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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION 

In recent years, great progress has been made in optical 

character reader (OCR) technology. Most OCRs in current use, 

can only read characters printed on a sheet of paper according 

to rigid formatting restrictions and are mainly being applied 

to office automation systems such as document readers. 

However, if OCRs could read text directly from books and 

magazines, then they could be put to more general applications 

like they could be used to recognize text, and through a voice 

decoder system the contents could be read out for blind men. 

Unlike text on a well-printed sheet of paper, the text in 

books and magazines suffer from a variety of noise components. 

The text in books and magazines are generally skewed as a 

result of manual block-printing. 

Conventional research work on character recognition 

involves two distinct approaches. In one of the approaches the 

digital images of the character are binarized, thinned and 

vectorized before the symbol recognition is done (Sinha et 

al.[32], Baptista et al.[5], Sareen[39]}. The second approach 

avoids the thinning and vectorization step. This approach is 

based on analysis of strokes, Fourier expansion of the symbol 

boundary in the binary raster representation (Taxt et 

al.[45]}, feature extraction from profiles of external 
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contours (Kimura et al. ( 4]) , extracting features directly from 

gray-scale images by extracting and assembling topographic 

characteristics of the surface (Wang et al.[22]). 

The former approach using the preprocessing stage is 

computationally slow and a significant amount of information 

is lost during the preprocessing stage. In case of the latter 

approach, the information loss caused by the thinning and 

vectorization steps is eliminated, it is computationally 

faster than the former and also the classification rate is 

much higher as compared to the earlier approach involving the 

preprocessing stage. But, a major drawback faced by the latter 

approach is that it fails to isolate joined characters 

Research works in the latter approach have assumed the input 

text to be isolated characters (Taxt et al.[45], Kimura et 

al. ( 4] ) • 

In the present paper, both the approaches are utilized. 

Initially, it is assumed that the characters are isolated. If 

the width to height ratio of a character is below a certain 

defined limit then the character is processed using the latter 

approach i.e. minus the preprocessing stage. In this approach 

analysis of strokes like stroke direction and stroke length is 

studied for analysis and recognition. In case the confidence 

level associated with the recognition is below the defined 

threshold of 75% then the approach using the preprocessing 

stage is used to confirm the results. In this approach feature 

extraction is based on the extraction of distinctive features 

like number of terminating points, bend points, junction 

points, segments, etc. Two new features have been introduced 

in this paper : the direction of maximum curvature and the 

direction of transition. 
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Also, if the width to height ratio of a character exceeds 

the defined limit then it is assumed that it is a joined 

character. Such joined characters can be of many distinct 

forms like one character joined to another character due to 

noise or printing defect (el ), or a half form joined to its 

counterpart(~ ), or a character lying within the shadow of 

another character ( ~). A new strategy has been adopted to 

isolate such joined characters from their counterparts. The 

segments of a character are followed and coded up according to 

the segment being a vertical, horizontal or a slanting line. 

These codes form the transitions in a finite automaton. 

Whenever a code is encountered that does not belong to a 

character then a trap state results. If a code leads to a 

final state, then the character associated with the particular 

final state is accepted. 

Broadly speaking, this project aims at developing a 

system that takes Devanagari script text as input. It breaks 

the given input text into lines, from the lines it extracts 

words and finally from the words it extracts characters. For 

each of the individual characters, it extracts significant 

features and recognizes the characters and other additional 

forms in the text and outputs the obtained results. A 

comparison of the input and output text gives us the 

efficiency and the error rate. 

The significance of this project lies in the fact that 

OCRs for different languages like English are already 

available. Such systems have not yet been developed for Hindi 

because of its highly complex pattern. The dissertation for my 

M.Tech is an effort in this direction. 
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1.2 ON-LINE VERSUS OFF-LINE RECOGNITION 

Following Tappert et al.[2] 

On-line handwriting recognition means that the machine 

recognizes the writing while the user writes. The term real 

time or dynamic is also used in place of on-line. Depending on 

the recognition technique and the speed of the computer, the 

recognition lags behind the writing to a greater or a lesser 

extent. Most commercial recognizers lag by only one or two 

characters. On-line recognition systems need only be fast 

enough to keep up with the writing. Average writing rates are 

1. 5-2. 5 characters/ s for English alphanumerics or 0. 2-2.5 

charactersjs for Chinese characters. Peak rates for English 

can approach 5-10 charactersfs. On-line handwriting 

recognition requires a transducer that captures the writing as 

it is written. The most common of these devices is the 

electronic tablet or digitizer, which typically has a 

resolution of 200 points/in, a sampling rate of 100 pointsjs, 

and an indication of "inking" or pen down. 

Off-line handwriting recognition is performed after the 

writing is completed. An optical scanner converts the image of 

the writing into a bit pattern. Scanners have x and y 

resolutions of typically 300-400 points/in. Off-line 

handwriting recognition is a subset of Optical Character 

Recognition {OCR). OCR systems typically process hundreds of 

characters a second. 

Another distinction is between on-line and off-line 

capture of handwriting data. On-line capture means that the 

machine data are being captured as a person writes. Off-line 

data capture means that the machine data are captured some 
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time after the writing is created. Once captured, on-line or 

off-line handwriting data can be processed by the recognizer 

afterwards. 

An advantage of on-line devices is that they capture the 

temporal or dynamic information of the writing. This 

information consists of the number of strokes, the order of 

the strokes, the direction of the writing for each stroke, and 

the speed of the writing within each stroke. A stroke is the 

writing from pen down to pen up. Most on-line transducers 

capture the trace of the handwriting or line drawing as a 

sequence of coordinate points. By contrast, off-line 

conversion of scanned data to line drawings usually requires 

costly and imperfect preprocessing to extract contours and to 

thin or skeletonize them. The temporal information provided by 

on-line entry improves recognition accuracy. On the other 

hand, the temporal information of on-line systems may 

complicate recognition with variations that are not apparent 

in the static images. 

Another advantage of on-line handwriting recognition is 

interactivity. In an editing application, for example, the 

writing of an editing symbol can cause the display to change 

appropriately. Also, recognition errors can be corrected 

immediately. 

Yet another advantage is adaptation. When the user sees 

that some of his characters are not being accurately 

recognized, he can alter their drawing to improve recognition. 

Thus, the user adapts to the recognition system. On the other 

hand, some recognizers are capable of adapting to the writer, 

usually by storing samples of the writer's characters for 
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subsequent recognition. 

The main disadvantage of on-line handwriting recognition 

is that the writer is required to use special equipment. 

1.3 PROPERTIES OF SCRIPTS 

Consider the following languages - English, Chinese, 

Japanese and Devanagari script. 

Following Tappert et al.[2] 

1.3.1 English Language 

The English alphabet has 26 letters, and each letter has 

two forms, upper and lower case. English words consist of 

sequence of letters, five per word on the average. In English, 

the position and size of the letters is important. Upper case 

letters sit on the baseline and are full sized. Lower case 

letters are smaller, and most are about half the height of 

upper case letters. Some lower case letters have an ascender, 

which extends upward to almost the height of the upper case 

letters, some have a descender, which extends down below the 

baseline, and some have both. 

1.3.2 Chinese Language 

The Chinese has a much larger set of characters. A 

Chinese character can represent a word. There are about 50,000 

characters, and a basic vocabulary consists of 3-5000 

characters. There are two basic styles of writing characters, 

block and cursive. The block style is written carefully, with 

fairly strict adherence to proper stroke number and order. 

1.3.3 Japanese Language 

The Japanese use Hiragana, Katakana, Kanji, and English 

alphanumerics. Hiragana and Katakana (called Kana) are 
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phonetic alphabets, and each has 46 full-size characters. A 

small size of eight of the Kana characters together with 

additional markings indicate subtle phonetic differences. 

Kanji are Chinese characters, and a set of 6349 is the 

Japanese Industry standard, although daily usage is limited to 

2000. Kanji and Chinese characters have essentially the same 

meaning. 

1.3.4 oevanagari script 

Following [52], 

The Hindi language, in common with Marathi, Nepali and 

many north Indian dialects, is written in the Nagari (or the 

Devanagari) script which is also the script for Sanskrit. 

The Alphabet 

The alphabet consists of 11 vowels and 35 consonants, as 

follows:-

(a) Vowels: 

e,'it-ai~ ~ a, ~a. '~ i, t- T, "3 u, ~ U 1 '5li r 1 "'Q" 
ih-

. 
o, au. 

The vowel occurs only in Sanskrit words borrowed into 

Hindi. 

(b) Consonants:-

~ ka, ~ kha, ~ 'U gha, s; . 
ga, na, 

-'f ca, ~ cha, ~ ja, iT jha, :H na, 

~ ta, 0 tha, s da, ~ dha, "'0\ na, 

;:r ta, ~ tha, "'4 da, ~ dha, ;r na, 

'"q""" pa, 1:h pha, if ba, ~ bha, '1f rna, 

""tf ya, -:r- ra, ~ la, Cf va, 

'I\ Sha 1 ""Sf ~a, ~ sa, & ha, 

- a; rha. $ ra, . 
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An 3Rr'~ ' is inherent in each consonant letter. 

S. , :>f , "'til" , f , and 'a" never occur in the beginning of a 

word; and S. and ~ never occur by themselves, they are 

always combined with a following consonant. 

The sign v (candra-bindu) placed above a vowel ( ~ 
etc.) indicates that the vowel is nasalized (Anunasika), or 

'spoken also through the nose'. 

The sign ' • ' (Anuswara) placed above a vowel may represent 

any One Of the COnSOnantS s. 1 .>=r 1 "'J 1 rr and ~ (tO be 

pronounced after the vowel) . 

The sign':' (Visarga) placed after a vowel represents a~ . 

Some Arabic, Persian and English consonants, found in Hindi 

loan-words from these languages, are indicated by the 

fOllOWing dotted letterS • - q;. 1 ~ 1 rr 1 .;,r 1 ~ 

Mode of Writing Vowels 

The Hindi consonant letters do not indicate the consonant 

sound only. They stand for the particular consonant + ~ 
Thus Oh is not simply K , but K. + ~ ; c!f" is not simply).. , but 

l + Q.. • This ):I is called "the inherent '3=f " in the consonant 

letter. 

When the simple consonant without the inherent ~ is 

specifically to be expressed, a sign (right-slanting stroke), 

called Hal (or Halanta), is put below the letter. Thus k=~ , -
r= ~ , d= 'f , etc. 
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When some vowel other than the inherent l-l comes after a 

consonant an abbreviated form of that vowel (called Matra) is 

tagged on to the consonant letter and is never written in 

full. Thus, k+i=a;:- +I"" is written asf'ct-~, k+u=d; + ~ is written 
' -

as~, and not as~~~~~ , which indicates the pronunciation 

k-i, k-u. 

The abbreviated forms of vowels i.e. the Matras when they come 

after consonant letters are written as follows:-

~=T T- It- =-fr 
V=o.__ ,~=~ 

Of these, T ( '3-11 ) , 4- ( ~ ) , ~ ( 'l:tr ) and ~ ( *'- ) are 

written after the consonant, whereas fL- (~ ) is written 

before, ..J ( ~ ) , ~ ( ~ ) and c_ ( ~ ) are written below, 

and ~ ( ~) and ~ (1,:r ) are written above. Thus :-

Cf" + ·~" = a;;\ elf +%L = ~ 
OF +{" =~ CE +'l" =k 
Of+i=~ ~+v=~ 

+~ 

~ +-:;:; -
=~ 

=C£ 
c:i +~= ~ 
~ +~=~ 

Important exceptions :- :t + ~ = ~ , and !:"" + ~ = ~ . 

If a vowel is nasalized (Anunasika), th~ sign.~(candra-bindu) 
to.!,. • ......, ...., 

is placed above the letter: Of\ 1 arr 1 ~ 1 ~ 1 but if the 

Matra is above the headline, only dot is used instead of~ 

thus f~ , Jt , ~ ,~ , ~ , ~. It is to be noted that 

the dot is placed on the right of the Matra. 

The Visarga ':' is always placed after the vowel or consonant 

+vowel. Thus}!~ (dukh) 'pain, sorrow, unhappiness',?"~~~ 
(nihsim) 'limitless'. 
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The Anuswara '• ' is placed above the vowel (e.g.~ or 

consonant + vowel after which it is pronounced (e.g."'§'\~~~ } . 

Mode of Writing Consonants 

Two or more consonants (with no vowel, including the inherent 

~between them) can be combined together and thus form a 

"conjunct". 

~ + c;:\ = ~ (kka} is a conjunct, so is Cf + 1:i\ = ~li\ (kya) 

'what?' 

It is, however, not usual to write conjunct with the help of 

a Hal mark as above in ~~~ . This mark is used with the final 

consonant of a Sanskrit word (as in ~S\Pi (Mahan} 'great'] 

and with~, tA. , c, c , c; , and~ (e.g.d\~~"4 , ~~1.1\ ,w ). 
Most of the consonants formed and ending with a vertical 

stroke joined to the following consonant by removing the 

vertical line. Thus l1 + ~ = Jf...\ , -'[ + ~ ="""~ , C[ + ~- = 
r~, .::r:r + ..,::r =A , etc . ..... 

Those ending in a vertical half-stroke drop the same qr +~ = 
;of, ~ + --rr = 'Cj:\f . 

The rest, which end in neither a full nor a half-vertical 

stroke, viz.~, 'l:i , ~ , <S $, ~ , 'f" , and €:" 
do not change. When combined with a following consonant, they 

may be written with a Hal mark. Thus '[- + c:::;l;; = ~ , ~ + 0 
= ~ etc. The general practice is to write them in full. 

While, in case of the following consonants, the consonant is 

written below them with the horizontal stroke omitted: ~ +~ 

10 



=~, ~ + ~ = r - .... d 
= 't; I s + or 1 however 1 

Exceptional forms :-

I f + ~- =~I "(" + ~ =I" I ~ 
is &, { + ~ = 5 

+.:r 

(a) ~ when combined with a following consonant is written 

thus i.e. above the consonant : "'5" + 1'1 = tf , ':f + -'=r = ~ 
C' - -

~+~ = ~ 
But when~ follows a consonant, having a vertical stroke, it 

is written as a left slanting stroke below and to the left of 

the vertical stroke: 

~ + ~ = ~ I ~ + ~ =...i) I - also "4 + ~ -
When preceded by c , 0 , S. I ~ I ti 
written thus below: 

~+:<""=?;I 'f"+:l ="f I~ +:f' =f 
(b) ~ + tf = ~ ksha, it" + ;( = "5r tra, Jt ._. 

=~ 
and~ 

( or S: ) . 
+ ..;:r = 8' 

it is 

(c) The pronunciation of Anuswara ( • ) is like S. , ..)-\ ,-ur .... 
~,+fdepends on the following consonants. 

~ = do\ct-~t 'comb'. 

(d) f + ~ = ~ I l[ + "l1 = s:r I Cf + ~ = ~ I ~+":Pi =~ I 

~ + l=i' = ~, ~ + '"'rf = ~ which is frequently written as~ 
.... -

(e) "f + cr = ~ I [ + ~ = ~ and r- + ~ = T 
(f) "Cf + crl'" = ~I -q: + o:r = ~..t 1 ~ + ~ = ~I ~ +"':.\ 
=;t;, 

= )J I l"..L + Sf = ~ I ..rr- + ..:q = 

~+~ =~, ..>[+..q- =~. 

Every conjunct, like a simple consonant, can be combined with 

any vowel-sign or with the inherent~ 
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+bt+'l" .... =~ 

In combining more than two consonants, the same rules are 

followed. 

~+ cr- +r = J;f, ~ +~ ... +~ = i:..Ci\0~ or s,"' 
-! + ~ +:.r =~ c-i +~ +.:r = ('H'"" I -
i + ~+ "If = ;6- I T +~ +~ +1:r = 4-,f etc. ... -
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CHAPTER2 

AN INTRODUCTION TO THE SYSTEM 

The System is designed to recognize Hindi text. It is 

trained using algorithms and a huge database to emulate man in 

his sense of sight, memory i.e. an ability to recapitulate, a 

sense of learning and a tendency to err. At this point it 

won't be an exaggeration to say that an effort is being made 

to create an "Artificial Intelligence", which would in no way 

supercede man's creativity. But, only enhance his will power 

and capability to create more such systems. 

The system takes Devanagari script text as input. It 

breaks the given text into lines, from the lines it extracts 

words and finally characters. For each of the individual 

characters, it extracts significant features and recognizes 

the characters and other additional forms in the text and 

outputs the obtained results. A comparison of the input and 

output text gives us the efficiency and the error rate. 

The above system is broadly classified into the following 

subsections, namely, 

1. Data Collection & Data Acquisition 

2. Segmentation 

3. Analysis of characters without preprocessing 

3. Preprocessing 

4. Analysis of characters with preprocessing 

5. Referencing Database 
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6. Analysis of Half forms 

7. Use of Heuristic 

8. Training Algorithm 

9. Results 

2.1 DATA COLLECTION & DATA ACQUISITION 

The input text has been taken from Hindi books of 

standard I, II & VII. The algorithms have also been tested on 

hand-drawn characters. 

The input text is scanned using a hand scanner and the 

image data is stored using a PC Paintbrush file format (PCX) . 

The image data is read from the file, binarized and stored in 

a buffer. 

2.2 SEGMENTATION 

Histograms are plotted for the entire text. Using the 

histogram information individual lines of text are 

retrieved. Next, vertical histograms are plotted for 

individual lines of text. Using this information words and 

further characters are extracted. 

2.3 ANALYSIS OF CHARACTERS WITHOUT PREPROCESSING 

An attempt is made to recognize the characters without 

any prior preprocessing. This is done to make the computations 

faster and more accurate. The application of this strategy 

assumes the existence of isolated characters. A limit is 

defined for the width to height ratio of an isolated 

character. To begin with the width to height ratio of a 
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character is calculated and compared with the limit defined 

for an isolated character. In case the character is isolated 

then the approach without prior preprocessing is adopted, 

otherwise the second approach with the preprocessing stage is 

adopted. 

In case of the above approach without the preprocessing 

stage, the features extracted are the following: horizontal 

and vertical histograms in each of the four quadrants of a 

character window, the distance of the start of the character 

taken at five equally distributed points from the left and top 

boundary of the character window, presence of a vertical or a 

horizontal line. 

A database is created and the features of the characters 

obtained without preprocessing are stored. The database is 

referenced during the recognition phase. 

2.4 PREPROCESSING 

The individual characters extracted are processed for 

noise removal, thinning and smoothing. 

An attempt has been made to design a new thinning 

algorithm based on morphological operators and much success 

has be obtained in this connection. 

2.5 ANALYSIS OF CHARACTERS WITH PREPROCESSING 

The individual characters and their matras are analyzed 

separately. The significant features of individual characters 

are determined like terminating points, junction points etc. 
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These features are used for distinguishing among various 

characters. 

2.6 CREATING & REFERENCING DATABASE 

A separate database is created to store the features for 

the various characters, and another to store the features of 

the matras. The input character is analyzed and its features 

are compared with those stored in the database and a 

confidence level of above 7 0% declares the character to be the 

same as the one with which it is being compared. 

2.7 ANALYSIS OF HALF FORMS 

A strategy is adopted for identifying half characters and 

also separating the half characters from their joined 

counterparts. 

2.8 USE OF HEURISTIC 

The system specifies certain rules for identifying matras 

like I ( ..A- ) , U (" ) , etc. For instance, a vertical line 

followed by a character KA ( a\ ) with I ( A. ) on top is 

identified as a character KI & ) . 

2.9 TRAINING ALGORITHM 

An attempt was made to train the system to recognize 

various fonts using a standard algorithm of Neural Networks, 

"Vanilla Backpropagation Algorithm". We did succeed to a 

certain extent but, there were certain major drawbacks like, 

the training process was very time consuming.Another 
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disadvantage was that the algorithm failed to recognize a 

completely new font. The experts in the field of Neural 

Networks say, that if a system has to emulate human senses 

then it has also to pass through a similar childhood, which 

may extend for days, months or even years, and like any child 

it has to be taught to recognize any new entity. 

A second convenient method has been adopted to recognize 

texts of various fonts. A separate database is created for 

each font and each of the databases is assigned a code. The 

system is allowed to analyze texts of some few chosen fonts. 

Initially the user is asked for the font code of the text he 

wishes to be analyzed. The system then selects the particular 

database for that font and carries on with the recognition 

phase. 

2.10 RESULTS 

Codes in English are used for corresponding Hindi 

characters, like KI for~ . The final results are in coded 

English format. 
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CHAPTER3 

DATA COLLECTION & DATA ACQUISITION 

3.1 INTRODUCTION 

All research works and projects are based on raw input 

data and algorithms or strategies to extract, manipulate and 

analyze these data to accomplish the desired study. 

The raw data may be obtained through any of the input 

devices such as the following: 

1. Keyboard. 

2. Tablets 

a) Electronic 

Electronic tablets that capture the x-y coordinate data of 

pen-tip movement. They can be used to input sketches and 

drawings. 

b) Electromagnetic 

c) Electrostatic 

d) Pressure Sensitive 

3. Recent advancements bring together tablets and flat 

displays on the same surface. Thus, serving the dual purpose 

of both input and output. 

4. Camera. 

5. Scanner. 

The characters of Devanagari Script served as the input 

data for this project. The text was scanned and converted into 
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a bitmap form to be used as input. 

3.2 DATA COLLECTION 

The samples used in this study were obtained from various 

Hindi books. To begin with the study was performed on text of 

considerably large size like, standard I Hindi books. Then, 

the same algorithms were tested successive?ly on class II, 

class V and class VII books. Once satisfied with the 

performance of the algorithms, to be discussed in subsequent 

chapters, the same algorithms were subjected for testing on 

hand drawn symbols. The test results showed reduced 

efficiency. For instance, in case of printed text of a fixed 

font, the test results showed an accuracy of above 80%, 

whereas the use of the same database in case of hand drawn 

characters collected from various individuals, reduced the 

efficiency rate drastically to 50-60%. The main characters 

which proved to be the cause of confusion were \f and ~ , 

~and ~ 

The main cause of confusion among certain similar looking 

characters is that the thinning algorithms used in the 

preprocessing stage tend to wipe out certain significant 

features of the characters. For instance, a q:zt: ~ after 

thinning tends to take the shape of either +r or \f . The 

latter shape is responsible for the confusion arising between 

a ~ and a ~ . These kinds of discrepancies are generally 

resolved at a higher stage i.e. during semantic analysis 

phase. 
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3.3 DATA ACQUISITION 

3.3.1 scanning 
The images were scanned using a hand scanner. The 

resolution was set at 100 dpi. The scanned bitmap image was 

obtained using PC Paintbrush software. The software stores the 

bitmap image in a specific format. Hence, it becomes necessary 

to understand the structure of the file, inorder to read it 

using our own programs written in a specific language. 

The PCX format uses run length encoding to compress image 

data. It is not as efficient as compared to other file formats 

like MacPaint, IMG, TIFF. The compressed PCX file is usually 

longer by a sizeable margin as compared to the other files. 

PCX file format was used for obtaining the bitmap images 

as it was the easiest among the above mentioned file formats 

and the desired results were obtained. 

3.4 BINARIZATION 

The gray scales varying from 0-255 are thresholded using 

a mid-value to two distinct values of either 0, indicating an 

'off' pixel or to a value 255, indicating an 'on' pixel. 

3.5 SUGGESTIONS 

After working with image files and surveying the various 

possible file formats. I would suggest the use of the tagged 

image file format (TIFF) to obtain the bitmap images. 
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The TIFF file format is extremely flexible. It can 

support images of any size, in monochrome or in upto 24 bits 

of color. It is portable with different architectures. The 

only negative aspect to TIFF files is that they prove to be 

extremely complex to unpack because of their highly variable 

nature. 

71-!-560 2 
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CHAPTER4 

SEGMENTATION 

4.1 INTRODUCTION 

Segmentation can be defined as a process by which an 

image is subdivided into its constituent parts or objects. 

This process enables the extraction of objects of interest 

from an image, such that these entities can be subjected to 

further processing and analysis Gonzalez(28]. 

4.2 IMPLEMENTATION DETAILS 

The segmentation approach followed for this project is a 

top down one. The top down approach begins by considering the 

entire text and works down successively to the level of a 

character. 

The approach described in this section is similar to the 

one proposed by R.M.K. Sinha and H.N.Mahabala in the paper 

authored by them, "Machine recognition of devanagari script", 

Sinha et al.[32]. In the following paper we have extended 

their work. 

4.2.1 Line Segmentation 

Horizontal histogram values are determined for the entire 

text. It is observed that groups of lines of varying length 

are separated by some space. This space signifies the space 

between any two lines of text. 
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Fig.4.1 Horizontal histogram of a given line of text. 



Among each group of lines, it is observed that two or 

three of the histogram lines have maximum length. These lines 

signify the horizontal line drawn on top of each of the 

Devanagari script characters. 

Initially, after white space the histograms begin with 

values less than the maximum value taken up by horizontal top 

lines signifying the presence of an upper matra zone or it may 

be white space immediately followed by maximum value 

specifying the absence of any upper matra zone. The maximum 

value zone signifies the presence of the horizontal top line. 

Immediately after the maximum value zone, the value of the 

histogram decreases and after a certain length reduces to zero 

signifying the end of text line. 

With the help of the Line_histogram values,individual 

lines of text can be separated out. 

After the initial segmentation stage we have reached to 

the stage of individual lines. Next two histograms are plotted 

for each individual text line, with respect to the columns. 

·The first histogram takes its starting point just at the 

beginning of horizontal top line. This histogram forms the 

Word histogram and is used to separate out each individual 

word contained in a given line of text. The second histogram 

takes its starting point at the end of the horizontal top 

line. This histogram forms the Character_histogram and is used 

to separate out each character in a given word. 

4.2.2 Word segmentation 

Word histogram is obtained at this stage. Since, the 

beginning point for this histogram is taken as the start of 

the horizontal top line. Hence, the separation between two 
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horizontal top lines signifies the separation between two 

words and is marked out by the space between groups of lines 

in a Word_histogram. Each group of lines signifies a word and 

the space between any two groups of lines signifies the space 

between words. 

After this segmentation level we have reached to the 

stage of words. Next, we take each individual word and draw 

its histogram with respect to the columns. But, in this case 

the start point is taken as the end of the horizontal top 

line. 

4.2.3 Character Segmentation 

Character_histogram is obtained. Since, the beginning 

point of this histogram is taken as the end of the horizontal 

top line. Hence, it can be safely assumed that the information 

till the horizontal top line is completely wiped out. 

The separation between groups of lines in a 

Character_histogram would signify the separation between two 

characters. 

After this segmentation stage we have reached to the 

level of each individual characters in a word. The handling of 

matras would be explained later in the chapter on 'Rule Based 

System'. 

4.2.3.1 Division of Characters into zones 

Each character is divided into four distinct zones. 

i) Upper Matra zone 

The zone from the beginning of the text to the beginning 

of horizontal top line is marked as the upper matra zone. 
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ii) Horizontal Top Line zone 

The zone following the upper matra zone from the 

beginning of horizontal top line to its end is identified as 

the horizontal top line zone. 

The zone starting at the end of horizontal top line to 

the end of the text line is identified as the lower character 

zone. Each character is defined to be of a certain maximum 

height, say ideal character height, which is fixed for a 

particular font. Using this information the lcwer zone of a 

character is split up into two zones, namely, 

iii) Simple Character zone 

The simple character zone would be defined as, 

simple character height = ideal character height, i.e. 

from the end of horizontal top line to the extent of an ideal 

character height. 

iv) Lower Matra zone 

The lower matra zone would be defined as, 

lower matra height = maximum lower character zone height -

ideal character height, i.e. 

from the end of simple character to the end of text. 
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CHAPTERS 

FEATURE EXTRACTION WITHOUT 

PREPROCESSING 

5.1 INTRODUCTION 

This particular approach extracts features from the 

characters without the application of any of the preprocessing 

stages. This is done to make the computations much faster 

because, 'thinning' which forms one of the preprocessing 

stages consumes nearly half the time required for the analysis 

of an entire character. Moreover, as a result, of thinning 

significant information may be deleted from an image. This may 

cause difficulty in the recognition process. 

An attempt is made to recognize the characters without 

any preprocessing. The basic assumption for this approach is 

that characters are isolated. A limit is defined for the width 

to height ratio of an isolated character. To begin with the 

width to height ratio of the characters is calculated and 

compared with the limit defined for an isolated character. If 

the calculated width to height ratio is less than equal to the 

limit then it is assumed that the character is isolated and 

feature extraction without preprocessing is attempted. In case 

the width to height ratio of the character is greater than the 

limit then it is assumed that the characters are either joined 

( ::EA. ) or one character comes under the shadow of another 

character (~),and feature extraction after preprocessing 
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is attempted. 

5.2 REVIEW OF EARLIER WORK 

5.2.1 

Kimura et al .• [ 4) 

The authors focus their study on recognition of isolated 

characters based on feature extraction without preprocessing. 

The two set of features used in their algorithms are the 

following: the first set of features is the histograms in the 

chain codes of the contour elements. The second set of 

features is evaluated from the profiles on the binary image of 

a numeral. 

In the process the rectangular frame enclosing the 

normalized contours is divided into 4x4 rectangular zones. In 

each zone, a local histogram of the chain codes is calculated. 

The feature vector is composed of these local histograms. 

The profile features are derived from the profiles of the 

external contours. These are character widths, ratio, location 

of extrema, and discontinuities in character profiles. 

5.2.2 

Taxt et al. ( 45) 

This is another approach that avoids the traditional 

thinning and vectorization process. This approach takes the 

outer pixel boundary of an isolated symbol candidate in the 

binary raster image as a simple closed curve. This curve is 

then approximated by a parametric spline curve, an elliptic 

Fourier expansion due to Zahn and Roskies. Curvature values 

and coordinates along the spline curves or the coefficients of 

the Fourier expansion are then used as descriptors in a 
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statistical classification scheme. 

5.3 IMPLEMENTATION DETAILS 

The features included in this approach are the following: 

the first set of features is the horizontal and vertical 

histograms determined in each of the four quadrants of the 

character window, the second set is profile features, the 

third set is the presence of horizontal and vertical line 

segments in the character and the fourth set is analyzing the 

left contour of the character for bend points, direction of 

maximum curvature, direction of transition. 

The composite characters are separated from their matras 

and the characters and matras are analyzed separately. For the 

final analysis certain amount of heuristic is required to code 

( foi;- ) , consisting of the up for a composite character 

characters (~~ ) and their matra. 

To begin with the character is enclosed in a tight 

window. The window is divided up into four equal quadrants. 

5.3.1 Features 

1. Horizontal and Vertical histograms in each of the four 

quadrants. 

The value of the horizontal and vertical histograms are 

determined in each of the quadrants at three equally distant 

points. 

2. Profile features 

The features associated with the characters are derived 

from their external contours. They are: 

a) left profiles, which is a collection of the distances of 
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the left profiles form the left boundary of the character. 

(Kimura et al.[4]). 

b) top profiles, which is a collection of the distances of 

the top profiles from the boundary of the character. 

3. Vertical and Horizontal line 

Vertical and horizontal histograms of the entire 

character are studied to determine the presence of a 

horizontal or vertical line. A limit is defined for the 

horizontal and vertical histogram values to indicate the 

presence of a horizontal and vertical line segment. Next the 

character window is split into zones i.e. into three equal 

parts in the vertical direction forming the left, middle and 

right zones and into three equal parts in the horizontal 

direction forming the top, middle and bottom zones. Further, 

it is checked in which zone the line segment lies. 

4. Contour Analysis 

The left half of the character contour is analyzed. This 

is based on the assumption that the maximum features of a 

character lie on the left half. Hence, ttis saves on 

computation time. The contour boundary of the character is 

treated as a line segment and is analyzed for bend points 

Baptista et al.[5], direction of maximum curvature and 

direction of transition. These features are to be discussed in 

detail in the chapter on feature extraction after 

preprocessing. 
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6.1 INTRODUCTION 

0 

CHAPTER 6 

PREPROCESSING 

Preprocessing stage is an intermediate stage, which 

consists of noise removal, skew correction, and thinning. 

According to some authors like Brown et al.[30], there are 

important interactions between the preprocessing of character 

images and the feature extraction process. Feature extraction 

or shape measurement can be misled if the images have little 

or no preprocessing. Noise-contaminated descriptions of 

character images can lead to mislabelling by the recognition 

logic. Preprocessing stage has been incorporated as a vital 

stage in many systems. Brown et al.[30], Sinha et al.[31,32], 

Lu et al. ( 41] . 

This stage primarily comprises of three substages : noise 

removal, thinning and smoothing. Preprocessing is an essential 

step. It takes care of the noise, which might be introduced 

during the scanning stages or because the input data is not of 

good quality. The thinning phase reduces the input data to a 

bare skeleton form. This enables the information about the 

object to be preserved and also enables the extraction of key 

features with minimum possible computation. Smoothing, further 

helps to smooth noisy boundaries, and also helps in retaining 

a good representation of boundary corners and takes care of 

broken joints and edges. 

The order in which the above stages were applied are as 

follows: 
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a) Noise Removal 

b) Thinning 

c) Smoothing 

Noise removal and smoothing is achieved using 

morphological operators. An attempt is made to design a new 

thinning algorithm based on morphological operators. 

6.2 NOISE REMOVAL 

This preprocessing stage, takes care of possible noises 

that might be introduced during the scanning stage. Noise is 

an unavoidable menace in image processing applications. 

Algorithms can be designed for its effective removal. The 

first goal is to detect the different kinds of noise that 

could possibly be introduced and if possible the conditions 

for their existence. Efforts should be made to eliminate such 

conditions initially during the scanning phase. This would 

enable minimization of noise. 

The use of a hand scanner is to a great extent 

responsible for the introduction of noise. A shaky hand also 

leads to introduction of noise. A peculiar problem faced in 

case of the above project was scanning the end of a text page 

using a hand scanner. This would lead to pressure variations 

due to the thickness of the copy or book from which the text 

was being scanned. While, processing it was observed that 

these portions of the text would fill up with non-Ascii 

characters. Hence, a check was made at the preprocessing stage 

which checked for the existence of such non-Ascii characters 

in the scanned image, which were replaced with white space. 
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The noise removal procedure in case of the above 

application used morphological filters. The templates used 

were 3x3, they are sown as under, 

0 0 0 0 0 0 0 0 0 

0 1 0 0 1 1 0 1 0 

0 0 0 0 0 0 0 1 0 

{a) (b) {c) 

Fig. 6.1 Templates for noise removal. 

The templates shown above were moved around the image 

matrix and in case a bitmap AND operation resulted in a value 

of one then the pixel in the center, say P of the template was 

marked for deletion. 

In the above case the order of the pixels is given as 

under, 

PO P7 P6 

P1 P P5 

P2 P3 P4 

Fig. 6.2 a-neighbors of P 

The pixel P is surrounded by its a neighbors, PO, P1, P2, 

P3, P4, P5, P6, P7, where the neighbors P1, P3, P5, P7 form 

the 4-connected neighbors and PO, P2, P4, P6 form the diagnol 

neighbors, and PO, P1, P2, P3, P4, P5, P6, P7 form the a

connected neighbors. 

The template shown in Fig. 6.1{a) would take care of 

isolated noise pixels. In the case of templates shown in Fig. 
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6.1(b) and (c), it was assumed that a single line of 'on' 

pixels in a raw image would indicate the presence of noise, 

since the original raw image consists of three to four 'on' 

pixel lines per segment. 

6.3 THINNING 

Thinning is a fundamental preprocessing stage in image 

processing applications. This technique is useful in 

recognition and interpretation of images, because it decreases 

the data amount while preserving the shape features of an 

input picture. Thinning consumes considerable time in 

processing an image. Therefore, the algorithm chosen should 

minimize on the number of iterations required and also 

maintain the connectivity of the thinned image. 

Many proposals have been made for thinning algorithms. The 

thinning algorithms are classified into parallel algorithms 

and sequential algorithms based on their implementation. 

Suzuki et al.[40] proposes an algorithm for digital binary 

pictures. The algorithm presented repeats the removal of the 

deletable border points in parallel and the extraction of the 

final points. Hall[29] proposes optimally small operator 

supports for fully parallel thinning algorithms. The author 

suggests eleven pixel supports as the smallest possible 

supports, and the possible positions of the support pixels are 

shown to be well constrained. Zhang et al.[46] suggests a fast 

parallel thinning algorithm consisting of two subiterations. 

One aimed at deleting the south-east boundary points and the 

north-west corner points while the other is aimed at deleting 

the north-west boundary points and the south-east corner 

points. 
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MAIN OUTPUT 

111111111 111 11 
1 1 1 

1 1 
1 1 
1 1 
1 1 
1 1 

1 1 
1 1 

111111 1 
1 1 
1 1 

1 1111111111 
1 1 1 
1 1 1 

1 1 1 
1 1 1 
1 1 1 
1 1 1 
11111 11 1 

1 1 
1 

Fig.6.~ Thinned character 



Among the algorithms stated above, the one suggested by 

Zhang et al.[46] was applied to the input text used in this 

project. The algorithm failed to give the desired results. In 

most of the cases the characters were nearly wiped out. o 

For this project images of size 30x30 or more were 

thinned using Rosenfeld & Kak algorithm [35]. The results 

obtained were satisfactory. But this algorithm failed in case 

of images of size less than 30x30. In smaller sized images the 

significant features were wiped out. Thus, it proved to be a 
0 

disadvantage. For instance, acMr after thinning would assume 

the Shape Of a n 1 Where the Significant feature ';(: WaS 

found to be missing. Another example is of a ~ being thinned 

down to T instead of :r . 
A thinning algorithm based on morphological operators was 

designed to thin down images of size smaller than 30x30. This 

algorithm gave satisfactory results for the smaller sized 

images as compared to Rosenfeld & Kak algorithm. But, this 

algorithm failed in case of images exceeding the size 30x30. 

Hence, two different algorithms were opted for in this project 

and the system would switch between these two algorithms 

depending on the font size. 

Another, possibility could be to increase the resolution 

in case of smaller sized fonts. But, in such cases 

modifications have to be made in the algorithms used for 

reading the image files. If possible the system could switch 

between these algorithms depending on the font size. The 

latter possibility has not yet been included in the software. 

6.3.1 Rosenfeld & Kak Algorithm 

This algorithm is a shrinking process which deletes from 

s, at each iteration, border points whose removal does not 

locally disconnect their neighborhoods. This algorithm 
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guarantees that the connectedness properties of S do not 

change, even if all such points are deleted simultaneously. 

This algorithm prevents an already thin arc from shrinking at 

its ends, since the points having only one neighbor in s are 

not deleted. 

The algorithm deletes only the border points that lie on 

a given side of s, i.e. that have a specific neighbor (north, 

east, south, or west) in s, at a given iteration. The 

algorithm ensures that the skeleton is as close to the 

"middle" of S as possible, for this it uses opposite sides 

alternately, e.g. north, south, east, west. 

Conditions under which a border point can be removed. 

The border point P of s is called simple if the set of a
neighbors of P that lie in s has exactly one component 

adjacent to P. For instance, in case of 4-connectedness for s, 
one cares only about components that are 4-adjacent to P. 

For example, P is 4-simple if its neighborhood is, 

0 1 1 

0 p 0 

1 0 0 

In this case only one 4-component of 1's is 4-adjacent to P. 

But, P is not 4-simple if its neighborhood is, 

0 1 1 

0 p 0 

0 1 0 

OR 
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0 1 0 
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0 0 0 



P is 8-simple in the third case, but not in the first two 

cases. 

Deleting a simple point from s does not change the 

connectedness properties of either S or s; S - {P} has the 

same components as s, except that one of them now lacks the 

point P, and S {P} has the same components as S, except that 

P is now is one of them. 

The thinning algorithm is stated as follows: "Delete all 

border points from a given side of S, provided they are simple 

and not end points. Do this successively from the north, 

south, west, north, .... sides of S until no further changes 

take place." 

6.3.2 Thinning Algorithm based on Morphological operators 

The thinning algorithm basically consisted of moving 

certain templates around the image and if a bitmap AND would 

result in a one then the particular center pixel for that 

position was marked for deletion. 

Initially, a counter is initialized to zero. A new image 

matrix, say s is created and initialized to all zeros. A 

search is made for the templates belonging to the first group. 

In case the search succeeds then the corresponding center 

pixel for the particular window is marked in the new matrix S, 

and the counter is incremented. After a search for the 

templates in Group I is completed then the image matrix M is 

updated i.e. for the positions in image matrix S which are 

marked, the corresponding positions in image matrix M are 

deleted. 
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In the second stage, the matrix S is again initialized to 

zero and a search is made for the templates in Group II. If a 

search succeeds then the particular position in image matrix 

S is marked and the counter is incremented. At the end of 

second stage, the original image matrix M is updated. 

At the end of the above two stages, a check is made on 

the value of counter. If the value of the counter is found to 

be zero then the process is terminated, else the control goes 

back to step one. 

The thinning algorithm works towards deletion of points 

from characters alternately in the horizontal and vertical 

directions. This is taken care of by alternate application of 

templates from Group I and Group II. The algorithm ensures 

that the skeleton obtained is as close to the middle line as 

possible. 

Efficiency 

The CPU time (in seconds) consumed by the above algorithm 

is 0.41 seconds for a 386-system. The algorithm proves to be 

very efficient in case of images with minute details and can 

obtain skeletons of images without the need for increasing the 

resolution. It preserves the edges and corners. However, the 

efficiency sharply drops in case of images which originally 

have very thick edges or borders. 

6.4 IMPLEMENTATION DETAILS 

The characters segmented are thinned separately zone 

wise. That is, initially the upper matra zone is checked for 

37 



the possibility of existence of an upper matra, if found then 

the upper matra is separated from the rest of the character, 

thinned and analyzed separately. Next, the simple character 

which begins at the end of the horizontal top line and extends 

to the ideal character height is thinned and analyzed 

separately. A possibility for the existence of a lower matra 

is checked. If found then the lower matra is thinned and 

analyzed separately. 

6.5 SMOOTHING 

Smoothing is essential step in shape analysis and image 

interpretation. The smoothing algorithm in this project has 

been applied after the thinning stage to take care of small 

holes which might be created by the thinning process. For 

instance, consider the templates shown below: 

0 0 0 

1 0 1 

0 0 0 

(a) 

Fig. 6.4. Templates for smoothing 

0 1 0 

0 0 0 

0 1 0 

(b) 

The templates shown in Fig. 6.4 (a) and (b) represent broken 

line segments 

respectively. 

in 

The 

horizontal and vertical 

smoothing algorithm helps in 

notches in joints and segments and fills them up. 
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CHAPTER 7 

CHARACTER RECOGNITION 

7.1 INTRODUCTION 

Following Baptista et al.[5] 

All character recognition algorithms depend on primitive 

operations of some sort to extract features from patterns. 

However, differences may arise in the organization, control 

and use of primitive operations, leading to the grouping of 

most character recognition algorithms into three categories, 

Syntactic, Deterministic 

Statistical. 

and Decision Theoretic or 

The syntactic approach is based on an attempt to exploit 

the obvious structural properties inherent in many patterns, 

and use formal grammars to characterize and ultimately 

identify the character. However, while description of the 

character is achieved very elegantly, identification by this 

approach leads to highly unwieldy and complex grammars. 

Further complications arise by trying to incorporate learning 

ability into this type of approach. 

In the Deterministic approach, the primitive operations 

are all executed and the resulting features stored in a table. 

Identification and incorporating learning into the 

identification procedure is an extremely simple task achieved 

by table matching and augmenting strategies. However, if the 

number of features is larger there could be an explosion of 
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the data-base. This can be avoided by the design of better 

features or staggering the feature detection procedure, and 

thereby grouping the patterns into subclasses. 

Features are selected on the basis of their invariance to 

distortion, style variation, translation, rotation to a 

certain extent, and speed and accuracy of recognition. 

7.2 KNOWLEDGE-BASED PATTERN RECOGNITION USING SYNTACTIC 

APPROACH 

Following Yang et al.[6] 

The conventional methods of pattern recognition can be 

identified as statistical and syntactic approaches. These 

approaches are not satisfactory since the solution depends 

largely on the knowledge and experience of the experts. To 

cope with this problem, many researchers are trying to 

introduce the expert system techniques into the field of 

pattern recognition system of much more sophisticated 

recognition capability. At this stage, the researchers face 

with a problem to identify a method to represent the expert's 

knowledge by the grammar production. A popular viewpoint is 

that a grammar production [A -> B] represents the knowledge 

[If A then B]. Mostly, the grammar production and the 

implication of mathematical logic are confused. This confusion 

makes it impossible for the grammar production to represent 

the knowledge correctly, and therefore the knowledge- based 

pattern recognition system using syntactic method has not been 

fully realized. 

The author has proposed a new type of knowledge-based 

pattern recognition system, in which the attributed grammar is 
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used to represent knowledge and the Early algorithm or ED 

algorithm is used to search the conclusion. 

In this paper, the author proposes a knowledge-based 

pattern recognition system based on syntactic approach . The 

proposed system consists of two parts: the basic part and the 

inference part. In the basic part, after preprocessing and 

feature selection we obtain the initial recognition result of 

subpatterns using the conventional pattern recognition 

approach. Then the results of the basic part are carried to 

the inference part as its primitives. Some information, for 

instance, the a priori knowledge and background knowledge 

etc., inputted by man-machine interaction, can also be handled 

as the primitives in the inference part. These primitives form 

the input sentence of the inference part. In the inference 

part the syntactic recognition system is used as an expert 

system, where the syntax analysis plays the role of a tool for 

inference, and the final result of syntactic analysis is the 

conclusion of inference. 

In this paper, the author discusses two possible 

applications: 

1) A knowledge-based pattern recognition system for tracking 

the events in the seismic sections. 

2) A vertigo diagnosing system based on the syntactic 

approach. 

7.3 FEATURE EXTRACTION AFTER PREPROCESSING 

7.3.1 Introduction 

The features after preprocessing in the recognition phase 

are an extension of the work done in this area by Baptista et 
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al.[5]. It includes a few more new features, which help in 

strongly differentiating between different characters. For 

instance, 

a) direction of transition of characters 

like Anticlockwise from left to top. 

b) maximum curvature in a particular direction 

like maximum curvature in the East direction. 

This project also refers to a dissertation presented by 

Shyam s. Sareen under the guidance of Prof. K. K. Biswas, 

I. I. T. Delhi [ 39], and incorporates some of the procedures used 

for removing fictitious feature points suggested in the paper. 

7.3.2 Implementation Details 

To begin with horizontal and vertical histograms are 

plotted for the character. Using the values of the horizontal 

and vertical histograms, the character is bounded in a 

rectangular window. Next the character is analyzed for 

extraction of the features. 
0 

FEATURES 

1) VERTICAL LINES 

A vertical histogram value greater then a certain threshold 

indicates the presence of a vertical line. The vertical 

histogram values of a given character are studied to find the 

desirable maximum. The ideal maximum peak indicates the 

presence of a vertical line of desired length. Next the 

rectangular character window is divided into three equal 

blocks. The blocks lying towards the left, the middle and the 
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right. 

A search is made to see in which block the vertical line 

lies. The results obtained are used in initialising three 

given variables. 

vertline left 

vertline mid 

vertline_right 

For instance, consider the case of the character 

In this case, the vertical line lies on the right block. 

Hence, the three variables would get initialized as follows, 

vertline left=O 

vertline mid=O 

vertline_right=l 

2} HORIZONTAL LINES 

The above procedure is repeated in a search for horizontal 

line of a certain given length. In this case the horizontal 

histogram values are searched for the desired peak. Next the 

rectangular boundary is divided into three equal horizontal 

blocks. The blocks lying towards the top, middle and bottom. 

A search is made to see the location of the horizontal 

line. In this case also three variables are initialized 

according to the results of the operations. The variables to 

be initialized are given as under: 
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horzline_top 

horzline mid 

horzline bottom 

Consider the case of the character . In this case, the 

horizontal line is lying in the middle block. Hence, the 

three variables would get initialized as follows, 

horzline_top=O 

horzline mid=l 

horzline bottom=O 

3) TERMINATING POINTS 

A pixel on a segment which has only a single neighbor in 

an 8-connected neighborhood system. 

4) JUNCTION POINTS 

The pixel about which there exists at least three 

distinct neighbors is identified as a junction point. 

5) SEGMENT 

A set of pixels bounded at both ends by a Terminating, 

Junction or Bend points. 

The character is parsed as in raster scanning. The 

parsing begins from the first encountered terminating point, 

or if no terminating point exists then parse from the left 

most pixel at the top of the character. The set of pixels is 

traversed till the next encountered terminating point, 
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junction point or bend point. These set of pixels are marked 

using a different symbol, so that an attempt is not made to 

traverse them again. The set of pixels is identified as one 

segment. Next, the end point of the previous segment is taken 

as the start point of the following segment and traversal 

begins. 

6} BEND POINT 

This point represents the point of curvature in a given 

line segment. 

7) SIMPLE PIXEL 

A pixel which has only two neighbors is called a simple 

pixel. 

At this stage for the above project, the pixels were 

renamed so as to easily identify them as junction points, 

terminating points, bend points. Say, 

2 -----> Terminating point 

3 ------> Junction point 

5 ------> Bend point 

This is as shown in Fig.7.1. 

Noise removing algorithms are incorporated at this stage 

to take care of fictitious junction and bend points. These 

algorithms have been suggested in Sareen[39]. 

Features added by us in the following project :-
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56666 65 6 

5 6 
2 

6: pixel in a segment 
2: terminating point 
3: junction point 
5: bend point 

Fig.7.1. Character with features marked. 



8) SEGMENT LENGTH 

This feature would be used to identify the number of 

pixels contained in each segments. For this project, this 

particular feature was used only in case of line segments. 

This feature helped in distinguishing between vertical lines 

say as in '3f" or ~ and the other may be a r thinned 

down to a ~ . The distinguishing feature was that the line 

segment in case of the former examples were greater in length 

by a sizeable margin as compared to the latter. Say, in case 

of the former, the number of pixels contained in the given 

vertical line segment was 10 to 11 pixels, while in case of 

the latter the number of pixels contained was only 5 or 6 

pixels. 

9) MAXIMUM AND MINIMUM ANGLES SUBTENDED 

The maximum and minimum angles subtended by the segments 

of a character on the left bottom corner of the rectangular 

window. 

For each of the segments in the character the angle 

subtended by the segment is determined. This is as shown in 

Fig.7.2. 

Each of these angles subtended by the different segments 

in a character is compared to obtain the maximum and minimum 

angles. 
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Fig.l~ Maximum curvature towards the EAST direction 



10) DIRECTION OF MAXIMUM CURVATURE 

For each of the segments in a character delta(X), 

delta(y), and delta(angle) are determined. These are obtained 

as follows: Suppose for a particular segment AB we consider 

the pixel at position X(n), Y(n), then the pixel immediately 

preceding it is identified as X(n-1), Y(n-1) and immediately 

following it is identified as X{n+1), Y(n+1). 

Taking the three X-Y coordinates i.e. X(n-1), Y(n-1); X(n), 

Y(n); X(n+1), Y(n+1) we determine 

For a given segment all the angles are compared to 

determine the maximum angle. In case, the maximum angle is 

associated with X{n-1), Y(n-1) and X(n+1), Y(n+1) then X(n), 

Y(n) denotes the point of maximum curvature. 

Next, we determine the direction to which the pixel 

identified as the maximum curvature point points to. To obtain 

the above information we watch the values of 

X(n-1), Y(n-1) 

X (n) , Y (n) 

X(n+1), Y(n+1) 

We have to identify the direction of maximum curvature as 

NORTH, SOUTH, EAST, WEST. 
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Suppose, the values of the above X-Y coordinates are such 

that, 

( X(n) > X(n-1) AND X(n) < X(n+1) ) AND 

( ( Y(n) <= Y(n-1) AND Y(n) < Y(n+1) OR 

( Y(n) < Y(n-1) AND Y(n) <= Y(n+1) ) 

The above direction is identified as WEST. 

Again, consider the values of X-Y coordinates to be such that, 

( X(n) > X(n-1) AND X(n) < X(n+1) ) AND 

( ( Y(n) >= Y(n-1) AND Y(n) > Y(n+1) ) 

OR ( Y(n) > Y(n-1) AND Y(n) >= Y(n+1) ) 

The above direction is identified as EAST. This feature 

has great significance for Hindi characters where most of the 

characters have segment points of maximum curvature pointing 

to a particular direction. 
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CHAPTER 8 

CLASSIFICATION OF CHARACTERS 

The characters of Hindi text are broadly classified into 

five distinct classes. These are the following: 

Class I 

This class comprises of all the characters having a 

vertical line in the right zone of length exceeding half the 

vertical extent and a horizontal middle line of length 

exceeding one-third the horizontal extent, like~ , ~ 

.:r , s:f , etc . 

Class II 

This class comprises of all characters having only a 

vertical line in the right zone and no horizontal middle line, 

like ~ 1 J 1 or, etc. 

Class III 

This class comprises of all characters having only a 

horizontal middle line and no vertical right line, like~ 

,etc. 

Class VI 

This class comprises of characters having neither a 

vertical right line nor a horizontal middle line like ~ 

'!""" , "& , etc. 
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Class V 

This is a special class of characters comprising of all 

the characters which consist of two parts. The second part of 

such characters is always a line segment, like ~ , --o- , 

,etc. 
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CHAPTER9 

DICTIONARY 

9.1 INTRODUCTION 

A dictionary was created to store information on the 

character code and its properties. This information is later 

referenced during the analysis phase for recognition. Four 

separate dictionaries are created, two of them are used to 

store the features of characters and matras extracted without 

any preprocessing and the other two are used for storing the 

features extracted after preprocessing. 

The information stored in the dictionary can be stored in 

the form of a sequential list, a tree, a hash table, etc. The 

dictionary for this project was organized in the form of a 

hash table. The reason being that in case of a sequential list 

a search for a record placed at the end of a list consisting 

of n records would take computation time of the order of O(n). 

While, in case of a tree though the computation time for a 

search would be of the order of O(logn) depending on the level 

.. of the tree, but the need to restructure a tree after 

deletions and insertions would increase complexity. Hence, the 

obvious choice was that of a hash table where depending on the 

value of the key a hash is made to a particular address. The 

time taken is independent of the number of records. 

The address or location of an identifier X, is obtained 

by computing some arithmetic function, f, of X. f(X) gives the 
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address of X in the table. This address will be referred to as 

the hash or home address of X. The memory available to 

maintain the symbol table is assumed to be sequential. This 

memory is referred to as the hash table, ht. The hash table is 

partitioned into b buckets, ht[OJ, ..•. ,ht[b-1]. Each bucket is 

capable of holding s records. Each slot is large enough to 

hold one record. Usually s=1 and each bucket can hold exactly 

one record. 

An overflow is said to occur when a new identifier I is 

mapped or hashed by f into a full bucket. 

A collision occurs when two nonidentical identifiers are 

hashed into the same bucket. When the bucket size s is 1, 

collisions and overflows occur simultaneously, [53]. 

9.2 A DICTIONARY FOR STORING THE FEATURES OF CHARACTERS 

The dictionary is organized as a hash table. The hash 

table is partitioned into 5 buckets, ht[O], ht[1], •••. ,ht[4]. 

Each bucket is capable of holding one record. Each record 

consists of the following five fields, 

char code 

prop_addr 

flag 

coll_flag 

new addr 

1. char code: character code 

In this field the code of the character is stored, which 

j is an integer. 

2. prop_addr: property address 

This field contains the address of the location in 
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another file, where the properties of the characters are 

stored. 

3. flag: status flag 

The flag field is initialized to zero indicating that the 

record is empty and when set to one indicates that the record 

is full. 

4. coll_flag: collision flag 

This flag when initialized to zero indicates that no 

collision has occurred for this particular location. In case 

this field is set to one then it indicates a collision of 

nonidentical identifier hashing to the same location. 

5. new addr: new address for collision bucket 

This field is only valid in case of a collision. In case 

the collision flag is set then this field is referred to, in 

order to find the address of the pointer pointing to the 

collision bucket. 

9.2.1 Implementation details 

A raw input file is created, in which the character codes 

along with their properties are stored. 

Next a dictionary described as above is created and 

initialized to all zeros. In this dictionary the first five 

locations are buckets and the rest of the file comprises of 

records to be used in case of a collision. 

Another file is created in which the properties of the 

characters are stored. Each list of properties for a character 

is enclosed in brackets( .......•. ), and the starting address 

of the list of properties is stored in the 'prop_addr' field 

of the record for the character in the dictionary. 
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CHAPTER 10 

USE OF HEURISTIC 

10.1 INTRODUCTION 

Certain amount of heuristic is required in the analysis 

of composite characters like ~ 1 ~ 1 ~ 1 etc. For 

instance a line component followed by a character KA{ ~ 

with a I ( .-0- } matra on top is identified as KI ( &- } . 
This kind of analysis is discussed briefly below:

Note: All possible conditions are not underlined below. 

If an upper matra is detected 

/* width & height of the upper matra exceeds a limit */ 
Then 

Begin 

consider two consecutive characters 

analyze matra on top of both characters 

If matra analysis succeeds 

Then 

Begin 

analyze both characters separately 

If one of the characters is a line component 

Then 

Begin 

If the matra is I ( A- } 

Then 

Begin 

If the second character is a full form 
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/* say KA(~ ) */ 
Then 

End 

the matra is small I(4l-) 

/* say KI(~ ) */-

Else 

If the second character is a half form 

/* say SH( ~) */ 
Then 

Begin 

End 

request for the following character 

If the character is a full form or a line 

/* say KA( ~ ) or l */ 
Then 

the composite character is SHKI (~) 
or SHI( .m) 

End /* second character half form */ 
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CHAPTER 11 

RESULTS 

The final results are output in coded English format like 

KA for Of;' , KI for ~ , KO for ~' KAU for £T- , # for 

rejected character etc. 

11.1 THE WORKING SYSTEM 

The main window with caption title 'Hindi OCR' has a pop 

down 'MAIN' menu. The menu provides options for a file name, 

display image, analysis and quit. 

The file name option when chosen displays a dialogue box, 

with a request for a file name containing image data to be 

analyzed. This is shown in Fig.ll.l. 

The display image option when chosen displays the 

original image in Bitmap format, as shown in Fig.11.2. 

The analysis option is highlighted to begin the 

recognition process. 

The quit option when highlighted terminates the execution 

of the current program. 

After analysis of one line of text, a dialogue box 

appears with buttons indicating a choice for Results, Not_Ok, 

Help, as shown in Fig.11.3. 
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MAIN OUTPUT 

. ·::·. · ,_:· --· .. · . :·. Open a·fite' ·. ·: · .:·.·· .... < <:-: 
... '. ' '> • "" • ' • ~ ,.. ,, ~ ' ~· ~ ~" 

f;:·~.ll.l A dialog box requesting file name. 



· · · · HINDI-OCR . · ~ .. . ·. 

(~.ll.t Original input text. 



,:~ . HINDI-OCR "·~ 
MAIN OUTPUT 

CHOTIItO HUN 

BMRE KMM 

LEKIN FIR BHI 

Kl MMNI JMTI 

SADA SAMAY Kl 

RAKHANA SABAKO HN 

PMBNDI 

SIKHALAATI 

MN 

Ml 
Ml 

JEB ME PADI DAM AKA Tl 

KALMI PAR BADH JMTI 
MAE MEJ PAR BAlD DMD s 
RAG#TE#JITAKARAM SANMTA 

# 



AB PAKADIG TAB PAKADI SNTAIII 

KAMI PMS HAl MTI 

AUA KAMI PAR TIJ IAKAR 

OUR BAit UAR JMTA 



~ . . . HINDI-OCR . if: 
MAIN QUTPUT 

F~.r1.~. Dialog box highlighting completion of analysis of a 
line. 



' · · . HINDI-DCA .!} 

MAIN OUTPUT 

roll~·~, ~'1 ~ ~ 
""' ~ - -

CHOTIItO HUN LEKIN FIR BHI 

F \~.ll.lt .. An input line and the output recognized text. 



~ HINDI-OCR . J; 

MAIN OUTPUT 

fi~.11.f. · An option to modify. 



- . HINDI-OCR 
MAIN OUTPUT 

E ~itD1~~~~~r!B1 

F 

ORIGINAL WORD: 

CHOTI#O 



- . . . . . . . · . . HINDI-OCR . . . . " 
MAIN QUTPUT 

roll~ ~, ~'1 ;r.g ~ 
....... . ~ ... .... 

CHOTI-SI HUN LEKIN FIR BHI 



On clicking the Results option, another child window 

appears with caption title 'Analyze a Line' and a pop down 

menu option. The pop down menu has options for 

Display_ Results, Modify, Quit. When the option Display_ Results 

is chosen then original line of text analyzed is displayed 

along with the coded results, as shown in Fig.11.4. The modify 

option allows a particular word of the given line of text to 

be modified, as shown in Fig.11.5. 0 

On clicking the Ok button, the system begins to analyze 

the next line of text. 

11.2 SPECIFICATIONS 

The system enables one to scan, read and recognize 

documents on IBM Personnel Computers and compatibles in the MS 

Windows environment. 

Algorithm 

Functions 

Fonts 

Recognized characters 

Character size 

Feature extraction based on contour 

analysis. 

1. Recognition 

2. Editing Results 

Font independent: attempted with the 

help of Artificial Neural Networks. 

Font dependent: user requested to 

provide the font number. 

Hindi Text 

lOxlO to 64x64 
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Pitch 

Document types 

Quality of printing 

Input image format 

output text format 

Accuracy rate 

Recognition speed 

System requirements 

Operating System 

Memory requirements 

any 

Monospaced, proportionally spaced and 

typeset documents. 

Typographical printing, type-setting, 

laser printing, hand drawn text. 

Uncompressed or compressed PCX. 

Plain ASCII 

At least 85% ( in case of good quality 

printouts } 

cps( on 20 MHz AT/386} 

IBM AT, AT/386, AT/486 or compatible. 

MS Windows 3.0 or later 

According to MS Windows requirements. 
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CHAPTER 12 

TRAINING ALGORITHM 

Two different approaches have been adopted to train the 

system to recognize text of different fonts. The first 

approach consists of maintaining different databases for each 

of the fonts. The user is requested to give a font number and 

the system switches to the appropriate database. The second 

approach makes use of artificial neural networks to train the 

system. This approach is described below: 

12.1 THE ESSENCE OF ARTIFICIAL NEURAL NETWORKS (ANNs) 

An artificial neural network (ANN) , also called a "neural 

net", is computational tool having AI origins. It differs from 

conventional AI applications and consequently, it deserves 

separate treatment. Expert systems programmed in LISP and 

Prolog use "classical" symbolic processing. The programs 

manipulate symbols, such as atoms and lists, to solve 

problems. ANNs, on the other hand, use subsymbolic processing. 

1. Subsymbolic Processing 

The term "artificial neural network" resulted from AI 

research that attempted to understand and model brain 

behavior. 

In the human brain, neurons within the nervous system 

interact in a complex fashion. The human senses detect stimuli 
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and send "input" information (via neurons) to the brain. 

Within the brain, neurons are excited and interact with each 

other. Based on the input, a conclusion is drawn, and an 

"output" is sent from the brain in the form of an answer or 

response. Neurologists and AI researchers have proposed a 

highly interconnected network of "neurons", or nosed to 

develop the same type of structure for a computer modelling of 

intelligent behavior. 

Expert systems operate symbolically, on a macroscopic 

scale. They use symbolic processing, require knowledge of 

relationships, and do not care how these relationships 

develop. ANNs, however, operate subsymbolically on a 

microscopic scale. The interactions between nodes is well

defined and adjusted until the desired input-output 

relationships are properly matched. 

The interconnection of nodes form the artificial neural 

network (ANN). All ANNs have an input layer, one or more 

hidden layers, and an output layer. An ANN can be viewed as a 

"black box" into which we send a specific input to all the 

nodes in the input layer. The ANN processes this information 

through its interconnections between nodes (the entire 

processing step is hidden from us). Finally, the ANN gives us 

a final output, which results from the nodes on the output 

layer. 

Input Layer - receives information from an external source, 

and passes this information into the ANN for processing. 

Hidden Layer - receives information from the input layer, and 

"quietly'' does all of the information processing. The entire 
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processing step is hidden from view. 

Output Layer - receives processed information from the ANN, 

and sends the results out to an external receptor. 

12.2 OPERATING AN ANN 

To operate an ANN, we require the following three phases: 

the training or learning phase, 

the recall phase, and 

the generalization phase. 

In the training or learning phase, we repeatedly present 

a set of input-output patterns to the ANN. We adjust the 

weights of all the interconnections between nodes until the 

specified input yields the desired output. Through these 

activities, the ANN "learns" the correct input-output response 

behavior. 

After the training phase, we move to the recall and 

generalization phases. In ANN development, the training phase 

is typically the longest and most time-consuming step. In the 

recall phase, we subject the ANN to a wide array of input 

patterns seen in training, and introduce adjustment to make 

the system more reliable and robust. During the generalization 

phase, we subject the ANN to novel input patterns, where the 

system hopefully performs properly. 

12.3 PROPERTIES OF ANNs 

ANNs have a number of properties that make them 

advantageous over other computational techniques, as described 
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below. 

(1) Information is distributed over a field of nodes. This 

provides greater flexibility than symbolic processing, where 

information is held in one fixed location. 

(2) ANNs have the ability to learn. If an error or a novel 

situation occurs that creates inaccurate system results, we 

can use "backpropagation" to correct it. During 

backpropagation, we adjust the strengths of the signals 

emitted from the nodes until the error disappears. At that 

point, the system has effectively "learned". When the system 

encounters that situation in the future, the ANN will model it 

properly. 

(3) ANNs allow extensive knowledge indexing. Knowledge 

indexing is the ability to store a large amount of information 

and access it in a simple manner. An ANN provides inherent 

knowledge indexing. It can recall, for example, diverse 

amounts of information associated with a chemical name, a 

process, or a set of process conditions. The knowledge is 

retained in the network via two means: 1) the connections 

between nodes, and 2) the weights of these connections. 

4) ANNs are better suited for processing noisy, incomplete, or 

inconsistent data. No single node within an ANN is directly 

responsible for associating a certain input with a certain 

output. Instead, each node encodes a microfeature of the 

input-output pattern. The concept of microfeature implies that 

each node affects the input-output pattern only slightly. Only 

when we assemble all the nodes together into a single 

coordinated network, can these microfeatures map the 
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macroscopic input-output pattern. In addition to the 

microfeature concept for ANNs, the signals sent to and from 

nodes are continuous functions. Consequently, the ANN can 

deduce proper conclusions, even from noisy, incomplete, or 

inconsistent input signals. 

( 5) ANNs mimic human learning processes. Most human learning 

and problem-solving occurs by trial and error. ANNs operate in 

the same fashion. We can train them by iteratively adjusting 

the strength of the connections between the nodes. After 

numerous iterative adjustments, the ANN can properly predict 

cause-and-effect relationships. u 

12.4 FUNDAMENTALS OF NEURAL COMPUTING 

12.4.1 Components of a Node 

The foundation of an ANN is the artificial neuron, or 

node (sometimes called neurode) . In most scientific and 

engineering applications, this node is called a processing 

element (PE). 

The PEs are the elements in the ANNs where most 

calculations are performed. 

1. Inputs and Outputs 

The first element in the jth PE is an input vector, a 

with components al,a2,a3, ....... ,ai, ...... ,an. The node 

manipulates these inputs, or activities to give the output bj. 

This output can then form the part of the input for other PEs. 

2. Weight Factors 

The PE uses weighted input to determine the output from 

the PE. 
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3. Internal Thresholds 

The internal threshold for the jth PE, denoted Tj, 

controls activation of the node. The node calculates all its 

ai wij's, sums the terms together, and then calculates the 

total activation by subtracting the internal threshold value: 

4. Functional Forms 

The PE performs calculations based on its input. It takes 

the dot product of vector a with vector Wj, subtracts the 

threshold Tj, and passes this result to a functional form f(). 

Mathematicians and computer scientists have found that 

the sigmoid (S-shaped) function is particularly advantageous. 

A typical sigmoid function is: 

f(x) =--
1-

1+e-x 

This function is monotonically increasing, with limiting 

values of 

O(atx=-oo)/\ 

1 (atx=+oo) 

Because of these limiting values, sigmoid functions are called 

threshold functions. At very low input values, the threshold

function output is zero. At very high values, the output value 

is one. 
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12.4.2 Topology of an Artificial Neural Network 

The topology of an ANN refers to how its PEs are 

interconnected. 

1. Inhibitory or Excitory Connections 

Connections can either inhibit or excite the node. If the 

weight is positive, it will excite the node, increasing the 

activation of the PE. If the signal is highly inhibitory, it 

may lower the input below the threshold level and shut the 

node down. 

2. Connection Options 

There exist three connection options. 

a) Intralayer connections, 

b) Interlayer connections, and 

c) Recurrent connections. 

In intralayer connections, the outputs from a node feed 

into other nodes in the same layer. 

In interlayer connections, the outputs from a node in one 

layer feed into nodes in another layer. 

In recurrent connections, the output from a node feeds 

into itself. 

The type of problem we are trying to solve determines 

which topology we favor. For example, if we wish to develop an 

ANN that trains itself, we may use feedback connections. In 

contrast, in dynamic modelling of a chemical reactor, we are 

trying to map an output response based on an input signal, 

therefore, we favor the feedforward connection. 
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12.5 LEARNING AND TRAINING WITH ARTIFICIAL NEURAL NETWORKS 

To train ANNs, we adjust the weight factors until the 

calculated output pattern (response) based on the given input 

matches the desired cause-and-effect relations. Learning is 

the actual process of adjusting weight factors based on trial

and-error. 

1. Stability and Convergence 

The training phase needs to produce an ANN that is both 

stable and convergent. A globally stable ANN maps any set of 

inputs to a fixed output. Stability guarantees a result, but 

it does not necessarily guarantee an accurate result. 

A convergent ANN produces accurate input-output 

relations., Convergence, then is related to the accuracy of 

the ANN. The magnitude of error between real-world results and 

those predicted by the ANN is a direct measurement of ANN is 

convergence. 

2. Types of learning 

There are many different approaches to training ANNs. 

Most approaches fall into one of the two groups: 

a) Supervised learning - an external teacher controls the 

learning and incorporates global information. 

b) Unsupervised learning - no external teacher is used and 

the ANN relies upon both internal control and local 

information. Frequently, the ANN develops its own model 
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without additional input information. 

12.5.1 Learning Procedure 

Error-Correction Learning - the most common type of learning 

used in ANN today. It is a form of supervised learning, where 

we adjust weights in proportion to the output error vector. 

This output error vector has n components, where n is the 

number of nodes in the output layer. 

We begin error-correction learning by defining the output 

error from a single node on the output layer as: 

where, 

E! nistheoutpute, 

dnisthedesiredoutput, 

Abnisthecalculatedouput, 

for the nth node in the output layer only. 

We then calculate the total squared error of the output layer, 

E, as: 

Knowing E, we can calculate the change in the weight factor 

for the ith to the jth node, 

Pjisalinearproportionalityconstantfornodej(typically,O<Pj< 
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12.5.2 Backpropagation Learning: Vanilla Backpropagation 

Algorithm 

1. Requirements for Backpropagation Learning 

Backpropagation requires an ANN known as a perceptron. A 

perceptron may be defined as an ANN with only feedforward 

interlayer connections, and no intralayer or recurrent 

connections. Each layer must feed sequentially into the next 

layer, with no feedback connections. In the following section 

we investigate a three-layer, sequential perceptron. 

The perceptron ANN has three layers, A, B and C. Feeding 

into layer A is the input vector I(L). Thus layer A has L 

nodes, that is, a(l}, a(2), ..... a(i), ..... a(L). Layer B, the 

hidden layer, has m nodes: b(l), b(2}, ..... b(j), ..... ,b(m). In 

the drawing, L=m=3, but in practice, L<>m is acceptable. Layer 

c, the output layer, is next. There are n C-layer nodes, 

again, L<>m<>n is acceptable. The interconnection weight 

between the i-th node of layer A and the j-th node of layer B 

is denoted as v(i) (j), and that between the i-th node of layer 

B and the j-th node of layer C are w(i) (j). Each node has an 

internal threshold value. For layer A, the threshold is T(Ai), 

for layer B, T(Bj), and for layer C, T(Ck). 

THE VANILLA BACKPROPAGATION TECHNIQUE 

Backpropagation learning attempts to properly map given 

inputs with desired outputs by minimizing an error function. 

Typically, we use the sum-of-squares error. 
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Below is the step-by-step adjustment procedure known as 

the vanilla backpropagation algorithm (Simpson,1990). 

Step 1: 

Randomly specify numerical values for all weight factors ( 

v(i) (j)'s and w(j) (k) 's within the interval [-1,+1]. 

Likewise, assign internal threshold values ( T(Ai), T(Bj), 

T(Ck} for every node, also between +1 and -1. Note that 

i=1,2, ..... ,L, where L is the number of nodes in layer A; 

j=1,2, ... ,m, where m is the number of nodes in layer B; and 

k=1,2, ... ,n, where n is the number of nodes in layer c. 

Step 2: 

Introduce the input I(i) into the ANN. Calculate all outputs 

from the first layer, using the standard sigmoid function 

introduced previously: 

1 a.=f(x.) =---
~ ~ 

1 + e -xi 

Here, I(i) is the input into the i-th node on the input layer, 

T(Ai} is internal threshold for the node and a(i) is the 

output from the node. 

Step 3: 

Given the output from layer A, calculate the output from layer 

B, using the equation: 

where f() is the same sigmoid function. 
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Step 4: 

Given the output from layer B; calculate from layer C, using 

the equation: 

where f() is the same sigmoid function. 

Step 5: 

Now backpropagate through the network, starting at the output 

and moving backward toward the input. Calculate the k-th 

component of the output error, for each node in layer C, 

according to the equation: 

wheredkisthedesiredresultAckistheactualresult. 

Step 6: 

Continue backpropagation, moving to layer B. Calculate the j

th component of the error vector, of layer B, using the 

equation: 

Step 7: 

Adjust weights, calculating the new w(j) (k) as: 

for j=l to m and k=l to n. 

ThetermPcisapositiveconstantcontrollingthelearningrateElay 
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Step 8: 

Adjust the thresholds T(Ck) in layer c, according to the 

equation: 

Step 9: 

Adjust weights v(i) (j), according to the equation: 

for i=1 to L and j=1 to m. 

ThetermPBisapositiveconstantcontrollingthelearningrateofla. 

Step 10: 

Adjust the thresholds T(Bj) (j=1 to m) in layer B, according 

to the equation: 

Step 11: 

Repeat steps 2-10 until the squared error, E, or the output 

error vector is zero or sufficiently small. 

The vanilla backpropagation algorithm is a gradient

descent learning technique. We use Newton's method ( moving 

down a gradient on a surface ) to minimize the error. The 

advantage of this method is that weight changes are estimated 

systematically rather than arbitrarily. 
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CHAPTER 13 

CONCLUSION 

The main aim was to recognize printed and hand drawn 

Hindi text. The data was scanned with the help of a hand 

scanner. The input text was taken from class II and class VII 

N.C.E.R.T. Hindi books and some hand drawn characters. First 

the image processing techniques were applied for segmentation 

of the text. Next the individual characters were subjected to 

smoothing and thinning. The preprocessed characters were 

subjected to feature extraction and these features were 

compared to the features stored in the database for individual 

characters. 

A confidence level of above 75% was required to declare 

the character to be the same with which it was being compared. 

Certain amount of heuristics was used to form composite 

characters and words. A recognition rate of 85% and above has 

been obtained. 

The above system has not used any contextual information 

to classify the characters. 

The current system can be expanded to include contextual 

information to recognize characters. This would enable 

enhancement of the rate of recognition further. 
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