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CHAPTER 1

INTRODUCTION




1.4 INTRODUCTION TO C++

C++ 1s a general purpose programming language designed
to make programming more enjoyable for the serious
programmer. It enables reasonably educated and experienced
programmers write programs at a higher 1level of abstraction
without 1loss of efficiency compared to C for applicétions
that areAdemanding in time, space, inherent.complexity and
constraints from the execution'environment [Str, 1993]. C++
was developed from the C programming language. C was chosen
-as the base language for C++ because,

a. it is versatile, terse and relatively low-level;

b. it is adequate for most system programming tasks;

c. it 1is available on a wide variety of hardware platforms
and operating systens;

d. it fits into the UNIX programming environment.

The difference between C and C++ is primarily in the
degree of emphasis on types and structures.'c is expressive
and permissive. C++ is even more expressive in the sense that
it allows the user to define his own types. This helps the
programmer défine appropriate types in the software to model

‘the real world entities.

C++ made object oriented programming and data
abstraction available to the community of software

developers that until then had considered such techniques and



the languages that supported them such as Smalltalk, CLU,

Simula, Ada, object oriented Lisp dialects etc with disdain.

/

C++ 1is already widely available and is in wide use for
‘real application and system development. C++ has not been
standardized as yet. The proposal for ANSI standardization
was written by Dimtry Lenkov [Len, 1989).  Dimtry’s
proposal made a strong case for a careful and detailed

definition of the C++ language.

His main motivation for doing so was the increasing
popularity of C++ among scftware developers and the
availability of several independent but incompatible C++
compilers. He argued that. an early standardization of C++ is
in the interest of software cémmunity since it will prevent

the proliferation of incompatible C++ dialects.

The ANSI C++ committee was formed in December 1989 and
ISO C+; committee in June 1991 for standardization of C++.
These two committees decided to hold jdint meetings for
standardization of C++. The C++ committee had a difficult
charter :
a. The definition of the 1language must be preciée and
comprehensive.
b. C/C++ compatibility had to be addressed.

c. Extensions beyond current C++ practice had to be



considered.

d. Libraries had to be considered.

The aim of the ANSI and ISO C++ committees was to
publish the complete draft working paper (DWP) for public
review by late 1993 and to publish the official standard
about two years later. However, the standardization effort is
considerably behind the original schedule and the official

‘standard is now expected in 1997.

1.2 THE NEED FOR A C++ VERIFICATION SUITE

There is an urgent need for a verification suite for
C++ compilers because the language is.complex and is not yet
standardized in all its dimensions. The language 'is complex
because of the active interplay of features 1like class,
irheritance, dynamic binding etc. Further the standardization
committee is coming out with a' new version of the DWP every
six months. So the compilers will have to be updated from
‘time to time. In this context there is a need to test the

compilers to ensure that they conform to the latest changes.

An independent verification suite is far more
preferable in contrast to one written by compiler developer
because :

a. Testing is essentially a destructive process and it is

hard to be destructive on something one has created. It is



natural for everyone to believe that the program they have
written works well. So it is not easy for a software
developer to test his own software with a proper frame of
mind for testing [Jal, 1991].

b. If a software is tested by people not involved with
developing the same, then they may succeed in finding those
errors which might have occurred due to the fact that the
developers did not understand the specifications clearly

[Jal, 1991].

1.3 AN OVERVIEW OF THE THESIS

This thesis consists of test programs based on the
functional specifications of the C++ language in the draft
working paper dated 1st June 1993. The test programs are

written for the following three chapters of the DWP

a. Chapter - 9 Classes
b. Chapter -10 Derived Classes

c. Chapter -11 Menber access control

In vthis thesis, the focus 1is on these chapters
because of the following reasons
a. The concept of class, derived class, and member access
control are fundamental features of C++.

b. Many changes have been introduced in these chapters in



the DWP as compared to the Annotated Reference Manual [Ell,

1990].

Broadly there are two different approaches for testing
.a software : functional testing and structural testing [Jal,
1991]. In functional‘testing the software or module to be
tested 1is treated as a black box, and the test cases are
decided based on the specifications of the system or the
module. The focus is here on testing the external behaviour
of the system. In structural testing the test cases are
decided based on the internal structure or logic of the

module to be tested.

This verification (or test) suite consists of test
programs for functional testing of C++ compilers. This is so
because of thé following factors :-

‘a. our goal is to evaluafe the performance of any C++
compiler with respect té the functional specifications of the

C++ language in the DWP.

b. Structural testing requires access to the source code of a
compiler. However, the source code of commercial C++

compilers is, in general, not available.

c. A test suite based on functional testing approach can be
used to evaluate any C++ compiler. In contrast, a test suite

based on structural testing will only be useful for the



compiler on whose internal structure it is based.

We expect that our verification suite will be

useful for :-

a. Developers of C++ compilers, since this suite can be

used for carrying out functional testing.

b. Users of C++ compilers to test and judge the quality of

various C++ compilers available.

c. For learners of C++, since this suite consists of about
two hundred programs based on most of the language features
related to the chapters on classes, derived classes, and

member access control.
The rest of this thesis is organized as follows:-

Chapter 2 provides detaiis about different categories
of test programs and eﬁplains how the suite is organized.
-Chapter 3 gives an overview of classes and explains about
data members, function members, POD struct / POD union, scope

and name lookup rules, nested classes and local classes.

Chapter 4 gives an overview of derived classes and
underlying concepts like multiple base classes, virtual base

classes, ambiguities, virtual functions, and abstract

classes.



Chapter 5 gives an overview of member access control
and focuses on issues 1like access specifiers, access

declarations, protected member access, and friends.

Chapter 6 contains results and conclusions. Appendix A
contains a copy of chapters 9-11 of the DWP. Appendix B gives
the details about the contents of the floppy attached to this

thesis.



CHAPTER 2

ORGANIZATION OF THE VERIFICATION SUITE




2.1 INTRODUCTION

This verification suite consists of a collection of
test programs. Each test program is based on a specific
feature given in the relevant portion of the DWP. There are

two categories of test programs :

a. Positive test programs, that is, which contain no compile
time errors as per the DWP specifications. These are named as

p*.cpp.

b. Negative test programs, that is, which are expécted.to
.give a compile time error or warning as per the DWP

specifications. These are named as n*.cpp.

Each test program is based on some feature specified

in a particular para, section, and chapter of DWP because :

a. If a single program 'is written for all the features in a
para then the program will become large and complex. Hence it
will be difficult to manually check whether the program is

correct or not.

b. If the program detects an error, i.e., a deviation from
the DWP specifications, in the compiler under test, then it

‘will be easier to pin point the error and locate its cause.

A test program detects an error in the compiler under



test by checking any of the following:-

~a. Whether the compiler is able to detect the compile time

error in it or not.

b. Whether the conditions implied by DWP specifications are

in fact true or not in a program during run time.

c. Whether the values of variables implied by DWP
specifications are in fact the actual values in a program

during run time.
2.2 NAMING CONVENTION FOR TEST PROGRAMS

The scheme that has been adopted for naming ‘most of
~the test programs is as follows. The first two numeric
characters immediately after 1n or p represent the chapter
nunber, i.e., they are 09 for chapter 9, 10 for chapter 10,
and 11 for chapter 11. of the 'DWP. The next two numeric
characters represent the section number and the next two
characters represent the paragraph number of the feature in
the DWP, on which the test program is based. The 1last
character representé the number of test written for the same
para number, i.e., like a is used for the first test, b for
the second test, ¢ for the third test and so on. For example,

consider the following:

‘a. Test program name p090202a.cpp, implies this is the first

10



positiveltest program based on the feature given in chapter
9, section 9.2, para 2 of the DWP.

b. Test program name n110303c.épp, implies this 1is the third
negative test program based on the feature given in chapter

11, section 11.3, para 3 of DWP.

However there is a little deviation to this scheme for
few test programs because if the above scheme is followed the
name of the file may contain more than eight alpha-numeric
characters before the pericod. However, MS-DOS allows only
eight characters in a file name beforevthe period. So where
ever possible instead of using two numeric characters each
for the -chapter number, the section nﬁmber, and the para

number only one numeric character is used. For example,

a. Test program name n921102b.cpp, implies this 1is the
.second test program based on the feature given in chapter
nunber 9, section number 9.2.1, para number 1, sub para
number 2 of the DWP?

b. Test program name p093101d.cpp, implies this is the fourth
test program based on the feature given in chapter number 9,

section number 9.3.1, para number 1, of the DWP.

2.3 POSITIVE TESTS

A positive test program contains no error as per the

DWP specifications. However if the compiler reports errors in

11



it on compilation, then it implies that the test has failed
and there are errors in the C++ compiler under test.
If a positive test compiles successfully it 1is executed.
During its execution, a positive test checks the values of
its internal variables to verify whether the run-time
behaviour of this compiled test program is as per the DWP
~specification. In particular, one of the following may occur

when a positive test is executed :

a. If there is no error in the compiler then it will give no

output.

b. An error is detected in the compiler by the program, say
p*.cpp, during runtime since the value of the relational
expression, on source line L, is found to be false(true),
instead of true(false). In such a case the follqwing output

is produced,

ERROR: LINE NO: L

TEST PGM p*.cpp FAILED.

For example, consider the test program p090003.cpp

given below.

#include <iostream.h>

. /* PGM NAME :P090003.CPP

REFER TO :SEC :9.0, PARA :3, PG :9-1

FEATURE :OBJECTS OF AN EMPTY CI.ASS HAVE A NON-
ZERO SIZE AND HAVE DISTINCT ADDRESSES.

Db WP

12.



6 */

7 void main()

8. { _

9. int tf=0; // Flag for test fail.

10. class A { }; // Class with no members, Empty class.
11. A el,e2; // el, e2 are objects of empty class.
12. A* pl=&el; .

13. if (pl==&e2) { coOut<<"LINE NO : "<<_ LINE ; tf=1; }
14. // Checks whether the objects el, e2 have distinct
15. // addresses.

16. . int i=sizeof(el); -

17. if (i==0){ cout<<"LINE NO : "<<__ LINE_ ; tf=1; }
i8. //Checks whether the empty class is non zero.
19. if(tf)cout<<"\n TEST PGM FP090003.CPP FAILED. \n";
20. }

For testing this feature two‘objects el, e2 of empty
class A are defined on 1line 11. On line 13 in the 1if
statement, it is checked whether the objects el, e2 have
distinct addresses. If the objects el, e2 do not have
distinct addresses, then the relational expression which is
inside if statement on line 13 is +t{rue and hence the program

will give the output as below:

ERROR : LINE NO: 13

TEST PGM P090003.CPP FAILED.

c. If an errof is detected in the compiler by the program,
'say p*.cpp, during runtime since it is found that on 1line
numpber L of the program the value of variable X is A inétead
of E as per DWP specification. Then it will give output in

" the format shown below :
ERROR: LINE NO: L :VAR NAME: X

13



ACTUAL VALUE: A EXPECTED VALUE: E

TEST PGM P*.CPP FAILED.

Consider the following example below,

1. #include<ijiostream.h>

2. /* PGM NAME :P090205.CPP

3. REFER TO :SEC:9.2, PARA:5, PG:9.4

4. FEATURE :A CLASS Cl1 MAY CONTAIN A POINTER OR REFERENCE
TO AN OBJECT OF CLASS C1.

5. %/

6. class A

7. {

8. public:

9. A()

10. :t2(*this)
11. { } :
12. A* t1;

.13. A& t2; //Reference to an object of type A.
14. int i;

15. };

16. void main()
17. {

18. A al,a2;

19. al.til=&a2;

20. int tf=0;

21. al.i=19;

22. if(al.t1->i!=a2.i){ ...... }

23. if(al1.t2.i!=19) { cout<<"\nERROR: LINE NO: "<<  LINE _
<<" :VAR NAME: al.t2.i" ’
<<"\n ACTUAL VALUE: "<<al.t2.i;
<<" EXPECTED VALUE: 19";tf=1;

}
24. if (tf)cout<<"\n TEST PGM P090205.CPP FAILED \n\n" ;
25. } '

The feature mentioned is' being tested by assigning a
value 19 to al.i on 1line 21, this same variable is being
~accessed by the variable t2. as defined on line 13. On line 23
it is being checked whether the actual value of al.t2.i is
same as expected value which is 19. If the actual value is,

say 5, because of an error in compiler, then the program will

14



give an output as shown below:

ERROR: LINE NO: 23 :VAR NAME: al.t2.1

ACTUAL VALUE: 5 EXPECTED VALUE: 19

TEST PGM P090205.CPP FAILED.

Thus when the test programs with name p*.cpp give

output message in the format described in case b and c above,
it implies that test has failed and there is an error in the

C++ compiler under test.

2.4 NEGATIVE TESTS

A negative test program contains a compile time error
as per the DWP specification. For example consider the

following test progranm,

/* PGM NAME :N090203A.CPP
REFER TO :SEC:9.2, PARA:3, PG:9.4
FEATURE :A MEMBER MAY NOT BE AUTO.
*/

class A

{

public: _

auto int i; / /ERROR:Cannot be auto.
}i
void main() { }

As per the feature a class member may not be auto but

the data member int i is defined as auto in class A which is

an error.

15



A negative test program on compilation should give
either an error or warning message. However, it has not yet
been resolved by the C++ standardization committee in which
cases the compiler should give an error message and in which
cases the compiler should give a warning mnessage. So some
compilers may'give an error and some other, a warning, for

"the same negative test program submitted for compilation.

Further, the error or warning message produced may not
be related to the actual error in the program. This problem
is caused because the text of error or warning message has
not been standardized. So it is upto the user of the compiler
-to interpret the error or war;ing meséage by having a 160k at

the test program.

If a test program with name n*.cpp fail to give an
error or a warning message then it implies that the test has

failed and there is an error in C++ compiler under test.
2.5 RUNNING THE VERIFICATION SUITE

The verification suite can be used for testing all DOS
based C++ compilers by using command auco <[input]> where
[input] is the command line compilation command of the

compiler under test.

By using the above auco batch command each *,.cpp file

is compiled and the generated code, if any, 1is executed.

16



Further two files out.k and rpt.s are produced. In the file
out.k all the *.cpp files compiled are listed in a sorted
order based on chapter, section and para of feature on which

they are based.

Similarly in the file rpt.s all the error messages, if
any, generated by *.cpp files (submitted for compilation) and
the output produced, if any, are stored in a sorted order

-based on chapter, section and para of the feature concerned.

The only input that is to be given for  using test
programs in order to test a compiler, using auco'comménd, is
to give the appropriate coﬁﬁand line compilation command.
For example, if one is testing the Borland C++ compiler for
which bcc is the command line compilation command, one has to
give the following command against system prompt (c:\>, after
copying all the files from sub-directory krs of the floppy

attached to this thesis into the hard disk c:\)
c:\>auco bcc

After giving the above command, files out.k and rpt.s
are created; Thus by looking at each *.cpp file in out.k and,
their corresponding generated messages on compilation or
“output, if any, in file rpt.s one can check whether the test

has failed [refer sec:2.3-2.4] or not.

17



Further if one wants to test the compiler using only
test programs written for a chapter of DWP, it can be done by
using command auco9 for chapter 9, aucol0 for chépter 10 and
aucoll for chapter 11, instead of using command auco for all

the above three chapters.

However for using the test programs to test a C++
compiler which is not DOS based, appropriate driver programs

will have to be written.

18



"CHAPTER 3

OVERVIEW OF CLASS




3.1 INTRODUCTION

The purpose of this chapter is to give a brief
overview, with suitable examples, of features asspciated with
C++ classes. This being ‘done for the sake of completeness.
- For more details about the C++ programming language one can
refer to books written by Bjarne Strouétrup (Str, 1991] and
stanley B. Lippman [Lip 1991). Further for more insight about
the concepts associated with Object Oriented Programming one
cén refer to books by Grady Booch [Boo, 1991] and Khoshafian

et al.[Kho, 1990].

The C++ class mechaniém provides the programmer with
‘a tool for creating new types that can be used as
conveniently as the built-in types. A type is the concrete
representation of an idea or concept.. The reason for
. designing a new type is to provide a concrete and specific
definition of a concept that has no direct and obvious
counterpart among the built-in types. Fof example, one might
provide a type customer in a program dealing with bank
détabase, a type book in a program designed for 1library
managemeht, or a type train in a programvdeveloped for

railway reservation system.

A program that provides types that closely match the

concepts of the application is usually easier to understand

20



and easier to modify than a program that does nqt. A well-
chosen set of user defined types makes a program more
concise; it also enables the compiler to detect illegal uses
of objects that otherwise would not be detected until the

program is tested [Str, 1991].

The fundamental idea behind defining a neQ type is to
- separate the implementation details of the type from the
various operations that can be carried out on it. Such a
separation can be expressed by channelising the use of the
data structure and internal housekeeping routines through a

specific interface.

3.2 THE CLASS DEFINITION

A class is a user defined type. A class definition has
.two parts : the class head, composed of the kgyword class
followed by the class tag name, and the class body, enclosed
by a pair of curly braces, which must be followed by either a
semicolon or a declaration list. For example,
class SAMP
{private

char datil;
public : 77%-\6?)\ 60

void getin() { .... } '

void getout() { .... }

21




}i

Here a class with name SAMP has been defined. An object
of type SAMP is created using the declaration below.

SAMP s1;

The member specification in a class definition declares
the full set 6f members of the class; no member can be added
"elsewhere. Members of a élass are data members, member
functions, nested types and members constants. The class SAMP
defined earlier contains‘a data member datl and two function

" members getin() and getout().

A member of a class can be private, protected, or
public (refer sec:5.1]. These‘keywords control the level of

access to members of a class in a progranm.

A class can also be defined using the keyword struct.
The only difference between the keywords class and struct is
that in a class the members are private by default, while in

"a struct they are public by.default.

For example.the class SAMP defined earlier can also be
defined as |
class SAMP
¢ char datl;
public :
void getin() { .... }

‘void getout() { .... }

22



}i
or as
struct SAMP
{private :
char datil;
public :
void getin() { .... }

void getout() { «c.. }
}i

The above definitions of type SAMP are equivalent.

A union is a class declared with the class-key union,
- its members are public by default and it holds only one

member at a time.
3.3 DATA MEMBERS

The declaration of class data members is done in the
same way as the ordinary variable declarations with the
exception that an explicit initializer is not allowed. There

may be zero or more data members of any type in a class.

In the class SAMP defined in earlier example datl is the
data member of type char. Similarly other data members of

type int, float, double efc. can be declared.

A class object can be declared as a data member only if

its class definition has been seen. In cases where a. class

23



definition has not been seen, a forward declaration of class
can be supplied. A forward declaration permits pointers and
references to objects of the class to be declared as data

members.
3.4 POINTERS TO MEMBERS

Pointers to members are the variables which contain an
offset to the member from the starting point of the address
of the object of a given type. The value of a pointer to
member does not reveal its machine address, unlike‘in the
"case of pointers to ordiﬁary variables which contain the
machine address of variables to which they point. The pointer
to membérs can be defined as follows :

class A

{
public:
char ch;

int f(char);
}i

char A::*pml=&A::ch; //pml contains the offset of ch.

char A::*pm2(char)=&A::f; //pm2 contains offset of f.

Here pml is declared as a pointer to member of A of
type char and pm2.as a pointer to member of A of type int

(char). They can be used like this,

A al; . //al is object of type class A.

24



al.ch=’a’;

al.*pml='a‘;

al.f('a’);

al.*pm2(’a’);

3.5 REFERENCES

//assign ‘a’ to a character member ch of
//object al.using member access operator ‘/.’.
// 1s equivalent to al.ch=’a’;

// '.*"’ operator binds pml to address of al.
//call the function member f of object al

//with argument ‘a’ directly.

// is equivalent to al.f(’a’);

// ’'.*’ operator binds pm2 to address of al.

A references type, sometimes referred to as an alias,

'serves as an alternative name for the object with which it

has been initialized. A reference type has to be necessarily

initialized at the time of declaration and cannot be changed

. to refer to another object once it is initialized unlike in

case of the pointers. The reference variable rfl can be

declared and initialized as shown below.

A al;

A& rfl=al;

rfl.ch=’a';

.rfl.£f(’a’);

//al is object of type class A defined above.
//rfl is a reference variable declared and
//initialized to object al.
// 1s equivalent to al.ch=’a’;

// is equivalent to al.f(’a’);

25



3.6 MEMBER FUNCTIONS

Member functions of a class are the set of operations
that may be applied to the objects of that class. A function
declared as a member is called a member function and can only

be used by the objects of that class.

For example, an object sl of class SAMP definéd
earlier, can use the function member void getin() with a
return type void for storing a character in data member datl.
Similarly the function member void getout() can be used

to access the same.

Thus the member functions are nothing but the set of
predefined operations that can be carried out on the data
members. It acts as a interface to manipulate the data

members.

Members functions are distinguished from ordinary

. functions by following attributes :

a. Member functions are defined within the scope of their
class; ordinary functions are defined at file scope; This
means that they are not visible outside the scope of the

class.

b. Member functions have full access privilege to both the

public and private members of the class while, in dJeneral,

26



ordinary functions have access only to the public members

of the class.

c. The member functions of one class, in general, have no

access privileges to the members of another class.

.3.7 CONSTRUCTORS AND DESTRUCTORS

Constructor is a special member function that has the
same name as its class. It is executed automatically whenever
an object of its type is created. It - is mainly used for
initialization of objects when they are created. A
constructor 1like any ordinary function takes arguments,
however no return type can be specified for a constructor. A
constructor can also be used to initialize the data members
unlike other functions. Constructors cannot be inherited,

unlike other member functions.

The constructors can be defined as follows :
struct A

{ 3 L3

int 1;

int j;

A(k,1):i(k),3(1) {1}
//constructor, it has same name as class.

ooooooo

-------

Here, A::A(k,1l) acts as constructor. Using the
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constructor data member i is initialized with k and j is

assigned with 1.

Destructor is a special member function that has same
name as 1its class precéded by a tilde. Conceptually a
destructér reverses the effect of constructof. A destructor
is used for doing special 6perations just before the
destruction of an object. It is invoked automatically for an
.object prior to its destruction. Destructofs cannot be
inherited. A destructor takes no arguments and no return type
can be specified for it. It is also invoked iﬁplicitly to
. deallocate all the objects in the file scope before program

terminates.

The destructor can be defined as follows :

struct A
{

static int ct;
A() { ct++; }
~A() { ct-=; }

1
int A::ct=0; // Initialized to zero.

void main() { ..... }

In above example, variable ct keeps the count of number
of active objects. It is incremented by one, through
constructor when an object of type A 1is created and

decremented by one prior to destruction of an object of type

A.
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3.8 POD STRUCTURE / POD UNION

The POD struct / POD wunion in C++ ensures
compatibility with C-struct / C-union. Formally a POD struct
/ POD union is same as C-struct / C-union which contain no
constructor or destructor, no private or protected members,
no virfual functions [refer sec:4.5], no base classes [refer
sec:4.1]; no references, and contain no poinfers to members
(Plu, 1993]. Consider the follo@ing example,

union A’

{
struct B

{

int j ;

char c;
} bl;

struct C
{
int j;
double d;
} c1;
}i

here, B and C are POD-structs and A is a POD-union.

3.9 SCOPE RULES FOR CLASSES
" Looking up names in C++ programs is a problem

because of the need to reconcile with conflicting

desire :
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a. C programmers are accustomed to use a name from an
outer scope and then redefine it later 1in the same

scope.

b. Two nearby uses of the same name without an
intervening definition of that name should mean the
same thing. Moreover, a member function body explicitly
written inline should mean the same thing when written
out of 1line.

c..Reordering the members of a class should not change
the meaning of the claés for sake of understanding

class definition easily.

Unfortunately, it is hard to meet all three of
these criteria at once. ....... " [Koe, 1992]. So after
lot of consideration the following rules have been

framed: -

1. THE CLASS SCOPE RULE : The scope of a name declared in a

class consists not only of the text following the names
declarator, but also of all functions bodies, default
parameters and constructor initializers in that class
(including such things in nested classes). For example
consider,

‘#include <iostream.h>

/* PGM NAME :P921101C.CPP

REFER TO :SEC:9.2.1, PARA:1, PG:9-6
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FEATURE :THE SCOPE OF A NAME DECLARED IN A CLASS CONSISTS
NOT ONLY OF THE TEXT FOLLOWING THE NAMES
DECLARATOR, BUT ALSO DEFAULT PARARMETERS
IN THAT CLASS, INCLUDING SUCH THINGS IN NESTED
CLASSES.

*/
int tf=0;

class A

{
public:

void f(int=i, char=ch); //Default parameters.
class AN

{

public:

void f1l(int=i, char=ch); //Default parameters.
}a5; :

static int i;

static char ch;

}i

int A::i=5;
char A::ch=’a’;

void A::f(int.il, char chil)

{ ,
" if(il!=5){ cout<<"\n ERROR: LINE NO : "<<_LINE _
<< VAR NAME :i1 "
<<"\n ACTUAL VALUE : “<<il
<<" EXPECTED VALUE: 5 \n";tf=1;
} .
if(chl!=’a’){ cout<<"\n ERROR: LINE NO : "<<_ LINE
<< VAR NAME :chl "
<<"\n ACTUAL VALUE : ’"<<chl
<</ EXPECTED VALUE:’a’ \n";tf=1;
}
}

void A::AN::fl1(int i2, char ch2)
{

if(i2!=5){ cout<<"\n ERROR: LINE NO : "<< LINE
<< VAR NAME :i2 " '
<<"\n ACTUAL VALUE : "<<i2
<<t EXPECTED VALUE: 5 \n";tf=1;
} .
if(ch2!=’a’){ cout<<"\n ERROR: LINE NO : "<<__LINE
Tk VAR NAME :ch2 * T

<<"\n ACTUAL VALUE : ‘"<< ch2

31



<<"s  EXPECTED VALUE: ‘a’ \n";tf=1;

}

void main()

{

A al;

al.f();

al.a5.£f1();

if(tf)cout<<"\n TEST PGM P921101C.CPP FAILED \n";

}

As per the feature mentioned, the scope of static
" members ch and i declared 1in a class includes ~default
parameters in the class and-nested clasées. In the functions
A::f and A::AN::f defined above it is being checked whether
it is actually so. If it is .so then this program gives no
outéut. when it 1is executed or else gives the appropriate
output, depending on which of the above if loops, the boolean

condition is true.

2. THE RECONSTDERATION RULE.: A name N used in a class S must

refer to the same declaration when re-evaluated in its

context and in the completed scope of S. For example,

1: typedef int T;

2: struct A

3: {

4: struct B

5: {

6: T £() { T x=0; return x; }
7: }s
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8: typedef double T;
9: }i

The reconsideration rule makes this program 1illegal
(sak, 1992]. Because when first encountered; the T in the
declaration of f() on line 6 ('but not the T in the body of
f() ) refers to ::T on line 1. However, B is not complete
.until A is completed on line 9. When f() is evaluated in the
completed scope of B, the T in f()’s declaration refers to

A::T on line 8.

3. THE REORDERING RULE : If reordering member declarations in

a class yields an alternate valid prograﬁ under the above two
rules the program’s meaning is undefined. For exampie look at
the following [Koe , 1992)

struct y

{void f(long(p)});

typedef char p;
;ésuminé p does not already name type, the first use of
‘'p in the ekample above is as the name of £f()’s formal
parameter. But if we interchange its members

struct y

typedef char p;

void f(long(p));
}i

the use of p in the declaration y::f above now does refer to

y::p. Thus the swapping of these declarations has quietly

%
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‘changed the meaning of the class. Thus the above program’s
meaning is undefined, as per the reordering rule. The term
undefined is used instead of error because the C++
standardization committee could not figure out for certain as
to whether it 1is possible to detect two different wvalid
programs in a single program that is written. It is 1likely
that if someone comes up with an efficient algorithm to

detect the same then the rule may be reconsidered.

3.10 NESTED CLASSES

A nested class is a class defined within another class.
-.The hame of a nested class is local to its enclosing class,
that is, it is hidden within the class in which it is
declared. A class is declared as a nested class if its use is
limited to class within which it is defined. It has an
advantage of minimizing the number of names in the global

scope. For example consider the following,

class A
{
class B { ..... } bil;
public
class C { ..... } cl;
}i
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Here class A contains object bl of nested type class B

and object cl of nested type class C as its members.

3.11 LOCAL CLASSES

A class defined within a function definition is called
a local class. The member function of a local class must be
defined within the class definition itself,‘since C++ does
not support function defined within the function. A local
class cannot have static data members. Consider the example

below,

int i;

void h{()
{

class A

{

char c;
public:

qhar gl() { return c; }
int g2() { return ::i }
ralj;

Here, a local class A is defined within function h{()

and an object al of type class A is created. The scope of a
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local class is limited to its enclosing function scope. A

.class 1is declared 1local when its use is limited to the
function within which it is defined. It has an advantage of

minimizing the number of names in the global scopé.
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CHAPTER 4

OVERVIEW OF DERIVED CLASSES




4.1 INTRODUCTION

A concept does not exisp in isolation; it co-exists
with related concepts and derives much of its power from
relationships‘with related concepts. Since we use classes to
‘'represent concepts the issue become how to represent
relationships between concepts. The notion of a derived
class and its associlated ‘language mechanisms 1is provided to
" express hierarchial relationships, that is, to express

commonalty between classes [Str, 1991].

Derived classes provide a simple, flexible and
efficient mechanism for defining a class by adding facilities
to an existing class without éeprogramming or recompilation.
Using derived classes, one can provide a common interface for
several differenf classes so that objects of those classes
. can be manipulated identically by other parts of a program.
Consider the following example, if one 1is designing a
software for libfary' management of a university then the
entities members, studenfs, employees, faculty members, non
teaching staff, under graduates, post graduates etc., have
certain attributes in common. Also the rules governing their
membership are common to some extent, so based on theée one

can form the class hierarchy as shown below:
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AVEWAN

CLASS HIERARCHY FOR LIBRARY MANAGEMENT SOFTWARE

where class MEMBER represents- all members of library,. class
STUD represents all students members, class EMP represents
ail members who are employees of university, class FM
represenfs faculty members, class NTM represeﬁts non teaching
staff, class UG represents under graduate students, class PG
represents post graduate students, class PUG represents part
.time under graduate students, class FUG represents full time
under graduate students, class PPG represents part time post
graduate students and class FPG represents fuil time post

~ graduate students.

Based on above class hierarchy one can define
attributes of each class so as to fully exploit the degree of

commonality among various entities involved.
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Inheritance is the process of creating new classes
called derived classes, from existing ciasses which are then
called the base classes of the derived classes. The derived
class inherits all the capabilities of the base class but can
add embellishments and refinements of its own. The base class
remains unchanged by the process. The base class can be
declared as private, public, and protected [refer sec:5.3].
For example cénsider, |

struct base

{ . .

int i;
}i
struct derived : base

{
int j;
}i

here, an object of class derived will have a sub-object
of class base, where as objects of class base will not have

any such sub-objects and they remain absolutely unaffected.

A derived class and its base classes can be represented
by a directed acyclic graph (DAG) where an arrow means
. "directly derived from". This DAG is often referred to as

class lattice.

BASE

DERIVED
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4.2 MULTIPLE BASE CLASSES
A class can be derived from multiple base classes. The
use of more than one direct base class is called multiple

inheritance. For example,

class A { .... };
class B { .... };
class C { .... };

class D { .... };
class E: public A, public B, public C, public D { .... };
here, an object of class E has sub-objects of class A,

class B, class C and class D as shown below

A class cannot be specified as a direct base class of a
derived class more than once. For example,

class A { .... };

class B : public A, public A { .... }; .//Not allowed.
However, a class can be.an indirect base class more
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than once. For example,

class A { .... };

class B : public A {‘.... }:

class C : public A { .... };

class D : public B, public C { .... };

Here, an object of class D has two sub-objects of class

A as shown below

>
N
S

4.3 VIRTUAL BASE CLASS

In last example cited above an object of class D has
two sub-objects of class A. Members of class A cannot be
directly accessed from within class D because it will be
ambiguous to do so, without specifying as to which of two

‘sub-objects of class A one is referring to. This ambigquity
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can be eliminated by declaring base class A as virtual. Once
a base class is specified as 'virtual then irrespective of
number of places it is specified as virtual, all of them

share a single sub-object of that virtual base class.

A base class is specified as virtual by modifying its

declaration with the keyword virtual. For example,

class A { .... };

class B :virtual public A{ .... };
class C :virtual public A { .... };
class D : public B, public C { .... };

Here, an object of class D has one sub-objects of class

A, as shown below

A
%
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A class may have both virtual and non virtual base

classes of a given type. Consider the example below,

class A { .... };

class B :virtual public A { .... };

class C :virtual public A" { .... };

class D.:public A { .... };

class E : public B, public C, public D { .... };

Here, an object of class E has two sub-objects of class
A; class E’s A and the virtual A shared by class B and class

" C, as shown below
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4.4 AMBIGUITIES
Access to base class members from a derived class is
ambiguous if the expression used refers t? mofe than one
enumerator, function, object or a type. Conéider the
following example,
struct A
{
int i;
int j;.
enum { El,EZ,E} };
char hi();

int h2();
}i

struct B

{ »

int 1i;

int j();

enun { E2,E3,E1l };
int hi();

void h2();
}i

class C : public A, public B { };
then in the above example access to any of base class
members through the object or pointer to derived class will

be ambiguous since they are defined in both the classes.

Ambiguities can be resolved by qualifying a name with
it class name. Like for example,

C c1; // cl object of class C is defined then use
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cl.A::1 or cl1.B::i // instead of cl.i;
cl.A::hl() or cl.B::hil() // instead of c1.hl();

cl.A::E1 or cl.B::El // instead of cl.E1l;

4.5 VIRTUAL FUNCTIONS

Virtual functions define type dependent operations
within an inheritance hierarchy. Using virtual functions one
can hide the implementation’ details of an inheritance

hierarchy from the programs that make use of it.

A virtual functionA is a special member function
invoked through a public base class reference or.pointer, it
is bound dynamically at run time. The instance invoked is
" determined by the class type of the actual object addressed
by the pointer or reference. Resolution bf a virtual function
is transparent to the user. A class that declares or inherits
a virtual function is called a. polymorphic class. Consider
the follqwing example,

class shape

{public;

virtual void draw() { };

class tria : public shape

46



{ :
public:
void draw() { .... } // draws a triangle.

class circ : public shape
{public:
-void draw() { .... } // draws a circle.
}i
class squr : public shape
{publicé .
void draw() { .... } // draws a square.

oooooo

void main()
{

tria t1;
circ c1;

squr sl;

shape *ps;

ps=&t1;

ps->draw(); //will draw a triangle.

ps=&cl;
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ps=>draw () ; //will draw a circle.

ps=&s1l;

ps->draw () ; //will draw a square.

}

Here, in the above example class hierarchy is as shown

below

shape
/N

tria circ . squr

The same function name draw() is used for first drawing
triangle, then a circle and finally a square. The instance of
draw() invoked when ps->draw() is used, is determined by the

" class type of the actual object addressed by the pointer ps.
4.6 ABSTRACT CLASSES

In the above example tria::draw() was used for drawing
triangle, circ::draw() was used for drawing circle and
squr::draw() was used for drawing a square, so in fact
shape::draw() was used as an interface for which derived

classes tria, circ and squr  provided variety of
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implementations. In this situation it is better to define
class shape as an abstract class rather than as a ordinary

class for clarity.

The abstract class mechanism supports the notion of a
.general concept, such as a shape, of which only more concrete
variants, such as circle, square etc., can actually be used.
An abstract is a class that can be used only as a base class
of some other class. No objects of an abstract class may be
created except as a sub-objects of a class derived from it. A
class is abstract if it has atleast one pure virtual function
which may be inherited. A virtual function is specified pure
by using a‘puré—specifier in the function declaration in the
class declaration. The class Shape, in the example in earlier
section, can be suitably redefined as an abstract class as

follows :
class shape
{ .
public:
virtual void draw()=0; //pure virtual function

ooooo

In the declaration virtual void draw()=0, the equal
sign has nothing to do with assignment; the value 0 is not

assigned to anything. The =0 syntax is simply to tell the
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compiler that a function will be pure .

An abstract class can neither be used as an function
return type nor as an parameter type. For example if class A
is an abstract class then,

A al; //ERROR: Object of abstract class cannof be created.
A mfl(); //ERROR: class A cannot be used aé return type.

void mf2(A); //ERROR: class A cannot be used as an parameter
//type. '
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CHAPTER 5

MEMBER ACCESS CONTROL




5.1 INTRODUCTION

The access control to members of a class is one of the
important features of C++4+. Through the access control
mechanism one can define different ways the data members of
the class can be manipulated. This ensures a degree of
modulariﬁy in any program that is written,' which in turn
makes the debugging of prograﬁ easier. Further it provides
the desired level of protection against accidental use of

.members of a class.

A member of a class can be private, protected or

public :

A)Private:- If it is private, its name can be used only by
member functions and friends of the class in which it is

declared.

B)Protected:- If it is protected, its name can be used only
by member functions and friends of the class in which it is
declared and by member functions and friends of classes

derived form this class.

C)Public: If it 1is public, its name can be used by any

function.

This reflects the view that there are three types of

functions accessing a class:-
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1. Functions implementing the class (its friends and members).

2. Functions implementing a derived class (the derived

- classes friends and members).
3. Other functions.

Members of a class declared with the key word class are
pfivate by default. Members of a class declared with the

keywords struct or union are public by default.
5.2 ACCESS SPECIFIERS

Member declarations can be labelled by an access
specifier. An access-specifier specifies the level of aécess
for the members following it either till another access-
_ specifier is encountered or until the end of thé class. For

exanmple :

class A
{int i; //A::1 is private by default: ‘class’ used
public:

int j; //A::j is public.

char c; //A::c is public.

}i

In a class declaration access specifiers can be used

any number of times and in any order. For example
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struct A

{int i; //A::1 is public by default : ‘struct’ used
protected: |
char c; //A::c is protected.
private:
float f; //A::f is private.
public :
) double d; //A::d is public.
’

5.3 ACCESS SPECIFIER FOR BASE CLASSES

A base class can be declared private, protected or
public. If a class 1is declared to be a base class for

another class using

1) The private access specifier, then the protected and
public members of the base class are accessible as private
members of the derived class. The private members of base

class are inaccessible to derived class. For example,

class B { .... }; // Base class.

struct D1 : private B { .... }; // Derived class.

2) The protected access specifiers, then the protected and
-public members of the base class are accessible as protected

members of the derived class. The private members of base
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class are inaccessible to derived class. For example,
class D2 : protected B { .... };

3) The public assess specifier,’ then the protected members of
the base class are accessible as protected members of the
.derived class and the public members of the base class are
accessible as public members of the derived class and the
private members of the base class remain inaccessible to the
derived class. For examplé,

class D5 : private B { .... };

A derived class can access the private members of its
base classes only if it is a friend [refer sec:5.5] of its

base classes. For example,

class D; //Forward declaration.
class B

q .

double 4;

friend ¢lass D;

s e 0 0 0 4

}i
struct D : B
' void £d()
d=8.194; // d is accessible since it is friend of B
} }i } }i

here, in the function D::fd the private member d of B is

I3
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assigned a value.

When no access specifier is used for a base class,
private is assumed when the derived class is declared class
and public is assumed when the derived class is declared

class. For example,

class B { .... };
struct D1 : B { «e«. }; // B is public by default.
class D2 : B { .... }; [/ B is private by default.

5.4 ACCESS DECLARATIONS

The protected or pubiic members of a private or
protected base class can be used at same level in derived

class by making use of access declaration.

Thg access declaration of protected member of a private
or protected base class must be given in thelprotected part
of derived class. The access.declaration of public member
of a private or protected base class must be given‘in the
"public part of derived class. For example

class B

¢ protected :

int i;
public
char c;

}i
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class D1 : private B

{public
1:cy / /Restore access.
protected:
} A::i; //Réstore access.
;

An  access declaration cannot be used to enable access
to a member that is inaccessible in the base cléss, nor can
it be used to restrict access to a member that is accessible
in the base ciass. For example,

| class A

{ .

public:
int i;
private:

char c;

}i
class D1 : private A
¢ public :
::c; //Error: Cannot make c¢ a public member of D1
protected:
A::i; //Error: Cannot restrict access of i.-
}i
It is not possible to make a base class member

accessible in a derived class using access declaration, if it

already defines it. For example
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class B~

{
public:

char g();
}i

class D1 : private B

{
public:

void g(int);

B::g //Error: Two declarations of g;

}i

~e

5.5 FRIENDS

Friends are needed to enable unrestricted access to
members of a‘ class. A funcéion declared as a friend is
‘permitted to access even pfivate and protected members of a
class. It is not in the scope of class. It is called with a
member access operator only if it is a member of another
"class. Friend declarations are not affected by access
specifiers. For example,

class A
{friend void f£(Aa);
private:
int i;
protected:
char é;
public:

void mf (B);
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A() { i=64; c='b’; }

}i
void f(A al)
{if(a1-11=64) { veun. ..}
if(al.c!='b") { ....... }
}
?truct B

friend void A::mf(B); //mf(B) is member of A.
B() { j=37; ch='a’; } |
private:
char ch;
protected:

int j;

}i

void A::mf (B bl)

{ ,
if(b1.3!=37) { ...... }

if(bl.ch!=’a’) { ..... }
} ' :

void main()
{
A a;
B b;
f(a);

a.mf(b);
}

In the above example function void f(A) is allowed to
access private and protected parts of class A since it is

friend of class A and A::mf(B) is allowed to access the
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private and protected parts of class B since it is friend of

class B.

Friendship is neither inherited nor transitive. For
example,

class A1l

{

friendAclass A2;
int j;
}i

class A2

{
friend class A3;
}i

class A3

void mfl (Al al)

{
al.j=10; //Error: A3 is not a friend of Al despite
//being a friend of A2.
y
}i
class D : public A2
{ .
void mf2 (Al a)
{ .
a.j=19; //Error: D is not a friend of Al despite
//being derived from a friend.
} .
}i

5.6 PROTECTED MEMBER ACCESS

A friend or a member function of a derived class can
access a protected non-static member of one of its base

classes only through a pointer to, reference to, or object of
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the derived class itself. If this restriction is not there
than it will be possible to access the base claés part of an
unrelated class as if it were its own, without the use of an
explicit cast. However, this problem does not arise with the
protected static member of a base class. Because in case of
static members a single copy .of it is shared by all the
objects of 1its class and derived classes. Consider the
following example.

class A

{protected:

static int i;
int j;
}i
int A::i=0;
class B : public A { }s
class C : public A

{ .
public

e

friend void ff();

void mf(B* , C*);

}i
void ff()
{ .
B bil;
bil.i=10; //Allowed since 1 is static.
bl.j=5; //Error: Because only objects of C can
//access protected non static member of A.
C cl;
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cl.j=1; //Object of class C.
}i

void C::mf (B *pbl, C *pcl)

{ A

pbl->j=5; //Error: Because only a pointer to C can
//access protected non static member of A.

pcl->j=1; //pcl is a pointer to class C.

}i
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CHAPTER 6

RESULTS AND CONCLUSIONS



6.1 RESULTS :.

This verification suite consists of test programs based
on most of the features mentioned in chapter 9, chapter 10,
and chapter 11 of DWP. Test programs for few features could

" not be written because of following :

a. There is no point in testing a feature which is defined

as undefined. Like in section 9.2.1.

b. There is no point in testing a feature which is defined as
implementation dependent. Like in section 9.2 and section

9.6 of DWP.

This Qerification suite was used for functional testing
of the Borland C++ version 3.1 compiler on a PC-AT. The
. following positive test programs have detected errors in it.
a. p92110la.cpp |
| b. p92110l1lc.cpp
c. p921101d.cpp
e. p09%0701d.cpp
f. pl0o0203a.cpp
g. pl00203b.cpp
h. p100203c.cpp
i. p100203d.cpp

g. pl100203e.cpp
The following is the 1list of negative test programs
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that have detected errors in Borland C++ version 3.1
compiler.

a. n921102a.cpp

b. n921102b.cpp

c. n921102e.c§p

d. n921102f.cpp

e. nl110303a.cpp

f. nl110303b.cpp

" g. nl10405.cpp

The following is the section wise analysis of the above

test programs :

6.2 FAILURES RELATED TO NAME LOOKUP

#include<iostreanm.h>

/* PGM NAME :P921101A.CPP
REFER TO :SEC:9.2.1, PARA:1, PG:9-6
FEATURE :THE SCOPE OF A NAME DECLARED IN A CLASS CONSISTS
NOT ONLY OF THE TEXT FOLLOWING THE NAMES
DECLARATOR, BUT ALSO OF ALL FUNCTION BODIES
IN THAT CLASS, INCLUDING SUCH THINGS IN NESTED
CLASSES.

i

class A

{
public:

char gl() { char c=ch; return c; }
int g2() { int J=i; return j; }

class AN
{
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public:
char pl1() { char cl=ch; return cl;
int p2() { int il=i; return i1; }
} a5;

static char ch;
static int i;
}i
char A::ch=’a’;
int A::i=10;
void main()

int tf=0;
A t1;

if(tl.g1()!='a’){ cout<<"\n ERROR: LINE NO :

}

//Flag for test fail.

||<<‘

LINE

<< tl.g91()
‘ra’\n";tf=1;

LINE NO : "<<_LINE__

"<<tl.g92()
10\n";tf=1;

<< VAR NAME :tl1.g1() "
<<"\n ACTUAL VALUE
<7 EXPECTED VALUE:
} )
if(tl.g2()!=10){ cout<<"\n ERROR:
' <<" VAR NAME :tl1.g2() "
<<"\n ACTUAL VALUE :
<" EXPECTED VALUE:
}

if(tl.a5.pi()!=’a’){ cout<<"\n ERROR: LINE NO : .
' VAR NAME :tl.a5.pl() "
<<"\n ACTUAL VALUE :
EXPECTED VALUE:

<<ll

<<ll ’

}
if(tl.a5.p2()!=10){ cout<<"\n ERROR: LINE NO :
'VAR NAME :tl.a5.p2()
<<"\n ACTUAL VALUE :
EXPECTED VALUE:

<<"

<<

}

}

As per the feature mentioned,

members ch and i declared in a class

bodies in the class and nested classes.
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"<<_  LINE__
rv<<tl.as5.pl1()
ra’\n";tf=1;

o<
11]

LINE

"<<tl.a5.p2()
10\n";tf=1;

if (tf)cout<<"\n TEST PGM P921101A FAILED \n";

the scope of static
includes all function

As such the above



*/

program contains no errors. However, the Borland C++ compiler

gives errors as shown below

kkkk *kkx* REPORT OF TEST *#%*% *%x%x%

Borland C++ Version 3.1 Copyright (c) 1992 Borland

International

pe2110la.cpp: .

Error p92110la.cpp 21: Undefined symbol ‘ch’ in function

A::AN::pl()

Error p92110la.cpp 22: Undefined symbol ‘i’ in function
::AN::p2() : -

*k% 2 errors-in Compile *#**

Available memory 1618007

kkkk *hkkk -X- *kkkk kkk*k

#include <iostream.h>

/* PGM NAME :P921101C.CPP
REFER TO :SEC:9.2.1, PARA:1, PG:9-6 ‘
FEATURE :THE SCOPE OF A NAME DECLARED IN A CLASS CONSISTS
NOT ONLY OF THE TEXT FOLLOWING THE NAMES
DECLARATOR, BUT ALSO DEFAULT PARAMETERS
'IN THAT CLASS, INCLUDING SUCH THINGS IN NESTED

CLASSES.
int tf=0;
class A
{
public:
void f(int=i, char=ch); //Default parameters.

class AN
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{
public:
void f1l(int=i, char=ch); //Default parameters.
}a5;
static int i;
static char ch;
}i

int A::i=5;
char A::ch=’a’;
void A::f(int i1, char chl)
if(i1!=5){ cout<<"\n ERROR: LINE NO : "<< LINE
<< VAR NAME :i1 ®
<<"\n ACTUAL VALUE : "<<il
<<" EXPECTED VALUE: 5 \n";tf=1;

} :
if(chl!=’a’) { cout<<"\n ERROR: LINE NO : "<<_ LINE__

)

<<t VAR NAME :chl "
<<"\n ACTUAL VALUE : ‘'"“<<chl
<</ EXPECTED VALUE:’a’ \n";tf=1;
} .
void A::AN::fl1(int i2, char ch2)
{
if(i2!=5){ cout<<"\n ERROR: LINE NO : "<<_LINE -
<<n VAR NAME :i2 v
<<"\n ACTUAL VALUE : "<<i2
<< EXPECTED VALUE: 5 \n';tf=1;
} .
if(ch2!='a’){ cout<<"\n ERROR: LINE NO : "<<_ LINE _
<< VAR NAME :ch2 "
<<"\n ACTUAL VALUE : ’"<< ch2
<< M/ EXPECTED VALUE: ’a’ \n";tf=1;
}
}
void main()
{
A al;
al.f();

al.a5.f1();
if (tf)cout<<"\n TEST PGM P921101C.CPP FAILED \n";

)

As per the feature mentioned, the scope of
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members ch and 1 declared in a class includes all default
parameters in the class and nested classes. As such the above
program contains no errors. HoWever, the Borland C++ compiler

gives errors as shown below :

kkkk *kk* REPORT OF TEST *%%%x kkk%

Borland C++ Version 3.1 Copyright (c) 1992 Borland
International ’

p921101c.cpp:

Error p92110lc.cpp 19: Undefined symbol ‘i’

Error p921101c.cpp 19: Undefined symbol ‘ch’

k%% 2 errors in Compile **%

Available memory 1619040
kkkk kkkk —X— hkkk kkkk

#include <iostream.h>

" /* PGM NAME :P921101D.CPP
REFER TO :SEC:9.2.1, PARA:1, PG:9-6 .
FEATURE :THE SCOPE OF A NAME DECLARED IN A CLASS CONSISTS
NOT ONLY OF THE TEXT FOLLOWING THE NAMES
DECLARATOR, BUT ALSO CONSTRUCTOR INITIALIZERS IN
THAT CLASS, INCLUDING SUCH THINGS 1IN NESTED
CLASSES.
*/

class A
{
public:
char cHl;
int i1;
A():i1(i),chl(ch){ }
class AN
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{
public:
char ch2;
int i2;
AN():i2(i),ch2(ch){ }
} a5;

static char ch;
. static int i;
}i

char A::ch='a’;
int A::i=10;

void main()

{ .
int tf£f=0; //Flag for test fail.
A t1;
if(til.chl!=’a’){ cout<<"\n ERROR: LINE NO : "<<_LINE
<" VAR NAME :tli.chl "
<<"\n ACTUAL VALUE : ‘“<<tl.chl
A <</ EXPECTED VALUE:’a’ \n";tf=1;
} _
if(t1.i1!=10){ cout<<"\n ERROR: LINE NO : "<<_ LINE _
<< VAR NAME :t1.i1 "
<<"\n ACTUAL VALUE : "<<t1l1.il
<<" EXPECTED VALUE: 10 \n";tf=1;
}
if(tl.a5.ch2!{=’a’){ cout<<"\n ERROR: LINE NO : "<<_ LINE _
<<" VAR NAME :t1.a5.ch2 "
<<"\n ACTUAL VALUE : ’‘"<<tl.a5.ch2
<<ns EXPECTED VALUE:’a’ \n";tf=1;

}
if(tl1.a5.i2!=10) { cout<<"\n ERROR: LINE NO : "<<_ LINE
<<® VAR NAME :tl.a5.i2 "
<<"\n ACTUAL VALUE : "<<tl.a5.i2
<<" EXPECTED VALUE: 10 \n";tf=1;

}

if (tf)cout<<"\n TEST PGM P921101D.CPP FAILED \n";
}

As per the feature mentioned, the scope of static
members ch and 1 declared in a class includes  constructor

initializers in that class and nested classes. As such the

70



above program contains no errors. However, the Borland C++

compiler gives errors as shown below
*kkk *k*kx REPORT OF TEST kkkk kkkk

Borland C++ Version 3.1 Copyright (c) 1992 Borland
International-

p921101d.cpp:

.Error p921101d.cpp 21: Undefined symbol ‘i’ in function
A::AN::AN()

Error p921101d.cpp 21: Undefined symbol ‘ch’ in function
A::AN::AN() '

k%% 2 errors in Compile **%*

Available memory 1620328
kkkk *kk%k - kkkk kkkk

#include<iostream.h>

/* PGM NAME :N921102A.CPP

REFER TO :SEC:9.2.1, PARA:2, PG:9-6

FEATURE tA NAME N USED IN A CLASS S MUST REFER TO THE
SAME DECLARATION WHEN RE-EVALUATED 'IN ITS
CONTEXT AND IN THE COMPLETED SCOPE OF S.

1: enum { i=1 };
2: class A
3: {
4: char v([i]; //ERROR: ‘i’ REFERS TO ::i
' - //BUT WHEN RE-EVALUATED IS A::i
" 5: enum { i=2 };
6: };

void main() { }
The above program is illegal as per the feature
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. mentioned above, because when first encountered, the i in the
declaration of v on line 4 refers to '‘global i'on line 1.
However, when it is re-evaluated in the completed scope of
class A it refers to declaration on 1line 5. Thus it is
illegal as per feature mentioned above. However, the Borland
C++ compiler does not give either an error or a warning as

shown below :

kkkk kkkk REPORT OF TEST %%k k*kkx

Borland C++ Version 3.1 Copyright (c) 1992 Borland
International

n921102a.cpp:

~ Turbo Link Version 5.1 Copyright (c) 1992 Borland
International -

Available memory 1623600

kkkk kkkk -X- kkkk kkk%k

.'#include<iostream.h>

/* PGM NAME :N921102B.CPP
REFER TO :SEC:9.2.1, PARA:2, PG:9-6
FEATURE tA NAME N USED IN A CLASS S MUST REFER TO THE
SAME DECLARATION WHEN RE-EVALUATED 1IN ITS
CONTEXT AND IN THE COMPLETED SCOPE OF S.
*/

1: typedef char *T;

2: class A
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3: {
4: T a; //ERROR: ‘T’ REFERS TO ::T :
//BUT WHEN RE-EVALUATED IS A::T
5: typedef long T;
6: T b;
7: };. )
void main() { }

The above program is 1illegal as per the feature
mentioned above, because when first encountered, the T in the
declaration of a on line 4 refers to global T on line 1.
However, when it is re-evaluated in the completed scope of
class A it refers to declaration on 1line 5. Thus it |is
illegal as per feature mentioned above. However, the Borland

C++ compiler does not give either an error or a warning as

shown below :

kkk%k kkk*x REPORT OF TEST #*kkx ®%k%%

[}
Borland C++ Version 3.1 Copyright (c) 1992 Borland
International
n921102b.cpp:
Turbo Link Version 5.1 Copyright (c) 1992 Borland
International '

Available memory 1623600

kkkk *kkkk -X—- . kkkk kkkk

/* PGM NAME :N921102E.CPP
REFER TO :SEC:9.2.1, PARA:2, PG:9-6
FEATURE :tA NAME N USED IN A CLASS S MUST REFER TO THE
SAME DECLARATION WHEN RE-EVALUATED IN ITS
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CONTEXT AND IN THE COMPLETED SCOPE OF S.
*/

1: typedef int **I;
2: struct A

3: {
: struct B
5:  {
6: I £f() { I i=0; return i; }
7:  };
8: typedef float I;
I

void main() { }

The above program is 1illegal as per the feature
“mentioned above, because when first encountered, the I in the
declaration of f on line 6 (but not the I in the body of f)
refers to global I on line 1. However, B is not complete
. until A is completed on line 9. when f is re-evaluated in the
completed scope of B, the I in f’s declaration refers to A::I
declaration on 1line 8. Thus it is illegal as per feature
mentioned above. However, the Borland C++ compiler does not

give either an error or a warning as shown below :

*kkk kkkk REPORT' OF TEST +*%%% *k**

Borland C++ Version 3.1 Copyright (c) 1992 Borland
International A

‘'n921102e.cpp:

Turbo Link Version 5.1 Copyright (c) 1992 Borland
International

Available memory 1694364
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*kkk *kk%k -X- kkkk *khkk%k

/* PGM NAME :N921102F.CPP

REFER TO :SEC:9.2.1, PARA:2, PG:9-6

FEATURE tA NAME N USED IN A CLASS S MUST REFER TO THE
SAME DECLARATION WHEN RE-EVALUATED IN ITS
CONTEXT AND IN THE COMPLETED SCOPE OF S.

*/

: char **T;
2: struct A
3: { .
4: char s[ sizeof(T) };

5: int T;
"6 };.
void main() { }

The above program is illegal as per the feature
- mentioned above because when first encountered, the T in the
declaration of s on line 4 refers to global T on line 1.
However, when it is re-evaluated in the completed scope of A
it refers to declaration on line 5. Thus it is illegal as per

feature mentioned above. However, the Borland C++ compiler

. does not give either an error or a warning as shown below :

kkkk k*kk%* REPORT OF TEST *%%x% *%%x%

Borland C++ Version 3.1 Copyright (c) 1992 Borland
International ‘
n921102f.cpp: _

Turbo Link Version 5.1 Copyright (c) 1992 Borland
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International

Available memory 1695468

kkkk kkkk -X- kkkk *kk*k

6.3 FAILURES RELATED TO NESTED CLASSES

#include<iostream.h>

/* PGM NAME :P090701D.CPP
REFER TO :SEC:9.7, PARA:1, PG:9-12.
FEATURE :A NESTED CLASS MAY BE DECLARED IN A CLASS AND
LATER DEFINED IN THE SAME OR AN ENCLOSING
SCOPE. :

*/

class A
{
public:
class B; / /FORWARD DECLARATION OF NESTED CLASS.
15: class C;
: class B //DEFINITION OF NESTED CLASS.
{
public:
B(){ i=100; }
int i;
int £() { return i; }
}i
' }i
25: class A::C //DEFINITION OF NESTED CLASS.
{ :
public:
C() { h="a’; }
char h;
char g() { return h; }

}i

void main()
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int tf£=0; //Flag for test fail.

A::B b;

if(b.£()!=100){ cout<<"\n LINE NO: "<<_ LINE ; tf=1; }

A::C c; . '
40: if(c.g(){=’a’){ cout<<"\n LINE NO: "<< LINE ; tf=1; }

if (tf)cout<<"\n TEST FAILED. \n";

In the program listed above, the nestea class C is
. declared on line 15 and later defined on line 25. On line 40
the function member of object ¢ of class C is being used. As
per the feature mentioned their are no errors in the. above
program. However, the Borland C++ compiler gives errors as

shown below :

kkk* ***%* REPORT OF TEST **kx %k

Borland C++ Version 3.1 Copyright (c) 1992 Borland
. International '

p090701d.cpp:

Error p090701d.cpp 25: Multiple declaration for ‘A::C’

Error p090701d.cpp 40: ‘g’ is not a member of ‘C’ in function
main() .

*k% 2 errors in Compile #***

Available memory 1620772

kkkk kkk*k - - kkkk *kk*k
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6.4 FAILURES RELATED TO VIRTUAL FUNCTIONS

/* PGM NAME :P100203A.CPP

REFER TO :SEC:10.2, PARA:3, PG:10-6.

FEATURE :IT IS A DIAGNOSABLE ERROR FOR THE RETURN TYPE OF
AN OVERRIDING FUNCTION TO DIFFER FROM THE RETURN
TYPE OF THE OVERRIDDEN FUNCTION  UNLESS THE
RETURN TYPE OF THE OVERRIDDEN FUNCTION IS
POINTER OR REFERENCE TO (POSSIBLY CV-QUALIFIED)
A CLASS A, AND THE RETURN TYPE OF THE OVERRIDING
FUNCTION IS POINTER OR REFERENCE (RESPECTIVELY)
TO CLASS B SUCH THAT A IS AN UNAMBIGUOUS DIRECT
OR INDIRECT BASE CLASS OF B, ACCESSIBLE IN THE
CLASS OF THE OVERRIDING FUNCTION, AND THE CV-
QUALIFICATION IN THE RETURN TYPE OF THE
OVERRIDING FUNCTION IS LESS THAN OR EQUAL TO THE
CV-QUALIFICATION IN THE RETURN TYPE OF THE
OVERRIDDEN = FUNCTION. 1IN THAT CASE WHEN THE
OVERRIDING FUNCTION IS CALLED AS THE FINAL
OVERRIDER OF THE OVERRIDDEN FUNCTION, 1ITS
RESULT IS CONVERTED TO THE .TYPE RETURNED BY THE
(STATICALLY CHOSEN) OVERRIDDEN FUNCTION.

*/
class A { };
struct B : private A //Line no: 28
{B() { i=55; }
int i;

friend class D;

}i

"struct C

{
virtual A* vf() { A al; return(&al); }

}i

class D : public C

{
public:
B* vE() { B bl; return(&bl), }
//Legal:A which is a direct base class of B is
//accessible in class D.

void g{()
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{

D 4;
B* bp=d.vf();
if (bp->i!=55){ cout<<"\n ERROR: LINE NO : "<<_LINE
<<" VAR NAME : bp->i"
<<"\n ACTUAL VALUE : ‘"<<bp->i
<< EXPECTED ‘VALUE: 55 \n"
<<"\n TEST PGM P100203A.CPP FAILED. \n";
}
}
void main()
{
g();
}

In the above test pfogram D::vf() does not conflict
with the base C::vf() because the return type of overridden
function C::vf() is pointer to class A and reﬁurn type of
: ovérriding function D::vf() is pointer to class B, where A is
direct base class of B, and is accessible in the class D
because class D is declared as friend of class B on line 28.
Further the CV-qualification of the return type of overriding
function is same as that of overridden function. Thus as per
the_feafure mentioned above their is no error in the
program. However, the Borlan& C++ gives errors as shown

below:

kkkk *k%% REPORT OF TEST +#*%%% kkx%x*

Borland C++ Version 3.1 Copyright (c) 1992 Borland
~ International

plo0203a.cpp: Error pl00203a.cpp 43: Virtual function
'D::vf()’ conflicts with base class ‘'C’
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k%% ] errors in Compile **x

Available memory 1619468
: kkkk *kkk -X- kkkk Kkkhkk%k

Similar errors were reported by Borland C++ compiler
in test programs pl00203b.cpp, ploozoﬁc,cpp, pl100203d.cpp,
and pl100203e.cpp which are all based on above feature. In all
these programs only the CV-qualification of the return type
pointers of overriding and overridden functions are different
compared to above listed program. However, there are no

errors in them as per feature mentioned above.

6.5 FAILURES RELATED TO ACCESS CONTROL

/* PGM NAME :N110303A.CPP
' REFER TO :SEC:11.3, PARA:3, PG:11-4.
FEATURE :AN ACCESS DECLARATION MAY NOT BE USED TO
RESTRICT ACCESS TO A MEMBER THAT IS ACCESSIBLE
IN THE BASE CLASS, NOR MAY IT BE USED TO ENABLE
ACCESS TO A MEMBER THAT IS NOT ACCESSIBLE IN
THE BASE CLASS.

float f;-

- class B : pri?ate A

class C : private B
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public:
A::f; //ERROR: Attempt to grant access.
}i ‘

-void main() { }

In thé above program attempt is being made to grant
access to A::f invc, using access declaration, even though it
is not accessible in B which is the immediate base class of
C. As per feature mentioned above it is illegal to do so.
However, the Borland C++ compiler does not give either an

error or a warning as shown below :

k%%kk *%kk* REPORT OF TEST %% k%%

Borland C++ Version 3.1 Copyright (c) 1992 Borland
.International ' '

nl10303a.cpp:

Turbo Link Version 5.1 Copyright (c¢) 1992 Borland
International ’

Available memory 1698484

kkhkkk *kkkk =X~ kkkk *kkhkk

/* PGM NAME :N110303B.CPP
. REFER TO :SEC:11.3, PARA:3, PG:11-4.
FEATURE :AN ACCESS DECLARATION MAY NOT BE USED TO
.RESTRICT ACCESS TO A MEMBER THAT IS ACCESSIBLE
IN THE BASE CLASS, NOR MAY IT BE USED TO ENABLE
ACCESS TO A MEMBER THAT IS NOT ACCESSIBLE IN
THE BASE CLASS.
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*/

class A

{
protected:

float £;
}i ,
class B : private A
A
}i
class C : private B

{
protected:

S //ERROR: Attempt to grant access.
Y7 ‘

void main() { }

In the above program attempt is being made to grant
access to A::f in C; using accéss declaration; even though it
is not accessible in B which is the immediate bése class of
C. As per feature mentioned above it is illegal to do so.
However, the Borland C++ qompiler does not give either an

error or a warning as shown below :

kkkk kkk* REPORT OF TEST k%% xkkx*

Borland C++ Version 3.1 Copyright (c) 1992 Borland
International

nl10303b.cpp: ‘
Turbo Link Version 5.1 Copyright (c) 1992 Borland
International

Available memory 1698468

hkkk hhkkk —X—= Kkkkk kkk%k
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6.6 FAILURES RELATED TO FRIENDS

#include <iostream.h>

/* PGM NAME :N110405.CPP

REFER TO :SEC:11.4, PARA:5, PG:11-6. ,

FEATURE :A GLOBAL FRIEND FUNCTION MAY BE DEFINED IN A
CLASS DEFINITION OTHER THAN A LOCAL CLASS
DEFINITION.

*/
.void g()
{

class A

{

public:
int i;
A() { i=1; }
friend int f(A al) { return al.i; } //ERROR:

}i ,

A a2;

if(f(a2)!=1){ cout<<"\n ERROR: LINE NO: "<<_ LINE

<<"\n TEST FAILED. \n"; }

void main()
%
g();
}
In the program listed above a friend function f is
defined in a .local class. But as per the feature mentioned
. above it is illegél to do so. However, the Borland C++

compiler does not give either an error or a warning as shown

below :

kkk*k *kkkk REPORT OF TEST **x%kx *%k%

Borland C++ Version 3.1 Copyright (c) 1992 Borland
International

n110405.cpp:
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Turbo Link Version 5.1 Copyright (c) 1992 Borland
- International

Available memory 1619272

kkkk kkk%k -X- kkkk *kkkk

6.7 CONCLUSION:

Thus to sum up the following defects were. observed in
Borland C++ version 3.1 compiler.

a. The name and scope rules have not been implemented by it.

b. It does not allow a nested class to be defined outside the

class in which it has been declared.

c. A problem involving return type of virtual functions have

~

been detected.

d. A problem: regarding granting of access using = access

~declaration has been detected.

e. It allows global friend functions to be defined in a local
class definition.
The verification suite was able to detect so few errors

in the Borland C++ compiler version 3.1 because it 1is an
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"industrial strength product which has already been
extensively tested. However, we expect a higher number of

errors for compilers under development.

This verification suite consists of test programs for
only a part of DWP. This work can be carried over further and
test programs can be written based on other chapters, e.qg.,

templates, exception handling etc.
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9

Classes

A class is & user-defined type. A class definition specifies the represeatation of objects of the class and the set of
operations that can be applied to such objects. This chapter presents the syntax and semantics for simple classes.
The definition of both static and pon-stat ic members is discussed, and the scope rules involving classes
and functions - including Jocal and pested classes containing member functions ~ are described. The mechan-
isms for cootrolling the layout of class objects, for conforming to externally imposed formats, and for thaintain-
ing compatibility with C layouts (structs, unions and bit-fields) are presented.

Derived classes (that is, inberitance), access control, and special member functions are discussed in the pext three
chapters.

9 Classes

A class is a type. Its name becomes a class-name (§9.1), that is, a reserved word within its scope.
class-name:
identifier .
template-class-id

Class-specifiers and elaborated-type-specifiers (§7.1.6) are used to make class-names. An object of a class
coasists of a (possibly empty) sequence of members.
class-specifier:
class-head ( member-specification,, )

class-head:
class-key idensifier ., baseclause,,
class-key nessedclass-specifier base-clause,,

class-key:
class
struct
union

The name of a class can be used as a class-name even within the member-specification of the class
specifier itself. A class-specifier is commoaly referred to as a class definition. A class 13 considered

defined when its class-specifier bas been scen even though its member functions are in general not yet
defined.

Objects of an empty class have a nonzero size.

Class objects may be assigned, passed as arguments o functons, and returned by {uncoons (except
objects of classes for which copying has beco restnicted; see §12.8). Other plausible operators, such as
equality comparison, can be defined by the user, sec §13.4.
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A structure is a class declared with the class-key st ruct; its members and base classes (§10) are pub- |
lic by default (§11). A union is a class declared with the class-key union; its members are public by |
default and it bolds oaly ocoe member at a ime (§9.9).

9.1 Class Names
A class definition mtroduces a new type. For example,

struct X { int a; );
struct Y ( {nt a; };
X al;

Y a2;

int aj;

.doclam three variables of three differeat types. This implies that

al = a2; // error: Y assigned to X
al = aj; // error: int assigned to X

are type mismatches, and that

int £(X):
int £(Y):

declare an overloaded (§13) function £ () and not simply a single function £ () twice. For the same rea-
son,

struct S { int a; }; )
struct S { int a; }; // error, double definition

is an error because it defines S twice.

A class definition introduces the class name into the scope where it is defined and hides any class,
object. function, or other declaration of that name in an enclosing scope (§3.2). If a class name is declared
in a scopec where -an object, function. or enumerator of the same name is also declared the class can be
referred to only using an elaborated-type-specifier (§7.1.6). For example,

struct stat |
/7
)i

stat gstac; // use plain ‘stat’ to
// define variable

int stat(struct stat®*); // redefine ’stat’ as function

void f ()
{ .
struct stat®* ps; // ’struct’ prefix needed
// to name struct stat
/17 ...
stac(ps); // call stat()
/1l ...

}

An claborated-type-specifier with a class-key used without declaring an object or function introduces a
class name exactly like a class defmition but without defining a class. For example,
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struct 8 { int a; };

void g()
{
struct s; // hide global struct ‘s’
£* p; // refer to local struct ‘s’

struct s { char* p; ); // declare local struct ‘s’
}

Such declarations aliow definition of classes that refer to each other. For example,

clags vector;

class matrix {
/...

friend vector operator*(matrixk, vectors);
Y,

class vector {
/7 ...

friend vector operator*(matrixa. vectork);
)i
Declaration of friends is described in §11.4, operator functions in §13 4.
An elaborated-type-specifier (§7.1.6) can also be used in the declarations of objects and functions. It
differs from a class declaration in that if a class of the elaborated name is in scope the elaborated name will
refer to it For example, )

struct s { int a; ).

void g(int s)
{ ,
Struct s* p = new sStruct s; // global ‘s’
p->a = s; - // local ‘s’
)
A name declaration takes effect immediately after the identifier is seen. For example,

class A * A;

first specifies A to be the name of a class and then redefines it as the name of a pointer to an object of that

class. This means that the elaborated form class A must be used to refer to the class. Such artistry with
names can be confusing and is best avoided. '

A rypedef-name (§7.1.3) that names a class is a class-name; see also §7.1.3.

92 Class Members

member-specification:
member-declaration member-specification,
access-specifier : member-specification,,

member-declaration:
decl-specifier-seq,,, member-declaratordin,,
jhncnou-dtﬁnmm e

member-declarator-list:
member-dedarator
member-dedaratordist , member-declarator
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member-declarasor:
declarator pure-specifier
idensifier,, : constani-expression

pure-specifier: .

The member-specification in a class definition declares the full set of members of the class; po member
can be added elsewhere. Members of a class are data members, member functions (§9.3). nested types, and
member coastants. Data members and member functions are static or noastatic; see §9.4. Nested types are
classes (§9.1, §9.7) and enumerations (§7.2) defined in the class, and arbitrary types declared as members
by use of a typedef declaration (§7.1.3). The eaumerators of an cnumeration (§7.2) defined in the class are
member constants of the class. Except when used 10 declare fricnds (§11.4) or 0 adjust the access to a
member of a base class (§11.3), member-declarations declare members of the class, and each such
member-declaration must declare at keast ooe member name of the class. A member may not be declared
twice in the member-specification, except that a nested class may be declared and then later defined.

Note that a single name can denote several function members provided their types are sufficiendy dif-
ferent (§13). Note that a member-declarator cannot coatain an inirializer (§8.4). A member can be initial-
ized using a constructor, see §12.1.

A member may not be auto, extern, or register,

The decl-specifier-seq can be omitted in function declarations oaly. The member-declarator-list can be
omitued only after a class-specifier, an enum-specifier, or a decl-specifier-seq of the form friend
elaborated-type-specifier. A pure-specifier may be used only in the declaration of a virtual function
(§10.2).

Noo-static (§9.4) members that are class objects must be objects of previously declared classes. In
particular, a class c1 may not contain an object of class c1, but it may contain a pointer or reference (0 an
object of class c1. When an array is used as the type of a nonstatic member all dimensions must be speci-
fied.

A simple example of a class definition is

struct tnode {
char tword{20};
int count;
tnode *left;
tnode *right;
).

which contains an array of twenty characters, an integer, and two pointers (0 similar structures. Once this
definition has been given, the declaration

tnode s, *sp:;

declares s 10 be a tnode and sp t0 be a pointer t0 a tnode. With these declarations, sp->count refers
to the count member of the structure to which sp points; s . left refers to the 1eft subtree pointer of

‘the structure s; and s.right->tword (0] refers to the initial character of the tword member of the

right subrecof 5.

Noastatic data members of a class declared without an intervening access-specifier are allocated so that
later members have higher addresses within a class object. The order of allocation of nonstatic data
members separated by an access-specifier is implementation dependent (§11.1). Implementation alignment
requirements may cause two adjacent members not to be allocated immediately after each other; so may
requirements for space for managing virtual functions (§10.2) and virtual base classes (§10.1); see also
§5.4.

If two types T1 and T2 are the same type, then T1 and T2 are layout-compatible types.

Two POD-struct (§8.4.1) types are layout-compatible if they have the same number of members, and
corresponding members (in order) have layout-compatible types.

Two POD-unioa (§8.4.1) types are layout<ompatible if they have the same number of members, and
corresponding members (in any order) bave layout-compatible types.
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[ Shouldn't this be the same set of types? |

Two enumeration types arc layout-compatible if they have the same sets of enumerator values.

{ Shouldn't this be the same undertying type? | |

If a POD-union contzing several POD-structs that share a common initial sequence, and if the POD-
union object curreatly contains one of these POD-structs, it is permitted to inspect the commoa initial part
of any of them. Two POD-structs share a commoa initial sequence if corresponding members have layout-
compatible types (and, for bit-fields, the same widths) for a sequence of one or more initial members.

A pointer to a POD-struct object, suitably converted, points to its initial member (or if that member is a
bit-field, then to the umit in which it resides) and vice versa. There may therefore be unnamed padding
within a POD-struct object, but not at its beginning, as necessary to achieve appropriate alignment.

The mange of nonnegative values of a signed integral type is a subrange of the corresponding unsigned
integral type, and the representation of the same value in each type is the same.

Even if the implementation defines two or more basic types to have the same representation, they are
nevertheless different types.

The representations of integral types shall define values by use of a pure binary numeration system.

|
|
|
|
|
1
|
I
|
|
I
I

{ Does this mean two's complement? s there a definition of “pure binary numeration systedn 7" | |

The qualified or unqualified versions of a type are distinct types that have the same representation and
alignment requirements.

A qualified or unqualified void* shall have the same representation and alignment requirements as a
qualified or unqualified char*.

Similarly, pointers to qualified or unqualified versions of layout-compatible types shall have the same
representation and alignment requirements.

thcprogxammmp(smacecssxhcstmndvalucofanob)cclomcnhmthroug,hanlvalucofoocofthc
following types:
- the declared type of the object,
- aqualified version of the declared type of the object,

« atype that is the signed or unsigned type coarresponding to the declared type of the object,

. atype that is the signed or unsigned type comresponding to a qualified version of the declared type of
the object,

an aggregate or union type that includes one of the aforementioned types among its members (includ-
ing, recursively, a member of a subaggregate or contained unioa), or

. admxwatypc.”

the result is undefined.

A function member (§9.3) with the same name as its class is a constructor (§12.1). A static data

member, coumerator, member of an anonymous union, or nested type may not have the same name as its
class.

T7 R . . . . . . .
The isteat of this lim s 10 specify those crcursizaces is which aa object mey or may sat be alissed.
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92.1 Scope Rules for Classes
The following rules describe the scope of names declared in classes.

1. The scope of a name declared in a class cousists ot only of the text folowing the name’s declarator, |
but also of all function bodies, default parameters, and coastructor initializers in that class (including |
such things in nested classes).

2. A pame N used in a class S must refer 1o the same declaration when re-evaluated in its context and
in the completed scope of S.

3. If reordering member declarations in a class yiclds an alternate valid program under (1) and (2), the
program's meaning is undefined. |

4. A declaration in a nested declarative region hides a declaration whose declarative regioo cootains |
the oested declarative region. |

S. A declaration within a member function hides a declaration whose scope extends (o or past the end |
of the member function's class. |

6. The scope of a declaration that extends to or past the end of a class definition also extends to the |
regions defined by its member definitions, even if defined lexically outside the class (this includes |
both function member bodies and static data member initializations). |
For example: ' I

typedef int c;
enum ( i = 1 });

class X {

char v{i); // error: ‘i’ refers to ::i

// but when reevaluated is X::i
int f£() { return sizeof(c); )} // okay: X::c¢
char ¢;

enum ( i = 2 });
)i

typedef char* T;
struce Y {
T a; // error: ‘T’ refers to ::T
// but when reevaluated is Y::T
typedef long T:
T b;
|

struct Z (
int f(const R); // error: ‘R’ is parameter name
// but swapping the two declarations
// changes it to a type
typedef int R;
)i

93 Member Functions

A function declared as a member (without the friend specifier; §11.4) is called a member function, and is
called for an object using the class member syntax (§5.2.4). For example,
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struct tnode (
char tword{20};
int count;
tnode °*left;
tnode °*right;

void set (char®, tnode* 1, tnode* r);
)i

Here set is a member function and can be called like this:

void f(tnode nl, tnode n2)
{
nl.set(*abc*,&n2,0);
n2.set(*def*,0,0);
}

The definition of a member function is considered to be within the scope of its class. This means that
(provided it is noastatic §9.4) it can use names of members of its class direcly. Such names then refer 0
the members of the object for which the function was called.

A static local variable in a member function always refers to the same object. A static member functioa
can use oaly the names of static members, enumerators, and nested types directly. If the definition of a

member function is lexically outside the class defmition, the member function name must be qualified by
the class name using the : : operator. For example,

void tnode::set(char* w, tnode* 1, tnode* r)
{

count = strlen(w+l); .
if (sizeof (tword)<=count)
error(°*tnode string too long®);
strcpy (tword, w) ;
left = 1;
right = r;
}

The notation tnode: :set specifies that the function set is a member of and in the scope of class
tnode. The member pames tword, count, left, and right refer o members of the object for which
the function was called. Thus, in the call nl.set (*abc*®, &n2,0), tword refers 10 nl.tword, and
inthe call n2.set (*def*,0,0) itrefersto n2 . tword. The functions strlen, error, and strcpy
must be declared elsewhere.

Members may be defmed (§3.1) outside their class definiton if they have atready been declared but not
defined in the class definition; they may not be redeclared. Sec also §3.3. Function members may be men-
tioned in friend declarations after their class has beea defined. Each member function that is called must
have exactly one definition in a program. '

The effect of calling a noastatic member function (§9.4) of a class X for something that is not an olyect
of class X is undefined.

93.1 The this Pointer

In a nonstatic (§9.3) member function, the keyword this is a non-lvalue expression whose value is the
address of the object for which the function is called. The type of this in a member function of a class X
is X* unless the member function is declared const or volatile; in those cases, the type of this is
const X* or volatile X*, respectively. A function declared const and volatile hasa this with
the type const volatile X*. Sec also §19.33. For example,
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struct s |
int a;
int f() const;
int g() ( return a++; }

int h() const { return a++; )} // error
}:

int s::f() const ( return a; )

The a++ in the body of s : : h is an error because it tries to modify (a part of) the object for which s: :h ()
is called. This is oot allowed in a const member function where this is a pointer W const, that is,
*thisisaconst.

A const member function (that is, a member function declared with the const qualifier) may be
called for const and noo-const objects. whereas a non-const member function may be called oaly foc
a non-const object For example, :

void k(s& x, const s& Y)
{
x.£0);
x.g():
y.£0);
Y.gl): // error
) 4
The call y .g () is an error because y is const and s: : g () is a non-const member function that could
(and does) modify the object for which it was called.

Similarly, oaly volat ile member functions (that is, a member function declared with the volatile
specifier) may be invoked for volatile objects. A member function can be both const and vola-
tile. )

Coastructors (§12.1) and destructors (§12.4) may be invoked for a const or volatile object Con-
structors (§12.1) and destructors (§12.4) cannot be declared const or volatile.

93.2 Inline Member Functions

A member function may be defined (§8.3) in the class definition, in which case it is inline (§7.12).
Defining a function within a8 class definition is equivalent to declaring it inline and defining it tmmedi-
awly after the class definition; this rewriting is considered to be done after preprocessing but before syntax
analysis and type checking of the function definition. Thus
int b;
struct x {
char* f() ( return b; }
char* b;
|
is equivalent to
int b;
struct x {
chare* f();
char* b;
Y

inline char® x::f() {( return b; } // moved

Thus the busedin x: : £ () is X: : b and not the global b. See also _class.local.type_. I
Member functions can be defined even in local or nested class definitions where this rewriting would be
syntactically incorrect See §9.8 for a discussion of Yocal classes and §9.7 for a discussion of nested classes.
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94 Static Members

A data or function member of a class may be declared stat ic in the class definition. There is only ooe
copy of a static data member, shared by all objects of the class and any derived classes in a program. A
static member is not part of objects of a class. Static members of a global class have extermal linkage
($33). The declaration of a static data member in its class definitioa is nor a definition and may be of an
incomplete type. A definition is required elsewhere; sec also §193.

A static member function docs bot have a this pomter so it can access noastatic members of its class
oaly by using . or ->. A static member function cannot be virtual. There cannot be a static and a non-
static member function with the same name and the same parameter types.

Static members of a local class (§9.8) have no linkage and cannot be defined outside the class defini-
tion. It follows that a local class cannot have static data members.

A static member mem of class c1 can be referred t0 a3 c1: :mem (§5.1), that is, independeatly of any
object. It can also be referred 0 using the . and -> member access operators (§52.4). When a static
member is accessed through a member access operator, the expression on the left side of the . or -> is oot
evaluated. The static member mem exists even if no objects of class c1 have been created. For example, in
the following, run_chain, idle, and so oa ¢xist even if b0 process objects have been created:

class process |
static int no_of_processes;
static process* run_chain;
static process*® running;
static process* idle;
/7 ...

public:
// ...
int state();

static void reschedule():
// ...

)}

and reschedule can be used without reference (o a process object, as follows:
void f()
{
process::reschedule();

}

Static members of a giobal class are initialized exaaly like global objects and only in file scope. For
example,

void process::reschedule() ( /* ... */ };

int process::no_of_processes = 1;

process® process::running = get_main();

process® process::run_chain = process::running;

Static members obey the usual class member access rules (§11) except that they can be initialized (in file
scope). The initializer of a static member of a class has the same access rights as a member function, as in
process: :run_chain above. )

The type of a static member does not mvolve its class name; thus the type of process ::
no_of_processes is int and the type of &process :: reschedule isvoid(*) ().

9.5 Unions

A union may be thought of as a class whose member objects all begin at offset zero and whose size s suffi-
Cicnt to contain any of its member objects. At most ooe of the member objects can be stored in a unioa at
any time. A unioo may have member functions (including constructors and destructors), but not vartual
(§10.2) funciocas. A union may not have base classes. A union may not be used as a base class. An obyect

of a class with a coastructor or a destructor or a uscr-defined assignment operator (§13.4.3) cannot be a
member of a upion. A unioo can have no stat ic data members.
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{ Shouldn't we prohibit references in unioas? |

A union of the form
union { memberupecification )} ;

is called an ancaymous unioq; it defmes an unnamed object (and oot & type). The names of the members of
an snonymous unioca must be distint from other names in the scope in which the unioa is declared; they are
used directly in that scope without the usual member access syntax (§5.2.4). For example,

void f()
( .
union ( int a; char* p; }:
a=1;
/7 ...
p = *Jennifer*;
/7 ...

}

Here a and p are used like ordinary (nonmember) variables, but since they are union members they bave
the same address.
A global anonymous union must be declared static. An anonymous union may not have private
or protected members (§11). An anonymous union may not have function members.
A unioa for which objects or pointers are declared is not an anonymous union. For example,
union { int aa; char* p; } obj, *ptr = &obj;
aa = 1; // error
ptr-»aa = 1; // ok

The assignment to plam aa is ill formed since -the mcmba name is pot associated with any particular
object.
Initialization of unions that do not have constructors is described in §8.4.1.

9.6 Bit-Fields
A member-declarator of the form

idersifier,, : constani-expression

specifies a bit-field; its length is set off from the bit-field name by a colon. Allocation of bit-fields within a
class object is implementation dependent. Fields are packed into some addressable allocation unit. Fields
straddle allocation units on some machines and not on others. Alignment of bit-fields is implemeatation
depeodent. Fields are assigned right-to-left on some machines, left-to-right on others.

An unnamed bit-field is useful for padding 10 coaform to externally-imposed layouts. Unnamed fields
are not members and cannot be initialized. As a special case, an unnamed bit-ficld with 2 width of zero
specifics alignment of the next bit-field at an allocation unit boundary.

A bit-ficld may not be a static member. A bit-ficld must have integral or coumeration type (§3.6.1). It

-is implementation dependent whether a plain (peither explicitly signed nor unsigned) int ficld is signed or
unsigned. The address-of operator & may not be applied (o a bit-ficld, so there are no pointers to bit-fields.
Nor are there references to bit-fields.

9.7 Nested Class Declarations

A class may be defined within another class. A class defined within another is called a nesred class. The
name of a nested class is local W its enclosing class. The nested class is in the scope of its enclosing class.
Except by using explicit pointers, references, and object names, declarations in a nested class can use oaly
type names, static members, and cnumerators from the enclosing class.
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int x;
int y;

class enclose {
public:

int x;

static int s;

class inner {

void f(int {)
{

X = i; // error: assign to enclose::x
8 = {; // ok: assign to enclose::s
c:x = §; // ok: assign to global x

y = {; // ok: assign to global y

}

void g(enclose* p, int {)
{

p->X = i; // ok: assign to enclose::x
}

}.
)

inner* p = 0; // error ‘inner’ not in scope

Member functions of a nested class have no special access 10 members of an enclosing class; they obey the
usual access rules (§11). Member functions of an enclosing class have no speaal access 10 members of a
nested class; they obey the usual access rules. For example,

class E (
int x;

class 1 {
int y:
void f(E* p, int i)
{
p->Xx = 1i; // error: E::X is private
}
}i

int g(I* p)
{
return p->y: // error: l::y is private
}
)i

Member functions and static data members of a nested class can be defined in the global scope. For exam-
ple,

class enclose {
clasg inner (
static int x;
void f(int i)
b
|
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typedef enclose::jinner ei;
int ei::x = 1;

voild enclose::inner::f(int i) ( /7* ... */ )

A pested class may be declared in & class and later defmed in the same or an enclosing scope. For example: |

class E {
class I1; // forward declaration of nested class
class I2;
class 11 (}; // definition of nested class

)i

class E::I12 (); // definition of nested class

Like & member function, a friend function defined within a class is in the lexical scope of that class; it
obeys the same rules for name binding as the member functions (described above and in §10.4) and like
tbem has no special access rights to members of an enclosing class or local variables of an eaclosing func-
tion (§11).

9.8 Local Class Declarations

A class can be defined within a function definition; such a class is called a local class. The name of a local
class is local w its enclosing scope. The local class is in the scope of the enclosing scope. Declarations in a
local class can use only type names, static variables, extern variables and functions, and enumerators
from the enclosing scope. For example,

int x;

void f{)

{
static int s ;
int x;
extern int g();

struct local (

int g() { return x; } // error: ‘x’' is auto
int h() ( recurn s; ) // ok
int k() ( return ::x; } // ok
int 1() {( return g();: } // ok
b
/7
]
local* p = 0; // error: ‘local’ not in scope

An cnclosing function has no special access 0 members of the local class; it obeys the usual access
rules (§11). Member functions of a local class must be defined within their class definition. A local class
may pot have static data members. |

99 Nested Type Names. ‘

Type names obey exactly the same scope rules as other names. In particular, type names defined within a |
class defmition cannot be used outside their class without qualification. For example, |
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class X {

public:
typedef int I;
class Y { /* ... */ };
I a;

)i

b; // error
c // error
// ok
// ok

M €
—
o 0O
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Derived Classes

This chapter explains inherirance. A class can be derived from one or more otber classes, which are then called
base classes of the derived class. The derived class inherits the properties of its base classes, iocluding its data
members and member functions. In addition, the derived class can override virtual functions of its bases and
declare additional data members, functions, and 30 on. Access to class members is checked for ambiguity.

Sharing among the (base) classes that make up a class can be expressed uxmg virtual base classes. Classes can
be declared abstract to ensure that they are used only as base classes.

The final section of this chapter (§10.4) is a summary of the C+ scope rules.

10 Derived Classes

A list of base classes may be specified in a class declaration using the notation:
baseclause:
: base-specifier-list

base-specifier-list:
base-specifier
base-specifier-list , base-specifier

base-specifier:
qualified-class-specifier
virtual access-specifier,, qualifiedclass-specifier
access-specifier virtual,, qualified-class-specifier

access-specifier:
private
protected
public

The class-name in a base-specifier must denote a previously declared class (§9), which is called a direct
base class for the class being declared. A class B is a base class of a class D if it is a direct base class of D
or a direct base class of one of D's base classes. A class is an indirect base class of anotber if it is a base
class but pot a direct base class. A class is said o be (direcly or indirectly) derived from its (direct or
indirect) base classes. For the meaning of access-specifier see §11. Unless redefined in the derived class,
members of a base class can be referred 10 as if they were members of the derived class. The base class
members are said to be inherized by the derived class. The scope resolution operator : : (§5.1) may be used
0 refer to a basc member explicitly. This allows access 1o a name that has been redefined in the denved
class. A derived class can itself serve as a base class subject w0 access coatrol; see §11.2. A pointer o &
derived class may be implicitly converted to a pointer to an accessible unambiguous base class (§4.6). A

reference W a derived class may be implicitly converted (o a reference o an accessible unambiguous base
class (§4.7).
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For example,

class Base {
public:

int a, b, c;
}:

class Derived : public Base (
public:

int b;
)i

class Derived2 : public Derived {
public:

int c;
)i

Here, an object of class Derived2 will have a sub-object of class Derived which in tum will have a
sub-object of class Base, A derived class and its base classes can be represented by a directed acyclic
graph (DAG) where an arrow means “directly derived from.” A DAG of classes is often referred to as a
“class lattice.” For example,

Base

!

Derived

U

Derived2

Note that the arrows need not have a physical representation in memory and the order in which the sub-
objects appear in memory is unspecified.

Name lookup proceeds from the original class (the named class in the case of a gualified-id) along the
edges of the lagice until the name is found. If a name is found in more than one class in the latttice, the
access is ambiguous (see §10.1.1) unless one occurrence of the name hides'® all the others. Aname B: : f
hides aname A: : f if its class B has A as a base and the instance of B containing B: : £ has the instance of
A containing A: : f as a sub-object. The second part of this definition is trivially satisfied when multiple
inberitance is not used. For example,

void f()

{
Derived2 x;

x.a = 1; // Bage::a

x.b = 2; // Derived::b

x.c = 3; // Derived2::c

X .Bage::b = ¢; // Base::b
x.Derived::c = S; // Base::cC

Base* bp = &x; // standard conversion:

// Derived2* to Base*
}

assigns 0 the five members of x and makes bp point to x.

Note that in the class-name : : id-expression notation, id-expression need not be & member of class-
name, the notation simply specifies a class in which to start looking for id-expression.

Initialization of objects representing base classes can be specified in coastructors; sec §12.6.2.

¥ This criuerion s calied “docisesce™ is the ARM.
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10.1 Multiple Base Claszses

A class may be denived from any number of base classes. For example,

clasgs A [ /* ... */ },
clasg B ( /* ... */ };
clasgs C { /* ... */ );
class D : public A, public B, public C ( /* ... */ };

The use of more than ooe direct base class is often calied multiple inheritance.
The order of derivation is pot significant except possibly for default mitialization by coastructor
(§12.1), for cleanup (§12.4), and for storage layout (§5.4, §9.2, §11.1).

A class may not be specified as a direct base class of a derived class more than once but it may be an

class B { /* ... */ );

class D : public B, public B ( /* ... */ }; // {llegal
class L { /* ... */ };

class A : public L ( /* ... */ };

class B : public L ( /* ... */ };

class C : public A, public B { /* ... */ }; // legal

Here, an object of class C will have two sub-objects of class L as shown below.
L L

A . B
\\\\\\C////;f
The keyword virtual may be added to a base class specifier. A single sub-object of the virual base
class is shared by every base class that specified the base class to be virtual. For example,

class V { /* ... */ );

class A : virtual public V { /* ... */ };
class B : virtual public V { /* ... */ };
class C : public A, public B { /* ... */ };

Here class C has only one sub-object of class V, as shown below.
v
N,
\C/

A class may have both virtual and noavirtual base classes of a given type.

class B { /* ... */ };

‘class X : virtual public B ( /* ... */

class Y : virtual public B ( /* ... */ )

class Z : public B { /* ... */ ); .
class AA : public X, public Y, public 2 ( /* ... */ }):

Here class AA has two sub-objects of class B: Z's B and the virtual B shared by X and Y, as shown below.
/////"B B
x\ >'Z

AA

102



164 Derived Classes DRAFT June 1, 1993 Chapter 10

10.1.1 Ambiguities

Access o base class members must be unambiguous. Access to a base class member is ambiguous if the
id-expression or qualified-id used docs not refer to a unique function, object, type, or enumerator. The
check for ambiguity takes place before access coatrol (§11). For example,

class A {
public:
int a;
int (*b) ()
int £();
int f(int);
int g():
}i

class B {

int a;

int b();
public:

int £0);

int g

int h{);

int hint);
)i

class C : public A, public B (};

void g(C* pc)
{

pc->a = 1; // error: ambiguous: A::a or B::a
pc->b{); // error: ambiguous: A::b or B::b
pc->f(); // error: ambiguous: A::f or B::f
pc->f(1); // error: ambiguous: A::f or B::f
pc->g () // error: ambiguous: A::g or B::g
pc->¢g = 1; // error: ambiguous: A::g or B::g -

pc->h(); /! ok
pc->h(l); // ok
}

If the name of an overloaded function is unambiguously found overloading resolution also takes place
before access control. Ambiguities can be resolved by qualifying a name with its class name. For example,

class A (
public:

int £();
b

class B {

public: .
int £();

|

class C : public A, public B {
int £() ( returm A::f() + B::f(); )
}i
A single function, object, type, or enumerator may be reached through more than one path through the
directed acyclic graph of base classes. Tbis is not an ambiguity. For example,
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class V { public: int v; );

class A |

public:
int a;
static int 8;
enum { e };

)i
class B : public A, public virtual Vv {();
class C : public A, public virtual Vv {});

class D : public B, public C { ):

void f(D* pd)
{

pd->ves; // ok: only one ‘v’ (virtual)
pd->s++; // ok: only one ‘s’ (static)

int i = pd->e; // ok: only one ‘e’ (enumerator)
pd->a++; // error, ambiguous: two ‘a‘’s in ‘D’

}

When virtual base classes are used, a hidden function, object, or enumerator may be reached along a path
through the inheritance DAG that does not pass through the hiding function, object, or enumerator. This is
oot an ambiguity. The identical use with noavirtual base classes is an ambiguity; in that case there is no
unique instance of the name that hides all the others. For example,

class V { public: int f(): 1int x:; };
class W ( public: int g{(); .- int y; };
class B : public virtual V, public W
{
public:
int £(): int x;
int g0); inty;
}:
class C : public virtual V, public W ( }:

class D : public B, public C { void g(); };

N N
.

The names defined in V and the left hand instance of W are hidden by those in B, but the names defined in
the nght hand instance of W arc pot hidden at all.

void D::g()

{
X4+ // ok: B::x hides V::x
£0); // ok: B::f{) hides V::f()
bARS // error: B::y and C’'s W::y
g(): // error: B::g() and C's W::g()

}
An explicit or implicit conversion from a pointer or reference to & derived class o a pointer or reference to

one of its basc classes must unambiguously refer 10 a unique object representing the base class. For exam-
ple.
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class V { };
class A ( };
class B : public A, public virtual v { );
class C : public A, public virtual v { });
clagss D : public B, public C { );
void g()
{
D d4;
B* pb = &d;

A* pa = &d; // error, ambiguous: C’s A or B‘s A ?
V* pv = &d; // fine: only one V sub-object

102 Virtual Functions

Virmal functions support dynamic binding and object-oriented programming. A class that declnm or
inberits a virtual function is called a polymorphic class.

If a viral member function vf is declared in a class Base and in a class Derived, derived directly
or indirectly from Base, a member function vf with the same name and same parameter list as
Base: :vf is declared, then Derived: :vf is also virtual (whether or not it is so declared) and it
overrides'® Base: :vf. For convenicace we say that any virtual function overrides itself. Then in any
well-formed class, for each virtal function declared in that class or any of its direct or indirect base classes
there is a unique final overrider that overrides that function and every other overrider of that functioa.

It is a diagnosable error for the return type of an overriding function to differ from the return type of the
overridden function unless the remmn type of the overridden function is pointer or reference (possibly cv-
qualified) o a class B, and the retum type of the overriding function is pointer or refereace (respectively)
a class D such that B is an unambiguous direct or indirect base class of D, accessible in the class of the over-
riding function, and the cv-qualification in the return type of the overriding functin is less than or equal o
the cv-qualification in the return type of the overridden function. In that case when the overriding function
is called as the final overrider of the overridden function, its result is converted to the type returned by the
(statically chosen) overridden function. See §5.2.2. For cxamplc

class B {};
class D : private B {( frlend class Derived; };
struct Base {
virtual void v{l{():
virtual void vf2();
virtual void v{l{();
virtual B* vid();
void f();
|

struct No_good : public Base {
D* vfd4(); // error: B (base class of D) inaccessible
)i

WAhnaaoavimmcummbuadiﬂuwpmuu(uﬂl)-nmmuhum—.ﬂymmmnm The ase

of the virtual specifier in the declaratios of aa overridiag functios is legal but redusdant (has empty secamstica) Acoess control (J11) Is sot cos-
sidered is detormiaing ovamidiag
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struct Derived : public Base {

void vil(); // virtual and overrides Base::v{1()
void vi2(int); // not virtual, hidegc Base::vf2()
char vl (); // error: invalid difference in return type only
D* vid(); // okay: returns pointer to derived class
void f{();
).
void g{()
{
Derived d;
Base*®* bp = &d; // standard conversion:
// Derived® to Base*
bp->vfli(); // calls Derived::vfl{()
bp->vf2(); // calls Base::vf2()
bp->f(); // calls Base::f() (not virtual)

B* p = bp->vfd(). // calls Derived::pf() and converts the -
// result to B*

Derived* dp = &d;

D* q = dp->vf4(); // calls Derived::pf() and does not
// convert the result to B*

dp->vE2(); // 111 formed: argument mismatch
) v

That is, the interpretation of the call of a virtual function depends on the type of the object for which it
is called (the dynamic type), whereas the interpretation of a call of a nonvirtual member function depends
only on the type of the pointer or reference denoting that object (the static type). See §5.2.2.

The virtual specifier implies membership, so a virtual function cannot be & global (noamember)
(§7.1.2) function. Nor can a virtual function be & static member, since a virtual function call relies on a
specific object for determining which function 0 invoke. A virtual function can be declared a friend in
another class. A virmal function declared in a class must be defined or declared pure (§10.3) in that class.

Following are some examples of virtual functions used with multiple base classes:

struct A {
virtual void f();
}:

struct Bl : A // note non-virtual derivation
void f();
Y. o

struct B2 : A {
void f();
).

struct D : Bl, B2 { // D has two separate A sub-objects
)' L]
void foo()
(
D d;
// A* ap = &d; // would be ill formed: ambiguous
Bl* blp = &d;
A* ap = bilp;
ap->f(); // calls D::Bl::f
dp->f(); // ill formed: ambiguous
)

—_———r

In class D above there are two occurtences of class A and bence two occurrences of the virtual member |
funcuon A::f. The final overnider of Bl::A::f is Bl::f and the final overnider of B2::A::f is |

B2::¢f.
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The following example shows a function that does ot have a unique final overrider: |

struct A {
virtual void f():;
|

struct VBl : virtual A { // note virtual derivation
void f();
)

struct VB2 : virtual A {
void £(); °
}:

struct Error : VBl, VB2 ( // {ll-formed
)i

struct Okay : VB1, VB2 {
void f();

}i

Both VB1: : f and VB2: : £ override A: : £ but there is no overrider of both of them in class Error. This |
error requires a diagnosis. Class Okay is well formed, however, because Okay : : f is a final overrider. |
The following example uses the well-formed classes from above. |

struct VBla : virtual A { // does not declare f
)i

struct Da : VBla, VB2 {
):

void foe()

{
VBla* vblap = new Da;
vblap->f(); // calls VB2:f

}

Explicit qualification with the scope operator (§5.1) suppresses the virtual call mechanism. For exam- |
ple. .

class B ( public: virtual void f(); };
class D : public B { public: void £(); };

void D::£() ( /* ... */ B::f(); }
Here, the functioncallin D: : £ really does cali B: : f and not D: : f. |

103 Abstract Classes

The abstract class mechanism supports the notion of a general concept, such as a shape, of which only
more concrele variants, such as circle and square, can actually be used. An abstract class caa also be
used o define an interface for which derived classes provide a variety of implementatioas.

An abstract class is a class that can be used only as a base class of some other class; no objects of an
abstract class may be created except as sub-objects of a class derived from it. A class is abstract if it has at
least ooe pure virtual function (which may be inberited: see below). A virtual function is specified pure by
using & pure-specifier (§9.2) in the function declaration in the class declaration A pure virtual function
need be defined only if explicitly called with the gualified-id syntax (§5.1). For example,
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clasc point ( /* ... */ )
clasg gshape (
point center;
/7 ...
public:
point where() { return center; }
void move(point p) { center=p; draw(); )
virtual void rotate(int) = 0; // pure virtual

virtual void draw() = O; // pure virtual
/7 ...

// abstract class

)

An abstract class may not be used as an parameter type, as a function return type, or as the type of an expli-
cit conversion. Pointers and references to an abstract class may be declared. For example,

shape x; // error: object of abstract class
shape* p; // ok

shape f(); // error

void g(shape): // error

shape& h(shape&); // ok

Pure virtual functions are inherited as pure virtual functions. For example,

class ab_circle : public shape {
int radius;

public:
void rotate(int) {}

// ab_circle::draw() is a pure virtual
b

Since shape: :draw() is a pure virmal function ab_circle::draw() is a pure virtual by default.
The alternative declaration,

class circle : public shape ({
int radius;

public: .
void rotate(int) ()}
void draw{); // must be defined somewhere

b

would make class ¢ ircle nonabstract and a definition of circle: :draw() must be provided.

An abstract class may be derived from a class that is not abstract, and a pure vintual function may over-
ride a virtual function which is not pure.

Member functions can be called from a constructor of an abstract class; the effect of calling a pure vir-
tual function directly or indirectly for the object being created from such a constructor is undefined.

104 Summary of Scope Rules

The scope rules for C+ programs can now be summarized. These rules apply uniformly for ali names
(including rypedef-names (§7.1.3) and class-names (§9.1)) wherever the grammar allows such names in the
coatext discussed by a particular rule. This section discusses lexical scope oaly; see §3.3 for an explanation
of linkage issues. The notion of point of declaration is discussed in (§3.2).

Any usc of a name must be unambiguous (up to overiocading) in its scope (§10.1.1). Only if the name is
found o be unambiguous in its scope are access rules considered (§11). Only if po access coatrol errors are
found is the type of the object. function, or enumerator named considered.

A name used outside any function and class or prefixed by the unary scope operator : : (and not quali-
fied by the binary : : operator or the -> Or . operators) must be the name of a global object, function, or
CcnNUMEralor.

A name specified after X : :, after obj ., where obj is an X or a refereace 0 X, or after ptr->, where
ptr is a pointer 10 X must be the name of a member of class X or be a member of a base class of X. In
addition. ptr in ptr-> may be an object of a class Y that has operator->() declared so
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ptr->operator-> ()} eventually resolves to a pointer o X (§13.4.6).

A name that is oot qualified in any of the ways described above and that is used in 2 function that is Dot
a class member must be declared before its usc in the block in which it occurs or m an enclosing block or
globally. The declaration of a local name hides previous declarations of the same name in enclosing blocks
and at file scope. In particular, po overloading occurs of names in different scopes (§13.4).

A pame that is pot Qualified in any of the ways described above and that is used in a function that is a
pouastatic member of class X must be declared i the block in which it occurs or m an enclosing block, be a
member of class X or a base class of class X, or be a global name. The declaration of a local name hides
declarations of the same name in enclosing blocks, members of the function's class, and global names. The
declaration of & member name hides declarations of the same name in base classes and global names.

A name that is not qualified in one of the ways described above and is used in a static member function
. of a class X must be declared in the block in which it occurs, in an eoclosing block, be a static member of
class X, or a base class of class X, or be & global name.

A function parameter name in a functioa definition (§8.3) is in the scope of the outermost block of the
functioa (in particular, it is a local name). A functioa parameter name in a function declaration (§8.2.5) that
is not a function definition is in a local scope that disappears immediately after the function declaration. A
default parameter is in the scope determined by the point of declaraton (§3.2) of its parameter, but may not
access local variables or nonstatic class members; it is evaluated at cach point of call (§8.2.6).

A ctor-initializer (§12.6.2) is evaluated in the scope of the outermost block of the constructor it is speci-
fied for. In particular, it can refer to the constructor’s parameter names.
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Member Access Control

This chapter explains mechanisms for control of access to class members. Access control is based on the use of
the keywords public, private, and protected to control access 0 individual members of a class and on
the use of private, protected, and publ ic specifiers to control access 1o base class members i & derived
class object The friend mechanism provides a way of granting individual functioos and classes access o
members of a class.

Access conol applies uniformly to function members, data members, member constants, and pested types.

11 Member Access Control
A member of a class can be

private; that is, its name can be used only by member functions and friends of the class in
which it is declared.

protected; that is, its name can be used only by member functions and friends of the class m

which it is declared and by member functions and friends of classes derived from this class (see
§11.5).

public; that is, its name can be used by any function.

Members of a class declared with the keyword class are private by default. Members of a
class declared with the keywords struct or union are public by default. For example,
class X {

int a; // X::a is private by default
}e

struct S {

int a; // S::a is public by default
).

11.1 Access Specifiers
Member declarations may be labeied by an access-specifier (§10):

access-specifier : member-specification,,

An access-specifier specifies the access rules for members following it until the end of the class or until
another access-specifier is encountered. For example,
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clasg X |

int a; // X::a is private by default: ‘class’ used
public:

int b; // X::b is public

int ¢ // X::c is public
}i

Any number of access specifiers is allowed and no particular order is required.  For example,

struct S {
int a; // S::a is public by default: ‘struct’ used

protected:

int b; // S::b is protected
private:

int ¢; // S::c is private
public:

int d; // S::d is public
}:

The order of allocation of data members with separate access-specifier labels is implementation depen-
dent (§9.2).

112 Access Specifiers for Base Classes

If a class is declared to be a base class (§10) for another class using the publ ic access specifier, the pub-~
1ic members of the base class are accessible as publ ic members of the derived class and protected
members of the base class are accessible as prot ect ed members of the derived class (but see §13.1). Ifa
class is declared to be a base class for another class using the protected access specifier, the public
and protected members of the base class are accessible as protected members of the derived class.
If a class is declared to be a base class for another class using the private access specifier, the public
and protected members of the base class are accessible as private members of the derived class.
Private members of a base class remain inaccessible even 0 derived classes unless friend declarations
within the base class declaration are used to grant access explicitly.

In the absence of an access-specifier for a base class, public is assumed when the derived class is
declared struct and private is assumed when the class is declared class. For example,

class B { /* ... */ };

class D1 : private B { /* ... */ };

class D2 : public B ( /* ... */ };

class D3 : B { /* ... */ }: // 'B‘ private by default
struct D4 : public B { /* ... */ };

struct DS : private B { /* ... */ };

struct D6 : B ( /* ... */ ) // 'B’ public by default
class D7 : protected B { /* ... */ };

struct D8 : protected B { /* ... */ };

Here B is a public base of D2, D4, and D6, a private base of D1, D3, and DS, and a protected base of D7
and D8.

Because of the rules oo pointer conversion (§4.6), a static member of a private base class may be inac-
cessible as an inberited name, but accessible directly. For example,

111



Section 112

class B {
public:
int mi; //
static int si; //
)
class D : private B (
|
class DD : public D {
void £();

}:

void DD::f() {
mi = 3;

//

sl = 3; //
B b;
b.mi = 3; //
b.si = H /7
B::si = 3; /7
B* bpl = this; //
B* bp2 = (B*)this;
bp2->mi = 3;

}

DRAFT Jubne 1, 1993  Access Specifiers for Base Classes

nonstatic member
static member

error: mi i{s private in D
error: si is private in D
okéy (b.mi is different from this->mi)

okay (b.si is the same as this->si)

okay

error: B is a private base class
// okay with cast

// okay and bp2->mi is the same as this->mi

Members and fricnds of a class X can implicitly convert an X* t0 a pointer to a private or protected

immediate base class of X.

113 Access Declarations

The access of public or protected member of a private or protected base class can be restored to the same
level in the derived class by mentioning its qualified-id in the public (for public members of the base
class) or protected (for protected members of the base class) part of a derived class declaration. Such

menton is called an access declaration.
For example,

class A {
public:
int z;
int z1;
)

class B : public A {
int a:
public:
int b, c¢;
int bf();
protected:
int x;
int y:
Yi ’
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class D : private B {
int 4;

public:
B::c; // adjust access to ‘B::c’
B::2; // adjust access to ‘A::z°
A::21; // adjust access to ‘A::zl1°

int e;
int df();
protected:
B::x; // adjust access to ‘B::x’
int g ’

)i

class X : public D {
int xf();
}i

int ef (D&);
int f£(X&);

The external function ef can use only the names c, z, 21, e, and df. Being a member of D, the function
df can use the names b, ¢, z, z1, bf, x, y, d. e, df, and g, but bt a. Being a member of B, the function
bf can use the members a, b, ¢, z, 21, bf, x, and y. The function xf can use the public and protecied
names from D, that is, c, z, z1, e, and df (public), and x, and g (protected). Thus the external function
£ £ has accessonly to c, z, 21, e, and Af. If D were a protected or private base class of X, xf would have
the same privileges as before, but £ £ would have no access at all.

An access declaration may not be used to restrict access t0 a member that is accessible in the base class,
nor may it be used to enable access to 2 member that is not accessible in the base class. For example,

class A |
public:

int z;
)}

class B : private A (
public:
int a;
int x:
private:
int b;
protected:
int ¢;
Y.

class D : private B {
public:
B::a; // make ‘a‘’ a public member of D
B::b; // error: attempt to grant access
// can‘t make ‘b’ a public member of D
A::2; // error: attempt to grant access
protected:
B::c; // make ‘c’ a protected member of D
B::x; // error: attempt to reduce access
// can‘t make ‘x‘ a protected member of D
}i

class E : protected B {
public:

B::a; // make ‘a‘’ a public member of E
}:
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The names ¢ and x zre protecied members of E by virtue of its protected derivation from B. An access
declaration for the name of an overioaded function adjusts the access w0 all functions of that name in the
base class. For example,

class X {
public:
£();
f(int);
};

class Y : private X {
public:

X::£; // makes X::f() and X::f(int) public in Y
}i: -

The access 0 a base class member cannot be adjusted in a derived class that also defines a-member of
that name. For example,

class X {
public:

void f();
|

class Y : private X (
public:
void f(int);

X::f; // error: two declarations of f
)

114 Friends

Africndofaclssisafunctionumisnotamcmbcrofthcclassbutispcrmmedtomqthcpﬁvawandpm-
tected member names from the class. The name of a friend is not in the scope of the class, and the friend is

not called with the member access opetators (§5.2.4) unless it is a member of anotber class. The following
example illustrates the differences between members and friends:

class X {

int a;

friend void friend_set (X*, int);
public:

void member_set(int);
)i

void friend_set(X* p, int i) { p-»a = i; )}
void X::member_set{int i) {( a = 1i; }

void f ()
{
X obj;
friend_set (&obj.,10);
obj.member_set (10) ;
)

When a friend declaration refers to an overloaded name or operator, oaly the function specified by |

the parameter types becomes a friend. A member function of a class X can be a friend of a class Y. For
cxample,

~class Y {
friend char* X::fool(int);
//
)

All the functions of a class X can be made fricods of a class Y by a single declaration using an elaborated-
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type-specifie” (§9.1):

class Y (
friend class X;
... ’
)i

Declaring a class to be a friend also implies that privaie and protected names from the class granting friend-
ship can be used in the class receiving it For example,

class X |
enum { ax100 };
friend class Y;
}:

class Y { ,
int v(X::a); // ok, Y is a friend of X
)i

class Z {
int v(X::a); // error: X::a is private
}:

If a class or function mentoned as a friend has not been declared, its name is entered in the smallest
non-class scope that encloses the friend declaration.

A function first declared in a friend declaration is equivalent to an ext ern declaration (§3.3, §7.1.1).

A global (but not 8 member) f£riend function may be defined in a class definition other than a local |
class definition (§9.8). The function is then inline and the rewriting rule specified for member functions
(§9.3.2) is applied. A friend function defined in a class is in the (Iexical) scope of the class in which it is
defined. A friend function defined outside the class is nof.

Friend declarations are not affected by access-specifiers (§9.2).

Friendship is neither inherited nor transitive. For example,

class A {
friend class B;
int a;

)i

class B {
friend class C;
}:

class C {
void f(A* p)
{
p->a++; // error: C is not a friend of A
// despite being a friend of a friend

). .

class D : public B {
void f(A* p)
(
p->a++; // error: D is not a friend of A
// despite being derived from a friend

mmmm:uiqormmmmwwhnqm‘m
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11.5 Protected Member Access

A friend or a member function of & derived class can access a protected static member of a base class. A
friend or a member function of a derived class can access a protected nonstatic member of ooe of its base
classes only through a pointer to, reference o, or object of the derived class itself (or any class derived from
that class). When a protected member of a base class appears in a qualified-id i a fricod or a member
function of a derived class the nested-class-specifier must name the derived class. For example,

class B {

protected:

int i;
):

class D1 : bublic B {
)i

class D2 : public B {
friend void fr(B*.D1*,D2*);
void mem(B*,D1*);

}:

void fr(B* pb, D1* pl, D2* p2)
{

pb->i = 1; // illegal
pl->1 = 2; // illegal
p2->i = 3; /7 ok (accegs through a D2)

int B::* pmi_B = &B::i; // illegal
int D2::* pmi_D2 = &D2::i; // ok
}

void D2::mem(B* pb, D1* pl)
{

pb->i = 1; // illegal
pl->1 = 2; // illegal
1 = 3; // ok (access through ‘this’)

}

void g(B* pb, D1* pl, D2* p2)
{

pb->1 = 1; // illegal
pl->1 = 2; // illegal
p2->1 = 3; // illegal

11.6 Access to Virtual Functions

Thbe access rules (§11) for a virmal function are determined by its declaration and are not affected by the
rules for a function that later overrides it For example,

class B {
public:

virtual f();
)

class D : public B {
private:

£();
b
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void f ()

(
D 4;
B* pb = &4;
D* pd = &d4;

pb->f(); // ok: B::f() is public,
// D::f() is invoked
pd->f(); // error: D::f() is private
}

Access is checked at the call point using the type of the expression used to denote the object for which the
member function is called (B* in the example above). The access of the member function in the class in
which it was defined (D in the example above) is in general not known.

11.7 Multiple Access

If a name can be reached by several paths through a multiple inberitance graph, the access is that of the path
that gives most access. For example,

class W { public: void f(); };
class A : private virtual W { };
class B : public virtual W { };
class C : public A, public B {

void f() { W::£(); } // ok
I

Since W: : £ () is available to C: : f () along the public path through B, access is allowed.
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APPPENDIX B

CONTENS OF FLOPPY




The floppy attached to this thesis consists of the
following files as shown in next page. It contains a total of
'219 * cpp files, sr*.kr files and tn*.bat files each. For
each *.cpp file there is an associated sr*.kr file and

tn*.bat file.

These are all used during batch processing. All these
files are in sub-directory named KRS. For using. this
verification suite all the files must loaded in toto in a

separate sub-directory in the hard disk for simplicity.

Then this suite can be used for testing all DOS based
C++ compilers by using command auco <[input]> where [input]
is the command-line-compilation-command of the compiler under

test for more detail refer to section 2.5 of this thesis.

However for using the test programs to test a C++
_ DoS
- compiler which is not,based, appropriate driver programs will

have to be written after copying only all the *.cpp files.
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Volume in drive A has no label

Directory of A:\KRS

()

ARUN4
AUCOS.BAT
NO90101B.CPP
NO90103B.CPP
NO90201F.CPP
NO90221A.CPP
NOS0402A.CPP
NO90501B.CPP
NO90503B.CPP
NO90701A.CPP
NO90802B.CPP
NO93103A.CPP
N100104B.CPP
N100111E.CPP
N100111J.CPP
N100302A.CPP
N100304B.CPP
N110002.CPP
N110101D.CPP
N110201E.CPP
N110303A.CPP
N110402A.CPP
N110407B.CPP
N110501E.CPP
N921102A.CPP
N921102F.CPP
P090005C. CPP
PO90201A.CPP
P090210A.CPP
P090303.CPP
PO90501A.CPP
PO90701A.CPP
P0O90801A.CPP
P090802.CPP
P093103B.CPP
P100105.CPP
P100202A.CPP
P100203cC.CPP
P100302A.CPP
P110001A.CPP
P110002A.CPP
P110201B.CPP
P110204A.CPP
P110402A.CPP
P110601.CPP
P921104.CPP

(--]
ARUNK

- CLEAR.BAT

N0O90101C.CPP
NOS0201B.CPP
NO90203Aa.CPP
NOS0221B.CPP
NOS0402B.CPP
NOS0501C.CPP
N0O90503C.CPP
NO90701B.CPP
NO90901A.CPP
NO93202A.CPP
N100111A.CPP
N100O111F.CPP
N100202B.CPP
N100302B.CPP
N110001lA.CPP
N110002B.CPP
N110201A.CPP
N110202A.CPP
N110303B.CPP
N110402B.CPP
N110501A.CPP

. N110501F.CPP

N921102B.CPP
P090002.cCPP
P090102A.CPP
P090202A.CPP
P0S0212A.CPP
P090401.CPP

PO90501B.CPP -

POS0701B.CPP
P090801B.CPP
PO90901A.CPP
P093201.cCPP

P100111A.CPP
P100202B.CPP
P100203D.cCPP
P100302B.CPP
P110001B.CPP
P110002B.CPP
P110201cC.cCPP
P110301A.CPP
P110402B.CPP
P110701.CPP

P921105.CcPP

ARUN.BAT
AUCO.BAT
NO900O1A.CPP
NO90102A.CPP

‘'N090201cC.CPP

NO90203B.CPP
N090221C.CPP
N090402C.CPP
NOS0SO1E.CPP
N0O90503D.CPP
NO90701C.CPP
NOS0901B.CPP
N093202B.CPP
N100111B.CPP
N100111G.CPP
N100203A.CPP
N100302C.CPP
N110001B.CPP
N110101l1A.CPP
N110201B.CPP
N110203.CPP

N110303c.cpP
N110402C.CPP
N110501B.CPP
N110501G.CPP
N921102C.CPP

-P090003.CPP

P090102B.CPP
P090205.CPP
P0S0213A.CPP
P090402.CPP
P090502.CPP
P0S0701C.CPP
P090801C.CPP
P093101A.CPP
P100101.CPP
P100111B.CPP
P100202C.CPP
P100203E.CPP
P100302C.CPP
P110001C.CPP
P110101A.CPP
P110201D.CPP
P110301B.CPP
P110406A.CPP
P921101A.CPP
SRO0010.KR
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ARUN1
AUCO10.BAT
NOS0001B.CPP
NOS0102B.CPP
N090201D.CPP
N090203C.CPP
N090221D.CPP
N090403.CPP
NO90502.CPP
NO90504A.CPP
N090701D.CPP
NO93101A.CPP

- N100103.CPP

N100111C.CPP
N100111H.CPP
N100203B.CPP
N100303.CPP

N110001lcC.CPP
N110101B.CPP
N110201cC.cCPP
N110301A.CPP
N110303D.CPP
N110405.cCPP

N110501C.CPP
N110501H.CPP
NS21102D.CPP
P090004A.CPP
P090103A.CPP
POS0207A.CPP
P090301.CPP

P090404.CPP

P090503.CPP

P090701D.CPP
P090801D.CPP

. P093102.CPP

P100103.CPP
P100111cC.CPP
P100203A.CPP
P100204.CcPP
P100302D.CPP
P110001D.CPP
P110101B.CPP
P110202A.CPP
P110303A.CPP
P110501A.CPP
P921101C.CPP
SRO0O020.KR

ARUN3
AUCO11.BAT

" NO90101A.CPP

NO90103A.CPP
NO90201E.CPP
NO90205A.CPP
NO90301.CPP
NO90501A.CPP
NO90503A.CPP
NO90504B.CPP
NO90802A.CPP
N093102.CPP
N100104A.CPP
N100111D.CPP
N100111I.CPP
N100205A.CPP
N100304A.CPP
N110001D.CPP
N110101C.CPP
N110201D.CPP
N110301B.CPP
N110304A.CPP
N110407A.CPP
N110501D.CPP
N110601.CPP
N921102E.CPP
PO90005A.CPP
POS0103B.CPP
POSO209A.CPP
P090302.CPP
P090405.CPP
P090504 .CPP
PO90801.CP
POS0801E.CPP
PO93103A.CPP
P100104.CPP
P100111F.CPP
P100203B.CPP
P100209.CPP
P100304A.CPP
P110001E.CPP
P110201A.CPP
P110203.CPP
P110401A.CPP
P110501B.CPP
P921101D.CPP
SRO0030.KR



SR0O0040.KR
SR00100.KR
SR0O0150.KR
SR00200.KR
SR00260.KR
SR00310.KR
SR00360.KR
SR0O0421.KR
SRO0450.KR
SR00470.KR
SRO0499.KR
SRO0518.KR
SR0O0S529.KR
SRO0570.KR
SR00620.KR
SR00670.KR
SR00720.KR
SR0O0760.KR
SRO0800.KR
SRO0850.KR
SRO0900.KR
SR01020.KR
SRO1060.KR
SR01090.KR
SRO1130.KR
SR01210.KR
SR01260.KR
SR0O1283.KR
SRO1330.KR
SR01380.KR
SR01420.KR
SR01470.KR
SRO1515.KR
SRO1555.KR
SR01600.KR
SRO1650.KR
SR01700.KR
SR01780.KR
SR01820.KR
SR01870.KR
SR01920.KR
SR01990.KR
SR02004.KR
SR0O2030.KR
TNOOOSO.BAT
TNOO110.BAT
TNO0160.BAT
TN0O0210.BAT
TNOO0260.BAT
TNOO310.BAT

SRO0050.KR
SRO0110.KR

. SRO0160.KR

SR0O0210.KR
SR0O0270.KR
SRO0320.KR
SRO0363.KR
SRO0430.KR
SR00460.KR
SR0O0480.KR
SR0O0506.KR
SRO0521.KR
SRO0530.KR
SRO0S580.KR
SRO0630.KR
SR00680.KR
SRO0730.KR
SR00770.KR
SRO0810.KR
SR00860.KR
SRO0910.KR
SR01030.KR
SR01065.KR

SR0O1100.KR

SRO1140.KR

' SRO1220.KR

SR01270.KR
SR0O1290.KR
SRO1340.KR
SRO1390.KR
SR0O1430.KR
SR01480.KR
SR01520.KR
SRO1560.KR
SR01610.KR
SR01660.KR
SR01710.KR
SR01790.KR
SRO1830.KR
SR01880.KR
SRO1950.KR
SR02000.KR
SRO2005 . KR
TNO0010.BAT
TNOOO60 . BAT
TNO0120.BAT
TNOO170.BAT

" TN0O0220.BAT

TNOO270.BAT
TNOO0320.BAT

SRO0060.KR
SR00120.KR
SR00170.KR
SR00220.KR

-SRO0280.KR

SRO0330.KR
SR00400.KR
SR00432.KR
SR0O0461.KR
SR00490.KR
SRO0509.KR
SR00524.KR
SR00540.KR
SR0O0590.KR
SR0O0640.KR
SR00690.KR
SR0O0740.KR
SR0O0780.KR
SR00820.KR
SR0O0870.KR
SRO0911.KR
SR01040.KR
SR0O1070.KR
SRO1110.KR
SRO1150.KR
SR01230.KR

_SR0O1280.KR

SR0O1300.KR
SRO1350.KR
SR01400.KR
SR01440.KR
SR01490.KR
SRO1530.KR
SR01570.KR
SR01620.KR
SR01670.KR
SR01730.KR
SRO1795.KR
SR01840.KR
SR01890.KR
SR0O1960.KR
SR02001.KR
SR02006.KR
TNOCO20.BAT
TNOOO8O.BAT
TNOO130.BAT
TN00180.BAT
TNOO0230.BAT
TNO0280.BAT

'TNO0330.BAT
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SRO0080.KR
SRO0130.KR
SRO0180.KR
SR00230.KR
SR00290.KR
SRO0340.KR
SRO0410.KR
SRO0433.KR
SR00462.KR
SRO0493.KR
SRO0512.KR
SR00527.KR

. SROO550.KR

SRO0600.KR
SR0O0650.KR
SR0O0700.KR
SR00741.KR
SR0O0781.KR
SR00830.KR
SRO0880.KR
SR00920.KR
SRO1043.KR
SR01075.KR
SRO1115.KR
SRO1160.KR
SR01240.KR
SR01281.KR
SR0O1310.KR
SRO1360.KR
SRO1405.KR
SR01450.KR
SRO1500.KR
SR01540.KR
SRO1580.KR
SR01630.KR

" SRO1680.KR

SR01760.KR
SRO1800.KR
SR01850.KR
SRO1900.KR
SR01970.KR
SR02002.KR
SR02010.KR
TNO0030.BAT
TNOOO90. BAT
TN00140.BAT
TNO0190.BAT
TN00240.BAT
TNO0290. BAT
TNO0335.BAT

‘77%—51360

SRO0090.KR
SR00140.KR

" SRO0190.KR

SR0O0240.KR
SRO0300.KR
SR0O0345.KR

- SR00420.KR

SRO0440.KR
SRO0463.KR
SR00496.KR
SRO0515.KR
SRO0528.KR
SRO0560.KR
SRO0610.KR
SRO0660 . KR
SR0O0710.KR
SRO0750.KR
SRO0790.KR
SRO0840.KR
SRO0890.KR
SRO1010.KR
SRO1050.KR
SRO1080.KR

. SRO1120.KR
. SRO1190.KR

SR01250.KR
SR01282.KR
SR01320.KR
SR01370.KR
SR01410.KR
SR01460.KR
SRO1510.KR
SRO1550.KR
SRO1590.KR
SRO1640.KR
SRO1690.KR
SRO1770.KR
SR01810.KR
SR01860.KR
SRO1910.KR
SRO1980.KR
SR0O2003.KR
SR02020.KR
TNOOO40.BAT

" TN0OO100.BAT

TNOO150. BAT

 TNO0200.BAT

TNO0250.BAT
TNOO300.BAT
TNOO350.BAT



TNOO353.BAT
TNO0O420.BAT
TNOO450.BAT
TNOO470.BAT
TNOO520.BAT
TNOO570.BAT
TNOO600 . BAT
TNOO650 . BAT
TNOO700.BAT
TNOO750.BAT
TNOOS0O.BAT
TNOO850.BAT
TNO0900.BAT
TNOO950.BAT
TNO100O.BAT
TN11050.BAT
TN1108S5.BAT
TN11120.BAT
TN11185.BAT
TN11220.BAT
TN11280.BAT
TN11300.BAT
TN11350.BAT
TN11400.BAT
TN21440.BAT
TN21490.BAT
TN21530.BAT
TN21570.BAT
TN21620.BAT
TN21670.BAT
TN21720.BAT
TN21800.BAT
TN21826.BAT
TN21870.BAT
TN21940.BAT
TN21990.BAT
TN21995.BAT

670 file(s)

TNO0390.BAT
TNO0422.BAT
TNOO451.BAT
TNO0480.BAT
TNOOS530.BAT
TNOO580.BAT

 TNO0O610.BAT
" TNOO660.BAT

TNOO710.BAT
TNOO760.BAT
TNOO810.BAT
TNO0860.BAT
TNO0910.BAT
TNO0960.BAT
TN0O1010.BAT
TN11060.BAT
TN11090.BAT
TN11130.BAT
TN11190.BAT
TN11240.BAT
TN11281.BAT
TN11310.BAT
TN11360.BAT
TN11410.BAT
TN21450.BAT
TN21500.BAT
TN21540.BAT
TN21580.BAT
TN21630.BAT

* TN21680.BAT

TN21740.BAT
TN21805.BAT
TN21830.BAT
TN21880.BAT
TN21950.BAT
TN21991.BAT
TN21996.BAT

TNO0400.BAT
TNOO423.BAT
TN0O0452.BAT
TN0OO490.BAT
TNOO540.BAT
TNOO590.BAT
TN00620.BAT
TNOO0670.BAT

'TNO0720.BAT

TNOO770.BAT
TNO0820.BAT
TNOO870.BAT
TNO0920.BAT
TNOO0970.BAT
TNO1020.BAT
TN11070.BAT
TN11095.BAT
TN11140.BAT
TN11200.BAT
TN11250.BAT
TN11282.BAT
TN11320.BAT
TN11370.BAT
TN11415.BAT
TN21460.BAT

TN21510.BAT

TN21550.BAT
TN21590.BAT
TN21640.BAT
TN21690.BAT
TN21770.BAT

‘'TN21810.BAT

TN21840.BAT
TN21890.BAT
TN21960.BAT
TN21992.BAT
TN22000.BAT

214433 bytes

364544 bytes free
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TNOO410.BAT
TNOO430.BAT
TNOO453.BAT
TNOOS500.BAT
TNOOS550 . BAT
TNOO591.BAT
TNO0630.BAT
TNOO680.BAT
TN0OO730.BAT
TNOO780.BAT
TNOO830.BAT
TNOO8SO.BAT
TNOO930.BAT
TNOO980.BAT
TN11030.BAT
TN11073.BAT
TN11100.BAT

" TN11150.BAT .

TN11210.BAT
TN11260.BAT
TN11283.BAT
TN11330.BAT

TN11380.BAT

TN11420.BAT
TN21470.BAT
TN21520.BAT
TN21560.BAT
TN21600.BAT
TN21650.BAT
TN21700.BAT
TN21780.BAT
TN21820.BAT
TN21850.BAT
TN21900.BAT
TN21970.BAT
TN21993.BAT
TN22010.BAT

TNOO411.BAT
TNOO440.BAT
TNOO460.BAT
TNCOS510.BAT
TNOOS560 . BAT
TNOO592.BAT

. TNOO640.BAT

TNO0690.BAT
TNOO740.BAT
TNOO790.BAT
TNOO840.BAT
TNO0O890.BAT
TNOO940.BAT
TNOO990.BAT
TN11040.BAT
TN11080.BAT
TN11110.BAT
TN11160.BAT
TN11215.BAT
TN11270.BAT
TN11290.BAT
TN11340.BAT
TN11390.BAT

 TN21430.BAT

TN21480.BAT
TN21525.BAT
TN21565.BAT
TN21610.BAT

 TN21660.BAT

TN21710.BAT
TN21790.BAT
TN21823.BAT
TN21860.BAT
TN21910.BAT
TN21980.BAT
TN21994.BAT
TN22020.BAT
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