
A V£RfFfCA1fON 5llf1£ FOR C++ COHPfLER5

Dissertation submitted to the]awaharlal Nehru University
in partial fulfilment of the requirements

for the award of the Degree of

MASTER OF TECI-INOLOGY

zn
(QHfUTIIl\ i(lii,H(II

... by
KRAM~,~H SHENOY

t -~?"

SC+-100L OF COMPl.I\TcR AND 5\!STC:MS SCJC:NC£.5
3AW;A.t-1;A.RL;A.L Nct-1Rll\ li\N.:JVC:RSJtV

NeW DCL+-1J- 110067

JNDJ;A.
3:1\Nl.I\AR\! 1994

CERTIFICATE

This is to certify that the Thesis entitled

"A VERIFICATION SUITE FOR C++ COMPILERS" being submitted by

me to J.N.U., in partial fulfillment of the requirem~nts for

the award of the degree of M. Tech in Computer Science and

Technology is ·a record of original work done by me under the

supervision of Dr. Pratul Dublish, School of· Computer and

System Sciences, during the Monsoon Semester 1993.

This work has not been submitted in part or full to

any other university or institution for award of any degree.

Prof. K.K. Bharadwaj
·Dean, sc & ss
J.N.U.
New Delhi.

~~
K. RAMESH S~NOY

Q»y
Supervisor

Dr. Pratul Dublish
Associate Professor
sc & ss I J. N. u. I

New Delhi.

ACKNOWLEDGEMENTS

I wish to acknowledgt~ with a deep sense of gratitude

the guidance and inspiration offered by my supervisor Dr.

Pratul Dublish, Associate Professor, SC&SS, JNU. I am

grateful for the precious time he spent with me discussing

various topics involved with this p~oject. It would have been

impossible for me to come· out successfully with out his

suggestions and worthy criticisms during the course of this

project.

I extend my sincere thanks to Prof. K.K. Bharadwaj,

Dean, SC&SS, JNU for providing me the opportunity to

undertake this dissertation. I would. like to thank. the

authorities of SC&SS for providing me with the necessary

facilities to complete my work.

My sincere thanks are due to many· of . my friends

specially Mr. Sumitra Kumar Srivastava, who helped me and

gave me their moral support during the project.

Finally I thank one ·and all who are directly or

indirectly involved. in this work ..

K. Ramesh Shenoy

TO MY PARENTS

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION

1.1 Introduction to C++

1.2 The need for a C++ Verification Suite

1.3 An Overview of the thesis

CHAPTER 2. ORGANIZATION OF THE VERIFICATION SUITE

Page

1

3

4

2.1 Introduction 9

2.2 Naming convention for test programs 10

2.3 Positive tests 11

2.4 Negative tests 15

2.5 Running the verification suite 16

CHAPTER 3. OVERVIEW OF CLASS

3.1 Introduction

3.2 The class definition

3.3 Data members

3.4 Pointers to members

3.5 References

3.6 Member functions

3.7 Constructors and destructors

3.8 POD structure/ POD unions

3.9 Scope rules for classes

3.10 Nested classes

3.11 Local classes

20

21

23

24

25

26

27

29

29

34

35

CHAPTER 4. OVERVIEW OF DERIVED CLASSES

4.1 Introduction

4.2 Multiple base classes

4.3 Virtual base classes

4.4 Ambiguities

4.5 Virtual functions

4.6 Abstract classes

38

41

42

45

46

48

CHAPTER 5. MEMBER ACCESS CONTROL

5.1 Introduction 52

5.2 Access Specifiers 53

5.3 Access specifiers for base classes 54

5.4 Access declaration 56

5.5 Friends 58

5.6 Protected member access 60

CHAPTER 6. RESULTS AND CONCLUSIONS

APPENDIX

6.1 Results 64

6.2 Failures related to name lookup 65

6.3 Failures related to nested classes 76

6.4 Failures related to virtual functi6ns 78

.6.5 Failures related to access control 80

6.6 Failures related to friends 8~

6.7 Conclusions BY

A: Relevant portion of DWP

B: Contents of floppy

87

119

BIBLIOGRAPHY

CHAPTER 1

INTRODUCTION

1.~ INTRODUCTION TO C++

C++ is a general purpose programming language designed

to make programming more enjoyabl~ for the serious

programmer. It enables reasonably educated and experienced

programmers write programs at a higher level of abstraction

without loss of efficiency compared to c for applications

that are demanding in time, space, inherent complexity and

constraints from the execution environment (Str, 1993]. C++

was developed· from the C programming language. C was chosen

-as the base language for C+~ because,

a. it is versatile, terse and relatively low-level;

b. it is adequate for most system programming tasks;

c. it is available on a wide variety of hardware platforms

and operating systems;

d. it fits into the UNIX programming environment.

The difference between c and C++ is primarily in the

degree of emphasis on types and structures. c is expressive

and permissive. C++ is even more expressive in the sense that

it allows the user to define his own types. This helps the

programmer define appropriate types in the software to model

the real world entities.

C++ made object

abstraction available

oriented programming and data

to the community of software

developers that until then had considered such techniques and

1

the languages that supported them such as Smalltalk, CLU,

Simula, Ada, object oriented Lisp dialects etc with disdain.

C++ is already widely available and is in wide use for

real application and system development. C++ has not been

standardized as yet. The proposal for ANSI standardization

was written by Dimtry Lenlcov [Len, 1989].

proposal made a strong case for a careful

definition of the C++ language.

Dimtry's

and deta i 1 ed

His main motivation for doing so was the increasing

popularity of C++ among software developers and the

availability of several independent but incompatible C++

compilers. He argued that an early standardization of C++ is

in the interest of software community since it will prevent

the proliferation of incompatible C++ dialects.

The ANSI C++ committee was formed in December 1989 and

ISO C++ committee in June 1991 for standardization of C++.

These two committees decided to hold joint meetings for

standardization of C++. The C++ committee had a difficult

charter

a. The definition of the languaqe must be precise and

comprehensive.

b. C/C++ compatibility had to be addressed.

c. Extensions beyond current C++ practice had to be

2

considered.

d. Libraries had to be considered.

The aim of the ANSI and ·I so C++ committees was to

publish the complete draft workinq paper (DWP) for public

review by late 1993 and to publish the official standard

about two years later. However, th(~ standardization effort is

considerably behind the original schedule and the official

standard is now expected in 1997.

1.2 THE NEED FOR A C++ VERIFICATION SUITE

There is an urgent need for a verification suite for

C++ compilers because the language is complex and is not yet

standardized in all its dimensions. The language is complex

because of the active interplay of features like class,

inheritance, dynamic binding etc. Further the standardization

committee is coming out with a· new version of the DWP every

six months. So the compilers will have to be updated from

time to time. In this context there is a need to test the

compilers to ensure that they conform to the latest changes.

An independent verification suite is far more

preferable in contrast to one written by compiler developer

because :

a. Testing is essentially a destructive process and it is

hard to be destructive on something one has created. It is

3

natural for everyone to believe that the program they have

written works well. So it is not easy for a software

developer to test his own software with a proper frame of

mind for testing [Jal, 1991].

b. If a software is tested by people not involved with

developing the same, then they may succeed in finding those

errors which might have occurred due to the fact that the

developers did not understand the specifications clearly

[Jal, 1991].

1.3 AN OVERVIEW OF THE THESIS

This thesis consists of test: programs based on the

functional .specifications of the C++ language in the draft

working paper dated 1st June 1993. The test programs are

written for the following three chapters of the DWP :

a. Chapter - 9 Classes

b. Chapter -10 Derived Classes

c. Chapter -11 Member access control

In this thesis, the focus is on these chapters

because of the following reasons :

a. The concept of class, derived class, and I'!lember access

control are fundamental features of C++.

b. Many changes have been introduced in these chapters in

4

the DWP as compared to the Annotated Reference Manual [Ell,

1990).

Broadly there are two different approaches for testing

.a software : functional testing and structural testing (Jal,

1991). In functional testing the software or module to be

tested is treated as a black box, and the test cases are

decided based on the specifications of the system or the

module. The focus is here on testing the external behaviour

of the system. In structural testing the test cases are

decided based on the internal s1:ructure or logic of the

module to be tested.

This verification (or test) suite consists of test

programs for functional testing of C++ compilers. This is so

because of the following factors :-

a. our goal is to evaluate the performance of any C++

compiler with respect to the functional specifications of the

C++ language in the DWP.

b. Structural testing requires access to. the source code of a

compiler. However, the source code of commercial C++

compilers is, in general, not available.

c. A test suite based on functional testing approach can be

used to evaluate any C++ compiler. In contrast, a test suite

based on structural testing will only be useful for the

5

compiler on whose internal structure it is based.

We expect that our verification suite will be

useful for :-

a. Developers of C++ compilers, since this suite can be

used for carrying out functional testing.

b. Users of C++ compilers to test and judge the quality of

various C++ compilers available.

c. For learners of C++, since this suite consists of about

two hundred programs based on most of the language features

related to the chapters on classes, derived classes, and

member access control.

The rest of this thesis is organized as follows:-

Chapter 2 provides details about different categories

of test programs and explains how the

·Chapter 3 gives an overview of classes

suite is organized.

and explains about

data members, function members, POD struct 1 POD union, scope

and name lookup rules, nested classes and local classes.

Chapter 4 gives an overview of derived classes and

underlying concepts like multiple base classes, virtual base

classes, ambiguities, virtual functions, and abstract

classes.

6

Chapter 5 gives an overview of member access control

and focuses on issues lil<~e access· specifiers, access

declarations, protected member access, and friends.

Chapter 6 contains results and conclusions. Appendix A

contains a copy of chapters 9-11 of the DWP. Appendix B gives

the details about the contents of the floppy attached to this

thesis.

7

CHAPTER2

ORGANIZATION OF Till~ VERIFICATION SillTE

2.1 INTRODUCTION

This verification suite consists of a collection of

test programs. Each test program is based on a specific

feature given in the relevant portion of the DWP. There are

two categories of test programs :

a. Positive test programs, that is, which contain no compile

time errors as per the DWP specifications. These are named as

p*. cpp.

b. Negative test programs, that is, which are expected to

. give a compile time error or warning as per the DWP

specifications. These are named as n*.cpp.

Each test program is based on some feature specified

in a particular para, section, and chapter of DWP because :

a. If a single program is written for all the feature$ in a

para then the program will become large and complex. Hence it

will be difficult to manually check whether the program is

correct or not.

b. If the program detects an error, i.e., a deviation from

the DWP specifications, in the compiler under test, then it

will be easier to pin point the error and locate its cause.

A test program detects an error in the compiler under

9

test by checking any of the following:-

.a. Whether the compiler is able to detect the compile time

error in it or not.

b. Whether the conditions implied by DWP specifications are

in fact true or not in a program during run time.

c. Whether the values of variables imp! ied by DWP

specifications are in fact the actual values in a program

during run time.

2 • 2 .NAMING CONVENTION FOR TEST PROGRAMS

The scheme that has been adopted for naming

the test programs is as follows. The first two

most of

numeric

characters immediately after n or p represent the chapter

number, i.e., they are 09 for chapter 9, 10 for chapter 10,

and 11 for chapter 11. of the DWP. The next two numeric

characters represent the section number and the next two

characters represent the paragraph number of the feature in

the DWP, on which the test program is based. The last

character represents the number of test written for the same

para number, i.e., like a is used for the first test, b for

the second test, c for the third test and so on. For example,

consider the following:

·a. Test program name p090202a.cpp, implies this is the first

10

positive test program based on the feature given in chapter

9, section 9.2, para 2 of the DWP.

b. Test program name n110303c.cpp, implies this is the third

negative test program based on the feature given in chapter

·11, section 11.3, para 3 of DWP.

However there is a little deviation to this scheme for

few test programs because if the above scheme is followed the

name of the file may contain more than eight alpha-numeric

characters before the period. However, MS-DOS allows only

eight characters in a file name before the period. So where

ever possible instead of using two numeric characters each

for the chapter number, the section number, and the para

number only one numeric character is used. For example,

a. Test program name n921102b.cpp, implies this is the

. second test program based on the feature given in chapter

number 9, section number 9. 2. 1, para number 1, sub para

number 2 of the DWP.

b. Test program name p093101d.cpp, implies this is the fourth

test program based on the feature given in chapter number 9,

section number 9.3.1, para number 1, of the DWP.

2.3 POSITIVE TESTS

A positive test program con·tains no error as per the

DWP specifications. However if ~he compiler reports errors in

11

it on compilation, then it implies that the test has failed

and there are errors in the C++ compiler under test.

If a positive test compiles successfully it is executed.

During its execution, a positive test checks the values of

its internal variables to v'er ify whether the run-time

behaviour of this compiled test program is as per the DWP

specification. In particular, one of the following may occur

when a positive test is executed :

a. If there is no error in the compiler then it will give no

output.

b. An error is detected in the compiler by the program, say

p*. cpp, during runtime since the value of the relational

expression, on source line L, is found to be false(true),

instead 6f true(false). In such a case the following output

is produced,

ERROR: LINE NO: L

TEST PGM p*.cpp FAILED.

For example, consider the test program p090003.cpp

given below.

1. #include <iostream.h>
2. /* PGM NAME :P090003.CPP
3. REFER TO :SEC :9.0, PARA :3, PG :9-1
4. FEATURE :OBJECTS OF AN EMPTY CI...ASS HAVE A NON-
5. ZERO SIZE AND HAVE DIS'riNCT ADDRESSES.

12.

6. *I
7. void main()
8. {
9. int tf=O; I I Flag for test fail.
10. class A { }; // Class with no members, Empty class.
11. A e1,e2; // e1, e2 are objects of empty class.
12. A* p1=&e1;
13. if (p1==&e2) { cout<<"LINE NO : "<< LINE ; tf=1; }
14. // Checks whether the objects e1,e2 have distinct
15. // addresses.
16. int i=sizeof(e1);
17. if(i==O){ cout<<"LINE NO .: "<< LINE ; tf=1; }
18. 1 /Checks whether the empty class is non zero.
19. if {tf) cout<<" \n TEST PGM P090003. CPP FAILED. \n";
20. }

For testing this feature t:wo obj.ects e1, e2 of empty

class A are defined on line 11. On line 13 in the if

statement, it is checked whether th-e ob-jects el, e2 have

distinct addresses. If the obj e~cts e~1, e2 do not have

distinct addresses, then the relational expression which is

inside if statement on line 13 is i:rue and hence the program

will give the output as below:

ERROR : LINE NO: 13

TEST PGM P090003.CPP FAILED-.

c. If an error is detected in the compiler by the program,

say p*. cpp, during runtime since it is found that on line

number L of the program the value of variable X is A instead

of E as per DWP specification. Then it will give output in

the format shown below :

ERROR: LINE NO: L :VAR NAME: X

13

ACTUAL VALUE: A EXPECTED VALUE: E

TEST PGM P*.CPP FAILED.

Consider the following example below,

1. #include<iostream.h>
2. /* PGM NAME :P090205.CPP
3 . REFER TO :SEC: 9. 2, PA.RA: 5, PG: 9. 4
4. FEATURE :A CLASS C1 MAY CONTAIN A POINTER OR REFERENCE

TO AN OBJEC'r OF CLASS C1.
5. */
6. class A
7. {
8. public:
9. A()
10. :t2(*this}
11. { }
12. A* t1;

. 13. A& t2; //Reference to an object of type A.
14. int i;
15. };
16. void main()
17. {
18. A a1,a2;
19. a1.t1=&a2;
20. int tf=O;
21. al.i=19;
22. if(a1.tl->i!=a2.i){ ...••. }
23. if(al.t2.i!=19} { cout<<"\nERROR: LINE NO: 11 << LINE

<<n :VAR NAME: a1.t2.i"

}

<<"\n ACTUAL VALUE: "<<al.t2.i;
<<" EXPECTED VALUE: 19";tf=l;

24. if(tf}cout<<"\n TEST PGM P090205.CPP FAILED \n\n'' ;
25. } .

The feature mentioned is· being tested by assigning a

value 19 to ~l.i on line 21, this same variable is being

accessed by the variable t2. as dElfined on line 13. On line 23

it is being checked whether the actual value of al. t2. i is

same as expected value which is 19. If the actual value is,

say 5, because of an error in compiler, then the program will

14

give an output as shown below:

ERROR: LINE NO: 23 :VAR NAME: al. t2. i

ACTUAL VALUE: 5 JEXPECTED VALUE: 19

TEST PGM P090205.CPP FAILED.

Thus when the test programs with name p*. cpp give

output message in the format described in case b and c above,

it implies that test has failed and there is an error in the

C++ compiler under test.

2.4 NEGATIVE TESTS

A neg.ative test program con-tains a compile time error

as per the DWP sp-ecification. For example consider the

following test program,

I* PGM NAME
REFER TO
FEATURE

*I

class A
{
public:
auto int i;

} ;

:N090203A.CPP
:SEC:9.2, PARA:3, PG:9.4
:A MEMBER MAY NOT BE AUTO.

//ERROR:Cannot be auto.

void main 0 { }

As per the feature a class member may not be auto but

the data member int i is defined as auto in class A which is

an error.

1 .­.)

A negative test program on compilation should give

either an error or warning message. However, it has not yet

been resolved by the C++ standardization committee in which

cases the compiler should give an error message and in which

cases the compiler should give a warning message. So some

compilers may give an error and some other, a warning, for

·the same negative test program submitted for compilation.

Further, the error or warning message produced may not

be related to the actual error in the program. This problem

is caused because the text: of error or warning message has

not been standardized. So it is upto the user of the compiler

to interpret the error or warning message by having a look at

the test program.

If a test program with name n*. cpp fail ·to give an

error or a warning message then it implies that the test has

failed and there is an error .in C++ compiler under test.

2.5 RUNNING THE VERIFICATION SUITE

The verification suite can be used for testing all DOS

based C++ compilers by using command auco < [input]> where

[input] is the command line compilation command of the

compiler under test.

By using the above auco batch command each *. cpp file

is compiled and the generated code, if any, is executed.

16

Further two files out .k and rpt .s are produced. In the file

out.k all the *.cpp files compiled are listed in a sorted

order based on chapter, section and para of feature on which

they are based.

Similarly in the file rpt.s all the error messages, if

any, generated by *.cpp files (submitted for compilation) and

the output produced, if any, are stored in a sorted order

·based on chapter, section a~d para of the feature concerned.

The only input that is to be given for· using test

programs in order to test a compiler, using auco command, is

to give the appropriate command line compilation command.

For example, if one is testing the Borland C++ compiler for

which bee is the command line compilation command, one has to

give the following command against system prompt (c:\>, after

copying all the files from sub-directory krs of the floppy

attached to this thesis into th~ hard disk c:\)

c:\>aueo bee

After giving the above command, files out.k and rpt.s

are created. Thus by looking at each *.cpp file in out.k and,

their corresponding generated messages on compilation or

output, if any, in file rpt.s one can check whether the test

has failed {refer see:2.3-2.4) or not.

17

Further if one wants to test the compiler using only

test programs written for a chapter of DWP, it can be done by

using command auco9 for chapter 9, aucolO for chapter 10 and

aucoll for chapter 11, instead of using command auco for all

the above three chapters.

However for using the test programs to test a C++

compiler.which is not DOS based, appropriate driver programs

will have to be written.

18

·CHAPTER 3

OVl~RVIEW OF CLASS

3.1 INTRODUCTION

The purpose of this chapter is to give a brief

overview, with suitable examples, of features associated with

C++ classes. This being ·done for the sake of completeness.

For more details about the C++ programming language one can

refer to books written by Bjarne Stroustrup (Str, 1991] and

stanley B. Lippman [Lip 1991]. Further for more insight· about

the concepts associated with Object Oriented Programming one

can refer to books by Grady Booch (Boo, 1991] and Khoshafian

et al.[Kho, 1990].

The C++ class mechanism provides the programmer with

·a tool for creating new types that can be used as

conveniently as the built-in types. A type is the concrete

representation of an idea or concept. The reason for

designing a new type is to provide a concrete and specific

definition of a concept that has no·direct and obvious

counterpart among the built-in types. For example, one. might

provide a type customer in a program dealing with bank

database, a type book in a program designed for library

management, or a type train in a program developed for

railway reservation system.

A program that provides types that closely match the

concepts of the application is usually easier to understand

20

and easier to modify than a program that does not. A well-

chosen set of user defined types makes a program more

concise; it also enables the compiler to detect illegal uses

of objects that otherwise .would not be detected until the

program is tested (Str, 1991].

The fundamental idea behind defining a new type is to

separate the implementation details of the type from the

various operations that can be carried out on it. Such a

separation can be expressed by channelising the use of the

data structure and internal housekeeping routines through a

specific interface.

3.2 THE CLASS DEFINITION

A class is a user defined type. A class definition has

two parts : the class head, composed of the keyword class

followed by the class tag name, and the class body, enclosed

by a pair of curly braces, which must be followed by either a

semicolon or a declaration list. For example,

class SAMP
{
private :

char dat1;

public :

void get in() { }

void getout() { }

'77/-g&o

21

} ;

Here a class with name SAMP has been defined. An object

of type SAMP is created using the declaration below.

SAMP sl;

The member specification in a class definition declares

the full set of members of the class; no member can be added

elsewhere. Members of a class are data members, member

functions, nested types and members constants. The class SAMP

defined earlier contains a data member datl and two function

members getin() and getout().

A member of a class can be private, protected, or

public (refer sec:5.1]. These keywords control the level of

access to members of a class in a program.

A class can also be defined using the keyword struct.

The only difference between the keywords class and struct is

that in a class the members are private by default, while in

·a struct they are public by default.

For example the class SAMP defined earlier·can also be

defined as

class SAMP
{

char datl;

public :

void get in() { }

void getout() { }

22

} ;

or as

struct SAMP
{
private :

char datl;

public :

void getin() { }

void getout() { }
} ;

The above definitions of type SAMP are equivalent.

A union is a class declared with the class-key union,

its members are public by default and it holds only one

member at a time.

3.3 DATA MEMBERS

The declaration of class data members is done in the

same way as the ordinary variable declarations with the

exception that an explicit initializer is not allowed. There

may be zero or more data members of any type in a class.

In the class SAMP defined in earlier example datl is the

data member of type char. Similarly other data members of

type int, float, double etc. can be declared.

A class object can be declared as ~ data member only if

its class definition has been seen. In cases where a class

23

definition has not been seen, a forward declaration of class

can be supplied. A forward declaration permits pointers and

references to objects of the class to be declared as data

members.

3.4 POINTERS TO MEMBERS

Pointers to members are the variables which contain an

offset to the member from the starting point of the address

of the object of a given type. The value of a pointer to

member does not reveal its machine address, unlike in the

case of pointers to ordinary variables which contain the

machine address of variables to which they point. The pointer

to members can be defined as follows :

class A
{

public:

char ch;

int f(char);
} ;

char A::*pml=&A::ch; //pml contains the offset of ch.

char A::*pm2(char)=&A::f; //pm2 contains offset of f.

Here pml is declared. as a pointer to member of A of

type char and pm2 as a pointe~ to member of A of type int

(char). They can be used like this,

A al; //al is object of type class A.

24

al.ch='a';

al.*pml='a';

al.f('a');

al. *pm2 ('a') ;

3.5 REFERENCES

;;assign 'a' to a character member ch of

//object al using member access operator I I

II is equivalent to al.ch='a';

II '·*' operator binds pml to address of al.

f jcall the function member f of object al

//with argument 'a' direc~ly.

II is equivalent to al.f('a');

II '·*' operator binds pm2 to address of al.

A references type, sometimes referred to as an alias,

·serves as an alternative name for the object with which it

has been initialized. A reference type has to be necessarily

initialized at the time of declaration and cannot be changed

to refer to another object once it is initialized unlike in

case of the pointers. The reference Variable rfl can be

declared and initialized as shown below.

A al;

A& rfl=al;

rfl.ch='a';

.rfl.f('a');

ffal is object of type class A defined above.

//rfl is a reference variable declared and

//initialized to object al.

II is equivalent to al.ch='a';

II is equivalent to al.f('a');

25

3.6 MEMBER FUNCTIONS

Member functions of a class are the set of operations

that may be applied to the objects of that class. A function

declared as a member is called a member function and can only

be used by the objects of that class.

For example, an object sl of class SAMP

earlier, can use the function member ·void getin ()

defined

with a

return type void for storing a character in data member datl.

Similarly the function member void getout () can be used

to access the same.

Thus the member functions are nothing but the set of

predefined operations that can be carried out on the data

members. It acts as a interface to manipulate the data

members.

Members functions are distinguished from ordinary

functions by following attributes :

a. Member functions are defined within the scope of their

class; ordinary functions are defined at file scope. This

means that they are not visible outside the scope of the

class.

b. Member f·unctions have full access privilege to both the

public and private members of the class while, in general,

26

ordinary functions have access only to the public members

of the class.

c. The member functions of 9ne class, in general, have no

access privileges to the members of another class.

3.7 CONSTRUCTORS AND DESTRUCTORS

Constructor is a special member function that has the

same name as its class. It is executed automatically whenever

an object of its type is created. It is mainly used for

initialization of objects when they are created. A

constructor like any ordinary function takes arguments,

however no return type can be specified for a constructor. A

constructor can also be used to initialize the data members

unlike other functions. Constructors cannot be inherited,

unlike other member functions.

The constructors can be defined as follows

struct A
{
int i;

int j;

A(k,l):i(k),j(l) {}
//constructor, it has same name as class.

} ;

Here, A::A(k,l) acts as constructor. Using the

27

constructor data member i is initialized with k and J is

assigned with 1.

Destructor is a special member function that has same

name as its class preceded by a tilde. Conceptually a

destructor reverses the effect of constructor. A destructor

is used for doing special operations just before the

destruction of an object. It is invoked automatically for an

. object prior to its destruction. Destructors cannot be

inherited. A destructor takes no arguments and no return type

can be specified for it. It is also invoked implicitly to

deallocate all the objects in the file scope before program

terminates.

The destructor can be defined as follows

struct A
{

} ;

static int ct;
A() { ct++; }
-A() { ct--; }

int A::ct=O; II Initialized to zero.

void main() { }

In above example, variable ct keeps the count of number

of active objects. It is incremented by one, through

constructor when an object of type A is created and

decremented by one prior to destruction of an object of type

A.

28

3.8 POD STRUCTURE I POD UNION

The POD struct I POD union in C++ ensures

compatibility with C-struct 1 c-union. Formally a POD struct

1 POD union is same as c-struct 1 c-union which contain no

constructor or destructor, no private or protected members,

no virtual functions (refer sec:4.5], no base classes (refer

sec:4.1], no references, and contain no pointers to members

[Plu, 1993]. Consider the following example,

union A'
{
struct B
{

int j ;

char c;
} bl;

struct c
{
int j;

double d;
} cl;

} i

here, B and C are POD-structs

3.9 SCOPE RULES FOR CLASSES

and A is a POD-union.

" Looking up names in C++ programs is a problem

because of the need to reconcile with conflicting

desire :

29

a. c programmers are accustomed to use a name from an

outer scope and then redefine it later in the same

scope.

b. Two nearby uses of the same name without an

intervening definition of that name should mean the

same thing. Moreover, a member function body explicitly

written inline should mean the same thing when written

out of line.

c. Reordering the members of a class should not change

the meaning of the class for sake of understanding

class definition easily.

Unfortunately, it is hard to meet all three of

these criteria at once. " (Koe , 1992]. So after

lot of consideration the following rules have been

framed:-

1. THE CLASS SCOPE RULE : The scope of a name declared in a

class consists not only of the text following the names

declarator, but also of all functions bodies, default

parameters and constructor initial izers in that class

(including such things in nested classes). For example

consider,

#include <iostream.h>

I* PGM NAME :P921101C.CPP
REFER TO :SEC:9.2.1, PARA:1, PG:9-6

30

*I

FEATURE :THE SCOPE OF A NAME DECLARED IN A CLASS CONSISTS
NOT ONLY OF THE TEXT FOLLOWING THE NAMES
DECLARATOR, BUT ALSO DEFAULT PARARMETERS
IN THAT CLASS, INCLUDING SUCH THINGS IN NESTED
CLASSES.

int tf=O;

class A
{
public:

void f(int=i, char=ch); //Default parameters.
class AN
{
public:
void fl(int=i, char=ch); //Default parameters.

}a5;
static int i;
static char ch;

} ;

int A:: i=5;
char A: : ch=' a' ;

void A::f(int il, char chl)
{

. if(i1!=5){ cout<< 11 \n ERROR: LINE NO: 11 << LINE

}

<< 11 VAR NAME :il II
<< 11 \n ACTUAL VALUE : 11 <<il
<< 11 EXPECTED VALUE: 5 \n 11 ;tf=l;

}
if(chl!='a'){ cout<< 11 \n

<<II
ERROR: LINE NO : 11 << LINE
VAR NAME :chl 11

}

<<11\n
<<II'

ACTUAL VALUE : ' 11 <<chl
EXPECTED VALUE:'a' \n 11 ;tf=l;

void A::AN::fl(int i2, char ch2)
{
if(i2!=5){ cout<< 11 \n ERROR: LINE NO: 11 << LINE

<< 11 VAR NAME :i2 II
<< 11 \n ACTUAL VALUE : 11 <<i2
<< 11 EXPECTED VALUE: 5 \n 11 ;tf=l;

}
if(ch2!='a'){ cout<< 11 \n ERROR: LINE NO : 11 << LINE

<< 11 VAR NAME :ch2 11
<< 11 \n ACTUAL VALUE : ' 11 << ch2

31

}
}

void main()
{
A al;
al.f(};
al.a5.fl();

<<"' EXPECTED VALUE: 'a' \n";tf=l;

if(tf)cout<<"\n TEST PGM P921101C.CPP FAILED \n";
}

As per the feature mentioned, the scope of static

members ch and i declared in a class includes default

parameters in the class and nested classes. In the functions

A::f and A::AN::f defined above it is being checked whether

it is actually so. If it is .so then this program gives no

output when it is executed or else gives the appropriate

output, depending on which of the above if loops, the boolean

condition is true.

2. THE RECONSIDERATION RULE·: A name N used in a class S must

refer to the same declaration when re-evaluated in its

context and in the completed scope of S. For exam.ple,

1: typedef int T;

2: struct A

3: {

4: struct B

5: {

6: T f () { T x=O; return x; }

7: } ;

32

8: typedef double T;

9: } ;

The reconsideration rule makes this program illegal

[Sak, 1992]. Because when first encountered, the T in the

declaration of f() on line 6 (but not the T in the body of

f () refers to : : T on line 1. However, B is not complete

.until A is completed on line 9. When f() is evaluated in the

completed scope of B, the T in f () 's declaration refers to

A: :T on line 8.

3. THE REORDERING RULE : If reordering member declarations in

a class yields an alternate valid program under the above two

rules the program's meaning is undefined. For example look at

the following [Koe , 1992]

struct y
{
void f(long(p));

typedef char p;
} ;
Assuming p does not already name type, the first use of

p in the example above is as the name of f()'s formal

parameter. But if we interchange its members

struct y
{
typedef char p;

void f(long(p));
} ;

the use of pin the declaration y::f above now does refer to

y: : p. Thus the swapping of these declarations has quietly

33

changed the meaning of the class. Thus the above program's

meaning is undefined, as per the reordering rule. The term

undefined is used instead of error because the C++

standardization committee could not figure out for certain as

to whether it is possible to detect two different valid

programs'in a single program that is written. It is likely

that if someone comes up with an efficient algorithm to

detect the same then the rule may be reconsidered.

3.10 NESTED CLASSES

A nested class is a clas~ defined within another class.

The name of a nested class is local to its enclosing class,

that is, it is hidden within the class in which it is

declared. A class is declared as a nested class if its use is

limited to class within which it is defined. It has an

advantage of minimizing the number of names in the global

scope. For example consider the following,

class A
{

class B { } bl;

public:

class C { } cl;

} ;

34

Here class A contains object bl of nested type class B

and object cl of nested type class c as its members.

3.11 LOCAL CLASSES

A class defined within a function definition is called

a local class. The member function of a local class must be

defined within the class definition itself, since C++ does

not support function defined within the function. A local

class cannot have static data members. Consider the example

below,

int i;

void h()
{

}

.
class A
{
char c;
public:

char gl() { return c; }

int g2() {return ::i}

}al;

Here, a local class A is defined within function h ()

and an object al of type class A is created. The scope of a

35

local class is limited to its enclosing function scope. A

.class is declared local when its use is limited to the

function within which it is defined. It has an advantage of

minimizing the number of names in the global scope.

36

CHAPTER 4

OVERVIEW OF DERIVED CLASSES

4.1 INTRODUCTION

A concept does not exist in isolation; it co-exists

with related concepts and derives much of its power from

relationships with related concepts. Since we use classes to

represent concepts the issue become how to represent

relationships between concepts. The notion of a derived

class and its associated language mechanisms

express hierarchial relationships, that

commonalty between classes [Str, 1991).

is provided to

is, to express

Derived classes provide a simple, flexible and

efficient mechanism for defining a class by adding facilities

to an existing class without reprogramming or recompilation.

Using derived classes, one can provide a common interface for

several different classes so that objects of those classes

can be manipulated identically by other parts of a program.

Consider the following example, if one is designing a

software for library management of a university then the

entities members, students, employees, faculty members, non

teaching staff, under graduates, post _graduates etc. , have

certain attributes in common. Also the rules governing their

membership are common to some extent, so based on these one

can form the class hierarchy as shown below:

38

CLASS HIERARCHY FOR LIBRARY MANAGEMENT SOFTWARE

where class MEMBER represents· all members of library, . class

STUD represents all students members, class EMP represents

all members who are employees of university, class FM

represents faculty members, class NTM represents non teaching

staff, class UG represents under graduate students, class PG

represents post graduate students, class PUG represents part

.time under graduate student~, class FUG represents full time

under graduate students, class PPG represents part time post

graduate students and class FPG represents full time post

graduate students.

Based on above class hierarchy one can define

attributes of each class so as to fully exploit the degree of

commonality among various entities involved.

39

Inheritance is the process of creating new classes

called derived classes, from existing classes which are then

called the base classes of the derived classes. The d·erived

class inherits all the capabilities of the base class but can

add embellishments and refinements of its own. The base class

remains unchanged by the process. The base class can be

declared as private, public, and protected (refer sec:5.3].

For example consider,

struct base
{
int i;

} ;

struct derived
{

int j;
} ;

base

here, an object of class derived will have a sub-object

of class base, where as objects of class base will not have

any such sub-objects and they remain absolutely unaffected.

A derived class and its base classes can be represented

by a directed acyclic graph (DAG) where an arrow means

"directly derived from". This DAG is often referred to as

class lattice.

40

4e2 MULTIPLE BASE CLASSES

A class can be derived from multiple base classes. The

use of more than one direct base class is called multiple

inheritance. For example,

class A { } ;

class B { } i

class c { } ;

class D { } ;

class E: public A, public B, public c, public D {
here, an object of class E has sub-objects of class A,

class B, class C and class D as shown below

A class cannot be specified as a direct base class of a

derived class more than once. For example,

class A { } ;

class B public A, public A { }; //Not allowed.

} ;

However, a class can be an indirect base class more

41

than once. For example,

class A { } ;

class B public A { } ;

class c public A { } ;

class D public B, public c { } ;

Here, an object of class D has two sub-objects of class

A as shown below

A A

4.3 VIRTUAL BASE CLASS

In . last example cited above an object of class D has

two sub-objects of class A. Members of class A cannot be

directly accessed from within class D because it will be

ambiguous to do so, without specifying as to which of two

sub-objects of class A one is referring to. This ambiguity

42

can be eliminated by declaring base class A as virtual. Once

a base class is specified as ·virtual then irrespective of

number of pl~ces it is specified as virtual, all of them

share a single sub-object of that virtual base class.

A base class is specified as virtual by modifying its

declaration with the keyword virtual. For example,

class A { } ;

class B :virtual public A { }';

class c :virtual public A { } ;

class D : public B, public c { } ;

Here, an object of class D has one sub-objects of class

A, as shown below

A

43

A class may have both virtual and non virtual base

classes of a given type. Consider the example below,

class A { } ;

class B :virtual public A { } ;

class c :virtual public A" { } ;

class D. :public A { } ;

class E . public B, public c, public D { } ; .

Here, an object of class E has two sub-objects of class

A; class E's A and the virtual A shared by class B and class

C, as shown below

A A

44.

4.4 AMBIGUITIES

Access to base class members from a derived class is

ambiguous if the expression used refers to more than one

enumerator, function, object or a type. Consider the

following example,

struct A
{
int i;

int j;.

enum { El,E2,E3 };

char hl ();

int h2 ();
} ;

struct B
{
int i;

int j () ;

enum { E2,E3,El };

int hl ();

void h2 ();
} ;

class C : public A, public B { };

then in the above example access to any of base class

members through the object or pointer to derived class will

be ambiguous since they are defined in both the c·lasses.

Ambiguities can be resolved by qualifying a name with

it class name. Like for example,

C cl; II cl object of class C is defined then use

45

cl.A::i or cl.B::i II instead of cl.i;

cl.A::hl() or cl.B::hl() II instead of cl.hl();

cl.A::El or cl.B::El II instead of cl.El;

4.5 VIRTUAL FUNCTIONS

Virtual functions define type dependent operations

within an inheritance hierarchy. Using virtual functions one

can hide the implementation· details of an inheritance

hierarchy from the programs that make use of it.

A virtual function is a special member function

invoked through a public base class reference or pointer, it

is bound dynamically at run time. The instance invoked is

determined by the class type of the actual object addressed

by the pointer or reference. Resolution of a virtual function

is transparent to the user. A class that declares or inherits

a virtual function is called a. polymorphic class. Consider

the following example,

class shape
{
public;

virtual void draw() { };

} ;

class tria public shape

46

{
public:
void draw() { }

} ;

class eire
{
public:

public shape

· void draw () { }

}·;

class squr
{
public:

public shape

void draw() { }

} ;

void main()
{
tria tl;

eire cl;

squr sl;

shape *ps;

ps=&tl;

II draws a triangle.

II draws a circle.

II draws a square.

ps->draw (); ;;will draw a triangle.

ps=&cl;

47

}

ps->draw();

ps=&sl;

ps->draw();

jjwill draw a circle.

jjwill draw a square.

Here, in the above example class hierarchy is as shown

below

shape

tria eire squr

The same function name draw() is used for first drawing

triangle, then a circle and finally a square. Th~ instance of

draw() invoked when ps->draw() is used, is determined by the

class type of the actual object addressed by the pointer ps.

· 4.6 ABSTRACT CLASSES

In the above example tria::draw() was used for drawing

triangle, eire: :draw() was used for drawing circle and

squr: :draw () was used for drawing a square, so in fact

shape: :draw() was used as an interface for which derived

classes tria, eire and squr provided variety of

48

implementations. In this situation it is better to define

class shape as an abstract class rather than as a ordinary

class for clarity.

The abstract class mechanism supports the notion of a

.general concept, such as a shape, of which only more concrete

variants, such as circle, square etc., can actually be used.

An abstract is a class that can be used only as a base class

of some other class. No objects of an abstract class may be

created except as a sub-objects of a class derived from it. A

class is abstract if it has atleast one pure virtual function

which may be inherited. A vir~ual function is specified pure

by using a pure-specifier in the function declaration in the

class declaration. The class Shape, in the ex~mple in earlier

section, can be suitably redefined as an abstract class as

follows :

class shape
{
public:

virtual void draw()=O;

} ;

ffpure virtual function

In the declaration virtual void draw () =0, the equal

sign has nothing to do with assignment; the value 0 is not

assigned to anything. The =0 syntax is simply to tell the

49

compiler that a function will be pure .

An abstract class can neither be used as an function

return type nor as an parameter type. For example if class A

is an abstract class then,

A al; //ERROR: Object of abstract class cannot be created.

A mfl(); //ERROR: class A cannot be used as return type.

void mf2(A); //ERROR: class A cannot be used as an parameter
//type.

50

CHAPTER 5

MEMBER ACCESS CONTROL

5.1 INTRODUCTION

The access control to members of a class is one of the

important features of C++. Through the access control

mechanism one can define different ways the data members of

the class can be manipulated. This ensures a degree of

modularity in any program that is written, which in turn

makes the debugging of program easier. Further it provides

the desired level of protection against accidental · use of

.members of a class~

A member of a class can be private, protected or

public :

A)Private:- If it is private, its name can be used only by

member functions and friends of the class in which it is

declared.

B)Protected:- If it is protected, its name can be used only

by member functions and friends of the class in which it is

declared and by member functions and friends of classes

derived form this class.

C) Public:

function.

If it is public, its name can be used by any

This reflects the view that there are three types of

functions accessing a class:-

52

1. Functions implementing the class (its friends and members).

2. Functions implementing a derived class (the derived

classes friends and members).

3. Other functions.

Members of a class declared with the key word class are

private by default. Members of a class declared with the

keywords struct or union are public by default.

5.2 ACCESS SPECIFIERS

Member declarations· can be labelled by an access

specifier. An access-specifier specifies the level of access

for the members following it either till another access-

specifier is encountered or until the end of the class. For

example :

class A
{
int i;

public:

int j;

char c;
} ;

//A::i is private by default: 'class' used

//A::j is public.

//A::c is public.

In a class declaration access specifiers can be used

any number of times and in any order. For example :

53

struct A
{
int i;

protected:

char c;

private:

float f;

public

double d;
} ;

IIA::i is public by default

IIA::c is protected.

IIA::f is private.

IIA::d is public.

5.3 ACCESS SPECIFIER FOR BASE CLASSES

'struct' used

A base class can be declared private, protected or

public. If a class is declared to be a base class for

another class using

1) The private access specifier, then the protected and

public members of the base class are accessible as private

members of the derived class. The private members of base

class are inaccessible to derived class. For example,

class B { } ; I I Base class.·

struct Dl : private B { }; II Derived class.

2) The protected access specifiers, then the protected and

public members of the base class are accessible as protected

members of the derived class. The private members of base

54

class are inaccessible to derived class. For example,

class 02 protected B { };

3) The public assess specifier,· then the protected members of

the base class are accessible as protected members of the

derived class and the public members of the base class are

accessible as public members of the derived class and the

private members of the base class remain inaccessible to the

derived class. For example,

class 05 : private B { };

A derived class can access the private members of its

base classes only if it is a friend [refer sec:5.5) of its

base classes. For example,

}

class 0;

class B
{
double d;

//Forward declaration.

friend class 0;

} ;

struct 0 : B
{

void fd()
{
d=8;194; // d is accessible since it is friend of B

} ; } } ;

here, in the function O::fd the private member d of B is

55

assigned a value.

When no access specifier is used for a base class,

private is assumed when the derived class is declared class

and public is assumed when the derived class is declared

class. For example,

class B { };

struct Dl : B { }; // B is public by default.

class 02 : B { }; // B is private by default.

5.4 ACCESS DECLARATIONS

.
The protected or public members of a private or

protected base class can be used at same level in derived

class by making use of access declaration.

The access declaration of protected member of a private

or protected base class must be given in the protected part

of derived class. The access declaration of public member

of a private ·or protected base class must be given in the

·public part of derived class. For example

class B
{

protected

int i;

public :

char c;
} ;

56

class Dl : private B
{
public

A:: c; //Restore access.

protected:

A::i; //Restore access.
} ;

An.access declaration cannot be used to enable access

to a member that is inaccessib~e in the base class, nor can

it be used to restrict access to a member that is accessible

in the base class. For example,

class A
{
public:

int i;

private:

char c;
} ;

class Dl
{

public

private A

A::c; //Error: Cannot make c a public member of Dl

protected:

A::i; //Error: Cannot restrict access of i.
} ;

It is not possible to make a base class member

accessible in a derived class using access declar·ation, if it

already defines it. For example

57

class a·
{
public:

char g ();
} ;

class Dl : private B
{
public:

void g(int);

B::g; //Error: Two declarations of g;
} ;

5.5 FRIENDS

Friends are needed to enable unrestricted access to

members of a class. A function declared as a friend is

permitted to access even private and protected members of a

class. It is not in the scope of class. It is called with a

member access operator only if it is a member of another

class. Friend declarations are not affected by access

specifiers. For example,

class A
{
friend void f(A);

private:

int i;

protected:

char c;

public:

void mf(B);

58

A () { i = 6 4 ; c= ' b' ; }
} i

void f (A al)
{
if{al~i!=64) { ~. }

if(al.c!='b') { }
}

struct B
{
friend void A::mf(B); //mf(B) is member of A.

B() { j=37; ch='a'; }

private:

char ch;

protected:

int j;
} ;

void A; :mf (B bl)
{
if(bl.j!=37) { ..•... }

if{bl.ch!='a') {• }
}

void main()
{

A a;

B b;

f (a) ;

a.mf(b);
}

In the above example function void f(A) is allowed to

access private and protected parts of class A since it is

friend of class A and A: :mf (B) is allowed to access the

59

private and protected parts of class B since it is friend of

class B.

Fr{endship is neither inherited nor transitive. For
example,

class Al
{
friend class A2;

int j;
} ;

class A2
{
friend class A3;

} ;

class A3
{
void mfl {Al al)
{

al.j=lO; //Error: A3 is not a friend of Al despite

//being a friend of A2.
} .

} ;

class D : public A2
{
void mf2{Al a)
{

a.j=19; //Error: D is not a friend of Al despite

//being derived from a friend.
}

} ;

5.6 PROTECTED MEMBER ACCESS

A friend or a member function of a derived class can

access a protected non-static member of one of its base

classes only through a pointer to, reference to, or object of

60

the derived class itself. If this restriction is not there

than it will be possible to access the base class part of an

unrelated class as if it were its own, without the use of an

explicit cast. However, this problem does not arise with the

protected static member of a base class. Because in case of

static members a single copy .of it is shared by all the

objects of its class and derived classes. Consider the

following example.

class A
{
protected:

static int i;

int j;
} ;

int A::i=O;

class B public A {

class C
{
public

public A

friend void ff();

void mf(B*
} ;

void ff ()
{

B bl;

C*) . , ,

} ;

bl.i=lO; //Allowed since i is static.

bl. j=5; //Error: Because only objects of c can

jjaccess protected non static member of A.

C cl;

61

cl.j=l;
} ;

//Object of class C.

void C::mf(B *pbl, C *pel)
{
pbl->j=5; //Error: Because only a pointer to C can

//access protected non static member of A.

pcl->j=l; //pel is a pointer to class C.
} ;

62

CHAPTER 6

RESULTS AND CONCLUSIONS

6. 1 RESULTS : .

This verification suite consists of test programs based

on most of the features mentioned in chapter 9, chapter 10,

and chapter 11 of DWP. Test programs for few features could

not be written because of following

a. There is no point in testing a feature which is defined

as undefined. Like in section 9.2.1.

b. There is no point in testing a feature which is defined as

implementation dependent. Like in section 9. 2 and section

9.6 of DWP.

This verification suite was used for functional testing

of the Borland C++ version 3.1 compiler on a PC-AT. The

following positive test programs have detected errors in it.

a. p921101a.cpp

b. p921101c.cpp

c. p921101d.cpp

e. p090701d.cpp

f. p100203a.cpp

g. p100203b.cpp

h. p100203c.cpp

i. p100203d.cpp

g. p100203e.cpp

The following is the list of negative test programs

64

that have detected errors in Borland C++ version 3.1

compiler.

a. n921102a.cpp

b. n921102b.cpp

c. n921102e.cpp

d. n921102f.cpp

e. n110303a.cpp

f. n110303b.cpp

g. n110405.cpp

The following is the section wise analysis of the above

test programs :

6.2 FAILURES RELATED TO NAME LOOKUP

#include<iostream.h>

I* PGM NAME :P921101A.CPP

*I

REFER TO :SEC:9.2.1, PARA:l, PG:9-6
FEATURE :THE SCOPE OF A NAME DECLARED IN A CLASS CONSISTS

NOT ONLY OF THE TEXT FOLLOWING THE NAMES
DECLARATOR, BUT ALSO OF ALL FUNCTION BODIES
IN THAT CLASS, INCLUDING SUCH THINGS IN NESTED
CLASSES.

class A
{

public:

char gl() { char c=ch; return c; }
int g2() { int j=i; return j; }

class AN
{

65

public:
char p1() { char c1=ch; return c1; }
int p2() { int i1=i; return i1; }

} a5;

static char ch;
static int i;

} ;

char A: : ch=' a' ;
int A:: i=10;

void main()
. {

int tf=O;
A t1;

if(tl.g1() !='a') {

}
if(tl.g2() !=10) {

}

//Flag for test fail.

cout<<"\n ERROR: LINE NO : "<< LINE
<<" VAR NAME :tl.g1() II - -

<< 11 \n ACTUAL VALUE : 1 11 << t1. g1 ()
<<"' EXPECTED VALUE: 'a'\n";tf=l;

cout<<"\n
<<"

ERROR: LINE NO : "<< LINE
VAR NAME : t1. g2 () II

<<"\n
<<"

ACTUAL VALUE : 11 <<tl. g2 ()
EXPECTED VALUE: 10\n";tf=1;

if(tl.a5.p1() !='a') { cout<<"\n ERROR: LINE NO : "<< LINE
<<" VAR NAME : tl. a5. p1 () " -

}
if(tl.a5.p2()!=10){

}

<<" \n ACTUAL VALUE : "'<<tl. a5. pl ()
<<"' EXPECTED VALUE: 'a'\n";tf=1;

cout<<"\n ERROR: LINE NO : "<<_LINE_
<<" VAR NAME : tl. a5. p2 () "
<< 11 \n ACTUAL VALUE : "<<tl. a5. p2 ()
<<" EXPECTED VALUE: 10\n";tf=1;

if(tf)cout<<"\n TEST PGM P921101A FAILED \n";
}

As per the feature mentioned, the scope of static

members ch and i declared in a class includes all function

bodies in the class and nested classes. As such the above

66

*I

program contains no errors. However, the Borland C++ compiler

gives errors as shown below :

**** **** REPORT OF TEST **** ****

Borland C++ Version 3.1 Copyright (c) 1992 Borland
International
p921101a.cpp:
Error p921101a.cpp 21: Undefi~ed symbol 'ch' in function
A: :AN: :p1(}
Error p921101a.cpp 22: Undefined symbol 'i' in function
A: :AN: : p2 (}
*** 2 errors in Compile ***

Available memory 1618007

**** **** -x- **** ****

#include <iostream.h>

/* PGM NAME :P921101C.CPP
REFER TO :SEC:9.2.1, PARA:1, PG:9-6
FEATURE :THE SCOPE OF A NAME DECLARED IN A CLASS CONSISTS

NOT ONLY OF THE TEXT FOLLOWING THE NAMES
DECLARATOR, BUT ALSO DEFAULT PARAMETERS
IN THAT CLASS, INCLUDING SUCH THINGS IN NESTED
CLASSES.

int tf=O;

class A
{
public:

void f(int=i, char=ch};
class AN

//Default parameters.

67

{
public:
void fl(int=i, char=ch); //Default parameters.

}a5;
static int i;
static char ch;

} ;

int A:: i=5;
char A: :ch='a';

void A::f(int il, char chl)
{

}

if(i1!=5){ cout<< 11 \n ERROR: LINE NO: 11 << LINE
<< 11 VAR NAME :il II
<< 11 \n ACTUAL VALUE : 11 <<il
<< 11 EXPECTED VALUE: 5 \n 11 ;tf=l;

}
if(chl!='a'){ cout<< 11 \n

<<II
ERROR:· LINE NO : 11 << LINE
VAR NAME :chl 11

}

<<11\n
<<II'

ACTUAL VALUE : ' 11 <<chl
EXPECTED VALUE:'a' \n 11 ;tf=l;

void A::AN::fl(int i2, char ch2)
{
if(i2!=5){ cout<< 11 \n ERROR: LINE NO: 11 << LINE

<< 11 VAR NAME :i2 II
<< 11 \n ACTUAL VALUE : 11 <<i2
<< 11 EXPECTED VALUE: 5 \n";tf=l;

}
if(ch2!='a'){ cout<< 11 \n ERROR: LINE NO: 11 << LINE

<< 11 VAR NAME :ch2 11
<< 11 \n ACTUAL VALUE : ' 11 << ch2
<< 11 ' EXPECTED VALUE: 'a' \n 11 ;tf=l;

}
}

void main()
{

A al;
al.f();
al.a5.fl();
if(tf)cout<< 11 \n TEST PGM P921101C.CPP FAILED \n 11 ;

. }

As per the feature mentioned, the scope of static

68

members ch and i declared in a class includes all default

parameters in the class and nested classes. As such the above

program contains no errors. However, the Borland C++ compiler

gives errors as shown below

**** **** REPORT OF TEST **** ****

Borland C++ Version 3.1 Copyright (c) 1992 Borland
International
p921101c.cpp:
Error p921101c.cpp 19: Undefined symbol 'i'
Error p921101c.cpp 19: Undefined symbol 'ch'
*** 2 errors in Compile ***

Available memory 1619040
**** ***·*· -X- **** ****

#include <iostream.h>

I* PGM NAME :P921101D.CPP

*I

REFER TO :SEC:9.2.1, PARA:1, PG:9-6
FEATURE :THE SCOPE OF A NAME DECLARED IN A CLASS CONSISTS

NOT ONLY OF THE TEXT FOLLOWING THE NAMES
DECLARATOR, BUT ALSO CONSTRUCTOR INITIALIZERS IN
THAT CLASS, INCLUDING SUCH THINGS IN NESTED
CLASSES.

class A
{

public:
char clll;
int i1;
A () : i 1 (i) , ch 1 (ch) { }
class AN

69

} ;

{
public:
char ch2;
int i2;
AN() : i2 (i) , ch2 (ch) { }

} a5;

static char ch;
static int i;

char A: : ch=' a' ;
int A:: i=lO;

void main()
{
int tf=O;
A tl;

//Flag for test fail.

if(tl.chl!='a') { cout<<"\n ERROR: LINE NO : "<<_LINE_
<<" VAR NAME : tl. chl "
<< 11 \n ACTUAL VALUE : '"<<tl.chl
<<'" EXPECTED VALUE: 'a' \n" ;tf=l;

} .

if(tl.il!=lO){ cout<<"\n ERROR: LINE NO: "<< LINE
<<" VAR NAME ': tl. i1 II - -

<< 11 \n ACTUAL VALUE : 11 <<t1.i1
<<" EXPECTED VALUE: 10 \n";tf=1;

}

if(tl.a5.ch2!='a'){
<<"
<<"\n
<<"'

cout<<"\n ERROR: LINE NO : "<< LINE
VAR NAME :t1.a5.ch2 11 - -

ACTUAL VALUE : '"<<t1.a5.ch2
EXPECTED VALUE:'a' \n";t·f=1;

}
if(tl.a5.i2!=10){ cout<<"\n ERROR: LINE NO 11 << LINE

}

<<" VAR NAME :t1.a5.i2 "
<< 11 \n ACTUAL VALUE : "<<tl.a.5.i2
<<" EXPECTED VALUE: 10 \n";tf=1;

if(tf)cout<<"\n TEST PGM P921101D.CPP FAILED \n'';
}

As per the feature mentioned, the scope of static

members ch and i declared in a class includes· constructor

ini tializers in that class and nested classes. As such the

70

above program contains no errors. However, the Borland C++

compiler gives errors as shown below :

**** **** REPORT OF TEST **** ****

Borland C++ Version 3.1 Copyright (c) 1992 Borland
International·
p921101d.cpp:

.Error p921101d.cpp 21: Undefined symbol 'i' in function
A: :AN: :AN()
Error p921101d.cpp 21: Undefined symbol 'ch' in function
A: :AN: :AN()
*** 2 errors in Compile ***

Available memory 1620328
**** **** -X- **** ****

#include<iostream.h>

/* PGM NAME
REFER TO
FEATURE

:N921102A.CPP
:SEC:9.2.1, PARA:2,· PG:9-6
:A NAME N USED IN A CLASS S MUST REFER TO THE
SAME DECLARATION WHEN RE-EVALUATED IN ITS
CONTEXT AND IN THE COMPLETED SCOPE OF S.

*I

1: enum { i=1 };
2: class A
3: {
4 : char v (i] ;

5: enum { i=2 };
6 : } ;

void main() { }

//ERROR: 'i' REFERS TO ::i
//BUT WHEN RE-EVALUATED IS A::i

The above program is illegal as per the feature

71·

mentioned above, because when first encountered, the i in the

declaration of v on line 4 refers to ·global i on line 1.

However, when it is re-evaluated in the completed scope of

class A it refers to declaration on line 5. Thus it is

illegal as per feature mentioned above. However, the Borland

C++ compiler does not give either an error or a warning as

shown below :

**** **** REPORT OF TEST **** ****

Borland C++ Version 3.1 Copyright (c) 1~92 Borland
International
n921102a.cpp:
Turbo Link Version 5.1 ~opyright (c) 1992 Borland
International

Available memory 1623600

**** **** -X- **** ****

#include<iostream.h>

I* PGM NAME :N921102B.CPP
REFER TO :SEC:9.2.1, PARA:2, PG:9-6
FEATURE :A NAME N USED IN A CLASS S MUST REFER TO THE

SAME DECLARATION WHEN RE-EVALUATED IN ITS
CONTEXT AND IN THE COMPLETED SCOPE OF S.

*I

1: typedef char *T;

2: class A

72

3 : {
4: T a;

5:
6:

typedef
T b;

7: };

//ERROR: 'T' REFERS TO ::T
//BUT WHEN RE-EVALUATED IS A::T

long T;

void main() { }

The above program is illegal as per the feature

mentioned above, because when first encountered, the T in the

declaration of a on line 4 refers to global T on line 1.

However, when it is re-evaluat.ed in the completed scope of

class A it refers to declaration on line 5. Thus it is

illegal as per feature mentioned above. However, the Borland

C++ compiler does not give either an error or a warning as

shown below :

**** **** REPORT OF TEST **** ****

Borland C++ Version 3. 1 Copyright (c) 1992 Borland
International
n921102b.cpp:
Turbo Link Version 5.1 Copyright (c) 1992 Borland
International

Available memory 1623600

**** **** -X- -**** ****

/* PGM NAME :N921102E.CPP
REFER TO :SEC:9.2.1, PARA:2, PG:9-6
FEATURE :A NAME N USED IN A CLASS S MUST REFER TO THE

SAME DECLARATION WHEN RE-EVALUATED IN ITS

73

CONTEXT AND IN THE COMPLETED SCOPE OF S.
*I

1: typedef int **I;
2: struct A
3 : {
4: struct B
5: {
6: I f() { I i=O; return i; }
7: } ;
8: typedef float I;
9: } ;

void main() { }

The above program is illegal as per the ·feature

mentioned above, because when first encountered, the I in the

declaration of f on line 6 (but not the I in the body of f)

refers to global I on line 1. However I B is not complete

until A is completed on line 9. when f is re-evaluated in the

completed scope of B, the I in f's declaration refers to A::I

declaration on line 8. Thus it is illegal as per feature

mentioned above. However, the Borland C++ compiler does not

give either an error or a warning as shown below :

**** **** REPORT· OF TEST **** ****

Borland C++ Version 3. 1 Copyright (c) 1992 Borland
International
n921102e.cpp:
Turbo Link Version 5.1 Copyright (c) 1992 Borland
International

Available memory 1694364

74

**** **** -X- **** ****

/* PGM NAME :N921102F.CPP
REFER TO :SEC:9.2.1, PARA:2, PG:9-6
FEATURE :A NAME N USED IN A CLASS S MUST REFER TO THE

SAME DECLARATION WHEN RE-EVALUATED IN ITS
CONTEXT AND IN THE COMPLETED SCOPE OF S.

*I

1: char **T;
2: struct A
3: {
4: char s[sizeof(T)] ;
5: int T· I

. 6: } ;
void main() { }

The above program is illegal as per the feature

mentioned above because when first encountered, the T in the

declaration of s on line 4 refers to ·global T on line 1.

However, when it is re-evaluated in the completed scope of A

it refers to declaration on line 5. Thus it is illegal as per

feature mentioned above. However, the Borland C++ compiler

does not give either an error or a warning as shown below :

**** **** REPORT OF TEST **** ****

Borland C++ Version 3. 1 Copyright (c) 1992 Borland
International
n921102f.cpp:
Turbo Link Version 5.1 Copyright (c) 1992 Borland

75

International

Available-memory 1695468

**** **** -X- **** ****

6.3 FAILURES RELATED TO NESTED CLASSES

#include<iostream.h>

I* PGM NAME :P090701D.CPP

*I

REFER TO :SEC:9.7, PARA:1, PG:9-12.
FEATURE :A NESTED CLASS ~y· BE DECLARED IN A CLASS AND

LATER DEFINED IN THE SAME OR AN ENCLOSING
SCOPE.

class A
{
public:
class B; //FORWARD DECLARATION OF NESTED CLASS.

15: class c;
class B //DEFINITION OF NESTED CLASS.
{
public:

B() { i=100; }
int i;
int f(} { return i; }

} ;
} ;

25: class A::C //DEFINITION OF NESTED CLASS.
{
public:

C () { h=' a' ; }
char h;
char g(} { return h; }

} ; .

void main()

76

{
int tf=O; //Flag for test fail.

A:: B b;
if(b.f() !=100) { cout<<"\n LINE NO: "<< LINE ; tf=1; }

A:: C c;
40: if(c.g() !='a') { cout<<"\n LINE NO: "<< LINE ; tf=1; }

if(tf)cout<<"\n TEST FAILED. \n";
}

In the program. listed above, the nested class C is

declared on line 15 and later defined on line 25. On line 40

the function member of object c of class c is being used. As

per the feature mentioned their are no errors in the above

program. However, the Borland C++ compiler gives errors as

shown below :

**** **** REPORT OF TEST **** ****

Borland C++ Version 3.1 Copyright (c) 1992 Borland
.International
p090701d.cpp:
Error p090701d.cpp 25: Multiple declaration for 'A::C'
Error p090701d.cpp 40: 'g' is not a member of 'C'. in function
main ()
*** 2 errors in Compile ***

Available memory 1620772

**** **** -x- **** ****

77

6.4 FAILURES RELATED TO VIRTUAL FUNCTIONS

/* PGM NAME :P100203A.CPP

*I

REFER TO :SEC:10.2, PARA:3, PG:l0-6.
FEATURE :IT IS A DIAGNOSABLE ERROR FOR THE RETURN TYPE OF

AN OVERRIDING FUNCTION TO DIFFER FROM THE RETURN
TYPE OF THE OVERRIDDEN FUNCTION . UNLESS THE
RETURN TYPE OF THE OVERRIDDEN FUNCTION IS
POINTER OR REFERENCE TO (POSSIBLY CV-QUALIFIED)
A CLASS A, AND THE RETURN TYPE OF THE OVERRIDING
FUNCTION IS POINTER OR REFERENCE (RESPECTIVELY)
TO CLASS B SUCH THAT A IS AN UNAMBIGUOUS DIRECT
OR INDIRECT BASE CLASS OF B, ACCESSIBLE IN THE
CLASS OF THE OVERRIDING FUNCTION, AND THE CV­
QUALIFICATION IN THE RETURN TYPE OF THE
OVERRIDING FUNCTION IS LESS THAN OR ~QUAL TO THE
CV-QUALIFICATION IN THE RETURN TYPE OF THE
OVERRIDDEN FUNCTION. IN THAT CASE WHEN THE
OVERRIDING FUNCTION IS CALLED AS THE FINAL
OVERRIDER OF THE OVERRIDDEN FUNCTION, ITS
RESULT IS CONVERTED TO THE.TYPE RETURNED BY THE
(STATICALLY CHOSEN) OVERRIDDEN FUNCTION.

class A { };

struct B : private A
{

B () { i=55; }
int i;
friend class.D;

} ;

·struct C
{

//Line no: 28

virtual A* vf() {A al; return(&al}; }
} ;

class D : public c
{
public:

B* vf() { B bl; return(&bl}; }

} ;

void g()

I /Legal :A which is a direct base class of B is
//accessible in class D.

78

{

}

D d;
B* bp=d. vf ();
if{bp->i!=55){

void main()
{
g();

}

}

cout<<"\n
<<"
<<"\n
<<"
<<"\n

ERROR: LINE NO : "<< LINE
VAR NAME : bp->i"

ACTUAL VALUE : "<<bp->i
EXPECTED VALUE: 55 \n"

TEST PGM P100203A.CPP FAILED. \n";

In the above test program D: :vf () does not conflict

with the base c::vf() because the return type of overridden

function c:: vf () is pointer to class A and return type of

overriding function D::vf() is pointer to class B, where A is

direct base class of B, and is accessible in the class D

because class D is declared as friend of class B on line 28.

Further the CV-qualification of the return type of overriding

function is same as that of overridden function. Thus as per

the feature mentioned above their is no error in the

program. However, the Borland C++ gives errors as shown

below:

**** **** REPORT OF TEST **** ****

Borland C++ Version 3. 1 Copyright (c) 19 9 2 Borland
International
p100203a.cpp: Error p100203a.cpp 43: Virtual function
'D::vf()' conflicts with base class 'C'

79

*** 1 errors in Compile ***

Available memory 1619468
**** **** -X- **** ****

Similar errors were reported by Borland C++ compiler

in test programs p100203b.cpp, p100203c~cpp, p100203d.cpp,

and p100203e.cpp which are all based on above feature. In all

these programs only the CV-qualification of the return type

pointers of overriding and overridden functions are different

compared to above listed program. However, there are no

errors in them as per feature mentioned above.

6.5 FAILURES RELATED TO ACCESS CONTROL

/* PGM NAME
REFER TO
FEATURE

*I

class A
{
public:
float f; ·

} ;

:N110303A.CPP
:SEC:11.3, PARA:J, PG:11-4.
:AN ACCESS DECLARATION MAY NOT BE USED TO
RESTRICT ACCESS TO A MEMBER THAT IS ACCESSIBLE
IN THE BASE CLASS, NOR MAY IT BE USED TO ENABLE
ACCESS TO A MEMBER THAT IS NOT ACCESSIBLE IN
THE BASE CLASS.

class B private A
{

} ;

class c private B
{

80

public:
A: : f;

} ;
//ERROR: Attempt to grant access.

·void main() { }

In the above program attempt is being made to grant

access to A::f inc, using access declaration, even though it

is not accessible in B which is the immediate base class of

c. As per feature mentioned above· it is illegal to do so.

However, the Borland C++ compiler does not give either an

error or a warning as shown below :

Borland C++
.International
n110303a.cpp:
Turbo Link
International

Available

/* PGM NAME
REFER TO
FEATURE

**** **** REPO~T OF TEST **** ****

Version 3. 1 Copyright (c) 1992 Borland

Version 5.1 Copyright (c) 1992 Borland

memory 1698484

**** **** -x- **** ****

:N110303B.CPP
: SEC: 11 . 3 , PARA: 3 , . PG: 11-4 .
:AN ACCESS DECLARATION MAY NOT BE USED TO

.RESTRICT ACCESS TO A MEMBER THAT IS ACCESSIBLE
IN THE BASE CLASS, NOR MAY IT BE USED TO ENABLE
ACCESS TO A MEMBER THAT IS NOT ACCESSIBLE IN
THE BASE CLASS.

81

*I

class A
{
protected:
float f;

} ;
class B : private A

. {

} ;

class c : private B
{
protected:

A: :f; •
} ;

void main() { }

//ERROR: Attempt to grant access.

In the above program attempt is being made to grant

access to A::f inc, using access declaration~. even though it

is not accessible in B which iP the immediate base class of

c. As per feature mentioned above it is illegal to do so.

However, the Borland C++ compiler does not give either an

error or a warning as shown below :

**** **** REPORT OF TEST **** ****

Borland C++ Version 3. 1 copyright (c) 1992 Borland
International
n110303b.cpp:
Turbo Link Version 5.1 Copyright (c) 1992 Borland
International

Available memory 1698468

**** ****. -x- **** ****

82

6.6 FAILURES RELATED TO FRIENDS

#include <iostream.h>

I* PGM NAME :N110405.CPP
REFER TO :SEC:11.4, PARA:S, PG:11-6.
FEATURE :A GLOBAL FRIEND FUNCTION MAY BE DEFINED IN A

CLASS DEFINITION. OTHER THAN A LOCAL CLASS
DEFINITION.

*I

void g()
{
class A
{
public:
int i;
A() { i=1; }
friend int f(A a1) { return a1.i; } //ERROR:

} ;
A a2;
if(f(a2)!=1){ cout<<"\n ERROR: LINE NO: "<< LINE

<<" \n TEST FAILED. \n"; }

void main()
{
g();

}

In the program listed above a friend function f is

defined in a local class. But as per the feature mentioned

above it is illegal to do so. However, the Borland C++

compiler does not give either an error or a warning as shown

below :

Borland C++
International
n110405.cpp:

**** **** REPORT OF TEST **** ****

Version 3.1 Copyright (c) 1992 Borland

83.

Turbo Link
International

Version 5.1 Copyright (c)

Available memory 1619272

**** **** -X- **** ****

6.7 CONCLUSION:

1992 Borland

Thus to sum up the following defects were.observed in

Borland C++ version 3.1 compiLer.

a. The name and scope rules have not been implemented by it.

b. It does not allow a nested class to be defined outside the

class in which it has been declared.

c. A proQlem involving return type of virtual functions have

been detected.

d. A problem: regarding granting of access using access

declaration has been detected.

e. It allows global friend functions to be defined in a local

class definition.

The verification suite was able to detect so few errors

in the Borland C++ compiler version 3.1 because it is an

84

·industrial strength product which has already been

extensively tested. However, we expect a higher number of

errors for compilers under development.

This verification suite consists of test programs for

only a part of DWP. This work can be carried over further and

test programs can be written based on other chapters, e.g.,

templates, exception handling etc.

85

APPPENDIXA

RELEVANT PORTION OF DWP

1

2

3

9
Classes

A dluz ia a usc:r4cfmed type. A c:lau defiDitioa specifieS the represeatalioa ol objecu of the c:lua aDd tbe act of
opentiooa lbat c:au be apptied to auc:b objecta .. 1bil c:bapcer ~ots tbe syntu aod aemaotic:s for simpie c:laua.
Tbe dcfmitioo of bolb static aod DOD-static members ia discussed, aDd the sc:ope rules iovolvina cluaa
aod fuDctioaa- i.oc:ludiD& loc:.a aod Dated cluaa c:ootainin& member fuDc:tiooa- an: desai~. The mec:bu­
ilma for c:oatrolliDa tbe layout of c:lau objects, for c:ouformiD& 10 atcmal)y ~ formata, aDd for maiDtaiD­
iD& compatibility wilb C layouts (structs. unions aod bit-fiddl) are_preseated.
Derived c:luses (lbat ia, iDbcrilaDc:e), accas c:ootrol. aod special member fuoc:tio111 are discussed iD the oextlbnle
c:bapten.

9 aasses
1 A class is a type. Its name bc:comc:s a class-nanu (§9.1), that is, a reserved word within its scope.

class ·IIQIM:
i/U1'11if I.U

l~mplal~-diJiz-UI

Class-spec~~ and tlaborattd-typt-spteifitrs (§7 .1.6) are used to make class-names. An object oC a class
coosists or a (possibly empty) sequeoa: or members.

class-sp~cifi.er:

class ·Mad:

clan-krj:

class-lvad I tMmber-zpeci{ICCiliorr.,

class -J:ry i«1'11if16 r.,. ba.u-claMS~.,.
clau-J:ry ttated-clluz-specijUr bdJ~-claw~.,.

class
struct
union

2 Tbe name or a class can be used as a class-~ even within the membtr-sptcijication of the c1ass
specif)Cf itself. A class-spec~r is a:mmooly referred to as a class deflnitioo. A class is coosiderc:d
defmed wbc:o its cltus·sptcifitr has been seen even though its member runc:tioo.s are in general DO(yet
defmed.

3 Objects of an em pcy class have a nonzero size.
~ Class objea.s may be: ~igned. passal as argumenu to functions, and returned by functioru (except

objeru oC c~ for which copying has been restricted; see § 12.8). Other plausible opera~Dn. web as
equality comparison. can be: defmed by the user, soe § 13.4.

87

DRAFT Ju- 1, 1993 CUp&er 9

5 A structure is a class declared with the class-try struct; its lllCmbe~ and base clas.ses (§10) an: pub-
lic by default (§11). A wtion is a ciJw declared with the cla.ss-Uy union; iu membe~ are public by
default and it bokls only ooe member at a lime (§9.5).

9.1 O...Nama

A cl.a.s.s defmitioo introduces a oew type. For example.

struct X { int a;);
struct Y { !nt a; l;
X al;
Y a2;
int a3;

declares three variab~ of three dilferent types. This implies that

al • a2;
al = a3;

II error: Y assigned to X
II error: int assigned to X

are type mi.sm.alcbes, and that

int f!Xl;
int f!Yl;

declare an overloaded (§13) functioo f () and DOt simply a single functioo f () twice. For the same rea­
son.

struct S { int a;) ;
struct s { int a; }; II error. double definition

is an erTCX" because it defines s twice.
2 A class definitioo introduces the class name into the scope where it is defmed and hides any class.,

object. function, or other declaration of that name in an enclosing scope (§3.2). If a clas.s name is declared
in a scope when: an objea. fuoctioo. or eoumtta10r of the same name is also declared the class can be
referred to oo1y using an elaborated-rypt-sptcijitr (§7.1.6). For example.

struct stat
I I ...

) ;

stat gstat; II use plain •stat' to
II define variable

int stat(struct stat*}; II redefine 'stat' as function

void f!l
(

struct stat• ps;

II ...
stat (pal;
II ...

II •struct• prefix needed
II to name atruct stat

II call stat()

An tlaborattd-typt-specifitr with a class-try used without declaring an object or function introduces a
class name euct.ly like a class definitioo but without defining a class. For example.

88

Sedba9.1

~truct a I lnt a;);

void Q (l
I

DRAFT J ... 1, 1993

atruct a; 11 hide olobal atruct • s'
s• p; // refer to local atruct •a•
struct a (char• p;); //declare local atruct 's'

Such dccbra.tioos allow defioitioa of dassc:s chat refer to each ocher. For eumple.

claaa vector:

class matrix 1
II ...
friend vector operator•tmatrix&, vector,);

l;

class vector 1
II ...
friend vector operator•(matrix&. vector,);

} ;

Declaration of friends is described in §11.4, operator functioos in §13 .4.
3 An tlilborattd-typt-sptcifitr (§7 .1.6) can also be used in the declarations of objects and fuoctioos. It

differs from a class declar31ioo in tba1 if a class of lbe e1abonued name is in scope the elaborated name will
refer to it. For example. ·

struct s I int a; } ;

void Q(int S:)

I
struct s:• p = new struct s; II global •s•
p->a = s:; II local •s•

A name declaration takes effect immediately aCta the idttllijitr is seen. For example.

class A • A;

f tnt specifies A 10 be the name of a class and then redefmes it as the name oC a pointer 10 an object of thal
class. This means that the elab<nled form class A must be used 10 refer to the class. Such artisa'y with
names can be confusing and is best avoided.

5 A typtdtf-NJmL <§? .1.3) tba1 aames a class is a class-NJ~; see also §7 .1.3.

9.2 Cl.au Memben

~r-sp«i{ICIJlioi'L·

~r-~Udmurion mDn~r-specif~eatiort•

GC:CUs-spcc~r : ~r-spccificDiicft•

~r-~Udarotioft:

tkd·sp«ifiu·uq.. •nemba~clanuor.un ..
J-criort~ ...
qMDlif~tl-id ;

~r-4Ldarator-Jist:

~r-~Udaralor

,_rttbt:r-4Ldarruor-Jist , ~r~Larator

89

DRAFT Ju- I, 1993

III'W'1f'IIH r -.tU cia rwo r:
tkdDrtUor p~~n-rp«i{ILr..,.
w~r.. : cOftStDN-o:prrsrWt.

Tbe tMmbtr-specificatwn in a class ddinitioo declares the fullaet of members ol the c~ oo member
can be added elsewhere. Memben ola class an: daLa mcmbc:rs., member tunaioos (§9.3), nested rypes.. and
member constants. Da.ta mcmben md member functioos an: &lalic cx ooo.star.k; see §9.4. Nested rypes are
classes (§9 .1, §9. 7) and en~oos (§7 .2) defmed in the class, md arbitruy rypes declared as members
by use of a typedd declaratioo (§7.1.3). The eoumcntors of an enumeratioo (§7.2) defmed in the class are
member coostaots of the class. Except wbeo used 10 declare friends (§ 11.4) or co adjust the access 10 a
member of a base cla.s.s (§11.3), membtr-dtclararions declare members of the class. and each such
rMmbtr-declaratwn must declare at least ooe member name of the class. A member may not be declared
twice in the membtr-sptcificaticfl. except lha1 a nested class may be decl..arcd and then later defined.

2 Note that a single name can denote several function members provided their types are sufficiently dif.
ferent (§ 13). Note tJw a mtmbtr-dtclarator cannot cootain an inilializer (§8.4). A member can be initial­
ized using a constructor; see §12.1.

3 A member may 00(be auto, extern, or register.
-4 The dtcl-spteijitr-stq can be omitted in fuoctioo declaraLioos ooly. Tbe mtmbtr-dtclararor-list can be

omiaed only after a class-specifier, an enum-sptcijier, or a dtcl-sptcijitr-stq of che form friend
tlaborattd-type-specijier. A pure-specifier may be used only in the declaratioo of a virtual fUDCtk>o
(§10.2).

5 Noo-sta tic (§9.4) members that are class objects must be objects of previously declared classes. In
particular, a class c 1 may oot contain an object of class c 1, but it may contain a pointer or reference 10 an
object of class c 1. When an array is used as the type of a nonst.atic member all dimensions must be speci­
fied.

6 A simple example of a class defmition is

struct tnode {

I;

char tword (20];
int count;
tnode *left;
tnode •richt;

which contains an array of twenty cbaraac:rs. an integer, and two pointers 10 similar sllUctures. Ooce this
defLnitioo has been given, the declaratioo

tnode s, •sp;

declares s 10 be a tnode md sp to be a pointer 10 a tnode. With these dedaralioos, sp->count refm
10 the count member of the sauaurc 10 which sp points; s .left refers co lbe left subtree pointer of
·the sauaure s; and s .right->tword (0 J refers 10 the initial charactet of the tword member ollbe
dght subcree of&.

7 Noo.static data members of a cla.u declared without an intervening access-sptclflu are allocased 10 that
later members have higba addresses within a class object. The order of allocatioo ol DOOSWic da!a
members separaled by an access-specifier is impk:ment.atioo depeodcot (§11.1). lmplementatioa alipmeot
requirements may cause two adjacent.memben 00(10 be allocated immediately after each other; 10 may
requiremeo IS Cot space for managing virtual functioo.s (§1 0.2) and virtual base classes (§ 10.1); see also
§.5.4.

8 U two types Tl and T2 are the same type. then Tl and T2 are layour-compariblt types.
9 Two POD-struct (§8.4.1) types are layout-QXJlpatible if they have the same number of members. and

e<rresponding members (in order) have layout<Ompatible types.
10 Two POD-unioo (§8.4.1) types are layout<ompatibk if they have the same number of members., md

e<rrespooding members (in any order) have layout-rompatible types.

90

Sectbaf.l DRAYr J ... l,l99'J

Sboukln'tlhis be l.be same sa of types? I

11 Two eoumeratioo types arc layout-compatible ii they have l.be same sets of eoumerata values.

Sbooldu'tlhis be the same IUldertyillg rype? I

12 U a POD-unioo cootaina seven~ POD-suucu tblll share a c:anmoo initial sequence. and it the POD- 1
unioo object currently cootains me ol tbese POD-suuets. it is penniued 10 inspect the commoo initial part 1
of my or lbcm. Two POD-structs share a (X)[D.tDOO initial sequence it curespooding members have layout- 1
cxmpatible types (and. Cor bit-fields. tbe same widths) tor a ~ ol ooe or more initial members. I

13 A pointer' 10 a POD-struct object. suitably ooovencd. points 10 its initial member (or ii that member is a J
bit-f.eld. thco to tbc unit in which it resides) and vice versa. There may therefore be UDMmed padding I
within a POD-struct object. but DOt a1 its beginning. as oecessary 10 achieve appropriate alignmeoL I

14 The range ol ooonegative values or a signed integral type is a subange ol the c:arespooding unsigned 1
integral type. aod tbc represenwioo ol tbe same value in each type is l.be same. I

15 Even if the implemenwioo defines two or more basic types 10 have l.be same represenw.ioo. they arc I
nevertheless different types. I

16 The rcpresc:otalioos ol integral types shall defme values by use of a pure binary nwneratioo system. I

Does this mean two's complement? Is then: a defmition of "pure binary numeration syste*!T' I I

17 The qualified or unqualified versioos of a type arc distinct types tbal have the same represc:nwioo and I
aligmncnt requirements. I

18 A qualified or unqualified void"' sbal1 have the same representation and alignment requirements as a I
qualified or unqualified char•. I·

19 Similarly. pointers to qualified or unqualified versions of layout~patible types shall have tbc same I
representation and alignment requirements. I

20 If the program au.emptS to access l.be stored value of an object ol.ber than through an I value of ooe of tbc I
following types: I

• the declared type of the object.

• a qualified versioo of l.be declared type oC the object.

• a type that is the signed or unsigned type carespooding to the declared type of the object,

a type that is l.be signed or unsigned type com:sponding to a qualified version of the declared type of
the object.

• an aggregate or union type that includes ooe of l.be aforementioned types among its members (includ­
ing, recursively. a member of a subaggregate or contained union), or

• 8 c:haraaa type.l7

the result is tmddined.
21 A function member (§9 .3) with l.be same name as i 13 c la.s.s is a constructor (§ 12 .I) . A s&alic data

member, enumerator, member of m anonymous unioo. or oest.ed type may DO(have the same name as its
class.

91

2

ClLapt.er 9

9.2.1 Scope Ru~ for Clasaa

The f oUowin& rules describe tbe scope of names dec J..amd in c:l.as.se3.

1. The scope ofa name declared in a class coosisu DO(only of the text foUowing the name 'a deda.nuor.
but also of aU functioo bodies. default paramet.en... and constructor initializ..crs in that cl..au (ioc.ludin&
IUCh chings in oeSlOd classes).

2. A name N used in a class s must refer to tbe same declanltioo wbeo re-evaluated in its cootext and
in !be comp~ted scope of S.

3. I! reorderin& member declaratioos in a class yields an a.lteroa.te valid program under (1) aod (2). the
pro&ram' s meanin& is undefmed.

4. A declaratioo in a oeSlOd declarative region hides a declaralioo whose declarative regioo cootAins
the oested declarative regioo.

S. A declaration within a member function bides a d«:laratioo wbosc scope extends to or past tbe md
oC the member fuoctioo • s class.

6. 1be scope of a decla:ratioo that extends to or past the end of a class definitioo also extends to the
regioos defined by its member definitioos, even if defmed lexically outside the class (th..is includes
both functioo member bodies and swic data member initializ.atioos).
For example: ·

typedef int c;
enum (i = 1 I:

class X (

I:

char v[i); II error: 'i' refers to : :i
II but when reevaluated is X: :i

int f() return sizeof(c); I II okay: X::c
char c;
enum (i 2 I:

typede! char• T;
struct Y (

I;

T a; II error: 'T' refers to ::T
II but when reevaluated is Y: :T

typede! lon~ T;
T b;

s;truct. Z
int f(const Rl; II error: 'R' is; par~eter name

typede! int R;
I:

9.3 M~mber Functions

II but swappinq the two declarations
II changes it to a type

A function declared as a member (without tbe friend specif~er, §11.4) is caiJed a member functioo, and is
caiJed for an object using tbe class member syntax (§.5.2.4). For example,

92

s.cuo. 9.3

s;truct tnode (
char tword (20);
int count;
tnode *lett;
tnode •rioht;

DRAYI' J,... 1, 1993

void aet(char*, tnode* 1, tnode* r);
} ;

Here set is a mcmtu fuDctioo and can be calk4 Like dlis:

void f(tnode nl, tnode n2)
{

nl.set("abc",l.n2,0l;
n2.aet("def",0,0);

M-bcrFu~ ~7

2 1be defmitioo or a member functioo is coosidcn::d to be within the srope oC its class. This means that
(provided it is oooswic §9.4) it can use names of membcn of its class dirc:ctly. Such names then refer &o

the members of the object for which the function was called.
3 A sw.ic local variable iDa member function always refers to the same object. A static member functioo

can use only the names of sw.ic members. enumerators. and oeSled type$ directly. If the defmitioo of a
member fuoctioo is lexically outside the class defmitioo. the member function name must be qualified by
the class name using the : : operau:c-. For example.

void tnode::set(char* w, tnode• 1. tnode• rl
(

count= strlen(w+ll; .
if (sizeof(twordl<=countl

error("tnode string too lono"l;
strcpy (tword, w);
left = l;
ric;ht = r;

lbe oowioo tnode:: set specifieS that the functioo set is a member of aDd in the scope of class
tnode. lbe member names tword. count. left, and right refer &o members of the object for which
the fuDc:tioo was called. Thus. iD the call nl.set (•abc•. ""2, 0). tword refers &o nl. tword, and
in the call n2. set (*def•, 0, 0) it refers to n2. tword 1be fuoctioos strlen. error. aDd strcpy
must be declared elsewhere.

Membcn may be defmed (§3.1) outside their class defmitioo if they have already been declared but not
defmod in the class defmitioo; they may DOt be redoclarcd. See also §3.3. Functioo members may be men­
tioood iD friend declarations after their class bas beco defmed. Each member function that is callod must
have euct.ly ooe defmitioo in a program.

5 lbe effea oC calling a oonswic member fuoaioo (19.4) of a class X for something that is not an object
of dass X is undefiood.

9.3.1 The thia Pointer

In a oooswic (§9.3) member fimction.. the keyword this is a ooo-lvalue expressioo whose value is the
address ol the objea for which the functioo is called. Tbe type of this iDa member functioo of a class X
is X* unless the member fuoctioo is decbred cons t or vo 1 at il e; iD those cases. the type or t hi s is
const X* or volatile x•. respectively. A fuoctioo declared const and volatile bas a this with
the type const volatile x•. See also §19.33. For eumpk.

93

~:cruet 10 I
int a;
int r (l con~:t;

DRAFT Ju- 1,1993

inc g () I return a++; I
int h(l con~>t { return a++; I II error

);

int a: :fll conat 1 return a; I

Chapur 9

1be a++ in tbe body oC s : : h is 110 aror because it tries to modify {a part oO the object for which s : : h { I
is called. This is DO(allowed in a cons t member fuoctioo where t hi s is a pointer to cons t, tha1 is.
•this is a const.

2 A const member funaioo (that is. a member functioo declared with the const qualifier) may be
called for const and noo-const objects. whereas a ooo-const member function may be called only foe
a ooo-cons t object. Foe example,

void K(s' x. const .. , y)
{

x. f(l;
X .g ();
y. t {);
y .g (); II error

1be call y. 9 () is an error because y is cons t and s : : 9 () is a non-cons t member function that could
{and does) modify the object for which it was called.

3 Similarly, only volatile member functions (that is. a m~ber function declared with the volatile
specifler) may be invoked for volatile objects. A member function can be both const and vola-
tile. ·

4 Constructors{§ 12.1) and destructors (§12.4) may be invoked for a const or volatile object. Con-
Structor'S (§12.1) and desuucU>rS (§12.4) cannot be declared const or volatile.

9.3.l lnllDe Member Functiom

1 A member function may be defmed (§8.3) in me class defmitioo. in which case it is inline (§7.1.2).
Defining a function within a class defmitioo is equivalent 10 declaring it inl ine and defining it immedi·
ately after tbe class defmitioo; this rewriting is coosidc:red to be done after preprocessing but before syntax
analysis and rypc checking of tbe function defmitioo. Thus

int b;
struct x {

char• fll (return b; J
char• b;

) ;

is equivalent to

int b;
struct x {

char• f () ;
char• b;

} ;

inline char• x:: f () (return b; J II moved

Thus the bused in x:: f () is X: :band not the global b. See also _class.local.type_.
2 Member functions can be defmed even in local or nested class deftnitions where this rewriting would be

syntactically incom:ct. See §9.8 for a discussion oC k>cal cl.assc:s and §9.7 for a discussion of nested classes.

94

Sedioe9A Statk: Mem'-' ...__,

9A Statk Manben

A dllla or fuoctioo member of a class may be dcclan:d static iD tbe das.s defmitioo. "There is only ooe
oopy of a llatic dalA member, sband by all objects oC tbc class md any derived classes in a proenm. A
5tltic member is not pan of objects of a class. Static mcmbcn of a &lobal clau have extemal liokqe
(§3.3). Tbe dedara.tioo oC a static dala member iD its dau defmitioo is r&Ot a deflllitioo and may be oC 1111

iDcamplde type. A defmitioo is required elscwbc:re; ICC abo §19.3.
2 A &tatic member fuoc:tioo doca DOt bave a this pom.er 10 it cao access ooostatic members of its dass

only by usin& . or->. A static member functioa aooot be virtual. Tbe:re C3DDOt be a static lllld a ooo­
static member fuoctioo wilh tbc same name lllld tbc ume 1*ametef rypes..

3 Static members of a local class (§9.8) bave DO liDb&e and CllllDOt be defmed oot.side tbc class defmi-
tioo. It foUows that a local class CllllDOt have atatic data members.

~ A static manber mem of class cl cao be rcfc:md 10 a cl: :mem (§5.1), that is, independently oC lillY
object. ll cao also be referred 10 using tbe • and -> member acx:ess opc:raton (§5.2.4). Wbc:o a IWic
member is accessed dlrough a member .a:ess operator, tbe cxpressioo oo tbe left side of the • or-> is DOt

evalualed. lbe static member mem exists even if DO objects of class c 1 have been created. For example., in
tbe following, run_chain. idle, and so oa exist even if oo process objects have been created:

class process {
static int no_of_processes;
static process• run_chain;
static process• runnino;
static process• idle;
II ...

public:

} ;

II ...
int state();
static void reschedule();
II ...

and reschedule can be used without reference 10 a process object, as follows:

void f()
{

process::reschedulell;

5 Swic mcmbc:rs of a global class are initializ.ed eualy like global objects and only in file scope. For
e:umple,

voidprocess::reschedule() { /* ... */ };
int process::no_of_processes • 1;
process• process::runnino = oet~in();
process• process::run_chain = process::runninQ;

Static members obey the usual class member access rules (§11) cxcepc. that tbey can be initialized (m me
scope). lbe initial.iza of a swic member of a class ba\ tbe same IICttSS rights as a member function, as in
process:: run_chain above. '

6 1be type of a swic member does DOt involve ics class name; dlus tbe type of process ..
no_o!_processes is int and tbe type of "process : : reschedule is void (• l {).

9..5 uruoa.
, A unioo may be thought of as a dass wbose member objects all begin at offset zero and whose size is suffi.

cient 10 contain any of its member objoc:u. At most ooe ot the member objocts can be stored in a unioo at
any time. A unioo may have member functions (including ronstructors and destructors), but DOt virtual
(§ 10.2) functiom. A unioo may DOt have base classes. A unioo may DOt be used as a base class. An object
of a class with a coostructor or a destructor or a uscr-defmed assignment operator (§13.4.3) cannot be a
member of a union. A unioo can have oo s t a t i c d.a.t.a membe~.

95

9-1t a- DRAFT Ju~te 1, 1993 CUpur9

Shouldn't we {X'Obibit referencx:s in unions? I

2 A unioo rX me fonn

union (Jllnftbcr~,. I ;

is called m mooymous unioo; it defmes an unnamed object (and oot a type). Tbe names of the memben of
an aoooymous wtioo must be distiDct from O(ber names in the scope ill which the union is doclan:d; they are
used directly in chat scope without the usual member access syntax (§~.2.4). For example,

void t ()
(

union int a; char• p;);
a • 1;
II ...
p "' •Jennifer•;
II ...

Here a and p are used like <rdinary (nonmember) variables., but since they are union memben lbey have
the same address.

3 A gk>ba.J anonymous unioo must be declared static. All anonymous union may not have private
or protected members (§11). An anonymous uruoo may not have function membe~.

• A unioo for which objects or poi.nters are declared is not an anooymous union. For example,

union 1 int aa; char• p; I obj, •ptr = 'obj;
aa "' 1; II error
ptr->aa = 1; I I ole

1be assignment to plain aa is ill formed sincx: ·the member name is oot associated wilh any particular
object.

5 lnitializ.atioo of unioos that do DO(have constructors is desaibod in §8.4.1.

9.6 Bit-Fields

A membtr-dtclarator of the form

itUrllif~er., : cON14111-upruswn

specifaes a bil-faeld; its length is set orr from the bit-field name by a colon. Allocation of bit-faelds wi1hin a
class object is implementatioo dependent Faelds are packed into some addressable allocation unit Ftelds
straddle allocatioo unics oo some machines and not oo others. Alignment of bit-fields is implemenWioo
dependent Fields arc assigocd right-to-left on some machines, left-to-right oo others.

2 An unnamed bit-field is useful for padding to conform to ex&emally-imposed layouts. Unnamed fields
arc oot membcn and cannot be initialized As a special case. m unnamed bit-faeld wilh a widlh oC zero
specifaes alignment of the oext bit-field a1 an allocaLioo unit boundary.

3 A bil-ftekt may oot be a SWic member. A bit-f1eld must have integral or enumeration type (§3.6.1). It
·is implementatioo depc:Ddeot wbetbcr a plain (oeither explicitly signed oor unsigned) int faeld is signed or
unsigned. lbe addrcss-ol operatOr ' may not be applied to a bit-faeld. so there arc no pointers to bit-fields.
Nor an: tbete refereoc:ea to bit-fields.

9.1 Nested a.. Dedantions

1 A class may be defmod within anothc:r class. A class defmed within aDO(ber is called a nesttd cl&u. Tbe
name of a oesled cW5 is local to ics enclosing class. lbe oested class is in the scope of its enclosin& class.
Except by usin' explicil poincen. references.. and object names. doclaratioos ill a oested class cao use ooly
rype names. w.tic memben. and enumaators from the eoclosing class.

96

s.ct~9.7

1nt x;
int y;

class enclose
public:

int x;
static int 11;

clau; inner {

void !tint
{

.x a i;
II . 1;
: :x .
y '"' 1;

il

II
II

i; II

DRAFT J ... 1, 1993

error: assign to enclose::x
ok: assign to enclose::s
ok: assign to global x
II ok: assign to global y

void g(enclose• p. int il
{

p->X = i; II ok: assign to enclose::x

) ;
) ;

inner• p = 0; II error 'inner• not in scope

Member functions of a nested class have no special access to members of an enclosing class; they obey the
usual access rules (§11). Member functions of an enclosing class have no special access to members of a
nested class~ they obey lhe usual access rules. For example,

class E
int x;

class I
int y;
void f(E• p. int il
{

) ;

p->X = i;

) ;

int c;,tr• pl
{

return p->y;

II error: E: :x is private

II error: I: :y is private

Member fu:oaioos and swic dala mcmben of a nested class can be defmed in the global scope. For cum­
pie.

class enclose (

I;

class: inner

I;

static int x;
VO 1 d f (l n t i) ;

97

DltAIT Ju.c 1, 1993

typedet enclose: :inner ei;
intei::x•l;

void enclos:e::inner::tlint i) (;• ... •; I

A oes.ted das.s may be declan:d in a class and IJu.c:r de fmed in the same or an me klsing scope. For eum.p~:

clau; E {

clasa Il; II forward declaration ot nes:ted class;
clasa 12;
class ll { } ; II detini tion ot nested class

} ;

class E:: 12 (); II detini tion of nested class

Like a member functioo, a friend fuDctioo defmed within a class is in the lexical scope oC that class; it
obeys the same rules for name binding as tbe member functions (described above and in § 10.4) and like
them has oo special access rights co members of an enclosing class or local variables of an enclosing func­
tion(§ 11).

9.8 Local Class Dedaratlom

A class can be defmed within a fuoction defmitioo; sucb a class is called a local cLass. The name of a local
class is local co its enclosing scope. The local cLass is in lhe scope of the enclosing scope. Declarations in a
local class can use only type names, static variables, extern variables and functions, and enumerators
from the enclosing scope. For example.

int x;
void f()
{

static int s ;
int x;
extern int Q();

struct local {

int Oil { return
int h() (return
int k() { return
int 1() { return

} ;

II

X; }

s; I
::X;

Q();

II error: •x• is auto
II ok
II ok
II ok

local• p = 0; II error: 'local' not in scope

2 An enclosing fuoctioo has oo special access to members of the local class; it obeys lhe usual .:cess
rules (§ 11). Member functioos of a local cl..ass must be defmed within their cl..ass defmitioo. A local class
may DO(have static da1a members.

9.9 Nested Type Nama.

Type names obey euctly the same scope rules as other names. In particular, type names defmed within a
class defmitioo c:annot be used outside their cLass without qualiflCatioo. For ex.ampJ,e,

98

S.CU0.9J DRAFT J~ 1. 1~ ~Type Nam• 9--13

clau; X (

public:
typedef int I;
cla~;~; y (,, I;
I a;

I;

I b; II error
y c; II error
X: :Y d; II ole
X:: I e; II ole

99

2

3

10
Derived Classes

Tbia chapter explains il~Mritlii'ICe. A clau cao be Mriwd from one or more otbcT daues, wbich are mea called
bGM claaea of lbe derived clau. 1bc derived clau iDberits lbe ~pcrtia of its bue~lasscs, i.Dcludin& its data
mc:mben and member functioos. In additioa. the derived class cao ovetride vin!Mll fuo<:tioDS of its bun and
declare addibooal data members. fuDc:tioDS, aod 10 oa. A&c.eu to clau members i.& ~ked for ambiJUity.
Sharin& amooa tbe (base) classes that mate up a class can be expressed usin& vin!Mll bau r:Ulssu. Clusa cao
be declared abstraa to eosure that they .re used oo..ly u base classes.
The final sectioo of this chapter (t 10.4) is a summary of the C++ scope rules.

10 Derived Classes

A list oC base classes may be specified in a class declaralioo using the ootatioo:

ba.se-clmue:
: ba.st-sptcif.er-list

ba.se-speci[.er-lin:
ba.st-specif.er
bast-specif.er-lin , bast-specifier

ba.st-sptci{.er:
qwal if .ed -class ·Spteif.e r
v irtua 1 access-specifier., qiUllif.ed-class-rpecifitr
occess-specif.er vi rtua 1., qiUllif.ed-class-rpecijitr

occess-sptei{ILr:
private
protected
public

1be class-MffU in a bast-spuifitr must denote a previously declared ~ (§9), which is called a diuct
bau claJs fa the class being declared. A class B is a base class of a class D if it is a direct base class oC D
or a direct base class of ooe of D's base classes. A class is an irr,djrtct base class of another if it is a base
clas.s but DOt a direct ~ class. A class is said 10 be (dirca.ly or indiroctly) tkrivtd from its (direct or

indirect) base classes. Fa l.be meaning of acuss-sptcifitr see § 11. Unles.s redefmed in the derived clns.
membe~ of a base class can be referred 10 as if they were members of the derived class. The base class
membe~ are s.aid 10 be illhuiud by the derived class. 1be scope resolution operatOr : : (§5.1) may be used
to refer to a base member explicitly. This allows access to a name lha1 has been redefined in the derived
clas.s. A derived class can itself serve as a base clas.s subject 10 access cootrol; see § 11.2. A pointer 10 a
derived class may be implicitly convened to a pointa 10 an ~ble unambiguous base class (~.6). A

reference 10 a derived class may be implicitly converted to a reference to 110 ~sible unambiguous base

class (§4.7).

100

2 For example.

cla1111 Balle
public:

int. a, b, c;

} ;

DRAIT Ju~>« I, 1993

cla11~ Derived public Ba~e 1
public:

int b;
) ;

class Derived2 public Derived I
public:

int c;
) ;

3 Here. an object of class De r i ved2 will have a sub-object of class Derived which in nun will have a
sub-object of class Base. A derived class and its base classes can be represenc.ed by a directed acyclic
graph (DAG) where an arrow meam "directly derived from." A DAG oC classes is oft.en referred lO as a
"class Lattice." FCX" example.

Base

t
Derived

t
Derived2

Not.e tha1 the arrows need not have a physical represe1n.atioo in memory and the order in which the sub­
objects appear in memory is unspecified.

Name looblp proceeds from the original class (the named class in the case of a qualifitd-id) along the
edges of the laa.ice until the n.ame is found. If a name is found in more than one class in the latttice, the
access is ambiguous (see §10.1.1) unless ooe occurrence of the n.ame hides 11 all tbe others. A name B: : f
hides a name A: : f if its class B has A as a base and the instance of B c:ootaining B: : f has the instance of
A c:ool.aining A: : f as a sub-OOje<:t. lbe sccood part of this definitJoo is trivially satisfied when multiple
inberitaoce is not used. For example.

void!()
(

Derived2 x;
x .a 1;
x.b = 2;
x.c "' 3;
x. Base: : b = 4;
x.Derived::c c 5;
Base• bp " 6:X;

1/Base::a
II Derived: :b
II Derived2: :c
II Base: :b
II Base::c
II standard conversion:
II Derived2* to Base•

assigns co the five members of x and makes bp point co x.
5 Noce cbaL in the class-IUllne : : id-uprtssion oowion. id-upression oced DOt be a member of class-

name; tbe DOCatioo simply specific:s a class in which to start looldn& for id-uprtssion.
s lnitialiutioo of objects representing base classes can be specifaed in coostr\JCtOR; see § 12.6.2.

101

SedkHI 10.1 M•ltJp• Base a- 1~

10.1 Multip~ Base C1asaa

1 A claM may be derived from any number of base classes. Fa- e:umple.

c 1 a 5:5: A. I t• • I } ;
cla&:a B I t• ... •t };
clas&: C I t• ... •t };
cla&:&: D public A. public B, public C (;• ... •t } ;

The usc of more than ooe direct base claM is often called multiple i.nbcritance.
2 The orda of derivation is DOl signiftcant except possibly fa- default ioitializ.atioo by coostruc1Dr

(§ 12.1), for deanup (§12.4), and for storage layout (§5.4, §9.2. §11.1).
3 A class may not be specified as a direct base class of a derived c1a.u more than once but it may be 1111

5

indirect base class more than ooce.

class B t•, } ;

clas&: D public B. public B (,., } ; II illeQal

class L t• ... •t I;
class A public L (t•, I;
class B public L (,., } ;

class c public A. public B (t•, I; II legal

Here, an object of class c will have two sub-objects of class Las shown below.

L L

The keyword virtual may be added to a base class specifter. A single sub-object of the virtual base
class is shared by every base class that specifted tbe base class to be vinual. ·For example,

classV { t• ... •; I;
class A virtual public V ;• ... •; I;
class B virtual public V t• ... •t I;
class C public A. public B I ;• ... •t I;

Here class c has only ooe sub-object of class v. as shown below.

v

A/"'B
"'c/

A class may have both virtual and noovirtual base classes of a given type.

class B t• ... •t I;
class X virtual public B I ;• ... •; I;
classY virtual public B I ;• ... •; I;
class Z public B (;• ... •; I;
class AA : public X, public Y. public Z I t• ... •; };

Here class AA has two sub-<>bjects of class B: Z's Band tbe virtual B shared by X andY. as shown below.

B B

X/ "'y t
"'AA~

102

DRAFI' JuDe 1. 1993 Ouaptcr 10

10.1.1 Ambiguities

Acc:es.s to base class memben must be unambiguous. Accc:ss to a base class member is ambi&uous if the
id-aprusion or qualifud-id used does DO(refer to a unique function, object. rypc. or enumerator. The
c.beck for ambiguity takes place before access cootrol (§11). For ex.ample.

clas:a A. {
public:

int a;
int (•b) () ;
int f();
int t (inti;
int IJ{I;

) ;

clas:s: B
int a;
int b();

public:
int f I I;
int IJ;
int h();
int hlintl;

) ;

class c : public

void g(C* pcl
(

pc->a = 1;
pc->b();
pc->f(l;
pc->f Ill;
pc->Q();
pc->Q = 1;
pc->hll;
pc->hlll;

A. public B ! I;

II error: ambigaous: A: :a or 8: :a
II error: ambi<]UOUS: A: :b or 8: :b
II error: ambi<;,uous: A:: f or B:: f
II error: ambi<;,uous: A:: f or B:: f
II error: ambiguous: A: :<;, or 8:: <]

II error: ambi<;,uous: A: :g or B:: <]

II olt
II olt

If the name of an overloaded fuoctioo is unambiguously found overloadin1 resolution also cakes place
before access control. Ambiguities can be resolved by qualifying a name with its class name. For example.

class A
public:

int fll;
) ;

class: B
public:

int fll;
I;

class: C : public A. public B (
int f() (return A.::f() + B::f();

} ;

A single: function, object. rypc. or enumerator may be reached through more than one path through the
directed acyclic grapb of.base classes. This is nOlan ambiguity. For example,

103

Sectioa 10.1.1

class v public:
class A
public:

int a;
static int
enum I e I;

I;
clas~: B public
clas~: c public

cla~:s 0 public

void t co• pd)
I

pd->V++;
pd->S++;

1nt V; I;

a;

A,
A.

B.

public virtual v I I;
public virtual V I I;

public c {) ;

II ok: only one •v• !virtual)
II ole: only one •s• l~:tatic)

I I ole:. only one • e• (enumerator!

AmblpiU.. 1~

int i = pd->e;
pd->a++; II error. ambiguous: two •a•~: in •o•

When virtual base classes are used. a bidden function. object. or enumeralOC may be reached along a path
through the inheritance DAG that does not pass through the biding function. object. or enumeraiOr. This is
not an ambiguity. The identical use with nonvirtual base classes is an ambiguity; in that~ there is oo
unique instance oC the name that hides all the others. For example,

class V
class W
class B

public:

public: int t (); int x: l ;
public: int q();. int y;);
public virtual V, public W

int f (): int x:
int q(); int y;

) ;

class C public virtual V, public W {);

class D public B. public C { void g(););

The names defmed in v and the kft band instanCe of w are bidden by those in B, but the names defmed i:n
the right hand instance of ware oot hidden at all.

void D: :q()
I

X++;

f();

Y••;
g();

II ole: B::x hides V: :x
II ole: B::fll hides V::f()
II error: B: :y and C's W: :y
II error: B: : g 1 1 and c · s W: : g 1 1

An explicit or implicit cooversioo from a pointer or reference to a derived class to a pointer or reference to
one of its base classes must unambiguously refer to a unique object repre:scnting the base class. For ex.am­
ple.

104

DRAFT JaDe 1, 1993 Claapt.er 1 0

class v) ;

class A.) ;

class B public A.. public virtual v) ;

class c public A.. public virtual v) ;

class 0 public B. public c I) ;

void g ()
(

0 d;
s· pb • 'd; ,.. pa • 'd; II error. ambiguous: C's: A. orB's A. 7
v• pv .. 'd; II fine: only one V sub-object

I O.l V lrtual Functions

Virtual functions support dynamic binding and object-oriented programming. A class that declares or
inherits a vittual function is called a polymorphic class.

2 If a virtual member functioo vf is declared in a class Base and in a class Derived, derived directly
or indirectly from Base, a member functioo v! with the same name and same parameter list as
Base : : v f is declared. then Derived : : v f is also virtual (wbetbcr or DOt it is so ded.ared) and it
overridu19 Base: :vf. For mnveuieuce we say that any virtual Cunctioo overrides itself. lben in 1ny
weU-fooned class. for each virtual functioa declared in that class or any or its direct or indirect base classes
there is a unique final ove rridtr tba1 overrides that functioa and every other overrider or that fUDCtioo.

3 It is a diagnosable erra- for the retwn type of an overriditlg function to differ from tbe return type or the
overridden function unless the return type of the overridden functioo is pointer or reference (possibly cv­
qualified) to a class B, and the renun type of the overriding functioa is pointer or reference (respectively) to
a class D sucb that B is an unambiguous direct or indirect base class of D, accessible in the class of the ova­
riding function, and the cv-qualificatioo in the return type oC the overriding funain is Jess than or equ.al to
the cv-qualifteatioo in the return type of the overridden function. In that case wben the overriding function
is called as tbe final overrider of the overridden function. its result is mnvetted. to the type returned by the
(sw.ically cbosen) overridden fuoctioo. See §5.2.2. For examp~e.

class B I);
class 0 : private B { friend class Derived;);
struct Base I

) ;

virtual void vfl();
virtual void vf2();
virtual void vf311;
virtual s• vf4();
void!();

struct No_good public Base (
o• vf4(1; II error: B (base class: of Dl inaccessible

) ;

A tw.a.oo w;lb lbc.....,., MmC 1><11 a~ p...,_., lilt(- tl)) • a Yirtual fUaclioa II- __.uy ,..., -.1 doel - onrridL 'The­
or lbc v 1 n w.l apecif- ill lbc clllcwaioe ol u oYerridiJia tuiOCtioa II lcpl bGI reduod&m (haa empcy oamatlc:a~ A<xaa c:o~ (J II) Ia - c:o•
~ill <lcuirmlaiot o•wridill ..

105

SectioalO.l Vlr1aal FuDCUoea 1~7

s~ruct Derived : public Base (
void v!l!l; II virtual and overridea Baae::vfl()
void vf2!intl; 11 not virtual, hide£ Bace::vf2()
char vf3(l; II error: invalid difference in return type only
D• vf4(); II okay: returns pointer to derived claca
void t (l;

) ;

void g ()

Derived d;
Base• bp = {.d;

bp->vfl ();
bp->vf2 ();
bp->f ();
8* p = bp->vf4();

Derived• dp = &d;

II
II
II
II
II
II
II

D* q = dp->vf41l: 11
II

dp->vf2(); II

standard conversion:
Derived• to Bali:e•
call!i: Derived::vfl()
calls Baae: :vf2()
calls Base::tll (not virtual)
calls De r 1 ved: : p f () and converts
result to 8*

calls Derived: :pf(l and does not
convert the result to s•

ill formed: argument mismatch

the

4 That is. the interpretation of the call of a virtual functioo depends oo the type of the object for which it ~

is called (the dynamic type), whereas the interpn:wioo of a call of a oonvirtual member function depends I
only on the type of the pointer or reference denoting that object (the swic type). See §S.2.2. I

5 The vi rt ua 1 specifier implies membership, so a virtual function cannot be a global (ooomc:mber) I
(§7.1.2) function. Nor can a vinual function be a static member, since a vinua.l function call relies oo a I
specific object for determining which function to invoke. A virtual function can be declared a friend in
another class. A virtual functioo declared in a class must be defined or declared pure(§ 10.3) in that class.

6 FoUowing are some examples of vinual functions used with multiple base classes:

s~ruct A (
virtual void f () ;"

) ;

struct 81 : A
void f();

II note non-virtual derivation

l;

struct 82 : A
void f (l;

) ;

struct D
l;

81, 82 (II D has two separate A sub-objectli:

void too (l
(

D d;
II A* ap = {.d; // would be ill formed: ambiguouli:
81* blp = •d;
A* ap = blp;
ap->f(); II calls D::Bl::f
dp->f(l; II ill formed: ambiguous

In class D above there are two occurrences of class A and bence two oc:currences of the virtual member
funcuon A : : t:. The fmal ovcrridcr of B 1 : : A : : f is B 1 : : f and the final overrider of 82 : :A: : f is
82: :f.

106

DRAFT J~~De 1, 1993

7 1bc foUowma example a.bows a fuoctioo thal does DO(have a unique fmal ovarider.

struct A {
virtual void!():

) ;

struct VBl : virtual A {
void t () ;

) ;

struct VB2 : virtual A {
void t () ; '

) ;

II note virtual derivation

5truct Error VBl, VB2 (// ill-formed
) ;

struct Okay : VBl, V82 (
void f () ;

) ;

Chapter 10

Both VBl: : f and VB2: : f override A: : f but there is no overrider of both of them in class Error. This
error requires a diagnosis. Class Okay is well formed. however. because Okay: : f is a final ovenider.

8 lbe following e:umple uses the well-formed classes from above.

struct VBla : virtual A (// does not declare f
) ;

struct Da VBla, VB2 (
) ;

void foe(l
I

VBla• vblap ~ new Oa;
vblap->f(l; //calls V82:f

g Explicit qualification with the scope operator (§5.1) suppresses the virtual c:aU mechanism. For exam- I
pie.

class 8 I public: virtual void f(l;);
class D: public 8 I public: void f(l;);

void D::f(l I ;• ... •1 8::f(J;)

Here, the function call in o: : f. really does call B : : f and DOl o: : f.

10..3 Abstract Classa

The abstract clas.s mechanism supports the notion of a general coocept. such as a shape, of which ooly
more cooaete variaou, such as c i rc 1 e and square, can actually be used. An abstract clas.s cau also be
used 10 deflne an int.etfAce for which derived classes provide a variety of implemc:nwioos.

2 An ab.rrracr class is a class that can be used ooly as a base class of some omcr class; oo objects of an
abstract clas.s may be created except as sub-objeas of a class derived from it. A class is abstract lf i1 has &l

least ooe purt virtual function (wbicb may be inherited: see below). A vit1ua1 fuoctioo is specified purt by
uslllg a pure-:rptcifiu (§92) in the function doclaraLioo m the class deda:ratioo.. A pure virtua.l function
need be defmc:d only if explicitly called witb the qualified-id syntax (§5.1). For example.

107

3

Sec:doa 1 O.J DRAFT JU.DC 1,1993

class point I 1• ... • I) ;
claaa shape 1 11 abstract class

point center;
I I ...

public:

) ;

point where() (return center;
void move(point p) I center•p;
virtual void rotate{intl • 0;
virtual void draw() • 0;
I I ...

draw();
I I pure virtual
I I pure virtual

An abstract class may DOt be used as an parameter type. as a functioo returo rype. or as tbe type of an expli­
cit coovenioo. Pointcn aod references to an absU"aet class may be decllnld. For ex.ample,

shape x;
shape• p;
shape f I l;
void ~:~<shape);
shape- h(shape-);

II error: object of abstract class
II ole
II error
II error
II ole

Pure virtual flDlCtions are inherited as pure virtual functions. For example,

class ab_circle : public shape I
int radius;

public:
void rotatelintl II
II ab_circle::draw() is a pure virtual

I;

Since shape: :draw(l is a pure virtual function ab_circle: :draw() is a pure vinual by default
The alternative declaration,

class circle : public shape I
int radius;

public:
void rotatelintl II
void draw(); II must be defined somewhere

I;

would make class circle nonabsa-aa and a defmition of circle: :draw() must be provided.
4 An abstract class may be derived from a class that is DOt abstract, and a pure vinual function may over-

ride a virtual function which is not pure.
5 Member functions can be called from a consttuctor of an abstract class; 1be etrea of calling a pm: vir-

tual function directJy or indirectly for che object being created from such a coostructor is undefmed..

10..4 SummaryofScope Rules

lbe scope rules for C-++ programs can now be summarized. 1bese rules apply uniformly for all names
(including typtdtf-NJmts (§7.1.3) and class-namts (§9.1)) wherever the pammar allows sucb names in che
cootext discus.sed by a particular rule. This soctioo discusses lexicalsa)Jie ooly; see §33 Cor an explanatioo
of linkage issues. lbe ootioo of point of dedar.llioo is discussed in (§3.2).

2 Any use of a name must be unambiguous (up to overloading) in its scope (§10.1.1). Only if tbe name is
found to be unambiguous in its scope are access ruloes considered (§11). Only if oo aaxs.s control errors are
found is the type of the object. function. or enumerator named considered.

3 A name used outside any fuoctioo and class or prefixed by the unary scope openu.or : : (and 1101 quali-
fied by the binary : : openuor or the ->or . openuon) must be the name of a g~ object. functioo, or
enumerator.

A name specifaed after X::, after obj .• wbere obj is an X or a reference to X. or after ptr->, where
pt r is a pointer to X must be the name of a member of class X or be a member of a base class of X. In
addition. ptr in ptr-> may be an object of a class Y that bas operator-> (l declared so

108

1~18 IHriTed a.- DRAFT Juac 1, 19'93

ptr->operator-> () eventually resolves to a pointer to X (§13.4.6).
5 A name thJu is ooc qualified ln any of the ways described above and that is used in a function thaL &s DOC

a clas.s member must be declared before its use in the block in whicb it occurs or in an enclosin& block or
globally. The declaratioo of a loc.al name hides previous doclaratioos of the same name in enclosing blocks
and at ftle scope. In particular, oo overloading ocaJ.rS of names in different scopes(§ 13.4).

6 A name: thai is ooc qualified in any of the ways described above and thaL is used in a functioo tba1 is a
ooru.wic member of class X must be declared in the block in whicb it OCaJrS a in an eoclosin& bkx:k.. be a
member ol clas.s x or a base class or class X. or be a &k>bal name. The dc:clara1ioo or a kx:al name b.ide3
dc:clacatioos or the wne name in eodosiog blocks. members or the fuDctioo's class. and global names. The
dc:claraLioo or a member name hides dedaratioos or the s.ame name in base c1uses and global names.

7 A name that is ocx qualifaed in one ol the ways described a.boYe and is used in a static member fuDctioo
. or a class x must be decWcd in tbe block in which it occun. in an enclosing bloclc. be a static member or

class X. or a base class or clas& X. or be a &Jobal name.
s A funaioo parameter Dame in a functioo definllioo (§8.3) ism the scope or tbe outermost block d the

tunctioo (in pankulat, it is a kal name). A Cunctioo parameter name in a fuoc:tioo dc:claratioo (§8.2.5) that
is DO(a runctioo defmitioo is in a local scope that disappears immediately aCta the function dedaratioo. A
default parameter is in the scope determined by the point or declaration (§3.2) or its parameter, but may not
access kx:aJ variables or nonsw.ic class members; it is evaluated at each point of call (§8.2.6).

9 A ctor-iniliali.zer (§ 12.6.2) is evaluated in the scope of the outermost block of the consuuct.or it is speci-
fied for. In particular, it can refer to the constructor's parameter names.

109

2

2

11
Member.Access Control

This chapter explains mechanisms for coatrol of accaa 10 class members. Acoesa coatrol il based oa tbc use of
the keywords public, private, IDd protected to coaa-ol 8CCGI 10 individual members of a clua aod oa
the use of private, protected, aod public specif.en 10 cootrol accaa10 bue clan membcn iDa derived
class object. Tbe t r i end "'C'Chaaism provides a way of p-aotin& i.Dd.ividual fuDc:tiooa aod clauea 8CClCU 10

members of a class.
Access cootrol applies uniformly 10 hmctioa ~ben. data members, member constaots, aod oesled types.

11 Member Access Control

A member of a class can be

private; that is. its a.ame can be used only by member functions and friends of lbe class in
which it is dedared.

protected; that is. its name can be used ooly by member functioos and friends of lbe class in
which it is declared and by member fuoctioos and friends of cmses derived from lhis class (see
§ 11.5).

public; that is. its name can be used by any function.

Memben of a class declared with the keyword class are private by default Members of a
class declared with the keywords struct or union are public by default Fcc example.

class X
int a; // X::a i& private by default

I;

struct S {
int a; // S::a is public by default

I;

11.1 Actt5S Specifaen

Member declarations may be Labeled by an acu:s:s-spuifur (§ 10):

An acct:s:s-spuifitr specif1c::s the aa::ess rules for members following it until the end of the d.ass or lDltil
another acu:s:s-:sptcifUr is encountered. F<Y example..

110

11--l M a11 bcr Acca. Cootrol DRAFT JuDe 1,1993 Chapla' 11

clar;;a X
int a; II X: :a is private by default: 'clasr;;' used

public:
int b; II X: :b is public
int c; II X: :c ill public

} ;

Any number of acces.s spocifLen is allowed and no particular crder is required. For example.

struct s (

int a; II S: :a h public by default: • struct • used
protected:

int b; II S: :b is protected
private:

int c; II S: :c is P-'ivate
public:

int d; II S: :d is public
} ;

2 The order of allocatioo of data members with separate acctss-sptcijier labels is implementalioo depen-
dent (§9.2).

ll.l Accas Speclfien ror Base Classes

If a clau is declared to be a base class (§ 10) for another class using lhe public access specifier, tbe pub-
1 ic members of the base class are accessible as public members of the derived class and protected
members of the base class are accessible as protected members of tbe derived class (but see §13.1). If a
class is declared to be a base class for anolher class using the protected access specifier. tbe public
and protected members or the base class are accessible as protected members or lhe derived class.
If a class is declared to be a base class for another class usin& lhe private access specifier, tbe public
and protected members of the base class are accessible as private members of cbe derived class.
Private members or a base class remain inaccessible even 10 derived classes unless friend dedanWoos
wilhin lhe base class declaration are used to grant access explicitly.

2 In the absence oC au acctss·sptcifitr lor a base clau, public is assumed wben lhe derived class is
declared struct and private is assumed wben tbe class is declared class. For example,

class B (1• ... *I);
class 01 private B (I* ... *I I;
class 02 :public B (I* ... *I I;
class 03 : B (I* ... • I I; I I 'B' private by default
struct 04 public B (I* ... •1 I;
struct DS :private B (I* ... •1 I;
r;;truct 06: B (I* ... *I I; II ··a· public by default
class 07 :protected B (I* .· .. *I I;
struct DB : protected B (I* ... *I I;

Here B is a public base of 02. 04, and 06, a private base of 01. 03, and OS, and a protected base of 07
and 08.

3 Because or the rules oo pointer coovenion (§4.6). a stati.c member of a privale base class may be inac·
cessible as an inherited name. but accessible directly. For example.

111

Sect IJOe 11 .l

clas;s; B
public:

int mi;
static int si;

I;
cla&s D : private B
I;
cla&& DO : public D

void f ();
I;

void DO:: f (I
mi = 3;
s;i "' 3;
B b;

DRAFT jlliM 1. 1993 A~ SpecUMn for BaM a- 11-J

11 nonstatic member
II s;t.atic member

II error: mi is private in D
II error: si is private in D

b.mi = 3; II olcay (b.mi is di tferent. from t.his->mi)
b.si = 3; II olcay (b.si is the same as t.his->s;i)
a : : s i = 3 ; II okay
a• bpl = this; II error: B is a private base class
a• bp2 = (a•)t.his; II okay with cast.
bp2->mi = 3; II olcay and bp2->mi is the same as t.his->mi

4 Members and friends oC .a class X can implicitly convert an X • to a poiot.er to a private or prot.eeted
immediate base class oC X.

11.3 Access Declarations

The access of public or protected member of a prival.e or protected base class can be restored to tbe same
level in the derived class by mentiooing its qualified-id in the public (for public members or tbe base
class) or protected (for prol.eCted members of the base class) part of a derived class declaration. Such
mention is called an acetss declaration.

2 For example.

class A
public:

I;

int z;
int zl;

class B : public A {
int a;

public:
int b, c;
int bf 1 l;

protected:
int x;
int y;

I;

112

11~ Member A"- Coetrol

class 0 : private 8 I
int d;

public:

DRAFT Ju.ae 1, 1993

8: :c; II adjust access to '8: :c'
8::11 II adjust access to 'A: :z'
A::zl; II adjust access to 'A: :zl'
int e;

int df 1 l;
protected:

B::x; II adju~t access to 'B: :x•
int g;

) ;

clas~ X : public D (
int xf () ;

I:

int ef ID-'l;
int ff IX*l;

The external functioo ef can use ooly the names c, z, z1, e, and df. Being a member of D. lhe function
df can use lhe names b, c, z. z1, bf, x, y, d. e, df, and o. but not a. Being a membc:t of B, lhe functioo
bf can use lhe memben a, b, c, z, z1, bf, x. andy. The functioo xf can use lhe public and proc.ected
~es fran D, that is, c, z. z 1, e, and df (public), and x. and o (procected). Thus tbe external function
t f has access only to c, z, z 1, e, and df. U D were a protected or private base class of X. xf would have
the same privileges as befoce, but f f would have no access at all

3 An access declaration may not be used to restrict access co a member tba1 is accessible in lhe base class,
nor may it be used co enable access to a membc:t thai i$ not accessible in lhe base class. Fer example.

class A
public:

int z;
} ;

class B : private A (
public:

int a;
int x;

private:
int b;

protected:
int c;

} ;

class D : private B (
public:

B: :a;
B: :b;

A:: z;
protected:

I ;

B: :c;
B: :x;

II make •a• a public member of D
II error: attempt to orant acce~s
II can't make 'b' a public member of 0
II error: attempt to orant acces~

II make •c• a protected member of D
II error: attempt to reduce access
II can't make •x• a protected member of D

class E : protected B {
public:

B::a; II make •a• a public member of E
) ;

113

SedJo. 11.3 DRAFT Ja~te 1. 1993

1be names c and x are procea.od members of E by virtue of its prou:ct.ed derivatioo from B. An acces.s
declaration for the name of an overloaded fuoctioo adjusts the access 10 all fuoctioos of dw name iD the
base class. For example.

cla&:&: X {
public:

t ();
t (inti;

} ;

class Y : private X
public:

X::f; II makes X: :f(l and X::f(intl public in Y
) ;

1be access 10 a base class member C3DDO(be adjusted io a derived class dw also defmes a· member of
that name. For example.

class X {
public:

void f () ;
) ;

class Y : private X
public:

void f (inti;
X::f; //error: two declarations off

) ;

11.4 Fr~nds

A friend of a class is a function that is not a member of lbe class but is permitted 10 use the privale and pro­
tected member names from the class. 1be name of a friend is not in lbe scope of the ciass. and the friend is
not called with the member access operaaors (§5.2.4) unless it is a member of another class. lbe following
example illusuates the differences between members and friends:

class X (
int a;
friend void friend_set(X•. int);

public:
void member_set(intl;

) ;

void friend_set (X• p. int i l (p->a = i;
void X: :member_set(int il (a = i; l

void f ()

X obj;
friend_set(~obj.lOl;

obj.member_set(lOl;

2 When a friend doclaratioo refers 10 an overloaded name or operator. oo.ly the functioo specified by
the parameter types becomes a friend. A member function of a class X OlD be a friend of a class Y. For
example..

class Y 1

} ;

friend char• X:: foo<intl;
II ...

All the flUlctioos of a class X can be made friends oC a classY by a single doclaratioo using an tlaboraud-

114

type-specijU,Jtl (§9.1):

ClAIIII Y {

I;

friend clau: X;
II ...

DR.AFI' Ju .. 1, 1993 CUptcr 11

Declaring a class to be a friend also implies thai pri vatc and protocted names from lhe class granting frirod­
shi p can be used in the class receiving it For example,

clas~; X 1

I;

enum (aalOO I;
friend cla~;~; Y;

cla~;~; Y
int v[X: :a); II ok, Y is a frie~d of X

I;

clalilS Z
int v[X::a); II error: X: :a is private

) ;

3 If a class or function mentioned as a friend has not been declared. its name is entered in the smallest
non-class scope that encloses the friend declaration.

4 A function farst declared in a friend declanuioo is equivalent to ao extern declaration (§3.3, §7.1.1).
5 A global (but not a member) friend function may be defmed in a class defmition other than a local

class defmitioo (§9.8). The function is then inl ine and the rewriting rule specified for member functions
(§9.3.2) is applied. A friend function defmed in a class is in the Oexical) scope of the class in wbich it is
defined. A friend function defined outside the clas.s is ·DOJ.

6 Friend declarations are not affected by acctss-specijius (§9.2).
7 Friendship is oeilher inherited nor uansitive. For example,

class A (
friend class B:
int a;

I ;

class B · 1
friend class C;

) ;

class c 1
void f !A* p)
(

p->A++; II error: C is not a friend of A
II despite beino a friend of a friend

) ;

class 0 : public B
void f<A• p)
(

p->a++; II error: 0 is not a friend of A
II despite beinQ derived from a friend

) ;

115

Protecud Member A~ 11-7

11.5 Protected Mem~r Ac:cesa

A friend or a manber fuoctioo oC a derived class can acx:css a proc.oaed static member of a base class. A
friend <r a member fuoctioa ola derived class can access a procccted ooostatic member of ooe oC ita base
classes oo.ly lbrou&h a pointer to, refereDce to, <r object ol tbe derived c1asl itself (<r any class derived from
that class). Wben a procea.ed member ol a base class llppCU'S iD a qualified-ill in a friend or a member
functioo of a derived da.u the rusted-cl4ss-specifier must oamc tbc derived class. For eumple,

class B (
protected:

int i;
) ;

class 01 public B {
) ;

class 02 : public B (
friend void fr(B*.01*.02*);
void mem(B*.Ol*);

) ;

void fr!B* pb. 01• pl. 02* p2)

I I illegal
II illegal

pb->i 1;
p1->i 2;
p2->i = 3;
int B· · •
int 02:: •

through a 02 l
II illegal
II ok

II ok (acce$S
pmi_B = •B: :i;
pmi_02 = •02: :i;

void 02::mem(B• pb. 01* pl)
(

II illegal
I I illegal

pb->i = 1;
pl->i = 2;
i = 3; II ok (access through •this•)

void g (B* pb. Dl* pl. 02* p2)

pb->i 1; II illegal
pl->i 2; II illegal
p2->i 3; II illegal

11.6 Acass to Virtual Functiom

The access rules (§ 11) for a vittua.l function are determined by its declaratioa and are D<X affeaed by the
rules for a function that laler overrides iL For example,

class B (
public:

virtual f();

) ;

class D : public B (
private:

f () ;
) ;

116

II_. MembcrA"'-c-trol

void t (I
(

0 d;

s• pb - 4d;
o• pd • "d;

DRAFT JuD« I, 1993

pb->f(); II ok: B::f() ia public,
II 0::!() is invoked

pd->f(); II error: O::f() i~ private

Chapter 11

Access is cbecked at the call point using the type ol the expression used to dcooce the object for which the
member functioo is caUed (B• in lbe example above). 1be access of the member functioo i.o the class in
which it was defmed (D i.o lbe example above) is in general DOt known.

11.7 Multiple Access

If a name can be reached by several paths through a multiple inheritance graph. the accc:ss is that of the path
that gives most access. For example,

class w public: void f (); 1;
class A private virtual W (I;
class 8 public virtual W (I;
class C public A, public B (

void f I I I W: : f! I ; I II olt
} ;

Since w: : f < I is available to c: : f () along the public path through B. access is allowed.

117

APPPENDIXB

CONTENS OF FLOPPY

The floppy attached to this thesis consists of the

following files as shown in next page. It contains a total of

219 *.cpp files, sr*.kr files and tn*.bat files each. For

each· *. cpp file there is an associated sr*.kr file and

tn*.bat file.

These are all used during batch processing. All these

files are in sub-directory named KRS. For using. this

verification suite all the files must loaded in toto in a

separate sub-directory in the hard disk for simplicity.

Then this suite can be used for testing all DOS based

C++ compilers by using command auco < [input]> where . [input]

is the command-line-compilation-command of the compiler under

test for more detail refer to section 2.5 of this thesis.

However for using . the test programs to test a C++
DoS

compiler which is notAbased, appropriate driver programs will

have to be written after copying only all the *.cpp files.

119

Volume in drive A has no label
Directory of A: \KRS

[• 1 [•• 1 ARUN.BAT ARUNl ARUN3
ARUN4 ARUNK AUCO.BAT AUCOlO.BAT AUCOll.BAT
AUC09.BAT · CLEAR. BAT N090001A.CPP N090001B.CPP N090101A.CPP
N090101B.CPP N090101C.CPP N090102A.CPP N090102B.CPP N090103A.CPP
N090103B.CPP N090201B.CPP N090201C.CPP N090201D.CPP N090201E.CPP
N090201F.CPP N090203A.CPP N090203B.CPP N090203C.CPP N090205A.CPP
N090221A.CPP N090221B.CPP N090221C.CPP N090221D.CPP N09030l.CPP
N090402A.CPP N090402B.CPP N090402C.CPP N090403.CE'P N090501A.CPP
N090501B.CPP N090501C.CPP N090501E.CPP N090502.CPP N090503A.CPP
N090503B.CPP N090503C.CPP N090503D.CPP N090504A.CPP N090504B.CPP
N090701A.CPP N090701B.CPP N090701C.CPP N090701D.CPP N090802A.CPP
N090802B.CPP N090901A.CPP N090901B.CPP N093101A.CPP N093102.CPP
N093103A.CPP N093202A.CPP N093202B.CPP Nl00103.CPP N100104A.CPP
Nl00104B.CPP NlOOlllA.CPP NlOOlllB.CPP NlOOlllC.CPP NlOOlllD.CPP
NlOOlllE.CPP NlOOlllF.CPP NlOOlllG.CPP NlOOlllH.CPP NlOOllli .CPP
NlOOlllJ.CPP Nl00202B.CPP Nl00203A.CPP N100203B.CPP Nl00205A.CPP
N100302A.CPP N100302B.CPP N100302C.CPP N100303.CPP Nl00304A.CPP
N100304B.CPP NllOOOlA.CPP Nl10001B.CPP NllOOOlC.CPP NllOOOlD.CPP
Nl10002.CPP Nl10002B.CPP N110101A.CPP Nl10101B.CPP Nll0101C.CPP
N110101D.CPP N110201A.CPP Nl10201B.CPP Nl10201C.CPP Nl10201D.CPP
Nl10201E.CPP Nl10202A.CPP Nl10203. CPP N110301A.CPP Nll0301B.CPP
N110303A.CPP Nl10303B.CPP N110303C.CPP Nl10303D.CPP Nll0304A.CPP
Nl10402A. CPP Nl10402B.CPP Nl10'i02C.CPP N11040S.CPP Nll0407A. CPP
Nl10407B.CPP NllOSOlA.CPP NllOSOlB.CPP NllOSOlC.CPP Nll0501D.CPP
Nll0501E.CPP . Nl10501F. CPP NllOSOlG.CPP Nl10501H.CPP Nl10601.CPP
N921102A.CPP N921102B.CPP N921102C.CPP N921102D.CPP N921102E.CPP
N921102F.CPP P090002.CPP -P090003.CPP P090004A.CPP P090005A.CPP
P090005C.CPP P090102A.CPP P090102B.CPP P090103A.CPP P090103B.CPP
P090201A.CPP P090202A.CPP P090205.CPP P090207A.CPP P090209A.CPP
P090210A.CPP P090212A.CPP P090213A.CPP P09030l.CPP P090302.CPP
P090303.CPP P09040 1. CPP P090402.CPP P090404.CPP P090405.CPP
P090501A.CPP P090501B.CPP P090502.CPP P090503.CPP P090504.CPP
P090701A.CPP P090701B.CPP P090701C.CPP P090701D.CPP P09080l.CP
P090801A.CPP P090801B.CPP P090801C.CPP P090801D.CPP P090801E.CPP
P090802.CPP P090901A.CPP P093101A.CPP P093102.CPP P093103A.CPP
P093103B.CPP P093201.CPP PlOOlOl.CPP Pl00103.CPP Pl00104.CPP
PlOOlOS.CPP PlOOlllA.CPP PlOOlllB.CPP PlOOlllC.CPP P100111F. CPP
P100202A.CPP P100202B.CPP P100202C.CPP P100203A.CPP P100203B.CPP
Pl00203C.CPP Pl00203D.CPP Pl00203E.CPP Pl00204.CPP P100209.CPP
Pl00302A.CPP P100302B.CPP Pl00302C.CPP P100302D.CPP P100304A.CPP
PllOOOlA.CPP PllOOOlB.CPP Pl10001C.CPP PllOOOlD.CPP PllOOOlE.CPP
Pll0002A.CPP Pll0002B.CPP Pl10101A.CPP Pll0101B.CPP Pll0201A. CPP
Pl10201B.CPP P110201C.CPP Pll0201D.CPP Pl10202A.CPP Pll0203 .CPP
P110204A.CPP Pl10301A. CPP P110301B. CPP Pl10303A. CPP Pl10401A.CPP
P110402A.CPP Pll0402B.CPP Pl10406A. CPP Pl10501A. CPP Pll0501B.CPP
Pl10601.CPP Pll070l.CPP P921101A.CPP P921101C.CPP P921101D.CPP
P921104.CPP P921105.CPP SROOOlO.KR SR00020.KR SR00030.KR

120

SR00040.KR SROOOSO.KR SROOb60.KR SROOOSO.KR SR00090.KR
SROOlOO.KR SR00110.KR SR00120.KR SR00130.KR SR00140.KR
SROOlSO.KR SR00160.KR SR00170.KR SR00180.KR SR00190.KR
SR00200.KR SR00210.KR SR00220.KR SR00230.KR SR00240.KR
SR00260.KR SR00270.KR SR00280.KR SR00290.KR SR00300.KR
SR00310.KR SR00320.KR SR00330.KR SR00340.KR SR00345.KR
SR00360.KR SR00363.KR SR00400.KR SR00410.KR SR00420.KR
SR0042l.KR SR00430.KR SR00432.KR SR00433.KR SR00440.KR
SR00450.KR SR00460.KR SR0046l.KR SR00462.KR SR00463.KR
SR00470.KR SR00480.KR SR00490.KR SR00493.KR SR00496.KR
SR00499.KR SR00506.KR SROOS09.KR SR00512.KR SR0051S.KR
SR00518.KR SR0052l.KR SR00524.KR SR00527.KR SR00528.KR
SR00529.KR SR00530.KR SR00540.KR SROOSSO.KR SR00560.KR
SR00570.KR SR00580.KR SR00590.KR SR00600.KR SR00610.KR
SR00620.KR SR00630.KR SR00640.KR SR006SO.KR SR00660.KR
SR00670.KR SR00680.KR SR00690.KR SR00700.KR SR00710.KR
SR00720.KR SR00730.KR SR00740.KR SR0074l.KR SR007SO.KR
SR00760.KR SR00770.KR SR00780.KR SR0078l.KR SR00790.KR
SROOSOO.KR SR00810.KR SR00820.KR SR00830.KR SR00840.KR
SROOSSO.KR SR00860.KR SR00870.KR SR00880.KR SR00890.KR
SR00900.KR SR00910.KR SR009ll.KR SR00920.KR SR01010.KR
SR01020.KR SR01030.KR SR01040.KR SR01043.KR SROlOSO.KR
SR01060.KR SR0106S.KR SR01070.KR SR0107S.KR SR01080.KR
SR01090.KR SROllOO.KR SROlllO.KR SROlllS.KR SR01120.KR
SR01130.KR SR01140.KR SROllSO.KR SR01160.KR . SR01190.KR
SR01210.KR SR01220.KR SR01230.KR SR01240.KR SR012SO.KR
SR01260.KR SR01270.KR SR01280.KR SR0128l.KR SR01282.KR
SR01283.KR SR01290.KR SR01300.KR SR01310.KR SR01320.KR
SR01330.KR SR01340.KR SR013SO.KR SR01360.KR SR01370.KR
SR01380.KR SR01390.KR SR01400.KR SR0140S.KR SR01410.KR
SR01420.KR SR01430.KR SR01440.KR SR01450.KR SR01460.KR
SR01470.KR SR01480.KR SR01490.KR SROlSOO.KR SR01510.KR
SROlSlS.KR SR01520.KR SR01530.KR SR01540.KR SROlSSO.KR
SROlSSS.KR SR01560.KR SR01570.KR SR01580.KR SR01590.KR
SR01600.KR SR01610.KR SR01620.KR SR01630.KR SR01640.KR
SR016SO.KR SR01660.KR SR01670.KR SR01680.KR SR01690.KR
SR01700.KR SR01710.KR SR01730.KR SR01760.KR SR01770.KR
SR01780.KR SR01790.KR SR01795.KR SR01800.KR SR01810.KR
SR01820.KR SR01830.KR SR01840.KR SR01850.KR SR01860.KR
SR01870.KR SR01880.KR SR01890.KR SR01900.KR SR01910.KR
SR01920.KR SR01950.KR SR01960.KR SR01970.KR SR01980.KR
SR01990.KR SR02000.KR SR0200l.KR SR02002.KR SR02003.KR
SR02004.KR SR02005.KR SR02006.KR SR02010.KR SR02020.KR
SR02030.KR TNOOOlO.BAT TN00020.BAT TN00030.BAT TN00040.BAT
TNOOOSO.BAT TN00060.BAT TN00080.BAT TN00090.BAT TNOOlOO.BAT
TNOOllO. BAT TN00120.BAT TN00130.BAT TN00140.BAT TNOOlSO.BAT
TN00160.BAT TN00170.BAT TN00180.BAT TN00190.BAT TN00200.BAT
TN00210.BAT . TN00220.BAT TN00230.BAT TN00240.BAT TN00250.BAT
TN00260.BAT TN00270.BAT TN00280.BAT TN00290.BAT TN00300.BAT
TN00310.BAT TN00320.BAT TN00330.BAT TN00335.BAT TN00350.BAT

121

m-£ft:o

TN00353.BAT TN00390.BAT TN00400.BAT TN00410.BAT TN0041l.BAT
TN00420.BAT TN00422.BAT TN00423.BAT TN00430.BAT TN00440.BAT
TN00450.BAT TN0045l.BAT TN00452.BAT TN00453.BAT TN00460.BAT
TN00470.BAT TN00480.BAT TN00490.BAT TNOOSOO.BAT TNOOSlO.BAT
TN00520.BAT TN00530.BAT TN00540.BAT TNOOSSO.BAT TN00560.BAT
TN00570.BAT TN00580.BAT TN00590.BAT TN0059l.BAT TN00592.BAT
TN00600.BAT TN00610.BAT TN00620.BAT TN00630.BAT . TN00640. BAT
TN00650.BAT TN00660.BAT TN00670.BAT TN00680.BAT TN00690.BAT
TN00700.BAT TN00710. BAT TN00720.BAT TN00730.BAT TN00740.BAT
TN007SO.BAT TN00760.BAT TN00770. BAT TN00780.BAT TN00790.BAT
TN00800.BAT TN00810.BAT TN00820.BAT TN00830.BAT TN00840.BAT
TN00850.BAT TN00860.BAT TN00870.BAT TN00880.BAT TN00890.BAT
TN00900.BAT TN00910.BAT TN00920.BAT TN00930.BAT TN00940.BAT
TN00950.BAT TN00960.BAT TN00970.BAT TN00980.BAT TN00990.BAT
TNOlOOO.BAT TN01010.BAT TN01020.BAT TN11030. BAT TN11040. BAT
TNllOSO.BAT TN11060. BAT TN11070. BAT TN1107 3. BAT TN11080. BAT
TN11085. BAT TN11090. BAT TN1109S.BAT TNlllOO.BAT TNllllO. BAT
TN11120. BAT TN11130. BAT TN11140.BAT TNlllSO. BAT TN11160.BAT
TN11185. BAT TN11190.BAT TN11200. BAT TN11210.BAT TN11215. BAT
TN11220.BAT TN11240.BAT TN112SO.BAT TN11260.BAT TN11270.BAT
TN11280.BAT TN11281. BAT TN11282.BAT TN11283. BAT TN11290.BAT
TN11300.BAT TN11310.BAT TN11320.BAT TN11330. BAT TN11340. BAT
TN11350.BAT TN11360. BAT TN11370.BAT TN11380. BAT TN11390. BAT
TN11400. BAT TN11410. BAT TN1141S.BAT TN11420.BAT TN21430.BAT
TN21440.BAT TN214SO.BAT TN21460.BAT TN21470.BAT TN21480.BAT
TN21490.BAT TN21500.BAT TN21510.BAT TN21520.BAT TN2152S.BAT
TN21530.BAT TN21540.BAT TN21~50.BAT TN21560.BAT TN2156S.BAT
TN21570.BAT TN21580.BAT TN21590.BAT TN21600.BAT TN2.1610. BAT
TN21620.BAT TN21630.BAT TN21640.BAT TN21650.BAT TN21660.BAT
TN21670.BAT · TN21680.BAT TN21690.BAT TN21700.BAT TN21710.BAT
TN21720.BAT TN21740.BAT TN21770.BAT TN21780.BAT TN21790.BAT
TN21800.BAT TN21805.BAT TN21810.BAT TN21820.BAT TN21823.BAT
TN21826.BAT TN21830.BAT TN21840.BAT TN218SO.BAT TN21860.BAT
TN21870.BAT TN21880.BAT TN21890.BAT TN21900.BAT TN21910.BAT
TN21940.BAT TN21950.BAT TN21960.BAT TN21970.B~T TN21980.BAT
TN21990.BAT TN21991.BAT TN21992.BAT TN21993.BAT TN21994.BAT
TN2199S.BAT TN21996.BAT TN22000.BAT TN22010.BAT TN22020.BAT

670 file(s) 214433 bytes
364544 bytes free

122

(Boo, 1991]

[Ell, 1990]

· (Jal, 1991]

[Kho, 1990]

(Koe, 1992)

(Len, 1989)

BIBLIOGRAPHY

Grady Booch: Object Oriented Design with

applications. Benjamin/ Cummings 1991. ISBN

0-8053-0091-0.

Marget A. Ellis and Bjarne stroustrup The

Annotated C++ reference manual. Addison­

Wesley. Reading, Massachusetts. 1990. ISBN 0-

2010-51459-1.

Pankaj Jalote An integrated approach to

Software Engineering. Narosa publishing

house. 1991. ISBN 81-85198-63-2.

Setrag Khoshafian and Razmik Abnous : Object

Orientation: Concepts, Languages, databases,

user interfaces. John Wiley 1990. ISBN 0-471-

51802-6.

Andrew koeing What's in a name?. Journal of

Object oriented programing. September 1992.

Dimtry Lenkov : C++ standardization proposal.

ANSI X3J11, Document No 016, 1989.

[Lip, 1991]

[Plu, 1993]

[Sak, 1992]

[Str, 1991]

[Str, 1993]

Stanley B. Lippman C++ primer. Add is on

Wesley 1991. ISBN 0-201-54848-8.

Thomas Plum: Paper on Layout Rules. ISO WG21,

Document No N0228, 1993.

Dan saks : Scope and Name lookup rules. C++

Report. July-August 1992.

Bjarne Stroustrup :The C++ programming

language. Addison Wesely 1991. ISBN 0-201-

53992-6.

Bjarne stroustrup: A History of C++ : 1979-

1991. ISO WG21, Document No N0248_, 1993.

	TH51600001
	TH51600002
	TH51600003
	TH51600004
	TH51600005
	TH51600006
	TH51600007
	TH51600008
	TH51600009
	TH51600010
	TH51600011
	TH51600012
	TH51600013
	TH51600014
	TH51600015
	TH51600016
	TH51600017
	TH51600018
	TH51600019
	TH51600020
	TH51600021
	TH51600022
	TH51600023
	TH51600024
	TH51600025
	TH51600026
	TH51600027
	TH51600028
	TH51600029
	TH51600030
	TH51600031
	TH51600032
	TH51600033
	TH51600034
	TH51600035
	TH51600036
	TH51600037
	TH51600038
	TH51600039
	TH51600040
	TH51600041
	TH51600042
	TH51600043
	TH51600044
	TH51600045
	TH51600046
	TH51600047
	TH51600048
	TH51600049
	TH51600050
	TH51600051
	TH51600052
	TH51600053
	TH51600054
	TH51600055
	TH51600056
	TH51600057
	TH51600058
	TH51600059
	TH51600060
	TH51600061
	TH51600062
	TH51600063
	TH51600064
	TH51600065
	TH51600066
	TH51600067
	TH51600068
	TH51600069
	TH51600070
	TH51600071
	TH51600072
	TH51600073
	TH51600074
	TH51600075
	TH51600076
	TH51600077
	TH51600078
	TH51600079
	TH51600080
	TH51600081
	TH51600082
	TH51600083
	TH51600084
	TH51600085
	TH51600086
	TH51600087
	TH51600088
	TH51600089
	TH51600090
	TH51600091
	TH51600092
	TH51600093
	TH51600094
	TH51600095
	TH51600096
	TH51600097
	TH51600098
	TH51600099
	TH51600100
	TH51600101
	TH51600102
	TH51600103
	TH51600104
	TH51600105
	TH51600106
	TH51600107
	TH51600108
	TH51600109
	TH51600110
	TH51600111
	TH51600112
	TH51600113
	TH51600114
	TH51600115
	TH51600116
	TH51600117
	TH51600118
	TH51600119
	TH51600120
	TH51600121
	TH51600122
	TH51600123
	TH51600124
	TH51600125
	TH51600126
	TH51600127
	TH51600128
	TH51600129
	TH51600130
	TH51600131

