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ABSTRACT 

The Runge-Kutta methods are widely used for solving 

initial va}ue problem. These methods provide approximations 

which converges to true solution as step size tends to zero, 

.and also have the ~dvantage of se1f-starting. 

The drawback of Runge-kutta methods are that they 

involve considerably more computations per step. The next 

drawback is that the method is a serial method. But by 

modification~ in its conventional form, it can be converted 

into a parallel method, and hence computations can be done in 

parallel to overcome this drawback. 

However, due to modifications in original Runge-Kutta 

method, some of its features, lik~ stability is affected. 

Hence, to improve the solution, Predictor-Corrector method, 

which itself will be parallel, are to be Used. 
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CHAPTER ONE 

INTRODUCTION TO PARALLEL PROCESSING 

" Mine is a long and sad 
tale " said the Mouse, 
turning to Alice and 
sighing. " It is a long 
tail, certainly " said 
Alice, looking down with 
wonder at the Mouse's 
tail, " but why do you 
call it sad? " 

LEWIS CARROLL. 



INTRODUCTION TO PARALLEL PROCESSING 

In. recent years we have witnessed a tremendous surge· in 

the availability of very fast and inexpensive hardware. This 

has been made possible partly by the use of faster circuit 

technologies and ~maller feature sizes; partly by novel 

architectural features such as pipelining, vector 

processing, cache memories, and systolic arrays; and partly 

by using novel interconnections between processors and 

memories such as Hypercube, Omega network, Orthogonal Tree 

network, and others. 

Our ability to design fast and cheap hardware, however, 

far outstrips our ability to utilize that hardware 

effectively to solve large problems quickly. This is mainly 

because a large problem may not be easy to decompose into 

smaller problems that could be solved in parallel, on account 

of data dependencies between the subproblems. The intrinsic 

parallelism of a problem can be defined as the product of the 

time required for solving it by the fastest parallel 

algorithm, and the number of processors required by that 

algorithm, divided by the time required by the best 

sequential algorithm. For a problem with high-internal data 

dependency, the intrins·ic parallelism would be very low.· 

Because of these data dependencies,· process solving related 

subproblems would need to communicate with each other. This 

concurrent access, via a data bus, or via an interconnection 

network. Any specific scheme· incurs an overhead in .term·s · 6f 
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time lost . to contention, latency, or both, and addi tiomil 

overhead in hardware costs, which do not reduce dramatically 

:with improved technology as does that of the underlying 

circuits. Further, a communication scheme that is good for 

one class of problems may not be good for another class, 

which only adds · to our difficulty in finding a parallel 

algorithm. 

Memory contention can slow down the execution of a 

parallel algp~rithm if the various processing elements must 

access the same variable at the same time, some systems must 

be devised so that only the processor can access a given 

variable at any one time {for example, LOCK and UNLOCK on 

MIMD machnines). Also, if the number of logical processors 

is larger than the number of physical proressors in the 

machine, some sort of scheduling must be done to determine 

where the extra processes will eventually be handled. The 

scheduling cost is the resource allocated to do this 

scheduling. For efficient scheduling, the extra logical 

processes should be saved until a processor is available, and 

the internal state of the logical processes should be 

monitored. 

1.1 MODELS OF PARALLEL COMPUTATION 

The design of parallel algorithms becomes an important 

issue as numerous parallel architectures are developed. In 

fact, a considerable number of very different architectures 

for parallel computing are in existence. They range from 

special purpose array processors to tree machines to loosely 
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coupled networks of processors. Since the design and· 

performance of a parallel algorithm depends very much on the 

architecture of the parallel machine, it is necessary to keep 

the architecture in mind when designing parallel algorithms. 

There is, however, no universal method for designing parallel 

algorithms. One approach to constructing parallel algorithms 

is to recognize parallelism in the existing sequential 

algorithms. This approach has been studied by several 

researchers (Keller 1973; Lee et al. 1985: Moitra and Iyengar. 

1986, Nicolau 1985; Shrira et al. 1983; Strom and Yemini 

1985). 

1.2 LEVELS OF PARALLELISM 

Parallelism is not a new concept and has been used to 

improve the effectiveness of computers since the earliest 

designs. It can be applied at various levels which can be 

classified as (a) Job level, (b) Program level, (c) 

Instruction level and (d) Arithmetic and bit level. 

1.2.1 Job Level Parallelism 

Job level parallelism is implemented in most computer 

installations. Viewed in a simplistic manner, every job is 

d_i vided into several sequential phase each of which requires 

a different systems program and system resources. For 

example, an I/O operation is very slow compared to the actual 

program execution and th~refore, any reasonably large 

computer installation provides several I/O channels or 
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peripheral processors which can perform the I/O in parallel 

with program execution . 

.. · .. Usually, several programs reside -in the fast memory of 

a computer and only one of these will be in execution at any 

given time. As soon as this program, requires a slow I/O 

facility, e.g. a read from a tape or disk, this I/O operation 

is initiated in the channel and another program is put into 

execution. The first program waits until the data is 

available and its execution restarts only when the other 

program are similarly obliged to wait. 

This sort of (job level) parallelism is not really 

useful in the context of computationally intensive 

applications 

little I/O 

such as CFD. Since CFD programs 

time (as compared to the execution 

involve· very 

time), the 

system throughput is not likely to increase 

In fact, considering the size of these 

throughput may actually decrease because of 

significantly. 

programs, the 

the overheads 

involved in swapping the massive amounts of data and program 

from the memory. 

1.2.2 Program Level Parallelism 

Program level parallelism is the one most important in 

the context of supercomputers. Within a large program, there 

could be sections of code which are quite independent and 

could therefore be executed in parallel on different 

processors in a multiprocessor environment. This is the 

central idea in parallel processing. There are several 
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methods of implementing this architecturally and we will 

discuss these presently. 

Program level parallelism could arise in several · ways 

the most commonly encountered one being a DO loop which can 

be replaced by one or more vector instructions. This has 

been exploited in_the well-known vector machines such the 

CRAY, CYBER, etc. The performance of these machine hinges on 

the ability of the comipler to recognize and take advantage 

of such vectorization. It also means that the problem must 

in the first instance permit vectorization. 

In certain programs, the different execution of a loop 

may be completely independent of each other. This arises, 

for example, in Monte Carlo analysis where the same 

calculations are repeated many times with · different data 

chosen in a random fashion. In such cases, the full code can 

be 1oaded onto each processor in a multi-processor 

environment and the calculations for each sample done in 

parallel. 

However, things are not usually so simple. While in 

some instances certain sections of code can be recognized to 

be independent by logical analysis of the source code or the 

problem itself, in other cases there may be data dependency 

and the independence of sections of code may not be known 

until the program is executed. The onus of recognizing the 

parallelism then falls on the compiler though the programmer 

can help to a certain extent by writing his programs in ~ way 

that aids the compiler. The hardware and architecture in 
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general can only provide the ncessary computing power while 

the systems software must actually exploit this capability. 

There is a considerable amount of work being done on such 

compilers but the present compilers are far from optimum. 

1.2.3 Instruction Level Parallelism 

Instruction level parallelism is important in enabling 

the unit processors in a multiprocessor environment to work 

faster. The instructions in a unit processor may be divided 

into several sub-operations, which may then the pipelined to 

speed up execution. Another approach which is becoming 

popular in the newer microprocessors is instruction 

prefetching in an instruction cache. Here, while a 

particular instruction is being executed and the processor 

bus is free, new instructions are fetched and loaded into an 

instruction cache. This overlap of instruction fetch cycles 

with the e~ecution cycles enhances the processor speed. 

1.2.4 Arithmetic and Bit Level Parallelism 

Arithmetic and Bit level parallelism is the lowest 

level of parallelism in computers. This is a self evidence 

concept. Obviously, using an 8 bit machine to do 64 bit 

arithmetic is going to be much slower than using a 64 bit 

machines in the single precision mode. This level of 

parallelism is directed by considerations such as the 

requirements of the typical problem to be solved, available 

technology, the amount of hardware the system designer wants 

to use etc. 
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1.3 ARCIDTECUTURES 

Having seen that program level parallelism offers a 

major increase in computation speed, we will now examine the 

various architectural concepts which allow for such 

parallelism. 

One can classify computers into four broad categories 

according to whether the instruction or the data streams are 

single or multiple. (Fig. 1) (A stream is defined as a 

sequence of items - instructions or data - as executed or 

operated on by a processor): 

Flynn's taxonomy. Flynn's taxonomy classifies architectures 

on the presence of single or multiple streams of instructions 

and data. This yields the four categories below: 

SISD (Single instruction, single data stream) defines 

serial computers. MISD (Multiple instruction, single data 

stream) would involve multiple processors applying 

different instructions to a single datum; this hypothetical 

possibility is generally deemed impractical. 

SIMD (single instruction, multiple data streams) - involves 

multiple processors simultaneously executing the same 

instruction on different data this definition is discussed 

further prior to examining array processors below). 

MIMD (multiple instruction, multiple data streams) - involves 

multiple processors autonomously executing diverse 

instructions on diverse data. 
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1.4 SYNCHRONOus· ARCIDTECTinffiS 

Pipelined vector processors: Vector processors are 

characterized by multiple. Pipelined functional units, 

which implement arithmetic and Boolean operations for both 

vectors and scalars and which can operate concurrently. Such 

·architectures provide parallel vector processing by 

sequentially streaming vector elements through a functional 
' 

unit pipeline and by streaming the output results of one unit 

into the pipeline of another as i~put ( a process known as 

"chaining"). 

A representative architecture might have a vector 

addition unit consisting of six pipeline stages (Fig. 2). 

Recent vector processing. supercomputer erst such as the 

Cray X-MP/4 and ET-A-10) unit four to 10 vector processors 

through a large shared memory. 

SIMD architecures. SIMD architecture (Fig. 3) typically 

employ a central control unit, multiple processors, and an 

interconnection network (IN) for either processor-to-

processor or processor-to-memory communications. The control 

unit broadcasts a single instruction to all processors, which 

execute the instruction in lockstep fashion on local data. 

The interconnection network allows instruction result 

calculated at one processor to be communicated to another 

processor for use as operands in a subsequent instruction. 

Individual processors may be allowed to disable the current 

instruction. 
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Processor array architectures. Processors structured 

for numerical SIMD execution have often been employed · for 

large-scale scientific calculations. Such as image 

processing and nuclear energy providing. 

Operands are usually floating-point c values and 

typically range !n size from 32 to 64 bits. Various IN 

schemes have been used to provide processor-to-processor or 

processor - to - memory communications, with mesh an corssbar 

approaches being among the most popular. 

One variant of processor array architecutres involves 

using a large number of one-bit processors. In bit-plane 

architecutres, the array of processors is arranged in a 

symmetrical grid (such as 64x64) and associated with 

multiple "planes" of memory bits that ocrrespond to the 

dimensions of the processor grid (Fig. 4). Processor n{Pn), 

situated in the grid at location (x, y), operates on the 

memory bits at location {x, y) in all the associated memory 

planes. Usually, operations ars provided to copy, mask, and 

perform arithmetic operations on entire memory planes, as 

well as on columns and rows within a plane. 

Associative memory processor architecutres. Computers 

built around an associative memory consitute a distinctive 

type of SIMD architecutre that uses special comparison logic 

to access stored data in parallel according to its contents. 

Research in constructing associative memories began in the 

late 1950s with the obvious goal of being able to search 

memory in parallel for data that matched some specified 
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datum. "Modern" associative memory processors devel6ped in 

the early 1970s (for example, Bell Laboratories' Parallel 

. Element Processing Ensemble, or PEPE) and recent 

architecutres have naturally been geared to database~oriented 

applications, such as tracking and surveillance. 

Figure 5 shows the characteristic functional units of 

an associative memory processor. A program controller reads 

and executes instructions, invoking a specialized array 

controller when associative memory instructions are 

encountered. Special registers enable the program controller 

and associative memory to share data. 

Figure 6 depicts a row-oriented comparison operation 

for a generic bit-serial architecture. 

In figure 7 a logical OR operations is performed on a 

bit-column and the bit-vector in register. A with register B 

receiving the result. A zero in the mask register indicates 

that the associated word is not to be included in the current 
,, 

operation. 

1.5 SYSTOLIC ARCIDTECUTURE 

In the early 

University proposed 

1980s H.T. Kung of Carnegie Mellon 

systolic architectures to solve the 

problems of special-purpose systems that must often balance 

intensive computations with demanding I/O bandwidths. 

"Systolic architectures are pipelined multiprocessors in 

which data is pulsed in rhythmic fashion from memory and 

through a newtwork of processors before returning to memory. 

A global clock and explicit timing delays synchronize this 
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pipelined data flow, which consists of operands obtained from 

memory and partial results to local interconections provide 

basi~ building blocks for a variety of special purpose 

systems. During each time interval; these processors execute 

a short, invariant sequence of instructions. 

A high degr~e of parallelism is obtained by pipelining 

data through multiple processors, typically in two

dimensional fashion. Systolic architecutres maximize 

computations performed on a datum once it has been obtained 

from memory or an external device. Hence, once a datum 

enters the systolic array, it is passed to any processor that 

needs it, without an intervening store to memory. Only 

processors at the topological boundaries of the array perform 

I/O to and from memory. 

Figure 9 a-e shows how a simple systolic array could 

calculate the outer product of two matrices. 

A = I ~ : I and B = j : ~ I 
The zero inputs shown moving through the array are used 

for synchronization. Each processor begins with an 

accumulator set to zero and, during each cycle, adds the 

product of its two inputs to the accumulator. After five 

cycles the matrix prdocut is complete. 

A growing number of special-purpose systems are 

systolic organization for algorithm-specific architectures, 

particularly for signal processing. In addition, 

programmable (reconfigurable) systolic architectures (such as 

ll 
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Carnegie Mellon's Warp and Saxpy's Matrix-1) have been 

constructed that are not limited to implementing a single 

algorithm. Although systolic concepts were orginally 

proposed for VLSI-based systems to be implemented at the chip 

level, systolic architectures have been implemented at a 

variety of physical levels. 

-At present, the world of parallel programming is quite 

primitive. Programmers are made painfully aware of the 

physical computing environment they are working in and are 

forced to tailor their code to match the architecture. 

Software development tools such as debuggers and performance 

monitors, commonplae in the sequential programming world, are 

either absent or weak in parallel programming systems. Most 

important, our understanding of efficient structures and 

algorithms for parallel systems is still quite shallow. But, 

we are progressing. Concepts such as distributed shared 

memory promise to free the programmer from having to 

structure his or her code to match the underlying 

architecture. The programmer will be able to develop 

algorithms using whatever paradigm is natural for the problem 

being solved. And when the programmer can focus more on the 

problem than on the computing system, parallel algorithm 

development and implementation will soar to new heights. 
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CHAPTER TWO 

ORDINARY DIFFERENTIAL EQUATION 
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ORDINARY DIFFERENTIAL EQUATIONS 

2.1 INTRODUCTION 

An ordinary differential equation is a relation between 

a function, its derivatives, and the variable upon which they 

depend. The most general form of an ordinary differential 

equation is given by 

t(t,y,y',y" .... ,yCm)) = o ( 2 .1) 

where m represents the highest order derivative, and y and 

its derivatives are functions of t. The order of the 

differential equation is the order of its highest derivative 

and its degree is the degree of the derivative of the highest 

order after the equation has been rationalized. If no 

product of the dependent variable y(t) with itself or any one 

of its derivatives occur, then the equation is said to be .. 
linear, otherwise it is nonlinear. A linear differential 

equation of order m can be expressed in the form 

m 
I: t ( ) (t)y(P) (t) = r(t) 

p=O p 
(2.2) 

in which tp(t) are known functions. If the general nonlinear 

differential equation (2.1). of order m can be written as 

y(m) = F(t,y,y•, ... ,yCm-1 )) (2.3) 

then the equation (2.3) is called a canonical representation 

of the. differential equation (2.1). In such a form, the 

highest order derivative is expressed in terms of the lower 

order derivatives and the independent variable. 
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2.1.1 Initial Value Problem 

A genral solution of an ordinary differential equation 

such as (2.1) is a relation between y, t and m arbitrary 

constants which satisfies the equation, but which contains no 

derivatives. The solution may be an implicit relation of the 

form 

w(t,y,c1 , c 2 , .... ,em) = o (2.4) 

or an explicit function of t of the form 

( 2. 5) 

The can be 

determined by prescribing m conditions of the form 

y(v) (t
0

) = nV' v=O, 1,2, .... ,m-1 ( 2. 6) 

at one point't = t 0 , which are called initial conditions. 

The differential equation (2.1) together with the initial 

conditions (2.6.) is called mth order intial value problem. 

The mth order differential equation (2.3) with initial 

conditions (2.6) may be written as an equivalent system of m 

first order intial value problems: 

u1 = y 

u• 1 = u2 

u• 2 = u3 

u'm-1 =~ 

u'm = F(t,u1 ,u2 , ... ,~) 

n ... 
m-1 

14 



which in vector notation becomes 

u• = f(t,u) 

(2. 7) 

where 

u = [u1 u2 •• -~] T 

f = [u2 u 3 .. ----~ F] T 

n = [no n1 
, T 

•.. nm-11 

Thus the methods of solution of the first-order initial value 

problem 

dufdt = f(t,u), (2.8) 

may be used to solve the system of first order 

initial value problems (2.7) and the mth order initial value 

problem (2.3). 

The existence and uniqueness of the solution of the 

initial value probelm (2.8) is guranteed by the theorem: 

Theorem: We assume that f(t,u) satisfies the following 

conditions: 

(i) f(t,u) is a real function 

(ii) f(t,u) is defined and continuous in the strip 

t €[t0 ,b], U€(-oo, oo) 

(iii) there exists a constant L such that for any tE[t0 

b) and for any u 1 and u2 

f(t,u1 ) - f(t,u2 ) I ~ L I u 1 - u 2 

where L is called the Lipschitz constant. Then for any 

u 0 the initial value problem (2.8) has a unique solution u(t) 

for tE(t0 , b). 
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2.1.2 Test Equations 

The behaviour of the solution of the initial value 

problem (2.8) in the neighbourhood of any point (t,u) can be 

predicted by considering the linearized form of the 

differential equation. 

u• = f{t,u) 
/ 

The nonlinear function f{t,u) can be linearized by 

expansion of the function about the point {t,u) in the Taylor 

series truncated after first order term. 

linearized form for (2.8) is given by 

u• = Mu+C 

M = caftau>t 

c = f(t,u)-u(aftau) 1 +caftdt>t<t-t) 

Further, the equation (2.9) may be written as 

w• = Mw 

where 

w = u + C/M 

The resulting 

(2.9) 

(2.10) 

Similarly, the test equation for the second order initial 

value problem 

y" = f(t,y,y') 

y(to) = nO' Y' (to) -= n1 

may also be obtained in the form 

w" = - bw' - cw 

where 

b =- af/oy', and c =- Bf/ay 

(2.11) 

(2.12) 

The differential equation (2.12) is equivalent to the 

following system of equations. 

u• =Au ( 2. 13) 
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where 

A = 

u 1 = w, u 2 = w' 

The nature of the solution of (2.12) or (2.13) depends on the 

roots a 1 and a 2 of the characteristic equation of the 

matrix A, 

a 2 + b a + c = 0 (2.14) 

We know consider the following cases: 

(i) b>O, c~o, b>2vc. The solutions are exponentially 

decreasing. For c = 0, the test equation (2.12) becomes 

w" + bw' = o, b>O ( 2·. 15) 

(ii) b <0, c~O and lbl >2vc. The solution are exponentially 

increasing. For c = o, the test equation (2.12) becomes 

w" + bw' = o, b<O (2.16) 

(iii) c>O and lbl <2vc. The solution are oscillating. If 

b<O then the solution is an oscillating function whose 

amplitude becomes unbounded as t->oo. If b>O then the 

solution is a damped oscillating function as t->oo. For b=O, 

the test equation (2.12) becomes 

w" + cw = o, c>O (2.17) 

whose solution is periodic with period 2"/vc. We 

observe that a 1 and a 2 (b=O, c>O) are pure imaginary numbers. 

The solution of the test differential equation (2.10) will 

also be periodic if we allow M to be·pure imaginary number. 

Thus the nature of the solutions of the systems of 

equations or higher order equations may be discussed ·by· 
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using the test equation (2.10) for (i) M pure real, ( ii) M 

pure imaginary, and (iii) M complex. 

2.2 NUMERICAL MEffiODS 

The first step in obtaining a numerical solution of the 

dif'ferential equati~on (2.8) is to partition the interval [t0 , 

b] on which the solution is desired into a finite number of 

subintervals by the points 

t 0 < t 1 <t2 .••• <tN = b 

The points are called the mesh point or the grid points. The 

spacing between the points is given by 

hj = tj- tj_1 , j = 1,2, .... ,N 

which is called the mesh spacing or step length. For 

simplicity we assume that the points are spaced uniformly, 

i.e. 

hj = h =constant, j = 1,2, ••.. ,N 

The mesh points are given by 

tj =t0 + jh, j = 0,1,2 , .••• ,N 

( 2.18) 

( 2. 19) 

In numerical methods we determine a number uj, which is 

an approximation to the value of the solution u(t) at the 

point tj. The set of numbers {uj}, i.e., u 0 , u 1 , .... ,uN is 

the numerical solution of the initial value problem. The 

numbers {U •} 
J 

are determined from a set of algebraic 

equations called the differeace equations. There are many 

difference approximations possible for a given differential 

equation. As an example, consider expressions for the first 

derivative in terms of the forward, backward, and central 
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difference operators. We assume that the function u(t) may 

be expanded in a Taylor series in the closed interval t-h ~ t 

~t+h. We write as 

u(t±h) =u(t) ± h u 1 (t) +h2u 11 (t)/2!± ..• 

... +(-1)P hPu(P)(t)/p! + ..• (2.20) 

where a prime denotes differentiation with respect to t. We 

then have 

[u{t+h)-u{t)]/h = u 1 {t)+h u"{t)/2 + O{h2 ) {2.21) 

where the notation O(h) means that the first term neglected 

is of order h. 

Similarly, we obtain 

Vu{t)/h = du/dt + O{h) {2.22) 

and 
~6u{t)/h = dujdt + O(h2 ) {2~23) 

A difference approximation to u 1 {t) at t=tj is obtained by 

neglecting the error term. We have 

{i) {uj+1 - u.) /h 
J 

U I {t') = { ii) {u. - uj_1 )/h {2.24) 
J J 

{iii) (uj+1-uj_1 )/2h 

We use the approximations {2.24) for U I {t) in the 

differential equation {2.8) at the mesh point tj. This gives 

{i) [ Uj+1 - U• ]/h = f{tj, u.) 
J J 

{ii) [ U• - U· 1 ]/h = f{tj, u.) 
J J- J 

{iii) ( uj+1 - uj_1 )/2h = f{tj, u.) {2.25) 
J 

The equations { 2. 25) may be considered as a relation between 

differences of an unknown function U· J 
and may be called 

difference equations. The order of a difference equation is 

the number of intervals separating the largest and the 

smallest arguments of the dependent variable. Thus the 
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difference equations (2.25i) and (2.25ii) are of first order 

and the difference equation (2.25iii) is of second order. 

The methods (2.25i} and (2.25ii) are called a single step 

methods and the method (2.25iii) is called a two-step or 

multistep method. The approximate values uj will contain 

errors. We must be concerned with the effect of these errors 

on the solution, a~d ask what happens as we try to get a more 

accurate solution, by taking more grid points. A method is 

convergent if, as more grid points are taken or step size is 

decreased, the numberical solution converges to the exact 

solution, in the absence of roundoff errors. A method is 

stable if the effect of any single fixed roundoff error is 

bounded, independent of the number of mesh points. 

We now examine some methods in turn, which are used to 

solve the ordinary differential equations. 

2.2.1 Euler Method 

We write (2.25i) as 

uj+1 = uj + hfj (2.26) 

This is called the Euler or the first order Adams-Bashforth 

method. 

0(1)N-1 

equation 

u1 

u2 

UN 

Where f. 
J 

The method is applied at the 

to get the numerical 

(2.8). We have 

= uo + hf0 

= u1 + hf1 

= UN-1 + hfN-1 

= f(tj, uj) 
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Choosing h, the value u 1 is determined from the initial 

condition and the diferential equation (2.8), and it is easy 

to calculate u 2 from u 1 and so on. The method (2.26) is an 

explicit method, since, using uj, hand fj we can calculate 

uj+1 from (2.26) directly. 

2.2.2 Backward Euler Method 

The equation(6.25ii) at the mesh point t = tj+1 may be 

written as 

= (2.27) 

where 

fj+1 = f(tj+1 , uj+1 ) 

This is called the backward Euler or the first order 

Adams-Moulton method. The solution values u 1 , u2 , ... ,uN are 

determined from the following equations: 

= 

= 

(2.28) 

2.2.3 Mid-Point Method 

The equation (2.25iii) may be written as 

uj+1 = uj_1 + 2hfj 

This is called mid-point or the second order' Nystrom, Method. 
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The solution values are given by 

u 2 = u 0 + 2hf1 

u 3 = u 1 + 2hf2 

UN = UN-2 + 2hfN-1 

The value u 0 is known from the initial condition. 

In this chapter we have given a brief discussion of 

some well known methods for the numerical solution of an 

ordinary differential equation satisfying certain given 

initial conditions. If the solution is required over a wide 

range, it is important to get the starting values as 

accurately as possible. 
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CHAPTER THREE 

~ RUNGE-KU'ITA METHOD 

When it known that x is 
same as 6 (which by the 
way is understood from 
the pronunciation) all 
algebric equations with 
1 or 19 unknowns are 
easily solved by 

'inserting x, substituting 
6, elimination of 6 by x, 
and so on. 
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RUNGE-KUTTA METHOD 

3.1 RUNGE-KUTTA METHOD 

We first explain the principle involved in the Runga

Kutta methods. By ~the Mean Value Theorem any solution of 

u' =f(t, u), u(t0 ) = n 0 , t € [t0 , b] 

satisfies 

u{tj+1 ) = u(tj) + hu'(tj + eh) 

= u(tj) + hf(tj + eh,u(tj+eh)), 0<9<1 

for e = 1/2, we have 

u(tj+1 ) = u(tj) + hf(tj +h/2,u(tj+h/2)) 

Euler's method with spacing h/2 gives 

u(tj+h/2) = uj + h fj/2 

Thus, we have the approximation 

uj+1 = uj + hf(tj + h/2, uj + h fj/2) 

which may be written as 

k1 = hfj 

k 2 = hf(tj + h/2, uj + ~1 /2) 

uj+1 = uj + k 2 { 3 .1) 

Alternatively, again using Euler's method, we proceed as 

follows: 

u'(tj+h/2)- {u'(tj)+u'(tj+h) )/2 

= [f(tj, uj)+f(tj+h,uj,+hfj)]/2 

and thus we have the approximation 
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which may be written as 

K1 = hf(tj uj) 

K2 = hf(tj + h,uj + k 1 ) 

uj+1 = uj + (k1 + k 2 )/2 

This method is also called Euler - cauchy method. 

Either (3.1) or (3.2} can be regarded as 

-
uj+1 = uj+h(average slope) 

This is the underlying idea of the Runga-Kutta 

approach. In general, we find the slope at tj and at several 

other points, average these slopes, multiply by h and add the 

result to uj. Thus the Runqe-Kutta method with v slopes can 

be written as 

K1 = hf(tj, u.) 
J 

K2 = hf(tj + c 2h, uj+a21 K1) 

K3 = hf(tj + c 3h, U• + a31 K1+ a32 K2) J 

K4 = hf(tj + c 4h, U• + a41 K1 + a42 K2 + a43 K3) J 

and 

v-1 
Kv = hf(tj + cyh, uj +.l: avi ki) 

1=1 

(3. 3) 

From (3.3} we may interpret the increment function as 

the linear combination of the slopes at tj and at several 

other points between tj and tj+l· Further, knowing the 

values of the quantities on the right hand side of (3. 3) ·· the 

solution value uj+l may be obtained directly. Thus, · ( 3 . 3) 

represents the explicit Runqe-Kutta Method wit.h v slopes. To 
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determine the parameters c's 1 a's and W's in (3.3), we expand 

uj+l in powers of h such that it agrees with the Taylor 

series expansion of the solution of the differential equation 

upto a certain number of terms. 

3.1.1 Second Order Runge-Kutta Method 

Consider the following Runge-Kutta method with two 

slopes. 

Kl = hf(tj u.) 
J 

K2 = hf(tj + c 2h, U• + a21 Kl) J 

uj+l = uj + wl Kl + w2 K2 (3. 4) 

Where the paramenters c2 , a 21 w1 and w2 are chosen to make 

uj+l closer to u(tj+l). Now Taylor's series gives 

u(tj+l) = u(tj)+hu'(tj)+h2u"(tj)/2!+h3u"'(tj)/3!+ ... 

= u(tj)+hf(tj,u(tj))+h2 (ft+ffu)/2! 

we also have 

= hf· J 

K2 = hf(tj+ c 2h, uj +a21hfj) 

= h[fj +h(c2ft+ a 21ffu) 

+ h2(c2ftt+2c2a21fftu+a221f2fuu>f2!+ .... 

Substituting the values of K1 and K2 in (3.4) we get 

uj+l = uj + (W1 +W2 )hfj +h2 (w2c 2 ft+W2a 21ffu) 

(3. 5) 

+ h3 W2(c22ftt+2c2a21fftu+a221f2fuu>f2+.... (3.6) 

Comparing the coefficients of various powers of h in (3.5) 

and (3.6), we obtain 
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c 2 w2 = 1/2 . 

a 21 w2 = 1/2 

The solution of this system is 

(3. 7) 

where c 2 f= o is aribitrary. Substituting (3. 7) in (3. 6), we 

get 

- 2 . 3 2 
uj+1 = uj+hfj+h (ft+ffu)/2+h c 2 (ftt+2fftu+f fuu)/4+ •.• 

The local truncation error-is given by 

-Tj+1 = u(tJ+1 )-uj+1 

= h 3 [(1/6-c2/4) (ftt+2fftu+f2fuu>+ •.. ] 

which shows that the method (3.4) is of second order. The 

free parameter c 2 is usually taken between o and 1. 

Sometimes c 2 is chosen such that one of the W's in the method 

(3.4) is zero or the trunction error is minumum. Such a 

formula is called an optimal formula. 

It may be noted that every Runge-Kutta Method should 

reduce to a quardrature formula when f(t,u) is independent of 

u with W's as weights and c's as abscissas. 

If c 2 = 1/2, we get 

uj+1 = uj+hf(tj+h/2,uj+hfj/2) 

which is the Euler's method with spacing h/2. It 

reduces to the mid-point quardrature. rule when f(t,u) is 

independent of u. 

For c 2 =1 we get 

uj+1 = uj+h[f(tj,uj)+f(tj+h,uj + hfj)l/2 

which reduces to the trapezoidal rule when f(t,u) is 

independent of u. 
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3.1.2 Third Order Runqe-Kutta Method 

Here we define 

K1 = hf(tj,uj) 

K2 = hf(tj+c2h,uj+a21K1 ) 

K3 = hf(tj+c3h,uj+a31K1+a32K2 ) 

uj+l = uj+w1K1+w2K2+w3K3 

Expanding by Taylor series, we get six equations for eight 

parameters. 

a21=c2 

.a31+a32=c3 

w1+w2+w2=1 

c 2w2+c3w3=1/2 

c22w2+c23w3=1/3 

c 2a 32 w3=1/6 (3.8) 

Equations (3.8) are typical of all the Runge-Kutta methods; 

the sum of the aij in any row equals the corresponding ci, 

and the sum for the wi's equals 1. Equations (3.8) are 

linear in w2 and w3 and have a solution for w2 and w3 if and 

only if (3.9) holds 

c2 c3 -1/2 

c2 2 c2 
3 -1/3 = 0 (3.9) 

0 c2a22 -1/6 

Simplifying, we get 

(3 .10) 

Thus, we pick c 2 , c 3 and a 33 to satisfy (3.10). We can do 

this in most cases by picking c 2 and c 3 arbitrarily and 

setting 
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chosen (nonzero). We then calculate wi's and a .. 's 
l.) 

Equations (3.8). We display the solution in the form .. 

Nystrom 

2/3 2/3 

2/3 0 2/3 

2/8 3/8 3/8 

Nearly Optimal 

1/2 1/2 

3/4 0 3/4 

2/9 3/9 4/9 

Classical 

1/2 1/2 

1 -1 2 

1/6 4/6 1/6 

Heum 

1/3 1/3 

2/3 0 2/3 

1/4 0 3/4 

from 

The classical Runge-Kutta method is most often used 

because of its simplicity and moderate order. 
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3.2 IMPLLICIT RUNGE-KUTTA METHODS 

The implicit Runge-Kutta method using v slopes is defined as 

where 

v 
= hf(tj +cih,uj+ ~ aim~> 

m=l 

v 
= uj + ~. wm~ 

m=l 

v 
C· =~a··, i = 1,2, ... ,v 

1 . 1 1) 
J= 

(3.11) 

and aij' 1 ~i,j ~v,w1 , w2 , .... wv are arbitrary parameters. 

The slopes ~ are defined implicitly. The number of unknown 

parameters are v(v+l). We now give the derivation for the 

case v =1. We have 

K1 = hf(tj + c 1 h, uj + a 11 K1 ) 

uj+l = uj + w1K1 

The Taylor series gives 

u(tj+l) = u(tj)+hu'(tj)+h2u"(tj)/2 + ...• 

= u(tj)+hf(tj,u(tj))+h2 (ft+ffu)/2 + .... 

and 

Kl = h(f(tj, u.) + clhft + allKl fu + .•.. ) J 

(hf +cl h 2 f 3 = + ha11fu K1 )+ O(h ) t 

hf· 2 3 = + h (c1ft + a 11ffu)+ O{h ) J 

Substituting {3. 13) into {3.12) and comparing 

coefficients of h and h2 
I we get 

cl = all 

wl = 1 

Wlcl = 1/2 
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We obtain 

= = 1/2 

The second order implicit Runge-Kutta method becomes 

K1 = hf(tj +h/2 1 Uj 1 + K1/2) 

uj+1 = uj+ K1 

For v = 2 1 the implicit Runge-Kutta method (3 .11) becomes 

K1 = hf(tj + cl hi U• + all Kl + a12 K2) J 

K2 = hf(tj + c2 hi U• + a21 K1 + a22 K2) J 

uj+l = uj + W1K1 + W2k2 

where the parameter values 

wl = 1/21 w2 = 1/2 

c1 = ( 3 - v3)/6 1 c2 = (3 + /3)/6 

all = 1/41 al2 = 1/4 - v3/6 

a21 = 1/4+ v3/6 I a 22 = 1/4 

lead to a fourth order method. 
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CHAP'fER FOUR 

PARALLEL RUNGE-KUTTA METHOD 

In England the drain 
pipes are placed outside 
the houses in order to 
simplify repair service. 
Repairs are necessary 
because the pipes have 
been placed outside the t 
houses. 



PARALLEL RUNGE-KUTTA METHOD 

4.1 PARALLEL RUNGE-KUTTA METHOD 

The Runge Kutta methods are widely used for solving 

initial value problem. These methods provide approximations 

which converges to the true solution as step size (h) tends 

to zero, and also have the advantage of self-starting. 

However, the Runge-Kutta method, in its usual from, is 

not parallelizable. But, by some modification (which we are 

going to present) it can be converted into a parallel one, 

and therefore, computation {per step) can be done in 

parallel. This is the serious drawback of Runge-Kutta method 

that it inovlves considerably more computation per step, and 

hence by parallelizing the method , this drawback can be 

minimised effectively. 

and 

The Runge Kutta method with v slopes can be written as 

K1 = hf(tj,uj) 

K2 = hf(tj+c2h~uj+a21K1 ) 

K3 = hf(tj+c3h,uj+a31K1+a32K2)' 

K4 = hf(tj+c4h,uj+a41K1+a42K2+a43K3 ) 

v-1 
Kv = hf(tj+cyh,uj+.L aviKi) 

J=1 
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Since Ki+l depends
1
upon Ki the method is a serial one, 

but by assuming certain constants as zero, we can convert the 

Runge Kutta method to a parallel method. Assuning cofficient 

of K2 j as zero in K2 j+l' j=1,2, .•• (v-1)/2, we get 

K1 = hf(tj,uj) 

and 

K2 

K3 

K4 

Ks 

K v 

= hf(tj+c2h,uj+a21K1) 

= hf (tj+c3h, uj+a31K1 ). 

= hf(tj+c4h,uj+a41K1+a42 K2+a43K3 ) 

= hf(tj+c5h,uj+a51K1+a52K2+a53K3 ) 

v-2 
= hf(tj+cvh,uj+.~ aviKi); v = 

1.=1 
2m+l 

uj+l=uj+W1Kl+W2K2+ ••. +WvKv 

Thus, K2 j and K2 j+l can be calculated in parallel, 

since K2 j+l does not depends upon K2 j. 

sequence of operations are 

First Stage Calculate 

Second Stage Par begin 

Calculate 

Calculate 

Parend. 

Third stage Par begin 

Calculate 

Calculate 

Parend. 

32 

That is the 

Kl 

K2 

K3 

K4 

Ks 



(v-2)th stage Par begin 

Calculate Kv_1 

Calculate Kv 

Parend. 

Thus roughly, the time complexity is reduced to half of 

its original value, since we are calculating K2 j and K2 j+1 in 

parallel. However due to modification, some of its feature, 

like stability is affected. To improve the solution we will 

implement predictor correctors, which itself will be. in 

parallel. 

Now, we derive the third order parallel Runge-Kutta 

method in WQich k 2 and k 3 can be computed in parallel. 

4.2 THIRD ORDER PARALLEL RUNGE KUTTA METHOD 

K1 = hf(tj,uj) 

K2 = hf(tj+c2h,uj+a21K1 ) 

K3 = hf(tj+c3h,uj+a31K1 ); a 32=0. 

Uj+l = uj+W1K1+W2K2+ W3K3 ( 4 .1) 

To determine the paramenter c's, a's and W's we expand 

uj+1 in power of h such that it ~grees with the Taylor series 

expansion of the solution of the differential equation, 

K1 = hfj 

K2 = hf(tj+c2h, uj+a21K1 ) 

= hf(tj+c2h, uj+ha21 ~j) 
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= h[fi+h(c2ft+a21fft)+h2(c22ftt+2c2a21fftu+a212f2fuu>J 

K3 = h[fi+h(c3ft+a31fft) 

+h2(c32ftt+2c3a31fftu+a312f2fuu>J 

expanding left hand side of (4.1) and using these 

get 

u (tj) +hu • (tj) +h2u" (tj) /2! +h3f" • (tj) /3! + •.. 

K· •s 
l. ' 

we 

2 ~ 3 2 
=u(tj)+hfj+h [ft+ffu]/2!+ h [ftt+2fftu+f fuu+fu (ft+ffu)J/3! 

=W1hfj+W2 [hfj+h2 (c2ft+a 21ffu)J 

2 +W3 [hfj+h (c3ft+a31ffu)]+u(tj) 

Comparing Coefficents of h and h 2 

w1+w2+w3=1 

w2c 2+w3c 3 = 1/2 

w2a21+w3a31=1/2 

Solving these equations, we get 

w1=1-w2-:w3 

w2= a31-c3/ 2 (c2a31-c3a21) 

w3= a21-c2/2(a21c3-a31c2) 

Thus by assuming suitable value to c 2 ,c3 and a 21 , a 31 , 

we can determine the values of w1 , w2 , w3 • Similarly, we can 

calculate higher order parallel Runge-kutta method using 

Taylor series. A nth order parallel Runge-Kutta method is 

comparable to (n-1)th order Runge-Kutta method. However, 

parallel Runge-Kutta method is limited to odd orders as we 

are ca~culating two ki's parallely. 

4.3 STABILITY ANALYSIS 

While numerically solving an initial value problem for 

ordinary differential equations, an error is introduced at 
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each integration step due to the inaccuracy of the formula. 

The magnitude of this so called local truncation error is a 

measure of the accuracy of the integration formula. The 

magnitude of the total error depends on the magnitude of the 

local truncation errors and their propagation. Even when the 

local error at eac~ step is small, the total error may become 

large due to accumulation and amplification of these local· 

errors. This growth phenomenon is called numerical 

instability. Consider the simple linear first order 

differential equation 

u'=Mu, u(t0 ) = u0 (4.2) 

where M is a constant. It can be seen that, to a first order 

approximation, the result obtained from a stability analysis 

on the above linear equation can be extended to a nonlinear 

case 

(4.3) 

where df/dy from Equation (4.3) plays role similar to that of 

the constant Min Equation (4.2). The nonlinear function 

f(t,y) can be linearized by expansion of the function about 

the point (tn , un) in the Taylor series truncated after 
I 

first order terms. The resulting linearized from for 

Equation (4.3) is given in Equation (4.4) 

u• = Mu+Bt+C (4.4) 

where 

M = caf,au)n, 

B = (df/at)n, 

c = (fn-un(af/du)n -tn(df/dt)nl 
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It can be argued that the stability charateristics of 

the· linear equation (4.4) are very similar to the stability 

characteristics of the equation of the form given by (4.3). 

Since the terms Bt and c will give rise to corresponding 

terms in both numerical and exact solutions which are also 

linear in t(M=fO), we conclude that (4.3) exhibits short-range 

numerical instability in the·neighbourhood of (tn, un), when 

the corresponding equatin (4.2) with M =fuCtn, un) exhibits 

numerical instability. Therefore, the stability analysis will 

be based on the equation 

u'=f(t,u) = Mu, u(t0 ) = u0 
( 4. 5) 

where 

I 
and it is assumed that (df/du) is relatively invariant in the 

region of interest. Equation (4.5) has as its solution 

u(t) = u(to) eM(t-to) 

which at t = t 0 +nh becomes 

u(tn) = u(to)eMnh 

A singlestep method when.applied to (4.5) will lead to a 

first order difference eqution which has solution of the form 

where cl is a constant to be determined from the initial 

condition and E(Mh) is an approximation to eMh. We call 

singlestep method 

Absolutely stable if I E(Mh) I=::; 1, 

Relatively stable if IE(Mh) I=:; eMh 

If M<O. the exact solution decreases as tn increases 

and the important condition is the absolute stability, since 
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the numerical solution must also decrease with tn. If M>O, 

the exact solution increases with tn and we do not want E(Mh) 

< l:so the relative stability is an important condition. 

If Euler's method is used, we obtain 

un+l = un+hfn = E(Mh)un 

where E(Mh)=l+Mh-

Obviously, Euler's method is absolutely stable if 

ll+Mhl < 1 or -2 < Mh < o 

4.3.1 Stability of 2nd order Runqe-Kutta Method 

k 1 = hf(tj,uj) 

k 2 = hf(tj+c2h,uj+a21k 1 ) 

uj+l = E[Mh]uj 

replacing f(tj,uj) by Muj 

k 1 = hf(tj,uj)=Mhuj 

But 

k 2 = hf(tj+c2h,uj+a21k 1 )=Mh(i+a21Mh)uj 

tj+l = tj+w1k 1+w2k 2 

E[Mh]uj=uj[l+w1Mh+w2Mh(l+a21Mh)] 

E[Mh]= (l+w1Mh+w2Mh(l+a21Mh)] 

w1+w2=1 

c 2w2=1/2 

a 21w2=1/2 

for absolute stability 

IE[MhJI ~1 

hence, 
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Solving this equations as quardratic in Mh, we get 
I 

-2~ Mh ~0 

in which this method is absolutely stable. 

4.3.2 Stability of lrd order parallel Runqe-Kutta Method 

or 

k 1=hf(tj,uj)=Mhuj 

k 2=hf (tj +c2h r uj +a21 k 1 ) =Mh ( 1 +a21 Mh) uj 

k3=hf(tj~c3h, uj+a31k 1 )=Mh(l+a31Mh)uj 

uj+l = uj+w1k 1+w2k 2+w3k 3 

E[Mh] = l+w1Mh+w2Mh(l+a21Mh)+w3 (l+a31Mh)Mh 

E[Mh]=l+Mh(w1+w2+w3 )+M2h 2 (w2a 21+w3a 31 ) 

for absolute stability 

But, 

Thus 

or 

jE[MhJI~l 

w1+w2+w3=1 

w2c 2+w3c 3=1/2 

w2a2l+w3a31=1/2 

-2~ Mh :SO 

Hence the stability of 3rd order parallel Runge-Kutta 

Method · is same as that of 2nd order Runge-Kutta Method. 

Similarly we can determine the stability of higher order 

parallel Runge-Kutta Method. In general, the stability of a. 

Parallel Runge-Kutta method reduces to a lower order Runge-

Kutta method. 
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4.4 APPLICATIONS 

Now, we presents some applications of parallel Runge-

Kutta method. 

4.4.1 Higher Order Differential equation 

Runge-Kutta method is the most widely used method, and 

it is particularly-suitable in cases wher the computation of 

higher derivatives is complecated. It can be used for 

equations of arbitary order by means of a transformation to a 

system of first-order equations. 

Consider the equation 

u" =-f(t u u') , , , 

Let u' = w so that, 

u• = w 

w' = f(t,u,w). 

This is a special case of 

u' = F(t,u,w), 

w' = G(t,u,w). 

Suppose we choose a third order Runge-Kutta method for 

approximating the value of (t,u,w). The new set of values 

(t+h, u+k, w+l) can be calculated as 

and 

k 1 = hF(t,u,w) 

k 2 = hF(t+c2h,u+a21k1 ,w+b21 11 ) 

k 3 = hF(t+c3h,u+a31k 1+a32k 2 ;w+b3111+b32 12 ) 

k = W1k 1+W2k 2+W3k 3 
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1 1 = hG(t,u,w) 

1 2 = hG(t+c2h,u+a21k 1 ,w+b21r 1 ) 

13 = hG(t+c3h,u+a31k 1+a32k 2 ,w+b31r 1+b32r 2 ) 

1 = R111+R2 1 2+R31 3 

Thus the new values are ·ct+h, u+k, w+l). In case of 

third order parallel Runge-Kutta method, these equations in 

which k 1 ,k2 and 11 ,12 can be done in parallel are given by 

and 

k 1 = hF(t,u,w) 

k 2 = hF(t+c2h,u+a21k 1 ,w+b2111 ) 

k 3 = hF(t+c3h,u+a31k 1 ,w+b3111 ) 

k = W1k 1+W2k 2+W3k 3 

11 = hG(t,u,w) 

12 = hG(t+c2h,u+a21k 1 ,w+b211.1 ) 

13 = hG(t+c3h,u+a31k 1 ,w+b31a1 ) 

1 = R111+R212+R313 

The sequence of operations are 

Parbegin 

Calculate kl 

Calculate 11 

parend 

par begin 

Calculate k2 

Calculate 12 

Calculate k3 

Calculate 13 

parend 
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Similarly, we can choose higher order Runge-Kutta 

method for better results. 

4.4.2 system of Differential Equation 

Any nth order intial value problem can be replaced by a 

system of n first order intial value probelms. The system in 

the vector form rna~ be written as 

where 

and 

u• = du/dt =f(t,u),t0 s t s b 

u(t0 ) = u0 

by fifth 'order Runge-Kutta formula, 

where 

k· = 1 
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and 

• 

= hfj(ti+c2h,ul,i+a2lkll'u2,i+a21k2l"""un,i+a21knl> 

= hfj(ti+c3h,ul,i+a31kll+a32k12' 
u2,i+a31k21+a32k22'+ ••• 

-un, i+a31kn1 +a32kn2> · 

and similarly kj 4 and kjs 

The parallel set of equations are 

kjl = hfj(ti,ul,i,u2,i'""""'un,i> 

kj2 = hfj(ti+c2h,ul,i+a21kll'u2,i+a2lk2l"""un,i+a21knl> 

kj3 = hfj(ti+cJh,ul,i+aJlkll 

u2,i+a3lkll'+ ... 

un,i+a31k11) 

The sequence of operations are 

Calculate kjl 

Par begin 

Parend 

Calculate kj 2 

Calculate kjJ 

Par begin 

Calculate kj 4 

Calcualte kjs 

parend. 

Thus the parallel Runge-kutta method is very useful in 
' 

such cases, as the slight improvement in the parallel Runge-

Kutta method will be increased according to the order 

of the problem; 
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CHAPTER FIVE 

PREDICTOR CORRECTOR l\1ETHOD 

"I could have done.it in 
a much more complicated 
way " said the red queen, 
immensely proud. 

LEWIS CARROLL. 



PREDICTOR-CORRECTOR METHOD 

5.1 PREDICTOR-CORRECTOR METHOD 

To solve a differential equation over a single 

interval, say from u=un to u=un+1 , we require information 

only at the beginning of the internal 

Predictor-corrector methods are methods 

i.e., 

which 

at u=uj. 

require 

function values at un, un_1 , un_ 2 .... for the computation of 

the function at un+1 . A predictor formula is used to predict 

the value of u at un+1 and then a corrector formula is used 

to improve the value of un+1 . 

Consider, for example, the following predictor 

corrector method. 

C: ( 5 .1) 

The coefficents a,b,c,d and e can be determined by 

using Taylor's series. The values fn+1 and fn which are 

requird on the right hand side of (5.1) are obtained by 

Runge-Kutta method or by some other method. Due to this 

reason, these methods are called starter methods. For 

practical problems, the Runge Kutta method together with 

predictor corrector methods have been found to be most 
' 

successful combination. 
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5.2 PARALLEL PREDICTOR-CORRECTOR METHOD 

In this section, we present two defferent schemes for 

parallelizing predictor corrector methods, which can be used 

by Parallel Runge-Kutta method. However, these predictor-

corrector methods are not limited to the parallel Runge Kutta 

-method, and are general in nature. In first scheme uPn+l and 

ucn are ·calculated at two different points parallely. In 

second scheme, we calculate un+l for predictor-corrector 

parallely at the same point. 

First, we present an example of predictor corrector 

method with its two different parallel versions. 

(5.2) 

Parallel Version First: 

Note that corrector does not depends upon the predictor and 
~ 

hence a corrector of un and predictor of un+l or a predictor 

of un+l and a corrector of un can be calculated parallely. 

Hence by changing the subscript of (5.2) in corrector method, 

we get 

In this case, the sequence of computation can be 

divided into two parts: 

---> uPi+l ---> fPi+l ---> 

---> tc. 
1 -- .... > ---> 
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These two can be executed parallely on sepearate 

processors as shown beiow: 

Predictor Corrector 

. . 

. . 

. . 

ui-1 ui-2 

t=r f. 1 1- f. 2 1-

U• 
1 ui-1 

t=r+k f. 
1 fi-1 

ui+1 U• 
1 

t=r+2.k fi+1 f· 1 

. . 

. . 

. . 

Thus the predictor and corrector can be evaluated at 

the different points parallely. 

Parallel Version Two: 

In this scheme, we evaluate Predictor and Corrector 

parallely at same point. In this scheme corrector does not 

depends upon the latest evaluated predicted value but depends 

upon the predicted value evaluated one cycle before. Hence, 

both Predictor and Corrector can be evaluated simultaneously. 

P: un+1 = un + hfn 

C: un+1 = aun+ h(bfn+cfn_1 )/2 (5.3) 
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To determine the c9fficients, we expand the L.H.S. and R.H.S. 

of (5.3) by Taylor Series. 

L.H.S. 

R.H.S. 

aun+h/2(bun' +c(un'-hu"n+h2u"'n/2!+ ••• ]] 

Comparing Coefficents, we get 

a = 1 

b = 3 

c =-1 

un+1=un+h(3fn-fn-1)/2 

Hence the parallel predictor corrector becomes 

P: un+1 = un+hfn 

C: un+1 = un+h(3fn-fn)/2 

This is a third order method, since coefficients are 

matched upto order of h 2 . 

5.3 HYBRID MEmODS 

These methods are also called multistep method with 

nonstep points. To increase the order of the method, the 

method is modified by including a linear combination of the 

slopes at several points between un and un+1 . 

The K-step method with one non-step point can be 

written in the form 
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A Predictor-Corrector using hybrid method is given by 

Predictor for predictor: un+112=un+hfn/2 

Predictor: un+1=un+h(2fn+1 / 2-fn) 

Corrector: un+1=un+h(fn+1+4fn+112+fn)/6 

where aj's, bj's,c1 and a are arbitrary 0 <a< 1 

5.3.1 Parallel Version One 

The parallel predictor - corrector for such scheme can 

be written as, (replacing n by n-1 in corrector) 

Predictor for predictor: un+112=un+hfn/2 

Predictor: un+1=un+h(2fn+112-fn) 

corrector: un=un_1+h(fn+4fn_112+fn_1 )/6 

Thus, predictor and corrector can be executed parallely. 

5.3.2 Parallel Version Two 

Derivation of corrector: let the Correctors be of the form, 

L.H.S. 

un+1=un +hu'n+h2u"n/2!+h3u"'n/3!+ ... 

where a=hk and un=u(tn) 

R.H.S. 

aun + 

hb u'n + 

h(cu'n-cau"n+ca2u"'n/2!-ca3u""n/3!+ ... )+ 

h(du'n-dhu"n+dh2u"'n-dh3u""n+ ..• ) 
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Comparing Coefficents, we get 

a=1 

b+c+d=1 

ck+d=-1/2 

ck2+d=1/3 

ck3+d=-1/4 

Solving these equations we get 

a=1 

and 

, b=1-c-d 

c=250/357 

d=27/46 

k=-7/10 

Derivation of Predictor: 

un+1=un+h(afn-7/10+bfn) 

L.H.S. 

R.H.S. 

un+h[a(u'n-7hu"n/10+49h2u"'n/100+ ••• ~)+bu'nl 

Comparing Coefficents, 

a+b=1 

-7a/10=1/2 

Solving this, we get 

or 

a=-5/7 

b=12/7 
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Derivation of Predictor for Predictor 

un-7/lO=un+ahfn 

L.H.S. 

, un-7hu'n/10 

R.H.S. 

un+ahu'n 

From this, we get a=-7/10 

un-7/10=un-7fn/ 10 

Hence the parallel hybrid predictor-Corrector method becomes 

un_7110=un-7hfn/10 

un+l=un+h(-Sfn-7/10+12fn-l>/7 

un+l=un+h(bfn+cfn-7/lO+dfn-1> 

Where c=250/357 d=27/46 b=l-c-d 

In the same manner, we can derive different predictor

Correctors of higher orders. 

5.4 ALGORITHM 

In this section, we present an algorithm to 

demonstrate, parallel Runge-Kutta method,with parallel 

Predictor-corrector.This is an oversimplified version,to show 

how parallel Runge-Kutta method and Parallel Preditor-

Corrector can be used simultaneosly.In this algorithm we 

choose fifth order parallel Runge-Kutta method. For the 

Parallel Predictor Corrector method we select the fifth order 

parallel Adams-Moulton formula, 

uPn+l=un+h[55fn-59fn_1+37fn_2-9fn_3 ]/24 

and 
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Algorithm 

end 

Get the values of 

u• = f(t,u), 

u(t0 ) = ~, 

step-size = h, 

tl = t 0 + kh, the value at which u has to be 

calculated, 

c•s, a's and w•s. 

while t<t1 do 

Begin 

end 

Calculate k 1 = hf(tj,uj) 

parbegin 

Calculate k 2 = hf(tj+c2h,uj+a21k 1 ) 

Calculate k 3 = hf(tj+c3h,uj+a31k 1 ) 

parend 

parbegin 

Calculate k 4 = hf{tj+c4h,uj+a41k 1+a42k 2+a43 k 3 ) 

Calculate k 5 = hf{tj+c5h,uj+a51k 1+a52k 2+a53k 3 ) 

parend 

I* calculate u(tj+l)=u(tj)+h *I 

Calculate u(tj+l) = 

u(tj)+w1k 1+w2k 2+w3k 3+w4k 4+w5k 5 ) 

par begin 

I* Adams-Moulton Predictor-Corrector *I 

uPj+l=uj+h[55fj-59fj-l+37fj_2-9fj_3 ]124 

ucj=uj-l +h[9fPj+19fj_1-sfj_2+fj_3 ]124 

par end 

t = t+h 
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To obtain better approximation, we can choose a hi9her 

order parallel Runge-Kutta method and parallel predictor

corrector of higher order,such as hybrid predictor corrector. 

This depends upon the accuracy desired to solve the initial 

value problem. 

4 Although laborious,the Runge-Kutta method is the most 

widely used one since it gives relable starting values and is 

particularly suitable when the computation of higher 

derivatives is complicated. When the starting values have 

been found, the computations for the rest of the interval can 

be continued by means of the predictor-corrector methods. 

Hence, Predictor-Corrector methods are. of special importance. 
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CONCLUSION 



CONCLUSION 

The objective of this Dissertation was to develop 

Parallel Runge-Kutta method. Due to parallelisation, there 

were some factors,-such as stability, truncation error, etc., 

which were effected. To improve the solution, we presented 

two different versions of parallel Predictor-Corrector 

methods. However the parallel Predictor-Corrector method 

could be used parallely only once. The goal of this work was 

to present a solution, in which parallel Runge-Kutta method 

and parallel Predictor-Corrector method can be used 

simultaneously, to improve the solution. 

Due to time limitation and other factors, some features 

could not be dealt into. The work is still open ended. 

Suggestions in areas, where there is some scope of 

improvements are listed below : 

Due to parallelisation, stability of the method 

decreses. No work has been done to improve the 

stability of the method. This can be done by changing 

the step size within the iteration i.e., step size is 

not uniform. 

This work is limited to 

general, higher order 

approximation. 
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methods 

order methods. In 

provide better 



The multi~tep methods can be more effecatively used and 

the accuracy will be higher in these methods. 

The load balancing factor was not considered which is 

very important in parallel processing. 
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