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INTRODUCTION 

accepted as Parallel· Processing is universally 

the only answer to advanced computing requirements 

in science and engineering. It is only recently 

that the parallel computers are being procured not 

only as an add on to a computing center but for 

serious computations like a supercomputer. 

There are two major motivations for creating and 

using parallel computing architectures. The first 

is that parallelism is the only avenue to achieve 

vastly higher speeds than are possible now from a 

single processor. A second motivation for the use 

of a parallel architecture is that this should be 

considerably cheaper than the sequential machines 

for systems of moderate speeds, that is, not 

nessarily supercomputers but instead minicomputers 

or mini-supercomputers be cheaper to produce a 

given performance level than 

goal 

the equivalent 

seq u e'n t i a 1 systems. The of research in 

parallel computer architecture has been to achieve 



price/performance through the use of parallelism 

than would be possible from sequential machines. 

1 - 2 - T.h~ PI-<>b1E'SD ~:i t.h J?a..:ra..11~1 :i.BDJ 

The efficiency with which we can exploit the 

potential parallism in a given application is 

directly related to the hardware, algorithm and 

programming language used. Unfortunately, the 

greater the potential gains from parallelism, the 

more difficult it becomes to realize these gains. 

For example, the larger the number of independent 

' ' 
processing elements at our disposal the greater the 

communication overhead penalty incurred by the 

necessity to pass data between them. 

Although multiprocessor machines are becoming 

widely available, and offer potentially impressive 

cost to performance ratios, they are as yet 

unfriendly 
~ 

environments. In order to provide 

user support to an operating system level, 

user 

good 

system 

software should allow efficient machine utilization 

without the need for the user to tailor his program 

to suit the machine architecture. 

A good generalization can be made that there is 

good software on low and medium performance systems 

such as Alliant, Sequent, Encore and Multi flow 



to suit the machine architecture. 

A good generalization can be made that there is 

good software on low and medium performance systems 

such as Alliant, Sequent, Encore and Multi flow 

systems, while there is poor quality software in 

the highest performance systems. 

The system software provided with the high performance 

parallel 

suitable 

computers is at best that which would be 

for systems that would be used by a 

person or a small, tightly knit group of people. 

1 . 3 ~~te:r "l:w=u3~ ::l?a..:ra..1.::Le1 

Conlput:i~ S:vstesn 

The !NMOS Transputer has been acclaimed across 

the 

The 

world as the genesis of parallel processing. 

T800 transputer has a 32-bit RISC CPU, a 

floating point unit, 4KB of fast static RAM and 4 

bi-directional communication links. It can support 

4 GB of external memory. Theoretically, there is no 

limit to the number of transputers that could be 

linked. 

The transputer based parallel computer consists 

of a transputer plug-on board on a PC-AT host 

6 
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machine. Each transputer has about 2 MB of local 

memory. 

In this project, a user fr.iendly communication 

harness has been.developed on a transputer based 

parallel compting system. This model makes inter-

process communication transparent to the user. The 

data can be communicated between processes on 

or different processors. 

same 

In keeping with the requirement for a user 

friendly communication service, the aim of this 

project has been to 

Provide automatic synchronization of 

communicating processes which are resident on 

different processors. 

Deliver messages to each user process as they 

are required so that no restrictions are 

placed on the user as to the order in which 

the messages are read. 

Remove the burden of learning the message 

passing techniques of communication from the 

programmer. Instead the programmer works with 

1 



simple constructs. 

Remove the connectivity problem, which the 

programmer faces in order to communicate 

between two processes on two different 

processors. 

Chapter 2 discusses the parallel computer 

classification, the I NMOS transputer and the 

topologies in which a paralJel computing can be 

configured using a transputer. 

Chapter 3 describes programming suppo:rt for 

parallel systems. 

Chapter 4 describes tuple space, its operations, 

and distribution in a transputer based Parallel 

Computer. 

Chapter 5 gives a detail of the implementation of 

this project. It describes the communication 

harness in detail. 

Chapter 6 describes the objectives achieved by 

this project and suggests areas of future .t-esearch 

in this field. 
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PARALLEL ARCHITECTURES 

2 • 1 C1a..ssif:i..c:a.:t.:i..nn <>f ~1e1 

~t.e:rs 

Computer architectures have been classified by 

Flynn on the basis of instruction and data streams. 

An architecture can be classified by the 

multiplicity of hardware used to manipulate 

instruction and data strea~s. Given this possible 

multiplicity, the following four classes of 

computers result 

(1) Single Instruction stream, Single Data 

stream (SISD). 

Sequential computers fall in this 

Although instruction execution may be 

computers in this category can decode 

category. 

pipelined, 

a single 

instruction in unit time. An SISD computer may have 

multifunctional units but these are under the 

control of a single unit. 

\0 



(2) Single Instruction stream, Multiple Data 

stream (SIMD). 

A processor array, which executes a single 

stream of instructions, but contains a number 

arithmetic processing units, each capable 

fetching and executing its own data. Hence at 

of 

of 

any 

instance of time, a single operation is in the same 

state of execution on mutiple units, 

manipulating different data. 

(3) Multiple Instruction stream, Single Data 

streaa (MISD). 

No computers fit into this category. 

each 

(4) Multiple Instruction stream, Multiple Data 

streaa (MIMD). 

This category contains most mutiprocessor systems 

and the parallel computer used for the developement 

of this project too falls in this category. 

II 



MIMD architectures can be further classified into 

1. Shared Memory. In this class of computers, all 

CPUs share the same (global) memory. Each CPU may 

have a small amount of cache memory. Sharing of 

main memo~y is achieved by different techniques, 

the prominent ones being the Shared bus and 

Switched memory. 

i) In. shared Bus, it is necessary to have a bus 

arbiter to resolve possible conflicts. 

ii) In Switched Memory, the shared memory is 

divided into a number of modules which are 

switched among the CPUs by a global switching 

network. 

2. Distributed Memory. All the processors have 

their own (local) memories. There is no global 

memory. Hence all inter-processor communication is 

by message passing. 

The advantage of distributed memory systems over 

shared memory systems is that in the latter, the 

memory bandwidth available is the actual memory 

bandwidth shared by all the proecessors, whereas in 

12. 



the former, the available memory bandwidth is 

total of all the individual memories. However, 

d i s t r_i b u t e d memory systems, there is 

communication overheads of message pas~ing. 

2 . 2 ~~te:r- ~ed. :F'a...x-a.1.1e.1 

~te:r-

the 

in 

the 

This project has been implented on a transputer 

based parallel computer. The transputer based 

parallel computer consists of a transputer plug-on 

board on a PC-AT host machine. The transputer board 

has 1, 4, 16 or 64 transputers inter-connected by 

one of the common topology (described in this 

chapter) Generally each transputer has a minimum 

of 2MBytes of local memory. Compilers and debugging 

tools for C, Fortran and C++ for transputer are 

provided by many vendors. The mathematical 

libraries are too becoming popular. 

The transputer boards are typically used as 

computation engines attached to a PC-AT machine. 

Most parallel computers based on the transputer 

have found acceptibilty among the scientists and 

researchers working in computation extensive areas 

13 



of stellar dynamics, simulation of neural networks, 

image processing, computational aerodynamics, etc. 

This. chapter discusses the main features of 

transputer, its communication mechanism, topologies 

in which a transputer based Parallel Computing 

System can be configured. 

2.2.1 

The Transputer (TRANSsistor comPUTER has been 

developed. by I NMOS Ltd, U.K. as a parallel 

processing element. See fig. 2. 1 . It supports 

concurrent programming and message 

explicitly defined channels or links 

direct implementation of the 

communicating sequential processes 

C.A.R.Hoare. 

passing 

providing 

concept 

suggested 

A transputer has the following components 

i) ARISCCPU. 

ii) Fast on-chip SRAM. 

iii) Bi-directional serial communication 

links, which operate concurrently with 

the CPU and with each other. 

by 

a 

of 

by 
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The INMOS chip, T800 has a 32-bit RISC CPU, 4KB 

of on- chip RAM, four links and also an on-chip 

FPU. It supports 4GB of external memory. The T800's 

links can transmit data at the rate of 1 . 8 

MBytes/sec in one direction, or 2 . 4 Mbytes per 

second overall in both directions. The T800 has a 

rated performance of 1.5 MFLOPS (T800-20 MHz) and 

2.25 MFLOPS (T800-30 Mhz). 

Due to its low price/performance ratio, support 

for concurrent programming and simple expandibility 

of hardware, the T800 has been chosen as the 

processing element by CDAC, Pune for their PARAM 

project. In India, I.I.T Delhi and B.A.R.C., Bombay 

are also evaluating T800 and many research teams 

are working on it. 

The three components of the T800 can operate 

concurrently with each other. Once a message to be 

transmitted through a link is set up, the 

operates independently of the other parts of 

link 

the 

CPU. The transputer supports point-to-point 

communication. The advantages of this type of 

communication are: 

16' 



1. No contention for the communication 

mechanism. 

2. No capacitive load penalty as transputers are 

added to the parallel computer~ 

3. Communications bandwidth does not saturate as 

the size of the system increases. The 

communication bandwidth increases as the 

number of transputers increase . 

• 
Each link provides two channels one in each 

direction. At each end of the channel, 

synchronization of processes is automatic and does 

not require explicit programming. If one end of the 

channel (A) is ready, and the other (B) is not, 

then the process A is descheduled from the process 

queue. A descheduled process does not consume CPU 

time. When B is ready, process A is executed. This 

method is adopted to remove the need for message 

buffers. The message is transmitted as a sequence 

of bytes. After sending a byte, the sending 

transputer waits for an acknowledgement(ACK). Refer 

fig 2.2. The receiving transputer sends an ACK as 

soon as it starts receiving a data byte. No check 

is made to see if the data byte has arrived 



0 
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correctly. This strategy is adopted to reduce 

communication processing overheads. 

Since all the transputers are mounted on the same 

board, the probability of data corruption is very 

low. If a message is sent, it will either be 

transnmitted correctly or not at all. The protocol 

synchronizes communication of each data byte by 

sending two start bits and a stop bit with every 

byte. The ACK consists of one high bit followed by 

a low bit. The protocol is independent of the word 

length. If two processes sharing a channel are on 

·the .same transputer, the channel is maped onto a 

memory location. For two processes on two 

transputers, the channel is mapped onto a hardware 

link. 

The disadvantage of the transputer is that it 

does not have memory management, does not support 

multiple level priority interrupts and a process 

once executed cannot be removed involuntarily from 

the system. However, the· last point is not a 

disadvantage, since the cost of moving an executing 

process is very high compared with the cost of 

movina one that has not yet started. 



2.3 T~1~gies f~r ~ T~ter 

1-J,a sed. F'a.:raL11e1 ConJ:puter 

The Transputer has four links for connectivity 

and this section discusses six regular topologies. 

The regular topologies are Mesh, Torus, Binary 

Hypercube, Supernode ba~ed hypercube, W-K Recursive 

and pipeline. 

(1) Mesh 

This is considered to be the simplest of all the 

topologies, and the transputers are organized in 

rows and columns as in a square matrix. The 

transputers at the boundary are left with only a 

single free link except the corner ones 

free links. Numbering is 

sequentially down the rows from 

Refer fig. 2.3. 

Path alaorith• 

Let, 

col = no. of nodes along a row 

src = source processor 

2.0 

done 

left 

have two 

by moving 

to right. 



dest = destination processor 

Then, 

src_x_coord = src mod col 

src_y_coord = src I col 

dest x coord = dest mod col 

dest_y_coord = dest I col 

hops = abs dest x coord - src_x_coord 

+ abs (dest_y_coord - src_y_coord) 

(2) Torus 

This is similar to the mesh in that all the free 

links of the mesh topology are connected with each 

other. The free links of the transputers in the top 

row are connected to those of the bottom row in the 

same column. This leaves no free link. Refer fig. 

2 . 4 . 

Path algorithm 

Let, 

col = no. of nodes along a row 

src = source node & dest = destination node 

Then, 

src_x_coord = src mod col 

src_y_coord = src I col 

dest_x_coord = dest mod col 

2.1 



0 

4 6 

' lO 

12. 13 IS 

N\ESH .,.OPOLOO.Y 

2. 

5 6 

8 9 . 10 

12. l3 

• FlGt 2-·Lf TORUS TOPQL.OtiiY 



dest_y_coord = dest I col 

If abs(src x coord - dest x coord) > (col I 2) 

then 

hops_x = abs abs (src x coord dest_x_coord) 

(col12) 

else 

hops_x = abs src_x_coord - dest x coord 

If abs(src y coord - dest_y_coord) > (row I 2) 

then 

hops_y = abs abs (src y coord - dest_y_coord) 

else 

hops_y = abs src_y_coord - dest y coord 

hops = hops_x + hops_y 

(3) Binary Hypercube 

The 

cube. 

transputers are connected in the form 

This cube can be of any dimension upto 

of a 

four 

and hence called a Hypercube. A hypercube of 

dimension k has 2k nodes. Neighbouring transputers 

differ by one bit position in their address. Refer 

fig. 2.5. This is a completely connected topology. 



Path algorithm 

Let, 

src = source node 

dest = destination node 

vall = src XOR dest 

The number of hops between the two nodes is given 

by the number of bits are 1 in vall 
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(4) Supernode based Hypercube 

Each transputer in the hypercube is connected to 

a cube of eight transputers (known· as supernode ). 

All transputers of a supernode have a single free 

link, with the other three connected to other 

transputers in that supernode. This results in a 

supernode with 8 free links, permitting an eight 

dimensional supercube of hypernodes. The maximum 

possible transputers in such a combination is 2048 

(8*2 8 ). R f f" e er 1g. 2 . 6 . Since there are 8 nodes in 

a supernode, 3 bits are needed to specify a node in 

a supernode. If there are 8 supernodes, 3 bits are 

again needed to address a supernode. Withtin a 

supernode, numbering is done so that a node's 

neighbour differ in address by one bit. A free link 

1n a supernode is numbered as per the node address. 

Supernodes are connected and numbered in the same 

manner as the nodes. 

Path algorith• 

Let, 

n.= dimension of the supernode. 

src = source node 



dest = destination node 

Then, 

a) If src = dest then return pathlength. 

b) XOR the (n-3) most significant source and 

destination addresses. Let the result be rel addrl. 

c ) If rel addrl = 0, then both lie in the same 

supernode. Find the number of hops between them by 

XORing src and dest and finding the number of bits 

that are 1. Add this value to existing value of 

path length and return. 

d) If rel addrl <> 0 then find the output link 

number (op). 

e) If src's node number in a supernode is graeater 

than that of dest, then find the position of the 

most significant non-zero bit in rel addrl (posnl) 

and XOR posnl and 3 LSBs of src, to give rel addr2. 

Otherwise XOR op and 3 LSBs of src to give 

rel addr2. 

f) If rel addr2 = 0 it means that at the current 

node, there is an inter-supernode link. Jump across 

the supernodes. Otherwise calculate the position of 

the most significant non-zero bit in rel_addr2 

(posn2). 

g) Invert the bit number posn2 in the 3LSBs of src. 

2.7 



h) Increment the pathlength and goto a). 

(5) W-K-Recursive 

This is a topology which can be recursively 

scaled. In the W-K-Recursive topology, at the 

lowest level (basic module) all the nodes are fully 

connected. Let the number of nodes be W. The link 

requirement of each node is W. We have W=4 free 

links at level 1. At the next level, W such modules 

are connected and number of free links is 

w In this manner, a module of level k is built 

recursively from 1 evel ( k -1) and needs wk nodes. 

Refer fig. 2.7. 

The numbering of the nodes is done as follows 

At every level, there are 4 tansputers and 2 bits 

are needed for the address of each node at that 

level. Thus for a topology at level 3, three pairs 

of bits are used, one pair for every level. The 

most significant pair pertains to the highest level 

(logical) node of level 3. The next pair pertains 

to the 4 logical nodes of level 2 and the 

significant pair, to the 4 physical nodes at 

least 

level 

1 • 
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Path algorithm 

In the lowest level of this topology, all the nodes 

are connected. The next level llevel 2 ) maximum 

distance is 3, level 3 maximum distance is 7 and so 

on. Thus the maximum distance at any level can be 

given by zlevel 1. A jump in the lowest level can 

be made by changing either one or both of the last 

two bits. A jump at level 2 can be made by 

exchanging the bits for level 1 and level 2 . A 

level 3 jump can be made by exchanging the level 3 

bits with those for levels 2 & 1 

"" .. __._ 
Let the number of levels in a topology be n/2. 

The number of bits required to address a node will 

be n. The number of nodes will be zn. Let src and 

dest be the source and detination nodes 

respectively. 

If src and dest are in different modules 

Move to the node which connects src and dest 

Jump across to dest module 

Move down the dest module to the dest node 

This code is recursive and holds good for any 

level. 



(6) Pipeline 

The transputers are connected to one another to 

form a pipe. The transputer at the beginning and 

end ~f· the pipe has 3 free links, while all 

have 2 free links. Refer fig. 2.8. 

others 

30 
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Path algorithm 

Let, 

src and dest are the source and destination 

processors. Then, 

hops = abs (src - dest 

32. 
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There are two main features that are expected in 

a parallel programming environment 

1. The optimal use of multiprocessors. 

2. The cooperation among the processors. 

Parallel applications execute processes of their 

code in parallel on one or different processors. 

High performance applications use this parallism 

for achieving speedups. Here, the goal is to make 

optimal use of the available processors; this issue 

of load balancing is discuused in iVikas,GSS '91~. 

In parallel applications, the processors 

sometimes have to exchange intermediate results and 

synchronize their actions. In a system of automated 

factory, processors have to keep an eye on each 

other to detect failing processors. 

Ideally, programming support for implementing the 

parallel applications must fulfill all of these 

requirements. This support is expected in the 

operating system or the parallel programming 

3'1 



language being used. In the first case, 

applications are programmed in a sequential 

language extended with library routines that envoke 

operating system primitives. As a disadvantage of 

this approach, the control structures and data 

. 
types of the sequential language are usually 

inadequate for parallel programming. 

3.1 

An important issue in the design of a language 

for parallel programming is how the pieces of a 

program which are running in parallel on different 

processors are going to cooperate. This cooperation 

needs two types of interaction among the 

communicating processes communication and 

synchronization. For example, Process A may require 

data X which is the result of some computation 

performed by Process B. There must be some way of 

getting X from B to A. In addition, if Process A 

comes to the point 1n its execution which requires 

the information X from Process B, but Process B has 

35 



not yet communicated the information to A for 

whatsover reason, A must be able to wait for it. 

Synchronization and communication mechanisms are 

closely related and can be treated together. 

An issue related to synchronization is 

nondeterminisa. A process may want to wait for 

information from any of a group of other processes, 

rather than from one specific process. As it is not 

known in advance which member or members) of the 

group 

such 

will have its information available first, 

behaviour is nondeterministic. In some cases 

it may be useful to dynamically control the group 

For of processes from which to take input. 

example, a buffer process may accept a request from 

a producer process to store an item whenever the 

buffer is not empty. To program such behaviour, a 

notation is needed to express and control 

nondeterminism. 

Interprocess communication in the languages is 

broadly classified into two g~neral categories 

shared data and message passing. 

36 



3.1.1 Message Passing 

The most elmentary primitive for message-based 

interaction is the point to point message from one 

source task (the sender) to another destination 

task (the receiver). Languages usually provide only 

reliable message passing. The language run time 

system (or the underlying operating system) 

automatically generates acknowledgement messages, 

transparent at the language level. 

Most message-based interactions involve two 

parties, one sender and one receiver. The 

initiates the interaction explicitly, for 

by sending a message or invoking a 

procedure. On the other hand the receipt 

message may be either explicit or 

sender 

example 

remote 

of the 

With 

explicit receipt, the receiver is executing some 

sort of accept ·statement specifying which meassages 

to accept and what actions to undertake when the 

message arrives. With impli~it receipt, code is 

automatically invoked within receiver. It 

usually creates a n~w thread of control within the 

receiving. process. Whether the message is received 

implicitly or explicitly is transparent to the 

37 



sender. 

Another major issue in message passing i s the 

addressing of the parties (or the tasks) involved 

in an interaction. The sender and the rece1ver can 

be addressed directly or indirectly. Direct 

addressing is used to denote one specific process. 

The name can be the static name of the process or 

an expression evaluated at run time. A 

communication scheme based on direct addresssing is 

symmetric if both the sender and receiver name each 

other. In asymmetric scheme only the sender names 

the receiver. In this case, the receiver is willing 

to interact with any sender. 

Indirect addressing involves an intermediate 

object, usually called a mailbox, to which the 

sender directs its messages and to which the re-

ceiver listens. This option allows highly flexible 

communication patterns to be expressed. 

Synchronous a~d Asynchronous point-to-point 

With synchronous message passing, the sender is 

blocked until the receiver has accepted the message 

39 



(explicitly or implicitly). Thus, the sender and 

receiver not only share data, but they also 

synchronize. With asynchronous message passing, the 

sender does not wait for the receiver to be ready 

to accept its message. 

In asynchronous model, as the sender S does not 

wait for the receiver R to be ready, there may be 

several pending messages sent by S, but not yet 

accepted by R. If the message passing primitive is 

order preserving, R will receive the messages in 

the order they were sent by S. The pending messages 

are buffered by the language runti~e system or the 

operating system. 

3.1.2 Data Sharing 

If two processes have access to the same 

variable, communication can take place by one 

process setting the variable and the other process 

reading it. This is true whether the process are 

running on the host where the variable is stored 

and can manipulate it directly, or if the process 

are on different hosts and access the variable by 

sending a message to the host on which it resides. 

The shared data scheme has several advantages and 



disadvantages over message passing. Whereas a 

message generally transfers information between two 

specific processes, shared data are accessible by 

any process. Assignement to shared data has 

immediate effect, in contrast, there is a 

measurable delay between sending a message and its 

being received. Shared data requires precautions to 

prevent multiple processes from simultaneously 

changing the same data. 

3.2 s~ft~ t~~1s f~~ p~g~i~ 

1~es 

A good generalization can be made that there is 

good software on low and medium performance systems 

such as Alliant, Sequent, Encore and Multi flow 

systems, while there is poor quality software in 

the highest performance systems. In addition, there 

is little or no software aimed at managing the 

system and providing a service to a diverse user 

community. There is typically no software that 

provides information on who uses the system and how 

much, i.e, accounting and reporting software. Batch 

schedulers are typically not available. Controls 

YO 



for limiting the amount of time interactive 

can take on the system at any one time also 

missing. Ways of managing the on-line disks 

non-existent. 

The system software provided with 

performance parallel computers is at best 

users 

are 

are 

high 

that 

which would be suitable for systems that would be 

used by a single person or a small, tightly knit 

group of people. 

Unfortunately, the greater the potential gains 

from parallelism, the more difficult it becomes to 

realize these gains. For example, the larger the 

number of independent processing elements at our 

the greater the communication disposal 

penalty incurred by the necessity to 

between them. 

Although multiprocessor machines are 

widely available, and offer potentially 

cost to performance ratios, they are as 

unfriendly environments. 
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'T'UPL.E SPACE 

The most important and perhaps the most 

distinguishing feature of the proposed 

communication model, hereinafter referred to as 

"TUPLE 10 model" is notion of tuple space. 

TUPLE IO's elegance is derived from the extreme 

simplicity of the model. This elegance in turn 

leads to a reduction of the programmer's burden. 

This model is based on generative communication. 

If two processes need to communicate, they don't 

share a variable, instead, the data producing 

process generates a new data object (called a 

tuple) and sets it adrift a region called tuple 

space. Refer fig. 4.1. The receiver pocessor can 

now access this tuple. The tuple space is 

conceptually a shared memory, although its 

i mpl em enta-tion does not require physically shared 

\memory. The tuple space is one global memory shared 

by all processes of a program. 



4 - 1 'T'U.PLES 

An ordered collection of data constitutes a 

tuple. TUPLE IO implementation permits various 

different types of data type to co-exist in the 

same tuple. Data types of arrays and pointers are 

handled in a special manner. The maximum number of 

data types is a controllable parameter in the 

implentation 10 in TUPLE IO). 

The total size of all the data type in a tuple is 

also a programmable parameter. In the TUPLE IO 

model, the maximum s1ze of the tuple is fixed 

1024 bytes 1KB ) • If larger messages need to 

communicated, then they have to be broken 

smaller tuples. 

The basic operations on the tuple space are 

send 

receive 

peek 

as 

be 

into 

These opeartions are of two main types: those 

that generate tuples, those that access/extract 

tuples. 

The tuples are distinguished from each other by 

4Y 
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their 

more 

template name called tuple-id. There can 

than one tuple with the same tuple-id in 

tuple space. However, all the tuples with the 

be 

the 

same 

tuple-id are placed together on the same processor. 

When more than one tuple of the same tuple-id is 

present on the processor, then the distributor 

maintains them in the form of a linked list. See 

fig. 4.2. 

Placement of the tuples should be done in such a 

manner so that they are placed uniformally over all 

the processors. The placement of too many tuples on 

a particular processor will lead to overloading as 

all requests to the tuples on it will be directed 

towards it. 

If possile, the tuples are placed on or closest to 

the processor that operates .on it the maximum 

number of times. Enough research has been done 

towards this and load balancing algorithms 

;Vikas,GSS 

used. 

'90~ using Simulated Annealing 

4.1.1 Generative opeartion send 

can 

When a send operation completes, a new tuple 

created in the tuple space. The arguments of 

be 

is 

send 
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can be data variables (integers, float, long, char) 

and pointer or arrays. The pointer and array data 

types are preceeded by a special character and 

followed by a number indicating to data size under 

consideration. However, functions returning any of 

above data type can not be an argument of send. The 

function should be first computed and then the 

returned value can be used as an arguement of send. 

For example 

send ("primes", x, value, ticks, @ptr, 10) 

This denotes that the process issuing 

instruction creates a tuple with template 

·• primes" and 4 data variables. x, value and 

are normal data types. ptr is a pointer 

address) to a data size of 10 bytes. 

4.1.2 Accesing and Hxtracting Operations 

receive and peek 

receive extracts and peek accesses 

tuples placed in the tuple space by a 

data 

send. 

this 

name 

ticks 

(an 

from 

The 

particular tuple from which data will be extracted 



is determined by tuple space's matching rules, 

which in the TUPLE_IO implementation are 

1. The tuple id of the tuple should match the 

requested template name. 

2. The number of data types in the tuple should be 

same as that in the request. 

3. Corresponding constant data types must match. 

When a receive or peek executes, if no tuple in 

the tuple space matches, then the recive or peek 

will block until a send places a matching tuple in 

the tuple space. 

Consider the tuple space to contain the following 

tuples: 

< "arrayl" 10 , a' > 

< "varl" x > 

< "arrayl" (itA 12 , b' > 

If a processor wants data items contajned within 

tuple of template name "arrayl", then ·it does a 

receive operation 

receive. ("arrayl", ?(!tA, 10, 'a') 



Since two tuples with tuple id, "arrayl" are 

present, the tuple which matches the constant data 

type, 'a' in this case will be removed and 10 bytes 

will be copied at address A. 

If more than one tuple in the tuple space can 

match, the first one of the linked list will be 

matched. This ensures that all tuples arriving at 

tuple space are serviced in an orderly manner. 

However, the user of TUPLE IO is advised not to 

make any assumption regarding the search order in 

the tuple space as the routing of the tuples is 

transparent to the user. When a receive finds a 

match, the matched tuple is removed from tuple 

space. When a peek finds a match, the matched tuple 

remains in tuple space but its fields are copied to 

the request. 

Suppose both peek and receive are pending for the 

same tuple, which currently is not in tuple space, 

then the action is unpredictable. Nothing can be 

said as to what will be serviced first, receive or 

peek. Such situations have to be avoided while 

programming with these constructs. 



One of the simplest and yet the most useful model 

of parallelism is the master/worker paradigm. 

its simplest form, a master generates a number 

In 

of 

independent tasks that can be carried out by any of 

a number of workers. As an example, consider an 

application of this model to matrix multiplication. 

Each inner-product is an independent computation. 

The master may therefore generate a task for each 

inner product. The master first sends the matrix 

index to tuple space where all slaves peek to get 

this value. 

structure for 

The 

all 

master then 

slaves in 

sends the task 

tuple space. Each 

worker takes one of the tasks, does its assigned 

work and sends its result to the master. The master 

receives all the result structure and updates 

product matrix. Refer to the pseudocode in fig. 4. 

In general, all tasks which are independent of each 

other can be programmed in this mannner. 



master() 

{ 

for all tasks do 

{ 

I* build task structures. *I 

send ("task", task_ structure) 

for all tasks do 

receive("result",?task_number,?result structure) 

I* update total result using this 
result and task number *I 

It end of master procedure t I 

worker () 
{ 

receive ("task", ?task_structute) 

I* execute task *I 

send( "result" ,current_task_number,local_result_structure) 

I* end of slave procedure *I 

\ 

Fig. 4.3 Matrix Multiplication based on master/worker 

paradigm using TUPLE IO operations. 
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4.3 

long my_chance 
initialize_queues() 

r 
out ( "r/w tail", 0 
out ("r/w head", 0 
out ("r/w reader count", 0 ) 

ok to read () 

£ 
in ("r/w tail", ?my_chance 
my_chance++ ; 
out ("r/w tail", my_chance 
in ("r/w head", my_chance ) 
in ("r/w reader count", ?count ) 
count++ 
out ("r/w reader count", count 
my_chance++ 
out ("r/w head", my_chance ) 

exit read () 

1 
in ( "r/w reader count", ?count 
count-- ; 
out ( "r/w reader count", count 

ok_to_wri te ( ) 

r 
in ( "r/w tail", ?my_chance) 
my_chance++ 
out ("r/w tail", my_chance) 
in "r/w head", ?my_chance) 
rd ( "r/w reader count", 0 ) 

exit_write () 

t 
my_chance++ 
out ( "r/w head", my_chance ) 



Given that the tuple space lS logically 

similar to a shared memory presents a problem. 

We can put the tuple space on one node and then 

direct all tuple operations to that one node. 

This would create an obvious bottle-neck that 

would almost certainly be disastrous for 

performance. It seems clear that tuple space 

should be distributed over some subset (possibly 

all) of the nodes. 

An option is to maintain copies of the tuple 

space on all processors of the parallel 

computer. Any given global update to tuple space 

can be made with a constantnumber of bus 

accesses, rather than the O(n) which might have 

been the case without broadcast. The main 

drawback is the profligate use of memory. 

Another alternate is the "inverse" kernel. In 

this scheme, tuple space is distributed over the 

machine by leaving tuples at the nodes where 

they were generated. receive and peek consult 



the portion of tuple space on their node of 

origin. If no match is found, a request for a 

mat6hing tuple is broadcasted to all other nodes 

and a response is awaited. When a matching tuple 

is found it 1s sent directly to the requester. 

This scheme solves the memory problem but gives 

rise to others. In the case of receive & peek, 

first the node's local tuple space is searched 

and then the request is broadcasted to other 

nodes. This may even double the time for a 

match. Also when multiple match occur, then too 

all but one of the tuple has to be discarded. 

4- 5 ~p::res~~t::io~ of ~.1~ s~ 

nn ~pLit~z- "b.a.s:~ F'a..r-a...1.1~.1 

~t~z-

In the TUPLE IO model, the tuple space is 

mapped onto all the processors of the parallel 

computer due to the distributed memory. The 

processors (transputers) do not have a fixed 

size of memory allocated towards the tuple 

space. But as the tuples float into and out of 

the tuple space, the memory is accordingly 
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allocated or deallocated. 
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CHAPTER 5 



The proposed communication model has been 

implemented on a transputer based distributed 

parallel computing system. The software has been 

written in Parallel C (3L C Ltd) Ver 2.10 on a 

PC-AT 386/33 with an add-on card with one T800 

transputer. The implementation phase constituted 

of encoding the communication harness; comparing 

the communication overheads introduced; and then 

testing it . by running LU Decomposition 

application based on the master-slave paradigm. 

In this chapter, a detailed description of the 

communication harness usage is given which can 

be divided into three basic parts: 

the Preprocessor, 

the Code Generator, and 

the Distributor. 

5.1 

The preprocessor first parses the input file 



and replaces the TUPLE IO constructs by 

appropriate Parallel- C statements for inter 

process communication. 

The user program written Parallel-C with 

TUPLE IO constructs is given as input to the 

preprocessor. The preprocessor parses this 

program and creates two output files. 

One of these files contains information 

regarding the occurrence of each of the TUPLE IO 

constructs in the program. It describes type 

of call (send, receive, or peek); line number 

where call occured, number of data variables 

present in the tuple, and the template of the 

i.e. tuple-id. This information is tuple, 

required since these calls have to be replaced 

by suitable Parallel-C statements later by the 

code generator. 

The second output file contains all the tuple-

id's referred in the user program and also 

number of times each is referred. The user 

file and determines the processor this 

which each tuple-id has to be asscoiated 

This has to be done with care so as 

distribute the tuples uniformally on all 

5q 

the 

sees 

with 

with. 

to 

the 



processors. A partiular tuple should be kept on 

or closest to the processor that refers to it 

the maximum number of times. 

5.2 

Code generator, as the name 

generates the code in Parallel-C for a 

statement. In the user program, the 

suggests, 

TUPLE 10 

TUPLE IO 

constructs of "receive", "peek" and "send" are 

replaced by procedures written 1n Parallel-C 

which 

which 

build up and send two message packets on 

the distributor takes action. The first 

packet is called a 

is called msg. 

header·and the second packet 

5.2.1 The first message packet Header 

Whenever a processor has to do a tuple space 

operation, it sends a header packet of fixed 

size of 15 bytes to the distributor telling it 

about the requirement. The header structure is 

as follows: 
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distinguisher 1 byte 

tuple_procmun 1 byte 

tuple_mun_on_proc byte 

num of vars byte 

source_proc 1 byte 

source task 1 byte 

;nsg 1 ength 4 bytes 

reserved 1 byte 

total size 4 bytes 

The distinguisher has four possible values 

0 ' 1, 2, or 3. This byte tells the distributor 

about the nature of tuple space operation 

are decoded as: 

0 

2 

3 

the call 1s 'send' 

the call 1s 'receive' and is going 

towards the processor on which the 

requested tuple-id resides. 

the call is 'peek' and is going towards 

the processor on which the requested 

tuple-id resides. 

the call is 'receive' or 'peek' with the 

61 
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variables of the tuple picked from the 

tuple space and going towards the 

processor which made the request for the 

tuple. 

the call indicates that this process no 

longer requires the services of the 

Distributer. 

tuple_procnum is the processor number on which 

the tuple with the particular tuple-id resides. 

It is provided so that the distributor can 

direct the header and the message packets along 

the appropriate links of the transputer so as to 

reach the destination processor. 

tuple_num_on_proc is the number associated 

the· tuple-id on a particular processor. 

with 

num of_vars is the number of data variables 

present in the field of the tuple. 

source_proc is the processor from which the 

request has been made. 

source task is the number associated with the 

process (task) on the particular processor. 

msglength is the size of the second message 

packet which is following the header. 
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found_tuple_byte provides information in case of 

'rd' statement and informs the processor whether 

the designed tuple was found or not. 

total size is the sum total of the size of each 

data variable in the field of the tuple. 

5.2.2 Second message packet: msg 

The second packet of message is a set of 

contiguous bytes whose size is mentioned in the 

header. It is of different structures which 

depends on the distinguisher value. 

1 • If distingusher is 0, the msg is of 

total size contiguous by-tes with num of vars 

data variables. 

varlvar2var3 •••.•••••• varn 

2 . If distinguisher is or 2, then the message 

structure is 

the first num of var bytes check whether data 

item is known or unknown. 

unknownvarlunknownvar2 •••••••• unknownvarn 

next 4*num of vars bytes tell the size of each 
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variable 

size of_varlsize of var2 •••..• size of varn 

next 4*num of vars bytes are pointers to each 

variable 

ptrlptr2ptr3 ...••••••..•.. ptrn 

For each of num of var variables, the value of 

the variable is written if it is a known 

variable. 

3. if distinguisher is 3, then the message is 

varlvar2var3 ..••.•.•.....• varn 

4 . if distinguisher is 4 1 then message is 

irrelevant. 



5.3 

The distributor is the communication 

harness of the TUPLE IO model described in this 

report. It handles all the requests made by the 

processes and performs the necessary action 

accordingly. The distributor runs In parallel to 

the executing processes on all the processors of 

the parallel computing system. 

The distributor has as many software ports as 

the sum of the hardware links of the processor 

and the executing processes on that procesor. A 

buffer and a semaphore is allocated to each of 

the outut port. A thread 'is created for each of 

the input port of the distributor and the 

distributor procedure is run on all the 

threads. The semaphore prevents simultaneous 

access of a channel by two processes. 

The distributor waits on each thread till i t 

receives a message packet (the header). On 

receiving the header, the distributor performs 

the action according to the distinguisher byte. 
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1. If distinguisher is 0. 

The distributor checks if the tuple has to be 

placed on the current processor. If so, then it 

allocates total size bytes in the local memory 

of the processor and copies the second message 

into this memory. Else, the distributor sends 

the header and msg.to the next processor on 

route to the destination processor on which 

the tuple-id resides through appropriate links 

of the current processor. 

2. if distinguisher is 1. 

If the tuple-id does not reside on the current 

processor, then the distributor sends the header 

and msg to the next processor on route to the 

destination processor on which the 

link 

tuple-id 

resides through an appropriate of the 

processor. 

If the tuple resides on this processor and the 

current procesor is the source processor too, 

then the distributor searches for the tuple of 

the required tuple- id with the matching known 
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variables in the tuple space. of the current 

procesor. If it is not found, then i t 

deschedules the search and later tries again. 

When the tuple is found, it then copies the data 

variables of the tuple onto the address whose 

pointers 

removed 

it 

from 

deallocated. 

receives in msg. 

t.he linked list 

The tuple is 

and memory is 

If the tuple resides on this processor and the 

current procesor is not the source processor, 

then the distributor searches for the tuple of 

the required tuple- id with the matching known 

variables in the tuple space c:if the current 

procesor. If it is not found, then i t 

deschedules the search and later tries again. 

When 

tuple 

linked 

the tuple is found, it then copies 

into msg. The tuple is removed from 

list and memory is deallocated. It 

the 

the 

also 

changes the distinguisher byte of the header to 

3' and the msglength to total size. It then 

sends the header and msg through appropriate 

links to the next p~ocessor on roui~e to the 

processor which made the request. 



3. If distinguisher is 2. 

All actions are same as when the distinguisher 

is 1 ' except that the tuple is not removed from 

tuple space and the search for the tuple 1 s 

made only once. If tuple is found then 

found _tuple_byte is set high ( i . e . 1 ) . 

4. If distinguisher is 3. 

If current processor is one which places the 

request for the tuple, then each of the data 

variable is copied into the address indicated by 

the corresponding pointer in the msg. 

If current processor is not the one which 

requested for the tuple, then the header and msg 

are passed onto the next processor on route to 

the processor that requested the tuple. 

5. If distinguisger is 4. 

This indicates that 

generating this 

communication. 

terminates the 

tuple 

The 

thread 
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process. 

An effort has been made to provide a user 

friendly programming environment for 

programmers. This will save a programmer to 

learn the communication syntax/mechanism not yet 

standard of parallel system. The communication 

harness developed provides simple constructs for 

message passing. 

It has been noticed that a new programmer is 

reluctant to study the topology of the parallel 

computer so as to route messages along 

shortest path. The proposed model handles 

routing of messages. 

This communication harness does not make 

the 

the 

the 

sender wait till receiver is ready and hence is 

asynchronous in nature. However, the ordering of 

messages is ensured. 

Another advantage is that a sender wishing to 

send a message to more than one processes has to 



send it only once, all others peek at it and 

receive it. 
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This proposed communication harness has been 

tested with message passing simulation programs; 

ping-pong message passing from one to many 

processes and between two processes; LU 

Decomposition technique for solving a set of 

linear equations. 

Unfortunately, testing this harness on 

multiple processors could not be achieved due to 

unforseen delays which were faced due to the 

bugs in the Parallel C compiler Ver 2.1. 

This harness is based on asynchronous 

commuJ!ication paradigm. LU Decomposition tests 

for solving a set of linear equations when 

conducted on this harness and another 

synchronous harness (developed by a research 

team at BARC, Bombay) clearly show the speedup 

achieved over the existing synchronous message 

techniques. To solve a set of 1 6 passing 

variable linear equations it took 6 seconds on 

the synchronous harness while it took less than 

a minute in TUPLE IO model. 

This harness removes the message routjng anrl 



all connectivity problems from the programmer. 

The programmer does all the 

communications using the 

AJ J the 

three 

TUPLE JO constructs. tests 

prove that these three constructs are 

and adding more constructs will only 

necessary 

available 

conducted 

enough, 

lead to 

programming complexities, removing which has 

been the main aim of this project. 

This harness suits specially those situations 

where message passing is from one to many 

process of the same data. While using this 

harness, the programmer generates the message 

using the send construct, whereas all processes 

needing it can peek at it and read i t . Later 

this message should be destroyed. 

Future work on this harness ought to include 

the following 

1 • The harness should be checked on multiple 

processes running on multiple processors. This 

would ensure that the protocol holds at even 

boundary cases. Currently the values of maximum 

processes and processors are hard coded. These 

should be dynamically managed. 
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2 . Communication traffic montoring should be 

added to enable the placement strategy of the 

user program to be quantitively evaluated. 

3 . When the preprocessor scans the users input 

source program then it should also check for 

communication deadlocks. This will be of great 

usefulness to parallel programming community. 

4 . A major debatable 1ssue 1s whether the user 

should be made to timeout if the message 

requested 

in the 

provided. 

by the user is not yet ready. May 

future version an option should 

be 

be 
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