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CHAPTER ONE 



INTRODUCTION 

"Nothing endures but change." 
Hiraclitus 

1 e 1 Aim Of The Project 

11Now!Now! 11 cried the Queen, 11Faster!Faster!" 
Lewis Carrol 

Load Balancing has remained a central issue since the 

advent of multiprocessing. The need for optimum utilisation 

of multiprocessors assumes far greater importance as the 

bottleneck for the conventional supercomputer speeds are 

reached and parallel machines are being offered by increasing 

number of vendors. It is only recently that the parallel 

computers are being procured not as an add on to a computing 

centre but for serious computations like a supercomputer. As 

this happens, the load balancing implementations to exploit 

the raw, scalable power of parallel machines assumes busi-

nesslike importance. The problem of load baLancing is NP-

complete. Thus the various approaches proposed, rightly seek 

to obtain satisfactory sub-optimal solution in a 'reasonable' 

time. 

A number of different techniques have been adopted to 

solve the problem of load balancing. The techniques I have 

chosen for my dissertation is based on a method known as 

simulated Annealing. My main aim is to do the satisfactory, 

acceptable partitioning for the classes of problems having 
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contiguous as well as irregular communication needed for a 

distributed memory multiprocessors. 

1.2 Why Parallelism 

"The most general definition of 
beauty ••• Multiety in unity." 

Samuel Taylor Coleridge 

There are many applications which are computationally 

intractable for "sequential" SISD machines as defined by 

FLYNN's taxonomy (10). The speed of electric current flow 

along a conductor is one of the natures physical phenomena 

which ensures that such machines can never deliver the 

performance demanded by the seemingly insatiable user. In 

many areas such as engineering, science, energy resource, 

medicine, military and artificial intelligence, fast and 

efficient computers are in high demand. Largescale 

computations are often performed in these application areas 

requiring computers that can deliver a speed of billions and 

sometimes trillions of megaflops {MFLOPS). We, therefore, 

turn to parallelism as the means to satisfy this demand. The 

concept of parallelism is much older than most people realize 

[10) but with recent trends in VLSI fabrication technology 

giving rise to single package processors of impressive power 

and low cost, parallel machines which utilise large number of 

such devices are becoming common sparking much research into 

parallel computation. With rapid progress being made in the 

field of VLSI fabrication, it is clear that parallel hardware 
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can offer a dramatic reduction in cost per megaflops. The 

next few years, therefore, is expected to see parallel 

hardware becoming available on a more everyday basis. 

According to sidney Fernbach"Todays large computers 

(mainframes) would have been considered 'supercomputers' 10 

to 20 years ago. By the same token, today's supercomputer 

will be considered 'state-of-the-art' standard equipment 10 

to 2 0 years from now" [ 11] • 

The potential benefits of a parallel approach to 

problems are not only the reduction in cost per megaflop~, 

but also the fact that only with massively parallel systems 

will we be able to achieve a total computational throughput 

far in excess of that achievable using conventional vector 

supercomputers. Consider for example, one of the well known 

supercomputer problems in Computational Fluid Dynamics (CFD). 

In aircraft design, computer programs are required to 

calculate the airflow round an aircraft for a wide range of 

flow and fluid parameters. At present, rather than attempt a 

full solution of the complete Navier-Stokes equations, 

industry uses simplified flow codes incorporating significant 

simplifying approximations to these equations. These 

simplified codes, for example for steady-state flight, 

require many hours of supercomputer time for each parameter 

setting. Full solutions to the Navier-stokes equations for a 

wide range of Reynolds numbers, and for all possible flight 

conditions are out of reach of present and forseeable vector 

supercomputers. Second generation supercomputers are now 
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---

achieving performances in the range 1 to 10 Gigaflops 

(thousands of· megaflops) and must already employ . several 

vector units working in parallel to achieve peak performance. 

Performance in the Terraflops range (thousands of Gigaflops) 

such as will be required to solve full CFD problems in the 

complex 3-dimensional geometries can only be achieved using 

massively parallel-machines. 

Besides such examples of massive parallelism, the /next 

few years will also see parallel h~rdware becoming available 

on a more everyday basis. Powerful engineering workstations 

capable of present day supercomputer performance will exploit 

concurrency not only for raw compute performance but also to 

provide real-time 3-D graphic displays. The ability both to 

compute and to visualize solutions to complex systems of 

equation will soon become an indispensable tool of all 

scientists and engineers [11]. 

1.3 The Problem With Parallelism 

"If seven maids with seven mops 
swept it for half a year, 

Do you suppose,"the Walrus said, 
"That they could get it clear?" 

Lewis Carrol 

The efficiency with which we can exploit the potential 

parallelism in a given application relates intimately to the 

hardware, algorithm and programming language used. 

Unfortunately the greater the potential gains from 

parallelism, the more difficult it becomes to realise these 
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gains. For e~ample, the larger the number of independent 

processirig elements at our disposal the greater the 

communication overhead penalty incurred by the necessity to 

pass data between these. 

An optimum hardware for a particular application 

map readily to the problem in hand. That is to say, 

number of processors running concurrently ought to equal 

would 

the 

the 

number of independent operations which could be concurrently 

performed. As a consequence of this some machines map readily 

to certain applications. However a static implementation can 

only be efficient for a small class of problems and some 

applications have no obviously suited machine counterpart. 

A massively parallel machine is of little use if the 

algorithm selected is badly devised. If a load is imbalanced 

such that most processors must continually wait for a single, 

slow process to execute or should the algorithm not use the 

lowest possible computational order. As yet compilers are not 

available which can intelligently partition the system on 

users' behalf. Nonetheless, there are some 

keep the parallelism largely transparent to 

parallelism lost by the sequential nature 

language is recaptured by clever compilers 

this is not always the case and with user 

parallelism comes the responsibility of 

hardware topology and software to make 

machines which 

the 

of 

[10]. 

user and 

the user 

However, 

visibility of 

optimising both 

good use of 

parallelism possibilities within the application. 
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Parallel programs are much more difficult to debug than 

sequential programs - after a bug is supposedly fixed, it may 

be impossible to reconstruct the sequence of events that 

exposed the bug in the first place, so it would be 

inappropriate to certify, in some sense, that the bug has 

actually been corrected [7]. 

Another important point is that parallel programs are 

much more difficult to prove correct than sequential 

programs, and it is widely believed that proving program 

correctness must eventually displace exhaustive program 

testing if real strides are to be made in developing highly 

reliable, largescale software systems [7]. 

Although multiprocessor machines are becoming widely 

available, and offer potentially impressive cost to 

performance ratio they are as yet user unfri~ndly 

environments. In order to provide good user support at an 

operating system level, system software should allow 

efficient machine utilisation without the need for the user 

to tailor his program to suit the machine architecture. 

Finally, the language itself is important. Older 

languages are inherently unsuitable for expressing parallel­

ism having been designed from the outset with sequential 

machine environments in mind. 
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1.4 Relevance Of The Project 

In this project an attempt has been made at 

achieving the following objectives. 

1) The module should have low processing overhead 

2) There should be low message overhead 

3) The processors should be kept busy to the maximum 

possible extent. 

4) The computational load on the processors should be 

as even as possible. 

1.5 Organisation Of This Report· 

Chapter 2 deals with the classification of parallel 

machines. 

Chapter 3 discuses the different kinds of problems 

encountered in finding parallel solutions to problems. 

Chapter 4 gives a brief introduction to load balancing 

and explains mainly the simulated annealing algorithm. 

Chapter 5 is devoted to implementation. This chapter 

contains the various numerical results that were obtained 

when the simulation was run for various topologies. 

7 



CHAPTER TWO 



CLASSIFICATION OF PARALLEL COMPUTERS 

11A hair perhaps divides the False and the True" 
Omar Khayyam 

Parallel computers can be classified in many ways based 

on their structure or behaviour. The major classification 

methods consider the number of instructions and/or operand 

sets that can be processed simultaneously, the internal 

organisation of the processors, the interprocessor connection 

structure, or the methods used to control the flow of 

instructions and data through the system. Some of the more 

popular classification methods are 

1. Flynn's classification. 

2. Structural Classification. 

2.1 Flynn's Classification 

A typical central processing unit operates by 

fetching instructions and operands from main memory, 

executing the instructions, and placing the results in 

memory. The steps associated with the processing of an 

instruction form an instruction cycle. The instructions can 

be viewed as forming an instruction stream flowing from main 

·memory to the processor, while the operands form another 

stream, the data stream flowing to and from the processor, as 

shown in fig 2.1. 
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Michael J. Flynn has made an informal and widely used 

classification of processor parallelism based on the number 

of simultaneous instruction and data streams seen by the 

Instruction stream 

Processor 
p 

<----------------------~ 

Data stream 
< >-

Fig. 2.1 

1. Generate the next instruction address. 
2. Fetch the instruction. 
3. Decode the instruction. 
4. Generate the operand addresses. 
5. Fetch the operands. 
6. Execute the instruction. 
7. Store the result. 

Fig. 2.2 

9 
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processor during program execution. Suppose that a processor 

P is operating at its maximum capacity, so that its full 

degree of parallelism is being exhibited. Let m· 1 

denote the minimum number of instruction and data streams, 

respectively, that are being processed in any of the seven 

steps associated with the execution of an instruction as 

shown in fig 2.2. mi and md are termed the instruction-

and data stream multiplicities of P, and measure its degree 

of parallelism. It is to be noted that mi and md are defined 

by the minimum instead of the maximum number of streams 

flowing at any point, since the most limiting components of 

the system (bottlenecks) determine the .overall parallel 

processing capabilities. 

Computers can be roughly divided into four major groups 

based on the values of mi and md associated with their CPUs. 

l.Single instruction stream single data stream (SISD): 

mi=md=l. Most conventional computers with one CPU containing 

a single arithmetic-logic unit capable only of scalar 

arithmetic fall into this category. SISD computers and 

sequential machines are thus synonymous. 

2.Single instruction stream multiple data stream (SIMD) : 

mi=l, md>l. This category includes machines that have a 

single program control unit and multiple execution units. 

ILLIAC IV and Distributed Array Processor are ~xamples of 

this type of computers. 

3.Multiple instruction stream single data stream (MISD): 

mi>l, md=l. Not many computers fit into this category. 
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Computers like Cray-1 and CYBER-205, which rely heavily on 

pipeline processing, may be considered as MISD machines if 

the viewpoint is taken that a single data stream passes 

through a pipeline, and is processed by differen~ (micro-) 

instruction streams in different segments of the pipeline. 

4.Multiple instruction stream multiple data stream (MIMD) 

md>1. This covers multiprocessors which are computers 

more than one CPU and the ability to execute several 

programs simultaneously. Examples of multiprocessors are Cm* 

and NCUBE ten. 

It is to be noted that the foregoing classification 

depends on a somewhat subjective distinction between control 

(instruction) and data. The term stream is equally vague and 

subject to varying interpretations. Hence it may not always 

be clear to which of the four Flynn classes a particular 

machine belongs. For example, whether to classify pipeline 

computers as MISD or MIMD hinges on the data and instruction 

streams; a case can also be made for calling these machines 

SIMD. Thus Flynn's classification is essentially behavioral 

and says nothing about a computer's structure. We, therefore, 

turn to some other ways of'classifying parallel computers 

based on their overall structure or interconnection topology. 

2.2 Structural Classification 

A computer system can be viewed as a set of n ~ 1 

processors (CPUs) P1 , P2 , •• Pn and m ~ 0 shared (main) memory 

··~ communicating via an 

11 



interconnection network N as shown in fig 2.3 . In a typical 

sequential computer, n=m=l, and N is a single shared bus over 

pl 1 I p2 I· · I Pn I I Ml I I M2 I· · I ~ 
-· 

Interconnection 
Network N 

Fig. 2.3 

I PE1 J I. 
PE2 I I PE3 I · · · · · · I PEn I 

Interconnection 
Network N 

Memory 
M 

Fig 2.4 
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which all processor-memory communication takes place. In 

general, the memory units constitute a global main memory 

that provides a convenient message depository for processor­

processor communication. A system with this organisation is 

called a shared m~mory computer (Fig. 2.4). A global memory 

can, however, be a major system bottleneck, particularly when 

processors must share large amounts of information since 

normally only one processor can access a given memory module 

at a time. If the processors are provided with their own 

local memories, then the global memory can be reduced in size 

or even eliminated completely. To separate the functions of 

processing (computation) and memory, a processor with no 

associated memory will be referred to as a processing element 

or PE. A processor is thus the combination of a PE and a 

local main memory; it may also include some external 

communications (IO) facilities forming, in effect, a small 

self-contained computer. In a system with little or no global 

memory, processing elements communicate via messages 

transmitted between their local memories as in the system of 

fig. 2.5 . In this case, the main memory is the sum of the 

local memories, and the system may be referred to as a 

distributed memory computer. The term message passing 

computer is also used for these machines. Figs 2.4 and 2.5 

illustrate the main structural differences between shared­

memory and distributed-memory systems. 
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I PE1 I I PE2 I 
----- ----- ----- -----

Interconnection 
Network N 

Fig. 2.5 

~ 
I 

I PEn I 
----- -----

The internal structure of the interconnection network N is 

also used to classify parallel computers. Figures 2. 6 (a). to 

(c) show some of the popular topologies of the 

interconnection network. Because of the ease with which it 

can be designed and controlled, the single shared bus is 

widely used in parallel as well as sequential systems. When 

n, the number of PEs, and m, the number of main memory units, 

are large, extremely fast buses are required, and special 

design precautions must be taken to minimize contention for 

access to the bus. Bus contention can be relieved (but not 

necessarily eliminated completely) by providing multiple 

buses, forming the multiple-bus network depicted in Fig. 

2.6(b). Each processor is connected to one or more of the 

available buses, each of which has all the attributes of an 

14 



independent system bus .. Besides reducing the communication 

load per, a degree of fault tolerance is provided, since the 
; 

system can be designed to continue·operation, possibly with 

reduced performance if an individual bus fails. The crossbar 

interconnection network as shown in Fig. 2.6(c) is a special 

kind of multiple-bus system in which each PE has a 

(horizontal) bus linking it to all memories or, equivalently, 

each, memory has a (vertical} bus linking it to all PEs. An n 

x m crossbar allows upto MAX{n, m} bus transactions to take 

place simultaneously. However, in the worst case where all 

the processors attempt to access the same memory unit Mi 

simultaneously, the number of bus transactions drops to one. 

Although crossbar networks have been employed by a few 

computer systems, their hardware complexity quickly becomes 

prohibitive as m and n increase. 

~ PE~ I I PE2 I· · ·I PEn I I Ml I I M2 I · · · I Mn 

I I I I I 
I I I I I I I I I I I 

Fig 2.6 (a) 
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Fig. 2.6 (b) 

Ml I I M2 I· · ·I Mn I 

c:J= f-- r- r- p r- r- r-

c:J= r- r- - ll r- r- -

. . 
PEn r--- f-- t- - l 

Fig. 2.6 (c) 
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Figures 2.7 and 2.8 illustrate various network topologies in 

which high speed dedicated connections are provided between 

each system component, which is typically an independent 

processor, and a small group of neighbouring components. The 

processors communicate among themselves through message 

passing. The computer structure depicted in fig. 2.7 is that 

of a mesh. Here the processors are arranged in the form of 

an m x n matrix along m rows and n columns. In this topology, 

the inside processors are connected to four neighbouring 

processors, the processors at the corners are connected to 

two other processors, whereas the remaining processors are 

connected to three other neighbouring processors. 

The torus topology is shown in fig. 2.8. This topology 

is similar to the mesh, with the difference that the first 

and the last processors of each row are connected to each 

other. Similarly, the first and the last processors of each 

column hav,e also been connected. This type of topology is 

very useful for transputer based systems. A transputer is 

basically a processor with some associated memory and four 

links through which it can be connected to four other 

transputers using a wire. In the torus topology all the four 

links of a transputer are utilised in connecting it to other 

processors thus reducing the number of links that are to be 

traversed when a message is sent from a source node · to a 

destination node. For example, if a message is sent from ,PE0 

to PE15 then in the mesh topology, the minimum number of 

17 



Fig. 2. 7 

The MESH TOPOLOGY 

Fig. 2.8 

The TORUS TOPOLOGY 
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links that are to be traversed is 6, whereas in the torus 

network this reduces to 2. 

A binary tree structure (Fig. 2.9) can also be employed 

for connecting the processors. This topology is useful for 

the class of problems that fall under the category of Divide 

and Conquer. In t~is topology, the N processors act as the 

nodes of a binary tree with processor 0 being the root. The 

height of the binary tree is approximately log2 N. A 

processor i is connected to a processor j if i = 2*j + 1 

or i = 2*j + 2. The main problem with this topology is that 

in case any link fails, the network is partitioned into two 

disjoint networks. If any one of the links connecting the 

root node to its children malfunctions, then the efficiency 

is reduced to half. 

A very popular interconnection topology is the 

hypercube network ~Fig. 2.10). A binary hypercube network of 

dimension d consists of 2d nodes. A 2-dimensional hypercube 

is just a mesh of four processors. A 3-dimensional hypercube 

is made up of two 2-dimensional hypercubes by connecting the 

corresponding processors. A four dimensional hypercube is 

built by connecting the corresponding processors of two 3-

dimensional hypercubes and so on. Here in order to address 

the 2d elements d bits are required. The number of bits in 

which the binary addresses of two processors differ is termed 

as Hamming Distance. A process~r i is connected to a 

processor j if and only if the hamming distance between i and 

j is 1. 
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Another very useful interconnection scheme for 

transputer based systems is the WK-recursive class of 

topologies. These topologies have the advantage that they can 

be recursively scaled. These topologies offer a high degree 

of regularity and symmetry which very well confirm to modular 

design and implementation of distributed systems involving 

large number of computing elements. In addition, a network of 

arbitrarily large size can be built using transputers 

keeping the internode distances very small. At the same time, 

the network can be expanded as and when needed without much 

difficulty. Another advantage of this class of topologies is 

that networks built using this class of topologies admit self 

routing techniques for message exchanges 

expansibility without reprogramming approach. 

networks show a high degree of local ·density 

based on an 

Further such 

which allows 

subnetwork clusters to be outlined: this ca~ suggest the 

utilization of suitable strategies for balancing the 

computational load. 

Topology Description : If K is the node degre~, using K+1 

nodes a fully connected network can be built. Eliminating one 

node we obtain a configuration that remains fully connected 

still having K free links and which can be viewed 

virtually similar to each component node of 

Therefore, this structure constitutes what is 

as being 

degree K. 

called a 

virtual node and acts as a building block for building up 

additional configuration. Example of a virtual node obtained 

for K = 3 is shown in fig~ 2.11 . In particular, a fully 
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connected configuration composed of K virtual nodes (i.e. K*K 

real nodes) again offers K free links and reproduces, at a 

higher abstraction level, the virtual node structure. This 

new structure which is called second level virtual node can 

in turn be used to build a third level virtual node by 

completely connecting K second level virtual nodes. The 

amplitude W of the 1-th level virtual node as the number of 

its (1-l)th level virtual nodes, having of course W=K. By 

recursively applying this technique, it is possible to define 

a class of regular, scalable topologies organised according 

to expansion levels obtained as recursive replications of a 

basic fully connected structure (i.e. the first level virtual 

node). Because of the recursive nature of these topologies 

whose peculiar aspect is the equality between the amplitude 

and the degree of virtual nodes, these class of topologies 

are termed as WK-recursive. 

A member of the class of WK-recursive topologies is 

identified by three parameters : 

N = number of real nodes 

K = node degree 

L = expansion level 

for which the following analytical relation holds 

L = logk N ( 2 .... ) 

Fig. 2.12 illustrates some examples of topologies for various 

values of N, K and L. The special c·ases of K = 2 and K = N 

lead to the linear array and fully connected configuration, 
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respectively. The equation (2 .... ) permits to simply define 

indices for characterising topologies belonging to the WK-

recursive class. For instance, the maximum distance between 

any pair of nodes expressed as the number of routing steps 

required to forward a _ message along the shortest path 
-

connecting the nodes is given by 

D = 2L - 1 

Clearly, the distance depends only on the expansion level 

whatever the node degree is. 

Computers can be further distinguished on the basis of 

the unit-to-unit connection paths provided by their 

interconnection networks. These paths may be static i.e. 

fixed and unchangeable or dynamic, i.e., reconfigurable under 

system control. The single-bus, multiple bus, and crossbar 

interconnections are examples of dynamic interconnection 

structures, whereas tree and hypercubes are static. The 

conventional single system bus (Fig. 2.3) is designed to 

allow any of the n processors to connect to any of the m 

memories for one or more bus cycles, e.g. , to f_etch an 

instruction. In a subsequent cycle some other processor-

memory pair may use the bus to communicate. Thus the units 

communicating over the bus vary dynamically. In contrast, 

each processor in the binary tree or hypercube configuration 

(Figs. 2.8 & 2.10) has dedicated buses to its nearest( 

neighbours, and can only communicate with other processors 

indirectly. 
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CHAPTER THREE . 



SOFTWARE ISSUES IN 
PARALLEL COMPUTING 

"To conquer without risk is 
to triumph without glory." 

Pierre Corneille 

The era of gata parallelism took a new turn with the 

evolution of MIMD computers. Now the processors are not 

supposed to work independently as earlier; rather they are 

meant to work on the same subdivided task where the ~ 

intermediate or end results available on one processor may be 

a parameter for another processor to resume execution. The 

high sounded words like fault tolerance and practical 

parallelism became a reality. However, it also posed several 

new problems, like interprocess communication, 

synchronisation and nondeterminism to name a few of them. The 

exploitation of the grain of parallelism also became 

challenging task. 

3.1. The Mapping Problem 

"Lead me from the unreal to the real."' 
The Upanishads 

The speedup of the parallel execution of a problem '(over 

the sequential algorithm) depends upon two factors, apart 

from the number of processors working together. These are : 

1. Decomposition of the problem. 

2. Mapping of the decomposed problem (processes space ) onto 

the (processor space ) target system. 
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3.1.1 Decomposition Of The Problem 

In any parallel processing application three levels of 

parallelism exist. These are 

i) Processor Farm Parallelism 

ii) Geometric Parallelism 

iii) Algoritgmic. Parallelism 

3.1.1.1 Processor Farm Parallelism 

Many scientific problems require repeated execution of 

the same program, with different initial data (random number 

seeds, for example) . Later runs of the program do not 

require any knowledge of previous runs, so many runs could be 

done simultaneously. On most computers, this option is not 

available, resulting, typically, in the submission of many 

different jobs consisting of the same program but accessing 

different data, or running with different parameters. By 

contrast this type of application can be run very 

efficiently on a multiprocessor machine. Little or no 

communication is required between processors, except that, 

after execution, the results from each of the processors need 

to be collated and, perhaps, some kind of statistical 

analysis performed. 

A similar situation occurs when a 'controller' issues 

work-packets to a network of processors, without caring which 

processor accepts it. The only real difference is \one of 

scales. This farm structure will automatically balance the 

load among the workers, because a worker which accepts a 

difficult packet will not accept another until it has 
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finished, while a worker which has an easy packet can take 

another relatively soon. 

Typical architectures for these types of application are 

thus farms of processors reporting back to, and receiving 

instructions from,' a controller. The work can be distributed 

down a linear chain (fig. 3.1) with a simple control 

structure, or on a ternary tree (fig. 3.2} with a more 

complex control structure but faster broadcasts. Each 

processor runs the same program (with data dependent 

branches} and has a complete, but different, set of data from 

its workpacket. Large amount of storage may, 

required on each element. Because of 

therefore, be 

the limited 

communication requirements, this method can be efficient, but 

because of memory requirements it is not necessarily cost­

effective. 

3.1.1.2 Geometric Parallelism 

Many physical problems have an underlying regular 

geometrical structure, with spatially 

{e. g. problems in field theory or 

homogeneity allows the data to be 

across the processor array, with 

limited interactions 

hydrodynamics) .. This 

distributed uniformly 

each processor being 

responsible for a defined spatial area: This is illustrated 

in fig. 3.3. 

A processor communicates with neighbouring processors and 

the communication load will be proportional to the size of 

the boundary of the subdomain, while ,the computational load 
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will be proportional to the volume of the boundary of the 

subdomain. This type of parallelism is sometimes referred to 

as domain decomposition or data parallelism and this type 

is specially suitable for(transputer arrays. 

3.1.1.3 Algorithmic Parallelism 

This is a more fine-grained parallelism in which 

features of the algorithm that are capable of concurrent 

operation are identified and each processor executes a small 

part of the total algorithm. Clearly, the resulting structure 

will be specific to the particular algorithm used in the 

application. This type of parallelism can be expressed 

naturally in a language like Occam on transputer networks. 

A common feature of this approach is the construction of 

a number of pipes of processors, simil~r to those found in 

pipelined vector supercomputers. Here, however, the pipes may 

be more general and capable of splitting and merging in much 
\ 

more flexible way and operate at a different level of 

granularity. 

In such a decomposition of the problem, the data now 

flows between the processing elements, and is sometimes 

referred to as Data Flow parallelism (not to be,confused with 

the machine of the same name) . The communication load on each 

processor is severely increased in this scheme. Indeed, 

without care, communication bandwidth problems can become 

dominant and severely degrade the performance. In addition, 

an elaborate communication and control structure is needed. 

An advantage of this type of decomposition, however, is that 
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little data space is required per processor. It has been 

found that this type of problem decomposition gives 

efficiencies of the order of 50% without much effort but 

detailed analysis and load balancing can improve 

performance. 

3.1.2 The Mappinq-Of Processes onto Processors 

3.1.2.1 Processes Space 

the 

In most procedural languages for parallel and 

distributed programming, parallelism is based on the notion 

of a process. A process is a logical processor that executes 

code sequentially and has its own state and data. Processes 

are declared, just like procedures. 

Processes are created either implicitly by their 

declaration or ·by some create cons'truct. With implicit 

creation, one usually first dec.lares a process type and then 

creates processes by declaring variables of that type. Often 

arrays. of processes may be declared. In some languages based 

on implicit process creation, the total number of processes 

is fixed at compile time. This makes tqe efficient mapping of 

processes onto physical processors easier, but it imposes a 

restriction on the kinds of applications that can be 

implemented in the language, since it requires that the 

number of processes be known in advance. 

Having an explicit construct for creating processes 

allows more flexibility than implicit process creation. For 

example, the creation construct may allow parameters to be 

passed to the newly created process. These are typically used 
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for setting up communication channels between processes. If 

processes do not take parameters, as in Ada [6], the 

parameters have to be passed to a newly created process using 

explicit communication. A mechanism is needed to set up the 

communication channel over which the parameters are sent. 

Another impor~ant issue is the termination of processes. 

Processes usually terminate themselves, but some primitive 

may be provided to abort other processes too. Some precaution 

may be needed to prevent processes from trying to communicate 

with a terminated process. 

The problem space consists of the geometric dom~in in 

general which is populated with the process elements like 

grid · points etc. as mentioned earlier. The distribution of 

the process elements in the geometric or data domain of the 

problem can be static or can evolve during the execution. If 

it is static the generally static load balancing would 

suffice. Even if the distribution is dynamic, we don't 

require to do dynamic load balancing upto lK 
\ 

processors. 

The number of process creations and synchronisations should 

be minimized. Since process synchronisation is also 

expensive, the grain size should be made as large as 

possible, while keeping all the processors busy. 

3.1.2.2 Processor Space 

The processor space consists of the set of all 

processes which are physically interconnected. The goal is to 

connect the processors such that the degree of connectivity 

is high so as to reduce the communication overheads. The 
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distribution of computations over the available physical 

processors is also an important issue. This assignment of 

computations to processors is termed as mapping. 

Mapping strategies vary depending upon the application 

to be implemented. The assignment of processes to processors 

will be quite dif;erent in a computation whose objective· is 

to obtain maximum speedup through parallelism, and an 

application whose objective is to obtain high availability 

through replication, for example. 

When the goal is to speedup computation time through 

parallelism, the mapping of processes to processors is 

similar to load balancing in distributed operat~ng systems 

both attempt to maximize parallelism through efficient use of 

available computing power. But there are important 
I 

differences. An operating system tries to distribute the 

available processing power fairly over competing processes 

from different programs and different users. It may try to 

reduce communication costs by letting processes that 

communicate frequently run in pseudo-parallel on the same 

processor. The goal of mapping, however, is to minimize the 

execution time of a single distributed program. As all 

parallel units are parts of th~ same program, the they are 

cooperating rather than competing, so fairness need not be an 

issue. In addition, reduction of communication overhead 

achieved through mapping processes to the same processor must 

be weighed against the resulting loss of parallelism [3]. If 

the goal of application is to increase fault-tolerance, an 
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entirely different mapping strategy may be taken. Processes 

may be replicated to increase availability. The mapping 

strategy should at least assign the replicas of the same 

logical process to different physical processors. 

There are three, approaches for assigning parallei units 

to processors, whether the assignment is done by the 

programmer or the system : the processors can be fixed at 

compile-time, fixed at run-time or not fixed at all. The 

first method is least flexible, but has the distinct 

advantage that it is known at compile-time which parallel 

units will run on the same processor, allowing the programmer 

to take advantage of the fact that these processes will have 

shared memory available. With run~time approach to mapping 

computations to processors, a parallel unit is assigned to a 

processor when that unit is created. An example is the Turtle 

notation designed by Shapiro for executing concurrent PROLOG 

programs on an infinite grid of processors, where each 

processor can communicate with its four neighbouring 

processors [3]. The third approach to processor allocation, 

allowing a process to execute on different processors during 

its lifetime, is used by only a very few languages. Emerald, 

for example, is an object-based language that allows objects 

to migrate from one processor to another. The language has 

primitive to determine the current location of an object, to 

fix or unfix an object on a specific proce~sor, and to move 

an object to a different processor. 
/' 
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3.2 Interprocess Communication And Synchronisation 

"Tell me to whom you are addressing 
yourself when you say that. I am 
addressing myself - I am addressing 
myself to my cap. " 

Jean Baptist Moliere 

An important issue which must be addressed in the design 

of a language for parallel programming is how the pieces of a 

program which are running in parallel on different processors 

are going to cooperate. This cooperation involves two types 

of interaction communication and synchronisation. For 

example, Process A may require some data X whiCh is the 

result of some computation performed by Process B. There must 

be some way of getting X from B to A. In addition if process 

A comes to the point in its execution which requires 

information X from process B, but process B has not yet 

communicated the information to A for whatever reason, A must 

be able to wait for it. 

An issue related to synchronisation is nondeterminis•. A 

process may want to wait for information from any group of 

other processes, rather than from one specific process. As it 
r-

is not known in advance which member (or members) of the 

group will have its information available first, such 

behaviour is nondeterministic. In some cases it is useful to 

dynamically control the group of processes from which to take 

input. For example, a buffer process may accept a request 
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from a producer process to store an item in the buffer 

whenever the buffer is not full; it may accept a request from 

a consumer process to add an item whenever the buffer is not 

empty. To program such behaviour, a notation is needed to 

express and control nondeterminism. 

Expression of interprocess communication (IPC) falls 

into two generar categories - shared data and message 

passing - although this categorization is not always clear-

cut. Parallel logic languages that provide shared logical 

variables, for example, are frequently used for programming 

in a message passing style. It is to be noted that the model 

provided by the language for expressing IPC and the 

implementation of that model may be two entirely different 

things. I shall restrict my explanation to systems without 

shared memory since multiprocessor systems are mostly without 

shared variable. 

3.3 Message Passing 

11There is nothing more requisite 
in business than dispatch. 11 

Joseph Addison 

In multiprocessor systems without any shared memory, J 

communication among the processors is mainly through message 

passing. While sending a message, many factors come into play 

who sends it, what is sent, to whom is it sent, 

guaranteed to have arrived at the remote host, 

is it 
I 

is it 

guaranteed to have been accepted by the remote process, is 
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there a reply (or several replies}, and what happens if 

something goes wrong. There are also many other 

considerations involved in the receipt of a message. for 

which process or processes on the host, if any, is the 

message intended; is a process to be created to handle this 

message; if the message is intended for an existing process, 

what happens if the process is busy- is the message queued or 

discarded; and if a receiving process has more than one 

outstanding message waiting to be serviced, can it choose the 

order in which it services messages-be it FIFO, by sender, by 

some message type or identifier, by the contents of the 

message, or, according to the receiving process's internal 

state. 

3.3.1 General Issues 

based The most elementary primitive for message 

interaction is the point-to-point message from one process 

(the sender} to another process (the receiver}. Languages 

usually provide only reliable message passing. The 

run time system (or the underlying operating 

language 

system} 

automatically generates acknowledgement messages, transparent 

at the language level. 

Most (but not all} messaqe-based interactions involve 

two parties, one sender and one receiver. The sender 

initiates the action explicitly, for example, by sending a 

message or invoking a remote procedure. On the other hand, 

the receipt of a message may either be explicit or implicit. 

With explicit receipt, the receiver is executing some sort of 
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~ccept statement specifying which messages to accept and what 

actions to undertake when a message arrives. With implicit 

receipt, code is automatically invoked within the receiver. 

It usually creates new thread of control within the receiving 

process. Whether the message is received implicitly or 

explicitly is transparent to the sender. 

Explicit message receipt gives the receiver more control 

over the acceptance of messages. The receiver can be in many 

different states, and accept different types of messages in 

each state. More accurate control is possible if the accept 

statement allows messages to be accepted conditionally, 

depending on the arguments of the message as in Concurrent c. 

A file server, for example, may want to accept a request to 

open a file only if the file is not locked. In Concurrent C 

this can be coded as 

accept open(f) such that not_locked(f) { 

process open request 

} 

Some languages give the programmer.control over the order of 

message acceptance. Usually messages are accepted in FIFO 

order, but occasionally it is useful to change this order 

according to the type, sender, or contents of a message. For 

example the file server may want to handle read requests for 

small amounts of data first 
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accept read(f, offset, nr_bytes) by nr_bytes { 

' . . . . 
process read request 

} 

The value given in the by expression determines the order of 

acceptance. If conditional or ordered acceptance is not 

supported by the language, an application needing these 

features will have to keep track of requests that have been 

accepted but not handled yet. 

Another major issue in message passing is naming (or 

addressing) of the parties involved in an interaction: to 
/ 

whom does the sender wish to send its message, and, 

conversely, from whom does the receiver wish to accept a 

message ? These parties may be named directly or indirectly. 

Direct naming is used to denote one specific process. The 

name can be static name of the process or an expression 

evaluated at run time. A communication scheme based on direct 

naming is symmetric if both the sender and the receiver name 

each other. In an asymmetric scheme only the sender names the 

receiver. In this case, the receiver is willing to interact 

with any sender. It is to be noted that interactions using 

implicit receipt of messages are always asymmetric with 

respect to naming. Direct naming schemes, specially the 

symmetric ones, leave little room for expressing 

nondeterministic behaviour. Languages using these schemes, 

therefore, have a separate mechanism for dealing with 

nondeterminism. 
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Indirect naming involves an intermediate object, 

usually called a mailbox, to which the sender directs its 

message and to which the receiver listens. In its simplest 

form the mailbox is just a global name. More advanced schemes 

treat mailboxes as values that can be passed around, for 

as part of the message. This option allows highly 

communication pattern to be expressed. Mailing a 

example, 

flexible 

letter to 

illustrates 

a post office box rather than a street 

the differenc~ between indirect and 

address· 

direct 

naming. A letter sent to a post office box can be collected 

by anyone who has the key to the box. People can be given 

access to the box by duplicating keys or by transferring 

existing keys (possibly through another P. 0. box). A street 

address, on the other hand does not have this flexibility 

[ 3 ] • 

3.3.2 synchronous and Asynchronous Point-to-Point Messaqe 

The major design issue for a point-to-point message 

passing system is the choice between synchronous and 

asynchronous 

passing, the 

message 

sender 

passing. 

is blocked 

With synchronous message 

until the receiver has 

accepted the message (explicitly or implicitly). Thus, the 

sender and the receiver not only exchange data, but they also 

synchronize. With asynchronous message passing, the sender 

does not wait for the receiver to be ready to accept its 

message. Conceptually, the sender continues immediately after 

sending the message. The implementation of the language may 

suspend the sender until the message has at least been copied 
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for transmission, but this delay is not reflected in the 

semantics. 

In the asynchronous model there are some semantic 

difficulties to be dealt with. As the sender S does not wait 

for the receiver R to be ready, there may be several pending 

message sent by s, but not yet accepted by R. If the message 

is order preserving, R will receive the messages in the order 

they were sent by s. The pending messages are buffered by the 

language run time system or the operating system. The problem 

of a possible buffer overflow can be dealt with in one of two 

ways. Message transfers can simply fail whenever there is no 

more buffer space. Unfortunately, this makes message passing 

less reliable. The second option is _to 
·-

use flow control, 

which means the sender is blocked until the receiver accepts 

some messages. This introduces a synchronization between the 

sender and the receiver and may result in unexpected 

deadlocks. 

In the synchronous model, however, there can be only 

one pending message · from any process S to a process R. 

Usually, no ordering relation is assumed between ~essages 

sent by different processes. Buffering problems are less 

severe in the synchronous model, as a receiver need buffer at 

most one message from each sender, and additional flow 

control will not change the semantics of the primitive. On 

the other hand, the synchronous model also has its 

disadvantages. Most notably, synchronous message passing is 

less flexible than asynchronous message passing, because the 

sender always has to wait for the receiver to accept the 
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message, even if the receiver does not have to return an 

answer (3]. 

3.3.3 Rendezvous 

A point-to-point message establishes 

communication between two 

between processes~ however, 

processes. Many 

are essentially 

one way 

interactions 

two way in 

nature. For example, in the client/server model/ the client 

requests a service from a server and then waits for the 

result returned by the server. This behaviour can be 

simulated using two point-to-point messages, but a single 

higher level construct is easier to use and more efficient to 

implement. Rendezvous is one such construct. 

The rendezvous model is based on three concepts : the 

entry declaration, the entry call, and ·the accept statement. 

The entry declaration and accept statement are part of the 

server code, while the entry code is on the client side. An 

entry declaration looks like a procedure declaration. An 

entry has a name and zero or more formal parameters 

associated with it. An entry call is similar to a procedure 

call statement. It names the entry and the process containing 

the entry and it supplies the actual parameters. An accept 

statement for the entry may contain a list of statements, to 

be executed when the entry is called, as has been illustrated 

in the following accept statement for entry incr : 

accept incr (x:integer; y: out _integer) do 

y = X + 1; 

end; 
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An interaction (called a rendezvous) between two processes 8 

and R takes place when 8 calls an entry for R, and R executes 

an accept statement for that entry. The interaction is fully 

synchronous, so the first process that is ready to interact 

waits for the other. When the two processes are synchronised, 

R executes the do part of the accept statement. While 

executing these statements, R has access to · the input 

parameters of the entry, supplied by 8. R can assign values 

to the output parameters which are·passed back to 8. After R 

has executed the do statements, 8 and R continue their 

execution in parallel. R may still continue working on the 

request of 8, although 8 is no .longer blocked. 

3.4 Expressing And Controlling Nondeterminism 

"A person with one watch knows what time it 
is ; a person with two watches is never 
sure. " 

Proverb 

As stated before, the interaction pattern between 

processes are not always deterministic, but sometimes depend 

on the runtime conditions. For this reason, it is necessary 

to introduce models for expressing and ·controlling 

nondeterminism. As explained earlier, some communication 

primitives are nondeterministic. A message received 

indirectly through a port may have been sent by any process. 

Such primitives provide a way to express nondeterminism, but 

not to control it. Most programming languages use a separate 
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construct to control nondeterminism. Two such constructs are 

the select statement, used by many algorithmic languages 

and the guarded Horn clause, used in most parallel logic 

programming languages. Both are based on the guarded command 

state.ment, int:!:"<:H.:li.i<:;ed 'by Dijkstra as a sequential control 

structure. 

3.4.1 The Select Statement 

A select statement consists of a list of . guarded 

commands whose format is as follows : 

guard -> statements 

The guard consi~ts of a boolean expression and some sort of 

"communication request. " The boolean expression must be free 

of side effects, as it may be evaluated more than once during 

the course of the select statement's execution. In Hoare's 

Communicating Sequential Processes, a guard may contain an 

explicit receipt of a message from a specific process P. Such 

a request may either succeed (if P has sent such a message), 

fail (if P has already terminated) or suspend (if P is still 

alive but has not sent the message yet). The guard itself can 

either succeed, fail or suspend : the guard succeeds if the-

expression is "true" and the request succeeds; the guard 

fails if the boolean expression evaiuates to "false" or if 

the communication request fails; or the guard suspends if the 
' ' expression is true and the request suspends. The select 

statement as a whole blocks until either all of its guards 

fail or some guards succeed. In the first case, the entire 

select statement fails and has no effect. In the latter case, 
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one succeeding guard is selected nondeterministically and the 

corresponding statement part is executed. 

Select statements can also be used for controlling 

nondeterminism other than communication. Some languages allow 

a guard to contain a timeout. instead of a communication 

request. A guard containing a timeout of T seconds succeeds 

if no other guard-succeeds within T seconds. This mechanism. 

sets a time limit on a process that wants to wait for a 

message. Another use of select statement is in the control of 

termination of processes. In Concurrent C, a guard may 

consist of the keyword terminate. A process that executes a 

select statement containing a terminate guard is willing to 

terminate if all other guards fail or suspend. If all 

processes are willing to terminate, the entire Concurrent C 

program terminates. Roughly, if a11· children processes 

created by a parent process are willing to terminate and the 

parent process has completed the execution of its statements, 

all these processes are terminated. This mechanism assumes 

hierarchical processes. 

An important point to be noted in connection with 

select statements in most programming languages is that 

are unfair. In Communicating Sequential Processes 

the 

they 

(CSP) 

introduced by Hoare , for example, if several guards are 

successful, one of them is selected nondeterministically. No 

assumption can be made about which guard is selected. 

Repeated execution of the select statement may select the 

same guard over and over again, even if there are other 

successful guards. An implementation may introduce a degree 
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of fairness, by assuring that a successful guard will be 

selected within a finite number of iterations, or by giving 

guards equal chances. On the other hand, an implementation 

may evaluate the guards sequentially and always choose the 

first one yielding "true". The semantics of select statements 

donot guarantee a~y degree of fairness, so the programmers 

cannot rely on it. 

Various proposals have been made for giving programmers 

explicit control over the selection of succeeding guards. 

Silberchatz has suggested a partial ordering of the guards. 

Elrad and Maymir-Ducharrne have proposed prefixing of every 

guarded command with a compile-time constant called the 

preference control value. If several guards succeed, the one 

with the highest preference control value (i. e. priority) is 

chosen. If there are several guards with this value, one of 

them is chosen nondeterministically. This feature is useful 

if some requests are more urgent than others. For example, 

the buffer process may wish to give consumers a higher 

priority than producers. 

3.4.2 Guarded Horn Clauses 

Logic programs are inherently nondeterministic. In 

reducing a goal of logic program, there are often several 

clauses to choose from. Intuitively, the semantics of logic 

programming prescribe that the underlying execution machinery 

must simply choose the "right" clause, the one leading to a 

proof. This behaviour is called don't know nondeterminism. In 

sequential logic languages, these semantics are implemented 
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using backtracking. At each choice point an arbitrary clause 

is chosen, and if it later turns out to be a wrong one, the 

system resets itself to the state before the choice point and 

then tries another clause. 

In a parallel execution model, several goals may be 

tried simultaneously. In this model, backtracking is very 

complicated to implement. If a binding for a variable has to 

be undone, all processes that have used this binding must 

backtrack too. Most parallel logic programming languages, 

therefore, avoid backtracking altogether. Rather than trying 

the clauses for a given predicate one by one and backtracking 

on failure, parallel logic languages 

i) search all these clauses in parallel and 

ii) do not allow any bindings made during these 

parallel executions to be visible to the outside 

until 

to. 

one of the parallel executions is committed 

This is called the OR-parallelism. Unfortunately, this cannot 

go on for long, since the number of search paths that can be 

worked on in parallel grows exponentially with the length of 

the proof. 

A popular technique to control OR parallelism is 

committed choice nondeterminism, which nondeterministically 

selects one alternative clause and discards the others. It is 

based on guarded Horn clauses of the form 

A :- Gl, G2, . . Gn I Bl, B2, .... Bm 

The conjunction of the goals Gi is called 
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conjunction of the goals Bi is the body. Declaratively, the 

commit operator "I" is also a conjunction operator. 

Just ~ike the guards of a select statement, the guard 

of a guarded Horn clause can either succeed, fail or suspend. 

A guard suspends if it-tries to bind a variable that it is 

.not allowed to bind. If a goal with a predicate A is to be 

reduced, the guards of all clauses for A are tried in 

parallel, until some guards succeed. The reduction process 

then selects one of these guards nondeterministically and 

commits to its clause. It aborts execution of other guards 

and executes the body of the chosen clause. 

Till now this seems to be same as the select statement, 

but there are some subtle differences. Guards that ar~ 

aborted should have no side effects at all. Precautions must 

be taken against guards that try to bihd variables in their 

environment. 
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CHAPTER FOUR 



LOAD BALANCING 

Load balancing is an essential module of a parallel 

operating system. This module is responsible for allocating 

modules transparently to one or more processors for 

execution. Load balancing is vital if dynamic module creation 

is to be provided in such a way as to maximize the use of 

available hardware. With this module a program need not be 

rewritten when the hardware topology is changed, provided 

there is sufficient parallelism to take advantage of the new 

hardware. The requirement of load balancing is to distribute 

the computational and communication loads in such a manner 

that the members communicating with each other stay as close 

to each other as possible and the computation is spread over 

all the processors of the parallel computing system evenly. 

4.1 Proper Load partitioning 

"This shows how much easier it is to be critical 
than to be correct." 

Benjamin Disraeli 

Efficiency of the parallel computing system with N 

nodes (processing elements) is given by 

E = s I N 

where the parallel machine runs S times faster than a 

sequential machine using an optimal sequential algorithm. 

This efficiency is reduced by 
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i) Unequal distribution of computation. 

ii) communication overhead. 

The job of allocating task to CPUs in a parallel Computing 

System in such a way that both the above conditions are met 

is called Load Balancing. This job is essentially matching 

the process space on to the processor space as best as 

possible. 

4.2 Simulated Annealing 

"Man is a tool making animal." 
Eenjamin Franklin 

Simulated Annealing (12] is a powerful and general 

algorithm for solving optimization problems in which the 

problem to be optimized can be represented as a function that 

has many variables and many local minima. Because many real-

world design problem can be cast in the form of such 

optimization problems, there is intense interest in general 

techniques for their solution. Simulated annealing is one 

such technique of rather recent vintage (it was introduced 

in 1982 by Kirpatrick, Gelatt and Vecchi) with an unusual 

pedigree : it is motivated by an analogy to the statistical 

mechanics of annealing in solids. To understand why such a 

physics problem is of interest, consider how to coerce a 

solid into a low energy state. A low energy ~tate usually 

means a highly ordered state, such as a crystal lattice; a 

relevant example here is the need to grow silicon in the form 

of highly ordered, defect-free crystals for use in 

semiconductor manufacturing. To accomplish this, the material 
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is annealed: heated to a temperature that permits many atomic 

rearrangements, then cooled carefully, slowly until the 

material freezes into a good crystal. Simulated annealing 

techniques use an analogous set of controlled cooling 

operations for nonphysical optimization problems, in effect 

transforming a poor, unordered· solution into a highly 

optimized, desirable solution. Thus simulated annealing 

offers an appealing physical analogy for the solution of 

optimization problems; and more importantly, the potential to 

reshape mathematical insights from the domain of physics into . 
insights for real optimization problems. 

Interest in such solution techniques is intense because 

few important combinatorial optimization problems can be 

solved exactly in a reasonable time. Many optimization 

problems arising in practice are NP-complete : i.e. all known 

techniques for obtaining an exact so~ution require a time 
\ 

that is exponentially distributed with respect to the size of 

the problem. Hence emphasis has been directed towards 

heuristic techniques for obtaining a solution to these 

optimization problems. The difference between an algorithm 

and a heuristic is that a heuristic is not guaranteed to give 

the optimum solution. Rather a heuristic is designed to 

provide an acceptable answer for the class of NP-complete 

problems. In practice, however, the terms algorithm and 

heuristic are often used interchangeably. Moreover, simulated 

annealing is not an algorithm in the sense that it prescribes 

a mechanical sequence of computations for solving a specific 

problem. Annealing is a strate~y or style for solving 

53 



combinatorial optimization problems. Specifically simulated 

annealing is a heuristic solution strategy applicable to a 

wide variety of optimization problems. It gives excellent 

results but is very slow. Hence it is used to approximate the J 

global minimum as closely as computational resources permit. 

For problems that are not well understood, it may not be 

possible to find-an algorithm which can take advantage of 

problem-specific properties. For such problems, Simulated 

Annealing has been found to be extremely successful, even 

with long computation time. Simulated Annealing has been 

widely used to solve problems like VLSI placement and Load 

Balancing. 

Heuristic strategies for solving optimization problems 

that attempt to find a minima of any function f(X 1 ,x2 , .... XN) 

for theN parameters x1 , x2 , ... XN come in several styles. 

Sometimes constructive heuristics can be found, which build 

up a good answer directly, piece by piece. Of more interest 

are iterative improvement strategies that attempt to perturb 

some existing, suboptimal solution in the direction of a 

better, lower-cost solution. The i~ea can be neatly explained 

with the help of a ball and hills graph as shown in fig. 4.1. 

The set of all values of the objective function taken over 

all legal configurations is termed cost surface. In this 

graph, the value of the objective function has been plotted 

for a single parameter i.e. N = 1, as a set of hills and 

valleys in the cost surface. The ball represents the current 

configuration that is planned to be perturbed. In practice, 

iterative improvement algorithms often start with a ra~dom 
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initial configuration, or with a heuristically constructed 

initial configuration that is not as costly as a random 

solution. 

To find a good solution, we try to perturb the known 

solution to improve it. From the diagram, an obvious approach 

is to explore easily reached neighbouring configurations and 

to select the one-with least cost, i.e. the one giving the 

most improvement. In practice, we attempt small random 

perturbation to the configuration that yields a nearby 

solution. This process can continue starting from the new 

configuration until no further improvements are obtained, at 

which point the algorithm terminates. This strategy seems 

reasonable, but it has a serious problem : it is easily 

trapped in local minima, solutions that look good in some 

small neighbourhood of the cost surface but are not 

necessarily the global optimum. Standard iterative 

improvements are a downhill-only style. In fig. 4.1 each new 

perturbation moves to a configuration downhill from the 

previous one, thus becoming trapped in local minima. In 

practice, one scheme to overcome this is simply to try 

random initial configurations, improve this and use the 

answer found. However, for very large problems, 

many 

best 

the 

computational 

starts needed 

expenses are great here, the number of random 

to adequately sample the cost surface is 

unreasonable, and still there is no guarantee of finding the 

best answer. 

Simulated annealing offers a strategy very similar to 

iterative improvement, with one major difference : annealing 
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allows perturbations to move uphill in a controlled fashion. 

The individual perturbations are now referred to as moves. 

Because each move can now transform one configuration into a 

worse configuration, it is possible to jump out of a local 

minima, and potentially fall into a more promising downhill 

path. However, because the uphill moves are carefully 

controlled, we need not worry about getting close to a good, 

final solution, only to randomly jump uphill to some far 

worse one. 

The relevant analogy here is physical annealing of a 

solid. To coerce some material into a low energy state, it is 

heated, then cooled slowly, so that it comes to thermal 

equilibrium at each temperature. Simulating this process is 
\ 

very similar to a combinatorial optimization task. For the 

physical system, the goal is to find s.ome arrangements of 

atomic particles (a configuration) that minimizes the . energy 

of the system. The basic requirement for simulating this 

process is the ability to simulate how the system reaches 
\ 

thermodynamic equilibrium at each fixed temperature in a 

schedule of decreasing temperature used to anneal it. In 

physical systems, temperature has a meaning; in arbitrary 

nonphysical optimization problems, the temperature is simply 

a control parameter. The idea is to employ a cooling 

schedule, a sequence of decreasing temperatures, to moderate 

the acceptance of uphill moves over the course of the 

solution. Initially, this effective temperature parameter is 

high enough to permit an aggressive, · essentially random 
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search of the configuration space, thus allowing most uphill 

moves. As the temperature cools, fewer uphill moves are 

permitted. In this temperature regime , annealing closely 

resembles standard downhill-only iterative improvement. 

4.2.1 The Algorithm 

The energy of the system at any state si is E{Si} 

and is determined by a cost function used to assign value to 

that state. Temperature is used as a control parameter to 

guide the system to a low cost (low energy) state. The value 

of temperature 

increases the 

determines whether a perturbation that 

energy is to be accepted. The simulated 

annealing algorithm is started with a temperature T equal to 

the initial temperature T0 and some initial state s 0 . The 

system is perturbed to get a new state sn.The change in 

energy (sE) is calculated. If the energy is decreased, the 

perturbation is accepted .Otherwise the perturbation is 

accepted with a probability e-sE/T. At higher temperatures, 

this probability is large and most of the moves which 

increase the energy are accepted. As temperature falls, only 

small perturbations are allowed. At each temperature, the 

algorithm reaches equilibrium and then the temperature is 

reduced. The system is frozen when the system will not 

improve despite further reductions in temperature. 

An important point worth mentioning in connection with 

simulated annealing algorithm is range limiting. It is to be 

recalled that at colder temperatures, large uphill moves are 

unlikely to be accepted. Nevertheless, there evaluation takes 
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time, and it is worthwhile attempting to bias the generation 

of random moves in favour of those more likely to be accepted 

and reach closer to the optimal solution. Thus at lower 

temperatures, some other form of control is required to reach 

nearer to the optimal solution simultaneously reducing the 

computational overheads. 

Another interesting point is that simulated 

algorithm is nondeterministic, and hence, will 

different answers each time it is run, even on 

problem. This is because of the probabilistic 

annealing 

produce 

the same 

nature of 

choosing moves and accepting uphill moves. In particular, 

there is· no guarantee of getting precisely the optimum 

solution to a problem in annealing algorithm or even getting 

the same solution on multiple runs. What annealing really 

offers is some ,probability of getting out of some local 

minima; this is not the same as a guarantee of finding the 

optimum. 

A fundamental question concerns the convergence of 

simulated annealing algorithm and asks whether it is possible 

formally to prove that it will converge to an optimal answer. 

It turns out that, by making certain simplifications, 

annealing algorithms can be modelled probabilistically; in 

fact, convergence can be proven. However these technical 

proofs show that annealing converges asymptotically,in 

probability. In other words, if we perform enough (infinitely 

many) moves, the probability that we have found a global 

minimum can be made as close to unity as we like. 
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4.3 Simulated Annealing and Load Balancing 

"And this is the fashion of which thou shalt make it." 
Genesis 6:15 

The process to processor mapping in the case of 

simulated annealing is done for both types of problems 

mentioned on to the processor spaces configured in various 

topologies like pipeline, mesh, torus, hypercube, binary tree 

and wk-recursive. For the heuristics algorithm the 

implementation is done for a completely disjointed processor 

space. We start placing the processes on to the processors 

till its share of average load is satisfied. The processes to 

be clustered on to the single processor are determined by the 

process - processes communication among the processes being 

considered for placement. The topology is configured at the 

end on a demand driven basis of processor processor 

communication. 

To implement Simulated Annealing for a specific purpose, the 

following parameters have to be defined : 

1. An energy (cost) function. 

2. A perturbation technique. 

3. A cooling schedule. 

For load balancing the three parameters mentioned above are 

represented as follows : 

l)Enerqy function definition: An energy function 

(Hamiltonian) is defined which sets the goals the algorithm 
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should achieve.The computational load for each member is say 

in the FEM/FDM is the same. However since the real-time 

communication is not known, interprocessor communication 

distances are sought to be minimized.Thus the intermediate 

processor will not be tied up in transmitting messages from 

and to other non-neighbouring processors.The hamiltonian 

thus consists of two parts 

i) Computational part If Wi = computational load on 

processor i, then all Wi's should be equal. A measure of 

the inequality of this load will be obtained by finding 

the sum of the squares of all Wi's. 

This part of the hamiltonian can thus be represented by 

Hcomp = A ~ wi 2 for all i. 

Hcomp will be minimum when all the Wi's are equal. 

Here A is a constant which normalises computational and 

communication loads. I have assumed it to be unity. 

ii) Communication part If C·. 
1) is the amount of 

communication and D·. 
1) the length of the path between 

processors i and j then this part of the hamiltonian can 

, be represented by the sum of the products of 

as 

for all i,j. 

The Hamiltonian can be written as 

H = A ~ W · 
2 + ~ C · · * D;J·. 1 1) .L 

61 

C· · · and 
1) 

D·. 
1) 



2) A perturbation technique : The system can be perturbed by 

i) Moving a member from one processor to another. 

ii) Exchanging members between two processors. 

Of these, I have used the first technique for load 

balancing. 

3) A cooling schedule . The temperature is reduced by the 

cooling rate when either of the following conditions holds : 

i) Number of moves accepted at that temperature exceed 

10 % of the number of members {N) . 

ii) The number of attempts made = N . 

Iterations are started with a high value of temperature. 

As an initial condition, members {to be balanced) are 

distributed randomly to processors. A member chosen at random 

is attempted to be moved to another processor. The move is 

accepted if the Hamiltonian decreases as a result of this 

move. If the Hamiltonian increases because of this move, it 

is accepted with a probability e-sH/T, where T is the current 

temperature of the system and sH = Increase in Hamiltonian. 

The temperature' is reduced as per the cooling schedule 

mentioned above. 

The results obtained by using the simulated annealing 

algorithm for load balancing are extremely encouraging as has 

been shown in fig. 4.-2 and 4. 3 where the processes have been 

mapped onto a four processor machine. The fig. shows clearly 

that the processes requiring communication have be~n placed 

either on the same node or on a neighbouring node. 
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Mesh used to generate input communication file for Load Balancing 

Fig. 4.2 
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Elements of mesh mapped onto 4 processors of a parallel 
system after load has been balanced 

Fig. 4.3 
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CHAPTER FIVE 



IMPLEMENTATION 

."All words, 
And ilo performance!" 

Philip Messenger 

The proposed simulated annealing algorithm has been 

simulated on a VAX-:ll/780 computer system. · The software has 

been written in C. The software. was tested for various 

topologies such as mesh, torus, binary tree, hypercube 

pipeline and wk-recursive. 

The topologies consisted of sixteen nodes each . The 

software initially reads two files, the first one of which 

contains the computational load on each processor whereas · 

the second one contains the identities of different processes 

that require communication alongwith the amount 

communication. 

The algorithm consis~ed of the following modules 

(i) The initial assignment module 

(ii) The process selection model 

(iii) The processor determination module 

(iv) The destination processor module 

(v) The No. of hopes module 

(vi) The hamiltonian calculating module 

(vii) The router module 

5.1 The Initial Assignment Module 
' 

of 

This module is called by the main program. This module 

initially assigns processes to all processors. In this 
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simulation two types of initial assignments were considered : 

random and grid. In the random model, a process was 

arbitrarily assigned to a processor by generating a random 

integer between 0 and 15. In the grid start, a processes are 

numbered like grid points and are serially assigned to 

processors. 

5.2 The Process Selection Module 

This module is responsible for selecting on process that 

is to be moved from its present processor to some other 

processor. In this implementation, the selection of process 

was random. 

5.3 The Processor Determination Module 

This module is used to determine the processor on which 

the process selected to be moved is presently stored. Since 

the processes were to be moved regularly from one node to 

another, this was achieved by carrying out a linear search of 

the processqueue of each processor until the selected process 

was found. 

5.4 The Destination Processor Module 

This module returns an integer which is the 

identification number of the processor to which the selected 

member is to be moved. This selection was of two types 

random and restricted. In the random move, a member was 
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attempted to be moved to any randomly generated processor. In 

the restricted move, the new processor was chosen from among 

the processors on which the neighbours of the member, chosen 

to be moved, are lying. 

5.5 The No.-of-Hops Module 

This module returns the no. of links that are to be 

transferred when a process is to be moved from a source node 

to a destination node by the shortest route. This value is 

required in the calculation of the second part of the 

hamiltonian. Although the value returned by this module could 

also have been obtained from path module which returned the 

path along which the process was to be moved, it was highly 

desirable to have a separate and simpler module for the 

purpose of determining the no of links ·in order to reduce the 

time complexity since a process selected might not be moved 

each time. The no. of hop module for various topologies is 

described below. 

5.5.1 Mesh 

The processors are arranged in a rectangular array 

along m rows and n columns. 

In this case m = n = 4 

If s = source node and d = destination node then 

source x coord = s%n; 

source_y_coord = sfn; 

dest x coord = d%n; 
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dest_y_coord = djn; 

hops = abs(source_x_coord - dest x coord) + 

abs(source_y_coord- dest_y_coord); 

return hops; 

In the worst case when the processor s and d are at the 

two diagonally opposite ends, the no. of links needed to be 

traversed becomes m+n-2. For a 4 x 4 mesh this value was 6. 

5.5.2 Torus 

Here also the processors are connected along m rows 

and n columns with the difference that the processors at the 

boundary of one end are connected to those at the other end. 

For m = n = 4, the no of hops algorithm is given as follows: 

If s = source node and d = destination node then 

sour x coord = s%n; 

sour_y_coord = sjn; 

dest x coord = d%n; 

dest_y_coord = djn; 

If abs(sour_x_coord - dest_x_coord) > n/2 

hops_x = abs(abs(sour_x_coord- dest_x_coord) ~ (n/2)); 

else 

hops_x = abs(sour_x_coord- dest_x_coord); 

If abs(sour_y_coord - dest_y_coord) > m/2 

hops_y = abs(abs(sour_y_coord- dest_y_coord) - (m/2)); 

else 

hops_y = abs(sour_y_coord- dest_y_coord); 

hops = hops_x + hops_y; 

return hops; 
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5.5.3 Binary Tree 

In this case the processors are numbered from 0 to 

n - 1, where n is the number of nodes. For n = 16, they are 

numbered from 0 to 15. The processor no. 0 acts as the root 

node of the binary tree. As explained in chapter 2, a 

processor i is connected to a processor j if i = 2*j + 1 or i 

= 2*j + 2 or vice versa. The code for finding the number of 

hops is recursive. 

If s = source node and d = destination node then 

if (s == d) hops = o; 

else if (s > d) 

{ 

if even(s) hops = 1 + no_of_hops(s/2-1, d); 

else hops= 1 + no_of_hops(s/2,_ d); 

} 

else 

{ 

if even(d) hops= 1 + no_of_hops(s, d/2-1); 

else hops= 1 + no_of_hops(s, d/2); 

} 

return hops; 

5.5.4 Pipeline 

In this case, the no of links required to be 

traversed for sending a message from one node to another 

through shortest route is given by the absolute value of the 

difference between s and d, where s is the source node and d 

is the destination node. 
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5.5.5 Hypercube 

Here the no. of hops is calculated by comparing 

the binary values of the two nodes and finding the number of 

bits in which they differ. 

Thus, if s = source node and d = destination node then 
\ 

temp = s - d wh~re - is the exclusive OR operator. 

The number of bits which are 1 in the binary representation 

of temp gives the no of hops. To count the number of bits in 

temp which are 1, the most significant bit is checked each 

time and temp is rotated left until it becomes o. Each time 

the most significant bit is found to be 1, the counter is 

incremented by 1. In this case, the no of hops will be 

maximum when all bits of s are the complements of the 

corresponding bits of d. 

5.5.6 WK-recursive 

In this case the number of hqps is calculated by using 

the following code. 

hops = o; 

so = s & 3; 

s1 = s & 12; 

s1 = s1 >> 2; 

s2 = s & 48; 

s2 = s2 >> 4; 

s3 = s & 192; 

s3 = s3 >> 6; 

dO = d & 3; 

d1 = d & 12; 
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dl = dl >> 2; 

d2 = d & 48; 

d2 = d2 >> 4; 

d3 = d & 192; 

d3 = d3 >> 6• , 

if ( s3 != d3 ) { 

if( so != d3){ 

so = d3; 

hops++; 

} 

if( sl != d3 ) { 

sl = d3; 

hops++; 

hops++; 

} 

if( s2 != d3){ 

s2 = d3; 

hops += 4; 

} 

so = sl = s2 = sJ; 

hops++; 

} 

if( s2 != d2){ 

if(' sO != d2){ 

so = d2; 

hops++; 

} 
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if( sl != d2 ){ 

sl = d2; 

hops++; 

hops++; 

} 

so = sl = s2; 

hops++; 

} 

if( sl 
,_ .- dl){ 

if( so != dl){ 

so = dl; 

hops++; 

} 

so = sl; 

hops++; 

} 

if( so != dO){ 

hops++; 

} ' 

return hops; 

5.6 The Hamiltonian Calculating Module 

This module calculates the value of the hamiltonian 

during each iteration and, if it is less than the value of 

hamiltonian in the previous iteration, calls the router 

module to determine the path alongwhich the process is 'to be 

moved. If the value of hamiltonian increases, it calculates 

the probability to find whether 
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5.7 The Router Module 

This module is used to determine the path alongwhich a 

selected process is to be moved from one node to another. In 

this module Dijkstra's shortestpath algorithm has been used~ 

Since the simulation was carried on a serial machine, it was 

not possible to actually move a process from one node to 

another. However, for statistical purposes, the transm1ssion 

and delay time at each node was calculated to analyse the 

effects of communication among the processes. This module 

takes three parameters - the address of the source node, the 

address of the destination node and an array in which it 

copies the path alongwhich the message is to be routed. 

In addition to above, some other modules that were used 

in this simulation are addqueue and defeteQ. Addqueue adds a 

process to the processqueue of a processor. DeleteQ removes a 

process from the process queue of a node. 

5.8 Experimental Results 

The experiment was carried out within a temperature 

range of 4 to .1 degrees. The cooling rate was 0.97. The 

total number of members to be balanced were taken as 208. The 

input communication patterns were of two types : 

a) Regular In problems with automatic grid 

generation, the members are numbered in order. This 

represents a regular communication pattern in which 

communication is of contiguous nature. 
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b) Irregular If · the members are not properly 

numbered, (e.g. 0 talks to 127 wbich in turn talks to 61 

etc.), it represents an irregular communication pattern. This 

input was generated by generating two random numbers, 

communicating with each other. 

The results have been shown in table 5.1. 

TABLE 5.1 

Number of members = 208 

Number of processors = 16 

Best % Time (Sec) 
Topology Mixed Grid Mixed Grid 

Mesh 40 - 5 25 - 10 18 13 

Torus 100 - end 30 - 10 17 11 

Tree 100 - end 30 - 10 18 12 

hypercube 100 - end 10 - 0 17 13 

pipeline 40 - 10 - 12 -
wkrecursive 100 - end 100 - end 11 11 
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Temperature range : 4 to 0.1 

Fig. 5.6 
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5.9 Conclusion 

"Better is the end of a thing 
than the beginning of it." 

Ecclesiastes 7:8 

The results obtained on the basis of experiments 

carried out on simulated annealing have been quite 

encouraging. The algorithm can, therefore, be applied on a 

real parallel machine for the purpose of load balancing to 

achieve the desirable performance of reducing the computation 

time for massively CPU bound tasks. 

The algorithm, however, suffers from a majo~ drawback 
I 

i.e. it requires too much of time to achieve the desired goal 

of proper load partitioning. Another drawback of the 

algorithm is that the balancing achieved is static. Thus, in 

those applications where processes are dynamically created 

and destroyed, the performance of the parallel program may be 

far from desired. Nonetheless, ·it is to be kept in mind that 

parallel programs are mainly used in largescale scientific 

applications where the processes are normally static and a 

fairly good speedup can be achieved. 
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