
PARALLEL SOLUTION OF 0 0 E BY RUNGE-KUTTA METHOD

Dissertation submitted to The Jawahar/al Nehru University

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

IN

COMPUTER SCIENCE

SHUSHAN KUMAR

.SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAWAH.ARLAL NEHRU UNIVERSITY

NEW DELHI·11 0 067

JANUARY 1994

TO

NEHA, YAMIN/

MADHU, KAVITA,

SAVLEEN, TANPREET,

RUCHIKA & MANSI

CERTIFICATE

This is to certify that the dissertation titled

" PARALLEL SOLUTION OF ODE BY RUNGE-KUT'l'A lfETHOD " being

submitted by BHUSHAN KUHAR to Jawaharlal Nehru Universityp

New Delhi in partial fulfillment of the requirements for the

award of the degree of Master of Technology is a record of

the original work done by him under the supervision of Dr.

C. P., Katti, Associate Professor,School of Computer and

System Sciences,Jawaharlal Nehru University,New Delhi during

the year 1993,Monsoon Semester.

The results reported in this dissertation have not been

submitted in part or in full to ahy other university or

institution for the award of any degree or diploma.

'

Prof. K .K .Bharadflaj
Dean,

. School. of Computer and
system Sciences,
Jawaharl.al. Nehru Univers.ity,
New Del.hi.

~
Dr. C.P. Katti
Associate Professor,
School. of Computer and
System Sciences,
Jawaharl.al. Nehru University,
New Del.hi.

ACKNOWLEDGEMENT

I am immensely indebted to my supervisor

Dr. c. P. Kat:t;i, Associate Professor,School of Computer and

System Sciences,Jawaharlal Nehru University, New Delhi for

suggesting me this topic. I express my sincere thanks to him

for his personal involvement during the period of my work and

his guidence which has been indispensable in bringing about a

successful completion of the dissertation.

I am also grateful to Dr. C.P. Katti for providing me

with his invaluable notes and papers related to the topic.

I extend my sincere gratitude to Prof. K.K.Bharaclwaj,

Dean, School of Computer and System Sciences,Jawaharlal Nehru

University for providing me with the environment and all the

facilities required for the completion of this dissertation.

Special tljanks are due to A jay KUJIJar, Divan H. Khan,

and Sanjeev Sinha for helping me in the this project.

I take this opportunity to thank all faculty and staff

members and my.fx.ie.nds who helped me directly or indirectly.

(BHUSHAN KUMAR)

ABSTRACT

The Runge-Kutta methods are widely used for solving

initial va}ue problem. These methods provide approximations

which converges to true solution as step size tends to zero,

.and also have the ~dvantage of se1f-starting.

The drawback of Runge-kutta methods are that they

involve considerably more computations per step. The next

drawback is that the method is a serial method. But by

modification~ in its conventional form, it can be converted

into a parallel method, and hence computations can be done in

parallel to overcome this drawback.

However, due to modifications in original Runge-Kutta

method, some of its features, lik~ stability is affected.

Hence, to improve the solution, Predictor-Corrector method,

which itself will be parallel, are to be Used.

CONTENTS

CHAPTER 1 INTRODUCTION TO PARALLEL PROCESSING

1.1 MODEL OF PARALLEL COMPUTATION

1.2 LEVEL OF PARALLELISM

1.2.1 JOB LEVEL PARALLELISM

1.2.2 PROGRAM LEVEL PARALLELISM

1.2.3 INSTRUCTION LEVEL PARALLELISM

1.2.4 ARITHMETIC & BIT LEVEL PARALLELISM

1.3 ARCHITECTURES

1.4 SYNCHRONOUS ARCHITECTURE

1.5 SYSTOLIC ARCHITECTURE

CHAPTER 2 ORDINARY DIFFERENTIAL EQUATION

2.1 INTRODUCTION

2.1.1 INITIAL VALUE PROBLEM

2.1.2 TEST EQUATION

2.2 NUMERICAL METHODS

2.2.1 EULER METHOD

2.2.2 BACKWARD EULER METHOD

2.2.3 MID POINT FORMULA

CHAPTER 3 RUNGE KUTTA METHOD

3.1 RUNGE KUTTA METHOD

3.1.1 SECOND ORDER RUNGE KUTTA METHOD

3.1.2 THIRD ORDER RUNGE KUTTA METHOD

3.2 IMPLICIT RUNGE KUTTA METHOD

1

2

3

3

4

6

6

7

8

10

13

13

14

16

18

20

21

21

23

23

25

27

29

CHAPTER 4 PARALLEL RUNGE KUTTA METHOD .31

4.1 PARALLEL RUNGE KUTTA METHOD 31

4.2 THIRD ORDER PARALLEL RUNGE KUTTA METHOD 33

4.3 STABILITY ANALYSIS 34

4.3.1 STABILITY OF 2nd ORDER RUNGE KUTTA

METHOD 37

4.3.2 STABILITY OF 3rd ORDER PARALLEL

RUNGE KUTTA METHOD 38

4.4 APPLICATIONS 39

4.4.1 HIGHER ORDER DIFFERENTIAL EQUATIONS 39

4.4.2 SYSTEM OF DIFFERENTIAL EQUATIONS 41

CHAPTER 5 PREDICTOR CORRECTOR METHOD 43

5.1 PREDICTOR CORRECTOR METHOD 43

5.2 PARALLEL CORRECTOR METHOD 44

5.3 HYBRID METHODS 46

5.3.1 PARALLEL VERSION ONE 47

5.3.2 PARALLEL VERSION 'IWO 47

5.4 ALGORITHM 49

CONCLUSION 52

REFERENCES

CHAPTER ONE

INTRODUCTION TO PARALLEL PROCESSING

" Mine is a long and sad
tale " said the Mouse,
turning to Alice and
sighing. " It is a long
tail, certainly " said
Alice, looking down with
wonder at the Mouse's
tail, " but why do you
call it sad? "

LEWIS CARROLL.

INTRODUCTION TO PARALLEL PROCESSING

In. recent years we have witnessed a tremendous surge· in

the availability of very fast and inexpensive hardware. This

has been made possible partly by the use of faster circuit

technologies and ~maller feature sizes; partly by novel

architectural features such as pipelining, vector

processing, cache memories, and systolic arrays; and partly

by using novel interconnections between processors and

memories such as Hypercube, Omega network, Orthogonal Tree

network, and others.

Our ability to design fast and cheap hardware, however,

far outstrips our ability to utilize that hardware

effectively to solve large problems quickly. This is mainly

because a large problem may not be easy to decompose into

smaller problems that could be solved in parallel, on account

of data dependencies between the subproblems. The intrinsic

parallelism of a problem can be defined as the product of the

time required for solving it by the fastest parallel

algorithm, and the number of processors required by that

algorithm, divided by the time required by the best

sequential algorithm. For a problem with high-internal data

dependency, the intrins·ic parallelism would be very low.·

Because of these data dependencies,· process solving related

subproblems would need to communicate with each other. This

concurrent access, via a data bus, or via an interconnection

network. Any specific scheme· incurs an overhead in .term·s · 6f

1

time lost . to contention, latency, or both, and addi tiomil

overhead in hardware costs, which do not reduce dramatically

:with improved technology as does that of the underlying

circuits. Further, a communication scheme that is good for

one class of problems may not be good for another class,

which only adds · to our difficulty in finding a parallel

algorithm.

Memory contention can slow down the execution of a

parallel algp~rithm if the various processing elements must

access the same variable at the same time, some systems must

be devised so that only the processor can access a given

variable at any one time {for example, LOCK and UNLOCK on

MIMD machnines). Also, if the number of logical processors

is larger than the number of physical proressors in the

machine, some sort of scheduling must be done to determine

where the extra processes will eventually be handled. The

scheduling cost is the resource allocated to do this

scheduling. For efficient scheduling, the extra logical

processes should be saved until a processor is available, and

the internal state of the logical processes should be

monitored.

1.1 MODELS OF PARALLEL COMPUTATION

The design of parallel algorithms becomes an important

issue as numerous parallel architectures are developed. In

fact, a considerable number of very different architectures

for parallel computing are in existence. They range from

special purpose array processors to tree machines to loosely

2

coupled networks of processors. Since the design and·

performance of a parallel algorithm depends very much on the

architecture of the parallel machine, it is necessary to keep

the architecture in mind when designing parallel algorithms.

There is, however, no universal method for designing parallel

algorithms. One approach to constructing parallel algorithms

is to recognize parallelism in the existing sequential

algorithms. This approach has been studied by several

researchers (Keller 1973; Lee et al. 1985: Moitra and Iyengar.

1986, Nicolau 1985; Shrira et al. 1983; Strom and Yemini

1985).

1.2 LEVELS OF PARALLELISM

Parallelism is not a new concept and has been used to

improve the effectiveness of computers since the earliest

designs. It can be applied at various levels which can be

classified as (a) Job level, (b) Program level, (c)

Instruction level and (d) Arithmetic and bit level.

1.2.1 Job Level Parallelism

Job level parallelism is implemented in most computer

installations. Viewed in a simplistic manner, every job is

d_i vided into several sequential phase each of which requires

a different systems program and system resources. For

example, an I/O operation is very slow compared to the actual

program execution and th~refore, any reasonably large

computer installation provides several I/O channels or

3

peripheral processors which can perform the I/O in parallel

with program execution .

.. · .. Usually, several programs reside -in the fast memory of

a computer and only one of these will be in execution at any

given time. As soon as this program, requires a slow I/O

facility, e.g. a read from a tape or disk, this I/O operation

is initiated in the channel and another program is put into

execution. The first program waits until the data is

available and its execution restarts only when the other

program are similarly obliged to wait.

This sort of (job level) parallelism is not really

useful in the context of computationally intensive

applications

little I/O

such as CFD. Since CFD programs

time (as compared to the execution

involve· very

time), the

system throughput is not likely to increase

In fact, considering the size of these

throughput may actually decrease because of

significantly.

programs, the

the overheads

involved in swapping the massive amounts of data and program

from the memory.

1.2.2 Program Level Parallelism

Program level parallelism is the one most important in

the context of supercomputers. Within a large program, there

could be sections of code which are quite independent and

could therefore be executed in parallel on different

processors in a multiprocessor environment. This is the

central idea in parallel processing. There are several

4

methods of implementing this architecturally and we will

discuss these presently.

Program level parallelism could arise in several · ways

the most commonly encountered one being a DO loop which can

be replaced by one or more vector instructions. This has

been exploited in_the well-known vector machines such the

CRAY, CYBER, etc. The performance of these machine hinges on

the ability of the comipler to recognize and take advantage

of such vectorization. It also means that the problem must

in the first instance permit vectorization.

In certain programs, the different execution of a loop

may be completely independent of each other. This arises,

for example, in Monte Carlo analysis where the same

calculations are repeated many times with · different data

chosen in a random fashion. In such cases, the full code can

be 1oaded onto each processor in a multi-processor

environment and the calculations for each sample done in

parallel.

However, things are not usually so simple. While in

some instances certain sections of code can be recognized to

be independent by logical analysis of the source code or the

problem itself, in other cases there may be data dependency

and the independence of sections of code may not be known

until the program is executed. The onus of recognizing the

parallelism then falls on the compiler though the programmer

can help to a certain extent by writing his programs in ~ way

that aids the compiler. The hardware and architecture in

5

general can only provide the ncessary computing power while

the systems software must actually exploit this capability.

There is a considerable amount of work being done on such

compilers but the present compilers are far from optimum.

1.2.3 Instruction Level Parallelism

Instruction level parallelism is important in enabling

the unit processors in a multiprocessor environment to work

faster. The instructions in a unit processor may be divided

into several sub-operations, which may then the pipelined to

speed up execution. Another approach which is becoming

popular in the newer microprocessors is instruction

prefetching in an instruction cache. Here, while a

particular instruction is being executed and the processor

bus is free, new instructions are fetched and loaded into an

instruction cache. This overlap of instruction fetch cycles

with the e~ecution cycles enhances the processor speed.

1.2.4 Arithmetic and Bit Level Parallelism

Arithmetic and Bit level parallelism is the lowest

level of parallelism in computers. This is a self evidence

concept. Obviously, using an 8 bit machine to do 64 bit

arithmetic is going to be much slower than using a 64 bit

machines in the single precision mode. This level of

parallelism is directed by considerations such as the

requirements of the typical problem to be solved, available

technology, the amount of hardware the system designer wants

to use etc.

6

1.3 ARCIDTECUTURES

Having seen that program level parallelism offers a

major increase in computation speed, we will now examine the

various architectural concepts which allow for such

parallelism.

One can classify computers into four broad categories

according to whether the instruction or the data streams are

single or multiple. (Fig. 1) (A stream is defined as a

sequence of items - instructions or data - as executed or

operated on by a processor):

Flynn's taxonomy. Flynn's taxonomy classifies architectures

on the presence of single or multiple streams of instructions

and data. This yields the four categories below:

SISD (Single instruction, single data stream) defines

serial computers. MISD (Multiple instruction, single data

stream) would involve multiple processors applying

different instructions to a single datum; this hypothetical

possibility is generally deemed impractical.

SIMD (single instruction, multiple data streams) - involves

multiple processors simultaneously executing the same

instruction on different data this definition is discussed

further prior to examining array processors below).

MIMD (multiple instruction, multiple data streams) - involves

multiple processors autonomously executing diverse

instructions on diverse data.

7

Synchronous

r- Vector

--[

Processor array
SIMO

Assodative memory

.._ Systolic

------f[Distributed memory
MIMO ·

Shared memory

.--- MIMO!SIMD

f-- Dataflow

MIMD paradigm -

- Reouct•on

- Wavefront

Figur~ I. HiJ:h·l~v~l flnamum~· ur p;anllrf t•ompul~r llrchil~cturt'S.

1.4 SYNCHRONOus· ARCIDTECTinffiS

Pipelined vector processors: Vector processors are

characterized by multiple. Pipelined functional units,

which implement arithmetic and Boolean operations for both

vectors and scalars and which can operate concurrently. Such

·architectures provide parallel vector processing by

sequentially streaming vector elements through a functional
'

unit pipeline and by streaming the output results of one unit

into the pipeline of another as i~put (a process known as

"chaining").

A representative architecture might have a vector

addition unit consisting of six pipeline stages (Fig. 2).

Recent vector processing. supercomputer erst such as the

Cray X-MP/4 and ET-A-10) unit four to 10 vector processors

through a large shared memory.

SIMD architecures. SIMD architecture (Fig. 3) typically

employ a central control unit, multiple processors, and an

interconnection network (IN) for either processor-to-

processor or processor-to-memory communications. The control

unit broadcasts a single instruction to all processors, which

execute the instruction in lockstep fashion on local data.

The interconnection network allows instruction result

calculated at one processor to be communicated to another

processor for use as operands in a subsequent instruction.

Individual processors may be allowed to disable the current

instruction.

8

, ________ ---------------- ------------
Vector

_register A

al

. . .
' a9
'

810

VectOf
regist8f B

\
b1 _v . . .

~b9

b10

ST1

a8

b8

Vector aocloloon ptpelone

ST2 ST3 ST4 STS ST6

a7 a6 a5
c4 c3 ,

b7 b6 b5

Fi~:ure l. Rt•j!ister·lu-rc:.:i~t.-r n·~·tur :trdoih·•·tun· npt•ntiun.

Control
unit

Instruction
&Cream

Add r1,b

Add r1,b

Add r1,b

Fi~:ure 3, Sl M f) uecutiun.

1-bit
serial

processors

p

p

p

Data
stream

N

Memory
bit planes

Vec1or
register C

c1

c2

' --

Processor array architectures. Processors structured

for numerical SIMD execution have often been employed · for

large-scale scientific calculations. Such as image

processing and nuclear energy providing.

Operands are usually floating-point c values and

typically range !n size from 32 to 64 bits. Various IN

schemes have been used to provide processor-to-processor or

processor - to - memory communications, with mesh an corssbar

approaches being among the most popular.

One variant of processor array architecutres involves

using a large number of one-bit processors. In bit-plane

architecutres, the array of processors is arranged in a

symmetrical grid (such as 64x64) and associated with

multiple "planes" of memory bits that ocrrespond to the

dimensions of the processor grid (Fig. 4). Processor n{Pn),

situated in the grid at location (x, y), operates on the

memory bits at location {x, y) in all the associated memory

planes. Usually, operations ars provided to copy, mask, and

perform arithmetic operations on entire memory planes, as

well as on columns and rows within a plane.

Associative memory processor architecutres. Computers

built around an associative memory consitute a distinctive

type of SIMD architecutre that uses special comparison logic

to access stored data in parallel according to its contents.

Research in constructing associative memories began in the

late 1950s with the obvious goal of being able to search

memory in parallel for data that matched some specified

9

datum. "Modern" associative memory processors devel6ped in

the early 1970s (for example, Bell Laboratories' Parallel

. Element Processing Ensemble, or PEPE) and recent

architecutres have naturally been geared to database~oriented

applications, such as tracking and surveillance.

Figure 5 shows the characteristic functional units of

an associative memory processor. A program controller reads

and executes instructions, invoking a specialized array

controller when associative memory instructions are

encountered. Special registers enable the program controller

and associative memory to share data.

Figure 6 depicts a row-oriented comparison operation

for a generic bit-serial architecture.

In figure 7 a logical OR operations is performed on a

bit-column and the bit-vector in register. A with register B

receiving the result. A zero in the mask register indicates

that the associated word is not to be included in the current
,,

operation.

1.5 SYSTOLIC ARCIDTECUTURE

In the early

University proposed

1980s H.T. Kung of Carnegie Mellon

systolic architectures to solve the

problems of special-purpose systems that must often balance

intensive computations with demanding I/O bandwidths.

"Systolic architectures are pipelined multiprocessors in

which data is pulsed in rhythmic fashion from memory and

through a newtwork of processors before returning to memory.

A global clock and explicit timing delays synchronize this

10

Cornparoson register

~10101
SearCh panern

Assooatove memory

T 1 0 0 1

0 1 1 0
Words

l·
I 0 0 0

00 1 1

Bit-column~
searCh window

...,

Program
memory

t--- B•IS per WOld -1

ALU
and

special
registers

......

r------. ·-

Program
controller

Associative
memory

Associative reg•sters

/ ' A B MaSk

T
Words

1

Array
controller

0

B
reg•ster

pipelined data flow, which consists of operands obtained from

memory and partial results to local interconections provide

basi~ building blocks for a variety of special purpose

systems. During each time interval; these processors execute

a short, invariant sequence of instructions.

A high degr~e of parallelism is obtained by pipelining

data through multiple processors, typically in two

dimensional fashion. Systolic architecutres maximize

computations performed on a datum once it has been obtained

from memory or an external device. Hence, once a datum

enters the systolic array, it is passed to any processor that

needs it, without an intervening store to memory. Only

processors at the topological boundaries of the array perform

I/O to and from memory.

Figure 9 a-e shows how a simple systolic array could

calculate the outer product of two matrices.

A = I ~ : I and B = j : ~ I
The zero inputs shown moving through the array are used

for synchronization. Each processor begins with an

accumulator set to zero and, during each cycle, adds the

product of its two inputs to the accumulator. After five

cycles the matrix prdocut is complete.

A growing number of special-purpose systems are

systolic organization for algorithm-specific architectures,

particularly for signal processing. In addition,

programmable (reconfigurable) systolic architectures (such as

ll

0

ca 0

dbO 0

ae .
cr

I

d be

ae .
cl

,,..
.
dt

fi.:urr JC. S~·stnlk n., ... of daCa from
and In nu·mur.'.

(a)

c

b

(C)

(t'}

tl
g
0

-0

0

h

ag

g

0

ag

•
ch

bg .
dh

-

c :lt'

e

db 0

ae .
ct

be .
dt

a

0

(h)

d

(d)

h
g

0

0

0

ag

•
ch

h

bg

Fia:urt· CJ_. S~ ''"lie mal ria mutciplio.
cafiun.

Carnegie Mellon's Warp and Saxpy's Matrix-1) have been

constructed that are not limited to implementing a single

algorithm. Although systolic concepts were orginally

proposed for VLSI-based systems to be implemented at the chip

level, systolic architectures have been implemented at a

variety of physical levels.

-At present, the world of parallel programming is quite

primitive. Programmers are made painfully aware of the

physical computing environment they are working in and are

forced to tailor their code to match the architecture.

Software development tools such as debuggers and performance

monitors, commonplae in the sequential programming world, are

either absent or weak in parallel programming systems. Most

important, our understanding of efficient structures and

algorithms for parallel systems is still quite shallow. But,

we are progressing. Concepts such as distributed shared

memory promise to free the programmer from having to

structure his or her code to match the underlying

architecture. The programmer will be able to develop

algorithms using whatever paradigm is natural for the problem

being solved. And when the programmer can focus more on the

problem than on the computing system, parallel algorithm

development and implementation will soar to new heights.

12

CHAPTER TWO

ORDINARY DIFFERENTIAL EQUATION

Numerical analysis is a
science-computation is an
art.

ORDINARY DIFFERENTIAL EQUATIONS

2.1 INTRODUCTION

An ordinary differential equation is a relation between

a function, its derivatives, and the variable upon which they

depend. The most general form of an ordinary differential

equation is given by

t(t,y,y',y" ,yCm)) = o (2 .1)

where m represents the highest order derivative, and y and

its derivatives are functions of t. The order of the

differential equation is the order of its highest derivative

and its degree is the degree of the derivative of the highest

order after the equation has been rationalized. If no

product of the dependent variable y(t) with itself or any one

of its derivatives occur, then the equation is said to be ..
linear, otherwise it is nonlinear. A linear differential

equation of order m can be expressed in the form

m
I: t () (t)y(P) (t) = r(t)

p=O p
(2.2)

in which tp(t) are known functions. If the general nonlinear

differential equation (2.1). of order m can be written as

y(m) = F(t,y,y•, ... ,yCm-1)) (2.3)

then the equation (2.3) is called a canonical representation

of the. differential equation (2.1). In such a form, the

highest order derivative is expressed in terms of the lower

order derivatives and the independent variable.

13

2.1.1 Initial Value Problem

A genral solution of an ordinary differential equation

such as (2.1) is a relation between y, t and m arbitrary

constants which satisfies the equation, but which contains no

derivatives. The solution may be an implicit relation of the

form

w(t,y,c1 , c 2 , ,em) = o (2.4)

or an explicit function of t of the form

(2. 5)

The can be

determined by prescribing m conditions of the form

y(v) (t
0

) = nV' v=O, 1,2, ,m-1 (2. 6)

at one point't = t 0 , which are called initial conditions.

The differential equation (2.1) together with the initial

conditions (2.6.) is called mth order intial value problem.

The mth order differential equation (2.3) with initial

conditions (2.6) may be written as an equivalent system of m

first order intial value problems:

u1 = y

u• 1 = u2

u• 2 = u3

u'm-1 =~

u'm = F(t,u1 ,u2 , ... ,~)

n ...
m-1

14

which in vector notation becomes

u• = f(t,u)

(2. 7)

where

u = [u1 u2 •• -~] T

f = [u2 u 3 .. ----~ F] T

n = [no n1
, T

•.. nm-11

Thus the methods of solution of the first-order initial value

problem

dufdt = f(t,u), (2.8)

may be used to solve the system of first order

initial value problems (2.7) and the mth order initial value

problem (2.3).

The existence and uniqueness of the solution of the

initial value probelm (2.8) is guranteed by the theorem:

Theorem: We assume that f(t,u) satisfies the following

conditions:

(i) f(t,u) is a real function

(ii) f(t,u) is defined and continuous in the strip

t €[t0 ,b], U€(-oo, oo)

(iii) there exists a constant L such that for any tE[t0

b) and for any u 1 and u2

f(t,u1) - f(t,u2) I ~ L I u 1 - u 2

where L is called the Lipschitz constant. Then for any

u 0 the initial value problem (2.8) has a unique solution u(t)

for tE(t0 , b).

15

2.1.2 Test Equations

The behaviour of the solution of the initial value

problem (2.8) in the neighbourhood of any point (t,u) can be

predicted by considering the linearized form of the

differential equation.

u• = f{t,u)
/

The nonlinear function f{t,u) can be linearized by

expansion of the function about the point {t,u) in the Taylor

series truncated after first order term.

linearized form for (2.8) is given by

u• = Mu+C

M = caftau>t

c = f(t,u)-u(aftau) 1 +caftdt>t<t-t)

Further, the equation (2.9) may be written as

w• = Mw

where

w = u + C/M

The resulting

(2.9)

(2.10)

Similarly, the test equation for the second order initial

value problem

y" = f(t,y,y')

y(to) = nO' Y' (to) -= n1

may also be obtained in the form

w" = - bw' - cw

where

b =- af/oy', and c =- Bf/ay

(2.11)

(2.12)

The differential equation (2.12) is equivalent to the

following system of equations.

u• =Au (2. 13)

16

where

A =

u 1 = w, u 2 = w'

The nature of the solution of (2.12) or (2.13) depends on the

roots a 1 and a 2 of the characteristic equation of the

matrix A,

a 2 + b a + c = 0 (2.14)

We know consider the following cases:

(i) b>O, c~o, b>2vc. The solutions are exponentially

decreasing. For c = 0, the test equation (2.12) becomes

w" + bw' = o, b>O (2·. 15)

(ii) b <0, c~O and lbl >2vc. The solution are exponentially

increasing. For c = o, the test equation (2.12) becomes

w" + bw' = o, b<O (2.16)

(iii) c>O and lbl <2vc. The solution are oscillating. If

b<O then the solution is an oscillating function whose

amplitude becomes unbounded as t->oo. If b>O then the

solution is a damped oscillating function as t->oo. For b=O,

the test equation (2.12) becomes

w" + cw = o, c>O (2.17)

whose solution is periodic with period 2"/vc. We

observe that a 1 and a 2 (b=O, c>O) are pure imaginary numbers.

The solution of the test differential equation (2.10) will

also be periodic if we allow M to be·pure imaginary number.

Thus the nature of the solutions of the systems of

equations or higher order equations may be discussed ·by·

17

using the test equation (2.10) for (i) M pure real, (ii) M

pure imaginary, and (iii) M complex.

2.2 NUMERICAL MEffiODS

The first step in obtaining a numerical solution of the

dif'ferential equati~on (2.8) is to partition the interval [t0 ,

b] on which the solution is desired into a finite number of

subintervals by the points

t 0 < t 1 <t2 .••• <tN = b

The points are called the mesh point or the grid points. The

spacing between the points is given by

hj = tj- tj_1 , j = 1,2, ,N

which is called the mesh spacing or step length. For

simplicity we assume that the points are spaced uniformly,

i.e.

hj = h =constant, j = 1,2, ••.. ,N

The mesh points are given by

tj =t0 + jh, j = 0,1,2 , .••• ,N

(2.18)

(2. 19)

In numerical methods we determine a number uj, which is

an approximation to the value of the solution u(t) at the

point tj. The set of numbers {uj}, i.e., u 0 , u 1 , ,uN is

the numerical solution of the initial value problem. The

numbers {U •}
J

are determined from a set of algebraic

equations called the differeace equations. There are many

difference approximations possible for a given differential

equation. As an example, consider expressions for the first

derivative in terms of the forward, backward, and central

18

difference operators. We assume that the function u(t) may

be expanded in a Taylor series in the closed interval t-h ~ t

~t+h. We write as

u(t±h) =u(t) ± h u 1 (t) +h2u 11 (t)/2!± ..•

... +(-1)P hPu(P)(t)/p! + ..• (2.20)

where a prime denotes differentiation with respect to t. We

then have

[u{t+h)-u{t)]/h = u 1 {t)+h u"{t)/2 + O{h2) {2.21)

where the notation O(h) means that the first term neglected

is of order h.

Similarly, we obtain

Vu{t)/h = du/dt + O{h) {2.22)

and
~6u{t)/h = dujdt + O(h2) {2~23)

A difference approximation to u 1 {t) at t=tj is obtained by

neglecting the error term. We have

{i) {uj+1 - u.) /h
J

U I {t') = { ii) {u. - uj_1)/h {2.24)
J J

{iii) (uj+1-uj_1)/2h

We use the approximations {2.24) for U I {t) in the

differential equation {2.8) at the mesh point tj. This gives

{i) [Uj+1 - U•]/h = f{tj, u.)
J J

{ii) [U• - U· 1]/h = f{tj, u.)
J J- J

{iii) (uj+1 - uj_1)/2h = f{tj, u.) {2.25)
J

The equations { 2. 25) may be considered as a relation between

differences of an unknown function U· J
and may be called

difference equations. The order of a difference equation is

the number of intervals separating the largest and the

smallest arguments of the dependent variable. Thus the

19

difference equations (2.25i) and (2.25ii) are of first order

and the difference equation (2.25iii) is of second order.

The methods (2.25i} and (2.25ii) are called a single step

methods and the method (2.25iii) is called a two-step or

multistep method. The approximate values uj will contain

errors. We must be concerned with the effect of these errors

on the solution, a~d ask what happens as we try to get a more

accurate solution, by taking more grid points. A method is

convergent if, as more grid points are taken or step size is

decreased, the numberical solution converges to the exact

solution, in the absence of roundoff errors. A method is

stable if the effect of any single fixed roundoff error is

bounded, independent of the number of mesh points.

We now examine some methods in turn, which are used to

solve the ordinary differential equations.

2.2.1 Euler Method

We write (2.25i) as

uj+1 = uj + hfj (2.26)

This is called the Euler or the first order Adams-Bashforth

method.

0(1)N-1

equation

u1

u2

UN

Where f.
J

The method is applied at the

to get the numerical

(2.8). We have

= uo + hf0

= u1 + hf1

= UN-1 + hfN-1

= f(tj, uj)

20

solution

mesh

of

points t· j=
J I

the differential

/

Choosing h, the value u 1 is determined from the initial

condition and the diferential equation (2.8), and it is easy

to calculate u 2 from u 1 and so on. The method (2.26) is an

explicit method, since, using uj, hand fj we can calculate

uj+1 from (2.26) directly.

2.2.2 Backward Euler Method

The equation(6.25ii) at the mesh point t = tj+1 may be

written as

= (2.27)

where

fj+1 = f(tj+1 , uj+1)

This is called the backward Euler or the first order

Adams-Moulton method. The solution values u 1 , u2 , ... ,uN are

determined from the following equations:

=

=

(2.28)

2.2.3 Mid-Point Method

The equation (2.25iii) may be written as

uj+1 = uj_1 + 2hfj

This is called mid-point or the second order' Nystrom, Method.

21

The solution values are given by

u 2 = u 0 + 2hf1

u 3 = u 1 + 2hf2

UN = UN-2 + 2hfN-1

The value u 0 is known from the initial condition.

In this chapter we have given a brief discussion of

some well known methods for the numerical solution of an

ordinary differential equation satisfying certain given

initial conditions. If the solution is required over a wide

range, it is important to get the starting values as

accurately as possible.

22

CHAPTER THREE

~ RUNGE-KU'ITA METHOD

When it known that x is
same as 6 (which by the
way is understood from
the pronunciation) all
algebric equations with
1 or 19 unknowns are
easily solved by

'inserting x, substituting
6, elimination of 6 by x,
and so on.

FALSTAFF, FAKIR.

RUNGE-KUTTA METHOD

3.1 RUNGE-KUTTA METHOD

We first explain the principle involved in the Runga

Kutta methods. By ~the Mean Value Theorem any solution of

u' =f(t, u), u(t0) = n 0 , t € [t0 , b]

satisfies

u{tj+1) = u(tj) + hu'(tj + eh)

= u(tj) + hf(tj + eh,u(tj+eh)), 0<9<1

for e = 1/2, we have

u(tj+1) = u(tj) + hf(tj +h/2,u(tj+h/2))

Euler's method with spacing h/2 gives

u(tj+h/2) = uj + h fj/2

Thus, we have the approximation

uj+1 = uj + hf(tj + h/2, uj + h fj/2)

which may be written as

k1 = hfj

k 2 = hf(tj + h/2, uj + ~1 /2)

uj+1 = uj + k 2 { 3 .1)

Alternatively, again using Euler's method, we proceed as

follows:

u'(tj+h/2)- {u'(tj)+u'(tj+h))/2

= [f(tj, uj)+f(tj+h,uj,+hfj)]/2

and thus we have the approximation

23

(3.2)

which may be written as

K1 = hf(tj uj)

K2 = hf(tj + h,uj + k 1)

uj+1 = uj + (k1 + k 2)/2

This method is also called Euler - cauchy method.

Either (3.1) or (3.2} can be regarded as

-
uj+1 = uj+h(average slope)

This is the underlying idea of the Runga-Kutta

approach. In general, we find the slope at tj and at several

other points, average these slopes, multiply by h and add the

result to uj. Thus the Runqe-Kutta method with v slopes can

be written as

K1 = hf(tj, u.)
J

K2 = hf(tj + c 2h, uj+a21 K1)

K3 = hf(tj + c 3h, U• + a31 K1+ a32 K2) J

K4 = hf(tj + c 4h, U• + a41 K1 + a42 K2 + a43 K3) J

and

v-1
Kv = hf(tj + cyh, uj +.l: avi ki)

1=1

(3. 3)

From (3.3} we may interpret the increment function as

the linear combination of the slopes at tj and at several

other points between tj and tj+l· Further, knowing the

values of the quantities on the right hand side of (3. 3) ·· the

solution value uj+l may be obtained directly. Thus, · (3 . 3)

represents the explicit Runqe-Kutta Method wit.h v slopes. To

24

determine the parameters c's 1 a's and W's in (3.3), we expand

uj+l in powers of h such that it agrees with the Taylor

series expansion of the solution of the differential equation

upto a certain number of terms.

3.1.1 Second Order Runge-Kutta Method

Consider the following Runge-Kutta method with two

slopes.

Kl = hf(tj u.)
J

K2 = hf(tj + c 2h, U• + a21 Kl) J

uj+l = uj + wl Kl + w2 K2 (3. 4)

Where the paramenters c2 , a 21 w1 and w2 are chosen to make

uj+l closer to u(tj+l). Now Taylor's series gives

u(tj+l) = u(tj)+hu'(tj)+h2u"(tj)/2!+h3u"'(tj)/3!+ ...

= u(tj)+hf(tj,u(tj))+h2 (ft+ffu)/2!

we also have

= hf· J

K2 = hf(tj+ c 2h, uj +a21hfj)

= h[fj +h(c2ft+ a 21ffu)

+ h2(c2ftt+2c2a21fftu+a221f2fuu>f2!+

Substituting the values of K1 and K2 in (3.4) we get

uj+l = uj + (W1 +W2)hfj +h2 (w2c 2 ft+W2a 21ffu)

(3. 5)

+ h3 W2(c22ftt+2c2a21fftu+a221f2fuu>f2+.... (3.6)

Comparing the coefficients of various powers of h in (3.5)

and (3.6), we obtain

25

c 2 w2 = 1/2 .

a 21 w2 = 1/2

The solution of this system is

(3. 7)

where c 2 f= o is aribitrary. Substituting (3. 7) in (3. 6), we

get

- 2 . 3 2
uj+1 = uj+hfj+h (ft+ffu)/2+h c 2 (ftt+2fftu+f fuu)/4+ •.•

The local truncation error-is given by

-Tj+1 = u(tJ+1)-uj+1

= h 3 [(1/6-c2/4) (ftt+2fftu+f2fuu>+ •..]

which shows that the method (3.4) is of second order. The

free parameter c 2 is usually taken between o and 1.

Sometimes c 2 is chosen such that one of the W's in the method

(3.4) is zero or the trunction error is minumum. Such a

formula is called an optimal formula.

It may be noted that every Runge-Kutta Method should

reduce to a quardrature formula when f(t,u) is independent of

u with W's as weights and c's as abscissas.

If c 2 = 1/2, we get

uj+1 = uj+hf(tj+h/2,uj+hfj/2)

which is the Euler's method with spacing h/2. It

reduces to the mid-point quardrature. rule when f(t,u) is

independent of u.

For c 2 =1 we get

uj+1 = uj+h[f(tj,uj)+f(tj+h,uj + hfj)l/2

which reduces to the trapezoidal rule when f(t,u) is

independent of u.

26

3.1.2 Third Order Runqe-Kutta Method

Here we define

K1 = hf(tj,uj)

K2 = hf(tj+c2h,uj+a21K1)

K3 = hf(tj+c3h,uj+a31K1+a32K2)

uj+l = uj+w1K1+w2K2+w3K3

Expanding by Taylor series, we get six equations for eight

parameters.

a21=c2

.a31+a32=c3

w1+w2+w2=1

c 2w2+c3w3=1/2

c22w2+c23w3=1/3

c 2a 32 w3=1/6 (3.8)

Equations (3.8) are typical of all the Runge-Kutta methods;

the sum of the aij in any row equals the corresponding ci,

and the sum for the wi's equals 1. Equations (3.8) are

linear in w2 and w3 and have a solution for w2 and w3 if and

only if (3.9) holds

c2 c3 -1/2

c2 2 c2
3 -1/3 = 0 (3.9)

0 c2a22 -1/6

Simplifying, we get

(3 .10)

Thus, we pick c 2 , c 3 and a 33 to satisfy (3.10). We can do

this in most cases by picking c 2 and c 3 arbitrarily and

setting

27

chosen (nonzero). We then calculate wi's and a .. 's
l.)

Equations (3.8). We display the solution in the form ..

Nystrom

2/3 2/3

2/3 0 2/3

2/8 3/8 3/8

Nearly Optimal

1/2 1/2

3/4 0 3/4

2/9 3/9 4/9

Classical

1/2 1/2

1 -1 2

1/6 4/6 1/6

Heum

1/3 1/3

2/3 0 2/3

1/4 0 3/4

from

The classical Runge-Kutta method is most often used

because of its simplicity and moderate order.

28

3.2 IMPLLICIT RUNGE-KUTTA METHODS

The implicit Runge-Kutta method using v slopes is defined as

where

v
= hf(tj +cih,uj+ ~ aim~>

m=l

v
= uj + ~. wm~

m=l

v
C· =~a··, i = 1,2, ... ,v

1 . 1 1)
J=

(3.11)

and aij' 1 ~i,j ~v,w1 , w2 , wv are arbitrary parameters.

The slopes ~ are defined implicitly. The number of unknown

parameters are v(v+l). We now give the derivation for the

case v =1. We have

K1 = hf(tj + c 1 h, uj + a 11 K1)

uj+l = uj + w1K1

The Taylor series gives

u(tj+l) = u(tj)+hu'(tj)+h2u"(tj)/2 + ...•

= u(tj)+hf(tj,u(tj))+h2 (ft+ffu)/2 +

and

Kl = h(f(tj, u.) + clhft + allKl fu + .•..) J

(hf +cl h 2 f 3 = + ha11fu K1)+ O(h) t

hf· 2 3 = + h (c1ft + a 11ffu)+ O{h) J

Substituting {3. 13) into {3.12) and comparing

coefficients of h and h2
I we get

cl = all

wl = 1

Wlcl = 1/2

29

(3.12)

the

We obtain

= = 1/2

The second order implicit Runge-Kutta method becomes

K1 = hf(tj +h/2 1 Uj 1 + K1/2)

uj+1 = uj+ K1

For v = 2 1 the implicit Runge-Kutta method (3 .11) becomes

K1 = hf(tj + cl hi U• + all Kl + a12 K2) J

K2 = hf(tj + c2 hi U• + a21 K1 + a22 K2) J

uj+l = uj + W1K1 + W2k2

where the parameter values

wl = 1/21 w2 = 1/2

c1 = (3 - v3)/6 1 c2 = (3 + /3)/6

all = 1/41 al2 = 1/4 - v3/6

a21 = 1/4+ v3/6 I a 22 = 1/4

lead to a fourth order method.

30

CHAP'fER FOUR

PARALLEL RUNGE-KUTTA METHOD

In England the drain
pipes are placed outside
the houses in order to
simplify repair service.
Repairs are necessary
because the pipes have
been placed outside the t
houses.

PARALLEL RUNGE-KUTTA METHOD

4.1 PARALLEL RUNGE-KUTTA METHOD

The Runge Kutta methods are widely used for solving

initial value problem. These methods provide approximations

which converges to the true solution as step size (h) tends

to zero, and also have the advantage of self-starting.

However, the Runge-Kutta method, in its usual from, is

not parallelizable. But, by some modification (which we are

going to present) it can be converted into a parallel one,

and therefore, computation {per step) can be done in

parallel. This is the serious drawback of Runge-Kutta method

that it inovlves considerably more computation per step, and

hence by parallelizing the method , this drawback can be

minimised effectively.

and

The Runge Kutta method with v slopes can be written as

K1 = hf(tj,uj)

K2 = hf(tj+c2h~uj+a21K1)

K3 = hf(tj+c3h,uj+a31K1+a32K2)'

K4 = hf(tj+c4h,uj+a41K1+a42K2+a43K3)

v-1
Kv = hf(tj+cyh,uj+.L aviKi)

J=1

31

Since Ki+l depends
1
upon Ki the method is a serial one,

but by assuming certain constants as zero, we can convert the

Runge Kutta method to a parallel method. Assuning cofficient

of K2 j as zero in K2 j+l' j=1,2, .•• (v-1)/2, we get

K1 = hf(tj,uj)

and

K2

K3

K4

Ks

K v

= hf(tj+c2h,uj+a21K1)

= hf (tj+c3h, uj+a31K1).

= hf(tj+c4h,uj+a41K1+a42 K2+a43K3)

= hf(tj+c5h,uj+a51K1+a52K2+a53K3)

v-2
= hf(tj+cvh,uj+.~ aviKi); v =

1.=1
2m+l

uj+l=uj+W1Kl+W2K2+ ••. +WvKv

Thus, K2 j and K2 j+l can be calculated in parallel,

since K2 j+l does not depends upon K2 j.

sequence of operations are

First Stage Calculate

Second Stage Par begin

Calculate

Calculate

Parend.

Third stage Par begin

Calculate

Calculate

Parend.

32

That is the

Kl

K2

K3

K4

Ks

(v-2)th stage Par begin

Calculate Kv_1

Calculate Kv

Parend.

Thus roughly, the time complexity is reduced to half of

its original value, since we are calculating K2 j and K2 j+1 in

parallel. However due to modification, some of its feature,

like stability is affected. To improve the solution we will

implement predictor correctors, which itself will be. in

parallel.

Now, we derive the third order parallel Runge-Kutta

method in WQich k 2 and k 3 can be computed in parallel.

4.2 THIRD ORDER PARALLEL RUNGE KUTTA METHOD

K1 = hf(tj,uj)

K2 = hf(tj+c2h,uj+a21K1)

K3 = hf(tj+c3h,uj+a31K1); a 32=0.

Uj+l = uj+W1K1+W2K2+ W3K3 (4 .1)

To determine the paramenter c's, a's and W's we expand

uj+1 in power of h such that it ~grees with the Taylor series

expansion of the solution of the differential equation,

K1 = hfj

K2 = hf(tj+c2h, uj+a21K1)

= hf(tj+c2h, uj+ha21 ~j)

33

= h[fi+h(c2ft+a21fft)+h2(c22ftt+2c2a21fftu+a212f2fuu>J

K3 = h[fi+h(c3ft+a31fft)

+h2(c32ftt+2c3a31fftu+a312f2fuu>J

expanding left hand side of (4.1) and using these

get

u (tj) +hu • (tj) +h2u" (tj) /2! +h3f" • (tj) /3! + •..

K· •s
l. '

we

2 ~ 3 2
=u(tj)+hfj+h [ft+ffu]/2!+ h [ftt+2fftu+f fuu+fu (ft+ffu)J/3!

=W1hfj+W2 [hfj+h2 (c2ft+a 21ffu)J

2 +W3 [hfj+h (c3ft+a31ffu)]+u(tj)

Comparing Coefficents of h and h 2

w1+w2+w3=1

w2c 2+w3c 3 = 1/2

w2a21+w3a31=1/2

Solving these equations, we get

w1=1-w2-:w3

w2= a31-c3/ 2 (c2a31-c3a21)

w3= a21-c2/2(a21c3-a31c2)

Thus by assuming suitable value to c 2 ,c3 and a 21 , a 31 ,

we can determine the values of w1 , w2 , w3 • Similarly, we can

calculate higher order parallel Runge-kutta method using

Taylor series. A nth order parallel Runge-Kutta method is

comparable to (n-1)th order Runge-Kutta method. However,

parallel Runge-Kutta method is limited to odd orders as we

are ca~culating two ki's parallely.

4.3 STABILITY ANALYSIS

While numerically solving an initial value problem for

ordinary differential equations, an error is introduced at

34

each integration step due to the inaccuracy of the formula.

The magnitude of this so called local truncation error is a

measure of the accuracy of the integration formula. The

magnitude of the total error depends on the magnitude of the

local truncation errors and their propagation. Even when the

local error at eac~ step is small, the total error may become

large due to accumulation and amplification of these local·

errors. This growth phenomenon is called numerical

instability. Consider the simple linear first order

differential equation

u'=Mu, u(t0) = u0 (4.2)

where M is a constant. It can be seen that, to a first order

approximation, the result obtained from a stability analysis

on the above linear equation can be extended to a nonlinear

case

(4.3)

where df/dy from Equation (4.3) plays role similar to that of

the constant Min Equation (4.2). The nonlinear function

f(t,y) can be linearized by expansion of the function about

the point (tn , un) in the Taylor series truncated after
I

first order terms. The resulting linearized from for

Equation (4.3) is given in Equation (4.4)

u• = Mu+Bt+C (4.4)

where

M = caf,au)n,

B = (df/at)n,

c = (fn-un(af/du)n -tn(df/dt)nl

35

It can be argued that the stability charateristics of

the· linear equation (4.4) are very similar to the stability

characteristics of the equation of the form given by (4.3).

Since the terms Bt and c will give rise to corresponding

terms in both numerical and exact solutions which are also

linear in t(M=fO), we conclude that (4.3) exhibits short-range

numerical instability in the·neighbourhood of (tn, un), when

the corresponding equatin (4.2) with M =fuCtn, un) exhibits

numerical instability. Therefore, the stability analysis will

be based on the equation

u'=f(t,u) = Mu, u(t0) = u0
(4. 5)

where

I
and it is assumed that (df/du) is relatively invariant in the

region of interest. Equation (4.5) has as its solution

u(t) = u(to) eM(t-to)

which at t = t 0 +nh becomes

u(tn) = u(to)eMnh

A singlestep method when.applied to (4.5) will lead to a

first order difference eqution which has solution of the form

where cl is a constant to be determined from the initial

condition and E(Mh) is an approximation to eMh. We call

singlestep method

Absolutely stable if I E(Mh) I=::; 1,

Relatively stable if IE(Mh) I=:; eMh

If M<O. the exact solution decreases as tn increases

and the important condition is the absolute stability, since

36

the numerical solution must also decrease with tn. If M>O,

the exact solution increases with tn and we do not want E(Mh)

< l:so the relative stability is an important condition.

If Euler's method is used, we obtain

un+l = un+hfn = E(Mh)un

where E(Mh)=l+Mh-

Obviously, Euler's method is absolutely stable if

ll+Mhl < 1 or -2 < Mh < o

4.3.1 Stability of 2nd order Runqe-Kutta Method

k 1 = hf(tj,uj)

k 2 = hf(tj+c2h,uj+a21k 1)

uj+l = E[Mh]uj

replacing f(tj,uj) by Muj

k 1 = hf(tj,uj)=Mhuj

But

k 2 = hf(tj+c2h,uj+a21k 1)=Mh(i+a21Mh)uj

tj+l = tj+w1k 1+w2k 2

E[Mh]uj=uj[l+w1Mh+w2Mh(l+a21Mh)]

E[Mh]= (l+w1Mh+w2Mh(l+a21Mh)]

w1+w2=1

c 2w2=1/2

a 21w2=1/2

for absolute stability

IE[MhJI ~1

hence,

37

Solving this equations as quardratic in Mh, we get
I

-2~ Mh ~0

in which this method is absolutely stable.

4.3.2 Stability of lrd order parallel Runqe-Kutta Method

or

k 1=hf(tj,uj)=Mhuj

k 2=hf (tj +c2h r uj +a21 k 1) =Mh (1 +a21 Mh) uj

k3=hf(tj~c3h, uj+a31k 1)=Mh(l+a31Mh)uj

uj+l = uj+w1k 1+w2k 2+w3k 3

E[Mh] = l+w1Mh+w2Mh(l+a21Mh)+w3 (l+a31Mh)Mh

E[Mh]=l+Mh(w1+w2+w3)+M2h 2 (w2a 21+w3a 31)

for absolute stability

But,

Thus

or

jE[MhJI~l

w1+w2+w3=1

w2c 2+w3c 3=1/2

w2a2l+w3a31=1/2

-2~ Mh :SO

Hence the stability of 3rd order parallel Runge-Kutta

Method · is same as that of 2nd order Runge-Kutta Method.

Similarly we can determine the stability of higher order

parallel Runge-Kutta Method. In general, the stability of a.

Parallel Runge-Kutta method reduces to a lower order Runge-

Kutta method.

38

4.4 APPLICATIONS

Now, we presents some applications of parallel Runge-

Kutta method.

4.4.1 Higher Order Differential equation

Runge-Kutta method is the most widely used method, and

it is particularly-suitable in cases wher the computation of

higher derivatives is complecated. It can be used for

equations of arbitary order by means of a transformation to a

system of first-order equations.

Consider the equation

u" =-f(t u u') , , ,

Let u' = w so that,

u• = w

w' = f(t,u,w).

This is a special case of

u' = F(t,u,w),

w' = G(t,u,w).

Suppose we choose a third order Runge-Kutta method for

approximating the value of (t,u,w). The new set of values

(t+h, u+k, w+l) can be calculated as

and

k 1 = hF(t,u,w)

k 2 = hF(t+c2h,u+a21k1 ,w+b21 11)

k 3 = hF(t+c3h,u+a31k 1+a32k 2 ;w+b3111+b32 12)

k = W1k 1+W2k 2+W3k 3

39

1 1 = hG(t,u,w)

1 2 = hG(t+c2h,u+a21k 1 ,w+b21r 1)

13 = hG(t+c3h,u+a31k 1+a32k 2 ,w+b31r 1+b32r 2)

1 = R111+R2 1 2+R31 3

Thus the new values are ·ct+h, u+k, w+l). In case of

third order parallel Runge-Kutta method, these equations in

which k 1 ,k2 and 11 ,12 can be done in parallel are given by

and

k 1 = hF(t,u,w)

k 2 = hF(t+c2h,u+a21k 1 ,w+b2111)

k 3 = hF(t+c3h,u+a31k 1 ,w+b3111)

k = W1k 1+W2k 2+W3k 3

11 = hG(t,u,w)

12 = hG(t+c2h,u+a21k 1 ,w+b211.1)

13 = hG(t+c3h,u+a31k 1 ,w+b31a1)

1 = R111+R212+R313

The sequence of operations are

Parbegin

Calculate kl

Calculate 11

parend

par begin

Calculate k2

Calculate 12

Calculate k3

Calculate 13

parend

40

Similarly, we can choose higher order Runge-Kutta

method for better results.

4.4.2 system of Differential Equation

Any nth order intial value problem can be replaced by a

system of n first order intial value probelms. The system in

the vector form rna~ be written as

where

and

u• = du/dt =f(t,u),t0 s t s b

u(t0) = u0

by fifth 'order Runge-Kutta formula,

where

k· = 1

41

and

•

= hfj(ti+c2h,ul,i+a2lkll'u2,i+a21k2l"""un,i+a21knl>

= hfj(ti+c3h,ul,i+a31kll+a32k12'
u2,i+a31k21+a32k22'+ •••

-un, i+a31kn1 +a32kn2> ·

and similarly kj 4 and kjs

The parallel set of equations are

kjl = hfj(ti,ul,i,u2,i'""""'un,i>

kj2 = hfj(ti+c2h,ul,i+a21kll'u2,i+a2lk2l"""un,i+a21knl>

kj3 = hfj(ti+cJh,ul,i+aJlkll

u2,i+a3lkll'+ ...

un,i+a31k11)

The sequence of operations are

Calculate kjl

Par begin

Parend

Calculate kj 2

Calculate kjJ

Par begin

Calculate kj 4

Calcualte kjs

parend.

Thus the parallel Runge-kutta method is very useful in
'

such cases, as the slight improvement in the parallel Runge-

Kutta method will be increased according to the order

of the problem;

42

CHAPTER FIVE

PREDICTOR CORRECTOR l\1ETHOD

"I could have done.it in
a much more complicated
way " said the red queen,
immensely proud.

LEWIS CARROLL.

PREDICTOR-CORRECTOR METHOD

5.1 PREDICTOR-CORRECTOR METHOD

To solve a differential equation over a single

interval, say from u=un to u=un+1 , we require information

only at the beginning of the internal

Predictor-corrector methods are methods

i.e.,

which

at u=uj.

require

function values at un, un_1 , un_ 2 for the computation of

the function at un+1 . A predictor formula is used to predict

the value of u at un+1 and then a corrector formula is used

to improve the value of un+1 .

Consider, for example, the following predictor

corrector method.

C: (5 .1)

The coefficents a,b,c,d and e can be determined by

using Taylor's series. The values fn+1 and fn which are

requird on the right hand side of (5.1) are obtained by

Runge-Kutta method or by some other method. Due to this

reason, these methods are called starter methods. For

practical problems, the Runge Kutta method together with

predictor corrector methods have been found to be most
'

successful combination.

43

5.2 PARALLEL PREDICTOR-CORRECTOR METHOD

In this section, we present two defferent schemes for

parallelizing predictor corrector methods, which can be used

by Parallel Runge-Kutta method. However, these predictor-

corrector methods are not limited to the parallel Runge Kutta

-method, and are general in nature. In first scheme uPn+l and

ucn are ·calculated at two different points parallely. In

second scheme, we calculate un+l for predictor-corrector

parallely at the same point.

First, we present an example of predictor corrector

method with its two different parallel versions.

(5.2)

Parallel Version First:

Note that corrector does not depends upon the predictor and
~

hence a corrector of un and predictor of un+l or a predictor

of un+l and a corrector of un can be calculated parallely.

Hence by changing the subscript of (5.2) in corrector method,

we get

In this case, the sequence of computation can be

divided into two parts:

---> uPi+l ---> fPi+l --->

---> tc.
1 -- > --->

44

These two can be executed parallely on sepearate

processors as shown beiow:

Predictor Corrector

. .

. .

. .

ui-1 ui-2

t=r f. 1 1- f. 2 1-

U•
1 ui-1

t=r+k f.
1 fi-1

ui+1 U•
1

t=r+2.k fi+1 f· 1

. .

. .

. .

Thus the predictor and corrector can be evaluated at

the different points parallely.

Parallel Version Two:

In this scheme, we evaluate Predictor and Corrector

parallely at same point. In this scheme corrector does not

depends upon the latest evaluated predicted value but depends

upon the predicted value evaluated one cycle before. Hence,

both Predictor and Corrector can be evaluated simultaneously.

P: un+1 = un + hfn

C: un+1 = aun+ h(bfn+cfn_1)/2 (5.3)

45

To determine the c9fficients, we expand the L.H.S. and R.H.S.

of (5.3) by Taylor Series.

L.H.S.

R.H.S.

aun+h/2(bun' +c(un'-hu"n+h2u"'n/2!+ •••]]

Comparing Coefficents, we get

a = 1

b = 3

c =-1

un+1=un+h(3fn-fn-1)/2

Hence the parallel predictor corrector becomes

P: un+1 = un+hfn

C: un+1 = un+h(3fn-fn)/2

This is a third order method, since coefficients are

matched upto order of h 2 .

5.3 HYBRID MEmODS

These methods are also called multistep method with

nonstep points. To increase the order of the method, the

method is modified by including a linear combination of the

slopes at several points between un and un+1 .

The K-step method with one non-step point can be

written in the form

46

A Predictor-Corrector using hybrid method is given by

Predictor for predictor: un+112=un+hfn/2

Predictor: un+1=un+h(2fn+1 / 2-fn)

Corrector: un+1=un+h(fn+1+4fn+112+fn)/6

where aj's, bj's,c1 and a are arbitrary 0 <a< 1

5.3.1 Parallel Version One

The parallel predictor - corrector for such scheme can

be written as, (replacing n by n-1 in corrector)

Predictor for predictor: un+112=un+hfn/2

Predictor: un+1=un+h(2fn+112-fn)

corrector: un=un_1+h(fn+4fn_112+fn_1)/6

Thus, predictor and corrector can be executed parallely.

5.3.2 Parallel Version Two

Derivation of corrector: let the Correctors be of the form,

L.H.S.

un+1=un +hu'n+h2u"n/2!+h3u"'n/3!+ ...

where a=hk and un=u(tn)

R.H.S.

aun +

hb u'n +

h(cu'n-cau"n+ca2u"'n/2!-ca3u""n/3!+ ...)+

h(du'n-dhu"n+dh2u"'n-dh3u""n+ ..•)

47

Comparing Coefficents, we get

a=1

b+c+d=1

ck+d=-1/2

ck2+d=1/3

ck3+d=-1/4

Solving these equations we get

a=1

and

, b=1-c-d

c=250/357

d=27/46

k=-7/10

Derivation of Predictor:

un+1=un+h(afn-7/10+bfn)

L.H.S.

R.H.S.

un+h[a(u'n-7hu"n/10+49h2u"'n/100+ ••• ~)+bu'nl

Comparing Coefficents,

a+b=1

-7a/10=1/2

Solving this, we get

or

a=-5/7

b=12/7

48

Derivation of Predictor for Predictor

un-7/lO=un+ahfn

L.H.S.

, un-7hu'n/10

R.H.S.

un+ahu'n

From this, we get a=-7/10

un-7/10=un-7fn/ 10

Hence the parallel hybrid predictor-Corrector method becomes

un_7110=un-7hfn/10

un+l=un+h(-Sfn-7/10+12fn-l>/7

un+l=un+h(bfn+cfn-7/lO+dfn-1>

Where c=250/357 d=27/46 b=l-c-d

In the same manner, we can derive different predictor

Correctors of higher orders.

5.4 ALGORITHM

In this section, we present an algorithm to

demonstrate, parallel Runge-Kutta method,with parallel

Predictor-corrector.This is an oversimplified version,to show

how parallel Runge-Kutta method and Parallel Preditor-

Corrector can be used simultaneosly.In this algorithm we

choose fifth order parallel Runge-Kutta method. For the

Parallel Predictor Corrector method we select the fifth order

parallel Adams-Moulton formula,

uPn+l=un+h[55fn-59fn_1+37fn_2-9fn_3]/24

and

49

Algorithm

end

Get the values of

u• = f(t,u),

u(t0) = ~,

step-size = h,

tl = t 0 + kh, the value at which u has to be

calculated,

c•s, a's and w•s.

while t<t1 do

Begin

end

Calculate k 1 = hf(tj,uj)

parbegin

Calculate k 2 = hf(tj+c2h,uj+a21k 1)

Calculate k 3 = hf(tj+c3h,uj+a31k 1)

parend

parbegin

Calculate k 4 = hf{tj+c4h,uj+a41k 1+a42k 2+a43 k 3)

Calculate k 5 = hf{tj+c5h,uj+a51k 1+a52k 2+a53k 3)

parend

I* calculate u(tj+l)=u(tj)+h *I

Calculate u(tj+l) =

u(tj)+w1k 1+w2k 2+w3k 3+w4k 4+w5k 5)

par begin

I* Adams-Moulton Predictor-Corrector *I

uPj+l=uj+h[55fj-59fj-l+37fj_2-9fj_3]124

ucj=uj-l +h[9fPj+19fj_1-sfj_2+fj_3]124

par end

t = t+h

50

To obtain better approximation, we can choose a hi9her

order parallel Runge-Kutta method and parallel predictor

corrector of higher order,such as hybrid predictor corrector.

This depends upon the accuracy desired to solve the initial

value problem.

4 Although laborious,the Runge-Kutta method is the most

widely used one since it gives relable starting values and is

particularly suitable when the computation of higher

derivatives is complicated. When the starting values have

been found, the computations for the rest of the interval can

be continued by means of the predictor-corrector methods.

Hence, Predictor-Corrector methods are. of special importance.

51

CONCLUSION

CONCLUSION

The objective of this Dissertation was to develop

Parallel Runge-Kutta method. Due to parallelisation, there

were some factors,-such as stability, truncation error, etc.,

which were effected. To improve the solution, we presented

two different versions of parallel Predictor-Corrector

methods. However the parallel Predictor-Corrector method

could be used parallely only once. The goal of this work was

to present a solution, in which parallel Runge-Kutta method

and parallel Predictor-Corrector method can be used

simultaneously, to improve the solution.

Due to time limitation and other factors, some features

could not be dealt into. The work is still open ended.

Suggestions in areas, where there is some scope of

improvements are listed below :

Due to parallelisation, stability of the method

decreses. No work has been done to improve the

stability of the method. This can be done by changing

the step size within the iteration i.e., step size is

not uniform.

This work is limited to

general, higher order

approximation.

52

lower

methods

order methods. In

provide better

The multi~tep methods can be more effecatively used and

the accuracy will be higher in these methods.

The load balancing factor was not considered which is

very important in parallel processing.

53

REFERENCES

REFERENCES

1. Franklin M.A., " Parallel solution of ordinary

differential eqautions, 11 Transactions on Computers,

VolC-27 nr. 5, May 1978.

2. Worland, P.B. 11 Parallel methods for the numerical

solution of ordinary differential equations II
I IEEE

Transactions on Comoputers, october 1976.

3. Rosser, J.B. 11 A Runge-Kutta for all seasons 11
, SIAM

Rev.,Vol 9,1967.

4. Miranker, W.L., 11 A survey of parallelism in numerical

analysis 11
, SIAM Review,Vol. 13 nr. 14. october 1971.

6. Hwang, K. & Briggs, F .A., 11 Computer Architectu~e fi

Parallel Processing 11
, McC•aw Hill n<;>il'k Q§mp~Hy 1~65 •·

7. NiGholas e~£ri~f~ • Divia G~lernter, 11 How to write

parallel programs 11 , ACM Computers. ·

6. Harold, s. Stone, 11 High performance

Architecture 11 , Addison - Wesley Publishing

algorithm", Prentice Hall, Inc., 1989.

Computer

Company.

9. Wilf, H.S. ," Algorithms~ Complexity ", Prentice Hall,

Englewood Cliff, N.J.,1986.

10.

11.

Quinn, M.J., " Designing Efficient Algorithms

Parallel Computers 11
, McGraw Hill, New Delhi, 1987.

Fromberg,C.E., "Introduction to Numerical Analysis

Addison - Wesley Publishing Company, 1972.

for

" I

12. Ralston, A.,_" A First Course in Numerical Analysis

",McGraw Hill Book Company , 1965.

13. Duncan, R.' " A survey of Parallel Computer

Architectures " IEEE Trans. Computers Vol 23, Feb '
1990.

14. Sastry, s.s., " Introductory Methods of Numerical

Analysis " Prentice-Hall of India 1982. ' '

	TH51560001
	TH51560002
	TH51560003
	TH51560004
	TH51560005
	TH51560006
	TH51560007
	TH51560008
	TH51560009
	TH51560010
	TH51560011
	TH51560012
	TH51560013
	TH51560014
	TH51560015
	TH51560016
	TH51560017
	TH51560018
	TH51560019
	TH51560020
	TH51560021
	TH51560022
	TH51560023
	TH51560024
	TH51560025
	TH51560026
	TH51560027
	TH51560028
	TH51560029
	TH51560030
	TH51560031
	TH51560032
	TH51560033
	TH51560034
	TH51560035
	TH51560036
	TH51560037
	TH51560038
	TH51560039
	TH51560040
	TH51560041
	TH51560042
	TH51560043
	TH51560044
	TH51560045
	TH51560046
	TH51560047
	TH51560048
	TH51560049
	TH51560050
	TH51560051
	TH51560052
	TH51560053
	TH51560054
	TH51560055
	TH51560056
	TH51560057
	TH51560058
	TH51560059
	TH51560060
	TH51560061
	TH51560062
	TH51560063
	TH51560064
	TH51560065
	TH51560066
	TH51560067
	TH51560068
	TH51560069
	TH51560070
	TH51560071
	TH51560072
	TH51560073

