
A VIABLE SCHEME FOR LOAD BALANCING ON
PARALLEL MACHINES

Dissertation submitted to The Jawaharlal Nehru University

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

IN

COMPUTER SCIENCE

ABDAAL KHALEEQUE

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI-11 0 067

JANUARY 1994

This

(~-.:~·;""•,..I'JF·Ir ATE -~&.'\. Ji _. ' . .__,.-

to certify that the dissertation titled .. A

Viable Scheme for Lead Balancing on Parallel Machines 51 being

submitted by ABDAAL KiiA.LI!EQUE to Jawaharlal Nehru University,

New Delhi in partial fulfilment of the requirements for the

award of the degree of Master of Technology is a record of

the original work done by him under the supervision of

Prof. P.c.saxena, Professor, School of Computer and System

Sciences, Jawaharlal Nehru University, New Delhi during

the year 1993, Monsoon Semester.

The results reported in this dissertation have not been

submitted in part. or in full to any other uni versi t:y or

institution for the award of any degree or diploma .

Prof. K.K.Bharadwaj
Dean,
School of computer and
System Sciences,
Jawaharlal Nehru Univcr~ity;
New Delhi.

. , -

<.~~~~-

Prof. P.c.saxena
_Professor,
School of computer and
System Sciences;
Jawaharlal Nehru university,
New Delhi.

To

my parents

ACKNOWLEDGEMENT

I am immensely indebted to my supervisor Prof.

P.C.Saxena, Professor, School of Computer and System

Sciences, Jawaharlal Nehru University, New Delhi for

suggesting me this topic. I express my sincere thanks to him

for his personal involvement during the period of my work and

his eloquent guidance which has been indispensable in

bringing about a successful completion of the dissertation.

I extend my sincere gratitude to Prof. K.K.Bharadwaj,

Dean, School of Computer and System Sciences,Jawaharlal Nehru

University for providing me with the environment and all the

facilities required for the completion of my dissertation.

Special thanks are to Mr. Vikas Ahluwalia, Ph.D.

scholar, School of Computer and System Sciences, for

providing me with some very useful references and also

helping in the implementat1on phase of the project.

I am also grateful to my friend Shanavas for taking

pains to go through the manuscript and also for his useful

comments.

Thanks are due to my friends Manoj, Jisnu and sumitra

for giving me company in the long hours of nights during the

period of this dissertation.

Finally, I would like to take a moment to thank my

family members for their patience and encouragement, without

which this dissertation would not have been complete.

1~
ABDAAL KIIALEEQUE

When we mean to build,

We first survey the plot,then draw the model;

And when we see the figure of the house,

Then must we rate the cost of the erection.

Wi~~ia. Shakespeare

CONTENTS

"Declarethe things that are to
come hereafter".

Isaiah 41:23

CHAP'I'ER 1 INTRODUCTION 1

1.1 Aim of the Project 1

1.2 Why Parallelism 2

1.3 The Problem with Parallelism 4

1.4 Relevance of The Project 7

1.5 organisation of This Report 7

CHAPTER 2 CLASSIFICATION OF PARALLEL COMPUTERS 8

2.1 Flynn's Classification

2.2 Structural Classification

CHAPTER 3 SOFTWARE ISSUES IN
PARALLEL COMPUTING

3.1 The Mapping Problem

3.1.1 Decomposition of the Problem

3.1.1.1 Processor Farm Parallelism

3.1.1.2 Geometrix Parallelism

3.1.1.3 Algorithm Parallelism

3.1.2 The Mapping of Processes
onto Processors

3.1.2.1 Processes Space

3.1.2.2 Processor Space

3.2 Interprocess Communication
and Synchronisation

3.3 Message Passing

3.3.1 General Issues

3.3.2 Synchronous and Asynchronous
Point-to-Point Message

3.3.3 Rendezvous

8

11

28

28

29

29

30

32

33

33

34

37

38

39

42

44

3.4 Expressing and Controlling
Nondeterminism

3.4.1 The Select Statement

3.4.2 Guarded Horn Clauses

CHAPTER 4 LOAD BALANCING

4.1 Proper Load Partitioning

4.2 Simulated Annealing

4.2.1 The Algorithm

4.3 Simulated Annealing and
Load Balancing

CHAPTER 5 IMPLEMENTATION

5.1 The Initial Assignment Module

5.2 The Process Selection Module

5.3 The Processor Determination Module

5.4 The Destination Processor Module

5.5 The No.-Of-Hops Module

5.5.1 Mesh

5.5.2 Torus

5.5.3 Binary Tree

5.5.4 Pipeline

5.5.5 Hypercube

5.5.6 WK-recursive

5.6 The Hamiltonian Calculating Module

5.7 The Router Module

5.8 Experimental Results

5.9 Conclusion

BIBLIOGRAPHY

45

46

48

51

51

52

58

60

65

65

66

66

66

67

67

68

69

69

70

70

72

73

73

81

82

CHAPTER ONE

INTRODUCTION

"Nothing endures but change."
Hiraclitus

1 e 1 Aim Of The Project

11Now!Now! 11 cried the Queen, 11Faster!Faster!"
Lewis Carrol

Load Balancing has remained a central issue since the

advent of multiprocessing. The need for optimum utilisation

of multiprocessors assumes far greater importance as the

bottleneck for the conventional supercomputer speeds are

reached and parallel machines are being offered by increasing

number of vendors. It is only recently that the parallel

computers are being procured not as an add on to a computing

centre but for serious computations like a supercomputer. As

this happens, the load balancing implementations to exploit

the raw, scalable power of parallel machines assumes busi-

nesslike importance. The problem of load baLancing is NP-

complete. Thus the various approaches proposed, rightly seek

to obtain satisfactory sub-optimal solution in a 'reasonable'

time.

A number of different techniques have been adopted to

solve the problem of load balancing. The techniques I have

chosen for my dissertation is based on a method known as

simulated Annealing. My main aim is to do the satisfactory,

acceptable partitioning for the classes of problems having

1

contiguous as well as irregular communication needed for a

distributed memory multiprocessors.

1.2 Why Parallelism

"The most general definition of
beauty ••• Multiety in unity."

Samuel Taylor Coleridge

There are many applications which are computationally

intractable for "sequential" SISD machines as defined by

FLYNN's taxonomy (10). The speed of electric current flow

along a conductor is one of the natures physical phenomena

which ensures that such machines can never deliver the

performance demanded by the seemingly insatiable user. In

many areas such as engineering, science, energy resource,

medicine, military and artificial intelligence, fast and

efficient computers are in high demand. Largescale

computations are often performed in these application areas

requiring computers that can deliver a speed of billions and

sometimes trillions of megaflops {MFLOPS). We, therefore,

turn to parallelism as the means to satisfy this demand. The

concept of parallelism is much older than most people realize

[10) but with recent trends in VLSI fabrication technology

giving rise to single package processors of impressive power

and low cost, parallel machines which utilise large number of

such devices are becoming common sparking much research into

parallel computation. With rapid progress being made in the

field of VLSI fabrication, it is clear that parallel hardware

2

can offer a dramatic reduction in cost per megaflops. The

next few years, therefore, is expected to see parallel

hardware becoming available on a more everyday basis.

According to sidney Fernbach"Todays large computers

(mainframes) would have been considered 'supercomputers' 10

to 20 years ago. By the same token, today's supercomputer

will be considered 'state-of-the-art' standard equipment 10

to 2 0 years from now" [11] •

The potential benefits of a parallel approach to

problems are not only the reduction in cost per megaflop~,

but also the fact that only with massively parallel systems

will we be able to achieve a total computational throughput

far in excess of that achievable using conventional vector

supercomputers. Consider for example, one of the well known

supercomputer problems in Computational Fluid Dynamics (CFD).

In aircraft design, computer programs are required to

calculate the airflow round an aircraft for a wide range of

flow and fluid parameters. At present, rather than attempt a

full solution of the complete Navier-Stokes equations,

industry uses simplified flow codes incorporating significant

simplifying approximations to these equations. These

simplified codes, for example for steady-state flight,

require many hours of supercomputer time for each parameter

setting. Full solutions to the Navier-stokes equations for a

wide range of Reynolds numbers, and for all possible flight

conditions are out of reach of present and forseeable vector

supercomputers. Second generation supercomputers are now

3

achieving performances in the range 1 to 10 Gigaflops

(thousands of· megaflops) and must already employ . several

vector units working in parallel to achieve peak performance.

Performance in the Terraflops range (thousands of Gigaflops)

such as will be required to solve full CFD problems in the

complex 3-dimensional geometries can only be achieved using

massively parallel-machines.

Besides such examples of massive parallelism, the /next

few years will also see parallel h~rdware becoming available

on a more everyday basis. Powerful engineering workstations

capable of present day supercomputer performance will exploit

concurrency not only for raw compute performance but also to

provide real-time 3-D graphic displays. The ability both to

compute and to visualize solutions to complex systems of

equation will soon become an indispensable tool of all

scientists and engineers [11].

1.3 The Problem With Parallelism

"If seven maids with seven mops
swept it for half a year,

Do you suppose,"the Walrus said,
"That they could get it clear?"

Lewis Carrol

The efficiency with which we can exploit the potential

parallelism in a given application relates intimately to the

hardware, algorithm and programming language used.

Unfortunately the greater the potential gains from

parallelism, the more difficult it becomes to realise these

4

gains. For e~ample, the larger the number of independent

processirig elements at our disposal the greater the

communication overhead penalty incurred by the necessity to

pass data between these.

An optimum hardware for a particular application

map readily to the problem in hand. That is to say,

number of processors running concurrently ought to equal

would

the

the

number of independent operations which could be concurrently

performed. As a consequence of this some machines map readily

to certain applications. However a static implementation can

only be efficient for a small class of problems and some

applications have no obviously suited machine counterpart.

A massively parallel machine is of little use if the

algorithm selected is badly devised. If a load is imbalanced

such that most processors must continually wait for a single,

slow process to execute or should the algorithm not use the

lowest possible computational order. As yet compilers are not

available which can intelligently partition the system on

users' behalf. Nonetheless, there are some

keep the parallelism largely transparent to

parallelism lost by the sequential nature

language is recaptured by clever compilers

this is not always the case and with user

parallelism comes the responsibility of

hardware topology and software to make

machines which

the

of

[10].

user and

the user

However,

visibility of

optimising both

good use of

parallelism possibilities within the application.

5

Parallel programs are much more difficult to debug than

sequential programs - after a bug is supposedly fixed, it may

be impossible to reconstruct the sequence of events that

exposed the bug in the first place, so it would be

inappropriate to certify, in some sense, that the bug has

actually been corrected [7].

Another important point is that parallel programs are

much more difficult to prove correct than sequential

programs, and it is widely believed that proving program

correctness must eventually displace exhaustive program

testing if real strides are to be made in developing highly

reliable, largescale software systems [7].

Although multiprocessor machines are becoming widely

available, and offer potentially impressive cost to

performance ratio they are as yet user unfri~ndly

environments. In order to provide good user support at an

operating system level, system software should allow

efficient machine utilisation without the need for the user

to tailor his program to suit the machine architecture.

Finally, the language itself is important. Older

languages are inherently unsuitable for expressing parallel­

ism having been designed from the outset with sequential

machine environments in mind.

6

1.4 Relevance Of The Project

In this project an attempt has been made at

achieving the following objectives.

1) The module should have low processing overhead

2) There should be low message overhead

3) The processors should be kept busy to the maximum

possible extent.

4) The computational load on the processors should be

as even as possible.

1.5 Organisation Of This Report·

Chapter 2 deals with the classification of parallel

machines.

Chapter 3 discuses the different kinds of problems

encountered in finding parallel solutions to problems.

Chapter 4 gives a brief introduction to load balancing

and explains mainly the simulated annealing algorithm.

Chapter 5 is devoted to implementation. This chapter

contains the various numerical results that were obtained

when the simulation was run for various topologies.

7

CHAPTER TWO

CLASSIFICATION OF PARALLEL COMPUTERS

11A hair perhaps divides the False and the True"
Omar Khayyam

Parallel computers can be classified in many ways based

on their structure or behaviour. The major classification

methods consider the number of instructions and/or operand

sets that can be processed simultaneously, the internal

organisation of the processors, the interprocessor connection

structure, or the methods used to control the flow of

instructions and data through the system. Some of the more

popular classification methods are

1. Flynn's classification.

2. Structural Classification.

2.1 Flynn's Classification

A typical central processing unit operates by

fetching instructions and operands from main memory,

executing the instructions, and placing the results in

memory. The steps associated with the processing of an

instruction form an instruction cycle. The instructions can

be viewed as forming an instruction stream flowing from main

·memory to the processor, while the operands form another

stream, the data stream flowing to and from the processor, as

shown in fig 2.1.

8

Michael J. Flynn has made an informal and widely used

classification of processor parallelism based on the number

of simultaneous instruction and data streams seen by the

Instruction stream

Processor
p

<----------------------~

Data stream
< >-

Fig. 2.1

1. Generate the next instruction address.
2. Fetch the instruction.
3. Decode the instruction.
4. Generate the operand addresses.
5. Fetch the operands.
6. Execute the instruction.
7. Store the result.

Fig. 2.2

9

Memory
M

processor during program execution. Suppose that a processor

P is operating at its maximum capacity, so that its full

degree of parallelism is being exhibited. Let m· 1

denote the minimum number of instruction and data streams,

respectively, that are being processed in any of the seven

steps associated with the execution of an instruction as

shown in fig 2.2. mi and md are termed the instruction-

and data stream multiplicities of P, and measure its degree

of parallelism. It is to be noted that mi and md are defined

by the minimum instead of the maximum number of streams

flowing at any point, since the most limiting components of

the system (bottlenecks) determine the .overall parallel

processing capabilities.

Computers can be roughly divided into four major groups

based on the values of mi and md associated with their CPUs.

l.Single instruction stream single data stream (SISD):

mi=md=l. Most conventional computers with one CPU containing

a single arithmetic-logic unit capable only of scalar

arithmetic fall into this category. SISD computers and

sequential machines are thus synonymous.

2.Single instruction stream multiple data stream (SIMD) :

mi=l, md>l. This category includes machines that have a

single program control unit and multiple execution units.

ILLIAC IV and Distributed Array Processor are ~xamples of

this type of computers.

3.Multiple instruction stream single data stream (MISD):

mi>l, md=l. Not many computers fit into this category.

10

Computers like Cray-1 and CYBER-205, which rely heavily on

pipeline processing, may be considered as MISD machines if

the viewpoint is taken that a single data stream passes

through a pipeline, and is processed by differen~ (micro-)

instruction streams in different segments of the pipeline.

4.Multiple instruction stream multiple data stream (MIMD)

md>1. This covers multiprocessors which are computers

more than one CPU and the ability to execute several

programs simultaneously. Examples of multiprocessors are Cm*

and NCUBE ten.

It is to be noted that the foregoing classification

depends on a somewhat subjective distinction between control

(instruction) and data. The term stream is equally vague and

subject to varying interpretations. Hence it may not always

be clear to which of the four Flynn classes a particular

machine belongs. For example, whether to classify pipeline

computers as MISD or MIMD hinges on the data and instruction

streams; a case can also be made for calling these machines

SIMD. Thus Flynn's classification is essentially behavioral

and says nothing about a computer's structure. We, therefore,

turn to some other ways of'classifying parallel computers

based on their overall structure or interconnection topology.

2.2 Structural Classification

A computer system can be viewed as a set of n ~ 1

processors (CPUs) P1 , P2 , •• Pn and m ~ 0 shared (main) memory

··~ communicating via an

11

interconnection network N as shown in fig 2.3 . In a typical

sequential computer, n=m=l, and N is a single shared bus over

pl 1 I p2 I· · I Pn I I Ml I I M2 I· · I ~
-·

Interconnection
Network N

Fig. 2.3

I PE1 J I.
PE2 I I PE3 I · · · · · · I PEn I

Interconnection
Network N

Memory
M

Fig 2.4

12

which all processor-memory communication takes place. In

general, the memory units constitute a global main memory

that provides a convenient message depository for processor­

processor communication. A system with this organisation is

called a shared m~mory computer (Fig. 2.4). A global memory

can, however, be a major system bottleneck, particularly when

processors must share large amounts of information since

normally only one processor can access a given memory module

at a time. If the processors are provided with their own

local memories, then the global memory can be reduced in size

or even eliminated completely. To separate the functions of

processing (computation) and memory, a processor with no

associated memory will be referred to as a processing element

or PE. A processor is thus the combination of a PE and a

local main memory; it may also include some external

communications (IO) facilities forming, in effect, a small

self-contained computer. In a system with little or no global

memory, processing elements communicate via messages

transmitted between their local memories as in the system of

fig. 2.5 . In this case, the main memory is the sum of the

local memories, and the system may be referred to as a

distributed memory computer. The term message passing

computer is also used for these machines. Figs 2.4 and 2.5

illustrate the main structural differences between shared­

memory and distributed-memory systems.

13

I PE1 I I PE2 I
----- ----- ----- -----

Interconnection
Network N

Fig. 2.5

~
I

I PEn I
----- -----

The internal structure of the interconnection network N is

also used to classify parallel computers. Figures 2. 6 (a). to

(c) show some of the popular topologies of the

interconnection network. Because of the ease with which it

can be designed and controlled, the single shared bus is

widely used in parallel as well as sequential systems. When

n, the number of PEs, and m, the number of main memory units,

are large, extremely fast buses are required, and special

design precautions must be taken to minimize contention for

access to the bus. Bus contention can be relieved (but not

necessarily eliminated completely) by providing multiple

buses, forming the multiple-bus network depicted in Fig.

2.6(b). Each processor is connected to one or more of the

available buses, each of which has all the attributes of an

14

independent system bus .. Besides reducing the communication

load per, a degree of fault tolerance is provided, since the
;

system can be designed to continue·operation, possibly with

reduced performance if an individual bus fails. The crossbar

interconnection network as shown in Fig. 2.6(c) is a special

kind of multiple-bus system in which each PE has a

(horizontal) bus linking it to all memories or, equivalently,

each, memory has a (vertical} bus linking it to all PEs. An n

x m crossbar allows upto MAX{n, m} bus transactions to take

place simultaneously. However, in the worst case where all

the processors attempt to access the same memory unit Mi

simultaneously, the number of bus transactions drops to one.

Although crossbar networks have been employed by a few

computer systems, their hardware complexity quickly becomes

prohibitive as m and n increase.

~ PE~ I I PE2 I· · ·I PEn I I Ml I I M2 I · · · I Mn

I I I I I
I I I I I I I I I I I

Fig 2.6 (a)

15

Fig. 2.6 (b)

Ml I I M2 I· · ·I Mn I

c:J= f-- r- r- p r- r- r-

c:J= r- r- - ll r- r- -

. .
PEn r--- f-- t- - l

Fig. 2.6 (c)

16

Figures 2.7 and 2.8 illustrate various network topologies in

which high speed dedicated connections are provided between

each system component, which is typically an independent

processor, and a small group of neighbouring components. The

processors communicate among themselves through message

passing. The computer structure depicted in fig. 2.7 is that

of a mesh. Here the processors are arranged in the form of

an m x n matrix along m rows and n columns. In this topology,

the inside processors are connected to four neighbouring

processors, the processors at the corners are connected to

two other processors, whereas the remaining processors are

connected to three other neighbouring processors.

The torus topology is shown in fig. 2.8. This topology

is similar to the mesh, with the difference that the first

and the last processors of each row are connected to each

other. Similarly, the first and the last processors of each

column hav,e also been connected. This type of topology is

very useful for transputer based systems. A transputer is

basically a processor with some associated memory and four

links through which it can be connected to four other

transputers using a wire. In the torus topology all the four

links of a transputer are utilised in connecting it to other

processors thus reducing the number of links that are to be

traversed when a message is sent from a source node · to a

destination node. For example, if a message is sent from ,PE0

to PE15 then in the mesh topology, the minimum number of

17

Fig. 2. 7

The MESH TOPOLOGY

Fig. 2.8

The TORUS TOPOLOGY

18

links that are to be traversed is 6, whereas in the torus

network this reduces to 2.

A binary tree structure (Fig. 2.9) can also be employed

for connecting the processors. This topology is useful for

the class of problems that fall under the category of Divide

and Conquer. In t~is topology, the N processors act as the

nodes of a binary tree with processor 0 being the root. The

height of the binary tree is approximately log2 N. A

processor i is connected to a processor j if i = 2*j + 1

or i = 2*j + 2. The main problem with this topology is that

in case any link fails, the network is partitioned into two

disjoint networks. If any one of the links connecting the

root node to its children malfunctions, then the efficiency

is reduced to half.

A very popular interconnection topology is the

hypercube network ~Fig. 2.10). A binary hypercube network of

dimension d consists of 2d nodes. A 2-dimensional hypercube

is just a mesh of four processors. A 3-dimensional hypercube

is made up of two 2-dimensional hypercubes by connecting the

corresponding processors. A four dimensional hypercube is

built by connecting the corresponding processors of two 3-

dimensional hypercubes and so on. Here in order to address

the 2d elements d bits are required. The number of bits in

which the binary addresses of two processors differ is termed

as Hamming Distance. A process~r i is connected to a

processor j if and only if the hamming distance between i and

j is 1.

19

PE~

I I
PE 1

p

-

l I
!

l l L
'

PE
3 PEi PE

5

I I 1

'

r-::----1,
L2J

I I I l I

G PE
7 PES PE

9 PE 1 ~ PE
11

A Binary Tree Interconnection

Fig. 2. 9

20

I
t

i

I

I
I
I

I

PE~

/ ! / I
I
i

PE
2

I PE, ".

I
,

I

I
I

PEi

I/ I
I~ '

PE. PE,
"

PE_
0

/ /
I

PE!~ PE
11

I
I I

I
I
I
I
I ! I

I I
I i

I
PEt< i

I

/
I

1/
PE t<i PEts

A Hypercube Network of

16 Nodes

21

r--·~-'~

PEt r--

I
i
i

I
I I
I I I

I

I I
I

I PES

I
i
' i

I
I
I

I I
! I

I
I

I
!

PEl t-- I

I
I

I
I
I I

I I
I I I I
i
I
i
i
I
i

I

FED

Another very useful interconnection scheme for

transputer based systems is the WK-recursive class of

topologies. These topologies have the advantage that they can

be recursively scaled. These topologies offer a high degree

of regularity and symmetry which very well confirm to modular

design and implementation of distributed systems involving

large number of computing elements. In addition, a network of

arbitrarily large size can be built using transputers

keeping the internode distances very small. At the same time,

the network can be expanded as and when needed without much

difficulty. Another advantage of this class of topologies is

that networks built using this class of topologies admit self

routing techniques for message exchanges

expansibility without reprogramming approach.

networks show a high degree of local ·density

based on an

Further such

which allows

subnetwork clusters to be outlined: this ca~ suggest the

utilization of suitable strategies for balancing the

computational load.

Topology Description : If K is the node degre~, using K+1

nodes a fully connected network can be built. Eliminating one

node we obtain a configuration that remains fully connected

still having K free links and which can be viewed

virtually similar to each component node of

Therefore, this structure constitutes what is

as being

degree K.

called a

virtual node and acts as a building block for building up

additional configuration. Example of a virtual node obtained

for K = 3 is shown in fig~ 2.11 . In particular, a fully

22

[]

PE_
<

A WX-Recursive Topology

of' 9 Nodes

Fig. 2.11

23

PE,
'

PE,
'

connected configuration composed of K virtual nodes (i.e. K*K

real nodes) again offers K free links and reproduces, at a

higher abstraction level, the virtual node structure. This

new structure which is called second level virtual node can

in turn be used to build a third level virtual node by

completely connecting K second level virtual nodes. The

amplitude W of the 1-th level virtual node as the number of

its (1-l)th level virtual nodes, having of course W=K. By

recursively applying this technique, it is possible to define

a class of regular, scalable topologies organised according

to expansion levels obtained as recursive replications of a

basic fully connected structure (i.e. the first level virtual

node). Because of the recursive nature of these topologies

whose peculiar aspect is the equality between the amplitude

and the degree of virtual nodes, these class of topologies

are termed as WK-recursive.

A member of the class of WK-recursive topologies is

identified by three parameters :

N = number of real nodes

K = node degree

L = expansion level

for which the following analytical relation holds

L = logk N (2)

Fig. 2.12 illustrates some examples of topologies for various

values of N, K and L. The special c·ases of K = 2 and K = N

lead to the linear array and fully connected configuration,

24

I PE
0

PE
1

PE

/
PE 2 PE

3

(a) (b)

(c.)

Fig. 2.12

25

PE~

i

PE
2

I

PE~

i
I
I

PE 1 ~

PE
i PE;

i
i

PE 3 PE.
b

X .-
"

PE, PE!z

1
I

i

PE11 PE 1;

R WX-RECURSIVE NETWORX OF

16 !·lODE

Fig·. 2.13

26

p E,

PE~

PE 13

I
l

pElS

respectively. The equation (2) permits to simply define

indices for characterising topologies belonging to the WK-

recursive class. For instance, the maximum distance between

any pair of nodes expressed as the number of routing steps

required to forward a _ message along the shortest path
-

connecting the nodes is given by

D = 2L - 1

Clearly, the distance depends only on the expansion level

whatever the node degree is.

Computers can be further distinguished on the basis of

the unit-to-unit connection paths provided by their

interconnection networks. These paths may be static i.e.

fixed and unchangeable or dynamic, i.e., reconfigurable under

system control. The single-bus, multiple bus, and crossbar

interconnections are examples of dynamic interconnection

structures, whereas tree and hypercubes are static. The

conventional single system bus (Fig. 2.3) is designed to

allow any of the n processors to connect to any of the m

memories for one or more bus cycles, e.g. , to f_etch an

instruction. In a subsequent cycle some other processor-

memory pair may use the bus to communicate. Thus the units

communicating over the bus vary dynamically. In contrast,

each processor in the binary tree or hypercube configuration

(Figs. 2.8 & 2.10) has dedicated buses to its nearest(

neighbours, and can only communicate with other processors

indirectly.

27

CHAPTER THREE .

SOFTWARE ISSUES IN
PARALLEL COMPUTING

"To conquer without risk is
to triumph without glory."

Pierre Corneille

The era of gata parallelism took a new turn with the

evolution of MIMD computers. Now the processors are not

supposed to work independently as earlier; rather they are

meant to work on the same subdivided task where the ~

intermediate or end results available on one processor may be

a parameter for another processor to resume execution. The

high sounded words like fault tolerance and practical

parallelism became a reality. However, it also posed several

new problems, like interprocess communication,

synchronisation and nondeterminism to name a few of them. The

exploitation of the grain of parallelism also became

challenging task.

3.1. The Mapping Problem

"Lead me from the unreal to the real."'
The Upanishads

The speedup of the parallel execution of a problem '(over

the sequential algorithm) depends upon two factors, apart

from the number of processors working together. These are :

1. Decomposition of the problem.

2. Mapping of the decomposed problem (processes space) onto

the (processor space) target system.

28

3.1.1 Decomposition Of The Problem

In any parallel processing application three levels of

parallelism exist. These are

i) Processor Farm Parallelism

ii) Geometric Parallelism

iii) Algoritgmic. Parallelism

3.1.1.1 Processor Farm Parallelism

Many scientific problems require repeated execution of

the same program, with different initial data (random number

seeds, for example) . Later runs of the program do not

require any knowledge of previous runs, so many runs could be

done simultaneously. On most computers, this option is not

available, resulting, typically, in the submission of many

different jobs consisting of the same program but accessing

different data, or running with different parameters. By

contrast this type of application can be run very

efficiently on a multiprocessor machine. Little or no

communication is required between processors, except that,

after execution, the results from each of the processors need

to be collated and, perhaps, some kind of statistical

analysis performed.

A similar situation occurs when a 'controller' issues

work-packets to a network of processors, without caring which

processor accepts it. The only real difference is \one of

scales. This farm structure will automatically balance the

load among the workers, because a worker which accepts a

difficult packet will not accept another until it has

29

finished, while a worker which has an easy packet can take

another relatively soon.

Typical architectures for these types of application are

thus farms of processors reporting back to, and receiving

instructions from,' a controller. The work can be distributed

down a linear chain (fig. 3.1) with a simple control

structure, or on a ternary tree (fig. 3.2} with a more

complex control structure but faster broadcasts. Each

processor runs the same program (with data dependent

branches} and has a complete, but different, set of data from

its workpacket. Large amount of storage may,

required on each element. Because of

therefore, be

the limited

communication requirements, this method can be efficient, but

because of memory requirements it is not necessarily cost­

effective.

3.1.1.2 Geometric Parallelism

Many physical problems have an underlying regular

geometrical structure, with spatially

{e. g. problems in field theory or

homogeneity allows the data to be

across the processor array, with

limited interactions

hydrodynamics) .. This

distributed uniformly

each processor being

responsible for a defined spatial area: This is illustrated

in fig. 3.3.

A processor communicates with neighbouring processors and

the communication load will be proportional to the size of

the boundary of the subdomain, while ,the computational load

30

J

Worker .--l~-o-r_k_e_r.., 1 Work e r I

FarMing Network: Linear Chain

Fig. 3.1

Worker Worker

FarMing Network Ternary Tree

Fig. 3.2

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0·0 0 0
0 0 li1 0 0 0 0 0 0 0 0 0

Oli11i11i10 0 0 0 0 0 0 0
0 0 li1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 li1 0 0 0

0 0 0 0 0 0 0 li1 li1 li1 0 0
0 0 0 0 0 0 0 0 li1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

GeoMetric ParallelisM

12 x 12 data array distributed

over 2 x 2 processor array

Fig·. 3.3

31

will be proportional to the volume of the boundary of the

subdomain. This type of parallelism is sometimes referred to

as domain decomposition or data parallelism and this type

is specially suitable for(transputer arrays.

3.1.1.3 Algorithmic Parallelism

This is a more fine-grained parallelism in which

features of the algorithm that are capable of concurrent

operation are identified and each processor executes a small

part of the total algorithm. Clearly, the resulting structure

will be specific to the particular algorithm used in the

application. This type of parallelism can be expressed

naturally in a language like Occam on transputer networks.

A common feature of this approach is the construction of

a number of pipes of processors, simil~r to those found in

pipelined vector supercomputers. Here, however, the pipes may

be more general and capable of splitting and merging in much
\

more flexible way and operate at a different level of

granularity.

In such a decomposition of the problem, the data now

flows between the processing elements, and is sometimes

referred to as Data Flow parallelism (not to be,confused with

the machine of the same name) . The communication load on each

processor is severely increased in this scheme. Indeed,

without care, communication bandwidth problems can become

dominant and severely degrade the performance. In addition,

an elaborate communication and control structure is needed.

An advantage of this type of decomposition, however, is that

32

little data space is required per processor. It has been

found that this type of problem decomposition gives

efficiencies of the order of 50% without much effort but

detailed analysis and load balancing can improve

performance.

3.1.2 The Mappinq-Of Processes onto Processors

3.1.2.1 Processes Space

the

In most procedural languages for parallel and

distributed programming, parallelism is based on the notion

of a process. A process is a logical processor that executes

code sequentially and has its own state and data. Processes

are declared, just like procedures.

Processes are created either implicitly by their

declaration or ·by some create cons'truct. With implicit

creation, one usually first dec.lares a process type and then

creates processes by declaring variables of that type. Often

arrays. of processes may be declared. In some languages based

on implicit process creation, the total number of processes

is fixed at compile time. This makes tqe efficient mapping of

processes onto physical processors easier, but it imposes a

restriction on the kinds of applications that can be

implemented in the language, since it requires that the

number of processes be known in advance.

Having an explicit construct for creating processes

allows more flexibility than implicit process creation. For

example, the creation construct may allow parameters to be

passed to the newly created process. These are typically used

33

for setting up communication channels between processes. If

processes do not take parameters, as in Ada [6], the

parameters have to be passed to a newly created process using

explicit communication. A mechanism is needed to set up the

communication channel over which the parameters are sent.

Another impor~ant issue is the termination of processes.

Processes usually terminate themselves, but some primitive

may be provided to abort other processes too. Some precaution

may be needed to prevent processes from trying to communicate

with a terminated process.

The problem space consists of the geometric dom~in in

general which is populated with the process elements like

grid · points etc. as mentioned earlier. The distribution of

the process elements in the geometric or data domain of the

problem can be static or can evolve during the execution. If

it is static the generally static load balancing would

suffice. Even if the distribution is dynamic, we don't

require to do dynamic load balancing upto lK
\

processors.

The number of process creations and synchronisations should

be minimized. Since process synchronisation is also

expensive, the grain size should be made as large as

possible, while keeping all the processors busy.

3.1.2.2 Processor Space

The processor space consists of the set of all

processes which are physically interconnected. The goal is to

connect the processors such that the degree of connectivity

is high so as to reduce the communication overheads. The

34

distribution of computations over the available physical

processors is also an important issue. This assignment of

computations to processors is termed as mapping.

Mapping strategies vary depending upon the application

to be implemented. The assignment of processes to processors

will be quite dif;erent in a computation whose objective· is

to obtain maximum speedup through parallelism, and an

application whose objective is to obtain high availability

through replication, for example.

When the goal is to speedup computation time through

parallelism, the mapping of processes to processors is

similar to load balancing in distributed operat~ng systems

both attempt to maximize parallelism through efficient use of

available computing power. But there are important
I

differences. An operating system tries to distribute the

available processing power fairly over competing processes

from different programs and different users. It may try to

reduce communication costs by letting processes that

communicate frequently run in pseudo-parallel on the same

processor. The goal of mapping, however, is to minimize the

execution time of a single distributed program. As all

parallel units are parts of th~ same program, the they are

cooperating rather than competing, so fairness need not be an

issue. In addition, reduction of communication overhead

achieved through mapping processes to the same processor must

be weighed against the resulting loss of parallelism [3]. If

the goal of application is to increase fault-tolerance, an

35

entirely different mapping strategy may be taken. Processes

may be replicated to increase availability. The mapping

strategy should at least assign the replicas of the same

logical process to different physical processors.

There are three, approaches for assigning parallei units

to processors, whether the assignment is done by the

programmer or the system : the processors can be fixed at

compile-time, fixed at run-time or not fixed at all. The

first method is least flexible, but has the distinct

advantage that it is known at compile-time which parallel

units will run on the same processor, allowing the programmer

to take advantage of the fact that these processes will have

shared memory available. With run~time approach to mapping

computations to processors, a parallel unit is assigned to a

processor when that unit is created. An example is the Turtle

notation designed by Shapiro for executing concurrent PROLOG

programs on an infinite grid of processors, where each

processor can communicate with its four neighbouring

processors [3]. The third approach to processor allocation,

allowing a process to execute on different processors during

its lifetime, is used by only a very few languages. Emerald,

for example, is an object-based language that allows objects

to migrate from one processor to another. The language has

primitive to determine the current location of an object, to

fix or unfix an object on a specific proce~sor, and to move

an object to a different processor.
/'

36

3.2 Interprocess Communication And Synchronisation

"Tell me to whom you are addressing
yourself when you say that. I am
addressing myself - I am addressing
myself to my cap. "

Jean Baptist Moliere

An important issue which must be addressed in the design

of a language for parallel programming is how the pieces of a

program which are running in parallel on different processors

are going to cooperate. This cooperation involves two types

of interaction communication and synchronisation. For

example, Process A may require some data X whiCh is the

result of some computation performed by Process B. There must

be some way of getting X from B to A. In addition if process

A comes to the point in its execution which requires

information X from process B, but process B has not yet

communicated the information to A for whatever reason, A must

be able to wait for it.

An issue related to synchronisation is nondeterminis•. A

process may want to wait for information from any group of

other processes, rather than from one specific process. As it
r-

is not known in advance which member (or members) of the

group will have its information available first, such

behaviour is nondeterministic. In some cases it is useful to

dynamically control the group of processes from which to take

input. For example, a buffer process may accept a request

37

from a producer process to store an item in the buffer

whenever the buffer is not full; it may accept a request from

a consumer process to add an item whenever the buffer is not

empty. To program such behaviour, a notation is needed to

express and control nondeterminism.

Expression of interprocess communication (IPC) falls

into two generar categories - shared data and message

passing - although this categorization is not always clear-

cut. Parallel logic languages that provide shared logical

variables, for example, are frequently used for programming

in a message passing style. It is to be noted that the model

provided by the language for expressing IPC and the

implementation of that model may be two entirely different

things. I shall restrict my explanation to systems without

shared memory since multiprocessor systems are mostly without

shared variable.

3.3 Message Passing

11There is nothing more requisite
in business than dispatch. 11

Joseph Addison

In multiprocessor systems without any shared memory, J

communication among the processors is mainly through message

passing. While sending a message, many factors come into play

who sends it, what is sent, to whom is it sent,

guaranteed to have arrived at the remote host,

is it
I

is it

guaranteed to have been accepted by the remote process, is

38

there a reply (or several replies}, and what happens if

something goes wrong. There are also many other

considerations involved in the receipt of a message. for

which process or processes on the host, if any, is the

message intended; is a process to be created to handle this

message; if the message is intended for an existing process,

what happens if the process is busy- is the message queued or

discarded; and if a receiving process has more than one

outstanding message waiting to be serviced, can it choose the

order in which it services messages-be it FIFO, by sender, by

some message type or identifier, by the contents of the

message, or, according to the receiving process's internal

state.

3.3.1 General Issues

based The most elementary primitive for message

interaction is the point-to-point message from one process

(the sender} to another process (the receiver}. Languages

usually provide only reliable message passing. The

run time system (or the underlying operating

language

system}

automatically generates acknowledgement messages, transparent

at the language level.

Most (but not all} messaqe-based interactions involve

two parties, one sender and one receiver. The sender

initiates the action explicitly, for example, by sending a

message or invoking a remote procedure. On the other hand,

the receipt of a message may either be explicit or implicit.

With explicit receipt, the receiver is executing some sort of

39

~ccept statement specifying which messages to accept and what

actions to undertake when a message arrives. With implicit

receipt, code is automatically invoked within the receiver.

It usually creates new thread of control within the receiving

process. Whether the message is received implicitly or

explicitly is transparent to the sender.

Explicit message receipt gives the receiver more control

over the acceptance of messages. The receiver can be in many

different states, and accept different types of messages in

each state. More accurate control is possible if the accept

statement allows messages to be accepted conditionally,

depending on the arguments of the message as in Concurrent c.

A file server, for example, may want to accept a request to

open a file only if the file is not locked. In Concurrent C

this can be coded as

accept open(f) such that not_locked(f) {

process open request

}

Some languages give the programmer.control over the order of

message acceptance. Usually messages are accepted in FIFO

order, but occasionally it is useful to change this order

according to the type, sender, or contents of a message. For

example the file server may want to handle read requests for

small amounts of data first

40

accept read(f, offset, nr_bytes) by nr_bytes {

'
process read request

}

The value given in the by expression determines the order of

acceptance. If conditional or ordered acceptance is not

supported by the language, an application needing these

features will have to keep track of requests that have been

accepted but not handled yet.

Another major issue in message passing is naming (or

addressing) of the parties involved in an interaction: to
/

whom does the sender wish to send its message, and,

conversely, from whom does the receiver wish to accept a

message ? These parties may be named directly or indirectly.

Direct naming is used to denote one specific process. The

name can be static name of the process or an expression

evaluated at run time. A communication scheme based on direct

naming is symmetric if both the sender and the receiver name

each other. In an asymmetric scheme only the sender names the

receiver. In this case, the receiver is willing to interact

with any sender. It is to be noted that interactions using

implicit receipt of messages are always asymmetric with

respect to naming. Direct naming schemes, specially the

symmetric ones, leave little room for expressing

nondeterministic behaviour. Languages using these schemes,

therefore, have a separate mechanism for dealing with

nondeterminism.

41

Indirect naming involves an intermediate object,

usually called a mailbox, to which the sender directs its

message and to which the receiver listens. In its simplest

form the mailbox is just a global name. More advanced schemes

treat mailboxes as values that can be passed around, for

as part of the message. This option allows highly

communication pattern to be expressed. Mailing a

example,

flexible

letter to

illustrates

a post office box rather than a street

the differenc~ between indirect and

address·

direct

naming. A letter sent to a post office box can be collected

by anyone who has the key to the box. People can be given

access to the box by duplicating keys or by transferring

existing keys (possibly through another P. 0. box). A street

address, on the other hand does not have this flexibility

[3] •

3.3.2 synchronous and Asynchronous Point-to-Point Messaqe

The major design issue for a point-to-point message

passing system is the choice between synchronous and

asynchronous

passing, the

message

sender

passing.

is blocked

With synchronous message

until the receiver has

accepted the message (explicitly or implicitly). Thus, the

sender and the receiver not only exchange data, but they also

synchronize. With asynchronous message passing, the sender

does not wait for the receiver to be ready to accept its

message. Conceptually, the sender continues immediately after

sending the message. The implementation of the language may

suspend the sender until the message has at least been copied

42

for transmission, but this delay is not reflected in the

semantics.

In the asynchronous model there are some semantic

difficulties to be dealt with. As the sender S does not wait

for the receiver R to be ready, there may be several pending

message sent by s, but not yet accepted by R. If the message

is order preserving, R will receive the messages in the order

they were sent by s. The pending messages are buffered by the

language run time system or the operating system. The problem

of a possible buffer overflow can be dealt with in one of two

ways. Message transfers can simply fail whenever there is no

more buffer space. Unfortunately, this makes message passing

less reliable. The second option is _to
·-

use flow control,

which means the sender is blocked until the receiver accepts

some messages. This introduces a synchronization between the

sender and the receiver and may result in unexpected

deadlocks.

In the synchronous model, however, there can be only

one pending message · from any process S to a process R.

Usually, no ordering relation is assumed between ~essages

sent by different processes. Buffering problems are less

severe in the synchronous model, as a receiver need buffer at

most one message from each sender, and additional flow

control will not change the semantics of the primitive. On

the other hand, the synchronous model also has its

disadvantages. Most notably, synchronous message passing is

less flexible than asynchronous message passing, because the

sender always has to wait for the receiver to accept the

43

message, even if the receiver does not have to return an

answer (3].

3.3.3 Rendezvous

A point-to-point message establishes

communication between two

between processes~ however,

processes. Many

are essentially

one way

interactions

two way in

nature. For example, in the client/server model/ the client

requests a service from a server and then waits for the

result returned by the server. This behaviour can be

simulated using two point-to-point messages, but a single

higher level construct is easier to use and more efficient to

implement. Rendezvous is one such construct.

The rendezvous model is based on three concepts : the

entry declaration, the entry call, and ·the accept statement.

The entry declaration and accept statement are part of the

server code, while the entry code is on the client side. An

entry declaration looks like a procedure declaration. An

entry has a name and zero or more formal parameters

associated with it. An entry call is similar to a procedure

call statement. It names the entry and the process containing

the entry and it supplies the actual parameters. An accept

statement for the entry may contain a list of statements, to

be executed when the entry is called, as has been illustrated

in the following accept statement for entry incr :

accept incr (x:integer; y: out _integer) do

y = X + 1;

end;

44

An interaction (called a rendezvous) between two processes 8

and R takes place when 8 calls an entry for R, and R executes

an accept statement for that entry. The interaction is fully

synchronous, so the first process that is ready to interact

waits for the other. When the two processes are synchronised,

R executes the do part of the accept statement. While

executing these statements, R has access to · the input

parameters of the entry, supplied by 8. R can assign values

to the output parameters which are·passed back to 8. After R

has executed the do statements, 8 and R continue their

execution in parallel. R may still continue working on the

request of 8, although 8 is no .longer blocked.

3.4 Expressing And Controlling Nondeterminism

"A person with one watch knows what time it
is ; a person with two watches is never
sure. "

Proverb

As stated before, the interaction pattern between

processes are not always deterministic, but sometimes depend

on the runtime conditions. For this reason, it is necessary

to introduce models for expressing and ·controlling

nondeterminism. As explained earlier, some communication

primitives are nondeterministic. A message received

indirectly through a port may have been sent by any process.

Such primitives provide a way to express nondeterminism, but

not to control it. Most programming languages use a separate

45

construct to control nondeterminism. Two such constructs are

the select statement, used by many algorithmic languages

and the guarded Horn clause, used in most parallel logic

programming languages. Both are based on the guarded command

state.ment, int:!:"<:H.:li.i<:;ed 'by Dijkstra as a sequential control

structure.

3.4.1 The Select Statement

A select statement consists of a list of . guarded

commands whose format is as follows :

guard -> statements

The guard consi~ts of a boolean expression and some sort of

"communication request. " The boolean expression must be free

of side effects, as it may be evaluated more than once during

the course of the select statement's execution. In Hoare's

Communicating Sequential Processes, a guard may contain an

explicit receipt of a message from a specific process P. Such

a request may either succeed (if P has sent such a message),

fail (if P has already terminated) or suspend (if P is still

alive but has not sent the message yet). The guard itself can

either succeed, fail or suspend : the guard succeeds if the-

expression is "true" and the request succeeds; the guard

fails if the boolean expression evaiuates to "false" or if

the communication request fails; or the guard suspends if the
' ' expression is true and the request suspends. The select

statement as a whole blocks until either all of its guards

fail or some guards succeed. In the first case, the entire

select statement fails and has no effect. In the latter case,

46

one succeeding guard is selected nondeterministically and the

corresponding statement part is executed.

Select statements can also be used for controlling

nondeterminism other than communication. Some languages allow

a guard to contain a timeout. instead of a communication

request. A guard containing a timeout of T seconds succeeds

if no other guard-succeeds within T seconds. This mechanism.

sets a time limit on a process that wants to wait for a

message. Another use of select statement is in the control of

termination of processes. In Concurrent C, a guard may

consist of the keyword terminate. A process that executes a

select statement containing a terminate guard is willing to

terminate if all other guards fail or suspend. If all

processes are willing to terminate, the entire Concurrent C

program terminates. Roughly, if a11· children processes

created by a parent process are willing to terminate and the

parent process has completed the execution of its statements,

all these processes are terminated. This mechanism assumes

hierarchical processes.

An important point to be noted in connection with

select statements in most programming languages is that

are unfair. In Communicating Sequential Processes

the

they

(CSP)

introduced by Hoare , for example, if several guards are

successful, one of them is selected nondeterministically. No

assumption can be made about which guard is selected.

Repeated execution of the select statement may select the

same guard over and over again, even if there are other

successful guards. An implementation may introduce a degree

47

of fairness, by assuring that a successful guard will be

selected within a finite number of iterations, or by giving

guards equal chances. On the other hand, an implementation

may evaluate the guards sequentially and always choose the

first one yielding "true". The semantics of select statements

donot guarantee a~y degree of fairness, so the programmers

cannot rely on it.

Various proposals have been made for giving programmers

explicit control over the selection of succeeding guards.

Silberchatz has suggested a partial ordering of the guards.

Elrad and Maymir-Ducharrne have proposed prefixing of every

guarded command with a compile-time constant called the

preference control value. If several guards succeed, the one

with the highest preference control value (i. e. priority) is

chosen. If there are several guards with this value, one of

them is chosen nondeterministically. This feature is useful

if some requests are more urgent than others. For example,

the buffer process may wish to give consumers a higher

priority than producers.

3.4.2 Guarded Horn Clauses

Logic programs are inherently nondeterministic. In

reducing a goal of logic program, there are often several

clauses to choose from. Intuitively, the semantics of logic

programming prescribe that the underlying execution machinery

must simply choose the "right" clause, the one leading to a

proof. This behaviour is called don't know nondeterminism. In

sequential logic languages, these semantics are implemented

48

using backtracking. At each choice point an arbitrary clause

is chosen, and if it later turns out to be a wrong one, the

system resets itself to the state before the choice point and

then tries another clause.

In a parallel execution model, several goals may be

tried simultaneously. In this model, backtracking is very

complicated to implement. If a binding for a variable has to

be undone, all processes that have used this binding must

backtrack too. Most parallel logic programming languages,

therefore, avoid backtracking altogether. Rather than trying

the clauses for a given predicate one by one and backtracking

on failure, parallel logic languages

i) search all these clauses in parallel and

ii) do not allow any bindings made during these

parallel executions to be visible to the outside

until

to.

one of the parallel executions is committed

This is called the OR-parallelism. Unfortunately, this cannot

go on for long, since the number of search paths that can be

worked on in parallel grows exponentially with the length of

the proof.

A popular technique to control OR parallelism is

committed choice nondeterminism, which nondeterministically

selects one alternative clause and discards the others. It is

based on guarded Horn clauses of the form

A :- Gl, G2, . . Gn I Bl, B2, Bm

The conjunction of the goals Gi is called

49

(n ~ o, m ~ 0)

the guard; the

conjunction of the goals Bi is the body. Declaratively, the

commit operator "I" is also a conjunction operator.

Just ~ike the guards of a select statement, the guard

of a guarded Horn clause can either succeed, fail or suspend.

A guard suspends if it-tries to bind a variable that it is

.not allowed to bind. If a goal with a predicate A is to be

reduced, the guards of all clauses for A are tried in

parallel, until some guards succeed. The reduction process

then selects one of these guards nondeterministically and

commits to its clause. It aborts execution of other guards

and executes the body of the chosen clause.

Till now this seems to be same as the select statement,

but there are some subtle differences. Guards that ar~

aborted should have no side effects at all. Precautions must

be taken against guards that try to bihd variables in their

environment.

50

CHAPTER FOUR

LOAD BALANCING

Load balancing is an essential module of a parallel

operating system. This module is responsible for allocating

modules transparently to one or more processors for

execution. Load balancing is vital if dynamic module creation

is to be provided in such a way as to maximize the use of

available hardware. With this module a program need not be

rewritten when the hardware topology is changed, provided

there is sufficient parallelism to take advantage of the new

hardware. The requirement of load balancing is to distribute

the computational and communication loads in such a manner

that the members communicating with each other stay as close

to each other as possible and the computation is spread over

all the processors of the parallel computing system evenly.

4.1 Proper Load partitioning

"This shows how much easier it is to be critical
than to be correct."

Benjamin Disraeli

Efficiency of the parallel computing system with N

nodes (processing elements) is given by

E = s I N

where the parallel machine runs S times faster than a

sequential machine using an optimal sequential algorithm.

This efficiency is reduced by

51

i) Unequal distribution of computation.

ii) communication overhead.

The job of allocating task to CPUs in a parallel Computing

System in such a way that both the above conditions are met

is called Load Balancing. This job is essentially matching

the process space on to the processor space as best as

possible.

4.2 Simulated Annealing

"Man is a tool making animal."
Eenjamin Franklin

Simulated Annealing (12] is a powerful and general

algorithm for solving optimization problems in which the

problem to be optimized can be represented as a function that

has many variables and many local minima. Because many real-

world design problem can be cast in the form of such

optimization problems, there is intense interest in general

techniques for their solution. Simulated annealing is one

such technique of rather recent vintage (it was introduced

in 1982 by Kirpatrick, Gelatt and Vecchi) with an unusual

pedigree : it is motivated by an analogy to the statistical

mechanics of annealing in solids. To understand why such a

physics problem is of interest, consider how to coerce a

solid into a low energy state. A low energy ~tate usually

means a highly ordered state, such as a crystal lattice; a

relevant example here is the need to grow silicon in the form

of highly ordered, defect-free crystals for use in

semiconductor manufacturing. To accomplish this, the material

52

is annealed: heated to a temperature that permits many atomic

rearrangements, then cooled carefully, slowly until the

material freezes into a good crystal. Simulated annealing

techniques use an analogous set of controlled cooling

operations for nonphysical optimization problems, in effect

transforming a poor, unordered· solution into a highly

optimized, desirable solution. Thus simulated annealing

offers an appealing physical analogy for the solution of

optimization problems; and more importantly, the potential to

reshape mathematical insights from the domain of physics into .
insights for real optimization problems.

Interest in such solution techniques is intense because

few important combinatorial optimization problems can be

solved exactly in a reasonable time. Many optimization

problems arising in practice are NP-complete : i.e. all known

techniques for obtaining an exact so~ution require a time
\

that is exponentially distributed with respect to the size of

the problem. Hence emphasis has been directed towards

heuristic techniques for obtaining a solution to these

optimization problems. The difference between an algorithm

and a heuristic is that a heuristic is not guaranteed to give

the optimum solution. Rather a heuristic is designed to

provide an acceptable answer for the class of NP-complete

problems. In practice, however, the terms algorithm and

heuristic are often used interchangeably. Moreover, simulated

annealing is not an algorithm in the sense that it prescribes

a mechanical sequence of computations for solving a specific

problem. Annealing is a strate~y or style for solving

53

combinatorial optimization problems. Specifically simulated

annealing is a heuristic solution strategy applicable to a

wide variety of optimization problems. It gives excellent

results but is very slow. Hence it is used to approximate the J

global minimum as closely as computational resources permit.

For problems that are not well understood, it may not be

possible to find-an algorithm which can take advantage of

problem-specific properties. For such problems, Simulated

Annealing has been found to be extremely successful, even

with long computation time. Simulated Annealing has been

widely used to solve problems like VLSI placement and Load

Balancing.

Heuristic strategies for solving optimization problems

that attempt to find a minima of any function f(X 1 ,x2 , XN)

for theN parameters x1 , x2 , ... XN come in several styles.

Sometimes constructive heuristics can be found, which build

up a good answer directly, piece by piece. Of more interest

are iterative improvement strategies that attempt to perturb

some existing, suboptimal solution in the direction of a

better, lower-cost solution. The i~ea can be neatly explained

with the help of a ball and hills graph as shown in fig. 4.1.

The set of all values of the objective function taken over

all legal configurations is termed cost surface. In this

graph, the value of the objective function has been plotted

for a single parameter i.e. N = 1, as a set of hills and

valleys in the cost surface. The ball represents the current

configuration that is planned to be perturbed. In practice,

iterative improvement algorithms often start with a ra~dom

54

initial configuration, or with a heuristically constructed

initial configuration that is not as costly as a random

solution.

To find a good solution, we try to perturb the known

solution to improve it. From the diagram, an obvious approach

is to explore easily reached neighbouring configurations and

to select the one-with least cost, i.e. the one giving the

most improvement. In practice, we attempt small random

perturbation to the configuration that yields a nearby

solution. This process can continue starting from the new

configuration until no further improvements are obtained, at

which point the algorithm terminates. This strategy seems

reasonable, but it has a serious problem : it is easily

trapped in local minima, solutions that look good in some

small neighbourhood of the cost surface but are not

necessarily the global optimum. Standard iterative

improvements are a downhill-only style. In fig. 4.1 each new

perturbation moves to a configuration downhill from the

previous one, thus becoming trapped in local minima. In

practice, one scheme to overcome this is simply to try

random initial configurations, improve this and use the

answer found. However, for very large problems,

many

best

the

computational

starts needed

expenses are great here, the number of random

to adequately sample the cost surface is

unreasonable, and still there is no guarantee of finding the

best answer.

Simulated annealing offers a strategy very similar to

iterative improvement, with one major difference : annealing

55

Coct.

ContrfW"ttl•_.

Fig. 4.1

56

allows perturbations to move uphill in a controlled fashion.

The individual perturbations are now referred to as moves.

Because each move can now transform one configuration into a

worse configuration, it is possible to jump out of a local

minima, and potentially fall into a more promising downhill

path. However, because the uphill moves are carefully

controlled, we need not worry about getting close to a good,

final solution, only to randomly jump uphill to some far

worse one.

The relevant analogy here is physical annealing of a

solid. To coerce some material into a low energy state, it is

heated, then cooled slowly, so that it comes to thermal

equilibrium at each temperature. Simulating this process is
\

very similar to a combinatorial optimization task. For the

physical system, the goal is to find s.ome arrangements of

atomic particles (a configuration) that minimizes the . energy

of the system. The basic requirement for simulating this

process is the ability to simulate how the system reaches
\

thermodynamic equilibrium at each fixed temperature in a

schedule of decreasing temperature used to anneal it. In

physical systems, temperature has a meaning; in arbitrary

nonphysical optimization problems, the temperature is simply

a control parameter. The idea is to employ a cooling

schedule, a sequence of decreasing temperatures, to moderate

the acceptance of uphill moves over the course of the

solution. Initially, this effective temperature parameter is

high enough to permit an aggressive, · essentially random

57

search of the configuration space, thus allowing most uphill

moves. As the temperature cools, fewer uphill moves are

permitted. In this temperature regime , annealing closely

resembles standard downhill-only iterative improvement.

4.2.1 The Algorithm

The energy of the system at any state si is E{Si}

and is determined by a cost function used to assign value to

that state. Temperature is used as a control parameter to

guide the system to a low cost (low energy) state. The value

of temperature

increases the

determines whether a perturbation that

energy is to be accepted. The simulated

annealing algorithm is started with a temperature T equal to

the initial temperature T0 and some initial state s 0 . The

system is perturbed to get a new state sn.The change in

energy (sE) is calculated. If the energy is decreased, the

perturbation is accepted .Otherwise the perturbation is

accepted with a probability e-sE/T. At higher temperatures,

this probability is large and most of the moves which

increase the energy are accepted. As temperature falls, only

small perturbations are allowed. At each temperature, the

algorithm reaches equilibrium and then the temperature is

reduced. The system is frozen when the system will not

improve despite further reductions in temperature.

An important point worth mentioning in connection with

simulated annealing algorithm is range limiting. It is to be

recalled that at colder temperatures, large uphill moves are

unlikely to be accepted. Nevertheless, there evaluation takes

58

time, and it is worthwhile attempting to bias the generation

of random moves in favour of those more likely to be accepted

and reach closer to the optimal solution. Thus at lower

temperatures, some other form of control is required to reach

nearer to the optimal solution simultaneously reducing the

computational overheads.

Another interesting point is that simulated

algorithm is nondeterministic, and hence, will

different answers each time it is run, even on

problem. This is because of the probabilistic

annealing

produce

the same

nature of

choosing moves and accepting uphill moves. In particular,

there is· no guarantee of getting precisely the optimum

solution to a problem in annealing algorithm or even getting

the same solution on multiple runs. What annealing really

offers is some ,probability of getting out of some local

minima; this is not the same as a guarantee of finding the

optimum.

A fundamental question concerns the convergence of

simulated annealing algorithm and asks whether it is possible

formally to prove that it will converge to an optimal answer.

It turns out that, by making certain simplifications,

annealing algorithms can be modelled probabilistically; in

fact, convergence can be proven. However these technical

proofs show that annealing converges asymptotically,in

probability. In other words, if we perform enough (infinitely

many) moves, the probability that we have found a global

minimum can be made as close to unity as we like.

59

4.3 Simulated Annealing and Load Balancing

"And this is the fashion of which thou shalt make it."
Genesis 6:15

The process to processor mapping in the case of

simulated annealing is done for both types of problems

mentioned on to the processor spaces configured in various

topologies like pipeline, mesh, torus, hypercube, binary tree

and wk-recursive. For the heuristics algorithm the

implementation is done for a completely disjointed processor

space. We start placing the processes on to the processors

till its share of average load is satisfied. The processes to

be clustered on to the single processor are determined by the

process - processes communication among the processes being

considered for placement. The topology is configured at the

end on a demand driven basis of processor processor

communication.

To implement Simulated Annealing for a specific purpose, the

following parameters have to be defined :

1. An energy (cost) function.

2. A perturbation technique.

3. A cooling schedule.

For load balancing the three parameters mentioned above are

represented as follows :

l)Enerqy function definition: An energy function

(Hamiltonian) is defined which sets the goals the algorithm

60

should achieve.The computational load for each member is say

in the FEM/FDM is the same. However since the real-time

communication is not known, interprocessor communication

distances are sought to be minimized.Thus the intermediate

processor will not be tied up in transmitting messages from

and to other non-neighbouring processors.The hamiltonian

thus consists of two parts

i) Computational part If Wi = computational load on

processor i, then all Wi's should be equal. A measure of

the inequality of this load will be obtained by finding

the sum of the squares of all Wi's.

This part of the hamiltonian can thus be represented by

Hcomp = A ~ wi 2 for all i.

Hcomp will be minimum when all the Wi's are equal.

Here A is a constant which normalises computational and

communication loads. I have assumed it to be unity.

ii) Communication part If C·.
1) is the amount of

communication and D·.
1) the length of the path between

processors i and j then this part of the hamiltonian can

, be represented by the sum of the products of

as

for all i,j.

The Hamiltonian can be written as

H = A ~ W ·
2 + ~ C · · * D;J·. 1 1) .L

61

C· · · and
1)

D·.
1)

2) A perturbation technique : The system can be perturbed by

i) Moving a member from one processor to another.

ii) Exchanging members between two processors.

Of these, I have used the first technique for load

balancing.

3) A cooling schedule . The temperature is reduced by the

cooling rate when either of the following conditions holds :

i) Number of moves accepted at that temperature exceed

10 % of the number of members {N) .

ii) The number of attempts made = N .

Iterations are started with a high value of temperature.

As an initial condition, members {to be balanced) are

distributed randomly to processors. A member chosen at random

is attempted to be moved to another processor. The move is

accepted if the Hamiltonian decreases as a result of this

move. If the Hamiltonian increases because of this move, it

is accepted with a probability e-sH/T, where T is the current

temperature of the system and sH = Increase in Hamiltonian.

The temperature' is reduced as per the cooling schedule

mentioned above.

The results obtained by using the simulated annealing

algorithm for load balancing are extremely encouraging as has

been shown in fig. 4.-2 and 4. 3 where the processes have been

mapped onto a four processor machine. The fig. shows clearly

that the processes requiring communication have be~n placed

either on the same node or on a neighbouring node.

62

Mesh used to generate input communication file for Load Balancing

Fig. 4.2

63

Elements of mesh mapped onto 4 processors of a parallel
system after load has been balanced

Fig. 4.3

64

CHAPTER FIVE

IMPLEMENTATION

."All words,
And ilo performance!"

Philip Messenger

The proposed simulated annealing algorithm has been

simulated on a VAX-:ll/780 computer system. · The software has

been written in C. The software. was tested for various

topologies such as mesh, torus, binary tree, hypercube

pipeline and wk-recursive.

The topologies consisted of sixteen nodes each . The

software initially reads two files, the first one of which

contains the computational load on each processor whereas ·

the second one contains the identities of different processes

that require communication alongwith the amount

communication.

The algorithm consis~ed of the following modules

(i) The initial assignment module

(ii) The process selection model

(iii) The processor determination module

(iv) The destination processor module

(v) The No. of hopes module

(vi) The hamiltonian calculating module

(vii) The router module

5.1 The Initial Assignment Module
'

of

This module is called by the main program. This module

initially assigns processes to all processors. In this

65

simulation two types of initial assignments were considered :

random and grid. In the random model, a process was

arbitrarily assigned to a processor by generating a random

integer between 0 and 15. In the grid start, a processes are

numbered like grid points and are serially assigned to

processors.

5.2 The Process Selection Module

This module is responsible for selecting on process that

is to be moved from its present processor to some other

processor. In this implementation, the selection of process

was random.

5.3 The Processor Determination Module

This module is used to determine the processor on which

the process selected to be moved is presently stored. Since

the processes were to be moved regularly from one node to

another, this was achieved by carrying out a linear search of

the processqueue of each processor until the selected process

was found.

5.4 The Destination Processor Module

This module returns an integer which is the

identification number of the processor to which the selected

member is to be moved. This selection was of two types

random and restricted. In the random move, a member was

66

attempted to be moved to any randomly generated processor. In

the restricted move, the new processor was chosen from among

the processors on which the neighbours of the member, chosen

to be moved, are lying.

5.5 The No.-of-Hops Module

This module returns the no. of links that are to be

transferred when a process is to be moved from a source node

to a destination node by the shortest route. This value is

required in the calculation of the second part of the

hamiltonian. Although the value returned by this module could

also have been obtained from path module which returned the

path along which the process was to be moved, it was highly

desirable to have a separate and simpler module for the

purpose of determining the no of links ·in order to reduce the

time complexity since a process selected might not be moved

each time. The no. of hop module for various topologies is

described below.

5.5.1 Mesh

The processors are arranged in a rectangular array

along m rows and n columns.

In this case m = n = 4

If s = source node and d = destination node then

source x coord = s%n;

source_y_coord = sfn;

dest x coord = d%n;

67

dest_y_coord = djn;

hops = abs(source_x_coord - dest x coord) +

abs(source_y_coord- dest_y_coord);

return hops;

In the worst case when the processor s and d are at the

two diagonally opposite ends, the no. of links needed to be

traversed becomes m+n-2. For a 4 x 4 mesh this value was 6.

5.5.2 Torus

Here also the processors are connected along m rows

and n columns with the difference that the processors at the

boundary of one end are connected to those at the other end.

For m = n = 4, the no of hops algorithm is given as follows:

If s = source node and d = destination node then

sour x coord = s%n;

sour_y_coord = sjn;

dest x coord = d%n;

dest_y_coord = djn;

If abs(sour_x_coord - dest_x_coord) > n/2

hops_x = abs(abs(sour_x_coord- dest_x_coord) ~ (n/2));

else

hops_x = abs(sour_x_coord- dest_x_coord);

If abs(sour_y_coord - dest_y_coord) > m/2

hops_y = abs(abs(sour_y_coord- dest_y_coord) - (m/2));

else

hops_y = abs(sour_y_coord- dest_y_coord);

hops = hops_x + hops_y;

return hops;

68

5.5.3 Binary Tree

In this case the processors are numbered from 0 to

n - 1, where n is the number of nodes. For n = 16, they are

numbered from 0 to 15. The processor no. 0 acts as the root

node of the binary tree. As explained in chapter 2, a

processor i is connected to a processor j if i = 2*j + 1 or i

= 2*j + 2 or vice versa. The code for finding the number of

hops is recursive.

If s = source node and d = destination node then

if (s == d) hops = o;

else if (s > d)

{

if even(s) hops = 1 + no_of_hops(s/2-1, d);

else hops= 1 + no_of_hops(s/2,_ d);

}

else

{

if even(d) hops= 1 + no_of_hops(s, d/2-1);

else hops= 1 + no_of_hops(s, d/2);

}

return hops;

5.5.4 Pipeline

In this case, the no of links required to be

traversed for sending a message from one node to another

through shortest route is given by the absolute value of the

difference between s and d, where s is the source node and d

is the destination node.

69

5.5.5 Hypercube

Here the no. of hops is calculated by comparing

the binary values of the two nodes and finding the number of

bits in which they differ.

Thus, if s = source node and d = destination node then
\

temp = s - d wh~re - is the exclusive OR operator.

The number of bits which are 1 in the binary representation

of temp gives the no of hops. To count the number of bits in

temp which are 1, the most significant bit is checked each

time and temp is rotated left until it becomes o. Each time

the most significant bit is found to be 1, the counter is

incremented by 1. In this case, the no of hops will be

maximum when all bits of s are the complements of the

corresponding bits of d.

5.5.6 WK-recursive

In this case the number of hqps is calculated by using

the following code.

hops = o;

so = s & 3;

s1 = s & 12;

s1 = s1 >> 2;

s2 = s & 48;

s2 = s2 >> 4;

s3 = s & 192;

s3 = s3 >> 6;

dO = d & 3;

d1 = d & 12;

70

dl = dl >> 2;

d2 = d & 48;

d2 = d2 >> 4;

d3 = d & 192;

d3 = d3 >> 6• ,

if (s3 != d3) {

if(so != d3){

so = d3;

hops++;

}

if(sl != d3) {

sl = d3;

hops++;

hops++;

}

if(s2 != d3){

s2 = d3;

hops += 4;

}

so = sl = s2 = sJ;

hops++;

}

if(s2 != d2){

if(' sO != d2){

so = d2;

hops++;

}

71

if(sl != d2){

sl = d2;

hops++;

hops++;

}

so = sl = s2;

hops++;

}

if(sl
,_ .- dl){

if(so != dl){

so = dl;

hops++;

}

so = sl;

hops++;

}

if(so != dO){

hops++;

} '

return hops;

5.6 The Hamiltonian Calculating Module

This module calculates the value of the hamiltonian

during each iteration and, if it is less than the value of

hamiltonian in the previous iteration, calls the router

module to determine the path alongwhich the process is 'to be

moved. If the value of hamiltonian increases, it calculates

the probability to find whether

72

5.7 The Router Module

This module is used to determine the path alongwhich a

selected process is to be moved from one node to another. In

this module Dijkstra's shortestpath algorithm has been used~

Since the simulation was carried on a serial machine, it was

not possible to actually move a process from one node to

another. However, for statistical purposes, the transm1ssion

and delay time at each node was calculated to analyse the

effects of communication among the processes. This module

takes three parameters - the address of the source node, the

address of the destination node and an array in which it

copies the path alongwhich the message is to be routed.

In addition to above, some other modules that were used

in this simulation are addqueue and defeteQ. Addqueue adds a

process to the processqueue of a processor. DeleteQ removes a

process from the process queue of a node.

5.8 Experimental Results

The experiment was carried out within a temperature

range of 4 to .1 degrees. The cooling rate was 0.97. The

total number of members to be balanced were taken as 208. The

input communication patterns were of two types :

a) Regular In problems with automatic grid

generation, the members are numbered in order. This

represents a regular communication pattern in which

communication is of contiguous nature.

73

b) Irregular If · the members are not properly

numbered, (e.g. 0 talks to 127 wbich in turn talks to 61

etc.), it represents an irregular communication pattern. This

input was generated by generating two random numbers,

communicating with each other.

The results have been shown in table 5.1.

TABLE 5.1

Number of members = 208

Number of processors = 16

Best % Time (Sec)
Topology Mixed Grid Mixed Grid

Mesh 40 - 5 25 - 10 18 13

Torus 100 - end 30 - 10 17 11

Tree 100 - end 30 - 10 18 12

hypercube 100 - end 10 - 0 17 13

pipeline 40 - 10 - 12 -
wkrecursive 100 - end 100 - end 11 11

74

50. Ill

tcr ,tcg ,trr
top top top

=p: =r.==--=:::;;r----=----¥---------+------+---- I ------ 't -----

0 t::~p 5
mesh tor hyp tree wl<r pipe

Different topologies vs
time (line, plus, diamond>
for regular input & random
start-tcr,& grid start -tcg,
random iHput & random start
(trr>

Fig. 5.1

75

2.121121

ac~ ,acg ,a~~

top top top

0.0121

...... -~- ·--·--·--._
.-·-··- -

-------¥----f.".- ---~---

_________ .. _____ '"·.

1---------- ··-.
----+--------+-----------+--- ----·+-· --·

. .. --

0 top 5
mesh to~ hyp tree wkr pipe

Diffe~ent topologies vs
a v . hops < 1 i n e , p 1 us , X)
fa~ ~egula~ input & ~andom
sta~t-ac~,& g~id sta~t -acg,
random input & random sta~t
<a~~>

Fig. 5. 2

76

75.0

tcr ,tcg ,trr
top top top

different topologies
vs time for
contiguous input 0
& random start (cr) ,
contiguous input & grid
start (cg) and- random
input & random start (rr)

0 top
mesh tor hyp tree

KEY To The FIGURES (cr) is 'line' (rr) is •x•
& (cg) j " ' + ' .

Fig. 5.3

77

5
wkr pipe.

her , heg ,hrr
top top top -+-----tl--__ --·- _..:.-+-----

---+---
------;r----:t·--·

----- -------
_ .. ,__ __ _ .. -~···-·- ,,

---:t;·-- -----

top 5 IZI
mesh hyp tree wkr pipe

Different topolbgies vs
hamiltonian <line, plus, X>
for regular input & random
start-her,& grid start -heg,
random input & random start
<hrr)

Fig. 5.4

78

100 I

comp ,comm ,tot
i i i

0 i 15

Members : 208, Communication pattern Contiguous
Topology : WK Recursive, Procs : 16
Initial assignment: Random
Hamiltonian : 333
ave.load : 53.4, ave.hops : 0.58,
Nonneighbour communications : 29
Time: 39 sees.
Type of moves : Random from 40% to 10% of temp.
Temperature range : 4 to 0.1

Fig. 5.5

79

··-···-·-----------·-------------,
100

i - I I I i ' ! I I ! .. i

campi' comm i 'tot i !·I I ! l H. r-J ! ··11: -l !) j . J j/ j i -- rl
1 i. 1 ",· ,_. ~-l--r~ -· 1. I I I 1.,- - .. 1,. · j1~ , , : ' ! · · ~ ! i ' ; '

I
' I I . ! ! I i ! I I

!/: ; I' I I I i I ,,. i, I :,·
r 1 ' ' 1 1 1 1 1 1 ' I , ,

I i I i I 1· ! I ! 1 i i , : . : I ! I · I
; I I I : ' I ! I I I I i I i ' ! ! I ! I I I i

0 !. !.LJJ~JLJrJJ-1.: ;,·_: 1 ••. l .. i~~~~~i::LJA~_:J i--, !_ J tJ-'.J:J:d i-~J~}J
0 i 15

Members : 208, Communication pattern Contiguous
Topology : Mesh, Procs : 16
Initial assignment: Random
Hamiltonian : 358
ave.load : 54.5, ave.hops : 0.66,
Nonneighbour communications : 25
Time: 51 sees.
Type of moves : Random from 40% to end of temp
Temperature range : 4 to 0.1

Fig. 5.6

80

5.9 Conclusion

"Better is the end of a thing
than the beginning of it."

Ecclesiastes 7:8

The results obtained on the basis of experiments

carried out on simulated annealing have been quite

encouraging. The algorithm can, therefore, be applied on a

real parallel machine for the purpose of load balancing to

achieve the desirable performance of reducing the computation

time for massively CPU bound tasks.

The algorithm, however, suffers from a majo~ drawback
I

i.e. it requires too much of time to achieve the desired goal

of proper load partitioning. Another drawback of the

algorithm is that the balancing achieved is static. Thus, in

those applications where processes are dynamically created

and destroyed, the performance of the parallel program may be

far from desired. Nonetheless, ·it is to be kept in mind that

parallel programs are mainly used in largescale scientific

applications where the processes are normally static and a

fairly good speedup can be achieved.

81

BffiLIOGRAPHY

"For in thy book all things are written"
Psalm 139:16

[1] Ahluwalia, v., "Design of a User Friendly Communicat;ion

Syst;em for a Dist;ribut;ed Memory Parallel Comput;ing

Syst;em", M.Tech. Dissertation, School of Computer and

system Sciences, Jawaharlal Nehru University, New Delhi,

January 1993.

[2] Ahluwalia, V & Singh, G.S., "Load Part;it;ioning on a

Transput;er Based Parallel Computing System Using MIMD

Algorithms of Simulated Annealing and Heuristics", ASME

'90 Conference, Tirupati, December 1990.

[3] Bal, H.E., Steiner, J.G.and Tanenbaum, A.S.,"Programming

Languages for Distributed Comput;ing Systems", ACM

Computing Surveys, Vol. 21 No. 3, September 1989.

[4] Bultan, T. & Aykanat, c., "Circuit; Partit;ioning Using

Parallel f?ean Field Annealing Algorit;hms",IEEE symposium

on Parallel and Distributed Processing,December 1991.

[5) Christie, D. J. E. , "Virtual Channels on the MIEKO MMVCS" , ·

M.Sc. Degree, University of Edinburgh, September, 1988.

[6] Department of Defense, U.S., "Reference Manual for t;he

ADA Programming Language", ANSI/MIL-STD-1815A, January

1983.

(7] Dietel, H.M., "An Introduction to Operating Syst;ems",

Addison-Wesley,1990.

[8) Gichev, D., "An Algorithm for Rout;ing Messages Bet;ween

Processing Elements in a Mult;iprocessor Syst;em Which

82

Tolerates a Maximal Number of Faulty links",Mathematical

and Computer Modelling vol. 16,No. 12, 1992.

(9] Hey, A.J.G., "Transputers and Occam".

(10] Hockney, R.W. & Jessophe, C.R., "Parallel Computers",

1981

[11] Hwang, K. & Briggs, F.A., "Computer Architecture and

Parallel Processing", McGraw Hill Book Company 1985.

[12] Rutenbar, R.A., "Simulated Annealing Algorithms : An

Overview", IEEE Circuits and Devices Magazine, January

1989.

[13] Singh, G.S. & Deshpande, K.R.,"On Fast Load Partitioning

by Simulated Annealing and Heuristic Algorithms for

General Class of Problems".

(14] Singh~ G.S., "An Integrated Feasible Approach to the

Design of Parallel Computing System - Part 2",Bhabha

Atomic Research Centre, 1988~

(15] Stone, H.S., "High Performance computer Architecture",

Addison Wesley Publishing Company,1990.

(16] Tanenbaum, A.S., "Computer Networks", Prentice Hall of

India, 1989.

[17] Vecchia, G.D. and Sanges, c., "Recursively Scalable

Networks for Message Passing Architecture", Parallel

Processing and Applications,1988.

[18] Vecchia, G.D. & Sanges, c., "An Optimized Broadcasting

Technique for WK-Recursive Topologies", IMACS 1988.

83

	TH51620001
	TH51620002
	TH51620003
	TH51620004
	TH51620005
	TH51620006
	TH51620007
	TH51620008
	TH51620009
	TH51620010
	TH51620011
	TH51620012
	TH51620013
	TH51620014
	TH51620015
	TH51620016
	TH51620017
	TH51620018
	TH51620019
	TH51620020
	TH51620021
	TH51620022
	TH51620023
	TH51620024
	TH51620025
	TH51620026
	TH51620027
	TH51620028
	TH51620029
	TH51620030
	TH51620031
	TH51620032
	TH51620033
	TH51620034
	TH51620035
	TH51620036
	TH51620037
	TH51620038
	TH51620039
	TH51620040
	TH51620041
	TH51620042
	TH51620043
	TH51620044
	TH51620045
	TH51620046
	TH51620047
	TH51620048
	TH51620049
	TH51620050
	TH51620051
	TH51620052
	TH51620053
	TH51620054
	TH51620055
	TH51620056
	TH51620057
	TH51620058
	TH51620059
	TH51620060
	TH51620061
	TH51620062
	TH51620063
	TH51620064
	TH51620065
	TH51620066
	TH51620067
	TH51620068
	TH51620069
	TH51620070
	TH51620071
	TH51620072
	TH51620073
	TH51620074
	TH51620075
	TH51620076
	TH51620077
	TH51620078
	TH51620079
	TH51620080
	TH51620081
	TH51620082
	TH51620083
	TH51620084
	TH51620085
	TH51620086
	TH51620087
	TH51620088
	TH51620089
	TH51620090
	TH51620091
	TH51620092
	TH51620093
	TH51620094
	TH51620095

