
DESIGN OF A USER FRIENDLY
COMMUNICATION SYSTEM

FORA DISTRIBUTED MEMORY
PARALLEL COMPUTING SYSTEM

DISSERTATION SUBMITTED BY

VIKAS AHLUWALIA

IN PARTIAL FULFILMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

MASTER OF TECHNOLOGY
IN

COMPUTER SCIENCE AND TECHNOLOGY

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI

JANUARY 1993

CERTIFICATE

This is to certify that the dissertation

entitled "Design of a user friendly communication system

for a distributed memory parallel computing system",

being submitted by me to Jawaharlal Nehru University, New

Delhi in the partial fulfilment of the requirements for

the award of the degree o·f Master of Technology, is a

record of original work done by me under the supervision

of Dr. P. c. Saxena, Associate Professor, School of

Computer and System Sciences, Jawaharlal Nehru University

during the year 1992, Monsoon Semester.

The results reported in this dissertation have

not been submitted in part or full to any other

University or Institute for the award of any degree or

diploma, etc.

Prg~
Dean, 'i?qn
School of Computer ~~
and system Sciences,
J. N. U., New Delhi.

Vikas Ahluwalia

~
Dr. P. c. Saxena
Associate Professor,
School of Computer
and System Sciences,
J. N. U., New Delhi.

ACKNOWLEDGEMENTS

I express my sincere thanks to Dr. P. c. Saxena,

·Associate Professor, School of Computer and System

Sciences, Jawaharlal Nehru University, New Delhi for

suggesting such a brilliant topic. I am indebted to him

for his personal involvement with my work and his immense

and eloquent guidance which has been indispensable in

bringing about a successful completion of the

dissertation.

I am also grateful to Dr. Saxena for providing

me with his invaluable notes and papers related to the

topic and also guiding me in my lookout for proper

references.

I extend my sincere thanks to Prof. R. G. Gupta,

Dean, School of Computer and System Sciences, Jawaharlal

Nehru University for providing me with the environment

and all the facilities required for the completion

of my dissertation.

I also take this opportunity to thank all

faculty and staff members and my friends who helped me in

every way possible.

Vikas Ahluwalia

1 .

2 .

Introduction. 3

1.1 Parallel Processing.

1.2 The Problem with Parallelism.

1.3 Transputer based Parallel Computing System

1.4 Relevance of this project.

1.5 Organization of this report.

Parallel Architectures.

2.1 Classification of Parallel Computers.

2.2 Transputer based Paralllel Computer.

• • 9

2.3 Topologies for a Transputer based Parallel

Computer.

3. Programming Support for Parallel

Systems. 33

3.1 Interprocess communication and

synchronization.

3.2 Software tools for programming languages.

4 . TupleSpace. • ••. '12

4.1 Tuples.

4.2 Implementation of Master Slave Paradigm.

4.3 Implementation of Reader Writer Problem in

TUPLE IO.

.
4.4 Issues in distributing Tuple Space.

4.5 Representation of Tuple Space on

Transputer based Parallel Computer.

5 . Implementation. . .•. 57

5.1 Preprocessor.

5.2 Code Generator.

5. 3 Di stri but or.

5.4 Main features of this communication

harness.

6 . Conclusion. 11

Bibliography 75

2..

CHAPTER 1

3

INTRODUCTION

accepted as Parallel· Processing is universally

the only answer to advanced computing requirements

in science and engineering. It is only recently

that the parallel computers are being procured not

only as an add on to a computing center but for

serious computations like a supercomputer.

There are two major motivations for creating and

using parallel computing architectures. The first

is that parallelism is the only avenue to achieve

vastly higher speeds than are possible now from a

single processor. A second motivation for the use

of a parallel architecture is that this should be

considerably cheaper than the sequential machines

for systems of moderate speeds, that is, not

nessarily supercomputers but instead minicomputers

or mini-supercomputers be cheaper to produce a

given performance level than

goal

the equivalent

seq u e'n t i a 1 systems. The of research in

parallel computer architecture has been to achieve

price/performance through the use of parallelism

than would be possible from sequential machines.

1 - 2 - T.h~ PI-<>b1E'SD ~:i t.h J?a..:ra..11~1 :i.BDJ

The efficiency with which we can exploit the

potential parallism in a given application is

directly related to the hardware, algorithm and

programming language used. Unfortunately, the

greater the potential gains from parallelism, the

more difficult it becomes to realize these gains.

For example, the larger the number of independent

' '
processing elements at our disposal the greater the

communication overhead penalty incurred by the

necessity to pass data between them.

Although multiprocessor machines are becoming

widely available, and offer potentially impressive

cost to performance ratios, they are as yet

unfriendly
~

environments. In order to provide

user support to an operating system level,

user

good

system

software should allow efficient machine utilization

without the need for the user to tailor his program

to suit the machine architecture.

A good generalization can be made that there is

good software on low and medium performance systems

such as Alliant, Sequent, Encore and Multi flow

to suit the machine architecture.

A good generalization can be made that there is

good software on low and medium performance systems

such as Alliant, Sequent, Encore and Multi flow

systems, while there is poor quality software in

the highest performance systems.

The system software provided with the high performance

parallel

suitable

computers is at best that which would be

for systems that would be used by a

person or a small, tightly knit group of people.

1 . 3 ~~te:r "l:w=u3~ ::l?a..:ra..1.::Le1

Conlput:i~ S:vstesn

The !NMOS Transputer has been acclaimed across

the

The

world as the genesis of parallel processing.

T800 transputer has a 32-bit RISC CPU, a

floating point unit, 4KB of fast static RAM and 4

bi-directional communication links. It can support

4 GB of external memory. Theoretically, there is no

limit to the number of transputers that could be

linked.

The transputer based parallel computer consists

of a transputer plug-on board on a PC-AT host

6

single

machine. Each transputer has about 2 MB of local

memory.

In this project, a user fr.iendly communication

harness has been.developed on a transputer based

parallel compting system. This model makes inter-

process communication transparent to the user. The

data can be communicated between processes on

or different processors.

same

In keeping with the requirement for a user

friendly communication service, the aim of this

project has been to

Provide automatic synchronization of

communicating processes which are resident on

different processors.

Deliver messages to each user process as they

are required so that no restrictions are

placed on the user as to the order in which

the messages are read.

Remove the burden of learning the message

passing techniques of communication from the

programmer. Instead the programmer works with

1

simple constructs.

Remove the connectivity problem, which the

programmer faces in order to communicate

between two processes on two different

processors.

Chapter 2 discusses the parallel computer

classification, the I NMOS transputer and the

topologies in which a paralJel computing can be

configured using a transputer.

Chapter 3 describes programming suppo:rt for

parallel systems.

Chapter 4 describes tuple space, its operations,

and distribution in a transputer based Parallel

Computer.

Chapter 5 gives a detail of the implementation of

this project. It describes the communication

harness in detail.

Chapter 6 describes the objectives achieved by

this project and suggests areas of future .t-esearch

in this field.

CHAPTER 2

q

PARALLEL ARCHITECTURES

2 • 1 C1a..ssif:i..c:a.:t.:i..nn <>f ~1e1

~t.e:rs

Computer architectures have been classified by

Flynn on the basis of instruction and data streams.

An architecture can be classified by the

multiplicity of hardware used to manipulate

instruction and data strea~s. Given this possible

multiplicity, the following four classes of

computers result

(1) Single Instruction stream, Single Data

stream (SISD).

Sequential computers fall in this

Although instruction execution may be

computers in this category can decode

category.

pipelined,

a single

instruction in unit time. An SISD computer may have

multifunctional units but these are under the

control of a single unit.

\0

(2) Single Instruction stream, Multiple Data

stream (SIMD).

A processor array, which executes a single

stream of instructions, but contains a number

arithmetic processing units, each capable

fetching and executing its own data. Hence at

of

of

any

instance of time, a single operation is in the same

state of execution on mutiple units,

manipulating different data.

(3) Multiple Instruction stream, Single Data

streaa (MISD).

No computers fit into this category.

each

(4) Multiple Instruction stream, Multiple Data

streaa (MIMD).

This category contains most mutiprocessor systems

and the parallel computer used for the developement

of this project too falls in this category.

II

MIMD architectures can be further classified into

1. Shared Memory. In this class of computers, all

CPUs share the same (global) memory. Each CPU may

have a small amount of cache memory. Sharing of

main memo~y is achieved by different techniques,

the prominent ones being the Shared bus and

Switched memory.

i) In. shared Bus, it is necessary to have a bus

arbiter to resolve possible conflicts.

ii) In Switched Memory, the shared memory is

divided into a number of modules which are

switched among the CPUs by a global switching

network.

2. Distributed Memory. All the processors have

their own (local) memories. There is no global

memory. Hence all inter-processor communication is

by message passing.

The advantage of distributed memory systems over

shared memory systems is that in the latter, the

memory bandwidth available is the actual memory

bandwidth shared by all the proecessors, whereas in

12.

the former, the available memory bandwidth is

total of all the individual memories. However,

d i s t r_i b u t e d memory systems, there is

communication overheads of message pas~ing.

2 . 2 ~~te:r- ~ed. :F'a...x-a.1.1e.1

~te:r-

the

in

the

This project has been implented on a transputer

based parallel computer. The transputer based

parallel computer consists of a transputer plug-on

board on a PC-AT host machine. The transputer board

has 1, 4, 16 or 64 transputers inter-connected by

one of the common topology (described in this

chapter) Generally each transputer has a minimum

of 2MBytes of local memory. Compilers and debugging

tools for C, Fortran and C++ for transputer are

provided by many vendors. The mathematical

libraries are too becoming popular.

The transputer boards are typically used as

computation engines attached to a PC-AT machine.

Most parallel computers based on the transputer

have found acceptibilty among the scientists and

researchers working in computation extensive areas

13

of stellar dynamics, simulation of neural networks,

image processing, computational aerodynamics, etc.

This. chapter discusses the main features of

transputer, its communication mechanism, topologies

in which a transputer based Parallel Computing

System can be configured.

2.2.1

The Transputer (TRANSsistor comPUTER has been

developed. by I NMOS Ltd, U.K. as a parallel

processing element. See fig. 2. 1 . It supports

concurrent programming and message

explicitly defined channels or links

direct implementation of the

communicating sequential processes

C.A.R.Hoare.

passing

providing

concept

suggested

A transputer has the following components

i) ARISCCPU.

ii) Fast on-chip SRAM.

iii) Bi-directional serial communication

links, which operate concurrently with

the CPU and with each other.

by

a

of

by

MEMORY

FLOI\'TlN&- POl NT UNlT

I 1"\MERS I

a:z.

32 -sir
CPU

LINK
SEINicE.S

LINk a
itnERF=~

UMK. I
INTER FACE..

UNK2.
lNTe~AC.C

UNK'!
INTeRFAU.

IN
OUT

IN
OUT

IN
OUT

IN
OUT

~~E&
A ell:..

EXTE~NAL memoRy SUS

TIOO ARCHITECTURE BL.OCI< DIA~RAM

IS

The INMOS chip, T800 has a 32-bit RISC CPU, 4KB

of on- chip RAM, four links and also an on-chip

FPU. It supports 4GB of external memory. The T800's

links can transmit data at the rate of 1 . 8

MBytes/sec in one direction, or 2 . 4 Mbytes per

second overall in both directions. The T800 has a

rated performance of 1.5 MFLOPS (T800-20 MHz) and

2.25 MFLOPS (T800-30 Mhz).

Due to its low price/performance ratio, support

for concurrent programming and simple expandibility

of hardware, the T800 has been chosen as the

processing element by CDAC, Pune for their PARAM

project. In India, I.I.T Delhi and B.A.R.C., Bombay

are also evaluating T800 and many research teams

are working on it.

The three components of the T800 can operate

concurrently with each other. Once a message to be

transmitted through a link is set up, the

operates independently of the other parts of

link

the

CPU. The transputer supports point-to-point

communication. The advantages of this type of

communication are:

16'

1. No contention for the communication

mechanism.

2. No capacitive load penalty as transputers are

added to the parallel computer~

3. Communications bandwidth does not saturate as

the size of the system increases. The

communication bandwidth increases as the

number of transputers increase .

•
Each link provides two channels one in each

direction. At each end of the channel,

synchronization of processes is automatic and does

not require explicit programming. If one end of the

channel (A) is ready, and the other (B) is not,

then the process A is descheduled from the process

queue. A descheduled process does not consume CPU

time. When B is ready, process A is executed. This

method is adopted to remove the need for message

buffers. The message is transmitted as a sequence

of bytes. After sending a byte, the sending

transputer waits for an acknowledgement(ACK). Refer

fig 2.2. The receiving transputer sends an ACK as

soon as it starts receiving a data byte. No check

is made to see if the data byte has arrived

0

I I 0

.
DA.TA 8fTS' >/

FDRM~T

A.GKNOW LE.DmEMENT

Fi<n 2:2
. .

C.OMMUNfCATtDN PROTCCOL

iN THE TR~NSPOTE.R.

18

correctly. This strategy is adopted to reduce

communication processing overheads.

Since all the transputers are mounted on the same

board, the probability of data corruption is very

low. If a message is sent, it will either be

transnmitted correctly or not at all. The protocol

synchronizes communication of each data byte by

sending two start bits and a stop bit with every

byte. The ACK consists of one high bit followed by

a low bit. The protocol is independent of the word

length. If two processes sharing a channel are on

·the .same transputer, the channel is maped onto a

memory location. For two processes on two

transputers, the channel is mapped onto a hardware

link.

The disadvantage of the transputer is that it

does not have memory management, does not support

multiple level priority interrupts and a process

once executed cannot be removed involuntarily from

the system. However, the· last point is not a

disadvantage, since the cost of moving an executing

process is very high compared with the cost of

movina one that has not yet started.

2.3 T~1~gies f~r ~ T~ter

1-J,a sed. F'a.:raL11e1 ConJ:puter

The Transputer has four links for connectivity

and this section discusses six regular topologies.

The regular topologies are Mesh, Torus, Binary

Hypercube, Supernode ba~ed hypercube, W-K Recursive

and pipeline.

(1) Mesh

This is considered to be the simplest of all the

topologies, and the transputers are organized in

rows and columns as in a square matrix. The

transputers at the boundary are left with only a

single free link except the corner ones

free links. Numbering is

sequentially down the rows from

Refer fig. 2.3.

Path alaorith•

Let,

col = no. of nodes along a row

src = source processor

2.0

done

left

have two

by moving

to right.

dest = destination processor

Then,

src_x_coord = src mod col

src_y_coord = src I col

dest x coord = dest mod col

dest_y_coord = dest I col

hops = abs dest x coord - src_x_coord

+ abs (dest_y_coord - src_y_coord)

(2) Torus

This is similar to the mesh in that all the free

links of the mesh topology are connected with each

other. The free links of the transputers in the top

row are connected to those of the bottom row in the

same column. This leaves no free link. Refer fig.

2 . 4 .

Path algorithm

Let,

col = no. of nodes along a row

src = source node & dest = destination node

Then,

src_x_coord = src mod col

src_y_coord = src I col

dest_x_coord = dest mod col

2.1

0

4 6

' lO

12. 13 IS

N\ESH .,.OPOLOO.Y

2.

5 6

8 9 . 10

12. l3

• FlGt 2-·Lf TORUS TOPQL.OtiiY

dest_y_coord = dest I col

If abs(src x coord - dest x coord) > (col I 2)

then

hops_x = abs abs (src x coord dest_x_coord)

(col12)

else

hops_x = abs src_x_coord - dest x coord

If abs(src y coord - dest_y_coord) > (row I 2)

then

hops_y = abs abs (src y coord - dest_y_coord)

else

hops_y = abs src_y_coord - dest y coord

hops = hops_x + hops_y

(3) Binary Hypercube

The

cube.

transputers are connected in the form

This cube can be of any dimension upto

of a

four

and hence called a Hypercube. A hypercube of

dimension k has 2k nodes. Neighbouring transputers

differ by one bit position in their address. Refer

fig. 2.5. This is a completely connected topology.

Path algorithm

Let,

src = source node

dest = destination node

vall = src XOR dest

The number of hops between the two nodes is given

by the number of bits are 1 in vall

1='1& 2·§ BINP\RY HYPERc.UBf: TOPOLOCitY

.
FIGr 2·1 Wt< RECURSIVE TOPOLOCiiV

z.s

(4) Supernode based Hypercube

Each transputer in the hypercube is connected to

a cube of eight transputers (known· as supernode).

All transputers of a supernode have a single free

link, with the other three connected to other

transputers in that supernode. This results in a

supernode with 8 free links, permitting an eight

dimensional supercube of hypernodes. The maximum

possible transputers in such a combination is 2048

(8*2 8). R f f" e er 1g. 2 . 6 . Since there are 8 nodes in

a supernode, 3 bits are needed to specify a node in

a supernode. If there are 8 supernodes, 3 bits are

again needed to address a supernode. Withtin a

supernode, numbering is done so that a node's

neighbour differ in address by one bit. A free link

1n a supernode is numbered as per the node address.

Supernodes are connected and numbered in the same

manner as the nodes.

Path algorith•

Let,

n.= dimension of the supernode.

src = source node

dest = destination node

Then,

a) If src = dest then return pathlength.

b) XOR the (n-3) most significant source and

destination addresses. Let the result be rel addrl.

c) If rel addrl = 0, then both lie in the same

supernode. Find the number of hops between them by

XORing src and dest and finding the number of bits

that are 1. Add this value to existing value of

path length and return.

d) If rel addrl <> 0 then find the output link

number (op).

e) If src's node number in a supernode is graeater

than that of dest, then find the position of the

most significant non-zero bit in rel addrl (posnl)

and XOR posnl and 3 LSBs of src, to give rel addr2.

Otherwise XOR op and 3 LSBs of src to give

rel addr2.

f) If rel addr2 = 0 it means that at the current

node, there is an inter-supernode link. Jump across

the supernodes. Otherwise calculate the position of

the most significant non-zero bit in rel_addr2

(posn2).

g) Invert the bit number posn2 in the 3LSBs of src.

2.7

h) Increment the pathlength and goto a).

(5) W-K-Recursive

This is a topology which can be recursively

scaled. In the W-K-Recursive topology, at the

lowest level (basic module) all the nodes are fully

connected. Let the number of nodes be W. The link

requirement of each node is W. We have W=4 free

links at level 1. At the next level, W such modules

are connected and number of free links is

w In this manner, a module of level k is built

recursively from 1 evel (k -1) and needs wk nodes.

Refer fig. 2.7.

The numbering of the nodes is done as follows

At every level, there are 4 tansputers and 2 bits

are needed for the address of each node at that

level. Thus for a topology at level 3, three pairs

of bits are used, one pair for every level. The

most significant pair pertains to the highest level

(logical) node of level 3. The next pair pertains

to the 4 logical nodes of level 2 and the

significant pair, to the 4 physical nodes at

least

level

1 •

2.8

Path algorithm

In the lowest level of this topology, all the nodes

are connected. The next level llevel 2) maximum

distance is 3, level 3 maximum distance is 7 and so

on. Thus the maximum distance at any level can be

given by zlevel 1. A jump in the lowest level can

be made by changing either one or both of the last

two bits. A jump at level 2 can be made by

exchanging the bits for level 1 and level 2 . A

level 3 jump can be made by exchanging the level 3

bits with those for levels 2 & 1

"" .. __._
Let the number of levels in a topology be n/2.

The number of bits required to address a node will

be n. The number of nodes will be zn. Let src and

dest be the source and detination nodes

respectively.

If src and dest are in different modules

Move to the node which connects src and dest

Jump across to dest module

Move down the dest module to the dest node

This code is recursive and holds good for any

level.

(6) Pipeline

The transputers are connected to one another to

form a pipe. The transputer at the beginning and

end ~f· the pipe has 3 free links, while all

have 2 free links. Refer fig. 2.8.

others

30

SUP£RNOJ>E 8~SE:l>

HYPEROJSE TO~LO~y

• • I • • • I

2·9 Pi PEL-iN£

31

Path algorithm

Let,

src and dest are the source and destination

processors. Then,

hops = abs (src - dest

32.

CHAPTER 3

33

There are two main features that are expected in

a parallel programming environment

1. The optimal use of multiprocessors.

2. The cooperation among the processors.

Parallel applications execute processes of their

code in parallel on one or different processors.

High performance applications use this parallism

for achieving speedups. Here, the goal is to make

optimal use of the available processors; this issue

of load balancing is discuused in iVikas,GSS '91~.

In parallel applications, the processors

sometimes have to exchange intermediate results and

synchronize their actions. In a system of automated

factory, processors have to keep an eye on each

other to detect failing processors.

Ideally, programming support for implementing the

parallel applications must fulfill all of these

requirements. This support is expected in the

operating system or the parallel programming

3'1

language being used. In the first case,

applications are programmed in a sequential

language extended with library routines that envoke

operating system primitives. As a disadvantage of

this approach, the control structures and data

.
types of the sequential language are usually

inadequate for parallel programming.

3.1

An important issue in the design of a language

for parallel programming is how the pieces of a

program which are running in parallel on different

processors are going to cooperate. This cooperation

needs two types of interaction among the

communicating processes communication and

synchronization. For example, Process A may require

data X which is the result of some computation

performed by Process B. There must be some way of

getting X from B to A. In addition, if Process A

comes to the point 1n its execution which requires

the information X from Process B, but Process B has

35

not yet communicated the information to A for

whatsover reason, A must be able to wait for it.

Synchronization and communication mechanisms are

closely related and can be treated together.

An issue related to synchronization is

nondeterminisa. A process may want to wait for

information from any of a group of other processes,

rather than from one specific process. As it is not

known in advance which member or members) of the

group

such

will have its information available first,

behaviour is nondeterministic. In some cases

it may be useful to dynamically control the group

For of processes from which to take input.

example, a buffer process may accept a request from

a producer process to store an item whenever the

buffer is not empty. To program such behaviour, a

notation is needed to express and control

nondeterminism.

Interprocess communication in the languages is

broadly classified into two g~neral categories

shared data and message passing.

36

3.1.1 Message Passing

The most elmentary primitive for message-based

interaction is the point to point message from one

source task (the sender) to another destination

task (the receiver). Languages usually provide only

reliable message passing. The language run time

system (or the underlying operating system)

automatically generates acknowledgement messages,

transparent at the language level.

Most message-based interactions involve two

parties, one sender and one receiver. The

initiates the interaction explicitly, for

by sending a message or invoking a

procedure. On the other hand the receipt

message may be either explicit or

sender

example

remote

of the

With

explicit receipt, the receiver is executing some

sort of accept ·statement specifying which meassages

to accept and what actions to undertake when the

message arrives. With impli~it receipt, code is

automatically invoked within receiver. It

usually creates a n~w thread of control within the

receiving. process. Whether the message is received

implicitly or explicitly is transparent to the

37

sender.

Another major issue in message passing i s the

addressing of the parties (or the tasks) involved

in an interaction. The sender and the rece1ver can

be addressed directly or indirectly. Direct

addressing is used to denote one specific process.

The name can be the static name of the process or

an expression evaluated at run time. A

communication scheme based on direct addresssing is

symmetric if both the sender and receiver name each

other. In asymmetric scheme only the sender names

the receiver. In this case, the receiver is willing

to interact with any sender.

Indirect addressing involves an intermediate

object, usually called a mailbox, to which the

sender directs its messages and to which the re-

ceiver listens. This option allows highly flexible

communication patterns to be expressed.

Synchronous a~d Asynchronous point-to-point

With synchronous message passing, the sender is

blocked until the receiver has accepted the message

39

(explicitly or implicitly). Thus, the sender and

receiver not only share data, but they also

synchronize. With asynchronous message passing, the

sender does not wait for the receiver to be ready

to accept its message.

In asynchronous model, as the sender S does not

wait for the receiver R to be ready, there may be

several pending messages sent by S, but not yet

accepted by R. If the message passing primitive is

order preserving, R will receive the messages in

the order they were sent by S. The pending messages

are buffered by the language runti~e system or the

operating system.

3.1.2 Data Sharing

If two processes have access to the same

variable, communication can take place by one

process setting the variable and the other process

reading it. This is true whether the process are

running on the host where the variable is stored

and can manipulate it directly, or if the process

are on different hosts and access the variable by

sending a message to the host on which it resides.

The shared data scheme has several advantages and

disadvantages over message passing. Whereas a

message generally transfers information between two

specific processes, shared data are accessible by

any process. Assignement to shared data has

immediate effect, in contrast, there is a

measurable delay between sending a message and its

being received. Shared data requires precautions to

prevent multiple processes from simultaneously

changing the same data.

3.2 s~ft~ t~~1s f~~ p~g~i~

1~es

A good generalization can be made that there is

good software on low and medium performance systems

such as Alliant, Sequent, Encore and Multi flow

systems, while there is poor quality software in

the highest performance systems. In addition, there

is little or no software aimed at managing the

system and providing a service to a diverse user

community. There is typically no software that

provides information on who uses the system and how

much, i.e, accounting and reporting software. Batch

schedulers are typically not available. Controls

YO

for limiting the amount of time interactive

can take on the system at any one time also

missing. Ways of managing the on-line disks

non-existent.

The system software provided with

performance parallel computers is at best

users

are

are

high

that

which would be suitable for systems that would be

used by a single person or a small, tightly knit

group of people.

Unfortunately, the greater the potential gains

from parallelism, the more difficult it becomes to

realize these gains. For example, the larger the

number of independent processing elements at our

the greater the communication disposal

penalty incurred by the necessity to

between them.

Although multiprocessor machines are

widely available, and offer potentially

cost to performance ratios, they are as

unfriendly environments.

41

overhead

pass data

becoming

impressive

yet user

CHAPTER 4

42.

'T'UPL.E SPACE

The most important and perhaps the most

distinguishing feature of the proposed

communication model, hereinafter referred to as

"TUPLE 10 model" is notion of tuple space.

TUPLE IO's elegance is derived from the extreme

simplicity of the model. This elegance in turn

leads to a reduction of the programmer's burden.

This model is based on generative communication.

If two processes need to communicate, they don't

share a variable, instead, the data producing

process generates a new data object (called a

tuple) and sets it adrift a region called tuple

space. Refer fig. 4.1. The receiver pocessor can

now access this tuple. The tuple space is

conceptually a shared memory, although its

i mpl em enta-tion does not require physically shared

\memory. The tuple space is one global memory shared

by all processes of a program.

4 - 1 'T'U.PLES

An ordered collection of data constitutes a

tuple. TUPLE IO implementation permits various

different types of data type to co-exist in the

same tuple. Data types of arrays and pointers are

handled in a special manner. The maximum number of

data types is a controllable parameter in the

implentation 10 in TUPLE IO).

The total size of all the data type in a tuple is

also a programmable parameter. In the TUPLE IO

model, the maximum s1ze of the tuple is fixed

1024 bytes 1KB) • If larger messages need to

communicated, then they have to be broken

smaller tuples.

The basic operations on the tuple space are

send

receive

peek

as

be

into

These opeartions are of two main types: those

that generate tuples, those that access/extract

tuples.

The tuples are distinguished from each other by

4Y

.
FIG\ Lf·t

TUPLE SPACE

~ (-VQJ. .. I 7~)
~J~s)

TUPLE SPACE'

their

more

template name called tuple-id. There can

than one tuple with the same tuple-id in

tuple space. However, all the tuples with the

be

the

same

tuple-id are placed together on the same processor.

When more than one tuple of the same tuple-id is

present on the processor, then the distributor

maintains them in the form of a linked list. See

fig. 4.2.

Placement of the tuples should be done in such a

manner so that they are placed uniformally over all

the processors. The placement of too many tuples on

a particular processor will lead to overloading as

all requests to the tuples on it will be directed

towards it.

If possile, the tuples are placed on or closest to

the processor that operates .on it the maximum

number of times. Enough research has been done

towards this and load balancing algorithms

;Vikas,GSS

used.

'90~ using Simulated Annealing

4.1.1 Generative opeartion send

can

When a send operation completes, a new tuple

created in the tuple space. The arguments of

be

is

send

0 0

I

2. \

J 0

\

s 2.
I

,
I

•
I

I • , ,
I

lNI>EX FoR
"TUPLES

0 - EMP"t.,

l - V~\.\l> f; F'REE'

2- VA LIZ> t ILOC."'D

-,

-,.

-..

~ore. are it! I 3 ~·s wiAh t~ ·

... K - ,

X

\)(

)('lf\~ ¥ ~ "'-~ ~~ .
~~ \& ~ ~A.
~·

Fl61. 4 ·2 REPftESENll\TioN 0~

TUPt.ES iN 1'\EMl)R)'

can be data variables (integers, float, long, char)

and pointer or arrays. The pointer and array data

types are preceeded by a special character and

followed by a number indicating to data size under

consideration. However, functions returning any of

above data type can not be an argument of send. The

function should be first computed and then the

returned value can be used as an arguement of send.

For example

send ("primes", x, value, ticks, @ptr, 10)

This denotes that the process issuing

instruction creates a tuple with template

·• primes" and 4 data variables. x, value and

are normal data types. ptr is a pointer

address) to a data size of 10 bytes.

4.1.2 Accesing and Hxtracting Operations

receive and peek

receive extracts and peek accesses

tuples placed in the tuple space by a

data

send.

this

name

ticks

(an

from

The

particular tuple from which data will be extracted

is determined by tuple space's matching rules,

which in the TUPLE_IO implementation are

1. The tuple id of the tuple should match the

requested template name.

2. The number of data types in the tuple should be

same as that in the request.

3. Corresponding constant data types must match.

When a receive or peek executes, if no tuple in

the tuple space matches, then the recive or peek

will block until a send places a matching tuple in

the tuple space.

Consider the tuple space to contain the following

tuples:

< "arrayl" 10 , a' >

< "varl" x >

< "arrayl" (itA 12 , b' >

If a processor wants data items contajned within

tuple of template name "arrayl", then ·it does a

receive operation

receive. ("arrayl", ?(!tA, 10, 'a')

Since two tuples with tuple id, "arrayl" are

present, the tuple which matches the constant data

type, 'a' in this case will be removed and 10 bytes

will be copied at address A.

If more than one tuple in the tuple space can

match, the first one of the linked list will be

matched. This ensures that all tuples arriving at

tuple space are serviced in an orderly manner.

However, the user of TUPLE IO is advised not to

make any assumption regarding the search order in

the tuple space as the routing of the tuples is

transparent to the user. When a receive finds a

match, the matched tuple is removed from tuple

space. When a peek finds a match, the matched tuple

remains in tuple space but its fields are copied to

the request.

Suppose both peek and receive are pending for the

same tuple, which currently is not in tuple space,

then the action is unpredictable. Nothing can be

said as to what will be serviced first, receive or

peek. Such situations have to be avoided while

programming with these constructs.

One of the simplest and yet the most useful model

of parallelism is the master/worker paradigm.

its simplest form, a master generates a number

In

of

independent tasks that can be carried out by any of

a number of workers. As an example, consider an

application of this model to matrix multiplication.

Each inner-product is an independent computation.

The master may therefore generate a task for each

inner product. The master first sends the matrix

index to tuple space where all slaves peek to get

this value.

structure for

The

all

master then

slaves in

sends the task

tuple space. Each

worker takes one of the tasks, does its assigned

work and sends its result to the master. The master

receives all the result structure and updates

product matrix. Refer to the pseudocode in fig. 4.

In general, all tasks which are independent of each

other can be programmed in this mannner.

master()

{

for all tasks do

{

I* build task structures. *I

send ("task", task_ structure)

for all tasks do

receive("result",?task_number,?result structure)

I* update total result using this
result and task number *I

It end of master procedure t I

worker ()
{

receive ("task", ?task_structute)

I* execute task *I

send("result" ,current_task_number,local_result_structure)

I* end of slave procedure *I

\

Fig. 4.3 Matrix Multiplication based on master/worker

paradigm using TUPLE IO operations.

52.

4.3

long my_chance
initialize_queues()

r
out ("r/w tail", 0
out ("r/w head", 0
out ("r/w reader count", 0)

ok to read ()

£
in ("r/w tail", ?my_chance
my_chance++ ;
out ("r/w tail", my_chance
in ("r/w head", my_chance)
in ("r/w reader count", ?count)
count++
out ("r/w reader count", count
my_chance++
out ("r/w head", my_chance)

exit read ()

1
in ("r/w reader count", ?count
count-- ;
out ("r/w reader count", count

ok_to_wri te ()

r
in ("r/w tail", ?my_chance)
my_chance++
out ("r/w tail", my_chance)
in "r/w head", ?my_chance)
rd ("r/w reader count", 0)

exit_write ()

t
my_chance++
out ("r/w head", my_chance)

Given that the tuple space lS logically

similar to a shared memory presents a problem.

We can put the tuple space on one node and then

direct all tuple operations to that one node.

This would create an obvious bottle-neck that

would almost certainly be disastrous for

performance. It seems clear that tuple space

should be distributed over some subset (possibly

all) of the nodes.

An option is to maintain copies of the tuple

space on all processors of the parallel

computer. Any given global update to tuple space

can be made with a constantnumber of bus

accesses, rather than the O(n) which might have

been the case without broadcast. The main

drawback is the profligate use of memory.

Another alternate is the "inverse" kernel. In

this scheme, tuple space is distributed over the

machine by leaving tuples at the nodes where

they were generated. receive and peek consult

the portion of tuple space on their node of

origin. If no match is found, a request for a

mat6hing tuple is broadcasted to all other nodes

and a response is awaited. When a matching tuple

is found it 1s sent directly to the requester.

This scheme solves the memory problem but gives

rise to others. In the case of receive & peek,

first the node's local tuple space is searched

and then the request is broadcasted to other

nodes. This may even double the time for a

match. Also when multiple match occur, then too

all but one of the tuple has to be discarded.

4- 5 ~p::res~~t::io~ of ~.1~ s~

nn ~pLit~z- "b.a.s:~ F'a..r-a...1.1~.1

~t~z-

In the TUPLE IO model, the tuple space is

mapped onto all the processors of the parallel

computer due to the distributed memory. The

processors (transputers) do not have a fixed

size of memory allocated towards the tuple

space. But as the tuples float into and out of

the tuple space, the memory is accordingly

55

allocated or deallocated.

56

CHAPTER 5

The proposed communication model has been

implemented on a transputer based distributed

parallel computing system. The software has been

written in Parallel C (3L C Ltd) Ver 2.10 on a

PC-AT 386/33 with an add-on card with one T800

transputer. The implementation phase constituted

of encoding the communication harness; comparing

the communication overheads introduced; and then

testing it . by running LU Decomposition

application based on the master-slave paradigm.

In this chapter, a detailed description of the

communication harness usage is given which can

be divided into three basic parts:

the Preprocessor,

the Code Generator, and

the Distributor.

5.1

The preprocessor first parses the input file

and replaces the TUPLE IO constructs by

appropriate Parallel- C statements for inter

process communication.

The user program written Parallel-C with

TUPLE IO constructs is given as input to the

preprocessor. The preprocessor parses this

program and creates two output files.

One of these files contains information

regarding the occurrence of each of the TUPLE IO

constructs in the program. It describes type

of call (send, receive, or peek); line number

where call occured, number of data variables

present in the tuple, and the template of the

i.e. tuple-id. This information is tuple,

required since these calls have to be replaced

by suitable Parallel-C statements later by the

code generator.

The second output file contains all the tuple-

id's referred in the user program and also

number of times each is referred. The user

file and determines the processor this

which each tuple-id has to be asscoiated

This has to be done with care so as

distribute the tuples uniformally on all

5q

the

sees

with

with.

to

the

processors. A partiular tuple should be kept on

or closest to the processor that refers to it

the maximum number of times.

5.2

Code generator, as the name

generates the code in Parallel-C for a

statement. In the user program, the

suggests,

TUPLE 10

TUPLE IO

constructs of "receive", "peek" and "send" are

replaced by procedures written 1n Parallel-C

which

which

build up and send two message packets on

the distributor takes action. The first

packet is called a

is called msg.

header·and the second packet

5.2.1 The first message packet Header

Whenever a processor has to do a tuple space

operation, it sends a header packet of fixed

size of 15 bytes to the distributor telling it

about the requirement. The header structure is

as follows:

60

distinguisher 1 byte

tuple_procmun 1 byte

tuple_mun_on_proc byte

num of vars byte

source_proc 1 byte

source task 1 byte

;nsg 1 ength 4 bytes

reserved 1 byte

total size 4 bytes

The distinguisher has four possible values

0 ' 1, 2, or 3. This byte tells the distributor

about the nature of tuple space operation

are decoded as:

0

2

3

the call 1s 'send'

the call 1s 'receive' and is going

towards the processor on which the

requested tuple-id resides.

the call is 'peek' and is going towards

the processor on which the requested

tuple-id resides.

the call is 'receive' or 'peek' with the

61

and

variables of the tuple picked from the

tuple space and going towards the

processor which made the request for the

tuple.

the call indicates that this process no

longer requires the services of the

Distributer.

tuple_procnum is the processor number on which

the tuple with the particular tuple-id resides.

It is provided so that the distributor can

direct the header and the message packets along

the appropriate links of the transputer so as to

reach the destination processor.

tuple_num_on_proc is the number associated

the· tuple-id on a particular processor.

with

num of_vars is the number of data variables

present in the field of the tuple.

source_proc is the processor from which the

request has been made.

source task is the number associated with the

process (task) on the particular processor.

msglength is the size of the second message

packet which is following the header.

62.

found_tuple_byte provides information in case of

'rd' statement and informs the processor whether

the designed tuple was found or not.

total size is the sum total of the size of each

data variable in the field of the tuple.

5.2.2 Second message packet: msg

The second packet of message is a set of

contiguous bytes whose size is mentioned in the

header. It is of different structures which

depends on the distinguisher value.

1 • If distingusher is 0, the msg is of

total size contiguous by-tes with num of vars

data variables.

varlvar2var3 •••.•••••• varn

2 . If distinguisher is or 2, then the message

structure is

the first num of var bytes check whether data

item is known or unknown.

unknownvarlunknownvar2 •••••••• unknownvarn

next 4*num of vars bytes tell the size of each

63

variable

size of_varlsize of var2 •••..• size of varn

next 4*num of vars bytes are pointers to each

variable

ptrlptr2ptr3 ...••••••..•.. ptrn

For each of num of var variables, the value of

the variable is written if it is a known

variable.

3. if distinguisher is 3, then the message is

varlvar2var3 ..••.•.•.....• varn

4 . if distinguisher is 4 1 then message is

irrelevant.

5.3

The distributor is the communication

harness of the TUPLE IO model described in this

report. It handles all the requests made by the

processes and performs the necessary action

accordingly. The distributor runs In parallel to

the executing processes on all the processors of

the parallel computing system.

The distributor has as many software ports as

the sum of the hardware links of the processor

and the executing processes on that procesor. A

buffer and a semaphore is allocated to each of

the outut port. A thread 'is created for each of

the input port of the distributor and the

distributor procedure is run on all the

threads. The semaphore prevents simultaneous

access of a channel by two processes.

The distributor waits on each thread till i t

receives a message packet (the header). On

receiving the header, the distributor performs

the action according to the distinguisher byte.

65

1. If distinguisher is 0.

The distributor checks if the tuple has to be

placed on the current processor. If so, then it

allocates total size bytes in the local memory

of the processor and copies the second message

into this memory. Else, the distributor sends

the header and msg.to the next processor on

route to the destination processor on which

the tuple-id resides through appropriate links

of the current processor.

2. if distinguisher is 1.

If the tuple-id does not reside on the current

processor, then the distributor sends the header

and msg to the next processor on route to the

destination processor on which the

link

tuple-id

resides through an appropriate of the

processor.

If the tuple resides on this processor and the

current procesor is the source processor too,

then the distributor searches for the tuple of

the required tuple- id with the matching known

66

variables in the tuple space. of the current

procesor. If it is not found, then i t

deschedules the search and later tries again.

When the tuple is found, it then copies the data

variables of the tuple onto the address whose

pointers

removed

it

from

deallocated.

receives in msg.

t.he linked list

The tuple is

and memory is

If the tuple resides on this processor and the

current procesor is not the source processor,

then the distributor searches for the tuple of

the required tuple- id with the matching known

variables in the tuple space c:if the current

procesor. If it is not found, then i t

deschedules the search and later tries again.

When

tuple

linked

the tuple is found, it then copies

into msg. The tuple is removed from

list and memory is deallocated. It

the

the

also

changes the distinguisher byte of the header to

3' and the msglength to total size. It then

sends the header and msg through appropriate

links to the next p~ocessor on roui~e to the

processor which made the request.

3. If distinguisher is 2.

All actions are same as when the distinguisher

is 1 ' except that the tuple is not removed from

tuple space and the search for the tuple 1 s

made only once. If tuple is found then

found _tuple_byte is set high (i . e . 1) .

4. If distinguisher is 3.

If current processor is one which places the

request for the tuple, then each of the data

variable is copied into the address indicated by

the corresponding pointer in the msg.

If current processor is not the one which

requested for the tuple, then the header and msg

are passed onto the next processor on route to

the processor that requested the tuple.

5. If distinguisger is 4.

This indicates that

generating this

communication.

terminates the

tuple

The

thread

68

the the processor

has to do no more

distributor pro~ ram

associated with this

process.

An effort has been made to provide a user

friendly programming environment for

programmers. This will save a programmer to

learn the communication syntax/mechanism not yet

standard of parallel system. The communication

harness developed provides simple constructs for

message passing.

It has been noticed that a new programmer is

reluctant to study the topology of the parallel

computer so as to route messages along

shortest path. The proposed model handles

routing of messages.

This communication harness does not make

the

the

the

sender wait till receiver is ready and hence is

asynchronous in nature. However, the ordering of

messages is ensured.

Another advantage is that a sender wishing to

send a message to more than one processes has to

send it only once, all others peek at it and

receive it.

CHAPTER 6

"11

This proposed communication harness has been

tested with message passing simulation programs;

ping-pong message passing from one to many

processes and between two processes; LU

Decomposition technique for solving a set of

linear equations.

Unfortunately, testing this harness on

multiple processors could not be achieved due to

unforseen delays which were faced due to the

bugs in the Parallel C compiler Ver 2.1.

This harness is based on asynchronous

commuJ!ication paradigm. LU Decomposition tests

for solving a set of linear equations when

conducted on this harness and another

synchronous harness (developed by a research

team at BARC, Bombay) clearly show the speedup

achieved over the existing synchronous message

techniques. To solve a set of 1 6 passing

variable linear equations it took 6 seconds on

the synchronous harness while it took less than

a minute in TUPLE IO model.

This harness removes the message routjng anrl

all connectivity problems from the programmer.

The programmer does all the

communications using the

AJ J the

three

TUPLE JO constructs. tests

prove that these three constructs are

and adding more constructs will only

necessary

available

conducted

enough,

lead to

programming complexities, removing which has

been the main aim of this project.

This harness suits specially those situations

where message passing is from one to many

process of the same data. While using this

harness, the programmer generates the message

using the send construct, whereas all processes

needing it can peek at it and read i t . Later

this message should be destroyed.

Future work on this harness ought to include

the following

1 • The harness should be checked on multiple

processes running on multiple processors. This

would ensure that the protocol holds at even

boundary cases. Currently the values of maximum

processes and processors are hard coded. These

should be dynamically managed.

73

2 . Communication traffic montoring should be

added to enable the placement strategy of the

user program to be quantitively evaluated.

3 . When the preprocessor scans the users input

source program then it should also check for

communication deadlocks. This will be of great

usefulness to parallel programming community.

4 . A major debatable 1ssue 1s whether the user

should be made to timeout if the message

requested

in the

provided.

by the user is not yet ready. May

future version an option should

be

be

BIBLIOGRAPHY

1. Hwang, Kai. Advanced Parallel Processing with

Supercomputer Architectures, Me Graw Hill Press.

2. OCCAN 2, Reference manua], lNMOS Ltd., 1987.

3 . Singh, G.S. Trends in Parallel Processing,

Feb 1988.

4. Quinn, M. Design of efficient algorithms for

Parallel

Computers, Me Graw Hill Press.

5. Ni,C.N. and Hwang,Kai. "Optimal load

job balancing mutiprocessor system with many

classes". May 1985.

6 . Ellis~ G.E. "Transputers Advance Parallel

Processing", Research & Development, March 1989.

7. Transputer Reference Manual, I NMOS Ltd.

8. Ahluwalia, V and Singh,G.S. "Lo'ad Partioning

on a transputer based Parallel Computing System

using MIMD algorithms of Simulating Annealing &

Heuristics". AMSE '90 Conference, Tirupati. Dec

, 90.

9. Singh,G.S Khare A.N. and Ghodgaonkar, M. "A

75

High Performance system", Feb 1988.

1 0 • Ahuja, Carriero and Gelernter. "Linda and

Friends". IEEE Computers 19(8). Aug 1986.

1 1 • Bal H.E. "Programming Distributed Sytems".

Silicon Press. 1990.

1 2 • Andrews, G.R and Schneider,F.B. "Concepts

and Notations for Concurrent Programming", ACM

Computing Surveys. 15(1). March 1983.

1 3 • Bal H.E. and Tanenbaum, A.S. "Distributed

Programming with Shared Data". Proc. of IEEE CS

1988 Int. Conf. on Computer Languages, Miami.

Oct 1988.

1 4 • Bal, H.E. "Languages for Parallel

Programming". Vrije University, Oct'1990

1 4 . B a 1 ~ H • E . and Tan en b au m e t • a 1 . '' Pro g ram m i n g

Languages for Distributed Computing Systems".

ACM Computing Surveys, Vol21(3), Sep' 89.

15. Messina, P. "Parallel computing in the 1980s

- one person's view". Concurrency Practice and

Experience, Vol 3(6). Dec '91.

1 6 . Carriero,N and Gelernter, D. "Linda in

Context". Comm. of ACM, Vol 32(4). April 1989.

16

	TH45170001
	TH45170002
	TH45170003
	TH45170004
	TH45170005
	TH45170006
	TH45170007
	TH45170008
	TH45170009
	TH45170010
	TH45170011
	TH45170012
	TH45170013
	TH45170014
	TH45170015
	TH45170016
	TH45170017
	TH45170018
	TH45170019
	TH45170020
	TH45170021
	TH45170022
	TH45170023
	TH45170024
	TH45170025
	TH45170026
	TH45170027
	TH45170028
	TH45170029
	TH45170030
	TH45170031
	TH45170032
	TH45170033
	TH45170034
	TH45170035
	TH45170036
	TH45170037
	TH45170038
	TH45170039
	TH45170040
	TH45170041
	TH45170042
	TH45170043
	TH45170044
	TH45170045
	TH45170046
	TH45170047
	TH45170048
	TH45170049
	TH45170050
	TH45170051
	TH45170052
	TH45170053
	TH45170054
	TH45170055
	TH45170056
	TH45170057
	TH45170058
	TH45170059
	TH45170060
	TH45170061
	TH45170062
	TH45170063
	TH45170064
	TH45170065
	TH45170066
	TH45170067
	TH45170068
	TH45170069
	TH45170070
	TH45170071
	TH45170072
	TH45170073
	TH45170074
	TH45170075
	TH45170076
	TH45170077
	TH45170078
	TH45170079

