according to this rule, each weight 

is moved towards its own minimum and we think of as the system is 

moving down hill in weight space until it reaches it minimum 

error value. When all the weights have reached their minimum. 

points, the sys~em has reached equilibrium. If the system is 

able to solve the problem entirely, the system will reach zero 

error and weights will no longer be modified. on the other 

hand, if the system couldn't solve the problem exactly, it will 

find a set of weights that produce as small an error as possible. 

The basic idea of backpropagation method of learning is to 

combine a non-linear perceptron like system capable of making 

decisions with the error function as LMS and Gradient descent. 

To do this we must be able to readily compute the derivative of 

the error function with respect to any weight in the network and 

then change the weight according to the rule. 

25 



After calculating the derivative of an appropriate choice of 

non-linear function, the learning rule becomes 

W· · = e * $[i] * a(j] lJ 

Essentially, the term $[i] represents the effect of a change 

in the net input to unit j on the output of unit i in pattern p. 

The determination of ~ is a recursive process that starts with 

the output nodes. If the unit is an output unit, then the value 

of $ becomes 

$[i] = (T[i]- a[i]) f'i (neti) 

where net(i] 

The $ term for hidden units for which there is no specified 

target is determined recursively in terms. of the $ terms of the 

units to which it directly connects and the weights of those 

connections. That is 

The application of the ·sp rule involves two phases: during 

the first phase the input is presented and propagated forward 

through the network to compute the output value a(j] for each 

output node. This is compared with the target values and 

calculates the values of $ for all output nodes. 

The second phase involves a backward pass through the 

network during which the delta term is computed for each unit in 

the network. Finally by using these $s we can easily compute the 

values that are to be applied to weights. 
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If the activation function used is Sigmoid, 

a[i] = 1/(1+e(-net[i]) 

Theri the above equation becomes 

da[i]/dnet[i] = a[i] * (1-a(i]) 

For ofp unit $[i] = (T[i] - a(i]) * a(i] * (1-a(i]) 

For hidden units-$[i] = a[i] * (1-a[i]) Ek$[k]*W[j][k] 

ALGORITHM : 

Step 1 : Initialize the weights and offsets. 

Set all weights and node offsets to small random values. 

Step 2 Present input and desired output patterns used for 

the training of network. 

Present a continuous 

xO,x1,x2,x3, ... x(n-1) and specify 

valued 
) 
I 

the 

input 

desired 

t1,t2,t3, ... t(m-1) for different sets of patterns. 

vector 

outputs 

The input 

could be new on each trial from the training set that could be 

presented cyclically until weights stabilizes. 

Step 3 : Calculate the outputs. 

Use the sigmoid non-linearity to calculate the outputs. 

The sigmoid or logistic function is given by 

F(x) = 1/(1+e-z) 

Net input to i th unit from the other j units is given by 

I[i][s] = W[i][j](s] * X[[j][s-1) + Bias[i] 

After calculating the net input to any processing element, 

the activation of the P.E is calculated by using sigmoid 

X[i] [s] = F(I[i)[s]) = 1/(1+e(I[i][s))) 
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Like that the activation of the output layer (ojp of N.W) 

will be calculated. 

Step 4 : Adaptive Weights. 

Use 

work back 

recursive algorithm starting at the output nodes 

to the first hidden layer~ Adjust the weights 

descent algorithm. The LMS finds the values of 

and 

by 

all gradient 

weights that minimizes this output error function is called 

gradfent descent. 

The idea of gradient is to make change in the weight 

proportional to the negative of the derivative of the error as 

measured on current pattern, with respect to each weight. 

Thus W[i) [j] [s] - e * $[i] [s) * x[j] (s-1] 

The determination of $ is a recursive process that starts 

from the output units. The $ for output units is given by 

$[i] (s] = (t[i) - o[i)) * o(i) * (1- o[i)). 

For hidden units 

$[i] (s] = X(i] [s] * (1-X(i] (s]) L:k $(k] (s+l] * W[k) [i] (s+l] 

And W [ i ) [ j ] [ s ] = e ~~ $ [ i J ( s ] * X [ j J [ s ) 

Where e : Training rate parameter 

This is called Generalized Delta Learning Rule. 

Step 5 : Repeat by going to step2 until output error is below 

c~rtain tolerable value. 
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MOMENTUM In BP learning procedure the change in weight is 

proportional to weight error derivative. True gradient requires 

infinitesimal steps. The larger the leaning rate (E), epsilon, 

the larger the changes in weights. For practical purposes one 

would like use learning as large as possible. In this way rapid 

learning· rates can be achieved. But in practice when the 

learning rate is large the network goes into oscillations. One 

way to increase the learning rate without leading to oscillations 

is to modify the Backpropagation learning rate to include a 

Momentum (n) term. This can be accomplished by the following 

rule : 

W(i][j](n+l) = € * ($(p](i] * a(p](j] + n * W[i][j](n). 

The subscript n indexes the presentation number and momentum 

is a constant that determines the effect of past weight changes 

on the current direction of movement in weight space. This 

provides a kind of momentum in weight space that effectively 

filters out high-frequency variations of the error surface in the 

weight-space. In most of the'simulations the value of momentum 

used is 0.9. With the larger values of momentum and training rate 

the system learns much faster. 

SYMMETRY BREAKING : The BP learning has one more problem that can 

be readily overcome and this is the problem of symmetry breaking. 

If all weights start out at equal values and if the solution 

requires that unequal weights be developed, the system can never 

learn. This is because error is back propagated through the 

weights in proportion to the values of the weights. This means 
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all the hidden units connected directly to the output units will 

get identical error signals, and since the weight changes are 

dependent on error signals, the weights from those units to the 

output units must always be the same. The system is starting out 

at a kind of unstable equilibrium point that keeps the weights 

equal. But it is higher than some neighbouring points on the 

error surface, and once it moves away to one of these points. it 

will never return. This prbblem can be eliminated by starting 

the system with small random weights. Under these conditions 

the symmetry problem of this kind do not arise. 

LEARNING BY PATTERN or BY EPOCH : In learning by Epoch method the 

derivative of an error function is summed over all patterns. In 

this case, I would present all patterns and sum the derivatives 

before changing the weights. Instead we can compute the 

derivatives on each pattern and make changes to the weights 

after each pattern rather than after each epoch. 
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CHAPTER4 

ANALOG CIRCUIT FAULT-DIAGNOSIS 

Today the Analog Circuit Fault-Diagnosis field is 

still in its infancy, as there is not yet any user-orient­

ed publicly available computer program for circuit diagno­

sis purposes such as those for circuit simulation purposes. 

Research is being carried out by many in this area. The 

importance of the diagnosis problem is now widely recog­

nized. Traditionally circuit theory is centered on two 

aspects only - analysis and synthesis. 

add a third and equally important 

diagnosis. 

To these 

aspect, 

we may 

namely 

Depending on whether the circuit simulation takes place 

before or after testing process, analog circuit diagnosis methods 

are classified into two main categories, The simulation before 

test (SBT} and the simulation after test (SAT} approach. 

Most of the techniques used in SAT are based on parameter 

identification, and most of these techniques are applicable only 

to linear circuits. But in this the numerical difficulty is 

enormous when large circuits are considered. 

The present trend in SAT is not to solve for parameter 

values, but to simulate the circuit under different conditions 

and use some decision algorithms to locate the faulty components 

(the parameter values are not found}. This branch of SAT 

approach may be called fault verification techniques. 
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In SBT, the circuit is simulated by suing some network 

simulator like SPICE. For each fault the network is simulated and 

its signature or symptom (usually voltages of some nodes) is 

determined and is stored in a dictionary. Given a fault circuit, 

one can make test measurement and compare the result with those 

stored in the dictiona:r-y to identify the fault. The technique of 

SBT is called Fault dictionary approach. Similar approach is 

followed for trouble shooting of electronic equipment manually as 

given in service manuals where a step by step testing 

is described, together with a table of symptoms and 

procedure 

possible 

causes. That is in essence a fault dictionary approach. In SAT 

approach a great amount of computing power is required after the 

testing process. In sharp contrast, the SBT approach requires 

negligible amount of computing power after the test process to 

locate the faults. However a comparable or even greater amount 

of computing power is needed before the test process in order to 

compile the fault dictionary. 

Fault Dictionary is mainly meant for hard failures only. It 

is incapable of diagnosing soft failures, that is element value 

drifts. However, the fault dictionary will remain a very 

valuable part of the overall scheme for the following reasons: 

i) 

difficulty 

example, 

Catastrophic failures usually 

in the parameter identification 

cause numerical 

techniques, for 

if a resistor characterized by its conductance G, 

becomes short circuited, then the solution should be G-~. Now 

if an iterative algorithm is used to solve the nonlinear 
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equations, the computer program, seeing the ever increasing value 

-of G, might interpret the phenomena as a divergence of the 

algorithm and terminate (possibly giving the result of last 

iteration). 

ii) The fault dictionary approach is well suited for 

diagnosing short circuits and open circuits. Although the 

initial effort to compile the fault dictionary is quite 

demanding, that task is done once for all. 

iii) Statistics show that short circuits and open circuits 

account for about 70-80% of the faults in analog equipment. 

Various types of inputs have been proposed for the fault 

dictionary method. These include the DC, AC and piecewise 
\ 

constant inputs. Unfortunately, most of these methods either are 

limited to linear networks or have not progressed beyond the 

feasibility study stage. At_present the DC fault dictionary is 

the only one that is used in practice with some degree of 

success. For these reasons we have chosen the DC fault 

dictionary approach. 

The DC fault dictionary approach consists of two distinct 

stages. 

Stage 1: Pre-test analysis to compile the fault dictionary. 

In this stage the analog circuit is simulated by a 

digital computer program under nominal as well as all preselected 

catastrophic faults. Judiciously chosen DC input voltages are 

applied. The induced DC voltages at a selected set of test nodes 

33 



are calculated. These voltages are then stored in the automatic 

test equipment (ATE) and constitute the fault dictionary. 

State 2: Post-test analysis to identify the fault. 

In this stage, measurements of test node voltages have 

been made on the circuit, and the measured values are compared 

with those stored in the fault dictionary. First, a fault 

detection algorithm is applied to determine whether the circuit 

is faulty at all. If the answer is affirmative, then the fault 

is identified by the application of some fault isolation 

algorithm (e.g. minimum sum of squared errors). 
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CHAPTERS 

APPLICATION OF NEURAL NETWORK TO 
FAULT DICTIONARY METHOD 

Two approaches are followed while using Neural Networks in 

the field of Analog Circuit Fault-diagnosis. In both the 

cases _the output of the neural network directly gives whether the 

circuit is faulty or not and also which component of the circuit 

is faulty. 

1) DIRECT APPROACH: In the first approach the test nodal volt-

ages of the circuit are applied as input to the neural network. 

The output of the neural network directly gives the fault of the 

component. First, the neural network is trained with different 

sets of test nodal voltages corresponding to different fault 

conditions and its s output to the Neural 

Network. INPUTS OUTPuTS 

TE.5T 
BAC.K-

PROPA6ATION 
BINARY 

NODAL CODED 

VOLTA6ES 
t\JEU R,A L f:AUL T 

NETWORK NUMBERS 

Figure 7 Block Diagram of Direct Approach. 
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For training of the network, the test nodal voltages are 

obtained through some network simulator CAD program. First the 

circuit is simulated 'in a network simulator, SPICE. Before we 

simulate the circuit for different sets of nodal voltages, we 

have to select some test nodes for this circuit such that those 

nodal voltages are obtained, when the circuit is in practical 

use. We also have to select some fault conditions which are 

likely to occur in practice. Then the circuit is simulated by 

using some network simulator for all those predetermined fault 

conditions and then the test nodal voltages are determined at 

these nodes for nominal and fault conditions. All these differ-

ent sets of nodal voltages are formed into a fault dictionary. 

These must correspond to both nominal and fault conditions. The 
'\ 

address of each fault'is tabulated against its nodal voltages in 

the fault dictionary.' 

To test the network, we have taken simple example. 
'-

It is 

having four test nodes and eight faults. The test nodal voltages 

for all the fault conditions (F1 to F8) along with the nominal 

condition(FO) are tabulated below. 

Table 2 Example test nodal voltages 

FO F1 F2 F3 F4 F5 F6 F7 F8 

Vl 5.0 7.0 7.4 7.3 7.2 9.6 9.7 9.8 5.2 

V2 9.0 5.0 6.0 6.4 6.2 5.1 5.2 5.3 9.2 

V3 9.5 6.0 6.1 6.2 8.0 6.3 6.4 5.3 4.0 

V4 5.0 5.1 5.2 8.8 6.0 6.1 9.0 5.3 6.2 
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After getting the test nodal voltages these must be present­

ed to some neural network which can produce the desired results. 

This is required because there are sd many neural network para­

digms available, and each neural network architecture and train­

ing system is better at some kinds of problems than others, and 

each network requires different types of data from the system for 

proper operation. For example, Back Propagation networks make 

wonderful mapping networks but may not be quite as good as coun­

ter propagation networks for some associative problems. So to 

select the suitable paradigm for the problem from the above 

paradigms the problem must be clearly defined. 

There are so many paradigms available 

works, suitable 'tor d~fferent applications. 

in the Neural Net­

To use any Neuial 

Network it requires the information of the problem in terms 6f 

1. What type of input, output are used. -That is continuous 

values or binary values. 

2. Type of learning. Whether it is Supervised or Unsuper­

vised learning. 

3. Type of application. That is Mapping, Associative Memo­

ry, Categorization, Temporal Mapping or Image Processing. 

In this problem, Analog Circuit Fault Diagnosis, the input 

values used for training and recall are analog values, because 

the test nodal voltages of the circuit under test are (after 

normalization) to the network as input values. The output values 

are always binary values, which represent the address of various 

faults. The type of learning used is Supervised learning, be-
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cause each 

corresponding 

application 

set of input test nodal, voltages are mapped to 

binary coded addresses as output. The type 

is of Mapping type because the input voltages 

mapped to output addresses. 

the 

of 

are 

By considering the characteristics of the problem, Analog 

Circuit Fault-Diagnosis, and the characteristics of di"fferent 

Neural Network algorithms it is found that Back Propagation 

algorithm can be used to solve the above pro~lem effectively. 

The Back Propagation algorithm is developed in c, in which 

various parameters can be changed. These parameters determine. 

1. The rate at which the output error converges to the re­

quired error. 

2. How frequently the network goes into local minima. 

The main parameters that are to be considered for the above 

are Training rate parameter and Momentum term. As we have al­

ready seen, the rate of convergence increases with the increase 

of training rate parameter. but, as we increase the values of 

training rate parameter the network more frequently struck out in 

local minima. This can be overcome with the introduction of the 

Momentum term. But still there is threat from local minima. 

This local minima occurs when the output values of any node(s) 

reaches nearer to 1 or o instead of reaching 0 or 1. This can 

be explained as follows:-
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In the ou~put layer, the weight-change formula for the 

weight running from output unit j to a lower level unit i is: 

W[i][j) = k *(t(j)-o[j]) * o[j] * (1-o[j]) * o[i] 

Where t[j] is target value, o[j] is the target value of the 

output unit, o(i] is the activation value of unit i, and k is the 

learning rate. The o(j]*(1-o[j]) term is the derivative of the 

activation function. A serious problem arises here in that when 

o(j] is close to 1 or 0 the term o(j]*(1-0(j]) is small and very 

little learning takes place. When some output is registering a 1 

when it should be registering a 0 or registering a o when it 

should be a 1, it will take a very long time to undo this prob­

lem. To cope with this problem we have added the value 0.1 to 

output derivative term. Then it becomes 

0.1 + o[j] *(1-o[j]) 

Now the term never approaches zero. So the learning rate becomes 

very fast without any local minima. 

the 

We have trained the Back Propagation network directly 

normalized values of the above voltages as inputs and 

with 

the 

binary coded fault numbers as out output numbers. The training 

patterns presented to the network are shown in the Table(3). The 

network could be able to map the input voltages to the output 

binary values in reasonable number of iterations. 
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Table 3 The training patterns 

Input patterns output Patterns 

.50 .90 .95 .50 0 0 0 0 

.70 .50 .60 • 51 - 0 0 0 1 

.74 .60 .61 .52 0 0 1 0 

.73 .64 .62 .88 0 0 1 1 

.72 .62 .80 .60 0 1 0 0 

.96 .51 .63 .61 0 1 0 1 

• 97. .52 .64 .90 0 1 1 0 

.98 .53 .53 .53 0 1 1 1 

.52 .92 .40 .62 1 0 0 0 

After training of the network is completed, the network can 

be used recall mode. In this mode when we present network with 

the test nodal voltages, the network gives the fault number. 

2) INTEGER CODED APPROACH: In this approach, instead of directly 

applying the test nodal voltages to the neural network for 

training as in the direct approach, we have used some isolation 

procedure (Lin and Elcherif) which not only isolates one fault 

from the other but also gives optionally minimum number of nodal 

voltages required for isolation. The isolation procedure pro-

duces as unique integer code for all the nodal voltages. Then 

this integer code is used as training patterns to the neural 

network as in the direct approach. The output of neural network 
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is the address of the fault. The block diagram is shown in the 

following figure. 

IN P1.JT 

J 
ltST FAULT 

NOOP.L I SOL AT tON 

VOL 1' P.~\O.S PROCE(XJI<t 

Oulf'UT INPVT OLJ1 i'vl 

BIN-'\.'"'_'{ 
I' 

(ODt:l) 

I="AULT 

NUMI!,t:.RS 

Figure 8 Block Diagram of Integer Code Technique 

This isolation is required because of the ambiguities caused 

by the variations in values of the components. This variation in 

values of components is caused by the tolerance limits of the 

components. Because of the tolerance limits one set of nodal 

voltages may fall into another set of nodal voltages. This 

causes some ambiguity in recognizing or isolating one fault from 

other. So some form of isolation procedure must be used to 

diagnose these faults, i.e. to isolate or recognize one fault 

from other fault. For that we have used some logical procedure 

which not only isolates the faults but also determines how many 

number of minimum nodes which is not required. In this we can 

set our own tolerance limits according to the circuit components. 

Before we go into the details of how the isolation procedure 

works, what is ambiguity set and how it will be formed must be 

studied. 
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Consider a hypothetical case of a circuit with two test 

nodes and six faults. suppose that the circuit of a CAD program 

yield the results shown in Table(4). 

Vl 

V2 

Table 4 Voltages of-two test nodes of hypothetical circuit 

Nom 

5.5 

4.0 

Fl 

9.0 

8.0 

F2 

6.8 

5.0 

F3 

6.4 

5.2 

F4 

6.6 

7.~ 

F5 

5.1 

7.6 

F6 

2.0 

5.0 

These voltage values are obtained under the assumption of 

exact element values. In reality, the value of any element may 

vary within some tolerance range. If the measured value of Vl is 

5.3 volts, we really cannot be certain whether the circuit is 

under nominal or fault 5 condition. Thus in. this case, NOM and 

F5 form what is called an 'ambiguity set'. Suppose if we define 

the voltage of an ambiguity set to have a range of +/-7 volts 

about its center value and stipulate that different ambiguity set 

voltage ranges do not overlap in the present example the ambi­

guity sets obtained are tabulated as shown~ 
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Table 5 Tabulation of Ambiguity Sets 

(node, ambiguity set) Circuit condition Voltage Range 

( 1, 1) NOM,F5 4.6-6.0 

(1,2) F2,F3,F4 5.7-7.1 

(1,3) F1 8.3-9.7 

(1,4) F6 1.3-2.7 

( 2 I 1) NOM,F6 2.8-4.2 

(2,2) F1,F4,F5 7.1-8.5 

(2,3) F2,F3 4.4-5.8 

In this example test node 1 has 4 ambiguity sets and test 

node two has three ambiguity sets. Examination of the above 

table shows that fault F4 cannot be isolated from ~2 and F3 if we 

use test node 1 only. Similarly, fault F4 cannot be isolated 

from F1 and F5 if we use test node 2 only. However, if both test 

nodes 1 and 2 are used then F4 can be isolated. This is because 

F4 is the only fault that occurs in both ambiguity sets (1,2) and 

(2,2). On the other hand the, faults F2 and F3 cannot be 

isolated even if both test nodes are used. 

According to the above procedure, first ambiguity sets will 

be formed corresponding to the test nodal voltag~s. For example, 

take the test node 1 voltages used· in the first procedure. One 

input vector and four test nodes (Vl,V2,V3,V4) have been chosen. 

Test nodes have been determined by the use of circuit simulation 
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program. Tl}e origin of data is immaterial for the intended fault 

isolation. The voltages are given in Table (1). 

For each test node we can define ambiguity sets, voltage 

ranges and circuit conditions. This process becomes very clear 

if we present the information of node 1 voltages in Table (1) in 

the· form of plots as shown in Fig. 8 below. circuit conditions. 

that belong to the same ambiguity set correspond to the points in 

fig.8 ·that form a cluster. The ambiguity set table that is 

obtained is with the aid of the above figure is shown in Table(4} 

ro rs FlFJ rs F7 
Yl 

F• r2 F6 

Fl ro F2 F3 ro rs 
Y2 

FoF7 F4 

F8 F7 FI F3FII F4 FO 
Y3 

F2 F~ 

FO F2 F4 F8 F3 FO · 
Y4 

Fl F7 , FS 7 10 
volta 

Figure 9. Formation of Ambiguity Sets. 
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Table 6 Ambiguity sets' Contents and Voltage Ranges 

(Node, Ambiguity set) Circuit Condition Voltage Range 

( 1, 1) FO,F8 4.4-5.9 

( 1' 2.) F1,F2, F3 F4 6.4-7.8 

(1,3) F5, F6,F7 9.0-10.4 

( 2' 1) F1,F5,F6,F7 4.5-5.6 

( 2, 2) F2,F3,F4 5.7-6.9 

( 2' 3) FO,F8 8.4-9.8 

( 3' 1) F8 3.3-4.4 

(3,2) F7 4.6-5.7 

(3,3) F1,F2,F3,F5,F6 5,8-6,9 

(3,4) F7 7.3-8.7 

(3,5) FO 8.7-10.2 

( 4, 1) FO,F1,F2,F7 4,5-5,5 

(4,2) F4,F5,F8 5.7-6.8 

(4,3) F3,F6 8.2-9.6 

It is observed from the table that node 3 has five ambiguity .. 
sets, while nodes 1,2, and 4 each have three ambiguity sets. The 

range of each ambiguity set in Table (6) is determined in the 

following manner. First, the center of each cluster is taken to 

be the average of the two extreme values of the cluster. Next a 

range of +/-0.7 volt from the center is tentatively set. After 

the tentative ~anges for all ambiguity sets have been calculated, 

a check is made to see whether the ranges of any two ambiguity 

sets (of the same test node) overlap. If so both ranges are 
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reduced by an equivalent, until a gap of 0.1 or 0.2 volt is 

obtained. After such revisions, the ranges are accepted for use. 

As an example, consider ambiguity sets (3,2) and (3,3) in Table 

( 4) . .The second ambiguity set of node three has only one value 

5.3 volts(correspond to F7), which is then also the centre value. 

Therefore, ambiguity set (3,2) has tentative range of 4.6 to 6.0 

volts. The third ambiguity set of node three has two extreme 

values, 6.0 and 6.4 (corresponding Fl and F6, respectively), and 

hence a center value of 6.2 volts. Therefore, ambiguity set 

(3,3) has a tentative range from 5.5. to 6.9. These ranges 

overlap. So we decrease the upper boundary of set (3,2) from 6.0 

to 5.7 and increase the lower boundary of set (3,3} from 5.5 to 

5.8. Each range is reduced by 0.3 volts. And a gap of 0.1 volt 

has been created. This explains how the range from 5.8 to 6.9 is 

obtained for ambiguity set (3,3). Similar adjustments are made 

for all ambiguity set ranges. 

Fault Isolation By Intersection of Ambiguity Sets: 

Suppose some ambiguity set of some test node VJ contains 

only one circuit condition FK; then whether that circuit condi­

tion has occured can be determined by measuring node voltag~ VJ 

only. In this case, we can say the fault FK has been isolated. 

For example, let the measured value of V3 is 8.3 volts. Then 

table 6 indicates that the value belongs to ambiguity set (3,2}. 

Since it has only one element, namely F4, the circuit must be 

under the condition of fault 4. 
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On the other hand, if we measure one node voltage only and 

obtain V3 = 6.5 volts, we will not be able to isolate the fault. 

Table(6) indicates that 6.5 volts belongs to ambiguity set 

(J,J),and the circuit may be under any one of the following 

conditions: F1, F2, F3, F5, or F6. / 

Let us see how the use of additional test nodes can help in 

isolating the faults. First we have constructed an "ambiguity 

sets intersection table" as shown in Table{?). 

Table 7 Intersection of ambiguity sets of VJ and V4. 

V4 

V3 FO,F1,F2,F7 F4,F5,F8 F3,F6 

F8 @ F8 @ 

F7 F7 @ @ 

F1,F2,F3,F5,F6 F1,F2 F5 F3,F6 
F4 @ F4 @ 

FO FO @ @ 

In table 7 the row headings contain ambiguity sets of node 3, 

whereas the column headings contain those of node 4. Each (i,j) 

block of the matrix con~ains the result of intersection-of ambi-

guity sets (3,i) and (4,j) with @ denoting a null set. For 

example, the content of the (3,1) block is determined as follows: 

amb. set (3,3) amb. set (4,1) 

=(F1,F2,F3,F5,F6) (FO,F1,F2,F7) = (F1,F2) 
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We node that this intersection yields a total of seven 

ambiguity sets: (F8) I (F7) I (F,4) I (F5) I (F,l ,F2) (F3, F6) . 

In particular, F5 has been isolated with the addition of test 

node 4. For example, if the measured values are V3 = 6.5 volts 

and V4 = 6.2 volts, then the circuit condition belongs to ambi-

guity sets (3,3) and (4,2), according to Table 7. But Table 7 

shows that the only fault which occurs in both ambiguity set 

( 3, 3) and ( 4, 2) is F5. Therefore we conclude that the circuit is 
' 

under condition F5. 

With two test nodes V3 and V4, we have isolated faults F4, 

F5, F7 and F8 - a 50% isolation. We note that Fl has not been 

separated from F2, nor has F3 been separated from F6. 

More test nodes must be used to achieve a higher percentage of 

isolation. 

Suppose that we decide to add test node Vl with the hope of 

resolving the ambiguity in (Fl, F2) and also in (F3, F6). /The 

effect of adding Vl can be seen from Table 8. 

Table 8 Intersection of (V3,V4) with VI 

VI 

(V3, V4) FO,F3 Fl,F2,F3,F4 F5,F6,F7 

Fl,F2 @ Fl,F2 @ 

F3,F6 @ F3 F6 

5 Singletons 5 Singletons 
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An ambiguity set with only one element is called a Single­

ton. Observe that in Table 8 F3 and F6 have been isolated, but 

F1 and F2 have not. Let us further add test node 2. The inter­

section operation is shown in Table 9. 

Table 9 Intersection of (V3,V4,VI) with V2 

V2 

(VJ,V4,VI) F1,F5,F6,F7 F2,F3,F4 FO,F8 

Fl, F2 F1 F2 @ 

7 Singletons 7 Singletons 

The faults F1 and F2 are now isolated. This indicates that 

if we use all of the four test nodes, we can have 100% 

isolation. but the result does to imply that one must use 

fault 

all 

four test nodes to achieve 100% isolation~ For example, if the 

node to be added after (V3,V4) is V2 instead of VI we will have 

the intersection table shown in Table 10. 

Table 10 Intersection of (V3,V2) with V2 

(V3,V4) 

Fl,F2 

F3,F6 

5 Singletons 

F1,F5,F6,F7 

Fl 

F6 

V2 

F2,F3,F4 

F2 

F3 

5 Singletons 
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) 

The result indicates that 100% fault isolation can also be 

achieved without test node 1. 

Reduction of the Number of Test Nodes 

In the general case, the determination of a minimum set of 

test nodes to achieve the highest percentage of isolation is a 

very time-consuming process for large circuits. Fortunately, for 

practical applications, we need not insist on getting the theo-

retical minimal number of test nodes. Any near-m~nimum solution 

will serve our purpose if the solution is simple. In other 

words, a heuristic method might be more useful for solving prac­

tical problems. 

We present two heuristic procedures for reducing the number 

of test nodes. 

PROCEDURE 1 

Select the node that has the largest number of 

ambiguity sets. , If a tie occurs, arbitrarily select one among 

them. 

step ~ Select the next node whose intersection with previ-

ously selected nodes will result in the largest number of ambi-

guity sets.·In case of a tie, arbitrarily select one. 

Step ~ If the number of the resultant ambiguity sets is 

equal to the number of circuit conditions stop. Otherwise go to 

step 2. 
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Consider the previous example of Table 6. Node 3 is select-

ed first, because it has five ambiguity sets, the largest 

Vl,V2, V3 and V4. Next, one node from Vl,V2 and V4 is 

selected. The intersection of VJ with V4 yields a total of 

ambiguity sets (see Table 7). Similarly, V3 Vl yields six 

among 

to be 

seven 

sets, 

and so does V3 V2. Therefore V4 is chosen as the second test 

node. The third test node is to be selected from Vl and V2. Now 

(VJ I 

(V3 

V4) V2 yields nine ambiguity sets (see Table 

V4) Vl yields only eight sets (see Table 8}. 

10}, whereas 

Therefore V2 

fault isolation is achieved. Test node Vl is seen to be redun­

dant. 

Procedure 1 will often lead to a near-optimum selection of 

test nodes. But even this procedure may be too time-consuming 

for large circuits. This is because that in step 2 every node 

has to be intersected with the previously selected group of 

nodes. Therefore, a further simplified procedure is given 

below. 

PROCEDURE 2 

Select the node that has the largest number of 

ambiguity sets. If a tie occurs, arbitrarily select one among 

them. 

Step h In the remaining nodes, tentatively select one 

having the largest number of ambiguity sets. If a tie occurs, 

51 



pick any one among them. Now obtain the intersection of this 

node, VJ, with the previous selected group of nodes. ,If the 

intersection increases the total number of ambiguity sets, then 

select VJ as a test node. Otherwise, disregard VJ. 

Step h If the number of resultant ambiguity sets is equal to 

the number of circuit-conditions, stop. Otherwise, go to step 

2. ,_ 

Let us illustrate 2 with the previous example of Table 6. 

In step 1, we select V3 since it has five ambiguity sets, the 

largest among V1, V2, V3, V4. Each of the remaining nodes, V1, 

V2, and V4, has three ambiguity sets. According to step 2, we 

may arbitrarily pick one. Suppose that node 1 is picked. The 

intersection V3 V1 has six ambiguity sets, one more than that of 

V3 alone. Therefore, V1 is selected as the second test node. 

The third test node is to be arbitrarily selected from V2 and V4. 

Suppose that we tentatively pick V2. 

The intersection V2 (VJ V1) has seven ambiguity sets, one 

more than (V3, V4) . Therefore V2 is selected as the third test 

node.- There is a total of nine circuit conditions (one nominal 

plus eight faulty conditions). Since 7 < 9, we go through step 

2 another time and include V4 as the fourth test node. As shown 

previously, with V1, V2, V3 and V4 all selected as test nodes, we 

achieve 100% fault isolation. But this clearly is not an opti-

mum solution, since three test nodes V3, V4, and V2 will achieve 

the same goal. 
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In most cases procedure 2 will produce a satisfactory solu­

tion to the reduct~on of test nodes. Since its computational 

effort is much less than that of procedure 1, we have implemented 

procedure 2 in our present computer program. 

Compilation of Fault-Dictionary: Once the test nodes have been 

selected using Procedure 1 or Procedure 2 described above, we can 

determine a unique integer code for each circuit condition (both 

fault & nominal). For this we need only the ambiguity set table 

as given in table 6. Each fault Fj belongs to exactly one ambi­

guity set of every test node. 

This information is tabulated as shown below:-

Table 11 Integer Codes for All Faults 

Circuit condition V3 V4 V2 

FO 5 1 3 

F1 3 1 1 

F2 3 1 2 

F3 3 3 2 

F4 4 2 2 

F5 3 2 1 

F6 3 3 1 

F7 2 1 1 

FB 1 2 3 

Here we assume that V3, V4, and V2 have been selected as the 

test nodes. As an illustration, consider the case 3,1,2 for F2. 
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This means that F2 is in third ambiguity set of V3, the first set 

of V4, and second set of V4. We can get other codes in the same 

way. 

After obtaining the integer codes as above, Integer coded 

fault dictionary is formed to train the neural network. The 

fault dictionary or th~ training patterns contain the normalized 

values of integer code as input values. The integer coded fault 

dictionary that is used for training corresponding to the table. 

6 & Tabl~ 11 is shown in the following table 12. 

Table 12 Integer Coded Fault Dictionary 

Input Patterns output Patterns 

5 1 3 0 0 0 0 
3 1 1 0 0 0 1 
3 1 2 0 0 1 0 
3 3 2 0 0 1 1 
4 2 2 - 0 1 0 0 
4 2 1 0 1 0 1 
3 3 1 0 1 1 0 
2 1 1 ·a 1 1 1 
1 2 3 1 0 0 0 

The Backpropagation network is trained with the above pat-

terns. After the training is completed the network can be used 

in run mode. In this mode first the test nodal voltages are 

applied to the isolation procedure, which gives a unique integer 

code. This integer code is applied as input to the BP network 

which gives the fault number as the output. 
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In our present approaches, there is no distinction between 

fault detection and fault isolation i,e, requires no additional 

computational effort. We include the nominal circuit (designated 

by FO or NOM} in the ambiguity set manipulations. Separation of 

a fault FJ fro NOM amount to fault detection, while separation 

among faults is the usual fault isolation. 
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CHAPTER6 

RESULTS AND CONCLUSIONS 

For the purpose of using BP network -in analog circuit fault 

diagnosis, I have developed a program for BP algorithm in 'C' 

This program will accept different neural network parameters, 

which gives the flexibility to the user to have his own network 

configuration and he can define his own network parameter values, 

which determine the rate of convergence of the network. We can 

vary the number of layers, no. of nodes in each layer . 
• 

We can 

also vary the learning rate parameter, and the momentum term. As 

we increase the learning rate, the rate of convergence increases. 

Similarly as we increase the momentum term, the rate of conver-

gence increases. Some of the results that are obtained by vary-

ing learning rate parameter and momentum term are presented in 

the tables 12 & 13 respectively. From the table we can observe 

that the rate of convergence is proportional to momentum term and 

learning rate parameter. 

In the direct approach, in which we train the BP network 

directly with test nodal voltages; if the tolerance values are in 

the range ± 0.1 volt, we have trained the network with input. 

values having ± 0.1 volt error. After training the network with 

error, we RUN the network for all possible patterns with ± 0.1 

volt error. It is giving correct results for all patterns. If 

the toler:-ance value is .2 volts, we have used ± o. 2 volt 
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error. If the tolerance is 0.3 volts, ± 0.3 error is used in 

the training·patterns. In all the above cases it is found that 

the network is working satisfactorily. By setting the values of 

error in the training patterns, we can set the tolerance limits 

of the components of the circuits. The main drawback of this 

procedure is all test-nodal voltages are to be considered for 

isolation. 

In the integer code approach, the isolation procedure not 

only isolate different faults, but also determine the minimum 

number of nodal voltages required for isolation. The results 

that are obtained for (4 nodes, 9 faults) network are given in 

chapter 5. In this procedure also we can set different values of 
' 

tolerance limits. In this procedure, the neural network need not 

be trained with error values, as in first procedure. The isola-
' 

tion already takes place in the isolation procedure. 
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Table 12 Results for various values of Momentum with Learning 

Rate = 0.8 and RMS Error= 0.1 

MOMENTUM NO. OF ITERATIONS 

0.1 2945 

0.2 2704 

0.3 2500 

0.4 2325 

0.5 2171 

0.6 2045 

0.7 1949 

0.8 1872 

0.9 1825 

1.0 1776 
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T~ble 13 Results for various values of Training Rate. with Moments 

= 0.9 RMS Error=O.l 

LEARNING RATE NO. OF ITERATIONS 

0.3 4548 

0.4 3419 

0.5 2742 

0.6 2316 

0.7 2026 

0.8 1825 

0.9 1678 

1.0 1588 

1.5 1490 

2.0 1039 

2.5 872 

3.0 767 

3.5 727 

4.0 711 

4.5 617 
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APPENDIX I 

THE BOLTZMANN MACHINE 

The Boltzmann machine is structurally and dynamically 

similar to the Backpropagation algorithm, and which can perform 

similar tasks. It differs from perceptron like networks in that 

they use an energy state optimization method derived from 

statistical considerations, rather than a Delta rule. This 

approach to learning allows them to perform optimization tasks as 

well as pattern recognition. 

The Boltzmann machine has both conceptual and 

similarities to Back-propagation network. Both 

performance 

have hidden 

nodes, and both need to be trained to match input patterns to 

previously determined categories. Both networks were developed 

at about the same time, and were applied to the same type of 

problems. But the Boltzmann machine is not as popular as 

Backpropagation. 

There are several' reasons why the Boltzmann machine never 

achieved the popularity of the back-propagation network. First, 

the performance of the two networks was very similar, so there 

was no need to favour one over the other because of performance 

or capability considerations. Thus, the main criteria for 

selecting a network became ease of learning and ease of using it 

for a particular application. The back-propagation network was 

easier to both learn and to use. 
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The back-propagation concepts and learning rules come out of 

a fairly direct approach of minimizing an energy using 

differential calculus. In contrast, the Boltzmann machine 

concepts come out of statistical mechanics, expressed in either 

information theoretic and/or statistical thermodynamic 

formalisms. Not many people in the neural networks field have 

the background to understand either of these approaches. Its 

learning rule takes much longer to write down than the 

backpropagation learning rule, as it is more complex, and takes 

more time when training a network. As a result an explosion of 

applications of the back-propagation method has occured, while 

interest in the Boltzmann machine has dwindled. But the problem 

with the back-propagation network is sometimes the connection 

weights take on values which trap the network in a local minimum. 

The goal of using the simulated annealing method is to avoid such 

local minima trapping. 

The learning method for Boltzmann machines is called 

Simulated Annealing. The simulated annealing approach to learning 

is sometimes called stochastic or statistical, because it relies 

on generating random events and evaluating their effect in terms 

of desired goals and probability distributions. 

The essence of the simulated annealing learning law is that 

we make an analogy between the energy state of the entire network 

and the energy state of a physical solid which is slowly cooled. 

We will pretend that each individual unit in the solid (atoms, 

molecules, etc.) can take on one of two possible states: a high­

energy state(l} or a low energy state(O). The free energy a 
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term fo~ thermodynamics) of the solid is a combination of two 

factors; the combined energies of the individual units and the 

negative of the entropy (the disorder among the units) times the 

temperature of the solid. 

The key to this analogy is that whether a solid is in a 

high-energy or low-energy state, it is always in equilibrium. 

Equilibrium is found at the lowest point on the free energy 

curve. If we lower the temperature slowly, the solid will hav.e an 

opportunity to find this lowest point, even if there are many · 

other shallow minima. We want to accomplish the same thing with 

the Boltzmann machine network. We want to create some sort of 

artificial temperature so that as we slowly reduce this 

temperature, the connection weights take on values that put the 

network at the global minimum for the energy curve, and don't get 

trapped in one of the local shallow minima. 

Let's make a physical analogy to this energy surface. 

Suppose that we hold in our hands a large tray of firm plastic 

that has some pockets or indentations in it. This would be like 

the bottom half of one of those cartons of eggs. Now, some of 

those indentations are very shallow, and some' are very deep. 

This represents the energy surface (which is really 

multidimensional). Let's suppose that we have a single egg-sized 

ball in this tray. Although this is just a single, one, we want 

to think of it as corresponding to the entire collection of 

weights that we want to optimize. Our goal is to shake the tray 

so that the ball goes into the deepest of the indentations. 
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We could shake the tray continuously, and hope that just by 

keeping this up, the ball will fall into the hole. But how will 

we know when the ball has reached the deepest indentation? This 

can be tricky, especially if we don't know in advance 

the indentations is deepest. So we adopt a strategy. 

the tray, pretty hard at first. Shake it some more. 

which of 

We shake 

Shake some 

more, a bit more gently. Then more gently yet. Finally, just- the 

barest of tremors. Now, let's look into the tray. Chances. are, 

the ball is in the deepest pocket. That's because as we shook 

the tray more and more gently, the ball could be shaken into out 

of shallow indentations, but not the deepest ones. There's no 

absolute guarantee that it would have fallen into the very 

deepest one in the tray, but it is very likely to fall into in 

one of the deepest. 

We want to take this idea and apply it to finding optimal 

connection weights in a neural network. To do this, we return .to 

our original analogy, that of a solid which will undergo 

simulated annealing. We need to see how the shaking of the tray 

strategy fits in with annealing a solid, because this leads 

directly to the neural network. 

Recall that our hypothetical solid was composed of identical 

units, each of which could be in one of two possible energy 

states, high(l) or low(O). The proportional number of units in 

each state is a function of temperature. At high 

temperatures, there are more high-energy units than there are at 

low temperatures. This proportion can be expressed as a 
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probability distribution. This temperature dependent probability 

distribution will be a key factor in the simulated annealing 

process. Shaking the tray corresponds to setting the te~perature 

of the solid. Shaking the tray hard corresponds to high 

temperature, with high kinetic energy for the ball in the 

Shaking the tray gentlz corresponds to low temperature. The 

tray. 

ball 

has low 

pocket . 

the free 

kinetic energy, and cannot easily move out of a deep 

The pockets in the tray corr,espond to energy minima in 

energy surface. There are numerous local :minima, but 

relatively few deep minima. These :minima represent equilibrium 

states for a solid, and cor~espond to optimal connection weight 

values in the neural network. 
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APPENDIX2 

PARAS - P ARAM 

PARAM is a statically reconfigurable multicomputer with the 

transputer as the processing nodes. It has a switch and an 

exchange to provide reconfigurability of nodes depending upon 

specific communication demands of an application. Further 

provision for allocating the availability nodes to many users 

gives multi-user support. Optionally, PARAM can have 

PFS(Parallel File System), for fast and high capacity secondary 

storage. 

These machines are best described as consisting of two parts: 

the front and host and back and compute engine. The back end 

compute engine is usually a network of transputers whereas the 

host can,be either of PC, a SUN, or a VAX. All the development 

work is done on the host machine and the bootable image of the 

parallel program is down loaded to the back-end network for 

actual execution. 

The T800 transputer incorporates ~ floating-point unit (FPU) 

together with a 30 MIPS (peak) CPU, 4 fast serial 'communication 

links and 4 Kbytes of fast SRAM, all on a single chip. The links 

can support 2.4 Mbytesjsec bidirectional communication on each of 

the four links, concurrently with the operation of the FPU and 

the CPU. The concurrent operation of the FPU and the CPU gives a 

sustained rating of 1.5 Mflops at a processor speed of 20 MHz. 

PARAS is a software development environment for message passing 
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machines built around transputers. These message passing 

machines are general purpose MIMD (Multiple Instruction Multiple 

Data) machine which employ a network of processing nodes to solve 

a single problem. Processing nodes execute sequential programs 

asynchronously and co-operate by sending data in the form of 

messages. The collection of interacting sequential programs which 

collectively perform a single job is called a parallel program. 

The development of ~uch a program is greatly assisted by the 

PARAS environment.' 

PARAS has program development tools like compilers (for c 

and FORTRAN), linker, configurer, Collector, librarian and 

decoder to convert the source code into executable code. 

Besides, it provides a -rich and powerful runtime environment 

Concurrent Runtime Environment) CORE. CORE includes facilities 

for message communication, process management, file and 

I/O, graphics and other miscellaneous services. 

A typical (parallel) application program under 

screen 

PARAS 

consists of a set of processes working together to solve a 

particular problem. These processes may either be executing on 

different nodes of the network or on the same node. Some 

process, after doing a portion of the job, may need to give the 

result of its computation to other processes. Such a 

communication is accomplished by explicitly passing a message 

from one process to another. 

The communication model of PARAS is based on abstract 

objects called ports. A port is basically a repository for 
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messages. 

letter-box 

The concept of a port is very similar to that of 

attached to a house where the letters addressed 

that particular 

address of the 

received would 

house-owner. 

house are delivered. Any person who knows 

house can post a letter. All the letters 

be lying in the letter-box till cleared by 

a 

to 

the 

so 

the 

Similarly, a process owns a port -that it creates. A sender 

process, which has to send to the receiver, knows the descriptor 

of a receiver's port. It sends it message with the descriptor as 

address. All messages to a particular port get queued up for the 

receiver to receive in first-in-first-out order. Any process 

which knows the receiver port's descriptor (address) can send 

messages to it. 

The placement of tasks to processors has to be done at the 

configuration stage, before execution of the program. More than 

one task can be placed on the same processor if there is 

sufficient memory available. When the program starts execution, 

all the. tasks start their execution simultaneously on their 

respective processors. 

When a task starts execution, it has a single line of 

control and executes sequentially. This sequence of code in 

execution is called a thread. A thread is the actual active 

entity within a task. The starting thread of a tasks, is called 

the main thread. The user might wish to achieve more concurrency 

within a tasks on a particular processor. Since tasks have to be 

statically defined, a facility for dynamically spawning threads 
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within a task is provided. A processor is time-shared by the 

threads executing on it. Threads of the same task can share 

global resources like global variables (common block variables), 

file buffers, etc. consequently, threads of the same task an 

share the Global variables. This should be contrasted with two 

tasks placed on the same processor. Although they run on the 

same node they cannot share variables. Concurrency on a single 

processor can be achieved either by placing more than one task on 

that processor or by dynamically spawning more threads within the 

task. 

The Program Development Environment comprises a set of tools 

which include the compilers, the linkers, the configurer, the 

collector, the debugger, the decoder and the librarian. These 

tools run on the front-end host machine (with UNIX or DOS). 

Hence, the complete development can be.done on the more familiar 

host and only for executing the program the user needs to go to 

the parallel machine. 

Since PARAS allows writing parallel programs in a hardware­

independent manner, when the program has to run on a specific 

hardware, it has to go through a state of configuration. Here, 

in the configuration file the actual details of the hardware in 

terms of number of processors and the way their communication 

links are connected are specified. This file and the linked 

modules for the tasks are given as input to the configurer. The 

different compiled and linked units of the parallel program are 

given together with a configuration specification file to the 
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configurer, which produces a binary file to be given as input to 

the collector. The collector, in turn,·produces a boatable image 

of the parallel program for the specified machine. The boatable 

file has the code to be executed by the tasks alongwith the code 

to load them onto the different processors to the networks ~s per 

the user specification. This file is given to a server (running 

on the host) for loading the code .onto the processors and 

executing. it. 

Thus, the 

executable form 

basic tools. 

Collector. 

application program is developed into 

(as a boatable file) using the following 

1. Compiler 2. Linker 3. Configurer 
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Some-Applications of Well-Known Networks: I 
Network Year Inventors/ Primary Advantages Disadvantages Mosl Relevant 

Introduced Developers · Applications ChJ p lcr 

ADALINEJ 1960 B. Wdrow Adaptive si9nal r.Mering, Fast, easy to implement, can Linear relationship bl'lw~.:~.:n 7 
MADALINE adaptive equalization be done using analog 01 VLSI input & output a:;surn~d Only 

circvitry. linear S!!p.1rC1ble d.lss•f.c;~lion 
Sp<JCC'S JX)SStble. 

-
Nlaptive IS83 G. Carpenter & Pan em reccx}nition Able to learn new p;lt1ems, Nature ol c;~tegoric;~l 11 
R e son.1nca S. Grossbefg 101m new panern C<JI~ories, exemplars mily d1,1n'11' wi:h 
Theory and relain learned CJit'QOiics. lcarn•ng. 

-----
E1"Kk·Propacpling 1 g74·193G P. J. Werbos, Pan em r C'CO')nrtion. ~gr...1l Fast opcr a lion. Good 21 long lcwninq time 1 
Pcrceplrons: 0 Patker, liheri[)], noise removal. lorming internal represent· 

Basic D. Rume~ar1 si;Jna!f•ll'l.)Q e s l'<)mentali()"l, ations ollealures in input data 
cl.lssification. mapping, 01 dassillcation and other 
adaptive rooohc ron\rol. dat, tasks. Well studied. Many 
compression successlul apptie<~tions. 

--
Rerurrenl 1S87 Almeida, Robotic rontrot. speech Best network so far !01 Complet nelw01ll. m.Jy b'? 1 7 

Pineda re<:ogoition, sequence classifying, mapping dilf•culllo \ra•n arxl op!irr,•ze 
element pre<!Ction time-varying inlormation. -

Time·Defay lSa7 D. W. Tank& Speed'! recognition' Perf01mance equivalent to Fixed window oltempcral I 7 
J. J. Hop~eld best conventional methods, activily represented. rP~ronds 

faster opec ation. awkwardly 10 dtllerences in 
scale of inpul. 

FunoiMai·Unk 1988 Y. H. Pao Classir.:.ltion. mappnq Only two layers (tnput & No clear way 10 idr.nltly 15 
Networ'K oulpul) roeeded: laster 10 !rain. !unctions f01 lunc1t0n;~llin~. s. 

Radial Basis ISS7· Muhipe Classirre.atiro, mapping Networi< with single hidden Not yet r!1own. 15 
Function 1988 AeseaJcher~ layCf ol RBF n~rons 
Netwock per1orms equivalent to basic 

. BP ne!WOo'k with two hidden 
layers. .. 

B.rl· 1974 P. J. Werbos Maximze pertormance inde Most comprehensive neural Can use only ill1N 22 
PropaQJiion 01 u1iiry II.Tdion over time. approad1l01 model·bJsc<l dillcrentiable model ictent·lt~c. 

'o1 Utility neuoc::ctl1!d (e 9. roOOtics) prcdicfon and/01 contJ~. must adapt oil tine it model i~ 
FU'ldioo dynamic. and :1swmes model 

I lli{),VJh Time is E'J:ld. 

':"'1.......,"'-' • ..-.c"'" ...... -
. ,.. _ __.. 
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Some Ap.plications of Well-Known Networks: l\ 
Network Year Inventors/ Primary Advantages Disadvantages '-lost Relevant 

lntroduct><:! Developers Apptica lions Chapter 

. 
Bidirectional 1987 B. Kosko Heteroassodatr.-e Simple, dear learning r\Je, Pro stora:Je capac:ty, poor II 
Assodative (CO'ltent·addt essat) e) ardlilectvre,&ctynamics. retrieval a<"...ClJracy. 
Me tTl()()' memory Clear prool of dynamic 

stabaity. 

Boltzmann 1984, 1986 G. Hinton. Panem r~tion [mages ~e to letm optimal Boltz mann rrcy-.)1i n e · very ~ IYJ 8 
Madline. Cai.JChy T. Sejnowski. sonat, radar). oplimzati01 representation of pa"ern leamirq time. Caudly 
Madline D. Ackley: leal\.wes. Follows energy m..1dlinc oll<:'fs laster l~i\lnirYJ 

H.Szu ~rlace 10 obtain oplmzation 
mil'llmJ 

Boundary Contour 1985 S. Grossberg, Low~ev~ mage procesSing S.ologQIIy·based app.-oadl Comrex. multilayered 12 
System E. Mingolla 1o excellent seQmen!Jtion. arcllileclure. 

- --------· 
Orain·SIJIC·in·J· 1977 J AMcrs01 Auloassociative recall Possibly bcllcr pcr1ormMce lf'1C!)'Tlplctrly explorN.l •n 9 
Oox !tiM Hopi• rid nc ~"'ork. lcrms,ol redorm.)n(.f! arorl 

arplic.l~·ons potr.nti.ll 

Hopfiefd 1982 J Hoplield Auloassociate recall, Simple rorcl'f)l. proven Unable to !cam new !;tales 9 

I optimizati01 dynamic slabtl•ty, e01sy to (l•rcd we•c;t115 for disar.l~ 
rnplemenl in VLSI. Hopl•rld). r-::o mcll'l()(y 

5lorage. many spuriQuS ~1~\es 
relurn':.'d. 

Learning 11j81 T. Kohonen Auloassociative re-call Nje to self-organize vedor Urve:,o~vt'd ISSU€5 in selecting tO 
Vee! or (pan ern cb'nplet()n ()iven represef11ali01s ol probJMty numbo:'!S ol vectors to use and 
CNanlization pal'1ial panem). data cSstributons in data. ~pd ICIX)Ih ol bme lor aroroprialo 

compression execution alter training is lr(l!IL!ng. Slow trainlflg. 
completed. 

Neocognitron 1975-1982 K. Fukushima Recog,_!ion of hard -drawn ~e 1o perfOfm s.cale, Requites many processing 12 
charaaets ard Olher lrat1sJation and rotatoo elements and tayt'fs, o:mplex 
lilea.r~ine f9~es ilvariant panem reccx)l'ition. s trudiJ( es. scalioq issues lor 

re<U-world use stil need to be 
resolved. 

Self -OrganiziNJ 1981 T. Kohonen Complex mapping (tnvoi-Nw; Nje to seK-Ot'ganize ve-ctor Urve:,olvN:l issues in selecting 10 
TopoJo9y· neighbothood represefltations ol data .,..;ttl a numbers ol vee-too lo u~e and 
Preservi"9 Map retatoost'ips). data mear-Vnglli ordering amoog lenoth of time lor tr M'llnQ. 

compressiet1. optimzation ltle represeotati011s . Sl::l;., v <llnir>q. . 
.... ~..._.._ ...... ,-. ........... .·-: -
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