
~
RECOGNITION OF DEV ANAGARI SCRIPT

Dissertation submitted to
Jawaharlal Nehru University

in partial .fulfilment of the requirements
for the award of degree of

MASTER OF TECHNOLOGY

in

COMPUTER SCIENCE & TECHNOLOGY

by

SHOMA CHATTERJEE

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JA WAHARLAL NEHRU UNIVERSITY

NEW DELHI - 110 067

CERTIFICATE

This is to certify that the dissertation entitled

"Recognition of Devanagari Script", submitted by Miss Shoma

Chatterjee is a record of bonafide work done under my guidance

and supervision in partial fulfilment of the requirement for

the award of M.Tech degree in Computer Science. This work has

not been submitted elsewhere for any other degre .

Prof.

supervisor

School of computer &

Systems Sciences

J.N.U.

Prof. K.K.Bharadwaj

Dean

School of Computer &

Systems Sciences

J.N.U.

ACKNOWLEDGEMENT

I would like to take this opportunity to thank my

supervisor Prof.K.K. Bharadwaj for his guidance and support.

I would also like to thank Prof.K.K.Biswas, Head of

Computer Sc. & Engg. Deptt, I.I.T., Delhi for his invaluable

help and guidance during the course of this project.

Sho~:~jee(Miss)
M.Tech III semester

School of Computer &

systems Sciences

J.N.U.

CHAPTER

1

2

3

CONTENTS

INTRODUCTION

1.1 On-line versus off-line recognition

1.2 Properties of scripts

1.2.1 English language

1.2.2 Chinese language

1.2.3 Japanese language

1.2.4 Devanagari script

AN INTRODUCTION TO THE SYSTEM

2.1 Data collection & data acquisition

2.2 Deskewing & segmentation

2.3 Analysis of characters without

preprocessing

2.4 Preprocessing

2.5 Analysis of characters after

preprocessing

2.6 Creating & referencing database

2.7 Analysis of half forms

2.8 Use of heuristic

2.9 Training algorithm

2.10 Results

DATA COLLECTION & DATA ACQUISITION

3.1 Introduction

3.2 Data collection

3.3 Data acquisition

3.3.1 Scanning

3.4 Binarization

3.5 Suggestions

4

5

6

7

SEGMENTATION

4.1 Introduction

4.2 Implementation details

4.2.1 Line segmentation

4.2.2 Word segmentation

4.2.3 Character segmentation

4.2.3.1 Division of characters

into zones

FEATURE EXTRACTION WITHOUT PREPROCESSING

5.1 Introduction

5.2 Review of earlier work

5.3 Implementation details

5.3.1 Features

PREPROCESSING

6.1 Introduction

6.2 Noise removal

6.3 Thinning

6.3.1 Rosenfeld & Kak thinning

algorithm

6.3.2 Thinning algorithm based

on morphological operators

6.3.3 Implementation details

6.4 Smoothing

CHARACTER RECOGNITION

7.1 Introduction

7.2 Knowledge-based pattern recognition

using syntactic approach

7.3 Feature extraction after preprocessing

7.3.1 Introduction

7.3.2 Implementation details

7.3.2.1 Features

8

9

10

11

12

CLASSIFICATION OF CHARACTERS

DICTIONARY

9.1 Introduction

9.2 A dictionary for storing the

features of characters.

9.2.1 Implementation details

USE OF HEURISTIC

RESULTS

11.1 The working system

11.2 Specifications

TRAINING ALGORITHM

12.1 The essence of artificial neural

networks(ANNs)

12.2 Operating an ANN

12.3 Properties of ANNs

12.4 Fundamentals of neural computing

12.4.1 Components of a node

12.4.2 Topology of an ANN

12.5 Learning and training with ANNs

12.5.1 Learning procedure

12.5.2 Backpropagation learning:

The Vanilla backpropagation

algorithm

13 CONCLUSION

REFERENCES

CHAPTER 1

INTRODUCTION

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

In recent years, great progress has been made in optical

character reader (OCR) technology. Most OCRs in current use,

can only read characters printed on a sheet of paper according

to rigid formatting restrictions and are mainly being applied

to office automation systems such as document readers.

However, if OCRs could read text directly from books and

magazines, then they could be put to more general applications

like they could be used to recognize text, and through a voice

decoder system the contents could be read out for blind men.

Unlike text on a well-printed sheet of paper, the text in

books and magazines suffer from a variety of noise components.

The text in books and magazines are generally skewed as a

result of manual block-printing.

Conventional research work on character recognition

involves two distinct approaches. In one of the approaches the

digital images of the character are binarized, thinned and

vectorized before the symbol recognition is done (Sinha et

al.[32], Baptista et al.[5], Sareen[39]}. The second approach

avoids the thinning and vectorization step. This approach is

based on analysis of strokes, Fourier expansion of the symbol

boundary in the binary raster representation (Taxt et

al.[45]}, feature extraction from profiles of external

1

contours (Kimura et al. (4]) , extracting features directly from

gray-scale images by extracting and assembling topographic

characteristics of the surface (Wang et al.[22]).

The former approach using the preprocessing stage is

computationally slow and a significant amount of information

is lost during the preprocessing stage. In case of the latter

approach, the information loss caused by the thinning and

vectorization steps is eliminated, it is computationally

faster than the former and also the classification rate is

much higher as compared to the earlier approach involving the

preprocessing stage. But, a major drawback faced by the latter

approach is that it fails to isolate joined characters

Research works in the latter approach have assumed the input

text to be isolated characters (Taxt et al.[45], Kimura et

al. (4]) •

In the present paper, both the approaches are utilized.

Initially, it is assumed that the characters are isolated. If

the width to height ratio of a character is below a certain

defined limit then the character is processed using the latter

approach i.e. minus the preprocessing stage. In this approach

analysis of strokes like stroke direction and stroke length is

studied for analysis and recognition. In case the confidence

level associated with the recognition is below the defined

threshold of 75% then the approach using the preprocessing

stage is used to confirm the results. In this approach feature

extraction is based on the extraction of distinctive features

like number of terminating points, bend points, junction

points, segments, etc. Two new features have been introduced

in this paper : the direction of maximum curvature and the

direction of transition.

2

Also, if the width to height ratio of a character exceeds

the defined limit then it is assumed that it is a joined

character. Such joined characters can be of many distinct

forms like one character joined to another character due to

noise or printing defect (el), or a half form joined to its

counterpart(~), or a character lying within the shadow of

another character (~). A new strategy has been adopted to

isolate such joined characters from their counterparts. The

segments of a character are followed and coded up according to

the segment being a vertical, horizontal or a slanting line.

These codes form the transitions in a finite automaton.

Whenever a code is encountered that does not belong to a

character then a trap state results. If a code leads to a

final state, then the character associated with the particular

final state is accepted.

Broadly speaking, this project aims at developing a

system that takes Devanagari script text as input. It breaks

the given input text into lines, from the lines it extracts

words and finally from the words it extracts characters. For

each of the individual characters, it extracts significant

features and recognizes the characters and other additional

forms in the text and outputs the obtained results. A

comparison of the input and output text gives us the

efficiency and the error rate.

The significance of this project lies in the fact that

OCRs for different languages like English are already

available. Such systems have not yet been developed for Hindi

because of its highly complex pattern. The dissertation for my

M.Tech is an effort in this direction.

3

1.2 ON-LINE VERSUS OFF-LINE RECOGNITION

Following Tappert et al.[2]

On-line handwriting recognition means that the machine

recognizes the writing while the user writes. The term real

time or dynamic is also used in place of on-line. Depending on

the recognition technique and the speed of the computer, the

recognition lags behind the writing to a greater or a lesser

extent. Most commercial recognizers lag by only one or two

characters. On-line recognition systems need only be fast

enough to keep up with the writing. Average writing rates are

1. 5-2. 5 characters/ s for English alphanumerics or 0. 2-2.5

charactersjs for Chinese characters. Peak rates for English

can approach 5-10 charactersfs. On-line handwriting

recognition requires a transducer that captures the writing as

it is written. The most common of these devices is the

electronic tablet or digitizer, which typically has a

resolution of 200 points/in, a sampling rate of 100 pointsjs,

and an indication of "inking" or pen down.

Off-line handwriting recognition is performed after the

writing is completed. An optical scanner converts the image of

the writing into a bit pattern. Scanners have x and y

resolutions of typically 300-400 points/in. Off-line

handwriting recognition is a subset of Optical Character

Recognition {OCR). OCR systems typically process hundreds of

characters a second.

Another distinction is between on-line and off-line

capture of handwriting data. On-line capture means that the

machine data are being captured as a person writes. Off-line

data capture means that the machine data are captured some

4

time after the writing is created. Once captured, on-line or

off-line handwriting data can be processed by the recognizer

afterwards.

An advantage of on-line devices is that they capture the

temporal or dynamic information of the writing. This

information consists of the number of strokes, the order of

the strokes, the direction of the writing for each stroke, and

the speed of the writing within each stroke. A stroke is the

writing from pen down to pen up. Most on-line transducers

capture the trace of the handwriting or line drawing as a

sequence of coordinate points. By contrast, off-line

conversion of scanned data to line drawings usually requires

costly and imperfect preprocessing to extract contours and to

thin or skeletonize them. The temporal information provided by

on-line entry improves recognition accuracy. On the other

hand, the temporal information of on-line systems may

complicate recognition with variations that are not apparent

in the static images.

Another advantage of on-line handwriting recognition is

interactivity. In an editing application, for example, the

writing of an editing symbol can cause the display to change

appropriately. Also, recognition errors can be corrected

immediately.

Yet another advantage is adaptation. When the user sees

that some of his characters are not being accurately

recognized, he can alter their drawing to improve recognition.

Thus, the user adapts to the recognition system. On the other

hand, some recognizers are capable of adapting to the writer,

usually by storing samples of the writer's characters for

5

subsequent recognition.

The main disadvantage of on-line handwriting recognition

is that the writer is required to use special equipment.

1.3 PROPERTIES OF SCRIPTS

Consider the following languages - English, Chinese,

Japanese and Devanagari script.

Following Tappert et al.[2]

1.3.1 English Language

The English alphabet has 26 letters, and each letter has

two forms, upper and lower case. English words consist of

sequence of letters, five per word on the average. In English,

the position and size of the letters is important. Upper case

letters sit on the baseline and are full sized. Lower case

letters are smaller, and most are about half the height of

upper case letters. Some lower case letters have an ascender,

which extends upward to almost the height of the upper case

letters, some have a descender, which extends down below the

baseline, and some have both.

1.3.2 Chinese Language

The Chinese has a much larger set of characters. A

Chinese character can represent a word. There are about 50,000

characters, and a basic vocabulary consists of 3-5000

characters. There are two basic styles of writing characters,

block and cursive. The block style is written carefully, with

fairly strict adherence to proper stroke number and order.

1.3.3 Japanese Language

The Japanese use Hiragana, Katakana, Kanji, and English

alphanumerics. Hiragana and Katakana (called Kana) are

6

phonetic alphabets, and each has 46 full-size characters. A

small size of eight of the Kana characters together with

additional markings indicate subtle phonetic differences.

Kanji are Chinese characters, and a set of 6349 is the

Japanese Industry standard, although daily usage is limited to

2000. Kanji and Chinese characters have essentially the same

meaning.

1.3.4 oevanagari script

Following [52],

The Hindi language, in common with Marathi, Nepali and

many north Indian dialects, is written in the Nagari (or the

Devanagari) script which is also the script for Sanskrit.

The Alphabet

The alphabet consists of 11 vowels and 35 consonants, as

follows:-

(a) Vowels:

e,'it-ai~ ~ a, ~a. '~ i, t- T, "3 u, ~ U 1 '5li r 1 "'Q"
ih-

.
o, au.

The vowel occurs only in Sanskrit words borrowed into

Hindi.

(b) Consonants:-

~ ka, ~ kha, ~ 'U gha, s; .
ga, na,

-'f ca, ~ cha, ~ ja, iT jha, :H na,

~ ta, 0 tha, s da, ~ dha, "'0\ na,

;:r ta, ~ tha, "'4 da, ~ dha, ;r na,

'"q""" pa, 1:h pha, if ba, ~ bha, '1f rna,

""tf ya, -:r- ra, ~ la, Cf va,

'I\ Sha 1 ""Sf ~a, ~ sa, & ha,

- a; rha. $ ra, .

7

An 3Rr'~ ' is inherent in each consonant letter.

S. , :>f , "'til" , f , and 'a" never occur in the beginning of a

word; and S. and ~ never occur by themselves, they are

always combined with a following consonant.

The sign v (candra-bindu) placed above a vowel (~
etc.) indicates that the vowel is nasalized (Anunasika), or

'spoken also through the nose'.

The sign ' • ' (Anuswara) placed above a vowel may represent

any One Of the COnSOnantS s. 1 .>=r 1 "'J 1 rr and ~ (tO be

pronounced after the vowel) .

The sign':' (Visarga) placed after a vowel represents a~ .

Some Arabic, Persian and English consonants, found in Hindi

loan-words from these languages, are indicated by the

fOllOWing dotted letterS • - q;. 1 ~ 1 rr 1 .;,r 1 ~

Mode of Writing Vowels

The Hindi consonant letters do not indicate the consonant

sound only. They stand for the particular consonant + ~
Thus Oh is not simply K , but K. + ~ ; c!f" is not simply).. , but

l + Q.. • This):I is called "the inherent '3=f " in the consonant

letter.

When the simple consonant without the inherent ~ is

specifically to be expressed, a sign (right-slanting stroke),

called Hal (or Halanta), is put below the letter. Thus k=~ , -
r= ~ , d= 'f , etc.

8

When some vowel other than the inherent l-l comes after a

consonant an abbreviated form of that vowel (called Matra) is

tagged on to the consonant letter and is never written in

full. Thus, k+i=a;:- +I"" is written asf'ct-~, k+u=d; + ~ is written
' -

as~, and not as~~~~~ , which indicates the pronunciation

k-i, k-u.

The abbreviated forms of vowels i.e. the Matras when they come

after consonant letters are written as follows:-

~=T T- It- =-fr
V=o.__ ,~=~

Of these, T ('3-11) , 4- (~) , ~ ('l:tr) and ~ (*'-) are

written after the consonant, whereas fL- (~) is written

before, ..J (~) , ~ (~) and c_ (~) are written below,

and ~ (~) and ~ (1,:r) are written above. Thus :-

Cf" + ·~" = a;;\ elf +%L = ~
OF +{" =~ CE +'l" =k
Of+i=~ ~+v=~

+~

~ +-:;:; -
=~

=C£
c:i +~= ~
~ +~=~

Important exceptions :- :t + ~ = ~ , and !:"" + ~ = ~ .

If a vowel is nasalized (Anunasika), th~ sign.~(candra-bindu)
to.!,. •,,

is placed above the letter: Of\ 1 arr 1 ~ 1 ~ 1 but if the

Matra is above the headline, only dot is used instead of~

thus f~ , Jt , ~ ,~ , ~ , ~. It is to be noted that

the dot is placed on the right of the Matra.

The Visarga ':' is always placed after the vowel or consonant

+vowel. Thus}!~ (dukh) 'pain, sorrow, unhappiness',?"~~~
(nihsim) 'limitless'.

9

The Anuswara '• ' is placed above the vowel (e.g.~ or

consonant + vowel after which it is pronounced (e.g."'§'\~~~ } .

Mode of Writing Consonants

Two or more consonants (with no vowel, including the inherent

~between them) can be combined together and thus form a

"conjunct".

~ + c;:\ = ~ (kka} is a conjunct, so is Cf + 1:i\ = ~li\ (kya)

'what?'

It is, however, not usual to write conjunct with the help of

a Hal mark as above in ~~~ . This mark is used with the final

consonant of a Sanskrit word (as in ~S\Pi (Mahan} 'great']

and with~, tA. , c, c , c; , and~ (e.g.d\~~"4 , ~~1.1\ ,w).
Most of the consonants formed and ending with a vertical

stroke joined to the following consonant by removing the

vertical line. Thus l1 + ~ = Jf...\ , -'[+ ~ ="""~ , C[+ ~- =
r~, .::r:r + ..,::r =A , etc

Those ending in a vertical half-stroke drop the same qr +~ =
;of, ~ + --rr = 'Cj:\f .

The rest, which end in neither a full nor a half-vertical

stroke, viz.~, 'l:i , ~ , <S $, ~ , 'f" , and €:"
do not change. When combined with a following consonant, they

may be written with a Hal mark. Thus '[- + c:::;l;; = ~ , ~ + 0
= ~ etc. The general practice is to write them in full.

While, in case of the following consonants, the consonant is

written below them with the horizontal stroke omitted: ~ +~

10

=~, ~ + ~ = r - d
= 't; I s + or 1 however 1

Exceptional forms :-

I f + ~- =~I "(" + ~ =I" I ~
is &, { + ~ = 5

+.:r

(a) ~ when combined with a following consonant is written

thus i.e. above the consonant : "'5" + 1'1 = tf , ':f + -'=r = ~
C' - -

~+~ = ~
But when~ follows a consonant, having a vertical stroke, it

is written as a left slanting stroke below and to the left of

the vertical stroke:

~ + ~ = ~ I ~ + ~ =...i) I - also "4 + ~ -
When preceded by c , 0 , S. I ~ I ti
written thus below:

~+:<""=?;I 'f"+:l ="f I~ +:f' =f
(b) ~ + tf = ~ ksha, it" + ;(= "5r tra, Jt ._.

=~
and~

(or S:) .
+ ..;:r = 8'

it is

(c) The pronunciation of Anuswara (•) is like S. , ..)-\ ,-ur
~,+fdepends on the following consonants.

~ = do\ct-~t 'comb'.

(d) f + ~ = ~ I l[+ "l1 = s:r I Cf + ~ = ~ I ~+":Pi =~ I

~ + l=i' = ~, ~ + '"'rf = ~ which is frequently written as~
.... -

(e) "f + cr = ~ I [+ ~ = ~ and r- + ~ = T
(f) "Cf + crl'" = ~I -q: + o:r = ~..t 1 ~ + ~ = ~I ~ +"':.\
=;t;,

=)J I l"..L + Sf = ~ I ..rr- + ..:q =

~+~ =~, ..>[+..q- =~.

Every conjunct, like a simple consonant, can be combined with

any vowel-sign or with the inherent~

11

+bt+'l" =~

In combining more than two consonants, the same rules are

followed.

~+ cr- +r = J;f, ~ +~ ... +~ = i:..Ci\0~ or s,"'
-! + ~ +:.r =~ c-i +~ +.:r = ('H'"" I -
i + ~+ "If = ;6- I T +~ +~ +1:r = 4-,f etc. ... -

12

CHAPTER2

AN INTRODUCTION TO THE SYSTEM

CHAPTER2

AN INTRODUCTION TO THE SYSTEM

The System is designed to recognize Hindi text. It is

trained using algorithms and a huge database to emulate man in

his sense of sight, memory i.e. an ability to recapitulate, a

sense of learning and a tendency to err. At this point it

won't be an exaggeration to say that an effort is being made

to create an "Artificial Intelligence", which would in no way

supercede man's creativity. But, only enhance his will power

and capability to create more such systems.

The system takes Devanagari script text as input. It

breaks the given text into lines, from the lines it extracts

words and finally characters. For each of the individual

characters, it extracts significant features and recognizes

the characters and other additional forms in the text and

outputs the obtained results. A comparison of the input and

output text gives us the efficiency and the error rate.

The above system is broadly classified into the following

subsections, namely,

1. Data Collection & Data Acquisition

2. Segmentation

3. Analysis of characters without preprocessing

3. Preprocessing

4. Analysis of characters with preprocessing

5. Referencing Database

13

6. Analysis of Half forms

7. Use of Heuristic

8. Training Algorithm

9. Results

2.1 DATA COLLECTION & DATA ACQUISITION

The input text has been taken from Hindi books of

standard I, II & VII. The algorithms have also been tested on

hand-drawn characters.

The input text is scanned using a hand scanner and the

image data is stored using a PC Paintbrush file format (PCX) .

The image data is read from the file, binarized and stored in

a buffer.

2.2 SEGMENTATION

Histograms are plotted for the entire text. Using the

histogram information individual lines of text are

retrieved. Next, vertical histograms are plotted for

individual lines of text. Using this information words and

further characters are extracted.

2.3 ANALYSIS OF CHARACTERS WITHOUT PREPROCESSING

An attempt is made to recognize the characters without

any prior preprocessing. This is done to make the computations

faster and more accurate. The application of this strategy

assumes the existence of isolated characters. A limit is

defined for the width to height ratio of an isolated

character. To begin with the width to height ratio of a

14

character is calculated and compared with the limit defined

for an isolated character. In case the character is isolated

then the approach without prior preprocessing is adopted,

otherwise the second approach with the preprocessing stage is

adopted.

In case of the above approach without the preprocessing

stage, the features extracted are the following: horizontal

and vertical histograms in each of the four quadrants of a

character window, the distance of the start of the character

taken at five equally distributed points from the left and top

boundary of the character window, presence of a vertical or a

horizontal line.

A database is created and the features of the characters

obtained without preprocessing are stored. The database is

referenced during the recognition phase.

2.4 PREPROCESSING

The individual characters extracted are processed for

noise removal, thinning and smoothing.

An attempt has been made to design a new thinning

algorithm based on morphological operators and much success

has be obtained in this connection.

2.5 ANALYSIS OF CHARACTERS WITH PREPROCESSING

The individual characters and their matras are analyzed

separately. The significant features of individual characters

are determined like terminating points, junction points etc.

15

These features are used for distinguishing among various

characters.

2.6 CREATING & REFERENCING DATABASE

A separate database is created to store the features for

the various characters, and another to store the features of

the matras. The input character is analyzed and its features

are compared with those stored in the database and a

confidence level of above 7 0% declares the character to be the

same as the one with which it is being compared.

2.7 ANALYSIS OF HALF FORMS

A strategy is adopted for identifying half characters and

also separating the half characters from their joined

counterparts.

2.8 USE OF HEURISTIC

The system specifies certain rules for identifying matras

like I (..A-) , U (") , etc. For instance, a vertical line

followed by a character KA (a\) with I (A.) on top is

identified as a character KI &) .

2.9 TRAINING ALGORITHM

An attempt was made to train the system to recognize

various fonts using a standard algorithm of Neural Networks,

"Vanilla Backpropagation Algorithm". We did succeed to a

certain extent but, there were certain major drawbacks like,

the training process was very time consuming.Another

16

disadvantage was that the algorithm failed to recognize a

completely new font. The experts in the field of Neural

Networks say, that if a system has to emulate human senses

then it has also to pass through a similar childhood, which

may extend for days, months or even years, and like any child

it has to be taught to recognize any new entity.

A second convenient method has been adopted to recognize

texts of various fonts. A separate database is created for

each font and each of the databases is assigned a code. The

system is allowed to analyze texts of some few chosen fonts.

Initially the user is asked for the font code of the text he

wishes to be analyzed. The system then selects the particular

database for that font and carries on with the recognition

phase.

2.10 RESULTS

Codes in English are used for corresponding Hindi

characters, like KI for~ . The final results are in coded

English format.

17

CHAPTER3

DATA COLLECTION & DATA
ACQUISITION

CHAPTER3

DATA COLLECTION & DATA ACQUISITION

3.1 INTRODUCTION

All research works and projects are based on raw input

data and algorithms or strategies to extract, manipulate and

analyze these data to accomplish the desired study.

The raw data may be obtained through any of the input

devices such as the following:

1. Keyboard.

2. Tablets

a) Electronic

Electronic tablets that capture the x-y coordinate data of

pen-tip movement. They can be used to input sketches and

drawings.

b) Electromagnetic

c) Electrostatic

d) Pressure Sensitive

3. Recent advancements bring together tablets and flat

displays on the same surface. Thus, serving the dual purpose

of both input and output.

4. Camera.

5. Scanner.

The characters of Devanagari Script served as the input

data for this project. The text was scanned and converted into

18

a bitmap form to be used as input.

3.2 DATA COLLECTION

The samples used in this study were obtained from various

Hindi books. To begin with the study was performed on text of

considerably large size like, standard I Hindi books. Then,

the same algorithms were tested successive?ly on class II,

class V and class VII books. Once satisfied with the

performance of the algorithms, to be discussed in subsequent

chapters, the same algorithms were subjected for testing on

hand drawn symbols. The test results showed reduced

efficiency. For instance, in case of printed text of a fixed

font, the test results showed an accuracy of above 80%,

whereas the use of the same database in case of hand drawn

characters collected from various individuals, reduced the

efficiency rate drastically to 50-60%. The main characters

which proved to be the cause of confusion were \f and ~ ,

~and ~

The main cause of confusion among certain similar looking

characters is that the thinning algorithms used in the

preprocessing stage tend to wipe out certain significant

features of the characters. For instance, a q:zt: ~ after

thinning tends to take the shape of either +r or \f . The

latter shape is responsible for the confusion arising between

a ~ and a ~ . These kinds of discrepancies are generally

resolved at a higher stage i.e. during semantic analysis

phase.

19

3.3 DATA ACQUISITION

3.3.1 scanning
The images were scanned using a hand scanner. The

resolution was set at 100 dpi. The scanned bitmap image was

obtained using PC Paintbrush software. The software stores the

bitmap image in a specific format. Hence, it becomes necessary

to understand the structure of the file, inorder to read it

using our own programs written in a specific language.

The PCX format uses run length encoding to compress image

data. It is not as efficient as compared to other file formats

like MacPaint, IMG, TIFF. The compressed PCX file is usually

longer by a sizeable margin as compared to the other files.

PCX file format was used for obtaining the bitmap images

as it was the easiest among the above mentioned file formats

and the desired results were obtained.

3.4 BINARIZATION

The gray scales varying from 0-255 are thresholded using

a mid-value to two distinct values of either 0, indicating an

'off' pixel or to a value 255, indicating an 'on' pixel.

3.5 SUGGESTIONS

After working with image files and surveying the various

possible file formats. I would suggest the use of the tagged

image file format (TIFF) to obtain the bitmap images.

20

The TIFF file format is extremely flexible. It can

support images of any size, in monochrome or in upto 24 bits

of color. It is portable with different architectures. The

only negative aspect to TIFF files is that they prove to be

extremely complex to unpack because of their highly variable

nature.

71-!-560 2

21

CHAPTER 4

SEGMENTATION

CHAPTER4

SEGMENTATION

4.1 INTRODUCTION

Segmentation can be defined as a process by which an

image is subdivided into its constituent parts or objects.

This process enables the extraction of objects of interest

from an image, such that these entities can be subjected to

further processing and analysis Gonzalez(28].

4.2 IMPLEMENTATION DETAILS

The segmentation approach followed for this project is a

top down one. The top down approach begins by considering the

entire text and works down successively to the level of a

character.

The approach described in this section is similar to the

one proposed by R.M.K. Sinha and H.N.Mahabala in the paper

authored by them, "Machine recognition of devanagari script",

Sinha et al.[32]. In the following paper we have extended

their work.

4.2.1 Line Segmentation

Horizontal histogram values are determined for the entire

text. It is observed that groups of lines of varying length

are separated by some space. This space signifies the space

between any two lines of text.

22

Fig.4.1 Horizontal histogram of a given line of text.

Among each group of lines, it is observed that two or

three of the histogram lines have maximum length. These lines

signify the horizontal line drawn on top of each of the

Devanagari script characters.

Initially, after white space the histograms begin with

values less than the maximum value taken up by horizontal top

lines signifying the presence of an upper matra zone or it may

be white space immediately followed by maximum value

specifying the absence of any upper matra zone. The maximum

value zone signifies the presence of the horizontal top line.

Immediately after the maximum value zone, the value of the

histogram decreases and after a certain length reduces to zero

signifying the end of text line.

With the help of the Line_histogram values,individual

lines of text can be separated out.

After the initial segmentation stage we have reached to

the stage of individual lines. Next two histograms are plotted

for each individual text line, with respect to the columns.

·The first histogram takes its starting point just at the

beginning of horizontal top line. This histogram forms the

Word histogram and is used to separate out each individual

word contained in a given line of text. The second histogram

takes its starting point at the end of the horizontal top

line. This histogram forms the Character_histogram and is used

to separate out each character in a given word.

4.2.2 Word segmentation

Word histogram is obtained at this stage. Since, the

beginning point for this histogram is taken as the start of

the horizontal top line. Hence, the separation between two

23

horizontal top lines signifies the separation between two

words and is marked out by the space between groups of lines

in a Word_histogram. Each group of lines signifies a word and

the space between any two groups of lines signifies the space

between words.

After this segmentation level we have reached to the

stage of words. Next, we take each individual word and draw

its histogram with respect to the columns. But, in this case

the start point is taken as the end of the horizontal top

line.

4.2.3 Character Segmentation

Character_histogram is obtained. Since, the beginning

point of this histogram is taken as the end of the horizontal

top line. Hence, it can be safely assumed that the information

till the horizontal top line is completely wiped out.

The separation between groups of lines in a

Character_histogram would signify the separation between two

characters.

After this segmentation stage we have reached to the

level of each individual characters in a word. The handling of

matras would be explained later in the chapter on 'Rule Based

System'.

4.2.3.1 Division of Characters into zones

Each character is divided into four distinct zones.

i) Upper Matra zone

The zone from the beginning of the text to the beginning

of horizontal top line is marked as the upper matra zone.

24

ii) Horizontal Top Line zone

The zone following the upper matra zone from the

beginning of horizontal top line to its end is identified as

the horizontal top line zone.

The zone starting at the end of horizontal top line to

the end of the text line is identified as the lower character

zone. Each character is defined to be of a certain maximum

height, say ideal character height, which is fixed for a

particular font. Using this information the lcwer zone of a

character is split up into two zones, namely,

iii) Simple Character zone

The simple character zone would be defined as,

simple character height = ideal character height, i.e.

from the end of horizontal top line to the extent of an ideal

character height.

iv) Lower Matra zone

The lower matra zone would be defined as,

lower matra height = maximum lower character zone height -

ideal character height, i.e.

from the end of simple character to the end of text.

25

CHAPTER 5

FEATURE EXTRACTION WITHOUT
PREPROCESSING

CHAPTERS

FEATURE EXTRACTION WITHOUT

PREPROCESSING

5.1 INTRODUCTION

This particular approach extracts features from the

characters without the application of any of the preprocessing

stages. This is done to make the computations much faster

because, 'thinning' which forms one of the preprocessing

stages consumes nearly half the time required for the analysis

of an entire character. Moreover, as a result, of thinning

significant information may be deleted from an image. This may

cause difficulty in the recognition process.

An attempt is made to recognize the characters without

any preprocessing. The basic assumption for this approach is

that characters are isolated. A limit is defined for the width

to height ratio of an isolated character. To begin with the

width to height ratio of the characters is calculated and

compared with the limit defined for an isolated character. If

the calculated width to height ratio is less than equal to the

limit then it is assumed that the character is isolated and

feature extraction without preprocessing is attempted. In case

the width to height ratio of the character is greater than the

limit then it is assumed that the characters are either joined

(::EA.) or one character comes under the shadow of another

character (~),and feature extraction after preprocessing

26

is attempted.

5.2 REVIEW OF EARLIER WORK

5.2.1

Kimura et al .• [4)

The authors focus their study on recognition of isolated

characters based on feature extraction without preprocessing.

The two set of features used in their algorithms are the

following: the first set of features is the histograms in the

chain codes of the contour elements. The second set of

features is evaluated from the profiles on the binary image of

a numeral.

In the process the rectangular frame enclosing the

normalized contours is divided into 4x4 rectangular zones. In

each zone, a local histogram of the chain codes is calculated.

The feature vector is composed of these local histograms.

The profile features are derived from the profiles of the

external contours. These are character widths, ratio, location

of extrema, and discontinuities in character profiles.

5.2.2

Taxt et al. (45)

This is another approach that avoids the traditional

thinning and vectorization process. This approach takes the

outer pixel boundary of an isolated symbol candidate in the

binary raster image as a simple closed curve. This curve is

then approximated by a parametric spline curve, an elliptic

Fourier expansion due to Zahn and Roskies. Curvature values

and coordinates along the spline curves or the coefficients of

the Fourier expansion are then used as descriptors in a

27

statistical classification scheme.

5.3 IMPLEMENTATION DETAILS

The features included in this approach are the following:

the first set of features is the horizontal and vertical

histograms determined in each of the four quadrants of the

character window, the second set is profile features, the

third set is the presence of horizontal and vertical line

segments in the character and the fourth set is analyzing the

left contour of the character for bend points, direction of

maximum curvature, direction of transition.

The composite characters are separated from their matras

and the characters and matras are analyzed separately. For the

final analysis certain amount of heuristic is required to code

(foi;-) , consisting of the up for a composite character

characters (~~) and their matra.

To begin with the character is enclosed in a tight

window. The window is divided up into four equal quadrants.

5.3.1 Features

1. Horizontal and Vertical histograms in each of the four

quadrants.

The value of the horizontal and vertical histograms are

determined in each of the quadrants at three equally distant

points.

2. Profile features

The features associated with the characters are derived

from their external contours. They are:

a) left profiles, which is a collection of the distances of

28

the left profiles form the left boundary of the character.

(Kimura et al.[4]).

b) top profiles, which is a collection of the distances of

the top profiles from the boundary of the character.

3. Vertical and Horizontal line

Vertical and horizontal histograms of the entire

character are studied to determine the presence of a

horizontal or vertical line. A limit is defined for the

horizontal and vertical histogram values to indicate the

presence of a horizontal and vertical line segment. Next the

character window is split into zones i.e. into three equal

parts in the vertical direction forming the left, middle and

right zones and into three equal parts in the horizontal

direction forming the top, middle and bottom zones. Further,

it is checked in which zone the line segment lies.

4. Contour Analysis

The left half of the character contour is analyzed. This

is based on the assumption that the maximum features of a

character lie on the left half. Hence, ttis saves on

computation time. The contour boundary of the character is

treated as a line segment and is analyzed for bend points

Baptista et al.[5], direction of maximum curvature and

direction of transition. These features are to be discussed in

detail in the chapter on feature extraction after

preprocessing.

29

CHAPTER 6

PREPROCESSING

6.1 INTRODUCTION

0

CHAPTER 6

PREPROCESSING

Preprocessing stage is an intermediate stage, which

consists of noise removal, skew correction, and thinning.

According to some authors like Brown et al.[30], there are

important interactions between the preprocessing of character

images and the feature extraction process. Feature extraction

or shape measurement can be misled if the images have little

or no preprocessing. Noise-contaminated descriptions of

character images can lead to mislabelling by the recognition

logic. Preprocessing stage has been incorporated as a vital

stage in many systems. Brown et al.[30], Sinha et al.[31,32],

Lu et al. (41] .

This stage primarily comprises of three substages : noise

removal, thinning and smoothing. Preprocessing is an essential

step. It takes care of the noise, which might be introduced

during the scanning stages or because the input data is not of

good quality. The thinning phase reduces the input data to a

bare skeleton form. This enables the information about the

object to be preserved and also enables the extraction of key

features with minimum possible computation. Smoothing, further

helps to smooth noisy boundaries, and also helps in retaining

a good representation of boundary corners and takes care of

broken joints and edges.

The order in which the above stages were applied are as

follows:

30

a) Noise Removal

b) Thinning

c) Smoothing

Noise removal and smoothing is achieved using

morphological operators. An attempt is made to design a new

thinning algorithm based on morphological operators.

6.2 NOISE REMOVAL

This preprocessing stage, takes care of possible noises

that might be introduced during the scanning stage. Noise is

an unavoidable menace in image processing applications.

Algorithms can be designed for its effective removal. The

first goal is to detect the different kinds of noise that

could possibly be introduced and if possible the conditions

for their existence. Efforts should be made to eliminate such

conditions initially during the scanning phase. This would

enable minimization of noise.

The use of a hand scanner is to a great extent

responsible for the introduction of noise. A shaky hand also

leads to introduction of noise. A peculiar problem faced in

case of the above project was scanning the end of a text page

using a hand scanner. This would lead to pressure variations

due to the thickness of the copy or book from which the text

was being scanned. While, processing it was observed that

these portions of the text would fill up with non-Ascii

characters. Hence, a check was made at the preprocessing stage

which checked for the existence of such non-Ascii characters

in the scanned image, which were replaced with white space.

31

The noise removal procedure in case of the above

application used morphological filters. The templates used

were 3x3, they are sown as under,

0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 0

0 0 0 0 0 0 0 1 0

{a) (b) {c)

Fig. 6.1 Templates for noise removal.

The templates shown above were moved around the image

matrix and in case a bitmap AND operation resulted in a value

of one then the pixel in the center, say P of the template was

marked for deletion.

In the above case the order of the pixels is given as

under,

PO P7 P6

P1 P P5

P2 P3 P4

Fig. 6.2 a-neighbors of P

The pixel P is surrounded by its a neighbors, PO, P1, P2,

P3, P4, P5, P6, P7, where the neighbors P1, P3, P5, P7 form

the 4-connected neighbors and PO, P2, P4, P6 form the diagnol

neighbors, and PO, P1, P2, P3, P4, P5, P6, P7 form the a

connected neighbors.

The template shown in Fig. 6.1{a) would take care of

isolated noise pixels. In the case of templates shown in Fig.

32

0

6.1(b) and (c), it was assumed that a single line of 'on'

pixels in a raw image would indicate the presence of noise,

since the original raw image consists of three to four 'on'

pixel lines per segment.

6.3 THINNING

Thinning is a fundamental preprocessing stage in image

processing applications. This technique is useful in

recognition and interpretation of images, because it decreases

the data amount while preserving the shape features of an

input picture. Thinning consumes considerable time in

processing an image. Therefore, the algorithm chosen should

minimize on the number of iterations required and also

maintain the connectivity of the thinned image.

Many proposals have been made for thinning algorithms. The

thinning algorithms are classified into parallel algorithms

and sequential algorithms based on their implementation.

Suzuki et al.[40] proposes an algorithm for digital binary

pictures. The algorithm presented repeats the removal of the

deletable border points in parallel and the extraction of the

final points. Hall[29] proposes optimally small operator

supports for fully parallel thinning algorithms. The author

suggests eleven pixel supports as the smallest possible

supports, and the possible positions of the support pixels are

shown to be well constrained. Zhang et al.[46] suggests a fast

parallel thinning algorithm consisting of two subiterations.

One aimed at deleting the south-east boundary points and the

north-west corner points while the other is aimed at deleting

the north-west boundary points and the south-east corner

points.

33

MAIN OUTPUT

111111111 111 11
1 1 1

1 1
1 1
1 1
1 1
1 1

1 1
1 1

111111 1
1 1
1 1

1 1111111111
1 1 1
1 1 1

1 1 1
1 1 1
1 1 1
1 1 1
11111 11 1

1 1
1

Fig.6.~ Thinned character

Among the algorithms stated above, the one suggested by

Zhang et al.[46] was applied to the input text used in this

project. The algorithm failed to give the desired results. In

most of the cases the characters were nearly wiped out. o

For this project images of size 30x30 or more were

thinned using Rosenfeld & Kak algorithm [35]. The results

obtained were satisfactory. But this algorithm failed in case

of images of size less than 30x30. In smaller sized images the

significant features were wiped out. Thus, it proved to be a
0

disadvantage. For instance, acMr after thinning would assume

the Shape Of a n 1 Where the Significant feature ';(: WaS

found to be missing. Another example is of a ~ being thinned

down to T instead of :r .
A thinning algorithm based on morphological operators was

designed to thin down images of size smaller than 30x30. This

algorithm gave satisfactory results for the smaller sized

images as compared to Rosenfeld & Kak algorithm. But, this

algorithm failed in case of images exceeding the size 30x30.

Hence, two different algorithms were opted for in this project

and the system would switch between these two algorithms

depending on the font size.

Another, possibility could be to increase the resolution

in case of smaller sized fonts. But, in such cases

modifications have to be made in the algorithms used for

reading the image files. If possible the system could switch

between these algorithms depending on the font size. The

latter possibility has not yet been included in the software.

6.3.1 Rosenfeld & Kak Algorithm

This algorithm is a shrinking process which deletes from

s, at each iteration, border points whose removal does not

locally disconnect their neighborhoods. This algorithm

34

guarantees that the connectedness properties of S do not

change, even if all such points are deleted simultaneously.

This algorithm prevents an already thin arc from shrinking at

its ends, since the points having only one neighbor in s are

not deleted.

The algorithm deletes only the border points that lie on

a given side of s, i.e. that have a specific neighbor (north,

east, south, or west) in s, at a given iteration. The

algorithm ensures that the skeleton is as close to the

"middle" of S as possible, for this it uses opposite sides

alternately, e.g. north, south, east, west.

Conditions under which a border point can be removed.

The border point P of s is called simple if the set of a
neighbors of P that lie in s has exactly one component

adjacent to P. For instance, in case of 4-connectedness for s,
one cares only about components that are 4-adjacent to P.

For example, P is 4-simple if its neighborhood is,

0 1 1

0 p 0

1 0 0

In this case only one 4-component of 1's is 4-adjacent to P.

But, P is not 4-simple if its neighborhood is,

0 1 1

0 p 0

0 1 0

OR

35

0 1 0

0 p 1

0 0 0

P is 8-simple in the third case, but not in the first two

cases.

Deleting a simple point from s does not change the

connectedness properties of either S or s; S - {P} has the

same components as s, except that one of them now lacks the

point P, and S {P} has the same components as S, except that

P is now is one of them.

The thinning algorithm is stated as follows: "Delete all

border points from a given side of S, provided they are simple

and not end points. Do this successively from the north,

south, west, north, sides of S until no further changes

take place."

6.3.2 Thinning Algorithm based on Morphological operators

The thinning algorithm basically consisted of moving

certain templates around the image and if a bitmap AND would

result in a one then the particular center pixel for that

position was marked for deletion.

Initially, a counter is initialized to zero. A new image

matrix, say s is created and initialized to all zeros. A

search is made for the templates belonging to the first group.

In case the search succeeds then the corresponding center

pixel for the particular window is marked in the new matrix S,

and the counter is incremented. After a search for the

templates in Group I is completed then the image matrix M is

updated i.e. for the positions in image matrix S which are

marked, the corresponding positions in image matrix M are

deleted.

36

TH\NNIN~ 11LGORtTHM]ASED ON

MOR'PHOLQG, ICAL 0PERf\TORS

GROUP J:

I I 0 0

0 ' ' 0 I I 0 \ ' ' I I ' 0 '
(~) (b) Cc)

~

cnRouP JJ-..

0 I 0
I ' I \ I 0 I ' 0 .
I ' ' \ I 0 I
(') (~) (t.)

I o

' ' 0 0 (~)

0 ' ' 0 ' I

0
(d.)

\ I I

0 I I

0
Cd).

In the second stage, the matrix S is again initialized to

zero and a search is made for the templates in Group II. If a

search succeeds then the particular position in image matrix

S is marked and the counter is incremented. At the end of

second stage, the original image matrix M is updated.

At the end of the above two stages, a check is made on

the value of counter. If the value of the counter is found to

be zero then the process is terminated, else the control goes

back to step one.

The thinning algorithm works towards deletion of points

from characters alternately in the horizontal and vertical

directions. This is taken care of by alternate application of

templates from Group I and Group II. The algorithm ensures

that the skeleton obtained is as close to the middle line as

possible.

Efficiency

The CPU time (in seconds) consumed by the above algorithm

is 0.41 seconds for a 386-system. The algorithm proves to be

very efficient in case of images with minute details and can

obtain skeletons of images without the need for increasing the

resolution. It preserves the edges and corners. However, the

efficiency sharply drops in case of images which originally

have very thick edges or borders.

6.4 IMPLEMENTATION DETAILS

The characters segmented are thinned separately zone

wise. That is, initially the upper matra zone is checked for

37

the possibility of existence of an upper matra, if found then

the upper matra is separated from the rest of the character,

thinned and analyzed separately. Next, the simple character

which begins at the end of the horizontal top line and extends

to the ideal character height is thinned and analyzed

separately. A possibility for the existence of a lower matra

is checked. If found then the lower matra is thinned and

analyzed separately.

6.5 SMOOTHING

Smoothing is essential step in shape analysis and image

interpretation. The smoothing algorithm in this project has

been applied after the thinning stage to take care of small

holes which might be created by the thinning process. For

instance, consider the templates shown below:

0 0 0

1 0 1

0 0 0

(a)

Fig. 6.4. Templates for smoothing

0 1 0

0 0 0

0 1 0

(b)

The templates shown in Fig. 6.4 (a) and (b) represent broken

line segments

respectively.

in

The

horizontal and vertical

smoothing algorithm helps in

notches in joints and segments and fills them up.

38

directions

detecting

CHAPTER 7

CHARACTER RECOGNITION

CHAPTER 7

CHARACTER RECOGNITION

7.1 INTRODUCTION

Following Baptista et al.[5]

All character recognition algorithms depend on primitive

operations of some sort to extract features from patterns.

However, differences may arise in the organization, control

and use of primitive operations, leading to the grouping of

most character recognition algorithms into three categories,

Syntactic, Deterministic

Statistical.

and Decision Theoretic or

The syntactic approach is based on an attempt to exploit

the obvious structural properties inherent in many patterns,

and use formal grammars to characterize and ultimately

identify the character. However, while description of the

character is achieved very elegantly, identification by this

approach leads to highly unwieldy and complex grammars.

Further complications arise by trying to incorporate learning

ability into this type of approach.

In the Deterministic approach, the primitive operations

are all executed and the resulting features stored in a table.

Identification and incorporating learning into the

identification procedure is an extremely simple task achieved

by table matching and augmenting strategies. However, if the

number of features is larger there could be an explosion of

39

the data-base. This can be avoided by the design of better

features or staggering the feature detection procedure, and

thereby grouping the patterns into subclasses.

Features are selected on the basis of their invariance to

distortion, style variation, translation, rotation to a

certain extent, and speed and accuracy of recognition.

7.2 KNOWLEDGE-BASED PATTERN RECOGNITION USING SYNTACTIC

APPROACH

Following Yang et al.[6]

The conventional methods of pattern recognition can be

identified as statistical and syntactic approaches. These

approaches are not satisfactory since the solution depends

largely on the knowledge and experience of the experts. To

cope with this problem, many researchers are trying to

introduce the expert system techniques into the field of

pattern recognition system of much more sophisticated

recognition capability. At this stage, the researchers face

with a problem to identify a method to represent the expert's

knowledge by the grammar production. A popular viewpoint is

that a grammar production [A -> B] represents the knowledge

[If A then B]. Mostly, the grammar production and the

implication of mathematical logic are confused. This confusion

makes it impossible for the grammar production to represent

the knowledge correctly, and therefore the knowledge- based

pattern recognition system using syntactic method has not been

fully realized.

The author has proposed a new type of knowledge-based

pattern recognition system, in which the attributed grammar is

40

used to represent knowledge and the Early algorithm or ED

algorithm is used to search the conclusion.

In this paper, the author proposes a knowledge-based

pattern recognition system based on syntactic approach . The

proposed system consists of two parts: the basic part and the

inference part. In the basic part, after preprocessing and

feature selection we obtain the initial recognition result of

subpatterns using the conventional pattern recognition

approach. Then the results of the basic part are carried to

the inference part as its primitives. Some information, for

instance, the a priori knowledge and background knowledge

etc., inputted by man-machine interaction, can also be handled

as the primitives in the inference part. These primitives form

the input sentence of the inference part. In the inference

part the syntactic recognition system is used as an expert

system, where the syntax analysis plays the role of a tool for

inference, and the final result of syntactic analysis is the

conclusion of inference.

In this paper, the author discusses two possible

applications:

1) A knowledge-based pattern recognition system for tracking

the events in the seismic sections.

2) A vertigo diagnosing system based on the syntactic

approach.

7.3 FEATURE EXTRACTION AFTER PREPROCESSING

7.3.1 Introduction

The features after preprocessing in the recognition phase

are an extension of the work done in this area by Baptista et

41

al.[5]. It includes a few more new features, which help in

strongly differentiating between different characters. For

instance,

a) direction of transition of characters

like Anticlockwise from left to top.

b) maximum curvature in a particular direction

like maximum curvature in the East direction.

This project also refers to a dissertation presented by

Shyam s. Sareen under the guidance of Prof. K. K. Biswas,

I. I. T. Delhi [39], and incorporates some of the procedures used

for removing fictitious feature points suggested in the paper.

7.3.2 Implementation Details

To begin with horizontal and vertical histograms are

plotted for the character. Using the values of the horizontal

and vertical histograms, the character is bounded in a

rectangular window. Next the character is analyzed for

extraction of the features.
0

FEATURES

1) VERTICAL LINES

A vertical histogram value greater then a certain threshold

indicates the presence of a vertical line. The vertical

histogram values of a given character are studied to find the

desirable maximum. The ideal maximum peak indicates the

presence of a vertical line of desired length. Next the

rectangular character window is divided into three equal

blocks. The blocks lying towards the left, the middle and the

42

right.

A search is made to see in which block the vertical line

lies. The results obtained are used in initialising three

given variables.

vertline left

vertline mid

vertline_right

For instance, consider the case of the character

In this case, the vertical line lies on the right block.

Hence, the three variables would get initialized as follows,

vertline left=O

vertline mid=O

vertline_right=l

2} HORIZONTAL LINES

The above procedure is repeated in a search for horizontal

line of a certain given length. In this case the horizontal

histogram values are searched for the desired peak. Next the

rectangular boundary is divided into three equal horizontal

blocks. The blocks lying towards the top, middle and bottom.

A search is made to see the location of the horizontal

line. In this case also three variables are initialized

according to the results of the operations. The variables to

be initialized are given as under:

43

horzline_top

horzline mid

horzline bottom

Consider the case of the character . In this case, the

horizontal line is lying in the middle block. Hence, the

three variables would get initialized as follows,

horzline_top=O

horzline mid=l

horzline bottom=O

3) TERMINATING POINTS

A pixel on a segment which has only a single neighbor in

an 8-connected neighborhood system.

4) JUNCTION POINTS

The pixel about which there exists at least three

distinct neighbors is identified as a junction point.

5) SEGMENT

A set of pixels bounded at both ends by a Terminating,

Junction or Bend points.

The character is parsed as in raster scanning. The

parsing begins from the first encountered terminating point,

or if no terminating point exists then parse from the left

most pixel at the top of the character. The set of pixels is

traversed till the next encountered terminating point,

44

junction point or bend point. These set of pixels are marked

using a different symbol, so that an attempt is not made to

traverse them again. The set of pixels is identified as one

segment. Next, the end point of the previous segment is taken

as the start point of the following segment and traversal

begins.

6} BEND POINT

This point represents the point of curvature in a given

line segment.

7) SIMPLE PIXEL

A pixel which has only two neighbors is called a simple

pixel.

At this stage for the above project, the pixels were

renamed so as to easily identify them as junction points,

terminating points, bend points. Say,

2 -----> Terminating point

3 ------> Junction point

5 ------> Bend point

This is as shown in Fig.7.1.

Noise removing algorithms are incorporated at this stage

to take care of fictitious junction and bend points. These

algorithms have been suggested in Sareen[39].

Features added by us in the following project :-

45

R ~ ' ... ,/ . ~ ~ u • ~· .,., ~ • ,. • .., .~ • 'lM'- '. '•' ,, •. ' •. ,. '•·'.' ·; •.·• :· •. ·.: .• ... • HINOI-OC ·. . . ,.' .. ,'· ... · . .
' • • • • • • .I ~ • ' • .. • }~ • ~ ~ • .. • •• • ..

MAIN OUTPUT

6 6
6 6
6 6 .

266663 6
6 6
5 6

2 6666666666
6 3 3
6 6 5
6 6 6
6 5 6
6 6 6
6 6 6
56666 65 6

5 6
2

6: pixel in a segment
2: terminating point
3: junction point
5: bend point

Fig.7.1. Character with features marked.

8) SEGMENT LENGTH

This feature would be used to identify the number of

pixels contained in each segments. For this project, this

particular feature was used only in case of line segments.

This feature helped in distinguishing between vertical lines

say as in '3f" or ~ and the other may be a r thinned

down to a ~ . The distinguishing feature was that the line

segment in case of the former examples were greater in length

by a sizeable margin as compared to the latter. Say, in case

of the former, the number of pixels contained in the given

vertical line segment was 10 to 11 pixels, while in case of

the latter the number of pixels contained was only 5 or 6

pixels.

9) MAXIMUM AND MINIMUM ANGLES SUBTENDED

The maximum and minimum angles subtended by the segments

of a character on the left bottom corner of the rectangular

window.

For each of the segments in the character the angle

subtended by the segment is determined. This is as shown in

Fig.7.2.

Each of these angles subtended by the different segments

in a character is compared to obtain the maximum and minimum

angles.

46

X(n-1). Y(n-1)

X(n).Y(n)

X(n+ 1).Y(n+1)

> EAST

Fig.l~ Maximum curvature towards the EAST direction

10) DIRECTION OF MAXIMUM CURVATURE

For each of the segments in a character delta(X),

delta(y), and delta(angle) are determined. These are obtained

as follows: Suppose for a particular segment AB we consider

the pixel at position X(n), Y(n), then the pixel immediately

preceding it is identified as X(n-1), Y(n-1) and immediately

following it is identified as X{n+1), Y(n+1).

Taking the three X-Y coordinates i.e. X(n-1), Y(n-1); X(n),

Y(n); X(n+1), Y(n+1) we determine

For a given segment all the angles are compared to

determine the maximum angle. In case, the maximum angle is

associated with X{n-1), Y(n-1) and X(n+1), Y(n+1) then X(n),

Y(n) denotes the point of maximum curvature.

Next, we determine the direction to which the pixel

identified as the maximum curvature point points to. To obtain

the above information we watch the values of

X(n-1), Y(n-1)

X (n) , Y (n)

X(n+1), Y(n+1)

We have to identify the direction of maximum curvature as

NORTH, SOUTH, EAST, WEST.

47

Suppose, the values of the above X-Y coordinates are such

that,

(X(n) > X(n-1) AND X(n) < X(n+1)) AND

((Y(n) <= Y(n-1) AND Y(n) < Y(n+1) OR

(Y(n) < Y(n-1) AND Y(n) <= Y(n+1))

The above direction is identified as WEST.

Again, consider the values of X-Y coordinates to be such that,

(X(n) > X(n-1) AND X(n) < X(n+1)) AND

((Y(n) >= Y(n-1) AND Y(n) > Y(n+1))

OR (Y(n) > Y(n-1) AND Y(n) >= Y(n+1))

The above direction is identified as EAST. This feature

has great significance for Hindi characters where most of the

characters have segment points of maximum curvature pointing

to a particular direction.

48

CHAPTER 8

CLASSIFICATION OF CHARACTERS

CHAPTER 8

CLASSIFICATION OF CHARACTERS

The characters of Hindi text are broadly classified into

five distinct classes. These are the following:

Class I

This class comprises of all the characters having a

vertical line in the right zone of length exceeding half the

vertical extent and a horizontal middle line of length

exceeding one-third the horizontal extent, like~ , ~

.:r , s:f , etc .

Class II

This class comprises of all characters having only a

vertical line in the right zone and no horizontal middle line,

like ~ 1 J 1 or, etc.

Class III

This class comprises of all characters having only a

horizontal middle line and no vertical right line, like~

,etc.

Class VI

This class comprises of characters having neither a

vertical right line nor a horizontal middle line like ~

'!""" , "& , etc.

49

Class V

This is a special class of characters comprising of all

the characters which consist of two parts. The second part of

such characters is always a line segment, like ~ , --o- ,

,etc.

50

CHAPTER 9

DICTIONARY

CHAPTER9

DICTIONARY

9.1 INTRODUCTION

A dictionary was created to store information on the

character code and its properties. This information is later

referenced during the analysis phase for recognition. Four

separate dictionaries are created, two of them are used to

store the features of characters and matras extracted without

any preprocessing and the other two are used for storing the

features extracted after preprocessing.

The information stored in the dictionary can be stored in

the form of a sequential list, a tree, a hash table, etc. The

dictionary for this project was organized in the form of a

hash table. The reason being that in case of a sequential list

a search for a record placed at the end of a list consisting

of n records would take computation time of the order of O(n).

While, in case of a tree though the computation time for a

search would be of the order of O(logn) depending on the level

.. of the tree, but the need to restructure a tree after

deletions and insertions would increase complexity. Hence, the

obvious choice was that of a hash table where depending on the

value of the key a hash is made to a particular address. The

time taken is independent of the number of records.

The address or location of an identifier X, is obtained

by computing some arithmetic function, f, of X. f(X) gives the

51

address of X in the table. This address will be referred to as

the hash or home address of X. The memory available to

maintain the symbol table is assumed to be sequential. This

memory is referred to as the hash table, ht. The hash table is

partitioned into b buckets, ht[OJ, ..•. ,ht[b-1]. Each bucket is

capable of holding s records. Each slot is large enough to

hold one record. Usually s=1 and each bucket can hold exactly

one record.

An overflow is said to occur when a new identifier I is

mapped or hashed by f into a full bucket.

A collision occurs when two nonidentical identifiers are

hashed into the same bucket. When the bucket size s is 1,

collisions and overflows occur simultaneously, [53].

9.2 A DICTIONARY FOR STORING THE FEATURES OF CHARACTERS

The dictionary is organized as a hash table. The hash

table is partitioned into 5 buckets, ht[O], ht[1], •••. ,ht[4].

Each bucket is capable of holding one record. Each record

consists of the following five fields,

char code

prop_addr

flag

coll_flag

new addr

1. char code: character code

In this field the code of the character is stored, which

j is an integer.

2. prop_addr: property address

This field contains the address of the location in

52

another file, where the properties of the characters are

stored.

3. flag: status flag

The flag field is initialized to zero indicating that the

record is empty and when set to one indicates that the record

is full.

4. coll_flag: collision flag

This flag when initialized to zero indicates that no

collision has occurred for this particular location. In case

this field is set to one then it indicates a collision of

nonidentical identifier hashing to the same location.

5. new addr: new address for collision bucket

This field is only valid in case of a collision. In case

the collision flag is set then this field is referred to, in

order to find the address of the pointer pointing to the

collision bucket.

9.2.1 Implementation details

A raw input file is created, in which the character codes

along with their properties are stored.

Next a dictionary described as above is created and

initialized to all zeros. In this dictionary the first five

locations are buckets and the rest of the file comprises of

records to be used in case of a collision.

Another file is created in which the properties of the

characters are stored. Each list of properties for a character

is enclosed in brackets(.......•.), and the starting address

of the list of properties is stored in the 'prop_addr' field

of the record for the character in the dictionary.

53

CHAPTER 10

USE OF HEURISTIC

CHAPTER 10

USE OF HEURISTIC

10.1 INTRODUCTION

Certain amount of heuristic is required in the analysis

of composite characters like ~ 1 ~ 1 ~ 1 etc. For

instance a line component followed by a character KA{ ~

with a I (.-0- } matra on top is identified as KI (&- } .
This kind of analysis is discussed briefly below:

Note: All possible conditions are not underlined below.

If an upper matra is detected

/* width & height of the upper matra exceeds a limit */
Then

Begin

consider two consecutive characters

analyze matra on top of both characters

If matra analysis succeeds

Then

Begin

analyze both characters separately

If one of the characters is a line component

Then

Begin

If the matra is I (A- }

Then

Begin

If the second character is a full form

54

/* say KA(~) */
Then

End

the matra is small I(4l-)

/* say KI(~) */-

Else

If the second character is a half form

/* say SH(~) */
Then

Begin

End

request for the following character

If the character is a full form or a line

/* say KA(~) or l */
Then

the composite character is SHKI (~)
or SHI(.m)

End /* second character half form */

55

CHAPTER 11

RESULTS

CHAPTER 11

RESULTS

The final results are output in coded English format like

KA for Of;' , KI for ~ , KO for ~' KAU for £T- , # for

rejected character etc.

11.1 THE WORKING SYSTEM

The main window with caption title 'Hindi OCR' has a pop

down 'MAIN' menu. The menu provides options for a file name,

display image, analysis and quit.

The file name option when chosen displays a dialogue box,

with a request for a file name containing image data to be

analyzed. This is shown in Fig.ll.l.

The display image option when chosen displays the

original image in Bitmap format, as shown in Fig.11.2.

The analysis option is highlighted to begin the

recognition process.

The quit option when highlighted terminates the execution

of the current program.

After analysis of one line of text, a dialogue box

appears with buttons indicating a choice for Results, Not_Ok,

Help, as shown in Fig.11.3.

56

; . .: ... , -. · .. ·' · .. HINDI-oCR ·
MAIN OUTPUT

. ·::·. · ,_:· --· .. · . :·. Open a·fite' ·. ·: · .:·.·· < <:-:
... '. ' '> • "" • ' • ~ ,.. ,, ~ ' ~· ~ ~"

f;:·~.ll.l A dialog box requesting file name.

· · · · HINDI-OCR . · ~ .. . ·.

(~.ll.t Original input text.

,:~ . HINDI-OCR "·~
MAIN OUTPUT

CHOTIItO HUN

BMRE KMM

LEKIN FIR BHI

Kl MMNI JMTI

SADA SAMAY Kl

RAKHANA SABAKO HN

PMBNDI

SIKHALAATI

MN

Ml
Ml

JEB ME PADI DAM AKA Tl

KALMI PAR BADH JMTI
MAE MEJ PAR BAlD DMD s
RAG#TE#JITAKARAM SANMTA

AB PAKADIG TAB PAKADI SNTAIII

KAMI PMS HAl MTI

AUA KAMI PAR TIJ IAKAR

OUR BAit UAR JMTA

~ . . . HINDI-OCR . if:
MAIN QUTPUT

F~.r1.~. Dialog box highlighting completion of analysis of a
line.

' · · . HINDI-DCA .!}

MAIN OUTPUT

roll~·~, ~'1 ~ ~
""' ~ - -

CHOTIItO HUN LEKIN FIR BHI

F \~.ll.lt .. An input line and the output recognized text.

~ HINDI-OCR . J;

MAIN OUTPUT

fi~.11.f. · An option to modify.

- . HINDI-OCR
MAIN OUTPUT

E ~itD1~~~~~r!B1

F

ORIGINAL WORD:

CHOTI#O

- · . . HINDI-OCR "
MAIN QUTPUT

roll~ ~, ~'1 ;r.g ~
....... . ~

CHOTI-SI HUN LEKIN FIR BHI

On clicking the Results option, another child window

appears with caption title 'Analyze a Line' and a pop down

menu option. The pop down menu has options for

Display_ Results, Modify, Quit. When the option Display_ Results

is chosen then original line of text analyzed is displayed

along with the coded results, as shown in Fig.11.4. The modify

option allows a particular word of the given line of text to

be modified, as shown in Fig.11.5. 0

On clicking the Ok button, the system begins to analyze

the next line of text.

11.2 SPECIFICATIONS

The system enables one to scan, read and recognize

documents on IBM Personnel Computers and compatibles in the MS

Windows environment.

Algorithm

Functions

Fonts

Recognized characters

Character size

Feature extraction based on contour

analysis.

1. Recognition

2. Editing Results

Font independent: attempted with the

help of Artificial Neural Networks.

Font dependent: user requested to

provide the font number.

Hindi Text

lOxlO to 64x64

57

Pitch

Document types

Quality of printing

Input image format

output text format

Accuracy rate

Recognition speed

System requirements

Operating System

Memory requirements

any

Monospaced, proportionally spaced and

typeset documents.

Typographical printing, type-setting,

laser printing, hand drawn text.

Uncompressed or compressed PCX.

Plain ASCII

At least 85% (in case of good quality

printouts }

cps(on 20 MHz AT/386}

IBM AT, AT/386, AT/486 or compatible.

MS Windows 3.0 or later

According to MS Windows requirements.

58

CHAPTER 12

TRAINING ALGORITHM

CHAPTER 12

TRAINING ALGORITHM

Two different approaches have been adopted to train the

system to recognize text of different fonts. The first

approach consists of maintaining different databases for each

of the fonts. The user is requested to give a font number and

the system switches to the appropriate database. The second

approach makes use of artificial neural networks to train the

system. This approach is described below:

12.1 THE ESSENCE OF ARTIFICIAL NEURAL NETWORKS (ANNs)

An artificial neural network (ANN) , also called a "neural

net", is computational tool having AI origins. It differs from

conventional AI applications and consequently, it deserves

separate treatment. Expert systems programmed in LISP and

Prolog use "classical" symbolic processing. The programs

manipulate symbols, such as atoms and lists, to solve

problems. ANNs, on the other hand, use subsymbolic processing.

1. Subsymbolic Processing

The term "artificial neural network" resulted from AI

research that attempted to understand and model brain

behavior.

In the human brain, neurons within the nervous system

interact in a complex fashion. The human senses detect stimuli

59

and send "input" information (via neurons) to the brain.

Within the brain, neurons are excited and interact with each

other. Based on the input, a conclusion is drawn, and an

"output" is sent from the brain in the form of an answer or

response. Neurologists and AI researchers have proposed a

highly interconnected network of "neurons", or nosed to

develop the same type of structure for a computer modelling of

intelligent behavior.

Expert systems operate symbolically, on a macroscopic

scale. They use symbolic processing, require knowledge of

relationships, and do not care how these relationships

develop. ANNs, however, operate subsymbolically on a

microscopic scale. The interactions between nodes is well

defined and adjusted until the desired input-output

relationships are properly matched.

The interconnection of nodes form the artificial neural

network (ANN). All ANNs have an input layer, one or more

hidden layers, and an output layer. An ANN can be viewed as a

"black box" into which we send a specific input to all the

nodes in the input layer. The ANN processes this information

through its interconnections between nodes (the entire

processing step is hidden from us). Finally, the ANN gives us

a final output, which results from the nodes on the output

layer.

Input Layer - receives information from an external source,

and passes this information into the ANN for processing.

Hidden Layer - receives information from the input layer, and

"quietly'' does all of the information processing. The entire

60

INPUT
LA'IER

l41t>D£N

lA'#ER

OUTPUT

LAlEJl

processing step is hidden from view.

Output Layer - receives processed information from the ANN,

and sends the results out to an external receptor.

12.2 OPERATING AN ANN

To operate an ANN, we require the following three phases:

the training or learning phase,

the recall phase, and

the generalization phase.

In the training or learning phase, we repeatedly present

a set of input-output patterns to the ANN. We adjust the

weights of all the interconnections between nodes until the

specified input yields the desired output. Through these

activities, the ANN "learns" the correct input-output response

behavior.

After the training phase, we move to the recall and

generalization phases. In ANN development, the training phase

is typically the longest and most time-consuming step. In the

recall phase, we subject the ANN to a wide array of input

patterns seen in training, and introduce adjustment to make

the system more reliable and robust. During the generalization

phase, we subject the ANN to novel input patterns, where the

system hopefully performs properly.

12.3 PROPERTIES OF ANNs

ANNs have a number of properties that make them

advantageous over other computational techniques, as described

61

below.

(1) Information is distributed over a field of nodes. This

provides greater flexibility than symbolic processing, where

information is held in one fixed location.

(2) ANNs have the ability to learn. If an error or a novel

situation occurs that creates inaccurate system results, we

can use "backpropagation" to correct it. During

backpropagation, we adjust the strengths of the signals

emitted from the nodes until the error disappears. At that

point, the system has effectively "learned". When the system

encounters that situation in the future, the ANN will model it

properly.

(3) ANNs allow extensive knowledge indexing. Knowledge

indexing is the ability to store a large amount of information

and access it in a simple manner. An ANN provides inherent

knowledge indexing. It can recall, for example, diverse

amounts of information associated with a chemical name, a

process, or a set of process conditions. The knowledge is

retained in the network via two means: 1) the connections

between nodes, and 2) the weights of these connections.

4) ANNs are better suited for processing noisy, incomplete, or

inconsistent data. No single node within an ANN is directly

responsible for associating a certain input with a certain

output. Instead, each node encodes a microfeature of the

input-output pattern. The concept of microfeature implies that

each node affects the input-output pattern only slightly. Only

when we assemble all the nodes together into a single

coordinated network, can these microfeatures map the

62

macroscopic input-output pattern. In addition to the

microfeature concept for ANNs, the signals sent to and from

nodes are continuous functions. Consequently, the ANN can

deduce proper conclusions, even from noisy, incomplete, or

inconsistent input signals.

(5) ANNs mimic human learning processes. Most human learning

and problem-solving occurs by trial and error. ANNs operate in

the same fashion. We can train them by iteratively adjusting

the strength of the connections between the nodes. After

numerous iterative adjustments, the ANN can properly predict

cause-and-effect relationships. u

12.4 FUNDAMENTALS OF NEURAL COMPUTING

12.4.1 Components of a Node

The foundation of an ANN is the artificial neuron, or

node (sometimes called neurode) . In most scientific and

engineering applications, this node is called a processing

element (PE).

The PEs are the elements in the ANNs where most

calculations are performed.

1. Inputs and Outputs

The first element in the jth PE is an input vector, a

with components al,a2,a3, ,ai, ,an. The node

manipulates these inputs, or activities to give the output bj.

This output can then form the part of the input for other PEs.

2. Weight Factors

The PE uses weighted input to determine the output from

the PE.

63

o., lJ,} -
O.zWzj---

Q.~ (a}C:j.

~~---'

..

3. Internal Thresholds

The internal threshold for the jth PE, denoted Tj,

controls activation of the node. The node calculates all its

ai wij's, sums the terms together, and then calculates the

total activation by subtracting the internal threshold value:

4. Functional Forms

The PE performs calculations based on its input. It takes

the dot product of vector a with vector Wj, subtracts the

threshold Tj, and passes this result to a functional form f().

Mathematicians and computer scientists have found that

the sigmoid (S-shaped) function is particularly advantageous.

A typical sigmoid function is:

f(x) =--
1-

1+e-x

This function is monotonically increasing, with limiting

values of

O(atx=-oo)/\

1 (atx=+oo)

Because of these limiting values, sigmoid functions are called

threshold functions. At very low input values, the threshold

function output is zero. At very high values, the output value

is one.

64

12.4.2 Topology of an Artificial Neural Network

The topology of an ANN refers to how its PEs are

interconnected.

1. Inhibitory or Excitory Connections

Connections can either inhibit or excite the node. If the

weight is positive, it will excite the node, increasing the

activation of the PE. If the signal is highly inhibitory, it

may lower the input below the threshold level and shut the

node down.

2. Connection Options

There exist three connection options.

a) Intralayer connections,

b) Interlayer connections, and

c) Recurrent connections.

In intralayer connections, the outputs from a node feed

into other nodes in the same layer.

In interlayer connections, the outputs from a node in one

layer feed into nodes in another layer.

In recurrent connections, the output from a node feeds

into itself.

The type of problem we are trying to solve determines

which topology we favor. For example, if we wish to develop an

ANN that trains itself, we may use feedback connections. In

contrast, in dynamic modelling of a chemical reactor, we are

trying to map an output response based on an input signal,

therefore, we favor the feedforward connection.

65

' '3

0 0

! N 1"RALA'1 ER

FEEbFORWAR])

!NTER.LA'f£R

~

)

0

I AI :J

000
oBo
~o8

"R£C.URR£NT

fEE]) BAC.K

12.5 LEARNING AND TRAINING WITH ARTIFICIAL NEURAL NETWORKS

To train ANNs, we adjust the weight factors until the

calculated output pattern (response) based on the given input

matches the desired cause-and-effect relations. Learning is

the actual process of adjusting weight factors based on trial

and-error.

1. Stability and Convergence

The training phase needs to produce an ANN that is both

stable and convergent. A globally stable ANN maps any set of

inputs to a fixed output. Stability guarantees a result, but

it does not necessarily guarantee an accurate result.

A convergent ANN produces accurate input-output

relations., Convergence, then is related to the accuracy of

the ANN. The magnitude of error between real-world results and

those predicted by the ANN is a direct measurement of ANN is

convergence.

2. Types of learning

There are many different approaches to training ANNs.

Most approaches fall into one of the two groups:

a) Supervised learning - an external teacher controls the

learning and incorporates global information.

b) Unsupervised learning - no external teacher is used and

the ANN relies upon both internal control and local

information. Frequently, the ANN develops its own model

66

without additional input information.

12.5.1 Learning Procedure

Error-Correction Learning - the most common type of learning

used in ANN today. It is a form of supervised learning, where

we adjust weights in proportion to the output error vector.

This output error vector has n components, where n is the

number of nodes in the output layer.

We begin error-correction learning by defining the output

error from a single node on the output layer as:

where,

E! nistheoutpute,

dnisthedesiredoutput,

Abnisthecalculatedouput,

for the nth node in the output layer only.

We then calculate the total squared error of the output layer,

E, as:

Knowing E, we can calculate the change in the weight factor

for the ith to the jth node,

Pjisalinearproportionalityconstantfornodej(typically,O<Pj<

67

a iisthei thinput
0

12.5.2 Backpropagation Learning: Vanilla Backpropagation

Algorithm

1. Requirements for Backpropagation Learning

Backpropagation requires an ANN known as a perceptron. A

perceptron may be defined as an ANN with only feedforward

interlayer connections, and no intralayer or recurrent

connections. Each layer must feed sequentially into the next

layer, with no feedback connections. In the following section

we investigate a three-layer, sequential perceptron.

The perceptron ANN has three layers, A, B and C. Feeding

into layer A is the input vector I(L). Thus layer A has L

nodes, that is, a(l}, a(2), a(i), a(L). Layer B, the

hidden layer, has m nodes: b(l), b(2}, b(j), ,b(m). In

the drawing, L=m=3, but in practice, L<>m is acceptable. Layer

c, the output layer, is next. There are n C-layer nodes,

again, L<>m<>n is acceptable. The interconnection weight

between the i-th node of layer A and the j-th node of layer B

is denoted as v(i) (j), and that between the i-th node of layer

B and the j-th node of layer C are w(i) (j). Each node has an

internal threshold value. For layer A, the threshold is T(Ai),

for layer B, T(Bj), and for layer C, T(Ck).

THE VANILLA BACKPROPAGATION TECHNIQUE

Backpropagation learning attempts to properly map given

inputs with desired outputs by minimizing an error function.

Typically, we use the sum-of-squares error.

68

Below is the step-by-step adjustment procedure known as

the vanilla backpropagation algorithm (Simpson,1990).

Step 1:

Randomly specify numerical values for all weight factors (

v(i) (j)'s and w(j) (k) 's within the interval [-1,+1].

Likewise, assign internal threshold values (T(Ai), T(Bj),

T(Ck} for every node, also between +1 and -1. Note that

i=1,2, ,L, where L is the number of nodes in layer A;

j=1,2, ... ,m, where m is the number of nodes in layer B; and

k=1,2, ... ,n, where n is the number of nodes in layer c.

Step 2:

Introduce the input I(i) into the ANN. Calculate all outputs

from the first layer, using the standard sigmoid function

introduced previously:

1 a.=f(x.) =---
~ ~

1 + e -xi

Here, I(i) is the input into the i-th node on the input layer,

T(Ai} is internal threshold for the node and a(i) is the

output from the node.

Step 3:

Given the output from layer A, calculate the output from layer

B, using the equation:

where f() is the same sigmoid function.

69

Step 4:

Given the output from layer B; calculate from layer C, using

the equation:

where f() is the same sigmoid function.

Step 5:

Now backpropagate through the network, starting at the output

and moving backward toward the input. Calculate the k-th

component of the output error, for each node in layer C,

according to the equation:

wheredkisthedesiredresultAckistheactualresult.

Step 6:

Continue backpropagation, moving to layer B. Calculate the j

th component of the error vector, of layer B, using the

equation:

Step 7:

Adjust weights, calculating the new w(j) (k) as:

for j=l to m and k=l to n.

ThetermPcisapositiveconstantcontrollingthelearningrateElay

70

Step 8:

Adjust the thresholds T(Ck) in layer c, according to the

equation:

Step 9:

Adjust weights v(i) (j), according to the equation:

for i=1 to L and j=1 to m.

ThetermPBisapositiveconstantcontrollingthelearningrateofla.

Step 10:

Adjust the thresholds T(Bj) (j=1 to m) in layer B, according

to the equation:

Step 11:

Repeat steps 2-10 until the squared error, E, or the output

error vector is zero or sufficiently small.

The vanilla backpropagation algorithm is a gradient

descent learning technique. We use Newton's method (moving

down a gradient on a surface) to minimize the error. The

advantage of this method is that weight changes are estimated

systematically rather than arbitrarily.

71

CHAPTER 13

CONCLUSION

CHAPTER 13

CONCLUSION

The main aim was to recognize printed and hand drawn

Hindi text. The data was scanned with the help of a hand

scanner. The input text was taken from class II and class VII

N.C.E.R.T. Hindi books and some hand drawn characters. First

the image processing techniques were applied for segmentation

of the text. Next the individual characters were subjected to

smoothing and thinning. The preprocessed characters were

subjected to feature extraction and these features were

compared to the features stored in the database for individual

characters.

A confidence level of above 75% was required to declare

the character to be the same with which it was being compared.

Certain amount of heuristics was used to form composite

characters and words. A recognition rate of 85% and above has

been obtained.

The above system has not used any contextual information

to classify the characters.

The current system can be expanded to include contextual

information to recognize characters. This would enable

enhancement of the rate of recognition further.

72

REFERENCES

REFERENCES

(1] Amlan Kundu, "Robust Edge Detection", Pattern Recognition,

vol.23, No.5, pp. 423-440, 1990.

(2] c.c Tappert, C.Y. Suen, T.Wakahara, "The state of the Art

in on-Line Handwriting Recognition", IEEE Trans. Patt. Anal.

Machine Intell., vol.12, No.8, Aug 1990.

[3] Frank Yeon-Chyang Shih

"Decomposition of Gray-scale

Mitchell, and Owen Robert

Morphological Structuring

pp 195-203, Elements", Pattern Recognition,

1991.

vol.24, No.3,

(4] F. Kimura and M. Shridhar, "Handwritten Numerical

Recognition Based on Multiple Algorithms", Pattern

Recognition, vol.24, No.10, pp 969-983, 1991.

(5] G. Baptista and K.M. Kulkarni, "A High Accuracy Algorithm

for Recognition of Handwritten Numerals",

Recognition, vol.21, No.4, pp 287-291, 1988.

Pattern

(6] Guangzheng Yang, "On the knowledge-based Pattern

Recognition using Syntactic Approach", Pattern Recognition,

vol.24, No.3, pp 185-193, 1991.

[7] G.P Albrecht, Y. Le Cun, J. Denker and w. Hubbard, "Design

of a Neural Network Character Recognizer for a Touch

Terminal",

1991.

Pattern Recognition, vol.24, No.2, pp 105-119,

[8] H.J.A.M. Heijmans and A. Toet, "Morphological sampling",

CVGIP: Image Understanding, vol.54, No.3, November, pp 384-

400, 1991.

[9] H. Lynn Beus and Steven S.H. Tiu, "An Improved Corner

Detection Algorithm Based on Chain-coded Plane curves",

Pattern Recognition, vol.20, No.3, pp 291-296, 1987.

[10] I. Sekita, K. Toraichi, R. Mori, K. Yamamoto and H.

Yamada, "Feature Extraction of Handwritten Japanese

Chartacters by Spline Functions for Relaxation Matching",

Pattern Recognition, vol.21, No.1, pp 9-17, 1988.

[11] James L. Conger, Windows API Bible, Waite Group Press.

[12] J.F. Haddon and J.F. Boyce, "Co-occurrence matrices for

image analysis", Electronic & Communication Engg. Journal,

April 1993.

[13] Jean Serra, "Introduction to Mathematical Morphology",

Comput. Vision Graphics Image Process.,35, 283-305 (1986).

[14] Jean-Jules Brault and Rejean Plamondon, "Segmenting

Handwritten signatures at their Perceptually Important

Points", IEEE Trans. Patt. Anal. Machine Intell., vol.15,

No.9, Sept 1993.

[15] J. Ohya, A. Shio, and S. Akamatsu, "Recognizing

Characters in Scene Images", IEEE Trans. Patt. Anal. Machine

Intell., vol.l6, No.2, Feb 1994.

(16] J. Song and E.J. Delp, "The Analysis of Morphological

Filters with Multiple structuring Elements", Comput. Vision

Graphics Image Process., 50, 308-328 (1990).

(17 J J. W. Roach and J. E. Tatem, "Using Domain Knowledge in

Low-Level Visual Processing to Interpret Handwritten Music: An

Experiment",

1988.

Pattern Recognition, vol.21, No.1, pp 33-44,

(18] J. Wu and c. Chan, "Isolated Word Recognition by Neural

Network Models with cross-correlation coefficients for Speech

Dynamics", IEEE Trans. Patt. Anal. Machine Intell., vol.15,

No.ll, Nov. 1993.

(19] K.K. Bharadwaj and N.K. Jain, "Hierarchical Censored

Production Rules (HCPRs) System", Data & Knowledge Engg. 8

(1992) 1 19-34.

(20) K. Paler, J. Foglein, J. Illingworth and J. Kittler,

"Local Ordered Grey Levels as an Aid to Corner Detection",

Pattern Recognition, vol.17, No.5, pp 535-543, 1984.

[21) Lawrence o' Gorman, "The Document Spectrum for Page Layout

Analysis", IEEE Trans. Patt. Anal. Machine Intell., vol.15,

No.ll, Nov 1993.

[22] Li Wang and Theo Pavlidis, "Direct Gray-scale Extraction

of Features for Character Recognition", IEEE Trans. Patt.

Anal. Machine Intell., vol.lO, No.lO, Oct 1993.

(23] M. Cheriet and C.Y. Suen, "Extraction of Key Letters for

Cursive Script Recognition", Pattern Recognition Letters 14

(1993).

[24] Mei-Hsing Chen and R.T. Chin, "Partial Smoothing Splines

for Noisy Boundraies with Corners", IEEE Trans. Patt. Anal.

Machine Intell., vol.15, No.11, Nov 1993.

[25] M. Shridhar and A.Badreldin, "High Accuracy Character

Recognition Algorithm using Fourier and Topological

Descriptors", Pattern Recognition, vol.17, No.5, pp 515-524,

1984.

[26] Paul D. Gader, "Separable Decompositions and

Approximations of Greyscale Morphological Templates", CVGIP:

Image Understanding, vol.53, No.3, May, pp 288-296, 1991.

[27] P. Saint-Marc, H. Rom, and G. Medioni, "B-Spline contour

Representation and Symmetry Detection", IEEE Trans. Patt.

Anal. Machine Intell., vol.15, No.11, Nov 1993.

[28] R.C. Gonzalez and P. Wintz, Digital Image Processing,

Addison-Wesley Publishing Company.

[29] R.W. Hall, "Optimally small Operator supports for Fully

Parallel Thinning Algorithms", IEEE Trans. Patt. Anal. Machine

Intell., vol.15, No.8, Aug 1993.

[30] R.M. Haralick and J.S.J. Lee, "Context Dependent Edge

Detection and Evaluation", Pattern Recognition, vol.23,

No.1/2, pp 1-19, 1990.

[31] R.M. Brown, T.H. Fay and C.L. Walker, "Handprinted Symbol

Recognition System", Pattern Recognition, vol.21, No.2, pp 91-

118, 1988.

(32] R.M.K. Sinha and H.N. Mahabala, "Machine Recognition of

Devanagari Script", IEEE trans. on Sys. Man & Cybernetics,

vol. SMC-9, No.8, Aug 1979.

(33] R.M.K. Sinha, B. Prasada, G.F. Houle, and M. Sabourin,

"Hybrid contexual Text Recognition with String Matching",

IEEE Trans. Patt. Anal. Machine Intell., vol.15, No.9, Sept

1993.

(34] R.M.K. Sinha and B. Prasada, "Visual Text Recognition

through Contexual Processing", Pattern Recognition, vol.21,

No.5, pp. 463-479, 1988.

(35] Rosenfeld & Kak, "Digital Image Processing".

(36] R.P. Johnson, "Contrast Based Edge Detection", Pattern

Recognition, vol.23, No.3j4, pp. 311-318, 1990.

[37] s. Hazout and N.Q. Nguyen, "Image Analysis by

Morphological Automata", Pattern Recognition, vol.24, No.5,

pp. 401-408, 1991.

[38] Stanley R. Sternberg, "Grayscale Morphology", Comput.

Vision Graphics Image Process, 35, 333-355 (1986).

[39] Shyam s. Sareen, "Recognition of Handwritten and Printed

Numerals", M.Tech Dissertation, I.I.T. Delhi.

[40] Satoshi Suzuki and Keiichi Abe, "Binary Thinning by

Iterative Parallel Two-Subcycle opeartion", Pattern

Recognition, vo1.20, No.3, pp. 297-307, 1987.

(41] Song-Tyang Liu and Wen-Hsiang Tsai, "Moment - Preserving

Corner Detection", Pattern Recognition, vol.23, No.5, pp. 441-

460, 1990.

(42] si Wei Lu, Ying Ren, and Ching Y. suen, "Hierarchical

Attributed Graph Representation and Recognition of Handwritten

Chinese Characters", Pattern Recognition, vol.24, No.7, pp.

617-632, 1991.

(43] Steve Rimmer, Bit-Mapped Graphics, Windcrest Books.

(44] Tin Kam Ho, J.J. Hull and S.N. Srihari, "Decision

Combination in Multiple Classifier systems", IEEE Trans. Patt.

Anal. Machine Intell., vol.l6, No.1, Jan 1994.

[45] T. Taxt, J.B. Olafsdottir, and M. Daehlem, "Recognition

of Handwritten Symbols", Pattern Recognition, vol.23, No.ll,

pp. 1155-1166, 1990.

(46] T.Y. Zhang and C.Y. Suen, "A Fast Parallel Algorithm for

Thinning Digital Patterns", Communications of the ACM, March

1984, vol.27, No.3.

(47] W.A.C. Schmidt, and J.P. davis, "Pattern Recognition

Properties of various Feature Spaces for Higher Order Neural

Networks", IEEE Trans. Patt. Anal. Machine In tell., vol .15,

No.8, Aug 1993.

(48] X. Huang, J. Gu, and Y. Wu, "A Constrained Approach to

Multifont Chinese Character Recognition", IEEE Trans. Patt.

Anal. Machine Intell., vol.15, No.8, Aug 1993.

[49) X. Zhuang and R.M. Haralick, "Morphological Structuring

Element Decomposition", Comput. Vision Graphics Image Process,

35, 370-382 (1986).

[50) Yih-Tay Tsay and Wen-Hsiang Tsai, "Attributed String

Matching by Split-and-Merge for on-Line Chinese Character

Recognition", IEEE Trans. Patt. Anal • Machine In tell • , vol .15,

No.2, Feb 1993.

[51) z. Wu and R. Leahy, "An Optimal Graph Theoretic Approach

to Data Clustering: Theory and its Application to Image

Segmentation", IEEE Trans. Patt. Anal. Machine Intell.,

vol.15, No.11, Nov 1993.

[52) A Basic Grammar of Modern Hindi, Central Hindi

Directorate, Ministry of Education & Culture, Govt. of India,

N.D.

	TH56080001
	TH56080002
	TH56080003
	TH56080004
	TH56080005
	TH56080006
	TH56080007
	TH56080008
	TH56080009
	TH56080010
	TH56080011
	TH56080012
	TH56080013
	TH56080014
	TH56080015
	TH56080016
	TH56080017
	TH56080018
	TH56080019
	TH56080020
	TH56080021
	TH56080022
	TH56080023
	TH56080024
	TH56080025
	TH56080026
	TH56080027
	TH56080028
	TH56080029
	TH56080030
	TH56080031
	TH56080032
	TH56080033
	TH56080034
	TH56080035
	TH56080036
	TH56080037
	TH56080038
	TH56080039
	TH56080040
	TH56080041
	TH56080042
	TH56080043
	TH56080044
	TH56080045
	TH56080046
	TH56080047
	TH56080048
	TH56080049
	TH56080050
	TH56080051
	TH56080052
	TH56080053
	TH56080054
	TH56080055
	TH56080056
	TH56080057
	TH56080058
	TH56080059
	TH56080060
	TH56080061
	TH56080062
	TH56080063
	TH56080064
	TH56080065
	TH56080066
	TH56080067
	TH56080068
	TH56080069
	TH56080070
	TH56080071
	TH56080072
	TH56080073
	TH56080074
	TH56080075
	TH56080076
	TH56080077
	TH56080078
	TH56080079
	TH56080080
	TH56080081
	TH56080082
	TH56080083
	TH56080084
	TH56080085
	TH56080086
	TH56080087
	TH56080088
	TH56080089
	TH56080090
	TH56080091
	TH56080092
	TH56080093
	TH56080094
	TH56080095
	TH56080096
	TH56080097
	TH56080098
	TH56080099
	TH56080100
	TH56080101
	TH56080102
	TH56080103
	TH56080104
	TH56080105
	TH56080106
	TH56080107
	TH56080108
	TH56080109
	TH56080110
	TH56080111
	TH56080112
	TH56080113
	TH56080114
	TH56080115
	TH56080116
	TH56080117

