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PREFACE
To understand the problem raised by distributed working is to
understand how tomorrow’s information system will work. Just as there
has come to be a standard structure for a car, agreed to by all manufac-
turers as well understood by all users, there is no doubt that these
future systems will consist of machines of a wide variety of types dis-
tributed around a ring, raging from individual work station to a central-
ized file store, with general or special-purpose processors in between.
Thus if we want all the processes to be implemented in order to mobilise,
co-ordinate and stop the many activities of a distributed system, we
shall understand the problems faced and a need of standards.

Keeping the above in mind, the thesis centers around the need of
standard algorithms dealing with different problems of distributed
systems. In my thesis,  have considered only the problem of “Reaching
Agreement in the Presence of faults™.

In this thesis, the algorithms have been investigated for both synchro-
nous and asynchronous system. The algorithms considered include
solutions for interactive consistency problem, solutions for Original and
Weak Byzantine General problem, Asynchronous consensus and broad-
cast protocols, variants of Byzantine general problem by assuming
starting values as reals, simple constant time consensus protocols in
realistic failure models, simultaneous byzantine agreement, eventual

byzantine agreement, etc.

The thesis is divided into 5 Chapters in the fdllowing fashion; Chapterl,
has the introduction to the subject and an abstract of the thesis.
‘Chapter2 has general notations and definitions, theorems, lemmas
along with their proofs are dealt with in Chapter 3.

While going through the thesis, the reader may want to skip over
Chapters 2 & 3 and go directly to Chapter 4, in which the problem
is explained in detail. While reading Chapter 4, you may revert back to
Chapters 2 & 3 for referring to notations, definitions, theorems, lemmas

and proofs.

For sake of convieniance the definitions are arranged alphabetically.
Also in Chapter 3 you will find that the theorems appear in the same order
as they do in the text of Chapter 4.



TABLE OF CONTENTS

1. CHAPTER 1 ~
Introduction EEEE 1-1
2. CHAPTER 2
Notations & Definitions oo 21
3. CHAPTER 3
Theorems, Lemmas and proofs coee 3-1
4, CHAPTER 4
Module One cees 41
4.1.1: The Single - fault case . 4-3
4.1.2: An Algorithm for n>=3m+1 4-5
4.1.3: Proof: Impossibility for n<3m+1 4-9
4.1.4: Algorithm using Authenticators 4-10
Module Two e e 4-13
4.2.1: Impossibility Result 4-14
4.2.2: Approximate Solution 4-18
4.2.3: Infinite Solution ' 4-20
Module Three ‘ ¢ o o o 4'21
4.3.1: Main Results of Fischer’s work 4-22
4.3.2: Algorithm for Initially 4-22
Module Four ceee 4-25
4.4.1: Fail - Stop case 4-27
4.4.2: Malacious Stop case 4-31
4.4.3: Asynchronous Byzantine Agreement "~ 4-35
Module Five , . 4-40
4.5.1: Properties of Approximation functions . 4-41
4.5.2: The Synchronous Problem 4-43
4.5.3: The Asynchronous Problem - 4-49

4.5.4: Resilence . 4-56



Module Six cee
4.6.1: Failure Models
4.6.2: Message-Oblivios case
4.6.3: Message-Dependent case
4.6.4: The Asynchronous case
4.6.5: Using a weakly global coin

-Module Seven e
4.7.1: The lower bound for SBA
4.7.2: The lower bound for EBA
4.7.3: The lower bound for SBA

5. CHAPTER 5

Conclusion and Future Directions . ...

BIBLIOGRAPHY

4-58
4-61
4-67
4-73
4-78

4-85

4-92
4-100
4-104
4-107

5-1



CHAPTER ONE

INTRODUCTION

The field of distributed applications is constantly 9rowin§. This
increasein the use of computer science as a prefered tool in ever

more diverse aoreas is essentially the resultvof developments in

" this discipline.

The control of distributed applications is based on understanding
- ) ‘ " .

of what is known as "DISTRIBUTED SYSTEM™. Compared to CENTRALIZED

OPERATING SYSTEM, DISTRIBUIED SYSTEM differ essentially since the

entities that form the latter cooperate in the'ochievemedt of
common aim by exchanging messages,; and thus there is no global

state in the system that can be detected instaontly by one of

these entities.

The problems related to distributed system intiude :
(a) Mutual dependency of logical clocks

(b) Network routes

(c) Learning distributed information

(d) Determination of global states.

(e; Maximum delay in the transfer of messages

(f) Topological structure of the network

(8) Distributing a global synchronizotion'constrain
(h) Reaching agreement in presence of faults

ﬁi) Mutuai exclusion

(J) and many more.



In this thesisy algorithms for reaching agreement 1q the
presence of faults have been investigated for both synchronous and
asynchronous system. The algorithms considered includé solutions
for interactive consistency problem, solutions for Original and
Weak '.Byzontine General problem, Asynchronous consensus and
broadcast protocols, variants of Byzantine general problem by
‘assuming starting values as reals, simple constant time consensus
protocols in realistic failure modelsy simultaneocus byzantine

aggoreements eventual byzantine agreement, etc.

Fault-tolerate systems often require a means by which independent
‘Processors or processes can arrive at,an exact mutual agreement
of some kind.tllt may be necessary, for éxqmple.  for the
processors of a redundant system to synchrdnlze their 1nternol
clocks periodically. Or they may have to settle upon a value of
a time=varying input sensor that gives each of them a  5119htiy
different reading. , In the absence of faults, reaching a
satisfactory mutual agreement, is usually an easy matter. In most
cases ;t sufficés simply to exchange values, (CLOCK TIMEs in the
case of cldck ~synchronization) and compute some kind of average.
In the presence of faulty brbcessors, however, simple. exchanges
cannot be relied upon, a bad processor might report one value to
@ given processor and another value to some other Processorss,

causing each to calculate a different "avercge.“



One might imagine that the effect of foulﬁy processors could be
dedlt with through the use of voting schemeg involving more‘than
one round of information exchange; such schemes might force
faulty processors to reveal themselves as faulty or at least to
behave consistently enough With respect to the nonfaulty
brocessors to allow the latter to reach an exact agreement. As.
Wwe will shows it is not always possible to devise schemes of
this Kkind, even if it is known that the faulty processors are in
a minority. Algorithms that allow ekoct agreement to be reached
by the nonfaulty processors do exist, howevery 1if they

sufficiently outnumber the faulty ones.

The Byzantine generals problem involves obtaining oagreement
among a collection of processesy some of which may be faulty. The

precise defination is given in the chapter 2.

Nonfaulty processes are assumed to correctly follows their -
alogrithm, but faoulty processes may do anything. We assume that
the absence df o message is detectable, which is equivalent to
assuming that a faulty process sends every.message that it is
supposed to--although it need not send the correct message. The
difficulty of the problem lies in the fact that o faulty'pﬁocess

may send conflicting information to two different Processes.

1=3



" This problem was described in [2_1] in term of byzantine general
metaphor, h;ﬁce its nome. Essentially the same problem appeared
in [1_01, where it is colled the interactive consistency problem.
In [1_0] the problem was shown there to 6e solvable if and only
if fewer than one-third of the processes are faultys no solution

Works for three processes in the presence of a single fault.

In the work done by Lamport in [2_0] we consider a weaker version
of the problemy in wWhich i condition (1) 1is replaced by &
1) If all processes are nonfaulty, then every process i obtains

the value v

A form of agreement problem quite well-known is the the transact-
ion commit problems which occurs in distributed database systenms,
all the data manager processés Which have parti;ipatquip”tHg
processing of « porticuldr tronsaction to agree‘on_whgthgr po
install the tronsaction's results in the database or to discard
them. The latter action might be necessary, for exomple,'iffsomg
data manogers were unable to carry out the required transaction

processing. Whatever decision is made, all data managers must

make the some decision in order to preserve the consistency of

the daotabase.

The transaction commit problem for a database is an instance of
this weaker problemy, in which process ( represent a transaction

coordinator, and the other processes représent the database sites

affected by the transaction [2_3].
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Any solution to the original Byzantine (Generals Problem is
obviously o solution to the Weok Byzantine Generals .(WBG) Problem
S0 the WBG Problem solvable if fewer than one-third of the

processes may be faulty.

i

The Byzantine Generals Problems arises in practice when trying
to get- the nonfualty processes to agree upon the value of some
input quantity. The WBG pProblem arises Nhenvtrying to getvtﬁe
nonfaulty processes simply to agree, regdrdless of what they
agree upon. To eliminate the trivial possibility of having them
g agree upon o prearranged values we can assume that each process
chooﬁes a Private value, and that these private valuesare used
~in reaching agreement,can theh be formulated as WEAK INTERACTIVE
CONSISTENCY PROBLEMs defined in the next chapter.

A consensus protocol enables o system of n asynchronous PPOCQQS,

I .
Wwhere gsome of the process are faulty, to reach to an agreement.

Next we discuss protocols that enable a fully interconnected
system with reliable asynchronous transfering, to ‘reach an

agreement. In reliable asynchronous message system, a message

can be have arbitrary delays.

The fculty processes considereds fall under two classes
1) Fail stop processes ¢ A process may stop participating in the

protocol that isy it may Jjust Die.

2) Malicious Process : A Fculty.process may send incorrect

messages.



A fail stop process creates problem even thpugh’if doesn't send
any false messages, because there is no way to find a di f ference
beéween a dead process and a slow one. Whereas in case of 4
malicious process, the contradictory messages may cause trouble

for the distributed system.

The system involving ?ail-stop processorss wWas investigated in
E3_D].‘Fischer etcl.‘ It showed the impossibility of a consensus
protocol if only one failure may occur. However, in [3.01], the
concept of -on admissible solution is a protocol that always
terminates within a finite number of steps. In fﬁb&;};ﬁgib wé are
interested in a different‘ kind  of solution: we consider
protocols , which may never terminate, but this would occur
With probobility Oy and the expected termingtion time i= finite.
There dre twWwo wWays to introduce probabilities on the possible |

executions of o protocol. The other approachy and the one we

adopt in this thesis, is to postulate some probabilistic behavior

about the message system.

In the cose of fail-stop processors, we describe o probabilistic
pProtocol that can withstand up to [_(n=1)/2_1 failures, where n
is the number df processes. . We also show that there is no
consensus protocol that can wWithstond wup .to [_(n=1)/3_1
processes may fail. Agreement among remote processes is one of
the most fundamental problems in distributed computing and Is at
the centre of many algorithms for distributéd data processinéa
distributed file management, and fault tolerent distfibutéd

agpplications. o
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One may also consider more Byzcntine types of FailuTe in which
faulty processes might 9o \completely haywires; perhaps even
seﬁding ' messages >occordin9 ‘to some malevolent plan. We would
like to have an ‘agreement protocol which 1is as reliable as
possible  in the presence of such foults. No completely
'déynchronous consensus protocol can tolerate even a singlé
-unannounced process death. We may not consider Byzantine
failures, further-more we assume that tge message system is reli-
able oqd that it delivers all messages correctly and exactly once.
Still with these assumptions, the stopping of a single process at
an ‘inopportune time can cause any distributed commit protocol to

fail to réoCh agreement. Hence this cruciol problem haos no
convincing solution or still greater restrictions on the kind of

failures to be tolerated!.
N

As crucial to the proof that Processing is'completely‘csychronous
we cannot make‘ cssumptions‘ about the relaotive speeds of
processes orr about the delay time in delivering o message. We
can also assume that processess don't have access synchronized
clocks, so algorithms based on time-outs,' for example, connot be
used. Finally we cannot postulate the ability to detect the
death of .a process, so it is iﬁpossible for one process td teil

whether another has died orr is just running very slonly,



~The 1impossibllity in the result aopplies to even a very weak form
of the consensus problem. lLet us assume that every proéess
starts wWith on initial value in {0, 1}. A nonfaulty process
decides on a value in {0s;1} that is by entering an appropriate
decision state. Also all nonfaulty précesses which moke «
decison are to choose the same value. For the purpose of the
impossibility proof, we want only that some process eventually
moke o decision. The solution in which' s d is always chosen is
.ruled out by saying that both (0 aond 1 are possible decision

values, although perhaps for differrent initial configurations.

Process are also modelled as cautomatg,one atomic step. Every
message is finally sent as long as the destination process makes
infinitely many ottempts to receivey, but messages can be delayed,

agrbitrorily longsyand sent out of ordek.

In module five we assume a different kind of model.

We assume a model in which processés can be send messages

containing arbitary real values and store arbitray real values as

-nell,

We assume that each process starts with an
arbitary heol value. For any pregssigned t > 0 (as smali as

desired), an  approximate agreement algorithm must satisfy the

following conditions:



(a) Agreement: All nonfaulty processes eventudally halt with

ocutput volues that are within of each other.

(b) Validity: The output by each nonfoaulty process must be
in the range of 1initiol values of the nonfaulty

processes.

Thuss in particular, if all nonfaulty processes should happen to
start with the same initial value,  the final values are all
required to be same as the common initial wvalue. This is
consistent with the wusual requirments by Byzantine agreement
algorithms. However,y, should the nontaulty processes start wWith
different values, we do not require that the nonfaulty processes

agree on o unique trinal vdlue.

We consider bofh synchronous and asynchronous versions of the
problem. Systems in which there is a finite bounded delay on the
operctions of the processes and on their intercommunication are
said to be synchronous. [n such systems, unannounced process
deaths, as well as long delays, are considered to be faults. For
synchronous 'system,; we give a simple ond rather efficient
algorilthm for achieving approximate agreement. This algorithm
WOrks vby successive approximation, with a provable convergence
rate that depends on the raotio between the number of faulty

processes and the total number of processes are qQllowed to

terminate at different times.

1-9



For asynchronous systems; in which a very slow process conhot be
distinguished from a dead process, exact agreement canhdt bé
reached by an algorithm that is guaranteed to terminate (5.5
8 _91]. Exact agreement can, however be attoined by algorithms
that only teminote with probability 1 [6_.1s 5.3]. An interesting
constrast to the results in [5.5] oaond [5.9] 1is the second
algorithm, wWhich enables processes in an asychronous system to

get 0s close to agreement as one chooses.

Qur algorithm for the asynchronous case also Works by successive
approximation. In this cosey, however 4 the total number ‘of
processes required by the algorithm is more than five tihes the
number of possible faulty processes. As in the synchronous case
we acheive termination using a technique that ensures that all
nonfaulty processes halt but permits different processes to
terminate ot different times. Qur algorithm for obtoining
approximate aggrement are of a very simple form. Namely, at each
round; until termination is reached, each process sends its
latest value to all processes (including itslef). 0On receipt of
a collect;on V of Walues, the process computes a certain function
f(v) as 1ts next value. The function f is a kind of averaging
function. Here'we use functions that are appropriate for handling
t faulty processes.

Particularly for handling t faulty processes, We show that these

funcations have particularly nice approximation behovbur. In

1=10



particular, we show that, for algorithms of a specifg,t form, no
apprioximation function can provide uniformly faster convergence
than the functions wused in ([5.0]. [5.6]1 presented similar
algorithms but used‘dpproximotion functions that provided slower

convergence .than is achieved by the functions used in [5.01].

Randomization has proven to be an extremely useful tool in  the
design of protocols for distributed agreement. New rondomized.
protocols for the consensus problem in synchronous and
asynchronous fail=-stop and failure-by-omission models are
presented in the thesis. These profocols terminate within
constant expected time, and unlike previous fast protocols, are
very simple and need not rely on any preprocessing. [Infact, we
believe that these protocols will be the method of choice In
practical  implementationz:  The mador novelty of  algerithms
developed in fﬁ_O] is "the notion of a weok form of a global

coiny and a method of generating it.

The situation for determiniétic alogrithms for consensus is well
understood. A result of polev and Strong implies that in
asynchronous - fail-stop model, at least t + 1 rounds are needed,
in the worst casey to achieve consensus;they also phoVided’on
algorithms  that achieves this bound and transmits only a
polynomial number of messages [6;103. In an asynchronous model,
Fischer et al. showed that no protocol exists for consensus in

the fail-stop model that tolerates even a single fault {6_14].
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Fortunately, randomization can overcome this inherent
intractability. ’Ben-Or describes a protocol for asynchronous
consensus that tolerates upto~n/2 faults in the fail-stop model,
and terminates with probability 1 [6.4]. Results of a similar
nature were giQen by Bracha and Toueg [6_6]. However the expected
number of rounds needed to reach agreement as maesured locally by
every processor is exponential in the asynchronous case (can be
shown to be 0( .t/ ~/E ) in the synchronous one). Rabin introduced
the importont notion of a global coin flip [6.22])swhich is a coin
flip wWhose outcome is viéible 3 to all processors. He
describes a different protocol that empldys such a coinsso that:
gach processor con use the outcome of a common coin. The expected
number of rounds to reach agreement is 0C T ( n ) )y where T( n )
is the time required to flip the coin in a network of n
processors. [n order to implemenﬁ his global coin, Rabin required
some predealt information to be distributed by a trusted third
party. Bracha, wuwusing a bequtiFul "boot=-strapping”construction,
showed that Rabin's result could be improved so that agreement is
reached -in 0C TC log n ) ) expected number of rounds ( i.e., the
time to flip many independent coins in subnetwork whose size is
logarithmic in n, in the size of original net#ork ) [6.51]. it has
been shown how to use cryptographic techniques to implement such
G coin=toss in TC( n ) = 0C n ) roundss so that overall, Bracha's
Procedure can be run in 0(log n ) expected time as shown 1n'[6;3]
and by ~ A.C. Yao, private communication . However, thié scﬁeme

requires aon assignment of processors to committees for which no
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explicit conséruction is known. In contrast, the.protocol given
by Benny Chor 1in [6.0] is completely constructive. Feldman and
Micali [6_12] have also the nonconstructive part of Brocha's
proﬁobilistic qssignment,‘by having the processors generate the
assignment themselves.However,in the process,Feldmcn and Micali
introduced a preéﬁcessing phase that requires QO(T)rpunds.Their
protocol is sdperior to deterministic protocols in on amortized
sense,since additional agreements require only 0(1) time.The
best-knownA bound for a Byzantine fault model without predealt
information or preprocessing is 0(log n). Since the alogrithms

given in [6_01, for omission faults run in constant expected

— S N UGy U USSP

time, current results leave a 1og N sSeperation between the

ByzZantine dnd omission fault models.

Finally 1in the lastmodule of the thesisy [ discuss two closely-
related types of agreement that can be reached in a distributed

system in the presence of undetected processor faults.'

One type 1is colled Simultanecus Byzantine Agreement (SBA) and
the other Eventual Byzantine Agreement (EBA). Corresponding to
these two types of agreement, are ‘two distint£ probiems in
coordinofion among multiple processors in a distributed system.
One problems 1is synchronization: Processors may be required to
perform some action at the same time, immediately after reaching
agreement on that oaction [7_18]. The otheﬁ is consistencvvcs
required,?or examples, in the atomic commitment of a disfﬁibuted

database transaction. The participants in the transaction commit

' 1-13



fbrotocol must agree on whether or not the transaction is to be
commi tted. In‘ this case,- it is enough to Know that the choice

Will eventually be the choice of all other parties to the
agreement [7_101.

The ‘differénce between“these‘ tWwo problems and ﬁhe consequént
differences 1in requirements for their solution is discussed in
the'lthesis. Because SBA implies EBA within the model considered,
EBA can always be'reached as early as SBA. [t is shown that EBA

can often be reached earlier than SBA.

This thesis provides a completeléhrvey repdrt of NBFK done in the
field, starting from the' year 1980 to 1990. It presents the

protocols with detdiled proofs whereever found necessary.

1-14



- CHAPTER TWO

This chaopter is compiled for réference with respect to "Glossary

P

of Notations®” and "Definitions”. The Definitions are orronged>

-

alphabetically to permit easy access to_any definition as in a
dictionary.
GLOSSARY OF NOTATIONS
General Notations :

o< ‘ : is Gree@ letter Alpﬁo

o- ? H is Greek letter Sigma

$ :  is Greek letter Beta -

11 : stands for big Pi

# : stands for small Pi

Z : stands for Phi

& 1 stands for Delta

e : Standé ?Qr Si

A : stonds for th

l : stands for Lemda

n : the number of pﬁocesses.

P H the set {0js.....3N=1} Of processes.

F* : the set of finite seduence of processes.

(elements of P including empty set)

the set of message paths from 0. This implies
a sequence in Px begining with (.

I1

21



IIi : the set of message paths from 0 to iy that is
’ a sequence in [II ending in i.

TICk) : set of message paths of length <= k in [I.

[11¢K) + ' set’'of message paths of length <= k in IIi.

\' : the set of all possible values Ve
scenario ¢ a mapping % 5 II =-> V » specifying the value
: of the content of every message.
if # belongs to I then ZT(#) gives

content of message received at final
destination of path [] .

i-scenario: a mopping %t s IIi =-=> V , the part of a
scenario "seen" by Process fi. -

WBG algorithm B:a collection of mappings Bi from i-scenarios
to V, such that for any scenaric ¢ in
which atleast n-m processes are nonfaulty
(1) If all processes "in P are nonfaulty
in £ then for all { belonging to P
Bi(%Zi) = %(0) . -

(2) If any 1 5, J belonging to P ore
nonfaulty in € than Bi(%i) = BJ(LI)

Notation for n=3.%

&(153) : the signed, clockwise distance from i to Jj.

o=(#) e the signed angular distance travelled by the
path #.

r :

r mod 3. \

(r
II

a scenario in which a faulty Process r relays

the value F tor - 1 and the value T to

r+ 1.



Notation used in proof of Theorem 2.12

P'

A

/\

the set of process {(0's1';2"}

o mapping assigning to each process in P a
process in P's which oaossigns at most m
proceses to each process in P'. Also its
extension to a mapping from message paths
in P to message paths in P°'.

an element in P that iS assinged by | to i",
where i = 0,1 or 2.

a mapping that tokes. scenarios on P' into.
' scenarios on P, defined by letting the
value of /\ [%'] on the message path -
.equal the value of ' on the path | (#).



CONCEPTS AND DEFINITIONS

ADMISSIRLFE RIUN & We may add thaot a run is admissible if at most -
one process is faulty oand that all
T messages sent to non~-faulty processes

are eventudlly received.

AUTHENTICATORSS An aguthenticator is redundant oaugment to

a data item‘ that con be created

ideally, only by the originator oF;the

data.

A SYNCHRONOUS APPROXTMATION ALGORTTHM P 2 It is o system of n

processes, n>=1. Eoch.process P has a
set of states, including a subset of
states called initial states and .
subset called halting states. Theré is
o value mapping that assigns a real
number as the value of each state. For
each real number r, there is exactly
on initiol state wWith value r. Each
process acts deterministically
according to a transition fUnction_ond
a message generation function. The

transition function takes a nonhalting

2=-4



’
process state and a vector of messages
. received from all processes (one
message per process state. The message
generation function tokes a nonha#ting
process state and a vector of messages
received from all proCessés(one
message per process) and produces d
new process state. The message
generation fuction takes a nonhalting
state ‘and  produces a vector of
'messages to be sent to all processes

(one per process).

ASYNCHRONQUS FATIURFS: Except for o set of at most t sending
- ' . processors, all messages sent by every

processor are eventually dellivered.

ATOMIC STEPS 2 In"an atomic step of the system, a pbocesslcon
attempt to
%% Receive olmessage
*»x Perform local compytation on the
basis of whether or not a message

Was delivered to it and if so which

one.

\



N

*%% Send an arbitrary but finite Set

of messages to other processes.

The protocol prescribes the computation
& the message sent . as a function 0? the

message recieved & the local state.

BYZANTINF GFNFRAI S PROBI FM2 given a collection of processes

LCANDIDATF: A prdcessor p

numbered from 0 to n - 1 Which
communicate by sending messgages to one
another, to find an alogrithm by which
process (Q can transmit a volué v to

all the processes such that:
(1) If process 0 is nonfaulty, then
any nonfaulty process i obtains

value V. ) |
(2) If processes i Vond J are
nonfaultys then they both

obtain the saome volQe.

Note that condition 2 follows from 1

if process 0 is nonfaulty.

is said to be a caondidate in round i of
a history - H if p does not fall before
round i and if H and the silencing of p
at round in of H are serial. Note that

if p fails in round i of H are serial.

2-6



Note that if’ p fails in round i of
serial history Hy then p is a candidate
in round i of H. However p can be both
correct in H and o candidate in run in

of H.

LONFIGHRATION 3 of the system consists of 3
| »x» [nternal state of each process
*»% Contents of message buffer.

y g
F denotes any configuration where all

the correct processes have decided i.
LONSFNSUS PROTAOCAL 3 A consensus protocol enables an asynchronous
system of n processess;  With some

faulty proceses, to reach an agreement.

LONSFRVATIVE EXTENSIONS If Hk is on initial sequence of a history
in Us then the conservative extension
of Hk is ‘the wunique history H' in U

such that
(1) H'k = Hk, and

(2) no processor fails after round K.
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CORRECT PROCESS 2 A correct process” is a process which always
follows the protocol until the

protocol completion. However a fail-stop
process may die during the execution
of the protocolsi.e. ~ it may stop
participating in the protocol, also
death ‘ of a process occﬁrs without
warning messages.. In the model, it is
obvious that such a death can not-be
detected by other processes. In
particular, there is no way to
differentiate between a slow process &

a dead one. !

CRITICAL HISTORY:  An edge e in round k of history H is critical
if there is a history J in U such that

1) J is not output equivalent to He

2) J is identical to H through round k
except for edge e, and '

3) J is the conservative extension of JK
In other words, and edge is critical.
if altering the V§£cté of its message
ond  taoking the conservative extension
alters the/ output values of correct
processors. Note that A must specify

for any criticol edge.
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DECIDING RIN 2 A run is said to be a deciding run if some process

‘reaches a decision state in that run.

DECISION STATIE £ is the state in which the output register has

value 0 or 1.

DFCISTON VALUE 2 A configuration C has decision value v if some
process p is in o deci=sion state with

YP & V.

-EMENT 3 The step is completely determined by the pair e=(ps; m),

which is called an event.

ENENTIIAI. AGRFFMFNT: The processors are said to have reached
ggreement when the following two

conditions hold:

(1) all correct processors have given
the same value as output,

(2) 1if the origin is corrects then all
correct processors have - given the
input value as output. ‘

These two conditions define Byzantine

agreement [7_211.

We call such a state eventual

agreement, emphasizing the fact thdt

nothing is assumed about the relative

times at which the correct pProcessors

give tHeir output values.
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EINITENFSS OF A WBG ALGORITHM B: A WBG alogrithm B is said to be
finite 1if every scenario § there is on
integer k such that foF any scenario @
and’ all i belonging to P such that if

: (k) -
the restrictions of €i oaond @i to [I

are equal, then Bi(%) = Bi(@).

f=CANNIDATE = A procéssor p is said to be an f-candidate in
K : round i of history H 1is p does not
fail before round 1, and if both H and

the silencing of p in round i of H are

i}

f-serial.

f-SFRIAl HISTORY 2 A history H is said to be f-serial if H is iﬁ
Us H has no more than f faultss for
each  positive integer k<=f+1; the
number of processors exhibiting faulty
behaviour in Hk does not exceed k, and

no processor fails in H after round f+1.

INITIAlL CONFIGURATION & is said to be one in which each process

starts at an  initial state dnd émpt9

message buffers.
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INITIAl STATE 3 The system initially starts wWith all the

INTFRACTIVE CONSTSTENCY

processes in some initial state, with
all the buffers empty, Yp undefined,
and Xp hcv;ng some value in {0y 1}. The
value can be assigned to Yp form {0, 1}
by the protocol. Once Yp is assigned a
value v it caonnot be changed, and P is

said to have decided v.

2 (Defination) (Consider o set of N

isolated processorss of which it is

known that maximum M are faulty. Which
processors are faulty is not known.
Assuming -two-pdfty>messages syséém and
the communicatin -~ medium ito be
fail-safe and of negligible delay. Also
the sender of a message is always
identifible by the receiver. Let each
processor P has some private vd;ue of
information vp.

An algorithm for myn > 0, based on an
exchange of messages that allows each
nonfaulty prOce?sor P to 'pompute a
veétor of values with an element for
each of the N processors, such that:

(a). the nonfaulty processors compute
exactly the same vector, '
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(b) the element vof this vector
corresponding to a given
- nonfaulty processsor is the
private value of that processor.
Such .an algorithm 1is said to achieve
vintercctive consistency, since it
allows - the nonfaulty processors to
come to a consistent view of the
values - held by all the processory
including the faulty ones.
Note that the algorithm need not reveal
which processor are faulty,; and that
the element of the computed vector
corresponding to faulty processors may
be- arbitrary, it mdtters only that the

nonfaulty processsors compute exactly

the same value for any given foulty
pProcessor.

The computéd vector is called an
interactive consistency (i.c.) vector.
Once interactive consistency has been
achieved, each noonfaulty processor
can apply an averaging or filtering
function to the i.e. vector, according
to the needs of the‘opplicction. Since
each nonfaulty processor applies this

function to the same vector of values,

an exact agreement is necessarily

reached. .
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INTFRACTIVE CONSISTENCY FOR M FAUL T1S: For each p belonélng to P,
let Fp be a mapping that tokés a.
p-scenario o-p and a processor q os
arguments and returns o value in V.
Intuitively, Fp gives the value that p
cémputes for the element of the
interactive consistency vector
correspoding to q on the basis of o-p.

' We say that {Fplp belonging to P}

. assures interactive consistency for m
faults 1if for choice of N subset of Ps
In| >= n-my and each scenario o-
cogsistent with N»

(1) for all p;q belonging to N,
Fr(o-pia)=0-(q),

(2) for all p,q belonging to N,
r belonging to P,
Fp(o-psr)=Fq(o=qsr).
where o-pP and o—-q denote the
restrictions of o- to strings beginning
With p and q, respectively.
Instuttively, clause (1) requires that
each non faulty processor p correctly
computes the pnivate volue' of each
nonfaulty processor gy and clause (2)
requires . thot each two nonfaulty
processors tompute excctly the same

vector.
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‘JLHERNAL.SIAIE H Internal state of a process constitutes

K=l FVFI  SCENARIOZ

E S

»*» values in Xp and Yp
*x» Program counter

*»x [nternal storage.

o

An i-scenario is a mapping from []i to V

_thus it describes the messoges recelived

by process i. For any scenario Zswe let
Zis be the 1i-scenario that 1is the
restriction of % to [1is so %iy is the

part of ¥ "seen" by process i.

Let p be the set of processors and Vv a

set of value for k>=1, we define a
k-level scenafio as a mapping from the
set of nonempty strings (possibly
having repetitions) 6vér P of length <=
k+1,‘to V. For o given k-level scenario
0= and String W = pP1pP2...Pry 2<+r<=k+1,
o-(w) 1is interpreted as the value p2
tells p1 that p3 told p2 thot p4 told
P3...that pr told pr-1 is pr's private
value. For a single-element string p,
o=(p) simply designates p'é prchte
value vP. A k-level scenario thus
summarizes the outcome of a k-round

exchange of informotioh.
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K-RESTI IFNT CONSFNSUS PROTACOL 3 is defined as a protocel that.
satisfies the following properties,
provided at any time maximum number of
faulty porocesses is K.

(1)"Bivolence: If all the processes

| are correct and both FO and F1
configurations are reachable.

(2) Consistency ¢ Here there {is no
reachable configuration where
correct processes decide different
vdlues.

(3) Convergence ¢ For any initial
configuration,

! lim Pr{a correct process has not

' decided within t steps]

t=>infinity
=0

MESSAGE SxSIEmi.The'difFerent pProcesses may communicate by sending

| messages to each other via the

mnessgqge system. A messgaé consists of
the pair (p; m) where p dénotes the

name of the destination process. "m"

denotes the "message value™ from a

fixed universe M. The message system

maintains o system buffer for each

process for messages sent not vyet
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recieved called messaqe buffer. It also
includes the following primitives Fob
each process Qq.

Send(p.m): Immediately place the message
m in process p's buffer

Recieve(m): Either :

(1) It toke out some message

' from q's buffer and return

it inm ' ’

or ‘

(2) It return the null value
even when the buffer is
not empty. [t is o device
to model the arbitrarily
long transmission delays
spent in a message
system. -

The choice of (1) or (2) is

made nondeterministic subject

only to the condition that if
receive( m ) 1is performed
infinitely many times, then
every messages ( P y M ) in the
message buffer is eventually

delivered.

The message system is allowed to
return null a finite number of times in
response to receive(m) even if a message

(psm) is available in the buffer.,
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m-FAUI T WBG Al GORITHM B: An m-fault WBG algorithm B consists of a
set of mappings Bi from 1 scenario
values received by destination into V,
for all i belonging to P, such that' for
, any scenario % in which at least'n = m
processes are non faulty:
(15 If all processes in P are
nonfaulty in %, then for all i
belonging toc p such thct'
Bi(%i) = %(0). \
(2) For any i3y J belonging to P such

that if i and J are nonfaulty
in £s» then Bi(%Zi) = BJ(ZJ>.

tﬂLJﬁSEI RELAIED DEFINATIONS 2 Let N be the natural numbers,
including 0y ond let R be the real
numbers. We view a finite multiset U of
reals as a function U: R -->'N~thbt‘l§
nonzero on at most finitely many r
belonging to R. Intuitively, the
function U assigns o finite multiplicity
to each value r belongingntq R. The

cardinality of a multiset { is giveﬁ by

= uer)

(r belonging to R)

and is denoted by |Ul. We say that a
multiset 1is empty if its cardinatly is

zeroj otherwise it is nonempty.
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The difference U-V of multisets U and V
is the multiset W defined by |
Ur) = v(r)  if Ur) = v(r) >= 0
W(r )= e
0 otherwise.
The intersection of multisets U and V
is the multiset W defined by |
WCP) = min C UCPYs VCP) De
For the following definations, ié is
assumed that the term multiset‘olwoy5"
refers to finite letisets of real"’

numbers.

If 9 1s a function on multisets, then

k
9 denotes the k-faold iteration of g3’

thus 91: 9 92 = g 0 g, etc.

The minimum min(U) of a nonempty

multiset U is defined by

mincU)=min{r belongs to R:U(r) is non-Q}
The maximum max(U) is defined similarly.
if U is nonempty, let p(U) (the ronge

of U) be interval [mincU)s max(U)1s and

let &(U) (the dicmeter of U) be max(U)

- min(U). The mean mean(y) of a

nonempty multiset |y is defined by
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- | rour)
mean(yU)= 2 ----------
(r belonging to R) | U |

If U is nonempty multiset, we define
the multiset s(U) (intuitively, the
multiset obtained by removing one
occurence of the smallest value in U)
to be the multiset W defined by ’
urd =1 if r = mincl)
W(r) = \
ucr) otherwise
The multiset 1w (remove one
occurrence of the largest value in U)
is defined similary. If Ul >=2, then
define reduce( U ) =sC 1 ( U ) )y the

result of removing the largest and

smallest element is removed from edch.

ORDFRIY CRASH FATLURF: is o crash failures in which failing
processors must respect the order
specified by the protocol in sending
messages to neighbour. (Recall that for
each - round a protocol produces an
ordered set of labeled outedges that we

identify with messages to be sent.)
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- If a processor fails to send ¢
specified message, it must also fail to
send ony message specified tolbe.sent
aofter that message 1in the protocol

odering.

OUTPUT EQUIVAIFNCE: Here, we toke the transitive closure of the
' relation that holds between H and J

(or Hk and Jk) when some processor

correcf in -both gives the same output

value in both.

PARTIAl CORRFCINFSS DE LONSENSHS PROTOCOI 2 A consensus protocol is
partially correct 1if it satisfies two

conditions.

1) No accessible configuration has
more than one decision value.

, 2) For each vV { 0y 1 }s some

accessible ,configuration has
decision vaolue. v.*

PATTERN 3 - A pattern (for a history) is a function from the
set of faulty processors to integers
that gives the round number at which

each processor failed.
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REACHABILF ER(OM 3 If all the processes performing atomic steps
in ¢ belongi to a subset of processes

'Sy then we wWrite Cs |==-- DS, and say
that Ué is reachable from Cs.

The configuration D 1is sald to be

regchgble if it is reachable from somé

initial configuaration.

REGISTFRS 2 Each process P has the following :
*»xx (One bit Input Reqgister Xp.

*»xx [utpyt Reqister Yp with values in
{ by 0s 1 3.

This is aiso called Decision

*xx unbounded amount of Lntgcngl_5:QCﬂse

‘RUN 2 1is the sequence of steps associated with o schedule.

SCENART(13 i= o moppina from the set P+ (positive
closure of P) of Fhe nohempty strings
over P, to V. For a given p belonging
to P define c'p-écenario as a mapping
from the subset of P+, consisting of

strings beginning with py to V.
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SCHENILE = A schedule from C is o finite / infinite sequence of |
events that can be applied, in turn,
starting from C(C. Thus o schedule is a
sequence of atomic steps . )

N If the execution of a schedule t from
a configurotion C resulté in «a
configuration Dy We write

t
C I===-=-0D

If there exists a schedu‘le t such that
t

C |=== Ds We can also write C |==- Dj

SCHEDIRFR 2 is an agent that Will determine the next ctqmic step
in the execution. |

¢
Probability measure on the space of

all possible schedules is provided by
Probabilistic  assumptions on  the

‘behaviour of the'scheduler.

SERTAL HISTORY: An history H is said to be serial if :
(1) His in Us

(2) for each positive integer k, kv<= t

the number of processors exhibiting,

faulty behaviour in Hk does not
exceed ky and

(3) no processor fails after round t.
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Fo—- IS CONSISTENT WITH N® & for a 91veh choice N a subset of
N P of nonfaulty processors and a given

scenario o-,.say that o- is consistent

Wwith N if for each q belonging fo Ns P

belonging to P, and W a set of oil

string over P, 10-(qu) = 0~(QNW). In’

other wordsy o= 1is consistent with N

if each processor in N alWways reports

what it knowns or hears truth fully.

SUH ENCING: Given a processor P in a histary H in Us the silencihg
of p at rounf k of H iIs the unique
history H' (not necessarily in U) such
that -

(1) H'k = Hk except that p sends no'
messages in round k of H'.

(2) no processor (except possibly P)
fails after round k. .

(3) P sends no messages after round k.

SIMU TANF(UIS AGRFFMENT: We say that the cgreement is simultaneous

Lf -

(3) all correct processors give their

outputs at the same round.
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SIEP 2 A step takes one configuration to another and consists of

SUBRCONFTGURATION 2+ Let C

a primitive step by a single process

PRI

P. Let C be a configurction.‘The step
occurs in two phases as 9iven below £

(1) receive(p) 1is performed on the
message buffer in (C to obtain a
value m from M U {null}.

(2) depending on p's internal state in
C and on my p enters a new internal
~state ond sends a finite set of
messages to other processes. :

be a configuration and S\be a subset of

processes. A subconfiauration Cs is the

restriction of C to the members of S.

i
Fs to denoteé any subconfiguration

have decided i.

SUBPATTFRN 2 @ We call one pattern a subpattern of another if the

corresponding history for the first

pattern has as faoulty processors only
a subset of that of the second and the
first pattern. is the cofresponding
restriction of the second. \

If history H in U has a pattern of

failures thaot is a subpattern of that

-of a serial history, then H is qlso a

serial history.
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JI-COMPUTATIONS: A sequehce of configurations (called rounds)y COs

Clsy C2...3 is a T-computation provided
there exist messages sent by .edach

process at each round such that:

(@) CO is an»initial‘configurotion;

(b) for every i, and every p belongs

to Ty the messages sent out by p
after Ci are exactly those specified
by pP's message generation fuction,
app11ed to p's state in Cis -

(c) for every i, and every p belongs
to Ty p's state in Ci and the
message sent to p after Ci.

In a T-computation, processes in T are

nonfaulty whereas processes "not in T

may be faulty.. .

T-computation of on asynchronous
approximation algorithm is one in wh;ch
the proceéses in T alwoys'Foliows the
algorithmy all proces=es ¢ faulty and
nonfaulty) continue to take steps until
they reach a halting state; and any
process that fails to enter o halting
state eventually receives cll;messoges

sent to it.

2=25



!

WEAK INTERACTIVE CONSISTENCY PROBIEM: Eoch process 1 chooses o
| privoté value Wi. The process must be
then communicate among themselves}fo

allow each process to compute a public

A

Vdalue, such thats.

(1) If all processes are nonfaulty
and all the wi have same value
then every process computes
this value as its public value.

' . (2) Any two nonfaulty processes
compute the same public value.

This is equivalent to the WBG problem.

WEAKLY GI OBAI COINS A coih is called weakly global 1f‘£here
| exists an absolute constant ¢ > (s such

that for all v BELONGING TO { 0s 1 3},

the probability that at least min {

L ns2 1 +t+1,n3} Processors all

see outcome v is at least c.

WITNESS FAQUITVAL ENCFS For k round -initiol sequencess this is the
traonsitive closure of the relation that
holds between Hk and J when for some
proéessor P correct in both; pHk = pJk.

- Histories H and J witness equivalent if
their k round 1initial sequences are

witness equivalent for every k.-
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In other words, witness equivalence
(through round k) 1is the transitive
closure of the relation that holds
between two histories 1f there is a
processor ﬁorrect in both that cannot
disfinguish between the ,two (through

round K.
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CHAPTER THREE
THE()REMS,' LEMMAS, AND '_T-HEIR PROOFS

If IVl >= 2 oand n>=3m,; there exists no {Fplp belonging to P}

that assures interactive consistency for m faults.

Supposes to the contratry, thct‘inlp * p}l assures interccfiv@
consistency Fof m - faults. Since n<=3m, P can be partioned into
three nonempty;sets'A,B,'cnd c; each of which has no, more than m
members; Lef 9 and v* be twoidistinét values in V. The geneﬁcl
plan is to consﬁruct'three scenarios o< s $s and o- such that o<
is consistent with N=A U Cs» $ with N= B U C and;o- with N =‘A U Be
The members ofz C will all be given private value v in o< and v*
in 5. Moreovef, 0o<; $ and o-gwiil'be constructed in such a way
that no distinauish o< from o= (i.e. 0<a = 0-a); and No processor
b belongs to ;é can distingﬁish $ from o=~ (i.e. $b = o-b). It
will. then follow that for the .scenario o- processors ;n A and B

Wwill compte different values for the members of C.

\

We define the séenarios o< sy $ and o~ recursively as follons:
i) For each W an elemnt-of positive closure of P, not epding in

member of Cs let  OK(W) = $(W) = O=(W) = V.
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ii) For each a belonging to Ay b belonging to By ¢ belonging to C

Let o<(c) = oc(ac) = o<(bc) = o<(cC) = V ,
$ (C)=9$ (ac) = $ (bc) = $ (cC) = V',
o=(c) = o=(ac) = o=(cc) =V, O0=(bc)=v’.

iii) For each a belonging to A b belonging to By C belopging_to C

} p belonging to Py W is any string over P ending in c.

Let o o<(panw) = o(an)s $ (PaW) = OK(aW),
O<(PbW) = $ (bW)y $ (PbW) = $ (bW), :
OC(PCH) = OK(CW)s $ (PCW) =.$ (CW)s
O=(PAW) = O=(QW),
O~(PbW) = O=(bw),y -
o-(dcw) = 0<(CRH)»

o=(beH) =§ (cw).

[t 1s easy to verify by inspection that o< , $ and o= are in
fact consistent with N= A U Cy B UC, AU B, respectively.
Moreover, one can show by a simple induction proof on the length

of W that o<(aw) = o=(anwdy $ (bw) = o~(bw)
for all a belonging to Ay b belonging to By W is any string over P

[t then follows from the definition of ihteroctive consistency
that for ony a belonging to Ay b belonging to By ¢ belonging to C

Vv = 0<(C) = Fa(o<asc) = Fa(o-asC) = Fb(§\b,c)'= V'
giving a contradiction.

- Q.E.D.



LFMMA 2.1 2.

For . any finite WBG alogrithm B there is a. nonneagative intégef K
such that for any scenarios £ and @ ond all i bewlonging to P:

(k)
If the restrictions of %i and @i to [Ii are equal, then

Bi(%i) = Bi(@i) .

PROOF 2

‘ : r
Define an r-level finite scenario to be a mapping from J] to V.

For ony fixed 1, we define a tree structure on the set of all
such finite scenarios by lettilng an r-level scenario ¥ be an
oncestor of an r'-level senario ' if r <r'aond %Zi and * is the
\
‘ (r) :
restriction of %'i to [Ii . Consider the subtree consisting of

r=level scenorios %s for all ry such that there exist (infinite)

r 4
- scenarios @ and A Wwhose restrictions to IIi equal %is, and for.

which Bi(@i) does not equal BicAi). If this subtree Neré infinte

then by Konig's lemma it would have an infinte path. Such an

infinte paoth defines an infinte scenario € which contradicts the
- ’ {
deFinitiqn of finiteness. Hence, this subtree must be finite,

which implies the existence of a ki such that for any scenarios %

(ki) (
and @ ¢+ if the restrictions of £ and @ to IIi are equal then

Bi(Z1)=Bi(@i).

To complete the proofsy we let k eaual sup{ ki :\i belongs to P? .
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LEFMA 2.7 &

For any path (sPleaee=ePk belonging to Il 2 0=(0sP1scecansnsealPk)

mod 3 = pk.

PROOFS

This is simple conseguence of the observation that

C&(rys) + &(sst) is equivalent to ( &(rytimod 3).

qu any integer ry we let r denote r mod 35 which equals Qs 15 2.

We now chobse two particular elements of V, Which we denote T
and F; The following lemma asserts the existence of a sequence of

(r "
scenarios ¢ for 1{integral values of r (including negative

integers) which will form the basis for a proof by contradiction.

(r

Only two valuesydenoted T and Fy, appear in & . In this scenario,

Processes r+1 and r+2 are nonfaulty, so they relay vdlues
correctly. The faulty Process r acts correctly excepts when

relaying = messages # for which o-(g#) = F » in which case it sends

the value T to process r + 1 and the value F to Processor r -1 =

r+ 2.
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LFMMA 2.31

For any values T and F in V, oand any integer r there is d

: r) '
scenario % such that for i =1, 2 =

r

1) Process r\+ i is nonfaulty in ¢

2) For any # belonging to JI____

r+i
r F if o~(#) >=r + 1 .
% (#) = )
' T if o=(#) < r+ 1.
PROOE S
‘ r
By Leema 2, condition. 2 defines %Z__ for i =1, 2. Since there
. r+i ' o
(r) - ,
are no requirements on %_ y ond Process r is allowed to be faulty
- r

y We need only shoWw that Condition 2 |is achievable when

Processor r + 1 and r +2 correctly relay messages to one another.
Howevers this follows easily from the observation that if #

belongs to [I__ 5 then o=(#t, r + i £ 1 ) = 0ov(#) £ 1 .
r+i
<



: (r)' (r (r+1)
For any integer r : if % is as in Lemma 2.3y then % =%
: . ' . r+2 r+2

LEEMA 2.52

If there are ot least two distinct elements in Vs then there

does not exist a 1-fault WBG algorithm for n= 3.
- PROOFZ

Let B be such on algorithm, and let T ond F be distinct elements
of V.

TR o T F
Let % and £ be the scenarios defined by % (#) = T and & (#) = F

lfor all # belongs to [l. It follows from condition 1 6f the

- T . F |
definition of a WBG'algorithm that B (% ) = T and Bi(Z ) = F. for
A T , S S

_ (P)
. all i. For each integer r, let € be the scenario whose existence

Was proved in Lemma 3.

Let Kk be the nonnegative integer whose existence is guaranteed

. T . :
by Lemma 15 with % substitued for Z. Since o~-(#) is less than or

| (k) o
equal to the. lenath of #, for any # in II__ , we have o-(#) (. K

k+1 .



(k) '
<K+ 1s so % (#) = T. Hence the restrictions of the scenarios

T (k) (k) (K)
% ond %__ to II___ are equal, so we must have B___ (%__).
k4] - K+1 K+1 | 4 K+1 K+1

equdl to T. Similarly, choosing such a nonnegative integer K*

F
for £ , since - (o=(#)) is less than or equal to the length of #,

(k*) ' - ' ,
for any # in IIl_ s we have o=(#) >= -k' = ( =k' =1 ) + 1 , sO
-k' . e

(=k*=1) : F (k")
72 (#) = F. Hence the restrictions of Z___ond ¥___ are equal,
-k* , . -k* =<' _
S0 B Z((=k'=1)/(=k')) = F.
' -k * ,

. | r 'IP+15
[t follows from Lemma 2.4 that for ony riB___(Z__)=B__. (L pE
) : r+2 r+2 r+2 r+2

ry -
Sincer +1 and r + 2 are nonfculty in & it follows from

: )
gandition 2 of the definition ﬁt th Glﬁﬁﬁlthm thut B 1(zr 1) =
r+ +
M - ry ety
B__(Z___). Hencey for each r: g (% ) = B (L ) .
r+2 ' r+2 rel r+1 - r+42 r+2

(k) (=k*=1)
A s;mple induction argument shows thot B_ (Z___)=R (% Ja

K+1 k+1 =~k*' =k°*

: (k) (=k'=1) "
However, we saw aobove that B__(%__) = T and B__(%___ ) = F.
k+1 k+1 k' k'

Since T oand F are distinct elements this providés the reduired

contradiction.
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IHEQREM 2.1: : ' !

If n>2 and V contains at least two distinct elements then there

exists an m-=fault WBG algorithm if and only n > 3m.
EROOFZ

The "if" part follows from the existence of algorithm to solve
the original Byzantine Generals Problems démdnstrcted in té;1]
‘and [1_01. To pfove the "only if" part we assume the existence of

such an aloorithm and derive a contradiction.

Assumé "B is an m=foult wsé algorithm with 3 <= n <= 3m. We wili
use it to construct.a 1;fou1t wBG_aléorithm for three processes,
tHereby contradicting Lemma 5. We first partition the (n-element)
set P into three nonempty, disjoint sets PO, P1, P2 each
containing ot most m elements., (We can do this becesue 3<=n<=3m):

Let 0 be an element of PQ. We define the mapping i’:P->{0';1';2'}

by letting |(P) = i’ 1if and only if p belongs to Pi. We extend J.'

il

to- a mopping from Px into {0°'; 1's; 2'}* in the obvious way by

letting l(Pd: ees 3 PK) = l(pO)v ces 3 l(PK)'-

we _ clSo let 0"s 1"s 2" be element in P such that 0" = 0 and 1"

-

belongs to P1 and 2" belongs tp P2 « Hence, 1(1") =1i' ..



We construct a 1-fault WBG algorithm B' for the set P'={0';1';2"}
‘as follows. For any scenarioc €' on P's we define the scenario

ALZ'] on P by NA[Z'X(#) = %’(l(#)) .

i

The WBG algorithm B' is deflned by B® (Z* 3 = B (ALZ' 1) .
| iv g i g

Observe that if i' is nonfaulty in %°' , then every process in Pi
(including i") is nonfaulty in NALZ'] .-
-To i show that B* is a 1-fault WBG algorithm, we must verify the
following conditions.
1) If all process in P'are nonfaulty in i', then for all i’

belonging to P' ¢ B' (%' ) = Z'(0") .

i* i

2) For any ii', J' belonging to P* : if i' and j' are nonfaulty

in %77y then B' (%' ) = B' (%' ) .

19 10 J', j'

To  prove these conditions we use the observation that if Process
i’ 1is nonfaulty in ' , then every process in Pi is nonfaulty in
NL%']l. Hence if all processes in P' are nonfaulty in £°* then all

procésses in P are nonfaulty in NA[Z']. Using condition‘1 for the

m=fault WBG algorithm B, we.see that

B* (') =B (AIZ'] )
i' i. i" i.' )
= NA[Z'20™
= 20",

wWhich proves - -condition 1 for B'.



Next assume that the 1' and J' are nonfaulty in %'. Since i{" and

J" are nonfaulty in /\[Z'], condition 2 for B vields

@
~
3
~
"

B (N[Z'1 )
i' A 1' i" i'.

B (NALZ'1™)
J"

B'(Z' D
J!' J L

This proves condition 2 for B'. We have thus constructed a
1=-foult WBG algorithm for the three procéss 0' 1's 2°'

contradicting Lemma 2.5. BN

\

Q.E.D.

JHEORFM 2.2:

If IVl < Ds for all v ® V, then the algorithm AG(k) satisfies

the followihg properties.

1) If all processes are nonfaulty thén vi = v for every i.

2) If Processes i and .j are nonfaulty then | vi - vj | < 2D/k

PROOFZ

-~
-

Note that no 1imit is ploced upon the number of foulty process.

The proof of this theorem uses the following lemma i.e. lemma 2.6

/
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To prove the first property we simply observe that if all
process are nonfaulty then they correctly relay values, so all
(ro

the v equal v. To prove  the second property we note that if
i ' . _ v

Process 1 and J are nonfaulty, then they correctly relay the

‘ o) ) v

values -of v and v t? one another in round r+1. [t therfore
i J

follows that for each r >= 1 & | ,

(ry  (r+1) (ry . (r+1)

The second property then follows immediately from the above

() ) !
lemma substituting v for s ond v for £t .

i r J r

LEMMA P2.6.°

Assume that |v] < D for all v belonging to V. If s , t are
‘ . r r

elements of V su;h that:

K K
2 s - % t | < oD
r={ r r=1 r



PROQF 2
[t follows from the first inequality of the, hypothesis that:

K ' 3

T s K=s + T t
- r=1 r K rsg r
From this we deduce that
Kk K -
T s = T, 0t <=s -t <K=2D.
r=1 r r=i r K 1

The symmetric dargument, interchanging s and t vyields .

K K
Lt - % s <=2D.

rs=1 r rs1 r
ond combining the two inequalitites proves the lemma.
. . hrd

Q-" E- D-

IHEORFM 2.3z °
. (*) o v
If V is a bounded set of numbers then AG -is an infinte m=-fault

WBG clgbrithm‘for any M.
/
PRONFZ

The proof is quite simple and rests upon the observation i:hot if

1 and J are nonfaulty then'

r (r+1) (r (r+1)
v <z v ’ v <= v
i J J i
. f r (r
for all r>0 which in turn implies that sup{ Vv } = sup{ v 3.
' i J
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ILFMMA 312

Suppose that from  some configuration Cs the schedules o=1 dqd
0-2  lead to configurations C1, C2y respectively. [f the sets of
processes taking steps in o=1 and Q-2, respectively, are disjoint,
then - 0=-2 con be applied to C1 and o-1 can be applied to C2s and

both lead to the same COHFiQUPO_tiOﬂ C3. (See Figure 3.3.1.)

o-1
©-.
-~
o3~ 5

‘;/0-2 » _
’ Figure»3.3.1i

EROOF 2

The result follows at once from the system definition, since o=

and 0-2s do not interact.

No consensus protocol is totally correct inspite of one fault.
PRONOFZ

Assume to the contrary that P is a consensus protocol that is
totally correct inspite of one fault. We prove a sequence of

lemmas which eventually lead to a contradiction.
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The basic iéeo is to show circumstances under which the

protocol remain forever indecisive. This 1nvolves twWo steps.

First, we argue thaot there is some initial configurotioh in which
the decision is not already predetermined. Seconds we construct
on admissible run that avoids ever taoking a step thot would

7

commit the system to a particilar decision.

Let C be o configuration and let V be the set of decision values
. of configurations reachdble from C. C is bivalent if V| = 1, iét
us say 0-valent or 1-valent according to the cdrresponding
decision value. By the total correctness of P, and the fact that

there are always admissible runsy VvV is not o null set .

IFMMA 3,22

P has o bivalent initial conFiQUFation.
PRQAOF 3

Aséume not. Then P must have both (g-valent and 1=valent initia;
gonfiaurations by the dssumed partial correctnass. Let us coll
two initial configurations oadjacent if they differ only in the
initial wvalue Xp of a singie process P. Any two 1initial
configurations are Joined by a chain of initial ﬁonfigurotions,
each adjacent to the next. Hence, there must exist a 0-valent
initial ‘cofigqration C0 . adjacent to a {-valent  initiol

configuration (1. Let p be the process in whose initial value
they differ. -

3=-14



N

Now consider some admissible deciding run from CQ in which
,fprocess P takes no steps, and let o- be the associated schedule;
Thén o= can be cppiied to (C1 o9lsosy oand correspondihg
configurations in two runs are identicol except for the internal
state of process P. [t is easily shown that bdth runs eventually
reach the same decision vqlue. If the value is 1, then CO is
.bivoient} ofherwise} C1 is bivalent. Either case contradicts the

qssumed nonexistence of a bivalent initial COﬂFfiQUPOtiOﬂ.

let_ C be a bivalent configuration of Py and let e = (psym) be an
event that is applicable to C. Let Q be the set of configurqtions
reachable from C without applying ey.ond let D = e(@) = {e(E) | E

belongs to @ ‘cnd e is oapplicable to E}. Theny D contains a

bivalent.cthigurction.
PROOFZ

Since e is applicable to C, then by defination of @ and the fact
that message can be delayed arbitrarily, e is aopplicable to every

E belonging to Q.

NOoW assume that D contains no bivalent configurations, so every

configurotign B belonging to D is univalent. We pfoceed to derive

a contradiction.
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Let Eiy be an i-valent configuration reachable from C, i=0s1.
(Ei exists since C is bivalent.) If Ei belongs to D, let Fi= e(Ei).
'Otherwise, e Was applied in reaching Eiy and so there exists Fi -
beionging to D from which Ei is reachable. In either cose,.Fi is
i-valent since Fi 1is not bivalent (since Fi belongs to D and D
éontains no bivalent configurotions) ‘and one of Ei and Fi is
reachable from .the other. Since Fi belongs to Dy 1 =05 15 D

contofns both (Q=-valent aand 1-valent configurations.

Call two configurations neighbours if one results from the other
in a single step. By an easy-induction, there exist neighbours
COs- C1 belongs to D such that Bi = e(Ci) is i-valent, i =0y 1.

Without loss of generalitys C1 = e'(C0) where e's(p'y m*).

Lase 12 If p' is not equal to py then D1 = e°'(D0) by Lemma 3-ﬁ .

~

This 1is 1impossibley, since any successor of a (-valent

\configurction is 0 - valent.

Case 2i If P’ = p, then consider any finite deciding run from Cd
' | iq which P takes n steps. i

Let o- be the corresponding scheduley and let A = 0-(C0): By
Lemmo 3.1, o- 1is applicable tb Di, and it leads to dn i-valent
: coflgurcFion Ei = o=(Di), =0s 1. Also by Lemmo 1, e(Af = EQ and
e(e'(A)) = E1. Hence, A is bivalent. But this is impossible since

the run to A is deciding (by aésumption),'so A must be univalent.

’

In each casey we reached a contradiction, so [ contains a

bivalent configuration.
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JHFORFM 3.2: A -

There 1is a partiolly correct consensus protocol in which all
nonfaulty processes always reach a decisions provided no
brocesses die during its exécution and a strict majority of the

processes die dufing its execution and a strict majority of the

processes are alive initially.

1FFMA 4,12

With a k=resilent consensus protocols for any reachable
f . X

configuration (C, and for any subset S of process that contains:

. 0 , 1
gt least n-k correct processesy either Cs |I= Fs or (s |- Fs.

PROOFZ _

Let C be a reachable configurations S belo subset of process that
contains at least n-k correct processess; and § be the complément
of S (i.e.the set of processes, that are not in S). Note that S|
. <=ka. Assume first that all the process in § are fcii-stop.
- Suppose tHat, aftér reaching configuéation C» all the processes
die without sending wcrniﬁg messages. This résults in a
configuration ('. We have C's=Cs. From the consistency and the

conversgence properties of the k-resjilent protocol, me must hove

0 1 v
C's |- Fs or C(C'sl- Fs. Since C's = Csy and since the death of
- | 0 1
process in S cannot be detecteds; we have Cs |- Fs or (s |- Fs.

This must also hold even if ther are correct processes in §,
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LEMMA 4.2 [4 315

For k>=1s any Kk-resilent COI’ISQ\HSUS protocol has a bivalent

initial configuration.

Suppose all the processs are4 correct. Initiol configurations
differ only by the processes input vaolues. Two ihitiol
‘configuration differeing by the input a value of only one process
dre ‘odjacent. Assume, for contradiction there is a k-resilent
protdcol such that aﬁy initial confilguration is either (Q-valent
or 1=valent. By the bivalence property of the protocol there must

be one of each. Therefore there must be two adjacent initial

A -0 1 ‘
configuration, I oand 1 s that -are g-valent and 1-=valent,

respectively. These configurations differ only by the input value

of some process P. Therefore, Issls, where S includes all the

N

: 0 0 0 1
processes except p. From Lemma 4.1, either [s |- Fs or Is |- Fs.
0 0 1 0 , :
If Is |- Fs, then I[s |- Fsy and therefore we have [1 |- F0 . But

I1 1is 1-valent a contradiction. A similar contraodiction is

8} 1
obtained if we gssume Is |- Fs .
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\
There 1is no f' n/e —] -resilent consensus protocol for the fail

stop case. °

PROOF:

Assu&e there is such o protocol and consider a system in which
'‘all  the processes are correct. Let C be ony reachable
configuration, S be any subset of proceéses of size |_ n/2\_J and
S be the complement of S. We claim that Cs and Cs are either both

0-valent or both 1-valent.

From Lemma 4.1 s since the protocol is [ n/2 | - resilent and

, - , i - i_
ISy IS] >=»n - r— n/e —13 we have Cs |- Fs and Cs |- Fs for some

decision values { and Jj. Suppose that there exists twWwo schedules
| -0 o _ o=t 1_ -

0-0 and o-1 such that Cs |====- Fs and Cs |=--- Fs (or viceversa).

Then we can qpply the schedule o- = 0-0 . 0-1 to configuration

Cy and this result in a confilguration where processes in §

décide 0 oand processes in § decide 1 (or vice versa). This

contradicts the consitency of the protocol aond the claim is .

proved. ‘ : \

By Lemmo 4.2, there is a bivalent initial confiouration [. From
the claim without loss of generality both [s and Is are 1-valent.

o- 0 t
Let o- be o schedule such that [ |-=-=-=- F . We denote by ] . the

configuration reached from | after the first t steps in o-.
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o | o~ | 0 | o— | ~lo-l
Note that- [ = I and | = F « Clearly both Is and [s are
‘ ,

. : t_
O-valent. Let t be the smallest index such that both [Is and 'Is

are Q-valent. Note that t>0. From the initial claims, and the

t-1 _t=1
minimality of ty both [s ond Is must be 1-valent.

/ . . :
Let p be the process that performs the atomic step s such‘that

t-1 S t ' _ t-1 t
I iI==-=- 1 . Suppose p belongs to Sy and therfore |s {i- Is .
t ' t (o} t-1

Since s is (-valent we have [s |- Fs . Then we must have [s |-

o t-1 . .
Fs « But Is is 1-valent and this is a contradiction. We obtain

a similar contradiction if we assume that p belongs to g -

' i | | \

For any ks 0 <=k <= (_(n=1)/2_1y the protocol 4 1 is a

k=resilient consensus protocol for the fail stop case.

PROOFZ

We need the following few definition. Each executidn of the

Protocol outerloop is called a phase. A process is in phase t if

at the bagining of this phase its variable phcgenc' has the value

t. A message (witness for i) whose phaseno field is equal £o t
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is called a t-messagse (t-message for i). A process p decide in
phase t if it sets the decision variable dp while its phaseno
| variable is equal to t. The value of the variable YAR of process

t
Py, When p is at the begining of phase t, is denoted by VARL .

We prove the therorem by showing the protocol ‘s constitency,
deadlock—-freedom, convergence, and bivalence, in the presence of

up to k faulty processors.

~

N
Lonsistencys

Let t be the smallest phase in which o process decides. We claim
that, for any processes P and q wWe cannot have both
withness_count(Q)p > 0 and witness_count(1)q >0. Suppose for some

£ ,
iy witness_count(i)p > 0. Then process p, in phase t=1, must have

received from some process r a (t=1)-witness for i. So r must
have received in phase t=2 more than n/2 (t=2)-message with value

. , . t t
i. Therefore if both Witness_count(Q)p > 0 and witness_count(1)q

>0; since there are at most n processors; there must be a least
one processor that sent (t-2)-messages with both values. This is
impossible in the protocol 4 _1,and the clalm is proved. From this’
c}oim and the description of the protocol, it is now edsy to
check that a process can never have both witness_count(() and

witness_count(1) greater than § in the same phase.

l
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Let t be the smallest phase in which a process decidés, let us-
say process p decides (0 in phase t. We prove that no other

i

process g can decide 1.
\ t
Since p decides 0 in phase t, we have witness_count(Q)p > k. From

t .
the claim, we cannot have witness_count(1)q > k . Therefore if q

decides in phose t, it also decides (.

We now show that all the t-messages sent are of the form (ts O»

t _ '
ccrdinal{ity). Sice withness_count(0)p > K process p recives more

than kK ( £t - ﬁ )-witneés for Q. Consider a process r that sends ¢
t message. Process r must have received n-k (t=1)-messages, and
one of them mgst be a (t-1)-witness for (0. Then process r
increments witness_count((Q) in phase t-1. From the 1n1t101'cldim,
process r sets its value to 0 in phose t=1, and it sends {t,|0,
cardinality) messages in phase t.
\
Corisider o process q that decides in phase t+1. From the gbove

remarks, all the t—-messages. received by q  have value (Q, and

therfore g must decide (.

We now prove that all the (t+1) messages sent are of the form
(t+1, 05 n-k). Consider a process r that sends (t+1)-messages.

From the description of the protocol 4.1, we see that if r
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decides in phase t, the (t+1) messages it sends are of the form
(t+1y 0» n=k). [If r does not decide in phase t, it must have
received n-k. Thefore it ‘sends (t+1s 0y n=k). [f r does not
decide in phase t, i; must have>received n-k t-message in phase
ty the (t+1)-messags it sends are of the form (t+1, 0y nN=k). If r
does not decide in phase t, it must have received n-k t-message
in phase f. We already proved that all the t-messages have value
0. .So, in phase ty process r sets its value to 0 ond its

\ : .
cardinality to n-k. Therfore, it sends (t+1y 0y Nn—-k) messages in

phase t+1.

A process r that reaches phase  t+2 must have received n=k
(t+1)-messqages. From the remark above all the (t+1) messages are

witnesses for Q0 and therfore r decides Q0 in phase t+2.

Since any process that reaches phase t+2 decides (s No process
can ever be in a phase higher than t+2 and no process can decide

1.
Deadlock=freedon;

Since processes walt for each other's messages, the protocol

might be exposed to deadlocks. We prove that the protocol is

deadlock free.

' Suppose  for contradiction the protocol runs into a deadlock. Let

B be the

[

et of deadlocked processed. Each process q in D is

[FL]
1
(Y]
(WL



deadlocked in phase tg. Let t0 = min _ t » and p belongs
(q belongs to D) q :

to D be a process thot is deadlocked in phase t0. Let S be a set

of n=k correct processes. There are two possible cases.

1) No process in a phase t, t <= t0 - 2. By the minimality of t0,
every process in S either decides in phase t0 - 1 or tQ, or
it reaches phase to without deciding in either case it send
t0 - messages to all the processes. Therfore there will be at
ieast n = Kk t0-messages in p's buffer and p cannot: be

deodlocked‘in phase t05 this is a contradiction.

2) Some process debides in phosé ty t<=1t0 - 2. Let t be the
smallest phase in which a‘process decides. In the proof of
the protocol consistency, wé shwd that no process can ever be
in a phase greater than t+2 decides. Note that p |is

deadlocked in phase t0 >= t+2. This is a controdlction,'and

the proof of deadlock freedom is complete.

’

Lonverqences:
Let S be a set of n=k correct processes. Suppose No process in §
decides in a phase t, t<to. We prove that there is a fixed Theta

such that, with probobililty greater than Theta, all the processes

in S decide in phase t0 + 2. '

Since there are no deadlocks, every process in S wWill reach
Phase t0. Note that for t = t0 , t0 + 1, ond t0 + 2y from the
assumption of fair scheduler there is a positive constant Rho such

-
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thaot wWith probability greater than p, every process in § receive

in phase t. In other words, wWith probability greater than Theta =

(Rho) for three consecutive phase all the processes in $§ exchange
messages exclusively among Ehemselves obviously to the rest of
the system. It is clear from the protocol thaot, if this happens,

then all the processes. in S decide in phase t( + 2.

Bivalence:

If all the processes start with the same input values, all the

correct processes decide that volue within two steps.

LEMMA 4.3:

With o k-resilent consensus protocol, for any reachable

configuration C, and for any subset S of proesses that contain at
o 1
least n-=k correct processes, either Cs |- Fs or (s |- FS by some

legal schedule. !
PROOF:

The molicious processes coan behave Jjust like fail=-stop pﬁbcesses

and die. The proof follows from this observation and the prboF of

Lemma 4.1.
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JHEORFM 4.33

There is no r_ n/3.—1 resilent consensus protocol for the

malicious case.
PROOEZ

Suppose there is o [ n/3 ) - resilent protocol. Let S and T be

subsets of processes of size L. 2n/3 _J such that |IT U SI = n.

Note that |T intersection S| <= n/3. Let C be a legally reachable
cénfigurotion. All the mallicious processes have followed the
protocol so far. If they contaniue to follow the protocol then
there is no way in which they differ from ébrrect pfocesses.

i i
Therfore by emmdag 4.3y s |- Fs and C(Ct |- Ft 4 for some decision

values i and J.

We claim that (Cs and Ct are either both (=valent or both
1=valent, Suppase not then without loss of aenerality there are

, . o=0 O o=1 1
le9al schedules o=0 ond 0=1 such that Cs |=== Fs and Ct |==-=- Ft .

Suppose that all the processes in T intersection S are malicious.

The following schedule is possible.

From (C by schedule o-0 we first reach a configufction where all
the correct processes in S decide Q. Then the malicious processes
in S intersection T change there states and their buffers® content

s

back to what they were in C, resulting in some configuration c'.
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The only différence between Ct' and Ct is that in Ct' the buffers
of the process in T may have additional messages (thot were added

- o=1 1 |
during the execution of o-0 ). Since Ct |=-=-=-- Ft , the processes

in T can now follow the legal schedule o=1 from configuration C',
until all the correct processes in T decide 1. Then shcedule
violates the consistency of the protocol ond the claim is proven.
, e .

The rest of the proof follows closely the last part of the proof
of Theorem 4.1. Let [ be the bivalent,initiol configuration
guranteed by Lemma 4.2.~ From the claim, without. loss of
generallity, both [s ond [t are 1-valent. Let o~ be a legal

_ o- o t
schedule such that [ |[--- F . We denote by 1 the'configuration

- | ' I o= |
reached from | after the first t step in o-. Clearly both Is

| o= |
and [t are (g=-valent. Let t be the smallest index such that both

t t '
Is ond [t are Q-valent. Note that t > Q. From the initial claim

' t=-1 t=-1
and the minimality of ty both Is and It must be 1=-valent.

Let p be the process that performs the atomic step s such thot

t-1 s t t 0

I I===- 1 . Assume that p belongs to S. We have Is |- Fss and
' t=1 o t-1 : _
therefore Is |== Fs . However Is is 1=valent and this is a

contradiction. We obtain a similar contradiction if we assume

that p belongs to T.
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JHEORFM 4.4

For any ks O <=k <= L. (n=1)/3_1, the protocol 4_2 is a

k=resilent consensus protocol for the malicious caose.
PRONOFZ

We Show the brotocol's deadlock-freedom, consistency, convergence>
ond bivalence,s in the presénce of upto k faulty processes. We use

the same notation and definitions as in the proof of Theorem 4.2.

Deadlock-freedom: \
We have to prove that it is always possible for a'process to
occépﬁ n-k messages. Consider a correct process p in phase t,
where t 1is the smallest phase among correct processes in the
system. ’At least n=k correct processes are in phase t or in o
"higher phase. Let g be such a process. Process g has already sent
a (initial, g, v, t) message to all the other processes; Sinée
there are at least n-k correct processes, p's buffer will receive
at least n -k (echo, 9, Vv, t) messages. Since n=k > (n+2)/2s then
P at phase t, eventually accepts this message with value v from

9. Therefore p accept n-k messages from correct processesvond p

proceeds to the next phase.

~onsist .

" Consider any two processes p and q ot some phase t. N-e claim thot,

if P ond g oaccept o “message from some processory then these
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messages must must have the same value. Suppose not then at phase
t, P occepts o mesgage Wwith value 0 from r and q accepts a
message With value 1 from r. Then more than (n+k)/2 process sent
(echoy, r, 0, t) messages to p, and more than (n+k)/2 processes
echoed (echos rs 0s t) and (echos rs 1y t). Since there ore at
most k malicious processes then at least one correct process has
sent both (echo, Fs 05 t) ond (echo, rs; 1, t). From the
description of the protocol, corréct processes cannot do that and

hence a contadiction.

Let t be the smallest phase in which o correct process decides.
‘Let us us say process p decides 0 in phase t. Process p must have
accepted message wWait value 0 from a set S of more than (n+2)>/2
processes. By deadlock-freedom, any other correct process q will
accept at phose t, messages from n-k processes. Therfore 1t‘must
accept messages from more than ( n + Kk ) / 2~k =(n-=k ) /2
processes in S. By the claim the value of the messages accepted
by q from processes in S must be 0. So g accepts more than
( h - k ) / 2 messages With value 0, and it changes its value to
0. |

At phase t+1, all the correct processes will hQVé 0. Note that it

takes at least ( n - k ) / 2 messages wait value 1 to change the

value of o correct process to 1.

Since there are only k < n/3 malicious processes and k < (N=K)J)/2»
this can never happen. Therfore from phase t on, all the correct

processes wWill have value 0 and they can not decide 1.
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Lfonverqences

Llet S§ be «a set of correct processes that have not decided vet.
Suppose no process in § decides in o phase ty t < t0. We prove
thaot there 1is a fixed Theta such that, with probability greater

thon theta, all the processes in S decide in phase t0 + 1.

Sinée there are no deadlocks, every process in S reaches phase
t0. From the assumptions on the system behoviour there is such
that in phase t0 ond t0 +1 the following happens with probability
greater than Theta. At phase t(0, every process in S accepts
messages from the same set of n-k processes. At phase t0'+ 1

every process in S accepts messages only from correct priocesses.

[t 1is clear from the protocol that all the processes in S decide

in phase tQ + 2.

‘Ei ] - : v
[f all the processes start with the same input value within two

ﬂhmdb&,nll the correct processes decide that value.

JHEORFM 4.52

It is impossible to achieve csynchrpnous Byzantine Agreement with
K >= n/3 .

PROOF:
Suppose it {s possible; since K>= n/3, we can partition the

processes to three disjoint setsy Ay B and Cs of size K or less.
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Let the transmitter be in A aond consider the following scenarios:

1)

(2

In

The processes in A and B are correct, and the transmitter
sends (-messages. The processes in C are malicious, and they
do not send any messages during the protocoi. Since the
transmitter 1is correct, the processes in A and B will agree

on 0 within some time t.

Only mthe tranmitter 1is malicious. [t sends (-messages to
processes in A and B, and 1-messages to processes in C. Alsoy
messages from C are deloyéd for a period longer than t before
they oare received. The ﬁrocesses in A and B have the same
view of the system as in scenario 1, and therefore can agree

on 0 at time t.

a similcr fashion we con construct scenorio 3 With the

following properties:

(3

N

)

Only the transmitter is malicious. [t .sends 1-messages to A
and C, and 0-messages to B. Messages from B are delayed for a

Period longer than t°*'. At time t' the processes in A ond C

agree on 1.

WE GEH combine =cenarios 2 ond 3 to vield o contradiction:

4) The processes in A ore malicious, the processes in B and C are

correct. The processes in A send messages to processs in B

as in scenario 2, and to processes in C as in scenario 3.
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All messages between in B cnd processes in C ore delayed for
o period longer than max( ts t*' ). In this scenarioc at time
max( ty, t' ), the processes in B will agree on 0 and the

processes in C will agree on 1y a contradiction.

1

JHFORFM  d.A2

The proéocol 4.3 oacheives Asynchronous Byzantine Agreement for

K =1y seeses L n=1)/3 ] malicious processes.
EROOFZ

We have to show that if some correct process p decides some

value then all the correct then they alll decide on the

transmitter's value. -
o

First we claim that \no two correct processes p and q can send
ready messages With different values. Suppose this is possible,
then p received more than ( n + Kk ) / 2 (echo, 1) messages, or a
( ready, 1) message from o correct process. Similarly, q received
more than ( n + kK ) / 2 ( echoy, 0 ) messages, or a ( readys 0 )
message . from a correct process. [n either caosey some two correct
procesées, and s and t, received more than (n + k) / 2 ( echoy 0)
méssoges and more than ( n + Kk ) / 2 (,echo, 1 ) messagess
respectively. Therefore, sdme correct process r must have sent

both ( echos 1 ) and (¢ echo, Q0 ) messages. Buf this is impossible
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for o correct process. Since decision require 2k + 1 ready

messages with the same vaolue, it is also clear that no two

\

correct process con decide different values.

'Supposev p decides i, then p received 2k+1 ( ready, i ) messoges;
At least k + 1 of them were sent by correct processes. Therfore,
every correct process will also receive at least k + 1 (ready ,1i)
messages, ond will send its ( ready, i ) message. Thus, at least
n-k process wWill send( ready, 1 ) messages. Therefore, every

correct process Will receive at least 2k+1 ( ready, i ) messages

and will decide i.

It is clear that if the transmitter is correcty then all the
correct processes Will decide on its value.
LFEMA R.12

Suppose that V and W are nonempty multisets. Then

1> IV intersection Wl = |S(V) intersection s(W)| <=1}
2) IV Intersection Wl = |1(v) Intersection 1(w)| <=l.
PROOF 3

We prove the first inequality$ the argument for the second is
symmetric.
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If V and W have the same minimum, then the same elément‘is
removed from each, and hence at most one element is re&oved FFom
their intersection. [f the minima of V and W are not the same,
then same, then either the minmum of V is not in W, oOr the
minimum of W is not in V. In either case, at most one element is

removed from the intersection.

1FFMA K.2:

Suppose that J 1is a nonnegative ihteger and that ¥V and W are
multisets such that IVl >= 2j and Wl >= 2j. Then

J J
IV intersection W! = | reduce (v) intersection reduce (W) | <= 2J
PROOF:

Follows from rebeated application of Leema 5;1.

LFEMA 5.3:
Suppose that § is a nonnegative integer and that U and V are
nonempty multisets such that |V = Ul <=3 oand VI > 2j. Then
;o
A(reduce (V)) is a subset of A(U).
PROOF 3

. J
Suppose A(reduce (V)) is not d subset of A(U). Then either

J J oo
min(reduce (V)) < min(U) or max(reduce (V)) > max(ll)e.
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J
"If minCreduce (V)) < min(U) » ‘then

P vr) >= § o+ 1 .
r<mincu)
Hence IV = Ul >= Jj+1s w®Which contradicts a hypothesis.
J

The case max(reduce (V)) > max(l) is symmetrip.

LEMMA 5H.4:
Suppose K > 0 and t >= 0 are integers. Suppose that U and V are

nonempty multisets such that | V = U | <= t and VI >2t.

Then fkst(V) belongs to ACU).
PROOFZ

Follows easily from Lemma 5.3 ( with j = t ).

1EMMA 5H.H:

Suppose Vy, W and Y are multisetsy, and K > 0y t >= 0y, and m > 2t
are integers; With | VI = | Wl =my | V=-U Il <=ty | W=UI
<=tyond | W=V 1 =1V-WIl<=k. Then

’ - &C U )D
f (V) = F (W) | (<8  =eecemccceem——o

Kst Kyt cCm= 2ty k )
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PROOF S
1
t | t
Let M = reduce (V) and N = reduce (W). Since V and W each contain

exactly m elementsy, M and N each contain exactly m - 2t elements,

and hence seleptK(M) and‘selectk(N) each contain exactly ¢ = ¢ (
m - 2ty k ) element. Let mQ <= M1 <= .... <= mo-1 be the element
‘  K .
of select (M), and let N0 <= N1 <= ..as <= N be the elements
. c=1

of select (N). Notice that there are at least k + 1 elements in M
' i

that are less than or equal to m1y and at most ki elements in M

that are strictly less than mi;\similorly for N.

We begin by showing that max( mi, ni ) <= min( mi+1, ni+1 ) for (
<=z { <= ¢ - 2. [t suffices to show that mi <= ni + 13 a symmetric

argument demonstrates that ni <= mi + 1.

We proceed by contradiction i Suppose that mi > ni +A1. As noted
aboves there are at least k(i+1) + 1 elements in N less than or
equal to ni + 1. By the supposition} these elements are strictly
less than mi. Therefore,}there are at least Kk ( i + 1 ) + 1 = ki
( =k +1 ) elements in N that are not in M5 thus | N - M |
>= K +7. NOW by hypothesis,' | W =V | <= ky soO |W inﬁersectjqn_VI
>= m =k. Then lemma 5.2 shows | N intersection M | >z m -k - 2t;
and hence | N=-M | <= (m=2t)=-(m=K =2t ) = k. This is a

contradiction and we conclude that mi <= ni + 1.
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Now wWe use the ihequolity shown above to obtain the desired

result.

£ V) = f (W ‘
Kyt Kyt

mean( select ( mean( select ( N ) ) ‘
' K K

1 c-1 c-1
= =-- m - n
(o4 i=0 i i=0 i
/
1 c-1
= === = (m - n>»
c i=0 i i
1 c-1 ( by the
ks === [ |Im - n triangle
c i=0 i i inequality)
1 ¢
= === Y, (mox(m , N ) = min(m 5 n ).
c i=0 i i i i’

By the inequality demonstrated above, for 0 <= i <= ¢ = 2y

¢ max(¢ mi, ni ) = minC miy N1 ) )

<

¢ minC mi + 1 > - minC mi, ni ) = minC mis ni))

SO wWeget, ,

10
1
ot
-]



f (V> = f (WD

Kyt Kyt
1
= === [max (m s N Y = mind(m s N 1.
c c-1 c-1 : o c~1 c-1
1 ¢
+ —--= o [max(m sN Yy = min (m s N )]
c i=0 i+1 i+ i i
Collecting terms then shows that
£ = f W
kyt Kyt
1 .
(= ===[max (m s n ) - min(m, n >].
c c-1 c-1 0 0

Nows A(M) is a subset of A(U) and A(N) is a subset of A(N) by

Lemma 5.3 ( with j=t ); somax (m , n ) <=max ( Y ) and
c=1 c-1

min ¢(m s n ) >=min ( Y ). Hence,
-0 0

kst Kyt
"< = ===[max ( U ) - min¢ U )].
c
1
= === 38U ) .
c

acs desired.
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JHFORFM 5.13

If n >= 3t + 1, then there exists a t=-correct synchronous

aopproximation algorithm with n processes.
PRONOFZ
Given in section 4}5.2 of chapter 4.

/
1FFMA H.62

Suppose ny t > (0 dare such that n »=s 3t + 1. Let T be a set of
processes, with | T | >= n - t. Let h be a positive inteéer. Let
U and U' be the multisets of values of processes in T immediately
Chefare  and  after round by respectively, in o porticular
T-cdmputation of  S0. Then

1) | &C U ).
&( U®' ) = =—==mmem—e—e—eeo

&) ACU' ) is o subset of AC U )
PROOFZ

et p aond g be aoarbitrary processes in T. Let V and W be the
‘multisets of values (includihg deFaQIt values) received by p and
9, respectively, at round h. Then | V | = | W | = n. Since there
are at most t faulty processes, | V - U | <stand | W - U | <= t.
Moreover, since V and W contain identical enteries for all the

processes in Ty we know that | V=W | = | W=V | <-'t.
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1) The multisets Vs Ws and U satisfy the hypotheses of Lemma 5.5

(With m = n oand k = t ). Thus,

f VW)= f (W | <5 ==========o=m-
tyt tyt c(n = 2ty t)
2) The multiset V and U satisfy the hypotheses of Lemma 5.4 .
Thus FE.ECV) belongs to A(U). Since p and g wWere choosen

arbitrarily, the result follows.

LFFMA H.72

Assume that n >= 3t + 1. Let T be a set of processess with IT|
> n = t. Let h be a positive integer. Let U and U' be the
multisets .of values off processes in Ts immediately before and
after round h, respectively, in ¢ pﬁrticulor T=computation of S.

Then A(U') is a subset of ACU).
PROOFZ

Let p be an arbitary process in T. Let v and v' be the values
held by p immediately before and after round h, respectively. ft
sufficesy, since p is_arpitcry, to show that v' is an element of
ACU). 1If p hos terminated prior to the start of round hy then v'
= v belonds to A(U). If p has not halted prior to the start of
round h, then let V bet the multiset of values received by p in
round h. Then V and U satisfy the hypotheses of Leémc 5.45 and

since v'=ft,t(V), it follows that v'belongs to A(U).
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‘IHFORFM 5K.2:
If nb >= 5t + 15 then there exists a t=correct asynchronous

gpproximation algorithm with n processes.

PROOF: | ~

Given in section 4.5.3 of chapter 4.

LEMMA KH.R3
Suppose ny t>0 are such that n >= 5t + 1. Let T be a set of
processes, with | T | > h - t. Let h be a positive integef, Let U
and U’ be the multisets of values of processes in T,‘immediately
before and after rbund h, respec;ive}y, in a porticular
T-computation of AQ. Then ' | .
1 & U

&C U’ 2 mmmssmesesces—-

c( n - 3ty 2t)

2) ACU' ) is o subset of AC U )

PROOFZ

Let p and q be arbitrary pfodesses in T. Let V and W be the
multisets of values received by p and q, respectively, at rouhd he
Then | VvV | = | W I.= n = t. Since there are at most t faulty
processes, | V-Ul<=tond | W=-U]/ <= t. Moreover, since V
ond W both contain identical entries for all the processes in T
from which both p and g heard,; we know that | V intersection W |

> =3t. Hence, | V=W | = | W=V | = | V| =] V intersection W |
<= 2t. |
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1) The multisets Vy Wy and U satisfy the hypotheses of Lemma 5.5

(With m = n and k = 2t ). Thus,

AC U D)
f (V) = f (W) | (8§ ====cceccccecce=-

2tst 2ttt c(n = 3t, 2t)

2) The multiset V ond U satisfy the hypotheses of Lemma 5.4 .

Thus th,t(V) belongs to A(U). Since p and g were choosen

arbitrarilys the result follows.

LEEMA 5.9:

Assume that n >= 5t + 1. Let T be a set of processesy with |T|

>> n = t. et h be a positive integer. Let U dnd U* be the

multisets of values of processes in T immediately before and

after round h, respectively, in o particular T-computation of A.

Then ACU') is a subset of A(U).

- IHFORFM  f.13

Thie  function COINCTOSS produces @ weakly global coin in the

dynamic=broadcast message-oblivious fault model swhere the

LY

constant probability for either common outcome is ot least

( 1 = $ ) /2e, provided t <= $n ( where $ is any constant 1ess
than 1 ).

PRONOF

Refer to (6._0].
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JHEORFM f.23

The function COIN_TOSS produces a weakly 9lobal coin in the
dynamic-reception.messoge-oblivious fault model, when t <= n( 1/4
- e ) for some constant e > Q0. If t=n ( 1/4 - e ), the

probability for either common outcome is at least o< / 2, wpere

o< = 8e / ( 48 +5 ).

.
|

PROOF
Refer to [6.01].

JHEORFM A.32
The function COIN T0SS2 produces a weakly global coin in the

dynamic recept;on message-oblivious fault model, when t < n/2.

The probability for either common outcome is at least ( 1 = ( t /
n oy ) /ce.

JHEORFM 6f.d4:

Under the assumption (%) (given in section 4.6.3)y if all
processors hold the same encryption and decr?ption key, thén for
polynomiclly many repeated cofls\of Fhe function COINL_TQSS », each
'call produces a weakly global cqin in the message-dependent fault
models. This procedure is correct, providéﬁ t <= n, where is any
constant less than 1 for the static ond dynamic - broadcost case,
ond t < n/2 for the dynamic - reception case. The probobilities
of each outcome are as in Theorems 6.1y 6.2y and 6.3 respectively.
_ PROOE

Refer to [6_0].
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C o
e

';;encryptlon ond decrvption keys then pOlYﬂOMlQllY mony repeoted

' PROAE

THEOREN .53 -

o .

Under the- assumption(=), ,put ) NlthOUt | assum1ng common,'

(.

predistributed encryption and decryption keys, polynomiolly mony~

repeoted calls of the function COIN_TOSS_4» ecqh ‘produce c-weokly

globcl:coin in the message-dépendent dynamic brodcast and.d?ncmic
k ,

reception fault models provided that t < n/2.

IHEORFM 6.hi

The function ASYNCHRONOUS_COIN.TOSS.1 Produces a weakly global
coin  in  the asynchrnonous, messcge-oblivious fault model,

Provided t < ( ¢ 3 - /5 ) /2 )n.
lRefer to [6_01.

IHEOREM 6a7:

Under the' cssumption (%), if aqll processors hold the ‘same

colls of the Funct1on ASYNCHRNOUS_COIN_TOSS_Z produce Q. weakly,”

 91oba1 coin - in the asynchnous message dependent model provided

t< CC3-./65)>/2Hn.

gRﬂﬂE
Refer to [6_0].
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JHEORFM 6.82
Under the assumption (%) but without assuming common,
predistributed encryption and decryption keys, repeated calls of

a modified function ASYNCHRNOUS_COIN_TOSS_2 preceded by o four
round encryptioh ‘key distribution phase round a weakly global

coin " in the méssoge. dependent asynchronos fault model that

t< (3= /5>/2)Hm..

During each epochs both of the volues J and 1 are never sent in

any execution of round 2 (step 10).

EROOF

It can be proved by a simple counting'orgument,

JHEORFM 6(.102
The aleorithm has the following three parts

Validity ¢ If wvalue v si distributed as input to all

processors decide v during each epoch 1.

Agreement t Let e be the first epoch In which a pfocessor

decides. [f processor P decides v in each

'epoch ey then by the end of epoch e+] all

processors decides V.
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Termination < (a) In any epoch e, if the epoch 1is not
bivalent at the point when the fastest

. processor beéins executing step 18, then there

is at leost one valuekthat, if it is adopted

by |- n/e . + t + 1 processors executing the'

assignment in step 18, will cause each

processors to decide by the end of epoch é +1,

and otherwise

(b) in any epochs ey if there is a value that
is adopted by L. n/2 _J) + £t + 1 processors
executing the assignment in step 18 then epoch

e + 1 is not blvalent at the point that the

majority value of COIN_TO0SS in epoch e is

uniquely determined.

JHFORFM fa.112

Using the agreement algorithm with coin toss as a subroutine,

agreement is  reached 1in constant expected number of rounds,

provided the number of fault t satisfies

(a) £t < n/2 for the all varients of the syhchronous models

(b t < ( (3 ==sqart( 5 ) )n for all varients of the asynchronous

_mode.
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JHEORFM Ta.2.12 |
If agreement algorithm A guarantee SBA for each history with at
most t orderly crosh faults then A require ot least min¢ n = 1,

t + 1 ) rounds to reach SBA in any serial history.

PROOFZ

Given in section 4.7.1

1FMMA  Z.2.2%
Let H and J be histories in U. If A uses k rounds to reach SBA -
in J and Hk is witness equivalent to Jk, then A uses K rounds to

rech SBA in Hy and H and J are output equivalent.

PROGF: |
The - proof for this lemma is straightforward, but long. Refer to

[(7_0] for the proof.

LEMMA Ta2.32 ,

If e is a significant outedge of a candidate p in round kK <= t
of a serial history H, then there is a serial history J such'thdt
Jt is witness equivalent to Ht oand Jk is identical to Hk except
that the state of the message at é ls altered (from correct to

absent or vice versa).

EROOF 3

Refer to [7_0] for the detailed proof.
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1FMMA T.2.42

If H aoard J oré serial hostories then Ht'is witness equivalent to

Jt.
PROOF ;'

Refer to [7_0] for the detailed proof.

Algorithm A require at least min( n = 1y t + 1. ) rounds to reach

SBA when there are actually no faults.

JHEORFM  T.3.13

Let A be ah agreement algorithm thot reaches EBA in histories of
UC As t J. Then there is a history in U( A, t ) with only f
faults in which A requires at leost min¢ min = 1, £t + 1, f + 2 )

rounds to reach EBA.

EROOF:

Given in section. . 4.7.2

1FMMA T.3.2:
Let H be oan f-serial history. Then there is no critilical edge

in round f from a processor that is an f-caondidate in round f of
Ha

PROOF 2

Refer to [7_0] for the detailed proof.
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1FMMA Ta3.22
If A reaches EBA for all histories with at most t faults and if
A reaches EBA within min( t, f + 1 ) rounds for all histories

with at most 1 faults, then all f-serial histories are output

equivalent.

PROOFS
Refer to [T7_0] for the detailed proof.

\

JHEORFM T.4.1

P
Execution of EAGREE by n > max( 4t, 2( £t + t = 1) ) ) processors

results ' in EBA within min(f+2.t+1)rounds, where f, the actual

number of faults does not exceed t.

PROOFZ

Refer to [7_0] for the detailed proof.

LEMMA T.4.2 3
Suppose no correct processor. is stopped at round i - 1 and let

Py "Qy ond r be correct processors. Then, at the end of round i,

no correct processor hgs the name of a correct processor in Xs
every correct processor has pgssrqgss and all correct processors
share the same value for qgs.

PROOF 3

Refer to [7_0] for the detailed proof.
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1FMMA T.d4.3 =

If o correct processor is convicted at round i <= i + 1y then

the value‘it has for s must have become persistent by round i =1.

PROOF 2
Refer to [7_0] for the detailed proof.

1FMMA 7.4.4 3

If a value becomes ﬁersistent before round t + 1, then it
remains persistent throughout the execution of the algorithm and
is 9iven as output by each correct'prqcessdr. [f a value become
persistent before rount t, then all correct processors are

convicted at most two rounds later.

PROOEZ
Refer to [7_0] for the detailed proof.

LFMMA T.4.5 2

If the origin 1is correcty then all correct processors will

output its value.

PRAOOF S

Refer to [7_0] for the detailed proof.
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1FMMA T.4.6 3

‘IF for some i, 2 <= i <= ty O fault p separates a witness set
from all other correct processors at round i, and if some
éorrect processor is not convinced by round min( i + 25 t =1 ),
then there are correct processors that donot have p in their set
X by the end of round i, but by round]l+1 each correct processor

Will have p in X and pPs ond ps to the default value (.

ERONFZ

Refer to [7_0] for the detailed proof.

LEMMA ' Z.4.7 2

If there is a coﬁrect processor is not convinced by round i + 2
with\i <=1 <t=1, then there is aset { Pl | 1<=J<=1 1} of
i distinct Faulty processors such that, for each Jjs each correct
processor haé PJ in X and valué pJs defaulted to § by the end of

"round J + 1 (and in each succeeding round ).

PROOF 2

Refer to [7_.0] for the detailed proof.

1 FMMA 1.4.8 2
[f there are only f<t faults, then all correct processors are

convinced by round f + 2.
PROAF 2

Refer to [7_0] for the detailed proof.
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LEMMA T.4.9 2
All correct processors have the same value stored in s by round

£t + 1.

PROOE S

Refer to [7_0] for the detailed proof.
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CHAPTER FOUR
ALGORITHMS FOR REACHING AGREEMENTS
MODULE ONE

The problem addressed hHere concerns a set of isolated Processorsy

be faulty, thot communicate only by

some subset of which may
"

means of two party messdages. Each nonfaulty processor has @

private value of information that must be communicated to each

other nontaulty processor., Nonfaulty processors always

communicate honestlys whereas faulty processor may lie. The
propblem is to devise an _algorithm in which processors communicate
their own value and relay volues received from others that ollows

each nonfaulty processor to infer a value for each other

processor. The value infered for a non faulty processor must be

that processor's private value ond the value inferred for a
faulty one must be consistent with the corresponding value
inferred by each other nonfaulty procesor. Qur results are
formulated wusing the‘ notion of INTERACTIVE CONSISTENCYs as
defined 1in chapter 2 [1_0]. This problem is essentially the some
as the Byzantine general metaphor in [2_.1] or Byzantine general

problem in [2_0J]. (refer to chapter 2 for definations).

It is shown thot the problem is solvable for, and only for n »>=
3m + 1, where m is the number of faulty processors and n is the

total number. It is also shown that if faulty processors can



refuse to pass on information but cannot falsely relay
information, the problem is solvable for arbitrary n >= m >=0.
'This weaker assumption can be approximated in practice using

cryptographic methods.

In the following section we give algorithms devised to guorantee

interactive consistency for and only for ny m such that n >=3m+1.

In section 4.1.1y we consider the single fault case that is m=1.
We show that a minimum of four processors are required for this

case.

Following this, in section 4.1.2 we consider a general algorithm
for n >=3m + 1. [t is also proved that these algorithms assure

interactive consistency (i.Ce)e

In section 4.1.3 g proof of impos=ibility for n 5 3m +] i=m 9iven,

[n section 4.1.45 it is shown that interactive consistency can be
assured for arbitrary n >= m >= 0 if it is assumed that faulty
processors do not pass on information obtained from other
processors but connot false report this information. This case
can be comparéd with the fail-stop case in Module Four. This can
be implemented wusing authenticators and on olgorithm using

authenticators is the last algorithm presented.
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SECTION 4.1.1 : THE SINGLE-FAULT CASE

Here we consider a procedure for obtaining interactive consistendv

in the simple cgse of m=1, N=4.

ALGORITHM:

The procedure consists of an exchange oOf messagesy rollowed by

the computation of the interactive consistency vector on theé

basis of the results of the exchange.

Two rounds of information exchohge are required. [In the first

round the processors exchange their private value. [In the second

round they exachange the results obtained in the first round.

The faulty processor (if there is one) may "lie,"”, or refuse to

send messages. [f o nonfaulty processor p fails to receive a

message it expects:from some other processors P simply chooses a

value at random oand act as if that value had been sent.
The exachange having been completed, each nonfaulty processor o]

records its private value vp for the element of the interactive

consistency corresponding to p itself. The element corresponding

to every other plrocessor g is obtained by examining the three

received reports of q's value (one of these wadas obtained directly
from g in the first round, and the others from the remaining two

processors in the second round). I[f at least two of the three

reports agree, the majority value is used. Otherwise o default

value such as "NIL" is used.



PROGE showing that this procedure assures interactive consistency,

is given below.’

First note that if g is nonfoulty, p Will receive Vq both from g
ond and from the other nonfaulty processor(s). Thus p wWill record
VP for g as desired. NOw suppose g is faulty. We must show only
that p ond the other two nonfaulty processors record the same
value for q. [f every nonfaulty processor records NIL, we are
done. Qtherwise, some nonfaultdy processor, say ps records a
non=NIL value v, havingy received Vv from ot least two other
processérs. Now if p received v from both of the other
nonfaulty processors,eoéh other nonfaulty processor must receive
v from every plrocessor other tdhan p (and possibly from p as
weil);every nonfaulty processor will thus record V. Dthérwise,p
must have received v from all processors other than some other
non faulty processor p'. In this case p' received v from all
processors other than q (SO P' records v), and other nonfaulty
processors received Vv from all processors other than p. All

'nonf‘aulty processors therefore record v as reduired.
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SECTION 4.1.2 : AN ALGORITHM FORN >=3M + 1

The procedure 9given in the last section requires two rounds ot
information exchange, the first cosisting off the torm "my

private value is™ and the second consisting ot communications of

the form "Drocesébr X told me his private value is....”". [n the

general case of m faultss, m+1 rounds are required. [n order to

descibe the algorithm, it will be convenient to characterize

this exchaange of NESQGQQS in a more formal way.

- ALGORITHM:
lLet p be the set of processorsy v a set of value for k>=1 and o=
is a k-level scenario for string WEPTPZ2 eesee Pry 2<=r<=k+1.
Note that »For a given subset of nonfaulty processorss only

certain mapping are possible scenariosyin particular, since

nonfaulty processors are always truthful in relaying

information, o scenario must satisfy
O=(PAW)= O=(awW)

for each nonfaulty processor Qs arbitrary processor p, and string

w-

The message a processor p receives in a scenaric o- are given by
the restriction o-p of o- to the strings beginning With p. The
brocedure we present now for arbitrary m>=(Q0, n>=3m +1, is
described in terms of p°'s computation, fora giveh o-p,of the

element of the interactive-consistency vector corresponding to

each processor gq.
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The computation is as follow:

'(1) [f for some subset Q of p of size > (n+m)/2 and some vqlue
Vy O=-p(pwg)=v for each string w over {Q of length <=m, p

records V.

(2) Otherwisey, the algorithm for m-1, n=1 is recursively
opplied with p replaced by P = {g},; and o-p by the

mapping 6-p defined by 6-p(pw)=o-p(pwq)

for each string w of length <=m over P-{qgq}. [f at least {floor
operator of (n+m)/2} of the n-1 elements in the vector obtoined in
the recursive call agree, p records the common value, otherwise p

~ecords NIL.

Vote that o-p corresponds  to the s_level subscenario of o= in
Ahich q is excluded and in which each processor's private value
is the value it obtains directly from q in o-. Note also that
the algorithm essentially reduces to the one given in the last

gection in the case m=1.n=4.

2ROA0F that the algorithm given above does indeed assure

interactive consistency proceeds by induction on m:

3gsis m=Q. In this cose no processor 1is faultys and the

Jlgorithm always terminates in step (1)with p recording Vq for g.



Induction Step m2@. First note that if g is nonfaulty,
o-P(pwq) = Vg for each string w (inleding the empty string) of
length <=m over the set of nonfaulty processors. This set has
n=m members (which, since'n>3m, is>(n+m/2) and so satisfies the
requirements,for @ in step(1) off the algorithm. Any other set
satisfying these requirements,moreover,must contain a nonfaulty
processor (since it must be of size > (n+m)/2. and n >= 3m+1) and
must therefore also yield Vg as the common value. The algorithm

thus terminotes at step(1)s and p records Vg and q as required.

Now suppose that q is fdulty. We must show that the value p
records for g oaogrees With the volue each other .nonfaulty

processor p' records for q.

First consider the case in which both p and P’ exit the
procedure at step(1)s each having found an appropiate set Q.
Since each such set has more than (n+m)/2 members, and since p
has only - n members {n all, the two sets must have more than
2¢(n+m)/2>=-n=m common members. Since atleast one of these must

be nonfaulty, the two sets must give rise to the same value v,

as required.

Next suppose that p' exits at step(1)s having found an appropriate
set Q@ and common value v,and that p executes step(2). We claim
that in the vector off n-1 elements that p compuites in the

recursive call, the elements corresponding to members of
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@ = Q - {q} are equal to v. Since 5 has at least {floor operator

of (n=m)/2% members, it will then follow that p records v in

accordance With step(Z). To see that the elements corresponding

to members oF.E are indeed equal to v,recall that the mapping B-p

that p uses to compute the vector in the recusive call is the

restriction, to strings beginning with pyof the m-level scenario

o-p defined by

0=-P(W)= 0=(WQ)

for each string W of length <=m over P - {q}. By the induction

hypothesisy this vector 1is 1identical to the one p' would have

computed using the restriction 0-p Of o- had p' made the recursive
call. Moreover,y the value p' would have computed for the element

of this vector corresponding ‘'to a g9iven q' in @ must be vy since Q
and V satisfy step (1) of the clgorithm.‘(Note that @ is of size

>=L(n+m)/23>=((n=1)1+(m=1)1/2, and that o=p(p'wWqa') = o-pP(pP'Wq'qg)=
v for each string w of length <=m-1 over 6.) The case in which p

exits at step (1) and p' exits at step(?2) is handled similarly.

In the one remaining case, both p and p' exit at step (2). In
this coase both recurse ond must, by the induction hypothesis,

compute exoctly the same vector and hence the same value for .

@.E.D.
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SECTION 4.1.3 : PROOF OF IMPOSSIBILITY FOR N < 3M +1

The pbocedure of the last section guarantees interactive consisté&id

In this section it is shown that the 3m+1 bound

only 1if n>=3m+1.
is tight. We will prove not only that it is impossible to assure,
interactive consistency for nd3m + rounds of information

exchangey but also that it 1is impossibley even qllowing an

infinite number of round exchange (i.e. using scenario mapping

from all nonempty strings over P to V).
Just to gain some intuitive feeling as to why 3m processors not
sufficient,cosider the case of three processors As By C of which

one say (s is faulty. By prevaricating in Jjust the right way, ¢

can thwart A‘'s and B's efforts to obtain consistency. In

particular, C's messages to A canm be such as to suggest to A
that C°'s private‘volue is say 15 and that B is faulty. Similarly,
C's messages td B cab be such a to suggest to B that (C'sprivote
value is 2 and that a is faoulty. If c plays its cﬁrds Just
right. A will not be able to tell whether B or C is faulty, and
B will not be able to tell whether A or C is at fault.A will thus
have no choice but to record 1 for C's value. while B must

record 2y defeating interactive consistency.

The precise statement of the impossibility result and its proof

is given as a THEQREM 1.1 in chapter 3 . This is using the formal

definations of (i) scenario
(ii) o- consistency with N
(iii)interactive consistency for m faults

given in chapter 2. :



SECTION 4.1.4 : AN ALGORITHM USING AUTHENTICATORS

The negative result of the last section depends strongly on  the

assumption that a faulty processor may refuse to pass on  values

it has recieved from other processors or may pass on fabricated

values. This section addresses the_situotion in which the latter

possibilty 1is precluded. We will assume, in other words, that ad

faulty processor may *lie” about its own value and may refuse to
B {

relay values it has received, buyt may not relay altered volues

without betraying itself as faulty.

In praoctice, this assumption can be satisfied to an arbitrarily

high degree of probability using authenticators. A processor p

constructs an authenticator for a data item d by calculating

Arp{d]s, where Ap 1is some maopping knoawn only to p. [t must be

highly improbable that a processor q other than p con generate

the authenticatior Ap[d] for o 9iven d. At the same time, it

must be easy for g to checks for a given psv, & d, that v=Ap{d]l.

The problem of devising mappings wWith these properties is a

cryptoaoraphic one. Methods for their constructions are discussed

in [1_2]1 and [(1_3]. For many application in which faults are due

to random errors rather than to malicious intelligences any

- mappings that "suitably randomize” the data suffice.
A scenario o- is carried out in the following way. Let v=o—-(p)

designate p's private value. p communicates this value to r by

sending r the message consisting of the triple <psasv>s where
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azAp(v]. When r receives the message, it checks that a = ApP[V].
If so, r tokes v as the value of o-(rp). Qtherwise r lets o-(rep)
= NIL. More generally, if receives exactly one message of the
form (Ply 01(P2,02502+.+(PKy0KsV)eae))s Where ak = Ak[V] and for
1 <z 1 <= k=1, ai = Ail(pi+1s0i+]...(Pkyak,yVv)]sy then 0=(rpl...pk)

= v, Otherwise 0=(rpl...pPk) = NIL.

A scenaric o- constructed in this way is consistent with a given
choice N of nonfaulty processors, if for all processors p is an
element of Ns q belongs to set P and strings ws, w' over P.

(i) 0~(apW) = O=(PW)

(i1) o=(w'pPW) is either o-(pw) or NIL .

Condition (i) ensures that nonfaulty processors are always
truthful. Condition (ii) guafontees that a processor cannot relay
an altered value of information recieved from a nonfaulty
processor. That |is it may fail to relay and act like a dead

process but it will never tell a lie that is it will never act

like a malacious process.

Nexty, we consider an algorithm, using (m+1)-level authenticated
scenarios, that guarantees interactive consistency for any n>=m.
AS befores ~the procedure is described in terms of the value a

nonfaulty processor p records for a given processor gq on the-

basis of o=-p:
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AlGORTTHM:

Let Spgq be the set of cll non-NIL volues 0-R(pwg)s where W
ranges over strings of distinct element with length <=m over P -
{pyat. 1f Spg has exactly one element vy p records v for qs

otherwise, p records NIL.

PROOF 2 thaot the above algorithm assures interactive

constituency.

Consider first ‘the case 1in which q is nonfaulty. In this case
0-P(PWd) 1is either o0-¢q) or NIL for each appropriate w by
condition (ii) Since in particulor, o=(pq) = 0-(q) by (1)-Spq =

{o-(q)}.p thus records o=(q) for a as required.,

If q 1is faulty, it suffice to show only that for each two
nonfaulty processors p and p's Spg = Sp'a. SO suppose V belongs
to Spq; i.e.; v= 0-p(PWg) for some string w having no repetitions,

with length <= m over P = {pyq}. If p' occurs in W (say W=WIP'W2),

then o=(pwa) o-(P'W2q) by (ii); hence v= o-(pPwWQ) belongs to
Sp'a. If p' does not occur in w aned W is of length <m ; then pw

is of length <=mj so v = 0=(pwag) = O-(P'PWg) belongs to Sp'q.

Finallys if p' does not occur in w and W is of lenagth m, W must
be of the form WIrng where r 1is nonfaulty giving that v =
0-(PWA) = 0=(rW2q) (by (11)) = o~(p'rw29) (by (1)) belongs to
SP'q. In each case v belongs to Sp'q. A symmetrical argument

shows that 1if v belongs to Sp'qy v belongs to Spa. Hence Sp'qg =

SpPq as required. v " Q.E.D.
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MODULE TWO

In the prévious module we considered [ntergctive consistency

problem wWhich 1is essentially the same as Byzantine geperal

problem.

.

The Byzantine Generals Problem requires process to reach

agreement upon a value even though some of them may fail. [n this

modeule the problem is weaokend by allowing them to agree upon an

incorrect wvalue if a failure occurs.

- The tronsocfion commit prbblem for 6 distributed database is a
special case of the weokef problem. [t is shown that, like the
original Bynzantine Generais Problem the wWeak version can be
if fewer than one theird of the processes may fail.

solved only

Unlike the original problem an gpproximate solution exists that

can tolerate arbitraly many tailures.

In section 4,2.1 i1t is first shown that no solution to the WBG.
problem exists if 1/3 or more of the processes are faulty. Hence

the WBG problem discussed by L. Lamport in [2_0] is solvable in

precisely those situations in which the original Byzantine General

problem [2_ 1, 1_07 is.



[n section 4.2.2; we show that if condition g of the WBG problem

is replaced by a weagker conditicon reaquiring only approximate

equalitys then the problem is solvable with any number of faulty

processes. -More precicsely, if the set of possible values is @

bounded set of numbers, then for any L— > U there is an algorithm

which garantees that the valuyes c¢chosen by any twwo nonfaulty

processes differ by less than C-. [t was shown in [Z2_131 that no

such approximate solution exists for the original Byzantine

Generalse Problemn.

In section 4.2.3s an algorithm that works with any number of

faulty processes is given. This algorithm reguires the processes

to send an infinite number of messages before choosing their

values and hence this "solution®” is of no practical interests
since it connot be implemented. [ts interest lies in fact that

the original Byzantine Generals Problem does not possess such a

*solution™. Hence, the WBG Problem 1s in some sense strictly

weaker than the Byzantine Generals Problem.

SECTION 4.2.1 : IMPOSSIBILITY RESULT

vA proof is given to show that no solution to the WBG problem

exists if one-third or more of the processes are faulty.

Let
P donate the set {0y .22 3 0 - 13}y of processes

f all finite ssquences of glements of p

F* the =zet o
(includina the null sequences).



Il denote the set of all finite sequehces of the form Q,# With

# belonging to Px ~i.e.y all elements of P* whose first

element is Q0.

O0s Pieee..Pk is a path of length k traveled by a message
that starts at process 0 and is relayed via processes

pi.....pk¥i to process pk. b

[I1 denote the subset of I] consisting of all sequences
ending in 1 - i.e. all message paths leading from

process 0 to process i.

A Scenarioc % 1is amapping from [ into a set of values V. If we
think of an element # of I as a message path, then #(#) is the
contents of the message received at its final destination We say
that process i is nonfaulty in a scenario € if for every message
'path #yi belbnging to Il and every J belonging to P: Z(#ylyJ) =
Z(#yid. That is, 1 is nonfaulty in £ if process i correctly
relays all messages. [f all processes are nonfaulty in %ythen
% (%) = %0) for all # belonging to [Is which means that every

destination process of a path receives values send by process (.

A solution to the WBG problem consists of an algorithm by which
‘the processes send messoges to one another based upon the
contents of messages dlready received. Initially,‘ the only
information is the value v, which is known only to process Q.
Therefore, all information travels along path in [I. To send the

maximum amount of information to one another, Process (§ would
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send the value v to all précesses, and then processess would send
one another the contenté of every message they receive. Thusy if
%(0) equals Vv, then a scenario % describes the maximum amount of
information that thé processes could send to one another. A
nonfaulty process can always ignore information that it receives,
ond a faulty process can do anything = including guess any
information thot was withheld from it. Hence any algorithm for
choosing - values based upon the entire scenario %. Such an
algorithm is caolled m=fault WBG Algorithm B ond is defined in

chapter 2.

Next it is shown that no m=fault WBG alogrithm exists if 3<n<3m.

(The problem becomes trivinal if n <= 2)

If the value of Bi(%i) depended upon the entire infinite
i-scenario %i, then the alogrithm B would require cnbln?inite
amount of message passing and would not be a real soluion to the
WBG Problem. We Consider the defination for "finiteness of a WBG
algorithm B", given in chapter 2,where [1(k) is defined to be the

set of message of length at most ki and [lic(k) = [I(k)

intersection I1i.

A finite WBG alogrithm is one in which for every scenario, there
is a k such that each process can choose its value ofter'k rounds
of message possihg. This is a natural definitiony since it
insures thaﬁ every process i{s eventually able to choose a value.

However , it does not immediately rule out the possibility that
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the required number of rounds k can become arbitrarily large. In
LEMMA 2.1 it is shown that this is not the case, and that o

single value of k can be chosen for all scenarios.

" To prove the nonexistence of an m=fault algorithm when n <= 3m,
we first prove the noneexistence of a 1 = fault algorithm for

n = 3. For this we assume that P = {0s1:2} .

We define the signed distance function & on P by:

- &(0s1)
&C(iy33)

&(1+2) = &(2+0) = 1,
-&(Jyi).

For any path # = 0sPl....sPk We define o-(#) to equal

k
S: & P s P )
i-1 i
i=1 '

If we think of the processes (0y1 and 2 being arranged clockwise
in a circle then &(isJ) is the clockwise angular distance from i
to J (nWhere a distance of 3 represents a full circle)s and o=(#)

is the singed angular distance traavelled by the path #.

Consider Lemma 2.2 and 2.3 given in chapter 2. Note that the two

conditions of Lemma 2.3 define the values of all messages in the
(r) *

scenario ¢ except for the ones~that Process r sends to itself.

Lemma 2.4 is a simple corollary of Lemmg 2.3 .

The main result is proved in form of Theorem 2.1 .



SECTION 4.2.2 : APPROXIMATE SOLUTION

The' approximate spolution of the WBS rproblem that works in the

presence of any number of faulty processes, is described next. By

takina the limit Of O sequence of sSuch sOlutions, we obtain an

an infinite number of messages, whiich is

-

exact solution uWsing

given in the following section. [n order to make the concept of

we assume that the set V of

-

an approximate solution meaningfuls
possible values is a cet of real numbers.

For each integer k>0, wWe define an algorthm AG(K) that requires

K rounds of messgage passing. Rather thon describing it in terms
of formgl scenarios we will Qimply talk about processes sending
messages to one anbtehr. Nonﬁoultv processes are constrained to
follow the algorithm while foulty ones may do anything. We assume
thcf a faulty process sends every message that it is supposed to
although possibly With an incorrect value. However value it sends

is assumed to be some eleMent of V. [t should be obvious how

this description can be translated into a definition of mappings

on i=scenarios.

ALGORITHM AG™ ;
The following Kk rounds of message passing are executed to

(r .
compute the value vi for i belonging to P and 1 <= rd{=k.
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(1) ROUND 1:

(a) Process J ends the value v to every Process i
1
(b) each Process 1 sets vi equal to the value it
receives from Process (.
D) ROUND re ¢ 1 < r <= Kk )
(r=1»
(a) Eoach Process j sends the value VJ to every
Process i.
(r)
(b) Each Process i1 sets vi equal. to the moximum of
the n values it. recieves.
(3) Each Process i then sets vi equal to the average of the k

(r

values vi .

Theorem 2,2 proves that the above algorithm is an approximate

solution to the WBG problem.
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SECTION 4.2.3 : INFINITE SOLUTION

To construct an infinite message solution to WBG problem, we let

each Process 1 toke as its value of v the limit as k g9oes to
i

) (k)

infinity of the ydalue obtained by the dalgorithm AL . If the set

vv is unbounded then this limit could be infinte in which caseé

some arbitary predassigned value is used. This gives us the

following.

ALGORITHM AG™ :

(r (k)
Compute the value v as described in Algorithm AG
i

s for all i

= 1. For weach iy define v to equal

belonging to P and r >
1

(r
sup{v tr>=1}y wWhere ~ is
i

interpreted to be some arbitary fixed

element of V.

)

We now show that AG is a "solution®™ to the WBG problem that can

tolerate any number of faults. Since it requires choosing a value

based upon an infinte sequence of messages, it cannot be regarded

as @ solution in any praoctical sense.

*>

Theorem 2.3 shows that AG is an infinite solution to WBG

algorithm,
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MODULE THREE

After going through modules one and two, wWe KNOW that solutions

are known for the "Byzantine Generals” problem [2_1s 2_0s 1_073s

which is with reference tc synchronous system.

“

module we consider an asynchronous system and problem of

In this
reaching agreement here, is called consensus problem.
Refer to chapter 2 for the definotiqn of consensus problem.

The consensus problem involves an oéynchrnous system OF.processes
some of wWhich may be unreollioﬁle. The problem is FOr'the
relliable processes to agree on binary value. In this module it
is shown thaot every protocol for this problem has the possibility

of nontermination even with only one faulty porocess.
For the main result of Fischers's work refer to section 4.3.1.

In section 4.3.2 an algorithm is presented, which solves the

consensus problem for N processesy provided majority of the

processes are nomn faulty and no ‘process dies during the

execution of the algorithm.
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SECTION 4.3.1 : MAIN RESULTS OF FISCHER’S WORK

A consensus protocol P is totally correct in spite of one fault

if it 1is partiaglly correctsy and every oadmissible run is a

deciding run. -~

The main theorem given by Fischer, Lynch and Paterson shows that
every partially correct protocol for the consensus problem has

some admissible run thaot is not a deciding run. This theorem is

stated and proved in chapter 2 as theorem 3.1 .

This theorem uses two lemmas,y Lemma 3.2 and 3.3 which are again

stated and proved in chapter 3.

SECTION 4.3.2 : ALGORITHM FOR INITIALLY DEAD PROCESS

Here in this section, wWe exhibit a protocol that solves the

consensus problem for N processess based on certain conditions.

This protocol wWas given by Fischer based on the following

conditions :
Q. Mojority of processes are non faulty.
b no process dies during the execution of the protocol.

C. NO process kKNows in advance which of the other processes

are initially dead and which are not.
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This protocol works in 2 stages :
Stage 1
Here the protocol constructs a directed graph in the following
Way :
1. Processes construct a Directed graph G wWith a node
corresponding to each process.
2. Every process broodcasts a message containing process
number.
3. [t then listens for message from LL-1 other processes.
L= T ety 71
4. G haos oan edge from { to J if and if only J recieves a
message from i. Thus G has an indegree given by @

Indegree (G) =L - 1

Staae 2.

In this stage the processes construct G+ that is the transitive
closure of G.
Each process K will know about @
1. all of the edges (Jsk) incident on K in G+.
2. initial values of all such Jj.
This stage is carried out in the following stages :
1« Each process broadcasts to all other processes the

following :
- its process number.

- the initial value.

= names of L=-1 processes it needs from the first
stage onwards.
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2o

Finally

2

It then waits until it has received a stage 2 message
from every ancestor in G that it knows about.
Waiting _continues till such time as all currently known
about processes have been heard from. |
Using the information obtained each process computes all
the edges of G+ incident on each of its ancestors.

- each process knows all of its ancestors.

- edges of G incident on them.
Determine the ancestors belonging to an initial cliques
of G+.( i.e. a clique with no incoming edges).
It con be shown that there can be only one initiol
clique, i.e. cardinality >= L.
Every process thot completes 2nd stage knows exactly the

set of processes comprising it.

each process makes a decision based on ¢
initiol values of processes in the initial cliques.

ony asreed upon rulee.

gince  oll processes Lnoms the initial values of all  megbhers  of

the initial clique, they all reach the same decision.

We now arrive at theorem 3.2 given in chapter 3.
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MODULE FOUR

-

In the previous module wWe presented a very primtive consensus

protocol. This module is an extension of the previous module inf .

the sense that it gives protocols that enable a system Of i

asynchrnous processess some of which are- faultys, to reach

ogreement.

Here we consider two Kkinds of ffoulty processes : fail stop
processes that can cnly die and malicious processes that can also
send false messagés. The class of asynchrnous systems with fair

shcedulers is defined and consensus protocols that terminote with

probability 1 for these systems GPé investigated. With fail stop

process it is shown that r~ (n+1)/2 —7 correct -processes are
necessary ond-suFFicient to reach agreement. In the malicious
case it is shown that r_(2n+1)/3_1 correct processes are necessary
“ond sufficent to reach agreement. This is contrasted with'an
earlier result {3.0] stating that there is no consensus protocol

for the fail stopﬁ case that always terminate within a bounded

number of steps, even if only one process can fail.

The possibility of reliable broadcast (Bynzantine Agreement) in
asynchrnous systems is dlso investigated. Asynchrnous Bynzantine

Agreement is defined and it is shown that { (¢ 2n+1)/3 | correct

processes dre necessary and sufficient to acheive it.



The solutions in this module are different from solution given in
module threé because here we consider protocols which may never
terminates but 'this would occur wWith probability 0y and the
expected termination time is finite. This is done by postulating
some probobilistic behavior about the message system. This‘is
done making probabilistic assumptions on the behaviour of a
scheduler (defined in chapter 2 ). Here cloés of fair schedulers

is considered (defined in chapter 2).

In section 4.3.1 we consider the fail-stop case. [n this section
we ‘first find the moximum number of faulty proceses which any
consensus protocol can manage. In other words a lower bound on
the number of correct processes is derived. Next a fair scheduler
is defined and finally a L. (n=1)/2 _J resilient consensus

protocol is derived.

In section 4.3.2 we consider the malacious caose. Here we first
discuss the model to be considered. Then we find the maximum
number of Fculty proceses which any consensus protocol can manage.
Thdt isy, the lower bound on the number of correct processes is

derived and finally a L. (n=1)/3 _l resilient consensus protocol

is derived.

In section 4.3.3 ne con51Qer Asynchronous Byzantine Agréement.
Here we first discuss the problem. Then we find the lower bound
on the number of correct processes and finally a protocol that

acheives Asynchronous Byzantine agreement for k= 1 to L_(n-1)/3_]

malacious processes is derived.
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SECTION 4.4.1 : FAIL-STOP CASE
LOWER BOUND ON NUMBER OF CORRECT PROCESSES

We could have undetectablée deaths during the execution of the

protocolss this imp}ies thaty, at any stage ot the protocolys

processes Will have to oact dependina on partial information

about the state of the system. This 1is formalized by the

lemmd 4.1 given in chapter 3.

Refer Theorem 4.1 give in chapter 3. [t proves a very important

result.

FAIR SCHEDULERS

We may view Protocols for asynchronous systems as consisting of

rounds. While in round ty, a process sends messages to every

other processy, and wWaits until it recieves n = k messages sent

by different unique processes in round t. After this the process

changes its statey and starts round i+1. We notice that the new

state is a function of the o0ld staote and the messages are

recieved in round t.

Hence the processes cannot woit for more than n - k messages as

there is always the possibility in which all kK faulty processes

do not send any messages in round t. We define R(as ps t) to be

the event that p recieves a message from g in round t. The

progress of this system depends on the Jjoint probability

distribution of the R(Q, ps 1) events, which is determined by

the schedular.



We can say that a schedulaor i{s fair provided the following
conditions prevail: |

1). For any processesy P and 4y and round t, there is a positiv
constant e such that a Pr{R(qs; py t)I>t

2). For any distinct processes rs ps and Q. and round t, the event

R(gs ry t) and R(Qsy Ps t) are independent.

These conditions 1in particulory guarantee that, for any round
ks there 1is a constant probability p that all processes recieve

n=k messages from the same set of correct processes.
a(n=13/2 . RFSII IFNT CONSFNSIIS PROTOCOI

Here wWe describe a k-resilient consensus pProtocol for a system

With a fair schedular ond k = 152.....0(n - 1)/2]. The protocol

consists oOf rounds ds seen earilier .

The state of a process ond the messages exchanged consist of a

Phase number, a binary values and a cordinality.

In each phases, a process does following step
(1) A process sends a message with its state to all the
processes.
(2) Then the process waits for.messoges.
(3> When a process receives n - k messages, With same Phase

number, it considers the sets of messages with value (

and value 1, respectively.
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(4) If there is a message with value i and cardinality > n/2

then will be called a witness for i.

(5) If a process recieves a witness for i, it changes its
value to i

else value = value of the largest message set.

(6) A process chonges its cardinality to the size of the

message set with value i.

(7) The process starts a new phase.

A process decides | {f 1t recelives more than k witnesses for
value 1. Since there are enough witnesses for that value In the
mgssage system so force the rest of the processes to reqach the

same decision.

Refer to theorem 4.2 to see that the following algorithm is a
k=resilient consensus protocol for the fail stop cases; for ony kg

0<=k<<=L (n=-1)>/72_1.

The algorithm is given on the next page.
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process pik—consensus

valuesinteger init(ip)
cardinalitysinteger init(1)
phasenotinteger init(0) .
witness_countiarray(0..1] of integer init(0)
message_countsarray{0..1] of integer init(0)
msg:record of

phaseno: integer

valuesinteger

cardinalitys:integer

While (witness_count(0)<sk and witness_count(1)<=k)
message_counti=witness_count:=

for all q, 1<=n, send(qy, (pPhaseno,valuescardinality)).

while (message_count((Q)+message_count(1)<n-k)
receive(msq)
case
(msg.phaseno=phaseno):
begin
message_count(msg.value):=message_count(msg.value)
if msg.cardinality>n/2
then
witness_count(msg.value):=witness_count(msg.value)+1
end
(msg.phaseno>phaseno):
send(p.msg)
end
if there is i such that witness_count(i)>0
then value:=i
else {f message_count(1)>message_count(()
then value:=1
else values=(
cardinality:=message_count(value)
Phaseno: sphasenco+1
end

let i be such that witness_count(i)>k
dpi=
for all gy 1<=q<=ny

begin

send(q, (pPhasenoyvalue,n=k))

send(q,s (phasenc+1s valuesn=k))
end

4-30



SECTION 4.4.2 : MALICIOUS STOP CASE

MODEL

Here we describe a model in wWhich we investigate a stronger

failure behaovior o©f the processes.

A malicious process is one which :

»*»x%¥% can send false and contraodictory messages
(even according to some malicious design),

*¥% can fail to send messages

*»% can change its internal state to any other stote.

The message system must be so designed that it must provide a

way for Correct processes to verify the identity of the sender

of each message. Because if this was not done then one malicious

process can impersonate the whole system, leading the correct

processes to conflicting decisions.

The rest of the model described earlief in section I] with the

with the following additional definitions.

A schedule is said to be legal if all its steps ore according to

the protocol.

A configuration (C 1is legally reachable if it is reachable by a

legal schedule.

Henceforth, we reserve the notation |--=- to denote only

transitions by legal schedules.
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1 OWFR BDUND ON THE NUMBFR OF CORRFCT PROCFSSES

| Refer to Lemma 4.3 and theorem 4.3 for lower bound on the number

of ‘correct precesses for the malicious case.
4 (n=1>/3 | RFSTI TFNT CONSFNSIIS PROTOCOL

Here 1n this section we present a k-resilient consensus protocol
for a system with a fair schedular and k=132...s3(n-1)/34

malicious processes.

The state of a phase numbersy and a binary value. As seen
earlier the protocol consists of phases in which processes send
to each other their stotes. To overcome misleading messages from

the malicious processes: we uée the technique of initial and

echo.

Protocol Steps :

(1) A process in each phase first sends its state to all the
processes, and waits_until it accepts messages from n=-k
pProcesses by following steps:

(a> In this a process sends to all the other processes an
initial message wWith its name and its state.

(b) After receiving the initicl message, every process
echoes it back to all‘fhe proéessés. )

(c) Process py at phase t, accepts a message with volué

1 from process q if it receives more than (n+k)/2

messages of the form (echos qyist)
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(2) It changes its value to the majority of the values of

the aqccepted messages.

(3) A process decides | 1{f 1t accepts more than (n+k)/2

messages With value i.

We prove '  thot, once' a process decides i,,thereafter all the

other correct processes will have value i.

The protocol seen in Figure 2y shows that processes do_not exit
the protocol after they decide. This feature was done for
notational convenience only, and it con be avoided 1in the

following manners:

When proceés p decides 1is it sends to all the processes the
message(initial,p,i) ond echoes of the form (echo,q,i) for all
g's. The last messages are special so that whenever a process
receives them, it sends them back to itself. Once a correct
process has decided i, all the correct processes wWwill have value
i. Hence ,this procedure will have the same effect as the actual

participation of p in the protocol.
Refer to theorem 4.4 to see thgt the following algorithm is a

k=resilient consensus protocol for the malacious cases for any k,

0=k (n=1)>/3_1
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process pik=consensus

value:integer init(i )
o)

phaseno:integer init(Q0)
message_count:arrayf{..1] of interger initCQ)

echo_countsarrayl1..n20..11 of integer init(0)
mso:record of

type:(initial, echo)

from: integer

value: integer

phaseno: integer

while(true)
message_counts=
echo_count:=

for all gyt1<=nssend(q(initial,p,value.phaseno))

while(message_count((])+message_ count(1)<n-k)
receive(msg)
if it is the first message received from the sender

Wwith these values of meg.types msg.from and msg.phasenc then
case

(msg. type-1n1tial).
for all gs1<=q<=n,
send(gymsg. fromy;msg. value,msg.phaseno) )
begin

echo_count(msa, fromymsg.value):=echo_count(msg. froms
msg.value)+1
if echo_count(msg.fromsmsg.value):s(n+k)/2+1
then message_count(msg.value):=message_count(msg.value)+1
end
(msg.type = echo and msQ9. phaseno)phosenO).
send(p.msg)
end

end

1f message_count(1)>message_count(0)
then value :=

t= 1
else value := 0

if there is such that message_count())
then value := 1

else value :=

if there is such that message_count(i)>(n+k)/2
then d = i
P
phaseno: sphaseno + 1

end
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SECTION 4.4.3 : ASYNCHRONOUS BYZANTINE AGREEMENT

we Now come across a major problem of ensuring reliable

broadcaosts in distributed systems ,commonly known as Byzantine'

Agreement[4_6]s Unanimityl{4-2]s or Interactive Consistency{d _73J.

Allv earlier studies of Byzantine Agreément deal wWith a
synchronous system of n processes, where upto k processes can be
malicious. GSome specially designoted process is a transmitter
that sends a value to all the rest of the processes. A Byzantine
Agreement is dchieved if the following holds:-

1) All correct processes agree on the sdme value.

2) If the transmitter is correcty all the correct processes

ggree on its value.

We can view the whole system implicitly as in one of the

following states :
o) "before broadcast,”

b) "executing the agreement protocols”

c) "after broadcast.”

Thus, queries about the transmitted value can be handled in a

consistent manner by any COPPQCé processe.

The differnce in this view comes when we consider asynchronous
systemsy . Some correct processes can proceed wWith the

protocol ond reach agareement while others may not vet be aware iIhe

the PPOtOCOl_hGS begun.



It mﬁy be 1insufficient to start up the process on the protocol
even if a process vreceives 0 message from the transmitter or
from other processes . We definately require some threshold
activity to start up a process, a threshold that guarantees that
all the other 1is necessary to start up a process, a threshold
‘that guarantees that all the other correct processes will also

start the protocol and wWwill agree on the same value.

The following two conditions . illustrate the necessity of such a
scheme.

1) The tronsmitter is malicious. At time t0 it sends.to Kk
processes (- messages, to a different set of .k processes

1-messages, and none to the rest. All these messages are
received at time t1. After that, the transmitter stops
participating in the protocol. If we regard this as a sufficient
condition' to start up a Byzantine Agreement protocol, then the
system can proceed and agree, let us say on 1, ot time'tz.

25 The transmitter 1is correct and sends (Q-messages to all the
processes. At time the same k correct processes as in condition 1
receive these (-message. Also, k malicious processes receive 0=
messages, but they treat them as if they were 1 messages. Any
other messages from the transmitter will be received only at a
time later thon t2. Consider the system duriné the interval
[t1,t2]. The processes view of the system is the same as in
scenario 1, and therefore they can.simulote it ond agree on 1 at

time t2, thus violating requirement 2 of the Byzantine Agreement.
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et us now study the two ways to overcome this phenomenon. We
an restrain the behaviour of a malicious trcnshitter (it will
e enough to force it to send 2k+1 messages with the same
alue). Another wWay, the one wne ddopt, is to regard certain
iews of the system as insufficient to start the protocol.
rocesses moy. not startsy unless presented wWith o view that.

uarantees starting up and agreement of all the correct processes.

or an  asynchronous ' Byzantine Agreement to be achieved™ the

ocllowing must hold : -

) If the transmitter 1s correcty all the correct processes

ecide on its value.
) If the transmitter is maliciousy then either no correct

rocess wWill decide they will all decide on the same value.

[WER BOUND ON NUMBFR OF CORRFCT PROCFSSFS

efer to theorem 4.5 for lower bound on the number of correct

recesses for the asynchronous Byzantine agreement.

SYNCHRONOLIS BYZANTINF AGRFFMENT PROTOCOI
here are three types of messages in the protocol:initio;, echoy

nd ready. The protocol staﬁts With:
(1) The tronsmitter sends the i{nitial messages

(2) it then processes report to each other the value they

recived via (EChb,V)-mESSOQQS.
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(3) If more than (n+k)/2 (echo.v) messages are received by a
processy it announces it with (readysv) messages.
(4) If o process receives 2k+1 ready messqges o? the some

value, it decides that value.

Refer to theorem 4.6 to see that the following algorithm
achieves Asynchronous Byzantine Agreementy for k=1 to |_(n=1)/3_|

malacious precesses.

The algorithm is g9iven on the next page.

!
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msa_count:array of [typesi(..1] of integer
msgirecord of type:(initialyechoyready)

value: integer

while(there is no i such that
msg_count(initialyi)>=1 or
msa_count(echos1)>(n+k)/2 or
msq_count(readysq)>=k+1)
receive(msg)

if it is the first message received from the sender

with these values of mesg.type,msg.from

then msg_count{msg. type,msg value)=msg_count(msg. type,volue)+1
end

for all q, send(echo,i)

while(there is no { such that
msg_count(echo.1)>(n+k)/2 or
msg_count(ready.1)>=sk+1
receive(msg)

if it is thé first message recieved from the sender

with these values of msg.type, msg9. from

then msg_count(msg. typeymsg.value)=msg _count(msg.typesmsg.value)+
end

for all q, send(readysi)

while(there is no'i such that
msg_count(readyyi)>=2k+1)
receive(msg)

if 1t is the first message received rom the sender
with these values of msg.typeymsg. from
then

msa_count(msg. type,msg.value)=msg_count(msg. type,msg. value)+1
end

decide i
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MODULE FIVE

This paper considers a variant of the Byzantine enerals problem
is considered, in which processes start with arbitary real values

rather Boolean values or values from some bounded range, and in

" which approximate, rother thaoan exact, agreement is the desired

goal. Algorithms are presented to reach approximate agreement in

gsynchrnous: as well as synchronous systems. The asynchronous

agreement algorithm is an interesting contrast to a result of

Fischer et aly wWho. show that exact ogreement with guaranteed

termination is not ottcinqble in an asynchrnous system wWith as

few as one faulty process. This is what we considered in module

three. The galgorithm work by successivefopproximotion with a

provable convergence rate that depends on the ration between the

number of faulty processes and the toal ‘number of processes.

Lower bounds on the convergence rate for algorithms of this form

are proved and the algorithms presented are shown to be optimal.

In Section 4.5.1s we prove some combinatorial properties of the

agpproximation functions on which the algorithms depend. Then, in

section 4.5.2, synchronous model is 'introduced and the

synchronous approximate agreement algorithm 1is presented. In

Section 4.5.3s asynchronous problem is discussed and asynchronous

approximate agreement algorithm is presented. In section 4.5.4s

resilience properties of the algorithms ore discussed.
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SECTION 4.5.1 : PROPERTIES OF APPROXIMATION FUNCTIONS

Heres, we state and prove the relevant properties ot  the

approximation functions.

Y

Refer to the definations related to multisets. Lemma 5.1 Shows

that the number. of common elements in twWo nonempty sets is

reduced by at most 1 when the smallest (or the largest) element

is ramoved from edch.

Lemma BH.2 extends the results of the lemma 5.1 to removing the j

largest and j smallest elements.

Lemma 5.3 1is fundamental to the correctness of the algorithms.

that if V and U are multisets such that V contains at

J
most Jj values not in Us then every value in reduce (V) is in the

[t states

range of U. For exaomple, if the multiset of values held by

nonfaulty processes at some point in the algorithm is Uy, and the

multiset of values received by some process is V, then at most t

of the values in V are not in Y, where t is the maximum number of

t

faulty processes. The lemma then states that reduce (V) is a

multiset whose range is contained in the range of the values of

the nonfaulty processes. This property is essential in showing

that the validity condition is satisfied.
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JHE APPROXTMATTON EUNCTIONSS

Suppose U is a nonempty multiset., Let m =1 U |y ond let ug <= ul
<= .... <= um=-1 be the elements of U in nondecreasing order. If

kK > (s then define select (U) to be the multiset consisting of
k

the elements U0y UKy U2Ky «oa 3 and ujk, where J = | (M-1)/k _1.
Thus, select (U) chooses the smallest element of U and every Kkth

K
element therafter.

An important role is played by the constants

m -1
c(my k) = l- ----- -J + 1
K

Wwhere c¢(myk) is the number of elements in select (U) when U has
kK

m elements. The constant c( n=2ty t ) appears as the convergence
t of faulty processes; and (2) o constant ky the choice of which
depends on ¢t and on whether the algorithm is synchronous or
asyncronous. For kK > 0 and t >= Q0 define the function fky t by
t
fkyt(V) = mean(select (reduce (V))),
K
for o}l multisets V with VI > 2t. The approximation function for
the synchronous protcol with no more than t faulty processes 1is
ftyk. The approximation functilon for the asychronous protocol

with no more than t faulty processes is f2t.K.
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To show why these functions are agppropriate, consider Lemma 5.4

and 5.5.

LEMMA 5.4 is- used in verifying the validity condition.

LEEMA 5.5 is opplied to determine the rate of convergence of the

~

agpproximation rounds. The multisets V and W are the multisets of

values received by two nonfaulty processes in a given round and U
is the multiset of avalues held by nonfaulty processes at the
begining of that round. Nonfoulty processes use the appropriate
approximation Funcgion to choose their values for the next round;

the lemma tells us th quickly those values converge,

SECTION 4.5.2 : THE SYNCHRONOUS PROBLEM

Refer to the defination of a synchronous approximate algorithm P

given in chopter Z.

We assume 'thot the system acts synchromouslys using ag reliable
communication medium. FEach process is able to send messages to
all process (including itself)y, and the sender of each message is

identifiable by the receiver.

A configurotion consists of a stote for each process. An initiol
conFigurotion consists of an initial state for each process. Let

T be any subset of the processes. Refer to chapter 2 for the

defination of T-computation.



Assume 0 FiXéd small value €~ y a fixed number number oftprocess

n, and fixed maximum number of faulty processes t.

A synchronous oapproximation algorithm is soid to be t-correct
provided that for every subset T of processes with | T | >= n -1,

and every T-computations the following is true:

Every p belongs to T eventually enters a halting state and the

following two conditions hold for the values of those halting

states: |
(a) Agreement:
: [f two processes in T enter halting states wWith
values r cnd Sy respectivelyy; then | r - s | <= €-.
(b) validity:

I1f o process in T enters o halting state with value
ry then there exist process in T having x and vy as

initial values,; such that x <= r <= y.

Theorem 5.1 is proved next.

"Note that the following strategy would suffice to prove Theobem
5.1. The process could run n executions of a general (uhlimited
‘'value set) Byzontine Generals algorithmy, such as the one in
[6_.4]s in order to obtain common estimates for the initial values
of all the process. After this algorithm completes, all processes
in T will hove the same multiset V of values for all the
processes. Then each process halts with value f(v), where f is a
predetermined averaging function thaot 1is the same for all

processes. This algorithm actually achieves exact real - VGluéd
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agreement; with the required validity condition. However,;solution
presented below 1is simpler and more elegant and, moreover,
extends directly to the csynchfonous case, for 'whfth exact
agreement is impossible. The algorithm has two additional

odvcntages over using a Byzantine Generals algorithm: It 13 more
resilient than typical Byzantine Generals algorithmss and it cans

in some cases, termindate in fewer than t + 1 rounds.

We now present the synchronous approximation algorithm S. First,

we describe o nonterminating algorithm, S0, and then we discuss

how termination is achieved. We assume that n >= 3t + 1.

SYNCHRONOUS APPROXIMATION ALGORITHM SO

At each round, each nonfaulty process p performs the following

steps:
1) Process p broadcasts its current value to all processes,

including itself.

2) Process p collects all the values sent to it at tHot round
into o multiset V. [f p does not receive exactly one correct
value from some particular other process (which meanss; in the
sunchronous model,; that the other processes faulty)s; then p
simply picks some arbitary default value to represent that
process in the multiset. the multiset V, therfore, always
contains exactly n values.

3) Process p oapplies the function ftst to the multiset VvV to

obtain its new value.
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Lemma 5.6 states how the diameter ond range of the nofaulty

processes' values are affected by each round of algorithm S0.

Part 1 of Lemma 5.6 shows thats at each round, the diameter
of the multiset of values held by nonfaulty processes decreases
by a factor of c( n - 2ty t)y which is at least 2 because n >= 3t
+1. Thus, the diameter of the multiset of values held by
nonfaulty processes eventually decreases to €~ or less. In
addition, repeated opplicotion of part 2 of Leemo 5.6 sShows thot,
at each round h »>= 15 the values held by nonfaulty processes
immediately before round h are all in the range of the initial

.values of nonfaulty processes.

It is now easy to see why the function ft,t is appropriate for
the synchronous algorithm. Since a correct processlcan receivé'ot
most t values 1in a round from faulty processess t-fold
opplication of reduce is sufficient to ensure that extreme values
from faulty process are discarded. Thus, the second subscript of
f 1is t. Also, - if p and q are correct processes that recéive
multisets V oand W, respectively, in a round, then t is the
maximum number of values that con in vV = W. Application of select
t to the reduced multisets is therefore sufficient to obtain

convergence, and the first subscript of f is also t.

Algorilthm SO is not a correct synchronous opproximation
algorithms, for, as stated, it never teminates. We modify SQ to

obtain a terminaoting algorithm S, as follows.
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TERMINATING ALGORITHM S

At the’ffrst"}ound, each nonfaulty process uses the range of all

that round to compute a round

-

the values it has received at

number at which it is sure that the values of ony tWwo nonfaulty

processes Will be at most €- part. Each process can do this

because it knows the value of E€-s the guranteed rate of

'convergence, and, furthermore, it knows that the range of values

it receives on the first round that must be executed (including

the first round) is given by L log ( ACV) /E- ) Js wWhere v is the

multiset of values received in the first round, and c =c(n=-2t,t).

In general, different 5pf‘OCGSSES might compute different round

different numbers. Any: process that reaches its computed round

simply halts and sends its value out with o special halting tag.

When any processs say py receives a value with a halting tagy it

knows 1t has to wuse the enclosed value not only for the
designated rounds but also for the future rounds (until p itself

decides to halt, on the basis of p's owWwn computed round number).

Although nonfaulty processes might compute different round

numbers, it is clear that the smallest such estimate 1s'correct.

Thusy at the time the first nonfaulty process haltsy the range

_is already sufficiently small. At subsequent rounds, the range of

values of nofaulty processes is never increased, althougsh we can

no longer guarantee that it decreases. Lemma 5.7 makes these

ideas more precise.
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SYNCHRONOUS APPROXIMATION ALGORITHM S

Round 1 (First Approximotion Round):

. Input v;
e Y <=-- SynchfExchange(Vv)s;
Vv === ftyt(V)s

H <=== [log ( &(V) / E- > 1, where c = c(n=2t,t)
c

Round h (2 <= h <= H ) C(Approximation Rounds):
V <(=== SynchExchange(v);

V (=== ftyt(V).

Round H + 1 (Termination Round):

Broadcast(<Kvshalted>);

Qutput v.

{ End of Main Algorithm }

Subroutine SynchExchange(v);
Broadcast(v);
Collect n responses;

Fill in values for halted processes.
Fill in default values,y, if necessoaory.
Return the multiset of responses.

{ End of subroutine }

{ End of Algorithm S 3
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To show that S is a correct synchronous agpproximation oigorithm,

we must show that all processes terminate, and that the agreement

—~

and vclidit?ﬁ conditions are satisfied. [t is clear that all

processes terminate. Consider the agreement property. At theé

first round at which some nonfaulty process halts, it is already

the case that the values off all nonfaulty processes are within

E- of edach other. By Leema 5.7, this diameter never incregses at

subcsequent roundssy $s0 the final values of all the nonfaulty

processes are also within £- of each other. The validity property

also follows from repeated application of Leema 7. This completes

the proof of Theorem 5.1. ;Q.E.D.

As a final notes observe thdt aglgorithm S con be modified so that
a brocess need not always wqit for its computed round to arrive

before halting ¢ It can halt after it receives halting tags from

gt least t+1 other processes.

SECTION 4.5.3 : THE ASYNCHRONOUS PROBLEM
In this section wWe reformulate the problem in an asynchronous

model adaopted from the one in [5.9]. In an asynchrnous

agpproximation algorithm, we assume that processes have states as

befores; but now the operation of the processes is described by a
trancistion fuction that in one step tries to receive a message,
gets baock either "null"™ or an actual message, and on the basis of

the message, changes state qnd sends out a finite number of other
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messages. Nonfaulty processes always follows the algorithm.
Faulty processes dn the other hand, are constrained so that their
steps ot least follow the stcndofd form - in each step they try
to receive a message, as nonfaulty processes do. However, they
‘can chaonge state arbitrariy (not necessarily according to the
given algorithm) ond send but any finite set of messages,; (not

necessarily the oneé specified by the algorithm).

Refer to defination of  T-computation for  asynchronous

approximation olgorithm given in chopter 2.

An asynchronous approximation algorithm is sald to be t-correct
provided that for every subset T of processes with | T 1 >=n -t
and every T-computation, every process in T eventually halts,
and the same cgreemeht and validity conditions hold as for the

sunchronous case.

[t seems simplest here to insist on the standard form being
followed by all processes. The requirement that faulty processes
keep taking steps until they enter halting states ot any time
they wish. Similarly, the requirement that Fcult* processes
continue trying to receive messages is not a restriction, since
they are free to do whtever they like with the messages received.
Finally, the requirement that foulty processes oﬁly send
finitely many. messages at each step is need4ed so that faulty
processes are unable to flood the message systems preventing

messages from other processes from getting through.
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We assume that processes toke steps ot completely arbitary hOtESh

so0 that there is no way (in finite time) of distinguishing &
faulty process from one that ic simply slow in responding. Alson

we assume that the message system takes arbitory lengths of time

to deliver messages and delivers messges and delivers them ifn

arbitary order.

Theorem 5.2 is proved in the following text.
We describe the asynchronous approximation algorithm. As in the

synchronous cose, first we describe a nonterminating algorithm
AQ» in which processes compute better ond better approximationss

and wWe then modify AU to produce o terminating algorithm A.

Assume that n >= 5t + 1.
' ASYNCHRONOUS APPROXIMATION ALGORITHM AO

At round h, each nonfault? process p perfbrms the following stepss

1) Process p labels its current value with the current round
number h, and then broadcasts this labeled value to all
processes,; including itself.

2) Process p waits to receive exoct;y n-t round h values and
collects these values into a multiset V. Since there can at
most t faulty processes, process p will eventually receive at
least n = t round h values. Note that, in contrast to the
synchronous Cose, process p does not choose any default
values.

3) Process p oapplies the function F2t,t to the multiset V¥ to

contain its new value.
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By analogy with Lemma 5.6s we have Lemma 5.8 which states the

converqgence properties of the dabove algorithm.

Part 1 of Leema 5.8 shows that, at each round, the diameter of
the multiset of values of nonfoulty process decreases by Q Foctor
of c(n=3ty2t)s which is at least 2 becauise n>=5t+1. thus, the
diameter of the multiset of values held by nonfaulty processes
eventually - decreases to (- or less. [n adition, repeated
opplication of part 2 of Lemma 5.8 shows that, at each round H>=1,
the Vvaluaes by nonfaulty process immediately before round h . are

all in the ronge of the 1ﬁt101 values of nonfaulty processes.

We con now see Why f2tst 1is the appropriaote opprqximction
function for the synchronous algorithm. The éecond éubscript is ¢t
because; as in the synchronous case, that is the moximum number
of values a correct process can receive in a round that are not
values of correct processes. The first subscript is 2t becasiue
if the correct. processes p and q receive multisets V and Wy
respectively, in a round then 2t is the maximum number of values
that can be in V-W(t faulty values, plus t nonfaulty values

received by p but not by q).

~The only remaining problem is termination. We cannot use the same
technique that we used in the synchronous algorithm, because o
process cannot wait until it hears from all other processes, and
thus 1t cannot obtain aon estimote of the range of the initial

values of the nonfaulty processes. We solve this problem bv
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adding an initializdation round at the begining of the algorithm.
In this initicliiation round( round ), each nonfaulty process p

performs the following steps:

Jnitiqalizotion Round for Asvachrnous Approximation Algorithm A

1) Process p labels its intial value with the round number 0 ond
then broadcasts this ‘lobeled value to all processes,
including itself.

2) Process p wWaits to receive exactly n - t round (0 values and

Collects these values into g multiset Vp.

2t
3) Process p chooses an arbitary element of A(reduce (Vp)) (say

2t
mean(reduce (Vp))) as its initial value for use in round 1.

Let xp be this chosen value.

Suppose that p and g are arbitary nonfaulty processes. Then,
.since | Ve | > 4t and | VP = Vg | <= 2t, it follows that Vp and
Vq satisfy the hypotheses for the multisets V and U, respectively,
in Leema 5.3 ( with J = 2t ). An application of this result shows
that, for ony nonfaulty processes P and g it is the case thot xp
belongs to AC Vg ). That is, the value xp computed by process p
as  the result of the initialization round is contained in the
range of all volues received by process q in the initialization
round. Since each nohfculty process q knows

(1) that 1its range A(VQ) contains all the round 1 values xp for

nonFaulty processes ps
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(2) the value of (-, and
(3) the guaranteed rate of convergence, it can compute, before

the neginilng of round 1, and round number at which -it ig

sure that the values of any two nonfaulty process will be at

most (- part.

The total number of rounds that must be executed by a processy

not including the initilization round,s is F_ log ¢ ACv) / C= ~1
: C

where V is the multiset received in the initialization round and

»

c=(n=-3t, 2t ).

As in the sunchronous cases different process will calculate
different round numbers at which they wWwould like to halt. The
same modificationy of sending a value out With a special halting

tagy wWOrks here as well. We obtain lemma 5.9 which is analogous

to Leema 5.7.
~ ASYNCHRONOUS APPROXIMATION ALGORITHM A
Round 1 (First Approximation Round):
Input vjs
Y (=== SynchExchangé(V);.

V === ftyt(V)s

H <=== [109 ( &(V) / €= > 1, where c = c(n—-2t,t)
c -
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ound h (2 <= h <= H ) (Approximation Rounds):
\ <F-- SynchExchange(v);

vV (=== ft,y,t(V).

ound H + 1 (Termination Round):
| Broadcast(<vshalted> )}

Qutput v.

End of Main Algorithm }

Subroutine SynchExchonge(V):
Broadcast(v);
Collect n responses;
Fill in values for halted processes.
Fill in default values, if necessary.
Return the muitiset of responses.

{ End of subroutine }
End of Algorithm S 3

\lgorithm A 1is summorized above. The remainder of the proof

Theorem 5.2 is analogous to that of Theorem 5.1.
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SECTION 4.5.4 : RESILENCE

-

The algorithms presented 1in this aobove have some intersting

resilence properties, stronger than those usually claimed for

-

Byzantine agreement algorithms. So far, we have only claimed that

the algorithms are resilent to t different processes exhibiting

Byzantine faults during the eintre course of the algorithme.

Howevers we can claim more for situations where processes fail

and recover repeatedly. Qur algorithms octuaily support resilence
to any t Byzantine faulty processes at a time (under suitable
definitions of faultiness at a particular time); the total number

Oof faulty processes can be much greater that ts since wWe con

allow different processes to be fculty ot different times.

We do not 9ive a formal presentation of ?our resilence

properties. Rather, we just give a brief sketch of the main ideas.

Firstsy consider the sunchrnous case. A faulty process is able to

recover ecSily and reintegrate itself into the algorithm. [t can

reenter the algorithm at ony round, Jjust by sending an arbitary

valuey collecting values oand averaging them as USUOI to get ¢

neWw value. The process also needs to obtain an estimate of the

number of rounds required before terminotion. ]t can obtain such

an estimate in the reenty round, just as it could in the first

round.
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asynchronous case is a little more complicated. A faulty
:ess P needs to rejoin the algorithm at some particular
'mchronous) round; howBvers it must be coreful to rejoin ot
} round thot is not “out of dat@". That is, in the absence of
.tional failures of py it must be guaranteed to receive all of

messges for that and subseguent rounds. Process p could not
>ly  wait until it received n-t.messoges for some particular
'd ky since those messages might have been delivered very late
- messages ffor round k+1 might hove already been lost.
avery it suffices for p to send out a "recovery" message, dnd
it oacknowledgements form n - t processes carrying the number
their curreht round. Process p knows that the t + 1 st
llest of these round numbers plus 1, is an allowable round

ser for it to use for reentry.

recovering process 1is not able to use the samé method of
imating o termination round as it did initial. Therefore, it
ns$ necessary to modify the asynchronous algorithm to enable
overing processes to obtain termination estimates when needed.
easy modificotion that works 1is to have every process
gyback its estimate of the number of rounds to termination on
ry message it sends. Then a recovering process can obtain a

estimate Just by taking the t+1st smallest of the estimates

receives at the reentry round.
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MODULE SIX

In this module we consider protocols for both synchronous and

osynchronoﬂg models. All the results are based on distributively

flipping a coiny which is usable by a significaont majority of the

Ry

Processors.

Thus the algorithms presented in this module .are based on

producing a coin flip that is essentially global. ( A global coin

flip has a random outcome that is viewed identically by every

processor.) We relax the condition that each process's view of

the coin must always be identiccl, and in focts the coin may even

be comewhat biased.

For this modules We deFine the consensus problem as follows @
processor i has a private binary value vij at the termination of

the protocol all processzors hiave gacesd on g common vialue vy oir

tod§ Wl opuprie equue] Imitied fwy tEne Fimepd Vepduse cparmed amon is Dhis

common vdlue.

We shall :initially consider the following synchronous model. We
are given a system of n prbcessors that can communicate through a
completely connected network. The processors dact synchronouslys
. where at each step each processor can  broadcast a message,

recieve all incoming messqagess and perform some private

computotion (possibly involving coin tossing). [n the absence of
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failure, any message sent ot time i will be recieved ot time i+1.
As a result, we view the computation as occuring in roundss; each
consisting of transmissions reception, oand privdte computoation

phases.

Againy n will be used to denote the number of processors, and t
will denote an upper bound on the number of- fallures tolerated.
Next protocols for cchievingvconsensus in completely connected
networks despite omission faults of various types, is presented,
which con tolerate up to a constant fraction of the processors
failing: that 1is, for each protocol and fault type there is o
constant $ < 1/2s independent of the value of ns such thct‘the
protocol caon tolerate as many ‘as t=#n oﬁission faults of the

given type.

Refer to the defination of weakly global cdin, given in chapter
2. The intution behind this definition is that if | n/2 _1 +t+1
processors see the same outcome,then a majority of the processors
¢ L n/s2 1 + 1 ) will use this value in the consensus protocol,
ond reach consensus in a few more rounds. The essence of weakly
global coin procedure is to rcndoml? select a ﬁemporary leader,
and then to use the leader's locol coin flip for the given round.
After showing how such a coin can be produced in a variety of

omission faults models, we then indicate how to use it to achieve

consensus.
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The design strategy of‘the protocols in [6_0] reflects a heuristic
rule prevalent in distributed protocol design: It should be
possible for simpiler alogrithms to defeat wecker adversaries. In
the search for provably good alogrithms that oare useful in
proctise, this rule suggests that some complex protocols have
simple counterparts in more realistic foult models. In the case
studied here  the alogrithm against the adaptive adversary is
transparent in comparison to the protocol for the Byzantine caose

that results from the combined work in [6_3] and [&.51].

In section 4.6.1y we consider the various failure modelss for
the synchronous case.

[

In séction 4.6.2 and 4.6.3y we consider the tw adoptive adversary

models.

In section 4.6.4, the asynchronous case is considered and finally

in section 4.6.5 we consider algorithm for achieving consensus

using o weakly global coin.
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SECTION 4.6.1 : FAILURE MODELS

Correctness proofs for fault - tolerent alogrithms have a game=.

theoretic character. That is, the alogrithms behave oppropriotely;'

even when the faults ore being coused by

<

an  intelligent

adversary. The capabilities attributed to this adversary have a.

profound effect on the desién of alogrithms meant to defeat it.

Indeedy,.  there are ccseé in which no alogrithm is caopable of

defeating sufficiently powerful adversaries [6_14s 6.20].

In Byzantine fault modelss the adversary can control the

pehaviour of some processorss causing them to send arbitrary

meésages whenever it 1likes. Such an aqdversary is extremely

powert+ul,y ond defeating it seems to require complex and expensive

aloorithms. [f one is modelling phisical failures ( as opposed to

intentional attacks )s such on adversary may be unrealistically

powertul.

Consider the following example. On october 27y 1980s the ARPANET

suffered a catastrophic failure as the result of hardware

failures 1in two processors. TWO spurious messages were generoted
thot brought down the whole network for a period of several hours.
Clearly, the network protocolswere not capable of surviving even
a small »number of Byzcnﬁine faults. [Instead of changing the
Protocols, hardware error-detection was added in the next

generdtion N Processors, redUcing the likelyhood of repetition of
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this Byzantine foilure to an extremely small probability [6.231.
Rather  than implementing protocols to defeat a Byzantine

adversarys -the network designers effectively choose to weaken

the adversary.

The new ARPANET implementation might be best described by an
omission fault model. 1in which processors never send spurious
messagesy but some messages s may tail to arrive at their
destination. The adversary 1is thus limited to specifying which
messages Will be delivered to their destinations and which wWill
not. The failure models we consider here are variants of fallure

by omission.

~

For deterministic protocols, an adversary, causing failures to
produce the wWorst possible performances can determine the outcome
of a strategy in advance. With randomizations this is no longer
possibley so that it may be advantageous for the adversary to
decide 1its strategy adaptively, as random bits are generated and
used. Therefore, in modeling the power of the adversary, it is
crucial to specify the extent to which the adversary is adaptive,
and the information it has available to determine 1its strategy.
We consider three limitations on the adoptiveness of the
adversary. Each of these is concerned solely wWith the
communication system that connects the processors; oand thus
assumes that the processors are themselves non faulty. waever;-
as  we eloborote below, the situation in which processors are
allowed to fail in a "fail-stop”™ manner is a special case of one

of models coﬁsidered in [6_01.
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MODFIS & | imitotions on the adaptives of the gdversary
Static Faults:

Throughout the 1ife of a system, messages sent by at most t
processors fail to reoch their destinotisn on time ( Nithin the
round they are sent ); Most previous work on omission Foult modeli
has focused on this. type of fault. In the traditional fail-stop
model,' processors foil by thalting premoturely, but thé
communicotion network always delivers all messoges thot have been
sent. Within this model,; definition of the consensus problém is
flowedy since we require that all processors agree on a
valuey ohd it 1is hope less to require a faulty processor to do
anyfhing. CIf we relax this requirement to all nonfaulty
pProcessors,it is not hard to see that static communication faults

include the cose of fail-stop'processor.Faults.

Nynamic-Rroadeasts:

During each round, messages sent by at most t processors fail to
reach their destination ( but this may hcppén to.a different set.
of t processors each round Je A processor that sends a messdge
that does not reach its destination is said to be erratic. Thése

models are more general than stotic foult models. They are

similor to models studied in [6.21].
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Dvnamic-Reception:

Each processor receives  dall but at most t messages sent'to it
during every round ( so that, if all processors are supposed to
broadcast every rounds each processor receives at least n - t

messages ). However any two processors may fail to hear from a

P S ) iy e

, .
different set of t others. These models are more general than
_dynamic-broadcast models, and ‘are similar to the models We use

for the asynchronous case.

We present alogrithms for dynamic-broadcast and dynamic-reception
models. Because these models are more general thaon the fail-stop
or static models, these alogrithms will work in- these coses as

well. , o R T

In addition to the limitations on the adaptives of the adversary
mentioned above; we consider two different limitotions on the

knowledge available to the adversary in determining its strategy.
MODF1 Sslimitotions on the knowledae gvailagble to the adversary
Messaqe-(lbliviouss:

The oadversary's choice of failure; that is, which messdgés will
not be delivereds, is independent of the Contents of the messoggsi
Howevers this choice caon depend, for exomp}e, on the pattern of
communication or on the length of messages.Before giving a more

precise definition, we first introduce a formal description of a

synchronous execution of a protocol in this model.
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At round k + 1 of a protocol, the prior k rounds of execution
con be described in the following way. Consider a layered,
directed groph consisting of k + 1 vertices for each processor Py
( Py i1 )y i =1y avey K + 15 Where there is an edge from ( ps i )
to ( q; i+ 1 5 whenever p sends a message to g at round i. A
subgraph of this graph represents the messages actuolly delivered.
These grophs will be Kknown ‘os the transmission ond reception
graphs, and together Will be reffered to as the communication
pattern. To complete the description of the prior executions we
odd labels to the edges of the distribution groph,where the labels
correspond to the contents of the messages. We define the ith
layer of these graphs to be the subgraphs induced on the vertices

Wwith second coordinate i and i + 1.

Eoch processor p's view of the communication pattern consists of
the subgraphs of nodes labelled by p , together With the labeled
out;edges of those nodes in the transmission graph (the mesécges
P sent), and the in-edges in the reception graph (the messages p
received). A  protocol for b determines a distribution of o new
local stote, out-edges and labels for node (py k + 1.)’ as a
function on of p's local state and p's view of the first k layers
of the communication pattern, together with p's input value. An
adversary determines a distribution of in-edges for the k + 1st

layer of the reception graph as a function of the n processor
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protocols and input valuesy the first k layers of the
communication pattern, and the k + 1st layer of the transmission
oraph. An cdverscryvis message-oblivious if for any given input
vector to the processors, any communication pottern up to round ki
and any kth layer of the .transmission graphythe probability
disfribution of the kth 1layer of the reception graph .is'
independent of the labels of the communication pattern through

the first k layers ( inclusive ).

In [6.6]y o weaker probabilistic adversary was considered,
called a fair scheduler. At round i, o fair scheduler delivers to
processor p a random subset n-t mésscges out of all messages sent
to processor at this round. Furthermmore, set of messages sent
to different processors are vmutually independent. Braocha ond
Toueg have demonstrated a constant fraction of failures for

executions under faoir schedulers.

Message-Nependent:

This model places fewer restrictions on the adversary's

Knowledge of communication in the network.

The oadversary is limited to polynomial resources (time and sPGCe

Js but its choice of failures may depend on the contents of the

messages.
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Néte that these de?iﬁitions gssume that the adversary has tull
knowledge of the hardware and software running at each processor
and of the communication over the. network ( subject to the
limitations above ) but does not know the local state of

.-

individual processors guring execution ( which may depend on the
outcome of local coin tosses not 0p§erved by the adversary ). For
example, it Will be important that discription keys are stored in
local memory and are local part port of the local state. We

assume that the initial values con be seen by the adversary. For
each combination of adoptiveness and knowledge constraints, we

present an dalogrithm t_Q achieve consensus in constant expected

time.

SECTION 4.6.2 : THE MESSAGE-OBLIVIOUS CASE

In this section we shoﬁ how to toss a weakly 9lobal coin in
message—-oblivious modelsé For the dynamic-broadcaost  failure
model,the coin wWill the the property that for each outcome
( heads or tails ), there is some constant probability of thot
outcome being received by every processor. For the dynamic-
reception failure model, ;here is some constant probability that

for each - outcome, at 1eost L n/2 _1 + £t + 1 processors will

receive that outcome, provided t is bounded away from n/4.



The algorithms 1is perhaps the most natural one. A leader
randomly volunteersy oand this leader tosses a coin. More
precisely, consider the following alogrithms:the procedure LEADER
produces a local biased bit where the probabilty of a1 ( ™I
volunteer"” ) is equal to 1/n; the procedure RANDOM BIT produces a

local unbiased bit.

‘Code for processor P:

1. function COIN_TOSS-1 @

2. 1p <= LEADER

3. Cp <- RANDOME BIT

4. broadcast (Cpslp)

5. recelve all (Cy 1) messages

6. if all messages received With 1=1 have the same C

T. then COIN_TOSS_1 <= C of these messages

8. else COIN_TOSS_1 <= local coin toss

Refer to Theorem 6.1 .

The_protocol con also be viewed in the following way. The tossing
of the 1/n bilased coin is an aopproaoch to obtain a distribution
where the maximum of n trials is likely io be unique.>1n this
contextsy the leader is the processor r who tossed the unique
maximum. All processors receive the other processor's values,
determine the maximum and hence the leader, and choose the
unbiased bit of this processor. By choosing other distributions

it 1is easy to see that the probability of o unique leader can be
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pushed crbitrarily‘close to 1. In implementing the protocols this

means that it is possible to trade off additional bits transmitted
| in order to reduce the expecéed number of rounds to reach
consensus. For exampley, if the leader identification éonsists of
3 log n unbiased bits binstead of a single bit 1, there is a very
high probabilty, >= 1-1 / 2n, that the maximum of n bit-sequences

Will be unigque.
Refer to Theorem 6.2 .

By modifying the protocoly it 1is possible to significontly
strengthen the number of faults tolerated in the dynamic-reception
fault model.: BeFoﬁe giving this new protocol, we first describe
a basic building block that will be wuseful in several

constructions.

SIMU ATING DYNAMIC-BROADCASTS WITHIN A DYNAMIC-RFCFPTION MODF]

We shall show that three rounds of broadcasting within the
synchronous dynamic-broadcast while maintaining the property of
message-obliviousness. The simulation consists of one round ‘in
which each processor broadcasts the original desired message for
dynomic-broadcast (To simplify the discussion, we asume every
processor has such a'message to send.)In the following two

roundss every processor sends his message plus his view of every

Other processor's message.
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We begin by showing that after executing this protocols there is
o set of at least n - t processors whose message has been relayed
to all n processors, assuming that t < n/2. This is done by a
simple counting argument. Consider the second round of the
simulation. We show now that there must be at least one processor
b ‘Whose second round messages fecch t+1 processors, [f all
processors reach no more than t, then m. the total number of
messdages succeséfully y transmitted in the second rounds is at
most M <= nt. But each processor receives at least n - t, so that
nC n = t )<=M.Thus we get n( n - t ) <= nt, contracting the
assumption that t < n/2. Every processor receives at least n - t
messages in each round, so thaot processor p must have attempted
to relay at least this many messages to each processor in round
two. Since therevare t +1 processors that have been reloyed these
messages at the end of round two ( from p )y every processor wWill
be relayed these messages from one of the t+1 processors by the

end of round three.

This proves that this three round dynamic=reception simulation
gives us the structure of one round of dynamic= broadcast. [t is
not hard to see that one fewer round of echoing is not suFFiCient

to guaronteé the structure of a dynamic—-broadcast round.
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We now show that message-obliviousness is preserved by this
simulation. First notice that the pattern of sending oand
receiving messages in the simulation itself does not depend on
message contents. From the definition of o message oblivious
adversary, the ith layer of the reception graph is independent of
the labeling of the transmission groph given the pattern of
communication up to this point. The analogous statement holds for
the 1{i+1st layer, 9aiven the layer and the previous pattern of
communication. From the definition of conditional probabiiity, we
get that the probability of any commuﬁicction for both the ith
and i+1st layers is independent of the previous laobelings of the
pattern of communication. In this protocol, this implies that the
set of ot least n—-t processors that reach at least t+1 processors
two rounds later, is independent of the contents of the messages
sent. (Once this set reaches t+1 processors the adversary cannot
stop the set of messages from reaching all n processors in the
next round. Since the set is independent of the contents of the
‘messages sent,}the pattern of the successful transmissions in the
contents of the messages sent,the pattern of the contents of the

messaoges. Thus wWe have shown that message-obliviousness is

preserved.

The above two-round echoing scheme is a general tool. ArPlying

it for the case of producing a weakly global coiny, we get the

following modified procedure.
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Code for processor P with two-round echoing:

1. function COIN_TOSS_23

2. lp <~ LEADER

3. Cp <- RANDOME BIT

4. broadcast (Cpy 1pP)

5. receive all (Cy 1) messages

6. broadcast (Cps 1p) and all (C1s 11) pairs received
7. receive all compound (C1s 11)....3 (CNy 1n) messages
8. broadcast (Cps 1p) and all (C1s 11) palrs received
9. receive all compound (C15 11)....5 (CNs 1n) messages
10. if all messaoges received Wwith 1=1 have the same (C
11. then COIN_TOSS_2 <- C of these messages

12. else COIN_TOSS_2 <= local coin toss

Although the echoing 1in this protocol requires a factor of n
more bits © be'tronsmitted, it can tolerote up to t = r_n/2_] -1
failures ond the fraction of processors whose messages reach

every one is at least ( n - t ) /n
Summary of above result is given in form of Theorem 6.3.

It is critical to the correctness of this protocol that the
advérsory's‘ choice of messages delivered each round be
independent of the contents of the messages. o stronger adaptive
.odvérsary might simply check each message as it is sent 3if the
processor is d potential leader (its message is (by1))s then the

adversary blocks the message. This stronger adversary can dalso
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be defeated, as long as the contents of the "messages dare

intelligible to him. In this case, any attempt at blocking the

leader's message is still an essentially random actsbecouse thg

adversary cannot understand the messages. This suggests that
encrybtion would be useful tool in designing a protocol thaot con
'defeot a more powerful adversary.
SECTION 4.6.3 : THE MESSAGE-DEPBNDBN’I‘ CASE
used

In this section we show how cryptographic techniques can be
to toss 4o weakly global coin in the presence of an odaptive
adversary vusing a méssage-dependent strategy. We prove that if
fhe adversary can block the weakly global coin, then it can bredk
cryptosystem. Therefore, if we assume that the cryptosystem

the

is securey and that the adversary ris limited to polynomial

computing resourcess then it connot prevent consensus within

constant expected time.

Let E be a probabilistic encryption scheme that hides one bit

We breifly describe the properties that E should possess.

[6_151].
Given o natural number hy, the seCurity pcrometer, E maps the 1
v : h
at raondom into o string o in o set 0 subset of { 0s 1 } ond maps
: h

the bit 0 ot random into a string z in a set Z subset of {0s 1} .

Given a random string r an element of 0 U Z, we assume that no

polynomial time aloorithm ( thot 1is, polynomial in h ) can

4-73



distinguish the <case r belongs to 0 from r belongs to 7 with
success probability grecter than ( 1 /2 )+ C1/ nc) for any
constant ¢ > 0. On the other hand, there is a polynomial-time
algorithm thatsgiven additional secret informotion, distinguishes
between the two cases kith probability 1. The scheme E can be
based on any traopdoor function [6_233; In particular, the familar
RSA cryptosystem can be used, with o encrypted by E(x), where x
is chosen ot random among all numbers in Zn with least significant
bit 1 [6_1]. ( For exampley,ne assume that RSA 1is hard to invert )

It is important to reiterate that the main theorem of this

section is baosed on the following hypothesis:

(%) The encryption function E caonnot be inverted in rondom

polynomial time wWithout the secret trapdoor information.

We first moke the assumption thaot all processors use the same
public key E whose decryption key that all hold ( but to which
the adversary has no access)At the end of this section we ihdiccte

how this assumption can be removeds, at some expense in the number

of faults tolerated.

The only modification to the alogrithm of the previous section

1s to replace the broadcasting of (Csyl) (line 4 of the COIN_TOSSL

function) by the broadcasting of ( E(C)sy EC1) ).
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The modified code is given below:
~Code for processor P:

1. function COIN_TOSS_3 :

2. lp <= LEADE

3. Cp <~ RANDOM BIT

4. broadcast ( E(CP)y EC(1P) )

5 feceive and decrypt all (Cs 1) messages

B if all messoges received with 1s1 have the same (C
T. then COIN_TOSS.3 <~ C of these messages

8. else COIN_TOSS_3 <= local coin toss

Theorem 6.4 proves that the new protocol is as hard to break as
the cryptosystem it uses. This Theorem is based on the assumption
that the processors have already agreed on a common public key
E« This represents an additional assumption about the initial
state of the system. At the cost of a more.complex protocol, this

gsssumption can be avoided.

WEAKIY GIOBAI COINS WITHOUT COMMON PURBRL IC KFYS

The problem of key distribution con be solved by having each
processor p. broadcast.its own ( individually generated ) public
key EpP. This is necessaory so that other processors can send

encrypted messages to p. Provided t < n/2 the algorithms below

Will flip a weokly global coin.
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In the dynamic broadcast model, processors spend an extra initiol
round broadcasting their public keys. This is done with every
toss execution. This guarantees that there are n = t processors
whose publlic keys are knwn to everyone. During the flirst round of
coin toss broadcast, each propcessor encrypts messoges with the
public key of the receipent, or sens nothing if the recipients
Public key is not knwn. [n a second round of broadcast, all first

round messages are broadvast in the clear (unencrypted).

The code follows:
Code for processor P:
v1. function COIN_TOSS._4: _
2. generate ond broadcast encryption key EpP.
3. receive all Eq messages
4. 1lp <== LEADER
5. CP <== RANDOM BIT
6. for each Eq received.in step 3 send ( EQ(Cp)s EQ(lp) )
7. receive and decrypts all (Cy 1) messagess
8. broadcast all (Cy 1) messages
10. if all messages received with 1=1 have the same
11. then COIN_TOSS_4 <-=- C of these messages
12. else COIN_TOSS.4 <-- local coin toss

As before, consider the case that thére is a unique leader
chosen during the first round of the coin toss. Since the first

round messages are encrypted, on argument exoctly analogous to
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thot' for Theorem 6.4 establishes that the leodearfs messges Will
be received in step 7 by at least n-t recipients with probability
‘attest 1/2. Since n = t > t, one of these recipients will forward
the leader's messogesvto everyone during the fingl clear round,
steps 8 and 9. Thus COIN_TO0SS_4 produces o weokly globci coin in

the dynamic broadcast model for t < n/2.

In the dynamic reception case, processors run the dynamic
broadcast algorilthm under the simulation from Section 4.6.2s
running three rounds of»broadcasfing ond forwarding to implement
one round of the dynamic broadcast algorlithm. this opplies to
steps 2-35 6-7 and 8-9 in the code. (One additional change must be
made to the dynamic broadcst algorilthm - the simulation asssumes
that the some message is brodcast each round. Thus, the vector of

encrypted values must be broaodcast in step 63

6'. broadcast < ( E1(CP)y E1CIP) ) ewee ¢ ENCCP)s EPCIP)) >3

where ( Ei(Cp)s E1C1P) ) = "?" if Ei not received.

By 1invoking the same counting arugment as before there must be
at least n-t processors whose encryption keys are transmitted to
everyone and these n-t processors will all in turn receive the
encrypted messages of at lest n-t processors. Again an argument
analogous to the proof of Theorem 4 shows that when there is a
single leader, there is a constant probability that will be one
of the latter n-t processors. since n-t>t, the leader's message
Will then be successfully forwarded to all the processors in t he

ensuing clear rounds. This is summarized as Theorem 6.5
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SECTION 4.6.4 : THE ASYNCHRONOUS CASE

In the section we abandon the assumption that processor run  in

synchronous rounds. Processors may run arbitrorily fast or slows
and messdages may arrive out of ordery or take arbitrarily long to
arrive even in the absence of failures. We make the following

assumption about the nature of failures in the asynchronous

model.

Refer to the defination of asynchronous failure. The definition
implies that if m messages are sent by distinct processors to the

same processorps then p eyentuclly receives ot least m-t of those

messdages.

We consider ﬁwok fcilure? models for the asynchronous case, the
asynchronous message—obliv%ous and asynchronous message-dependent
model. These both agassume the asynchronous failure assumption,
addings respectively, thegmessogé oblivous and message-dependent
limitotions from the syhchronous case. In these models, the
adversary -has full control of the order and timming of arriving
messages dnd of the rates of internal clociks, and is therfore
more powerful than in the synchronous case. the adversary is
limited in only two ways. The constaints of the faulure assumption
require it to eventually delilver enough messages and the
message oblivious and message depend limitations restrict the

informgtion it may use determine its strdtegy.
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Messqgqe-Nbljvious:

The adversary's order of events ( ands in the particulor, choice .
of delayed ond underlivered messages ) is independent of the

'conﬁents of the messges. Before giving a more precise definition,

we first introduce .a formal description of "an asynchronous
execution of a protocol. This definition is taken from Fischer et
al. t6_14]. An  execution 1is a sequence of events that can be
applied, in that order starting from the initial configuration of
the system. An even( my, p ) is the receipt of o message m that is

either the empty meésage or is from processor p's message.buffer‘
(that 1is, d message thdt woé previously sent to p ond not

‘received vyet). As in the synchronous case, edch processor's

protocols determine, upon the receipt of o message, a distribution
of actions(the new local staté and up to n message sent). These

message are then placed in the addressees'’ messoge.buffers. The

adversary determiness as a function of the protocols, the input

vector and the asyncrhous execution, ovdistribution\over the set

of possible next events. An adversary is message-oblivious if for

any given set QF protocols{including the input vector to the

processors) and any past execution(specified by events (EV1s EV2,

is independent of the messoge ‘contents of nonempty messages of

the first k events.
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Message-lependents

The oadversary s limited to polynomial resources ( time and
space, but its choice of foilures may depend on the contents of
the messages. In general defining the notion of time for an
asynchronous system is not o simple matter (see [6_2] and t6_13]).
However the protocols we are using are of a restricted type, in
which time 1is naturally defined. These protocols all consist of
alternating broadcast and reception phases. In the broodcast
phose a processor sends o message to all n processors. In the
reception phases the processorv waits to receive messages from
exactly n - t processors. This is followed by a local computation
the next broadcast phases and so on. We assume that processors
‘begin eoch consensus protocol with the some.volue in their local
round counter. In these algorithms, processor append the current
value of the round counter to each message. Each processor counts
locdi rounds, consisting of o broadcasting phase and a reception
phase. During the reception phase, the processor walts for
exactly n-t messages wWith the current round number(some of which
may already be received and stored locally ). For simplicity we
assume that extra messages with o given round number are discarded.
In general, .no processor should wait for more than n - t messages
from a given round,since Foilﬁres may prevent more than this many
messcges from ever arriving. The definition of local time
guarantees that no processor is more than one round a haead of
the majorilty of other processors(recall that t<n/2). Of course,

the slowest processors could lag far behind.
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In spite of the adversdary's increased power in the asynchronous
casey; a two round echoing voriunt of the syncrhonous algorithm
Wwill still gurantee that agreemehnt 1is reached in constant
expected time, provided t < ( ( 3 = /5 ) 7/ 2n is approximately

equal to 0.38n.

Before we give the proof let us first remark on the difficulties
arising in the asynchronous Vversus the synchronous case. One
might be tempted to argue thot exactly the same proofs Work,
since "once the coin tosses are hidden ( by assumption or by
encryption ), the adversary cannot know which messages to block
and so everything works just as it did in the syncronous case.”
This naive argument is incorrect because an adversary cans 1in
general infer information about messages from the way that
processors who receive these messages react to them. [f the
reaction of each processor to n-t coin-toss messages is sufficent
to infer that a single processor volunteered the adversary can
successively deliver different subsets of messags to different
processorsy . implementing a simple elimination procedure to
determine the indentity of the leader. The leader's messages can
then be held back from the remaining processors until they have
finished the coin toss, renderint the leader useless. ( Notice
that the adversary could not perform such elimation in the
synchronous cases where trhe reponse of processors -is not

observeable until after the end of the rounds, by which time every
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proéessor already received its infomino messages for the current
round ). To exémplify these notions suppose we deol'with a
different protocol 1in which a processor thot received n - t
messages wWith round number i1, among which o unique message is a
leader's messagey sends its next message to that leader only (
and broodcasts to‘oll N pProcessors otherwise), In such case the
“identity of the 1ith round 1leader can be inferred from the
( unlaobled) communication pattern alone. Thus a message obliVious

adversary can block the leaders messages to all other processor.

It is possible to hide thelidentity of the leader within the
consensus clgoritﬁm, by making the communication pattern identity
of the leader. However consensus protocols are meant as general
purpose tools and it 1is not possible to anticipate faplly the
context in which they may be run. Thus once any processor leaves
the coin toss or agreement protocol it may behOVe.in an arbitrary
way, releasing arbiltraty 1nfbrmotion to the adversary ( such as
Publishing cryptographic keys). These protocols must ensure that
information lecked by the faster processor will not Jjeopardize
correctness by allowing the adversary undue influence over the
-slower proCessors. The asunchronous protocols below use the

imposed round structure and explicit synchronization rounds to

satisfy these requirements.
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Specifically 1in the cast that there 1is a single leader the
identity of the leader is hidden at least until the fastest
processor completes the execution of the procotol. [f the leader
is persuasice the coin has the additional property that the
majority value ofv the coin (i.e. the unique vaolue assumed by
Ln/2_1 +1 processors) has been determined by this point. This is
an important property for asynchrnous coin tosses to havey in

particular for this application.

"Becouse of the round structure we impose the leaders messoges
are only effective {f they are among the first n-t messages for
thot‘ round to arrive at L_n/2 1 + t + 1 other processdrs.
For the asynchronous case this will be the definition of a
persuasive processor for a given round. rThése algorithms work by
guaranteeing a positive constant probability that o single
volunteer will be persuasive. Without making it explicit in the
code, wWe implicitly cssume.thot a round counter is locally
mcintainéd and incremented by each processor. When we say that a
_pProcessor receives n = t messages we mean that it reads messages

from its buffer until receiving n = t messsages with its current

round number.

The code for the asynchronous, message oblivious model is as

follows:
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Code for processor P:

1. function ASYNCHRONUUS_COIN_TOSS_1ﬁ

2. 1p <-=- LEADER

3. Cp <-- RANDOM BIT

4. broadcast (Cps 1pP)

S. receive the first n-t(Cs 1) messages with current round number

6. broadcast the vector <(C1311)ees(CNyln)> where (Cylid="2" if
not received

T« receive n-t vectors <(C1,1t);...(Cn,1n)> with current round
number

8. receive n-t vectors <(C1y 11)s«s+(CNy 1INn)> where (C1511i) With
current round number

9. receive n-t vectors <(C1s 11)s5...(Cns 1INn)> With current round
number

10. if all- the messages received with 1=1 have the same C
11. then COIN_TOSS_1 <== C of these messages

12. else COIN_TOSS .1 <== local coin toss

We coll step 4 the coin distribution phase, step 6 the first
echoing phoses and step 8 the second echoing phase.
Refer to Theorem 6.6, wWhich proves the main result.
To defeat a message dependent adversary in the osynchrnoué case,

we make the same alteration as in the synchrnous case, encrypting

the random bits.
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Code for processor P:

1.
2.
3.
4.
5.

49.

function ASYNCHRONGUS_COIN_TOSS 2:
1p <-- LEADER |
Ci <-- RANDOM BIT

broadcast _( E(CP)s ECIP) )

receive the first n-t(E(C)s E(1)) messages With current round
number -

broadcast the vector <E(C1511)eeae(ECN3y1Nn)> wWhere (Lyli)=">"
if not received

receive n-t vectors <E(C1,1t),...E(Cn,1n5> Wwith current round
number _ '

receive n-t-vectors <E(C1s; 11)s...E(Cns 1n)> where (C151i) with
current round number '

receive n-t vectors <E(C1s 11)s...E(CNy 1n)> with current round
number: '

10. if all the messages received with 1 = 1 have the same C

11. then COIN_TOSS_2 <—— C of these messages
12; else COIN_TOSS.2 <== local coin toss

‘Refer to theorem'6.7. and 6.8 .

___SECTION 4.6.5 : USING A WEAKLY GLOBAL COIN

In this section we present an agreement algorithm that can be

implemented using a weakly global coin. For simplicity - of

presentation the algorithm given here 1is binary (reaching.

agreement on one bit), and is basically a modificdtion.of those

in [6.4] aond [6_61-
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We begin with on informal description of the algorithm. The
algorithm is organized as a series of epochs of message exchange.
Each epoch consists of several rounds. The round structure is
provided agutomatically in the synchronous model. In * the
osychronous modelss the round structure is imposed locally by
each processor, ds wWas discussed earlier. In this case,reaching
consensus in "constaont expected time" means that each processor

Will complete the protocol within a constant expected number of

local rounds.

Ne describe the algorithm for the processor P. ( All processors
run the same .code). Epoch and round numbers are always the first
two components of each message. The varioble CURRENT holds the
value that processor p currently favors as the answer of the
agreement algorithm. At the start of the algorithm CURRENT is set
to processor P's input vaolue. In the first round of each
eboch, processor P broadcasts CURRENT. Based on the round_1
messages recieveds proceésor P changes CURRENT. If it sees at
least [_n/2._] +1 round=1 messages for some particular value, then
it assign that value to CURRENT; otherwises it assigns the
distinguished value "?" to CURRENT. In the second round of each
epoch, processor P broadcasts the new CURRENT. This is followed
by a synchronization round, in which all processors broadcost
waiting messages,then‘wait until n-t such messages are recieved.

the guarantees that at least n-t processors have finished the
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previous round before the fostest processor leaves this Tround.
Next, the COIN TOSS subroutine is run ; (0 coufse,‘ in an
asynchronous model this statement is a bit imprecise, since the
subroutine is first initioted at the point that the fastest
'processor reaches the subroutine call.) Based on the round-2
messages receivedsprocessor P either changes CURRENT again, or
decideé on an answer and exits the algorithm ot the end of next
the epoch. Let ANS be the most frequent value (other than "?") in
_round¥2 messuges recieved by P. Let NUM be the number of such
messages. There are three cases depending on the value of NUM. If
NUM >= L n/2 _1 NUM >= 1, then processor P assigns the value ANS
to the variaoble CURRENT and continues the algorithm. If NUM = 0,
then processor P o0ssigns the result of the coin toss to the
variaoble CURRENT and continues the algorithm. |

Code for processor P:

1. pProcedure AGREEMENTCINPUT):

2. CURRENT <= INPUT

3. TERM.NEXT <- "OFF"

4. for e <= 1 to INFINITY do

5. broadcast(es 15 CURRENT)

6. receive (e, 1, *) messages

7. if for some v there are >= | n/2 _| + T messages(eylsv)

8. then CURRENT <= v |

9. else CURRENT <- "7?"

10. broadcast(e, 2, CURRENTB

4=87



11. receive(e,; 2y %) messages

12. If there exists v not equal to "?" such that
(ey 2y V) WOS recieved

13. then ANS <= the value v not equal to "7?" such that
(ey, 25 V) messages are most frequent

14. else'ANS ie undefined

15. NUM <- number of occdrences of (e 2y ANS) messages
16. broadcast(es 3, "wafting")

17. receive (ey 35 "wWaoiting") messages

18. COIN <= COIN_TOSS

19. if TERM.NEXT = "ON" then terminate

" 20. if NUM >= I_ n/2 _I + 1 then decides ANS. set CURRENT <- ANS
and TERM.NEXT <= "ON"
21. else if NUM >= 1
22. then CURRENT <= ANS
23. else CURRENT <= COIN

We make several remorks about the algorithm. COIN TOSS,
depending on the fault model,s is one of the protocols described
earlier for producing a weakly g9lobal coin. [n message
descriptions, "*" is o wild-card character that matches anything.
Notice that processor hcs‘ decided, it participates 1in the
protocol for another epoch. Although not explicitly given in the
code, during this extra epoch the processor ignors all "“receive"
commonds, since .otherwiée it may be left waiting for messages
from processors that have already terminated. The extra epoch is

needed because, once the first processor decidesand terminates,
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the other processors may not decide until the next epoch (os. we
argue below). The extra broadcast by decided processors are
solely‘ to ensure that these "trady"™ processors recieve a
sufficient number of messages during each round of that epoch.
(Recall that in the asynchronous foult models, processors must

wait for n=1 messoage during each reception.)

If the input values are sufficiently biosed towards a
particular value, the protocol will reach agreement in ohe epoch.
If this is not thé case, the protocol uses the weakly global COIN
TO0SS function to prevent the system (abetted by the adversary)
from "hovering" at an indetermincte point indefenitely. With each
call to COIN TOSS, there is a constant probably that the outcome
will biase the system sufficiently to reach agreement quickly.
Thus, agreement will be reached in constant expected time.

Define wvalue as. legal. input to the algorithm either 0 or 1.
Specially , "?" is not o value.

Lemma 6.9 is used in proving the desired properties of the

agreement algorithm.

Theorem 6.10 wWill establish that this algorithm never produces
conflicting decisions and that in each epoch there is at least

one coin-toss value that wWill lead to termination of the

algorithm.
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Consider theorem 6.10s With reference to the following key

notations.

The value ANS 1is critical in the analysis of the protocol. At
agny instant of an execution of the protocols an epoch € is
biVolent if for both v = 0 and v= 1 there exists on execution of
the protocol that continues from the that instantaneous position,
for which there exists a processor that has ANS value in epoch e
equal to v. Furthermore, let ke be the number of processors that
have not determined whether ANS is 0 » 1 or undefined for époch e
at the point that the Fostest‘processor begins the coin-toss for
each epoch e. Note that in all the syncronous models discussed,
k = 0 at the point that the COIN T0OSS protocol is executed in
round e. Thié may not be the case in the asynchronous cases,
where the epoch may still be bivalent ot the point when the
fastest processor initiates the execution of COIN TOSS for that
epoch. However, the round of "waiting”™ messages ensures that at
the point when the COIN T0SS is first initioted, ke is at most t
( since the fastest processor must have received n - t "waiting”
messoées in order to continues; ond these processors have already
executed through step 16. Note that if an epoch is bivalents then

any processor  that has already determined ANS ot this point has

ANS = "undefined”.
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All of the variaoants of the coin-toss procedure that Wwe have
considered take a constant number of rounds. Combining Theorem
6.10 with the variocus versions of the coin-toss procedure,; we get

Theorem 6.11 .-

It is natural to ask wWhetherthe number of erratic processors
tolerated caon be significantly improved. A result of Bracha and
Toueg [6_61 shows that no randomized concensus protocol con

tolerate more than n/2 fail stop faults in an asynchronous model.
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MODULE SEVEN

Two diFFereﬁt“”E}nd; of Byzantine Agreement for distributed
systems with processor faults are defined ond compared. The
different kinds '~ of byzantine Agreement for distributed'gystems
with processor faults are defineg‘ ond compared. The first is
required when coordinotedf actions may be performed by each

participont at different times. This kind is called Simultaneous

Byzantine Agreement ( SBA ).

This module deals witﬁ thé number of rounds of message exchange
required to reaéh 8yzontin§ Agreement of.either kind (BA). If an
algorithm allow its particiﬁonts to reach Byzantine agreement in
‘every execution in which at most t participants are faultys then
the algorithm is said to toierote t faults. [t is well known thot
any BA algorithm that tolérotes t.Foults(with t <n - t where n
denotes the total numder bf processors) must run at least t + i
rounds in some execution. However, it might be supposed that in
executions where the numberff of actual faults ;s small compared
to t, the numbemr of rounds could be correspondingly small. A
corollary of our first result states that ( when £ < n -1 ) any
olgorithm for SBA must run t+1 rounds in some execution where
there are no faults. For EBA ( with t < n = 1 ), a lower bound of
MinCt+1, F+2) 7r0unds_is»proved. Finallys an aléorithm for EBA is

présented that achieves the lower bounds provided that t is on

‘the order of the total number Of Processors.
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The context for this study is a network of n processors that are
able to conduct synchronized rounds of information exchange, each
round consisting of message transmission, message receipt and

processing. In the following, n will always denote the number of
processors. We assume that the network is completely connected

and that only processors can fail.

In the Byzantine fault casey no ossuhption is maode about the
behovior o? faulty processors. puring an execution of an
algorithm, a processor 1is said to be correct if it follows the
specifications of the algorithm; otherwises; it is‘soid to be

faulty.

We assume that the agreement to be reached concerns a single
value that 1is initially given as input to one processory called
the origin. This value is token from a known set of values. All
processors, called are assumed to know when the input is given to
the origin. Each processor is to give exactly one output voiue
atter some number of rounds of information exchange with the

other participating processors.

Refer to chapter 2 for defination of eventual agreement and

simultoneous agreement.
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when no assumption is mode about the behaviour of the faulty
processorsy; wWe modify the term agreement with the adjective
Byzantine. Thus, we have the terms eventual Byzantine agreement
(EBA) uand simultaneous Byzantine oareement (SBA). A protocol or
algorithm guarantees (Byzantine) agreement in some set of
executions if, in each execution of the set, all correct

processors reach a (Byzantine)agreement.

Note that o processor may 9ive 1its output in one round ond
also continue to send messages to other processors in that ond
subsequent rounds. In this case, the processor has not finished
all rounds of message exchongg_required by its algorithm when it
gives its output. A processoé is said to have stopped in round r,
if it hos given its output by round r+1s and otherwise sends no
messages in any round after r. I[n an execution of an algorithm
for reaching agreement, we count the nuhber Oof rounds between
initial input and final stopping of all correct processors as the

number of rounds required by the algorithm.

[f an oalgorithm allows 1its participants to reach Byzantine
agreement in every execution in which at most t participonts are
faultys then the algorithm is said to tolerate t faults. Here,; we
investigate the number of rounds required to reach agreement as a

tunction of the number of actual faults and the number faults to

be tolerated.
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Suppose A' is an algorithm that tolerate N-2 faults, requiring a
maximum of k rounds. Let A' be the algorithm obtained by
modifying A so that, no matter what happenss each processor stops
after k roundss the origin always gives as output its input value,
and each other processor gives as output the value A would give,
if any, or a default value, otherwise. [nspection of the
definition of agreement shows that A' tolerates any number of
faults. Hences, we assume t > n - 1, unless otherwise indicated.
The initiol' Work of peaseet Olﬂ 7213 showed_thof agreement in
the presence of upto t faults could be reached by hound t + 1,
provided the number of processors was sufficiently large. Later,
t + 1 wWos shown to be o lower bound on the number of rounds
required *in the worst case [7_3, 7.9s 7_15]. A notural question
-arises from this worst case bodhd: Can an algorithm for agreement
be construtted to hondlle up to t ﬁgglté so that whenever the
number f of actual faults is smaller than t,.the number of rounds
required to reach aggrement is smaller than t + 1 ? Section 4.7.1

and Section 4.7.2 present lower bounds for this problem.

Later, Dwork ond Moses extended this bound (first published in
[7-12]) by studying a closely related problem in which each
processor has an input [7.13]. A function from the set of faulty
Processors to integers that gives the round number at which each
processor failed is called o pattern. Dwork and Moses give a
lower bound on the number of rounds required for their problem as a
function of the pattern. Their bound is easily shown to be @

bound for the problem as well by choosing the worst pattern.
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The (¢ t + 1)-lower bound and also that of Dwork and Moses-hold
when the set of faults to be tolerated is restricted to a very
simple type of fault called a crash fault. When a processor
suffers o crash fault, it sends a subset of messages it ig
specified to send in one round ond simply ceases to operate from
then on. However, Theorem 7.2.1 even holds 1if the faulty

behavior. is further restricted to a class of Faults called

orderly crash faults.

In section 4.7.1s the lower bound for SBA is shown cnd proved..

In this section, we count the number of rounds of information
exchange required to complete the actions specified by the
protocol, not the number of rounds required for all incorrect
processors to have produced an output value. Since giving 1its
output early cannot help a processors to stop earlier, we assume
that a processor saves its output until the round after it last
sends o message to another processor. This assumption is a
notational convenience and is made without loss of generality. [t
is easy to convert any simultoneous ogreemenf algorithm to one
in which all correct processors stop before they give their
outputs oand outputs are given no later than in the unconverted
algorithm. [t is easy to convert an eventual ogreement algorithm

}

SO0 that one round after every correct processor knows its output

value, every correct processor has stopped.
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Extending the proof method of Section 4.7.1 we show in Section
4.7.2 thot EBA requires at least min(f+2, t+1 ) rounds. Qur proof
Works only for crash faults and we do not know how to prove this

result for orderly crash faults.

Finally Section 4.7.3,presents an algorithm for EBA thaot achieves
the 1lower bound, provided n > max( 4t, 2t2- 2t + 2 ). This
algorithm does not depend on' any authentication protocol. It
requires min( f + 2, t+1 ) rounds to reach EBA using a polynomial
(in both n and t) number of bits of information éxchonge.

Previous early stopping EBA algorithms did not achieve the lower

bound but did work for n> 3t. Refer to [7_81s [7_24] and [7_11.

MODFI FOR EXFCUTION OF AN AGREFMENT Al GORTTHM

This model 1is wused in both lower=bound proofs and 1in the
presentation of  the algorithm. [t 1is similar to the one
previously given by Dolev ond Strong [7_111. The formal framework

represents a round of an execution as a directed graph with

labeled edges and nodes and as follows.

Let V denote a set dF possible values (including thé value § and
1) and let MSG denote a set of possible messages. A history is an
infinite sequence of rounds. Each round consists of o directed

labeled gr“aph With nodes corresponding _ to o0 set p of n
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participating processorss; together with special source and sink
nodes (thot are not in p).There is an edge cofresponding to every
ordered pair of nodes. Each edge is labeled by an element of Msg
(the message cent), an element of V (o value)y, Or an empty label
(indicating no messoge‘). For notational cnvenience, each history
begins wWith round 0s in which the edge coming from the source
outside p to the origin is labeled with the input value from V.
All otﬁer edge have the empty lobel at round D. At any subsequent
round, any node may have the edge from it to the sink node
outside p labeled wWith its output value. During this round and
subsequent;y all other edges from this node, carry the empty
label. If node p has such an edge to the sink at round Ky theﬁ p
has stopped (information exchange) at round k-1 and its output

value is the value on the edge to the sink.

Messages (labels) on edge directed toward p in round k are said
to be received by p at round k. Likewise, message directed from p
in round i are said tom be sent by p at round k. [f H 1is a
history we write pH for the view of H according to p which
consists of the sequence of subgraphs of the rounds of H that
have all the labeled nodes but only the edges that are adjacent
to p. We also write Hk and pHk for the initiol sequence of H from

its beginning throygh round K and its view according to

P» repectively.
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A protocol (or algorithm) A takes as input an initial
subsequence off a view of a history according to a processor and
produces an ordered set of labeled edges directed from that
processor for thé next round. Let U( Ay t ) be the set off all
histories on. a fixed set of processors in which all correct
-protessors follow a and in which at most t processors fail.to
follow A. (In each sectiony were strict U( As € ) td histories
thaot have only failure of certain types. Also, we write U for
Uc A< t ) )y each when the arguments A and t are clear from the

context.)

A t resilient agreement algorithm A such that in each history of
UC A t)y, each correct processor stops in some round and the

processors redch agreement.

Note that o history 1includes the names of the processors, and
the view of a History according to one processor is assumed to
include the names of all 1its neighbours (in the completely
connected network)s wWhether they have sent it messages or not.
Thusy, an agreement algorithm need not be uniform and the actions

it prescribes can depend on the name of the processor acting and

on the nomes of its targets.



SECTION 4.7.1 : THE LOWER BOUND FOR SBA

In section this section and the‘Following section,  -we restrict”

attention to histories in which the only way a processor can tail

- -

to follow its glgorithm 1= to tail to send some or all of its:

JR——

prescribed messages in one round and remain silent the read atter.
This 1is the notion of a crcsﬁ failure and is a close relative of
the notion of a "fail-stop processor®” [7_22]. Note that in the

round in wWhich a processor has a crash failure, it may send any

message at any subsequent round.

In proving the lower bound in this section, We further restrict

the failure mode to orderly crash failures.

A processor fails during the first round in which it does not

sehd all messages required by algorithm A. A processor that fails

in round ry sends no messages in each succeeding round.

"Qur lower—-bound proofs are based on estcblishing certain

eguivalences among histories. Let A be an agreement algorithm

. thot silararitees CBA in the presence of at most t orderly crash

faults. Let p be o fixed cet Of N pProcé&geqrs. Recall that U(A,tﬁ
is the set of histories with only orderly ¢rash faults in whigh
algorithm A is employed Ey all correct processors, ond thé
number of faulty processors does not exceed t.We introduce two

equivalence relations on the set U(Ast). These equivalences are

4=-100



also defined for the set of K round initial seguences of such
histories, for any K. These are witness equivalence and output
equivolence ond are defined in chopter 2. Also refer to the
defination of serial history; pattern,; subpattern, conservative

extension and silencing given in chapter 2.

Note that each history of U in which there are no faults 1is ¢

serial history.

The wuniqueness od silencing is guaraonteed because conditions (1)
and (3) completely determine the behavior of p. For the remaining
processors, observe  that (2) forces all processors that are
correct in Hk to follow a in all subsequent rounds and processors
faulty by round k cannot send any messages after round K(we have
restricted to crash failures). [f history H has processors other
thon P that fail after round Ksthen H'resembles the conservative
extensionof Hk on those processors because they do not fail in
H'However,; the silencihg of P at K 1is not necessarily the
-conservative extension of its K round initial sequence because A
may not call for P to send aony messages in round K, but it might
call for p to send messages later. Since we want p to remain
silent from round k ons we must allow for the possibility that p'
fails in some round after round k. Note that if additng p tb set
of aulty processors of H does not raise its cardinality above ity

then the silencing of p at round k of H is in U.
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Refer to thé defination of o condidaote given in chapter 2.
Finally the main result given as Theoren ?.2Q1 « This theorem lis

proved in the following text.

We base the proof on o sequence of lemmas that contain ideas
from several previous related proofs [7_8» 7_-11, 7_12]. Suppose
for the rest of this section that algorithm A guarohtees SBA for
each history wWith ot most t orderly crash faults. Assume that
there 1is ¢ serioi history H in which reaches SBA in fewer than
minC n =1, t + 1 ) rounds. [f t > n‘- 2s then A guarantees SBA
for each history with at most t' =n - 2 orderly crash faults and
reaches SBA in H in fewer than n = 1 = t' + 1 rounds. Thus, a
counterexample with t > n - 2 would provide a cdunterexomple with
t' =n - 2. Hencey we assume (Without loss of generality) that n

is at ledgst t+2.
Refer to lemma 7.2.2 .

In the rest of the proof, we show hoWw to alter serial

histories in a way that preserves wWitness equivalences but
changes the number; of foults and the place of their occurrence.
In ony history H of U in which p fails to Foliow clgoritﬁm As
there 1is a first message specified by A that p fails to send.
Also in any round of H in U in which p sends any messages,; there
is « lost message sent by p (in the order specified by A ). MWe

call on outedge e of p in o round of a history H significant if
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algorithm A specifies a message to travel over that edge and this
message is either the last message sent by P in this' round of
history or the first message specified by in the entire history
that b fails fo send. Since we only orderly crash faultsy the
messaée on any significont edge is either correct or absent but
not both. We shéw hoWw to alter the. states of messages on selected
edges from absent to correct, or vice vérso, producing wWitness
equivalent initial sequences of histories and eventually
producing a desired result. In particular, we are able to correct
ony faulty processor or cause ony processor to fail in any round
thaot does not ;iolote the requirement that the resulting history

be serial.

To finish the proof of Theorem T7.2.1 consider the assumed history
Hs in which A reaces SBA 1in t or fewer rounds. Let v be the
output value of the correct processors in H, let v' be a value
different from v, ond let J be the fault free (serial) history
Wwith v'. By the agreement condition, all processorsvhcvé to
output V' in J. On the other handy, by Lemma T.2.4 Ht and Jt are
witness equivalent. By Lemma 7.2.2, H and J are output equivalent.

This means that in J all processors had to outputd Vs G

contradiction.
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SECTION 4.7.2: THE LOWER BOUND FOR EBA

Nexts we consider the question of early stopping for EBA and
prove¥~o"f6@er'bound similar to through stronger that the one in
{7_113. In this section, wWe restrict attention to histories in
which all. failures are crosh failures. Let A be c‘Mot-resilent
ogreemént algorithm thot is supposed to guarantee EBA in UCAs t)e
Note that U(Ast) hos a different defination in this section;
faults in histories of U(Ast) may be crash faults rather than the
orderly crash faults of Section 4.7.1. When we refer to a

conservative extension in thiS sections, wWe mean a history

defined as in the previous section but wWith respect to the

current U.

Refer to chapter 2 Fbr defination of critical history.

For this section we reduire versions of the notions of serial
ahd candiote that ;are parameterized by fy that is f-serial and

f=-candidate (Refer t@ chapter 2).

Theoﬁen T.3.1 g9ives the main result and proof of the theorem

follows.

As we argued in the:proof of Theorem 7.2.1 a counterexample wWith
t >n -2 would’proQide a counterexample with t = n = 2. Thus we
’ cssumé (Without loss of generality) that £t < n - t. Suppose that
algorithm A reaches EBA within minC t, f + 1 ) founds'in every

history of U with at most f faults.
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First we give a strainghtforword derivation of a contradiction .
in the cose f = (. Assume A is a.t-resilence agreement algorithm
that uses only min( t, 1 ) rounds to reach EBA in any history of
U wiith no faults. [f t = 0 then processors send nNo messages to
other processors: othewise when there are no faults, processors
send' messages to other processors only in round 1 ond all
processors send messages to other processors only in round 1 and
all processors give the input value as output in round 2. Let HO
be the preliminary round thot gives input 0 to the origin and let
H be its conservative extension. Each correct processor of H must
give output 0 in round minC r + 1, 2 '). Let KO be the
preliminary round that gives input 1 to orgin oﬁd let k be its
consgrvative extension. Each correct processor of K must give
output 1 in round min¢ t + 15 2 ). In at least one of H and K the
origin must send at least one message in round 1, for otherwise
ony processor except the origin hould have identical views in the
two histories. Thus, t must be greater than 0. Without loss of

generality, assume that th origin sends a message to processor p

in round 1 of H.

Let J1 be identical to H1 except that the origin fails in J1
after sending only its message to b and let J be the conservative
extension of J1. (If the origin sends only one message in round 1
of Hy then let J=H). Then J has at most one creash fault ond is a
history in U. Now pH1=pJ1 so p gives output Q in round 2 of ‘both
H and J. Thus, any correct processor in J must eventually give
output Q0. Since t>0 and n-1>t, wWe have n.2. Hence there is a

processor g that is neither the origin nor p. [f the origin sent
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no message to g in round 1 of Ky then we would have nor p. [f the
origin sent to message to q in round 1 of ks then we would have
QK1=QJ1; But q gives output 1 in round 2 of K ond g gives output
0 in some round of J. Therefore the origin must send o message to
g in round 1 of K. Let L1 be identical to K1 except that the
origin fails in round 1 by sending only its message to p (if any)
and let | be the conservative extension of L1. Then L has one
crash fault and is a history in U Since pK1 = pLT: p gives output
1 in round 2 of K and Ly so any correct processor of L must
eventually give output 1. Since p sends no messages to other
processors after round 1 in aony of the histories Hy Js Ks and L,
Wwe have gqJ = gqL. But this contradicts the fact that g must output

0 in J and 1 in L.

Now wWe assume f <= 1. Since we assume n - 1 > t, there are at
least two correct processors in any hiétory of U. In ony
history of U with at most f faults there can be no critical edge
in round min(C ty f + 1 ) because all correct processors have
stopped by round min(ty, £ + 1 ) (g9iving their outputs by min( t +
1y f + 2 ) ) and changing a value over any single edge cannot
affect the output of more than 6 single correct processor. We
first show thot in ony f=-serial hstory there is no critical edge
in round f from o processor that is an f candidate in round. Then
we shoW that all f-serial histories, including all histories wWith
no faults, are outbut equiQGIent. As in the proof of Theorem
7.2.17s We then argue that histories with distinct inputs and no
faults must have the same outputs controdicting part (ii) of the

definition of oagreement. Implies contrddiction, Thus the proof.
(refer to Lemma 7.3.2 ond 7.3.3).
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SECTION 4.7.3 : THE EBA ALGORITHM

In this sectionsy we describe an algorithm for eventual é;zontine

agreement that achievs the lower bounds of the previous sections,

PR

provided that n is sufficient larger than t. The algorithm will'
tolerate up -‘to -t Byzantine faults. ((We no longer restrict
attention to crash faults.) The key to understanding this
algorithm is the notrion of separation, which Wwill be described
more formally below. Informally khen a faulty processor sens
different information to two sunbsets f corfect procéssors, it
seprotes  one set frdm another. The clgorithm keeps track of two
rounds lof informtion exchange at g times so @ Fauit that
separdtes from each other in one round will be discovered by all
correct processors in the next round. In ordér to avoid discovery
by all correct processors, a fdult may only separate from others

a set of the size of the number of unknown potential faults thaot

must be tolreated.

. . 2
Thuss t faults caonnot separate more than t correct processors

From' other torrect processors without at legst one of them
discovered . The idea behind the algorithm is that when n is

: 2
lqrger than max(4t, 2t = 2t +2), this algorithm will allow correct

processors to obtain the‘agq;ement value at the end of any value

at the end of ony round in which no fault gives itself away and

to stop within one additional round.
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Recall thaot we count only the rounds of information exchange
among the processors. The preliminary input and final output

rounds are only used to simply the description of the algorlithm.

We uce the following notation:

P denotes the set of names of participoating processors.
= the name of the origin,

X a symbol not in P and

v the set of possible input values.

Ltet 0 be oan element of V,

let * g special value not in V (representing "undefined")

and let V' be the union of V and {*}.

To run the algorithm, each processor maintoins a data structure
\consisting of two type of variables; variables contoining yclues
from the set V' and variables Qontcinilng sets of processor naomes.
For each othe-strings Sy PSy and PQgs,; where p and g run over all

~the elements of P, we associte a variable of the first type. The
values stored in these voriable will be interpreted as
representing information received from the appropriate processors.
Thuss for example, the value stored in s will be interpreted as
the value sent by the origin of the aoreement. The value stored
in gs wWill be intepred as the value g said that q said that s
sent to it. Notice that s denotes both the origin and the
variable associated with it. The pseudocode of the algorithmluses

S only ¢ds o variable ond not gs a name for the origin.
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With the string X aond with pXs for every p in Py we associate @
variable of the second type. Values stdred in stfings ending in X
Will bé interpreted as representing information received from the
processors about faults. Thus, the set stored in X Will be a set
of processors known to be faulty. Thué, the set stored in X wWill
be a set of processors kknown tobe faulty. The set stored in gx

Wwill be the set of processors q claims to be faulty.

We refer to the varioble as strings.
Strings ending in s will be initialized to value 0.

Strings ending in X will all be initiglilzed to the empty set.

We use the following convention for naming sets of strings:

Let @ be any subset of Py let p be in Py, and let R be any name
for a set according to this convention. Then

Qs {9s | g is in @}

QX = {aXx | g is in Q},
PR = {pr Ir is in R}, and

AR = {ar {qg is in Q@ ond r is in R}

Thus, for exomple, Ps is the set of strings of length 2 that end

With s, and pPs is the set of strings of length 3 that beQin
With p and end with s.
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‘Heres; we 1ntroduﬁe a simple one round process that ls the heart
of many cagreement algorithms. We give this process theyncme ROUND.
Each processor executes ROUND duﬁing every round from round 3
until it stops. We also intﬁoduce a variant of ROUND colled ROUND
2 thdt is executed in round 2 and collects the orignal information

in Ps. Round has two functions:

(1) to exchange information on Ps Wwith all other processors to

produce values for PPs that are then reduced to values for .Ps

(2) to exchange information on X wWith all other procesor to

produce values for PX and to use PPs and PX to discover

faults.

[t 1is expexted to operate synéhronously with all participating
processors sendilng information to all and then receiving
information from all. If two processors are correct, it is assumed
that their information is correctly exchanged. [t uses two

auxilliary processors, DETECT and REDUCE, which are defined below.

We gssume that O processors sends messoges to itself ond process .

them as part of all the messges it receives.

Note that in ROUND ¢ eoch processor sends the value it has stored
in s ond receives the corresponding values from all processors.

[t stores the value received from processor p in ps. Thus,

ROUNDZ has the instruction "RECEIVE ps from each p in P."
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The oaction of eoch participating processor executing ROUNDZ is

as follows:

ROUNDZ2: /*for round 2%/
begins
SEND s to all processors;
RECEIVE ps from each p in Pj
(if ps is not received from p then set ps := s)

(if Ps does not contain at least n-t identical values
then put the origin in X3)

end ROUNDZ.

Note that in ROUND each processor sends the value it has stored
in Ps and X to all processors and then receives corresponding
values from every processor. The values received for Ps and X
from processor p are stored in pPs and pX respectively. Thus
ROUND has the instruction, "RECEIVE pPss pX from each p in P."

The action of each participating processor executing ROUND is as

given on the next page.
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ROUND: /*for rounds after round 2%/
begin;

SEND Pss X to all processorss
RECEIVE pPsy PX from each p in P

(if p ius already in X
then default its values for pPs to 0)

(if p is not already in X but it does not send pPs and pPX
then for each g in p set pgsi=x and leave pX unchanged)

DETECTS

for each p and q in P if pgss*then st pgs :ss}

REDUCE

end ROUND

A correct processor may put the name of the origin in X during
the execution of ROUND2s but only if Ps does not contain n-t
identical values so that the origin must be faulty. [n later
rounds, the process DETECT is the only way correct processors add
names to the set of known faulty processors kept in X. DETECT  is
designed so0 that correct processors will never ddd- hames of
correct processors to X, and therefore, at any time the largest

possible number of faoulty processors that a gilven correct

processors has not discovered is t = | X la
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Since correct processors may stop at different times - the
difference cdn be at most one round as will be seen later-one has
to toke care thot a correct processor that has already stopped
and therefore does not send messagesw anymore is not éonsidered
to be faulty. This is ochiVeved by first settirné ariable pgs for
which no value from p has been reveived to the undefined

value”*". [f p is not found faulty by DETECT, then pqgs will later

be set to the actual value of s.

If more than t = | X | processors claim that they have put
- . . !

proccessor g in theilr set of known faulty processors then any

correct processor can safelyu put g in X (some other correct

processors put g in its X first).

In this algorithm, correct processors send identical data to all
participants. A property that will be preserved by REDUCE is
that if pyQqy ond r are correct brocessors then the value stored
in pPas and ras by any correct processor will be identical. Thus
if the multiset of values stored in (P-X) 9s does not have at

least n-t identical values then g must be faulty.

The action of each participating processor executing DETECT is as

given on the next page.
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DETECT:

begin;
for each g in P-X3

if 1l {Pp |l PisinP-Xandqis inpx } | >t = 1| X |
or P - X contains two sets A and B each of
cardinalilty >= t such that Ags ond Bas both have

only values in Vs but no value occurs in both Ags

and Bas

then add g to X and default the values of qfs to 0s

end for each Qs

end DETECT.

The process REDUCE uses values of PPs to update the value of Ps
using a majority vote.Let g be the smallest integer greater than
n/2. In order tb obtain the new value for string ps, a majority
vote 1is taoken over the values of the string pPs.Note that all
these values are obtained directly from p. There is no voting by
others here on what p said as it is doen by DETECT for q. If p is
correct then it sends the same data (Ps) to each participants all
correct participants will have the same value for ps after
REDUCE. These_volues ps determine the further action to be token
by eoch processor. [f correct processors all have the same set

PSS, then they behave identically ond reoch agreement very

quickly.
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The action of eoch participating processor executing REDUCE is

as followss

REDUCE

begins
for each p in Pj3

if pPs has at least g strings with value v
then ps:i=v

else ps :=0)
end for each pj

end REDUCE.

For the remainder of this section we assume that i

2
n>max( 4ty 2 C £t =1 ) ) )

so that the following properties are true of the mojority
threchold. |

1) 29 > nj

2) n = 2t >= 9;

3) n~t-~-(Ct=-1) >= 9.

We use these properties of g to show that undelete faults cannoct

cause correct processors xz to reach different values for s.
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The algorithm will be caolled EAGREE. It tokes o value as input
in round 0. If no value is received the string s is left with its
initial value 0.  We wuse the existence of a value other than Q
stored ins inround 0 to indicote that the processor executing the
code is the origin. All processors execute the sche code. [f ¢
processor has a value other 0 storea in s at the end of round Qs
then it sends thaot value to all processors in round 1. We assume
that no processor except the origin can have a value stored in s
other than 0. If the input value is 0y the origin acts Jjust like
the .other participants dnd sends nothing. Receiving nothing from
the origin in the first round is interpreted as receiving 0 from
the origin. This 1is Just a convenince all processdbs know the
name(s) of the origin. This simply allows us to write EAGREE in a
uniform way wWithout mentioning explicitly the same of the
processors executing the code. Correct processor using EAGREE
reach EBA by round min( f + 2, t + 1) At the end of the algorithm
the voarioble s at each correct proceésdr will hold the output
value. Note that round (0. and the output round involve no
information exchange among the processor and are not counted when

we discuss the number of rounds required to reach agreement.

The action of each participating processor executing EAGREE is

as given on the next page
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EAGREE:
begin §
i2=03 /% round § - the input round x/

RECEIVE s AS INPUTS
(if nothing is received leave s unchonged)

is=13% /% round 1 */
.if s is not equal to § then SEND s to all processorss
RECEIVE s3

(if nothing is received from the origin, ‘
leoye s unchanged)

do i:s2 to t+1

if 1=2 then ROUND2 else ROUND;

if Ps has at least g identical values V

then s i

Y
else s 1= (

if Ps has at least n-t identical; volues
then leave this do 100p;

end do;

i=i+3 /% output for this processor x/
OUTPUT s3
end EAGREE.

Recall that 29 >n so that this algorithm is well defined.
Refer to Theorem 7.4.1, the proof of the theorem will be provided

in the following series of lemmas 7.4.2 t0 T.4.9
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We say that value v s persistent at round i, If ot least 9
~correct processors have stored in s at the end of round 1. Recall
that o processor is said to stop in round iy, if the only action
it tokes in round i+1 iS to output its value. We say that d
processor in convicted in round i if it has at least n - ¢
identical values stored in Ps at the end of round i. Note that if
a correct processor is cqnvicted in round iy then it stops in
round i. Also if a correct processor stops in round i < t + 1,
then it is convinced in round i. However, a processor may stop in
round t + 1 without being convicted. [n this cose.it gives its

value for s as output without having n - £ identical values in Ps.

In order to keep any value from becoming persistent in a ;ound,
the faults must send distinct sets of values Ps to different sets
of the correct processors. In fact, these sets Ps must reduce to
distinct values. We say that a foult P separotes sets A and B of
correct ﬁrocessors if it sends them sets ps so that after REDUCE »
no member of A has a value stored in Ps thot is same as that of a
member of B. We call any set of correct processors a witness ‘set
if its cardinality is ot least t and at most n - 2t.
. ' 2

If n > mox(4t, 2¢ t + Ct -1 ) ) ) then using Eagree the
correct processors reach eventually agreement by Leema T7.4.9
(condition (i)) and Lemma 7.4.5 (condition (ii)). By Lemma 7.4.8
and its specification EAGREE requires at most min( f + 2, t + 1 )

rounds of information exchange. This completes the proof o?

Theorem 7.4.1.
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CHAPTER FIVE

CONCLUSION AND FUTURE DIRECTION

The problems of obtoining interactive consitency appears to be

quite fundamental to the design of fault tolerant system in which

executive control is distributed. In the SIFT [1_4] foult-tolerant

computer under develophent at SR]l, the need for an interaoctive

consitency galgorithm arises in at least three aspects of the

decign:
(1) synchronized of clocks

(2) stabilizaotion of input from sensors, ond

(3) agreement on results of dignostic tests.

In the prelimincry stages of the deéign of this systems it was
naively assumed that simple majority voting schemes could be

devised to treat these situations. The gradual realization that

simple majorities oare insufficent led to the results reported

in the first module of chapter 4.

The algorithm presented in module 1y are intended to demonstrate

’thot such algorithms exist, The construction of efficient
algorithms and algorithme that wWork under the assumption of

restricted communicotions is a topic for future research.
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Other questions that are considered include those of reaching
gpproximate aggrement and reaching agreement under various

probabilistic assumptions.

In module 2 we could obtain a solution to Weak Byzaontine (Generals
Problems which is o weaker version of original Byzantine (General
Problem / metophor. Byzaontine general metaphor is essentially the

came problem appeared in module 4.

In module 3, it has been shown that the problem of fault=-tolerant
cooperative computing cannot be solved in a totally osynchronous
model of computation. This does not mean that such problems
connot be proctically <olveds rathery it means that o more
refined modeygf distributed computing that reflécts realistic
assumptions . about processor and communication timmings, is

needed. These models were considered in modules 4 to 7.

In module 4, probcbiiistic consensus protocols for asynchronous
system with fair schedulers 1is considered . For a system with
foii-stop Processors, we showed that L (n+1)/2_J correct
processes‘ are necessary and sufficient for achieving consensus.
In o system with malicious processes, we showed that fen+1)/3y
correct processes are necessary and sufficient for achieving
consensus. Finally asynchronous byzantine Ggreément protocol is

given along With necessary proofs.
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In module 5y problem of approximate agreement on real numbers by
processes in a disributed systemy is presented. Simple
approximation VFunctibns are wused in two simple-to-implement
algorithms for acheiveing approximate aq9reement = one for a
synchronous distributed system and the other for an asychronous

system.

The algorithms presented here have the undesirable property thaot
the faulty processes by their actions in the first round con'
cause the range of values received by correct processes to be
arbitratily large, and hence can cause the time to convergence
to be arbitratily long. [t appears that some of the ideads
0f[5.2]1 can also be used to obtain improved initialization

rounds for the algorithms that eliminate this possibility.

For future wWork, we con staote a variont of the approximation
problem that uses a fixed number r of rounds and in which e is not
predetermined. Each process starts with o real value, as before r
rounds, the processes must output their final values. The
validity condition 1is the same as before. The object of the
aglgorithm is to ensuré the best possible agreements expressed as
a ration of the new diameter of the nonfaulty processes' values

to the original diameter. For given ny ty, and r, we would like to

Know the becst ratio.
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In Module 6, using simple protocols; it is shown how to achieve
consensus in -constant expected time; within a variety of
fail=-stop and ommiéion failure models. Significantly, the
strongest models considered are completely asynchronous. All the
results were based on distributively flipping coin, whiéh is

usable by a significant majority of the processorse.

One limitation of the oadversary that was crucial for the
performance of the protocols in module 6 is thaot the adversoaory
does not know the internal state of processors, even when they
are made faulty. The reason for this requirement 1{s thaot
otherwise by delivering all messages to one specific processor,
the adversary can find out the identity of the unique leader by
examining the staote of the receiving processor. The adversary can
then block the messages of the unique leader from reaching all

other processors.

A simple modifiation of the protocols given in modeule 6, can
make them immune to an adversary who caon "peek into the memory"
of failed processors. The basic idea is that instead of sending a
pair of (possibly encrypted) bits ("leader” bit, *"coin" bit), to
all processorsy o secret sharing scheme with threshold t caon be
used. The message to processor i Will consist of the ith piece of
the secret . Suppose the adversary makes up to t processors
faulty and gets to see the contents of their memofy. This doés

not help in understanding the contents of any senders message. [n
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particular the adversary cannot use these pieces to identity the
unique leader. To reconstruct the secret, all processors later
bré?cast all the piece of secrets that they have received. The
adversary cannot prevent such reconstuction of the secret of any
nonfaulty sendery, since any t+1 pieces can be used. [t appears
that this approach can be carried out in all va ants of the
adversary model that were considered in module 6. This would
yield consensus protocols with constant expected running time for
t < $ny Which tolerate an adversary who knows the internal state

of up to t failed processors.

Finally we note that our protocols of module 6 do not work in
the presence of éven a single Byzontine failure. A foulty
processor can simply claim, at every round, that is o leader thus
rendering the coin tossing subroutine ineffective. [t remain an
intersting aquestion to obtain Byzantine oéﬂreement'p¢rocedures

that ore both as simple as effident.

In module T, two kinds of Byzantine Agreement are defined and
compared. These are Eventual Byzantine Agreement (EBA) and
Simultaneous Byzantine Agreement (SBA). The lower bomnds of these
algorithms are also shown in the module. Several unauthenticated
deterministic EBA olgorithms are knownj but none attains the

lower bounds shown in this module, for all n and t with n > 3t.



The aquestion even remains open for authenticated algorithms: Is
there a deterministic EBA algorithm that attains the lower bounds
for all n ond t with n>3t when the faults are restricted not to
corrupt o given authentication protocol? When the faults are
restricted to crash, however, the lower bounds dare known to be
attainable: Fishcher ond Lamport provide a simple algorithm for
EBA that oacheives early stoppinglby round f+2 (M. Fischer and

L.Lamport, privote communicotions).

Finallys [ conclude with the note that, his field is relatively
new, and considerable wWork in the field started just a decade
back. Much work needs to be done here, to solve the problems
related to the field. [n the text given above, Some idedas have

been given for future research which can be exploited.
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