
lll~lCDING Af.lli~EIIHN'I,

IN '1,01~ Plli~SI~NCI~ ()I~ l~llULTS :
"CONSENSUS IN DISTRIBUTED SYSTEMS"

Dissertation submitted to

Jawaharlal Nehru University

in partial fulfllment of the requirements

for the award of the Degree of

MASTER OF TECHNOLOGY

in

COMPUTER SCIENCE AND TECHNOLOGY

by

JYOTSNA BEHL

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES

JAWHARLAL NEHRU UNIVERSITY

NEW DELHI-110 067,

JANUARY 1992

CERTJilJCll1'E

This is to certify that the thesis entitled .. REACHING AGREEMENT IN

PRESENCE OF FAULTS : CONSENSUS IN DISTRIBUTED SYSTEMS"

being submitted by me to Jawaharlal Nehru University in partial

fulfilment of the requirements for the award of the degree of Master of

Technology, is a record or original work done by me under the

supervision of Dr. P.C. Saxena, School of Computer and System

Sciences, during the Monsoon semester, 1991.

The results reported in this thesis have not been submitted in part or

full to any other University or Institution for the award of any degree etc.

6'£-
Dr. R.G. Gupta ~\,\'l'l-

Dean,

SC&SS. J.N.U .•

New Delhi- 110 067.

Jftono.. ~
(JYOTSNA BEHL)

(:~ i~~"<~
Dr. P.C. Saxena

SC&SS. J.N.U.,

New Delhi- 110 067.

JlCKNOlfi .. EDGE)IEN'I,S

I wish to express my sincere and heartfelt gratitude to Dr. P.C. Saxena,

School of Computer and Systems Sciences, Jawaharlal Nehru University,

for the unfailing support he has provided through out. In all respects,

lam very grateful for the patience he has exhibited and for the time he has

spent with me discussing the problem. It would have been impossible

for me to come out successfully without his constant guidance.

I extend my thanks to Prof. R.G. Gupta, Dean, School of Computer and

Sytem Sciences, JNU for providing me the oppurtunity to undertake

this project. I would also like to thank the authorities of our school

for providing me the necessary facilities to complete my project.

I acknowledge and thank each and everyone of those who, directly or

indirectly, helped me in this work.

(JYafSNA BEHL)

To understand the problem raised by distributed working is to
understand how tomorrow's information system will work. Just as there
has come to be a standard structure for a car, agreed to by all manufac
turers as well understood by all users., there is no doubt that these
future systems will consist of machines of a wide variety of types dis
tributed around a ring, raging from individual work station to a central
ized rue store, with general or special-purpose processors in between.
Thus if we want all the processes to be implemented in order to mobilise,
co-ordinate and stop the many activities of a distributed system, we
shall understand the problems faced and a need of standards.

Keeping the above in mind, the thesis centers around the need of
standard algorithms dealing with different problems of distributed
systems. In my thesis, I have considered only the problem of .. Reaching
Agreement Ia the Presence offautts•.

In this thesis, the_ algorithms have been investigated for both synchro
nous and asynchronous system. The algorithms considered include
solutions for interactive consistency problem, solutions for Original and
Weak Byzantine General problem, Asynchronous consensus and broad
cast protocols, variants of Byzantine general problem by assuming
starting values as reals, simple constant time consensus protocols in
realistic failure models, simultaneous byzantine agreement, eventual
byzantine agreement, etc.

The thesis is divided into 5 Chapters in the following fashion; Chapter 1,
has the introduction to the subject and an abstract of the thesis.
Chapter2 has general notations and definitions, theorems, lemmas
along with their proofs are dealt with in Chapter 3.

While going through the thesis, the reader inay want to skip over
Chapters 2 & 3 and go directly to Chapter 4, in which the problem
is explained in detail. While reading Chapter 4, you may revert back to
Chapters 2 & 3 for referring to notations, definitions, theorems, lemmas
and proofs.

For sake of convieniance the defmitions are arranged alphabetically.
Also in Chapter 3 you will fmd that the theorems appear in the same order
as they do in the text of Chapter 4.

'fAilLE OF COl\T'fEl\T'fS

I. CHAPTER I
Introduction • • • • 1-1

2. CHAPTER 2
Notations & Definitions • • • • 2-1

3. CHAPTER 3
Theorems, Lemmas and proofs· 3-1

4. CHAPTER4
Module One 4-1

4.1.1: The Single - fault case 4-3
4.1.2: An Algorithm for n>•3m+ 1 4-5
4.1.3: Proof: Impossibility for n<3m+ 1 4-9
4.1.4: Algorithm using Authenticators 4-10

Module Two • • • • 4-13
4.2.1: Impossibility Result 4-14
4.2.2: Approximate Solution 4-18
4.2.3: Infinite Solution 4-20

Module Three • • • • 4-21
4.3.1: Main Results of Fischer·s work 4-22
4.3.2: Algorithm for Initially 4-22

Module Four 4-25
4.4.1: Fail- Stop case 4-27
4.4.2: Malacious Stop case 4-31
4.4.3: Asynchronous Byzantine Agreement 4-35

Module Five 4-40
4.5.1: Properties «;>f Approximation functions 4-41
4.5.2: The Synchronous Problem 4-43
4.5.3: The Asynchronous Problem 4-49
4.5.4: Resilence 4-56

Module Six
4.6.1: Failure Models
4.6.2: Message-Oblivios case
4.6.3: Message-Dependent case
4.6.4: The Asynchronous case
4.6.5: Using a weakly global coin

· Module Seven
4.7.1: The lower bound for SBA
4.7.2: The lower bound for EBA
4.7.3: The lower bound for SBA

5. CHAPTER 5

....

• • • •

4-58
4-61
4-67
4-73
4-78
4-85

4-92
4-100
4-104
4-107

Conclusion and Future Directions 5-1

BIBLIOGRAPHY

INTRf)DUCTif)N
The field of distributed applications is constantly gro~ing. This

increasein the use of computer science as a prefered tool in ever

more diverse areas is essentially the result of developments in

this discipline.

The control of distributed applications is based on understanding
I

of what is known as "DISTRIBUTED SYSTEM". Compared to CENTRALIZED

OPERATING SYSTEM, DISTRIBUTED SYSTEM differ essentially since the ..,

entities that form the latter cooperate in the achievement of

common aim by exchanging messages, and thus there is no global

state in the system that cdn be detected instantly by one of

these entities.

The problems related to distributed system include :

(a) Mutual dependency of logical clocks

(b) Network routes

(c) Learning distributed information

(d) Determination of global states.

(e) Maximum delay in the transfer of messages

(~) Topological structure of the network

(g) Distributing a global synchronization constrain

' (h) Reaching agreement in presence of faults

Ci) Mutual exclusion

(j) and many more.

In this thesis, algorithms for reaching agreement in the

presence of faults have been investigated for both synchronous and

asynchronous system. The algorithms considered include solutions

for interactive consistency problem, solutions for Original pnd

weak Byzantine General problem, Asynchronous consensus and

broadcast protocols, variants of Byzantine general problem by
. I

·assuming starting values as reels, simple constant time consensus

protocols in realistic failure models, simultaneous byzantine

agreement, eventual byzantine agreement, etc.

Fault~tolerate systems often require a means by which independent

·processors or processes can arrive'at,an exact mutual agreement

of some kind. It may be necessary, ~or example, for the

processors of a ~edundant system to synchronize their Internal

clocks periodically. or they may have to settie upon a value of

a time-varying input sensor that gives each of them a slightly

different reading. In the absence of faults, reaching a

satisfactory mutual agreement, is usually an easy matter. In most
) I

cases it suffic~s simply to exchange values, CCLOCK TIME, in the

case of clock synchronization) and compute some k1nd of average.

In the presence of ~aulty processors, howeve~ simple exchanges

cannot be .relied upon, a ~ad processor might report one value to

a given processor and another value to some other processors,

causing each to calculate a different "average."

One might imagine that the effect of faulty processors could be

dealt with through the use of voting schemes involving more than

one round of information exchange; such schemes might force

faultY processors to reveal themselves as faultY or at least to

behave consistently enough with respect to the nonfaulty

processors to allow the latter to reach an exact agreement. As

~e ~ill show, it is not always possible to devise schemes of

this kind, even if it is known that the faulty processors are in

a minority. Algorithms that allow exact agreement to be reached

by the nonfaulty processors do exist, however, if they

sufficiently outnumber the faulty ones.

The Byzantine generals problem involves obtaining agreement

among a collection of processes, some of which may be faulty. The

precise defination is given in the chapter 2.

Nonfaulty processes are assumed to correctlY follows their

alogrithm, but faultY processes may do anything. we assume that

the absence of a message is detectable, which is equivalent to

assuming that a faulty process sends every message that it is

supposed to--although it need not send the correct message. The

difficulty of the problem lies in the fact that a faulty·process

may send conflicting information to two different processes.

This problem was described in [2_1] in term of byzantine general

metaphor, hence its name. Essentially the same problem appeared

in [1_0], where it is called the interactive consistency problem.
)

jn [1_0J the problem was shown there to be solvable if and only

if fewer than one-third of the processes are faulty, no solution

worKs for three processes in the presence of a single fault~

In th·e worK done by Lamport in [2-0 J we consider a weaKer version

of the problem, in which i condition < 1) is replaced by :

<1) If all processes are nonfaulty, then every process i obtains

the value v

A form of agreement problem quite well-Known is the the transact-

ion commit problem, which occu\s in distributed databas~ systems,
. 1 ' ~ • t

all the data manager processes which have participated in the
'\ .,

f ' • _...,

processing of a particular transaction to agree on whether to

install the transaction's results in the database or ,to discard

them. The latter action·mig~t be necessary, for example, if some
' . . I

data managers were unable to carry o~t the required transaction

processing. Whatever decision is made, all data managers must

maKe the same decision in order to preserve the consistency of

the database.

The transaction commit ~roblem for a database is an instance of

this weaKer problem, in which process 0 represent a transaction

coordinator, and the other processes repr.sent the databas~:sites

affected by the transaction [2_3]. l·

..: . ~ { '

i :

AnY solution to the original Byzantine Generals Problem is

obviously a solution to the weak Byzantine Generals ,(WBG) Problem

so the WBG Problem solvable if fewer than one-third of the

processes may be faulty.

The Byzantine Generals Problems arises in practice when trying

to get· the nonfualtY processes to agree upon the value of some

input quantity. The WBG problem arises when trying to get the

nonfaulty processes simply to agree, regardless of what they

agree upon. To.eliminate the trivial possibility of having them

agree upon a prearranged value, we can assume that each process

chooses a Private value, and that these private valuesare used

in reaching agreement,can theh be formulated as WEAK INTERACTIVE

CONSISTENCY PROBLEM, defined in the next chapter.

A consensus protocol enables a system of n asynchronous process,
I

where some of the process are faulty, to reach to an agreement.

Next we discuss protocols that enable a fullY interconnected

system with reliable asynchronous transfering, to rreach an

agreement. In reliable asynchronous message system, a message

can be have arbitrary delays.

The faulty processes considered, fall under two classes

1) Fail stop Processes : A process may stop participating in the

protocol that is, it may just Die.

2) Malicious Process : A Faulty process may send incorrect

messages.

1-5

A fail stop process creates problem even though it doesn't send
' .

\ any false messages, because there is no way to find a difference

between a dead· process and a slow one. Whereas in case of a

malicious process, the contradictory messages may cause trouble

for the distributed system.

The system involving fail-stop processors, was investigated in

[3_0]. Fischer etal. It showed the impossibility of a consensus

protocol if only one failure may occur. However, .in [3_0], the

concept of an admissible solution is a protocol that always

terminates within a finite numb.er of. steps. In \ Module 4 0 we are

interested in a different kind. of solution: we consider

protocols, which may never terminate, but this would occur

with probability o, and the expected termination time i~ ~inite.

There are two ways to introduce probabilities on the possible ,

executions of a protocol. The other approach, and the one we

adopt in this thesis, is to postulate some probabilistic behavior

about the message system.

In the case of fail-stop processors, we describe a probabilistic

protocol that can withstand up to L<n-1)/2_j failures, where n

is the number of processes •. We also show that there is no

consensus protocol that can withstand up . to L< n-1)/3....1

processes may fail. Agreement among remote processes is one of

the most fundamental problems in distributed computing and is at

the centre of many algorithms for distributed data processing,

distributed file management, and fault tolerant distributed

applications.

One may also consider more Byzantine types of failure in which

faulty processes might go completely haywire, perhaps even

sending · messages according to some malevolent plan. We would

like to have an 'agreement protocol which is as reliable as

POSSible in the presence of such faults. No completely

asynchronous consensus protocol can tolerate even a single

unannounced process death. we may not consider Byzantine

failures,further-more ~e assume that the message system is reli-

able and that it delivers all messages correctly and exactly once.

Still with these assumptions, the stopping of a single process at

an inopportune time can cause any distributed commit protocol to

fail to reach agreement. Hence this crucial problem has no

convincing solution or still greater restrictions on the kind of

failures to be-tolerated!.
'

As crucial to the proof that processing is completely asychronous

we cannot make assumptions about the relative speeds of

processes or~ about the delaY time in delivering a message. we

can also assume that processess don't have access synchronized

clocks, so algorithms based on time-outs,' for example, cannot be

used. Finally we cannot postulate the ability to detect the

death of a process, so it is impossible for one process t6 tell

whether another has .died or is Just running very slowly.

The impossibility in the result applies to even a very weak form

of the consensus problem. Let us assume that every process

starts with an initial value in {0, 1}. A nonfaulty process

decides on a value in {Q,1} that is by enterin9 an appropriate

decision state. Also all nonfaulty processes which make a

decison are to choose the same value. For the purpose of the

impossibility proof, we want only that some process eventually
'

make a decision. The solution in which· , 0 is always chosen is

.ruled out by sayin9 that both 0 and 1 are possible decision

values, althou9h perhap~ for differrent initial confi9urations.

Process are also modelled as automata~one atomic step. Every

messa9e is finallY sent as 1on9 as the destination process makes

infinitely many attempts to receive, but messa9es can be delayed,

arbitrarilY 1on9,and sent out of order.

In module five we assume a different kind of model.

We assume a model in which processes can be send messa9es

containin9 arbitary real values and·store arbitray real values as

-well.

we assume that each process starts with an

arbitary real value. For any preassi9ned t > 0 (as small as

desired), an approximate 09reement al9orithm must satisfy the

followin9 conditions:

1-8

(a) Agreement: All ITonfaulty processes eventuallY halt ~ith

output values that are ~ithin of each other.

(b) Validity: The output by each

in the range of initial

processes.

nonfaulty

values of

process must be

the nonfaulty

Thus, in particular, if all nonfaulty processes should happen to

start ~ith the same initial value, the final values are all

required to be same as the common initial value. This is

consistent with the usual requirments bY Byzantine agreement

algorithms. However, should the nonfaulty processes start ~ith

different values, we do not require that the nonfaulty processes

agree on a unique final value.

We consider both synchronous and asynchronous versions of the

problem. Systems in which there is a finite bounded delay on the

operations of the processes and on their intercommunication are

said to be synchronous. In such systems, unannounced process

deaths, as well as long delays, are considered to be faults. For

synchronous ·system, we give a simple and rather efficient

algorilthm for achieving approximate agreement. This algorithm

works by successive approximation, with a provable convergence

rate that depends on the ratio bet~een the number of faulty

processes and the total number of processes are allowed to

terminate at different times.

For asynchronous systems, in which a very slow process cannot be

distinguished from a dead process, exact agreement cannot be

reached by an algorithm that is guaranteed to terminate [5_5,

5_9]. Exact agreement can, however be attained by algorithms

that only teminate with probabilitY 1 [5_1, 5_3]. An interesting

constrast to the results in [5_5] and [5_9] is the second

algorithm, which enables processes in an asychronous system to

get as close to agreement as one chooses.

our algorithm for the asynchronous case also works by successive

approximation. In this case, however , the total number uf

processes required by the algorithm is more than five times the

number of possible faultY processes. As in the synchronous case

we acheive termination using a technique that ensures that all
\

nonfaulty processes halt but permits different processes to

terminate at different times. our algorithm for obtaining

approximate aggrement are of a very simple form. Namely, at each

round, until termination is reached, each process sends its

latest value to all processes (including itslef). On receipt of

a collection V of ~lues, the process computes a certain function

f(V) as its next value. The function f is a kind of averaging

function. Here we use functions that are appropriate for handling

t faulty processes.

~rticularly for handling t faulty processes, We show that these

funcations have particularly nice approximation •
beha~ur. In

particular, ~e show that, for algorithms of a specif~ form, no

apprioximation function can provide uniformly faster convergence

than the functions used in (5_0]. (5_6] presented similar

algorithms but used approximation functions that provided slower

convergence .than is achieved by the functions used in (5_0].

Randomization has proven to be an extremely useful tool in the

.design of protocols for distributed agreement. New randomized.

protocols for the consensus problem in synchronous and

asynchronous fail-st;:op and failure-by-omission models are

presented in the thesis. These protocols terminate within

constant expected time, and unlike previous fast protocols, are

very simple and need not rely on any preprocessing. Infect, we

believe that these protocols ~ill be the method o(choice rn

im~l~m~Ht~ti~H~: Th~ major novelty of algorith~s

developed in (6_0] is -the notion of a weak form of a global

coin~ and a method of generating it.

The situation for deterministic alogrithms for consensus is ~ell

understood. A result of Dolev and Strong implies that in

asynchronous fail-stop model, at least t + 1 rounds are needed,

in the worst case, to achieve consensus;they also provided an

algorithms that achieves this bound and transmits only a

polynomial number of messages [6_10]. In an asynchronous model,

Fischer et al. showed that no protocol exists for consensus in

the fail-stop model that tolerates even a single fault [6_14].

Fortunately, randomization can overcome this inherent

intractability. 1Ben-Or describes a protocol for asynchronous

consensus that tolerates upto~n/2 faults in the fail-stop model,

and terminates with probability 1 [6_4]. Results of a similar

nature were given by Bracha and Toueg [6_6]. However the expected

number of rounds needed to reach agreement as maesured locally by

every processor is exponential in the asynchronous case (can be
I

shown to be O< ,t/ ~) in the synchronous one). Rabin introduced

the important notion of a global coin flip [6_22J,which is a coin

fliP whose outcome is visible ' to all processors. He

describes a different protocol that employs such a coin,so that

each proce5sor can use the outcome of a common coin. The expected

number of rounds to reach agreement is O< T c n)), where TC n)

is the time required to flip the coin in a network of n

processors. In order to implement his global coin, Rabi~ required

some predealt information to be distributed by a trusted third

party. Bracha, using a beautiful "boot-strapping"construction,

showed that Rabin's result could be improved so that agreement is

reached in OC T< log n)) expected number of rounds (i.e., the

time to flip many independent coins in subnetwork whose size is

logarithmic in n, in the size of original network) [6_5]. It has

been shown how to use cryptographic techniques to implement such

a coin-toss in T< n) = O< n) rounds, so that overall, Bracha's

Procedure can be run in OClog n) expected time as shown in [6_3]

and by , A.C. Yao, private communication ·• However, this scheme

requires an assignment of processors to committees for which no

explicit construction is known. In contrast, the protocol given

by Benny Char in [6_0] is completely constructive. Feldman and

Micali [6_12] have also the nonconstructive part of Bracha's

probabilistic assignment, by having the processors generate the

assignment themselves.However,in the process,Feldman and Micali

introduced a prepbcessing phase that requires OCT)rDunds.Their
A

protocol is superior to deterministic protocols in an amortized

sense,since additional agreements require only OC1) time. The

best-~nown bound for a Byzantine fault model without predealt

information or preprocessing is OClog n). Since the alogrithms

given in [6_0], for omission faults run in constant expected
··'-·----·-· ------------ -· - ----------·-·-- --------- -- --· --------------------

time, current results leave a log n seperation between the

Byzantine and omission fault models.
'

Finally in the las~module of the thesis, I discuss two closely-

related types of agreement that can be reached in a distributed

system in the presence of unde~ected processor faults.·

One type is called Simultaneous Byzantine Agreement <SBA) and

the other Eventual Byzantine Agreement CEBA). Corresponding to

these two types of agreement, are two distinet problems in

coordination among multiple processors in a distributed system.

One problems is synchronization: Processors may be required to

perform some action at the same time, immediately after reaching

agreement on that action [7_18]. The other is consistency as

required,for example, in the atomic commitment of a dist~ibuted

database transaction. The participants in the transaction commit

··protocol must agree on ~hether or not the transaction is to be

committed. In this case,~ it is enough to kno~ that the choice

~ill eventuallY be the choice of all other parties to the

agreement [7_10].

The difference bet~een thes~ t~o problems and the consequent

differences in requirements for their solution is discussed in

the thesis. Because SBA implies EBA ~lthin the model considered,

EBA can al~ays be· reached as early as SBA. It is sho~n th.at EBA

can often be reached earlier than SBA.

This thesis provides a complete survey report of ~ork done in the

field, starting from the year 1980 to 1990. It.presents the

protocols ~ith detailed proofs ~hereever found necessary.

(~Hlll,'l'l~ll '1'1f0

,.
This chapter is compiled for reference with respect to "Glossary

of Notations" and "Definitions". The Definitions are arranged

alphabetically to permit easy access to any definition as in a

dictionary.

o< • •

o- ..
•

$ • •

II . .
• .
% • •

& • •

@ • •

A • •

l • •

n • •

p • .
P• • •

I I • •

GLf)SSARY OF NOTATIONS

General Notations:

is Greek letter Alpha

is Greek letter Sigma

is Greek letter Beta

stands for big Pi

stands for small Pi

stands for Phi

stands for Delta

stands for Si

stands for Rho

stands for Lemda

the number of processes.

the set {Q, ••••• ,n-1} of processes •

the set of finite sequence of processes •
(elements of P including empty set)

the set of message paths from Q. This implies
a sequence in P• begining with Q.

I I i

I I<k)

IIl<k)

v
scenario

• •

• •

• •

• •

• •

i..;scenario:

the set of message paths from 0 to 1, that is
a sequence in II ending in i.

set of message paths of length <= k in 11.

set'of message paths of length <= k in Ill •

the ~et of all possible values v.

a mapping % : II --> V , specifYing the value
of the content of every message.
if # belongs to II then %(#) gives

content of message received at final
destination of path II •

a mapping %i : IIi --> V , the port of a
scenario "seen" by Process i.

WBG algorithm B:a collection of mappings Bi from i-scenarios
to v, such that for any scenario % in
which atleast n-m processes are nonfaulty
<1) If all processes-in p are nonfaulty

Notation~ n=3.:

&< 1 'J)

o-(#)

r

(r)
I I

• •

• •

• •

• •

in % then for all i belonging to p ,
8i(%i) = %(0) • .

(2) If any i , J belonging to P are
nonfaulty in % than 81<%1) = BJ<%J)

the signed, clockwise distance from 1 to J •

the signed angular distance travelled by the
path #.

r mod 3 •

a scenario in which a faulty Process r relays

the value F to r - 1 and the value T to

r + 1.

Notation .used .1.D proof ..Qf Theorem 2...1.:.

P'

l

i"

1\

• •

• •

• •

• •

the set of process {Q',1 ',2'}

a mapping assigning to each process in P a
process in p•, ~hich assigns at most m
proceses to each process in P'. Also its
extension to a mapping from message paths
in P to message paths in p•.

an element in P that i~ assinged by 1 to ~",
~here i = 0,1 or 2.

a mopping that
scenarios
value of
equal the

tokes
on p,

1\ [% ']
value of

scenarios on p' into~
defined by letting the
on the message path #~

%' on the path I (#).

,_

(~()N(~EP1,S AND DEFINI'flf)NS

Art1TSSTBI E RUN..:. we may add that a run is admissible if at most -

one process is faulty and that all

messages sent to non-faulty processes

are eventually received.

AIITHFNTJCATORS: An authenticator is redundant augment to

a data item that can be created

ideally, only by the originator of_the

data.

A SYNCHRONOIIS APPROXIMATION AI GORTTHM .e..:.
1
It is a system of n

processes, n>=1. Each process p has a

set of states, including a subset of

states called initial states and ,

subset called halting states. There 15

a value mapping that assigns a real

number as the value of each state. For

each real number r, there is exactly

on initial state Hith value r. Each

process acts deterministically

according to a transition function and

a message generation function. The

transition function takes a nonhalting

process state and a vector of messages

received from all processes (one

message per process state. The message

generation function takes a nonhalting

process state and a vector of messages

received from all processes< one

message per process) and produces a

ne~ process state. The message

generation fuction takes a nonhalting

state ·and produces a vector of

messages to be sent to all processes

(one per process).

ASYNCHRONO!!S FA I I !IRES; Except for a set of at most t sendins
I

processors, all messages sent by every

processor are eventually dellivered.

ATCJWI I C STEPS ..& In~an atomic step of the system, a process can

attempt to

••• Receive a message

••• Perform local computation on the
"

I '

basis of ~hether or not a message

~as delivered to it a~d if so which

one.

••• send an arbitrary but finite set

of messages to other processes.

The protocol prescribes the computation

& the message sent as a function of the

message recieved & the local state.

BYZANTINE GENERA! 5 PROB! EM: given a collection of

numbered from 0 to n

processes

1 Hhich

communicate by sending messages to one

another, to find an alogrithm by Hhich

process 0 can transmit a value v to

all the processes such that:

<1) If process 0 is nonfaulty; then

any nonfaulty process i obtains

value v.

<2) If processes i and J are

nonfaulty, then they both

obtain the same value.

Note that conditiori 2 folloHs from 1

if process 0 is nonfaulty.

CANDIDATE: A prdcessor p is said to be a candidate in round 1 of

a history H if p does not fail ~efore

round i and if H and the silencing of p

at round in of H are serial. Note that

if P fails in round i' of H are serial.

CONFTGIIRATTON ..L

Note that if p fails in round i of

serial history H, then p is a candidate

in round i of H. However p can be both

correct in H and a candidate in run in

of H.

of the system consists of :

••• Internal state of each process

••• Contents of message buffer.

i
F denotes any configuration where ·all

the correct processes have decided i.

CONSFNSIIS PROTOCOl : A consensus protocol enables an asynchronous

system of n processes, with some

faulty proceses, to reach an agreement.

CONSERVATIVE EXTENSION: If Hk is an initial sequence of a history

in u,
of HK

then the conservative extension

is the unique history H' in U

such that

<1) H'K = Hk,_.. and

<2> no processor fails after round K.

CORRECT PROCESS .;, A corr'ect-~process """ ~is a process ~hi ch a 1 ~ays

CRITICAl HISTORy:

follo~s the protocol until the

protocol completion. Ho~ever a fail-stop

process may die during the execution

of the protoco 1 , i • e. , it may stop

participating in the protocol, also

death of a process occurs ~ithout

~arning messages. In the model, it is

obvious that such a death can not,be

detected· by other processes. In

particular,. there is no ~ay to

differentiate bet~een a slo~ process &

a 'dead one.

An edge e in round k of history H is critical

if there is a history J in U such that

1) J is not output equivalent to H.

2) J is identical to H through round k
except for edge e, and ·

3) J is the conservative extension of Jk

In other ~ords, and edge is c~itical .

if altering the state of its message

and taking the conservative ext'ens ion

alters the output values of correct

processors. Note that A must speeifY

for any critical edge.

-~ -£-:§_ ~- ---

DECIDING~~ A run is said to be a deciding run if some process

reaches a decision state in that run.

DECISION STATE~ is the state in which the output register has

value 0 or 1.

DECISION VA! !IE~ A configuration C has decision value v if some

process p is in a deci~ion ~tote ~ith

yp ;:; v.

EVENT~ The step is completely determined by the pair e=(p, m),

EVENT! lA! AGREEMENT;

which is called an event.

The processors are said to have reached

agreement when the following two

conditions hold:

<1) all correct processors have given
the same value as output,

<2) if the origin is correct, then all
correct processors have ·given the
input value as output.

These two conditions define Byzantine

agreement [7_21].

We call such a state eventual

agreement, emphasizing the fact· tha't

nothing is assumed about the relative

times at which the cqrrect processors
I

give their output values.

FINITENESS DE A~ AlGORITHM~ A W8G alogrithm 8 is said to be

f-CANOTOATE ~

finite if every scenario % there is an

integer k such that for any scenario @

and all i belonging to P such that if

(k)

the restrictions of %i and @i to II

are equal, then 8i(%) = 8i(@).

A processor p is said to be an £-candidate in

round i of history H is p does not

fail before round i, and if both H and

the silencing of p in round i of H are

£-serial.

f-SERIAI HISTORY~ A history H is said to be £-serial if H is in

u, H has no more than f faults, for

each positive integer k<=f+1, the

number of processors exhibiting faulty

behaviour in Hk does not exceed k, and

no processor fails in H after round f+1.

INITIAl CONEIGl!RATTON ~ is said to be one in which each process
' ' starts at an initial state and empty

message buffers.

2-10

INITIAl STATE ~ The system initiallY starts with all the

processes in some initial state, with
' .

all the buffers empty, YP undefined,

and XP having some value in {Q, 1}. The

value can be assigned to YP form {Q, 1}

by the protocol. Once YP is assigned a

value v it cannot be changed, and P is

said to have decided v.

INTERACTIVE CONSISTENCY ~ <Oefination) Consider a set of N

isolated processors, of which it is

known that maximum M are faulty. Which

processors are faulty is not known.

Assuming two-party messages system and

the communicatin medium .to be

fail-safe and of negligible delay. Also

the sender of a message is always

identifible by the receiver. Let each

processor P has some private value of

information VP.

An algorithm for m,n > Q, based on an

excha·nge of messages that allows each

nonfaulty processor p to· compute a

vector of values with an element for

each of the N processors, such that:

(a) the nonfaulty processors compute
exactly the same vector,

-'

(b) the element of this vector
corresponding to a given
nonfaulty processsor is the
private value of that processor.

Such .an algorithm is said to achieve

interactive consistency, since it

allows · the nonfaulty p~ocessors to

come to a consistent view of the

values , held by all the processor,

including the faulty ones.

Note that the algorithm need not reveal

which ~rocessor are faulty, and that

the element of the computed vector

corresponding to faultY processors may

be· arbitrary, it matters only that the

nonfaulty processsors compute exactly

the sdme value for any given faulty

processor.

The computed vector is called an

interactive consistency (i.e.) vector.

Once interactive consistency has been

achieved, each noonfoulty processor

can apply on averaging or filter~ng

function to the i.e. vector~ according

to the needs of the application. Since

each nonfoulty processor applies this

function to the some vector of values,

an exact

reached.
2-12

agreement is necessarily

TNTERACTTVF CONSISTENCY £QR M EAIII IS: For each p belonging to p,

let FP be a mapping that takes a

p-scenario o-p and a processor q as

arguments and returns a value in v.
Intuitively, FP gives the value that p

I
computes for the element of the

interactive consistency vector

correspoding to q on the basis of o-p.

we say that {FPIP belonging to p}

assures interactive consistency for m

faults if for choice of N subset of p,

lnl >= n-m, and each scenario o-

consistent ~ith N,
I

(1) for all p,q belonging toN,
FP< o-p, q)!!o-(q ;) ,

(2) for all p1 q belonging toN,
r belonging to p,

Fp(o-p,r)=Fq(o-q,r).

~here o-p and o-q denote the

restrictions of o- to strings beginning

~ith p and q, respectively.

Instultively, clause <1) requires that

each non faulty processor p correctlY

computes the Pnivate value of each

nonfaulty processor q, and clause ~2)

requires that each t~o nonfaulty

Processors compute exactly the same

vector.

INTERNAl STATE ~

i-SCENARIO ..:.

Internal state of a process constitutes

••• va~ues in XP and YP

••• Program counter

••• Internal storage.

An i-scenario is a mapping from IIi to V

thus it describes the messages received

by process i. For any scenario %,we let

%i, be the !-scenario that is the

restriction of % to IIi, so %i, is the

part of % "seen" by process 1.

K~ EVE! SCENARIO: Let p be the set of processors and v a

set of value for k>=1, we define a

k-level scenario as a mapping from the

set of nonempty strings (possibly

having repetitions) over p of length <=

k+1, to v. For a given k-level scenario

o- and string w = P1P2 ••• pr, 2<+r<=k+1,

o-(w) is interpreted as the value P2

tells p·t that P3 told P2 that P4 told

P3 ••• that pr told pr-1 is pr's private

Value. For a single-element string p,

o-(p) simply designates P'S private

value vp. A k-level scenario thus

summarizes the outcome of a k-round

exchange of information.

2-14

K-RESTI TENT CONSFN~IS PROTOCru ~ is defined as·a protocol that

satisfies the following properties,

provided at any time maximum number of

faulty porocesses is K.
~

(1) Bivalence: If all the processes
0 1

are correct and both F and F

configurations are reachable.

(2) Consistency : Here there is no

(3)

reachable configuration where

correct processes decide different

values.

Convergence

configuration,

• • For any initial

lim Pr[a correct process has not
decided within t steps]

t->infinitY
= 0

MESSAGE SYSTEM: The ·different processes may communi cote by sending

messages to each other via the

message system. A messgge consists of

the pair (p, m) where p denotes the

name of the destination process. "m"

denotes the "message value" from a

fixed universe M. The message system

maintains a system buffer for each

process for messages sent not yet

2-15

recieved called mesSage buffer. It also

'includes the following primitives for

each process q.

SendCp.m>:Immediately place the message
m in process p's buffer

Recievecm>:
(1)

Either :
It take out some message
from q's buffer and return
it in ril

The

•
or

<2) It return the null value
even when the buffer is
not empty. It is a device
to model the arbitrarilY
long transmission delays
spent in a message
system.

The choice of (1) or (2) is

made nondeterministic subJect

only to the condition that if

receive< m) is performed

inf.ini tel y many times, then

every messages < p , m) in the

message buffer is event~aily

delivered.

message system is allowed· to

return null a finite number of times in

response to receive(m) even .if a message

(p,m) is available in the buffer.

m-EAIJJ I .w.BG AI GDRITH1 .B.:. An m-foul t W8G olgori thm 8 consists of a

set of mappings 81 from i .scenario

values received by destination into V~

for all i belonging to p, such that' for

any scenario % in ~hlch at least n - m

processes are non faulty:

< 1) If all processes in P are
nonfaulty in %, then for all i
belonging to p such that:
8i(%i);;: %(Q).

(2) For any i, J belonging to P such
that if i and J ore nonfaulty
in%, then 8i<%i) ;;: 8J<%J).

Mill II SET REI ATED DEE I NATIONS ..l Let N be the natural numbers,

including Q, and let R be the real

numbers. we vie~ a finite inul tiset :U of

reols as a function u: R --> N that ·rs

nonzero on at most finitely many r

belonging to R. Intuitively, the

function U assigns a finite multiplicity

to each value r belonging to R. The
. I

i
cardinality of a multiset U is given by

~ U(r)
<r belonging to R)

and is denoted by lUI. we say that a

multiset is empty if its cardinatly is

zero; other~ise it is nonempty.

The difference U-V of multisets U and V

is the multiset W defin~d by

{

U(r) - V(r) if U(r) - V(r) >= 0
W<r)=

0 otherwise.

The intersection of multisets U and V

is the multiset W defined by

W(r) = min < U(r), V<r)).

For the following deflnations, it is

assumed that the term multiset always

refers to finite multisets of real

numbers.

If g is a function on multisets, then
. \ .

k
g denotes the k-fotld iteration of g;

1 2
thus g = g, g = g o g, etc.

The minimum min(U) of a nonempty

multiset U is defined by

min(U)=min{r belongs to R:U(r) is non-0}

The maximum max(U) is defined similarly.

If U. is nonempty, let P(U) (the range
' .

of U) be interval [min(U), max(U)], and

let &<U) (the diameter of U) be max(U)

min(U). The mean mean(U) of a

nonempty multiset U is defined by

2-18

r U(r)
mean(U)=

(r belonging to R) I U I·

If U is nonempty multiset, we defin~

the multiset s(U) (intuitively, the

mult~set obtained bY removing one

occurence of the smallest value in U)
I

to be the multiset w defined by

(U<rl 1 if r = min(U)
W(r) =

U<r) otherwise

The multiset l<U) (remove one

,occurrence of the largest value in U)

is defined similary. If lUI >=2, then
' define reduce< U) = s< 1 < U)), the

result of re~oving the largest and

smallest element is removed from each.

ORDER! V CRASH EAT! !IRE: iS a crash failures in Hhich failing

processors must respect the order

specified bY the protocol in sending

messages to neighbour. <Recall that for

each round a protocol produces an

ordered set of labeled outedges that we

identify with messages to be sent.)

If a processor fails to send a

specified message, it must also fail to

send any message specified to be sent

after that message in the protocol

odering.

O!!TPIIT EO!!TVAI ENCF: Here, we take the transitive closure of the

relation that holds between H and J

(or Hk and Jk) when some processor

correct in ~both gives the same output

value in both.

PARTIAl CORRECTNESS 1l.E CONSENSIIS PROTOCOl :A consensus protocol is

,

PATTERN ..L

partiallY correct if it satisfies two

conditions.

1) No accessible configuration has
more than one decision value.

2) For each v { 0., 1 }, some
accessible , configuration has
decision value: v.{

·A pattern (for a history) is a function from the

set of faulty processors to integers

that gives the round number at which

each processor failed.

REACHABI E ~ ~

REGISTERS _;.

lf.all the processes performlng·atomic steps

in t belong to a subset of processes

s, then we write cs 1---- os, and say

that os is regchgble £cQm cs.

The configuration 0 is said to be

reachable if it is reachable from some

initial configuaration.

Each process p has the following :

*** Qne bit Input Register XP.

••• Output Register YP with values in
{ b, o, 1 }~

This)s also called Decision

••• unbounded amount of Internal storage

·~ _;. is the sequence of steps associated with a schedule.

SCENARIO I 1~ o moppin9 from the set P+ (poe;1t1ve

closure of p) of the nonempty strings

over p, to v. For a given p belonging

to P define a p-scenario as a mapping
~

from the subset of P+, _consisting of

strings beginning with p, to v.

SCHFOIII F ..:, A schedule from C is a finite 1 infinite sequence-of

events that can be applied, in turn,

starting from c. Thus a schedule is a

sequence of atomic steps •

If the execution of a schedule t from

a configuration c results in a

configuration o, we write

t
c 1---- 0

If there exists a schedule t such that
t

C 1--- o, we can also write C 1--- o;

SCHFru!l FR..:. is an agent that will determine the next atomic step

in the execution.

•
Probability measure on the space of

all possible schedules is provided bY

Probabilistic assumptions on the

.behaviour of the scheduler.

SERIAl HISTORY; An histor.y H is said to be serial if :

(1) His in u,
<2) for each positive integer k, k <= t,

the number of processors exhibiting,
faultY behaviour in Hk does not
exceed k, .and

(3) no processor fails after round t.

2-22

I

"o- lS CONSISTENT~~~ for a given chqice ~a subset of

p of nonfaulty processors and a given

scenario o-, say that o- is consistent

~ith N if for each q belonging to N, p

belonging to p, and ~ a set of all

string over p, o-(pq~) = o-(q~). In

other ~ords, o- is consistent ~ith N

if each processor in N al~ays reports

~hat it kno~ns or hears truth fully.

STI FNCING: Given a processor p in a history H in u, the silencing

'·

'

of p at rounf k of H is the unique

history H' (no~ necessarily in U) such

that

<1) H'k = Hk except that p sends no
messages in round k of H'.

<2> no processor <except possibly P>
fails after round k.

<3> P sends no messages after round k.

s TMI II IANEOI!S AGREEMENT: we say that the agreement is s i mu 1 taneous
if

<3> all correct processors give ~heir

outputs at the same round.

< .

SIEE ~ A step takes one configuration to another and consists of

a primitive step 'bY a single process
/ i

p. Let C be a configuration. The step

occurs in two phases as given' below '
\

<1) receive(p) is performed on the
message buffer in C to obtain a
va}ue m from M U {null}~

<2) depending on p's internal state in
C and on m, p enters a new internal
state and sends a finite set of
messages to other processes.

~mcnNFT~~ATION ~- Let C be a confiQuration and S be a subset of

SIIAPATTFRN ~

'

processes. A subconfigurotion Cs is the

restriction of C to the members of s.
i

Fs to denote any subconfiguration
---· ~-------~---~-----

where all the correct processes in S

have-decided i.

We call one pattern a subpattern of another if the
-'

corresponding history for the first

pattern has as faulty processors only

a subset of that of the second and the

first pattern- is the corresponding

restriction of the second.

If history H I

in U has a pattern of
\

failures that is a subpattern of that

of a serial history, then H is also a

serial history.

2-24

I-CCJ1PI!IAIIONS: A sequence of configurations <called rounds), co,
C1, c2 ••• , is aT-computation provided

there exist messages sent by each

process at each round such that:

'(O) CO is an initial configuratiDn;

(b) for every i, and every p belongs
to r, the messages sent out bY p
after Ci are exactlY those specified
bY p's message generation fuction,
applied to p•s state in Ci;

(c) for every 1, and every p belqngs
to r, P'S state in Ci and the
message sent to p after Ci.

In a T-computation, processes in T are

nonfaulty whereas processes ·not in T

may be fau 1 t,y •.

T-computation of an asynchronous

approximation algorithm is one ih which

the processes in T always ·follows the

algorithm, all proc~~~~~ (foulty oMd

nonfaultY) continue to take steps until

they reach a halting state, and any

process that falls to enter a haltfn~

state eventually receives all messages

sent to it.

\ .

~ TNTFRACTTVF CONSISTENCY PROAl EM: Each process i chooses a

···· ..

WEAK! V 61 ORA! COIN: A

private value wi. The process must be

then communicate among themselves to

allow each process to compute a public

value, such that:.

<1) If all processes are nonfaulty
and all the wi have same value
then every process computes
this value as its public value.

<2) Any two nonfaulty processes
compute the same public value.

This is equivalent to the WBG problem.

coin is called weaklY global if there

exists an absolute constant c > o, such

that for all v BELONGING TO { o, 1 },

' the probability that at least min {
I

L n/2 _j + t + t, n } processors all

see outcome V- is at least c.

WITNESS FQIIIVAI ENCE: For k round initial sequences, this is the

.J

tran~ltlvo clo~uro of th~ r~l~ti~n th~t

holds between Hk and J when for some

processor ~ correct in both. PHk = PJk.

Histories H and J witness equivalent if

their k round initial sequences ure

witness equivalent Jor every k •

In other ~ords, ~itness equivalence

(through round k) is the transitive

closure of the relation that holds

between t~o histories if there is a

processor correct in both that cannot

distinguish between the .t~o (through

round k).

TBEf)REMS, lEMMAS, AND T·BEIR PROf)FS

THEOREM h.!
. ··-.:.0.

If lVI >= 2 and n>=3m, there exists no {FPIP belonging to P~

that assures interactive consistency for m faults.

PROOF.

Suppose, to the contratry, that{FPIP • p} assures interactiv@

consistency for m .faults. Since n<=3m, P can be portioned into

three nonempty· sets A,8, and c:, each of which has no .. more than m

members. Let v and v• be two: distinct values in v. The general

plan is to construct three scenarios o< , $, and o- such that o<

is consistent with N=A U c, $with N= 8 U C and;o- ~ith N =AU 8~

The members of C will all be given private value v in o< and v•

In $. Moreovet, O(j $ and o-· will be constructed in such a way

that no distinguish o< from o- (i.e. o<a = o-a), and no processor

b belongs to 8 can distinguish$ from o- (i.e. $b = o-b). It

will. then follow that for the scenario o- processors in A and 8

will compte different values~for the members of c.
''

we define the scenarios o< , $ ~nd o- recursively as follows:

i) For each wan elemnt/·of positive closure of p, not ending in

' member of c, let o<(w) = $(W) = o-(w) = v.

ii) For each a belonging to A~ b belonging to·s, c belonging to C

Let o<<c) = o<<ac) = o<(bc) = o<(cc) = v ,
I

$ (C) : $ (aC) : $ (bC) : $ (CC) : V',

o-(c) = o-(ac) = o-<cc) = v, o-(bc):v•.

iii) For each a belonging to A, b belonging to s, c belonging to C

, p belonging to p, w is any string over P ending in c.

Let o<(paw~ = o<< aw), $ (paw) = o<< aw),

o<<PbW) = $ < bw), $ (PbW) = $ < bw),

O((PCW) = 0((cw), $ (pew) = $ (cw),

o-(paw) = o-< aw),

o-(pbw) = o-< bw),

o-(acw) = o<< cw),

o-(bc:w) -= $ (cw).

It 15 ec~5Y to verify by ii15Pect 1 on that o< , $ and o- ar~e in

fact consistent with N= A u c, B U c, A U s, respectively.

Moreover, one can show bY a simple induction proof on the length

of w that O((OIN) = o-(aw), $ (bW) : o-(bW)

for all a belonging to A, b belonging to s, w is any string over P
'

It then follows from the definition of interactive consistency

that for any a belonging to A, b belonging to s, c belonging to c
v = o<(c) = Fa<o<a,c) = Fa<o-a,C) = Fb($'b,c) = v•,

giving a contradiction.

I Ftf1A 2.....1 ..:..

. .
For. any finite WBG alogrithm 8 there is a_ nonnegative integer k

such that for any scenarios% and@ and all i bewlonging to P:

(k)
If the restrictions of %i and @i to IIi are equal, then

BiC%i) = BiC@i) ·•

PROOF:

(r)

Define an r-level finite scenario to be a mapping from II to v.
For any fixed 1, we define a tree structure on the set of all

such finite scenarios bY. lettilng an r~level scenario% be an

ancestor of an r'-level senario %' if r < r' and %i and • is the
\

(r)
restriction of %'i to IIi • Consider the subtree consisting of

r-level scenarios ro, for all r, such that there exist (infinite)

<r>
scenarios @ and A whose restrictions to IIi equal %i, and for.

which BiC@i) does not equal 81(Ai). If this subtree were infinte

then by Konig's lemma it would have an infinte path. Such an

infinte path defines an infinte scenario % which contradicts the
I definition of finiteness. Hence, this subtree must be finite,

which implies the existence.of a ki such that for any scenarios%

and @
(k i)

: if the restrictions of% and@ to IIi

8 i (% i) =8 i (@ i) .

are equal then

\

To complete the Proof, we let k equal sup{ ki : 1 belongs to p}

I FEMA .2....2...:.

For any path Q,p1 ••••• pk belonging to II : o-(Q,p1, ••••••••• pk)

mod 3 = pk.

PROOF:

This is simple consequence of the observation that

_&(r,s) + &<s,t) is equivalent to< &cr,t)mod 3).

For any integer r, we let r denote r mod 3, which equals Q, 1, 2.

' we now choose two particular elements of v, which we denote T

and F. The following lemma asserts the existence of a sequence of

(r)
scenarios % for integral values of r (including negative

integers) which Will form the basis for a proof by contradiction.

(r)
Only two values, denoted T and F, appear in % • In this scenario,

Processes r+1 and r+2 are nonfaulty, so they relay values

-correctly. The faulty Process r acts correctlY excepts when

relaying. messages # for which o-(#) = r , in which case it sends

the value T to process r + 1 and the value F to Processor r -·1 =

r + 2.

I Rt1A .2....3.:.

For any values T and F in v, and any integer r there is a

Cr)
scenario% such that for i = 1, 2 . .

Cr)
1) Process r ~ i is nonfaultY in %

2) For any # belonging to II_ . .
r+i

(r)

={~
if

% (#)
if

PROOF:

(r)

o-(#) >= r + i .
o-(#) < r + i .

BY Leema 2, condition. 2 defines t___ for i = 1, 2. Since there
r+i

<r) , .
are no requirements on %_ , and Process r is allowed to be faulty

r

, we need only show thpt Condition 2 is achievable when

Processor r + 1 and r +2 correctly relay inessa.ges to one another.

However, this follows easilY from the observation that if #

belongs to II __ , then o-(#, r + i z.1) =a~(#):, 1 •
r+i

~

/

3-5

For any integer r

IFFMA ~

(r) (r)
: if % is as in Lemma 2.3, then %___

r+2

<r+1)
= %___

r+2

If there are at least two distinct elements in v, then.there

does not exist a.1-fault W8G algorithm for n=3.

PROOF;

Let 8 be such an algorithm, and let T and F be distinct elements

Of V.

T
Let %

F T F
and % be the scenarios defined by % (#) = T and r- (#) = F

for all 1 belongs to II. It follows from condition 1 of the

T F
definition of a W8G·algorithm that. 8 <%) = T and 8i<%) =F. for

1 i - 1

(r)
all i. For each integer r, let % be the scenario whose existence

was proved in Lemma 3.

Let k be the nonnegative integer whose existence is guaranteed

T
by Lemma 1, with% substitued for%. Since o-(1) is less than or

(k)
equal to the length of #, for any 1 in II ___ , we have o-(~) <• k

1<+1 ..

(I<)
< K + 1 , so % (#) = T. Hence the restrictions of·the scenarios

T (I<) (I<) (I<)
%.___ and %..__ to II- are equal, so we must have a__ (%.___).

. 1<+1 1<+1 1<+1 1<+1 1<+1

equal to r. Similarly, choosing such a nonnegative integer I<'

F
for % , since.- (O-(#)) is less than or equal to the length of #,

(I<')
for any# in II ___ , we have o-(#) >= -1<' = (-I<'- 1) + 1 ' so

-I<'

< -I< '-1 > f < I< ' >
%.___(#) = F. Hence the restrictions of %___ and %.___ are equal,

-I<' -I<. -I<'

so a___ %((-1<.'-1)/(-1<.')) =f.
-I<'

<r> '<r+1)
It follows from Lemma 2.4 that for any r:B___(%___)=~<%___).

r+2 r+2 r+2 ·r+2

(r)
Since r + 1 and r + 2 are nonfaulty in % , it follows from

(r)

ljljMd it i ljli 2 ijf t~·,~; ct~;f i 11 it i ljM ljf W813 t1 1 ~ljf"' ithm tt'1t1t a__ ("----- > l!l

r+1 r+1

(r)
8___(%___). Hence, for each r:

r+2 r+2

(r)
B..__(%__)

r+1 r+1

(r+1)
= 8___(%.__) •

r+2 r+2

(I<) (-I< '-1)
A s.imple induction argument shows that 8__(%__)=8__(%...__).

(I<)
However, we saw above that 8___(%___) =

1<+1 1<+1

1<+1 1<+1 -I<' -I<'

(-I< '-1) .
T and B___(%___) = f.

-I<' -I<.

Since T and F are distinct elements this provides the required

contradiction.

THEOREM .2...ll I

If n>2 and V contains· at least. two distinct elements then there

exists an m-fault WBG algorithm if and onlY. n > 3m.

PROOF:

The "if" part foll6ws from the existence of algorithm to solve

the original Byzantine Generals Problems demonstrated in [2_1)

~nd [1_0]. To prove the "only if" part we assume the ~xistence of

such an algorithm and derive a contradiction.

Assume 8 is an m-fault WBG algorithm Hith 3 <= n <= 3m. we Hill

use it to construct,a 1-fault WBG algorithm for three processes,

thereby contradicting Lemma 5. We first partition the cn-eleme.nt)
t

set P into three nonempty, disJoint sets PO, P1, P2 each
' containing at most m elements., <We can do this becgsue 3<=n<=3m).

Let 0 be an element of PO. We define the mapping 1 :P->{0',1 ',2'}

by letting l(P) = i' if and only if p belongs to Pi. We extend l

to- a mapping from P• into {0', 1 •, 2'}• in the obvious HOY by

1 ett i ng 1 (PO, • • • , Pk) = 1 (PO), • • • , 1 (Pk) •

We also let 0", 1", 2" be element in P such that o~ = 0 and 1"

belongs to P1 and 2" belongs tp P2. Hence, !<1") = i' •

3-8

We construct a 1-fault WBG algorithm B' for the set P'={0',1 ',2'}

·as follows. For any scenario%' on p•, we define the scenario

/\[%'] on P by /\[%'](#) = %'(~(#)) •

The WBG algorithm 8' is defined by .B' <%') = 8 < /\[%' J) •
i' i' i" i"

(

Observe that if i' is nonfaulty in %' , then every process in Pi

(including i") t's nonfaultY in/\[%'] •

. Tor show that B' is a 1-fault WBG algorithm, Ne must verifY the

following conditions.

1) If all process in P'are nonfaulty in%', then for all i!

belonging toP': B' (%') = %'(0').
i ' i '

'2) For any ii', J' belonging toP' : if i' and J' are nonfaultY

i n % ~ , then B ' <% ') = 8 ' <% ') •
i' i' J''J'

T~ prov~ these conditions Ne use the observatibn that if Process

i' is nonfaultY in%' , then every process in Pi is nonfaultY iri

1\C%']. Hence if all processes in P' are nonfaultY in %' then all

processes in p·are nonfaulty in/\[%']. Using condition 1 for the

m-fault WBG algorithm g, Ne.see that

8' (%') = 8 (/\[%' J)
i' i' i" i"

= /\[%'](0")

= %'(0'),

which proves·condition 1 for 8'.

\.;

Next assume that the i' and J' are nonfaulty in%'. Since i" and

J" are nonfaulty in /\[%'], condition 2_ for B Yields

8' <%') = B (/\[%'])
i' .i' i" i"

= B </\E%'JJ")
j"

= B'<%')
J" J'

This proves condition 2 for B'· we have thus- constructed a

1 :-foul t WBG algorithm for the three process 0', 1 ', 2',

contradicting Lemma 2.5.

JHEQREM .2....2.;.

" I

If lVI < o, ,for all v • v, then the algorithm AG<k) satisfies
I

the following properties.

1) If all processes are nonfaulty then vi = v for every i.

2) If Processes i an·d J are non fau 1 ty then 1 vi - v J 1 < 20/k

PROOF:

Note that no limit is placed upon the number of faulty ~recess~

The proof of this theorem uses the following lemma i.e. lemma 2.6

3-10

'

' To prove the first property we simPlY observe that if all

process are nonfaultY then they correctly relay values, so all

(r)
the v equal v. To prove the second property we note that if

i

Process i and J are nonfaulty, then they correctlY relqy the

(r) (r)
values ··of v and

i
v t? one another in round r+1. It therfore

J

follows that for each r); 1 :

< r) < r+1) < r) (r+1)
v (; v ' v (; v •

i J J i

The second property then follows immediately from the aboye

(r)
lemma substituting v for s

i r

I F11!1A &.6._ :

(r)
and v

J
for t

.r
•

Assume that lVI < · D for all v belonging to v. If s , t are
r r

elements of V such that:

s (; t ' t (; s
r r+1 r r+1

for all r with 1 · <; r < k then·
! .

k k

tr I }: s ~ < 20.
r;1 r r;1

PROOF:

It follo~s from the first inequalitY of the, hYPOthesis that:

k k
L s <= s +

- r=1 r k
~ t
r=2 r

From this we deduce that

The symmetric argument,
\

k
"L s
r=1 r

k
... L. t <= s - t

r=1 r k 1

interchanging s and t Yields .

k k

L: t - "E s; <= 20 •
r=1 r r=1 r

<= 20 •

and combining the t~o inequalitites proves the lemma.·

Q •. E. o.

THEOREM .2&3.:. I

(•)
If V is a bounded set of numbers then AG is an infinte m-fault

WBG algorithm for any m.

I
PROOF:

The proof is quite simple and rests upon the observation that if

1 and J are nonfaultY then'

for

(r) < r+1)
<= v

(r) < r+1)
v

i j ' v
J

<= v
1

(r)
all r>O ~hich in turn implies that sup{ v } =

i

3-12

(r)
SUP{' V }.

J

\

Sup·pose that from . some configuration C, the schedu 1 es o-1 and

o-2 · lBad to configurations C1, C2, respectively. If the sets of
I

processes taking steps in o-1 and o-2, respectively, are disJoint,

then · o-2 can be applied to C1 and o-1 can b~ applied to C2, and

both lead to the same configuration C3. <See Figure 3.3.1.)

PROOF:

The result follows at once from the system definition, since o-1

and o-2, do not interact.

No consensus protocol is totallY correct inspite of one fault~

PROOF:

Assume to the contrary that P is a consensus protocol that is

totallY correct inspite of one fault. we prove a sequence of

lemmas which eventually lead to a contradiction.

3-13

I

The basic idea is to show circumstances under which the

protocol remain forever indecisive. This involves two steps.

First, we argue that there is some .initial configuration in Which

the decision is not already predetermined. Second, we construct

an admissible run that avoids ever taking a step that would
I

commlt the system to a particilar decision.

Let C be a configuration and let v be the set of decision values

. qf configurations reachable fr-om c. C is bivalent if _lVI = 1, let

us say a-valent or 1-valent according to the corresponding

decision value. BY the total correctness of p, and the fact that

there are always admissibl~ runs, V is not a null set •

P has a bivalent initial configuration.

PROOF:
I

Assume not. Then P must have both O-valent and 1-valent initial

canfi~ur~tions by the assumed partial correctness. Let us call

two initial configurations adjacent if they differ only in the

initial value XP of a ~Ingle process p. AnY two initial

configurations are Joined by a chain of initial configurations,

each adjacent to the next. Hence, there must exist a a-valent

initial cofiguration CO .adjacent to a ~-valent initi9l

configuration C1. Let p be the process in whose initial value

they differ.

3-14

No~ consider some admissible deciding run
I

from CO in ~hich

process p takes no steps, and let o- be the associated schedule.

Then o- can be applied to C1 also, and corresponding

configurations in ~~o runs are identical except for the internal

state of process p. It is easi)Y sho~n that both runs eventuallY

reach the same decision value. If the value is 1, then CO i~

.bivalent; other~ise, C1 is bivalent~ Either case contradicts the

assumed nonexi~tence of a.bivalent ini~ial conffiguration.

let C be a bivalent configuration of p, and let e = (p,m) be an

event that is applicable to c. Let Q be the set of configurations

reachable from C ~ithout applying e, .and let 0 = e(Q) = {e(E) 1 E

belongs to Q and e is applicable to E}. Then, 0 contains a

bivalent configuration.

PROQF:

Since e is aPPlicable to c, then by defination of Q and the fact

that message can be delayed arbitrarily, e is applicable to every

E belonging to Q.

No~ assume that 0 contains no bivalent configurations, so every

configuration 8 belonging to 0 is univalent. we proceed to derive

a contradiction.

3-15

Let Ei, be an 1-valent configuration reachable from c, i = Q, 1 •

<Ei exists since Cis bivalent.) If Ei belongs too, le~ Fi= e<Ei).

Otherwise, e was apPlied in reaching Ei, and so there exists Fi

belonging to 0 from which Ei is reachable. In either case, Fl is

!-valent since Fi is not bivalent (since Fi belongs to D and 0

contains no bivalent configurations) and one of Ei and Fi is

reachable from •the other. Since Fi belongs too, i = Q, 1, 0

contains both o-valeht aand 1-valent configurations.

Call two configurations neighbours if one results from the other

in a single step. BY an easy-induction, there exist neighbours

CO,·. C1 belongs to 0 such that Bi = e<Ci) is !-valent, i =Q, 1.
\

Without loss of generality, C1 - e'<CO) where e'=(p', m') •

.c.cs.e 1...:. If p' is not equal to p, then 01 = e '<DO) bY Lemma 3.1 •

This is impossibl~, since any successor of a a-valent

' configuration is 0 - valent •

.c.cs.e ~ If ~· = p, then consider any finite deciding run from CO
• iri which P takes n steps.

l ;

Let o- be the corresponding schedule, and let A = o-<CO). Bv

Lemma 3.1, o- is applicable to Oi, and it leads to an !-valent

cof1guration El = o-(Oi), 1 =Q, 1. Also by·Lemma 1, e(A) =EO and

e(e'(A)) = E1. Hence, A is bivalent. But this is impossible since

the run to A is deciding (by assumption), so A must be univ·arent.

In each case, we reached a contradiction, so 0 contains a

bivalent configuration.

3-16

THEOREM 3..2.:.

There is a partiallY correct consensus protocol in Hhich all

nonfaulty processes alHays reach a decision, provided no

processes die during. its execution and a strict maJoritY of t_he

processes die during its execution and a strict maJoritY of the

processes are alive initially.

I EFMA ..4.J..:.

With a k-resi lent consensus protocol, for any reachable
I
!

configuration c, and for any subset S of process that contains·

0
at least n-k correct processes, either Cs 1- Fs or

PROOF:

1
Cs 1- Fs.

Let C be a reachable configuration; S be a subset of process that

contains at least n-k correct proce~ses, and S be the complement

of S (i.e.the set of processe~, that are not inS). Note that lSI

, <=k. Assume first that all the process in S are fail-stop.

Suppose that, after reaching configuration c, all the processes

die Hithout sending Horning messages. This results in a

configuration c•. we have C's=cs. From the consi~tency and the

c.onvergenc.e propertles c•f the t:.-resi Jent protoc.oJ ~ ~~o~e must: hove

0 1
C's 1- Fs or C'SI- Fs. Since C's = cs, and since the death of

0
process in S cannot be detected, He have Cs 1- Fs

1
or cs 1- Fs.

This must also hold even if ther are correct processes in s.

3-17·

I ~A ~ [4 31:

' For ,k>=1, any k-resi lent consensus protocol has a bivalent

initial configuration.
)

PROOF:

Suppose all the processs are correct. Initial configurations

differ only by the processes input values. T~o initial
-configuration differeing bY the input a value of only one process

are adjacent. Assume, for contradiction there is a k-resilent

protocol such that any initial confilguration is either a-volent

or 1-valent. BY the bivalence property of the protocol there must

be one of each. Therefore there must be t~o adjacent initial

0 1
configuration, I and I , that are a-valent and 1-valent,

respectively. These configurations differ only by the input value

of some process p. Therefore, Is=Is, ~here S includes all the

0 0 0 1
processes except p. From Lemma 4.1, either Is 1- Fs or Is 1- Fs.

0 0 1 0
If Is 1- Fs, then Is 1- Fs, and therefore ~e have I1 1- ~0 ~ But

11 is 1-valent a contradiction. A similar contradiction is

0 1
obtained if ~e assume Is 1- Fs •

THEOREM ~

There is no I n/2l -resilent consensus protocol for the fail

stop case. ·

' ..

·pROOF:

Assume there is such a protocol and consider a system in which

'all the processes are correct. Let C be any reachable
'

configuration, S be any subset of processes of size ·L_ n/2 _J and

S be the complement of s. we claim that Cs and Cs are either both

a-valent or both 1-valent.

From Lemma 4.1 , since the protocol is r n/2 I - resilent and

i i_
lSI, lSI >= n- I n/2 I, we have Cs 1- Fs and Cs 1- Fs for some

decision values i and J. Suppose that there exists two schedules

o-O o o-1 1_
o-O and o-1 sucn that Cs 1---- Fs and cs 1---- Fs (or viceversa).

Then we can apply the schedule o- = o-O • o-1 to configuration
' c, and this result in a confilguration where processes in S

decide 0 and processes in S decide 1 (or,vice versa). This

contradicts the consitency of the protocol and the claim is

proved. \

BY Lemma 4.2, there is a bivalent initial configuration r. From
I

the claim without loss of generalitY both Is and Is are 1-Valent.

o- o t
Let o- be a schedule such that I 1---- F • we denote by I. the

configuration reached from I after the first t steps in o-.

o I a- o I o- _lo-1
Note that· I = I and I = F • Clearly both Is and Is are

tr t_
a-valent. Lett be the smallest index such that both IS and Is

are a-valent. Note that t>a. From the initial claim, and the

t-1 _t-1
minimalitv of t, both Is and Is must be 1-valent.

I

Let p be the process that performs the atomic step s such that

t-1 s t t-1 t
I 1--- I • Suppose p belongs to s, and therfore Is 1- Is •

t t 0 t-1
Since Is is a-valent we have Is 1- Fs • Then we must have Is 1-

0 t-1
Fs • But Is is 1-~alent and this is a contradiction. we obtain

a similar contradiction if we.assume that p belongs to S.

THEOREM ~

For any k, a<= k <= L < n- 1) ;· 2 _J, the protocol 4_1 is a

k-resilient consensus protocol for the fail stop case.

PROOF:

We need the following few definition. Each execution of the

protocol ou~erloop is called a phase. A process is in phase t ,if

at the begining of thi~ Phase its var·iable phaseno has the value

t. A message <witness fori) whose phaseno field is ~qual f6 t

I

3-2a

is called a t-message (t-message for i). A process P decide in

phase t if it sets the decision variable~ ~hile its phaseno

variable is equal to t. The value of the variable ~ of process

t
p, ~hen p is at the begining of phase t, is denoted bY ~ •

we prove the therorem bY sho~ing the protocol's constitency,

deadlock-freedom, convergence, and bivalence, in the presence of

up to k faulty processors.

Consistency:

Let t be the smallest phase in ~hich a process decides. We claim

that, for any processes p and q ~e cannot have both

t t
~i thness_count< 0)P > 0 and ~i.tness_count(1)q >0. Suppose for some

t
i, ~ i tness_count(i)p > 0. Then process p, 1 n phase t-1 , mu·st have

received from some process r a (t-1)-~itness for i. So r must

have received in phase t-2 more than n/2 (t-2)-message ~ith value

t
i. Therefore if both ~itness_count(Q)p > 0

t
and ~itness_count<1)q

>O, since there are at most n processors, there must be a least

one processor that sent (t-2)-messages ~ith both values. This is

impossible in the protocol 4_1,and the clalm is proved. From this

claim and the description of the protocol, it is no~ easy to

check that a process can never have both ~ltness_count(Q) and

~i tness_count(1) greater. than 0 in.- the same phase.

Let t be the smallest phase in which a process decides, let us·

say process p decides 0 in phase t. We prove that no other

process q can decide 1.

t
Since p decides 0 in phase t, we have witness_count(Q)p > k. From

t
the claim, we cannot have witness_count<1)q > k • Therefore if q

decides in Phase t, it also decides o.

We now show that all the t-messages sent are of the form ct, o,

t
cardinallity). Sice withness_count(0)P > k process p recives more

•
than k c t - 1)-witness for Q. Consider a process r that sends a

t message. Process r must have received n-k (t-1)-messages, and

one of them must be a (t-1)-witness for Q. Then process r

·increments witness_count(Q) in phase t-1. From the initial claim,

process r sets its value to 0 in phase t-1, and it sends (t,.o,

cardinality) message~ in phase t.

\ '

Corisider a process q that decides in phase t+1. From the·obove

remark, all the t-messages. received by q have.value o, and

therfore q must decide o.

We no~ prove that all the (t+1) messages sent are of the form
..

<t+1, o, n-k). Consider a process r that sends (t+1)-messages.

From the description of the protocol 4_1, we see that if r

. 3-22

decides in phase t, the (t+1) messages it sends are of the form

(t+1r Q, n-k). If r does not decide in phase t, it must have

received n-k. Thefore it sends (t+1, o, n-k). If r does not

decide in phase t, it must have received n-k t-message in phase

t,.the Ct+1)-messags it sends are of the form Ct+1, o, n-k). If r

does not decide in phase t, it must have received n-k t-message

in phase t. we already proved that all the t-messages have value

Q. so, in phase t, process r sets its value to 0 and its
\

cardinality ton-k. Therfore, i~ sends (t+1, Q, n-k) messages in

phase t+1.

A process r that reaches phase .t+2 must have received n-k
I .

(t+1)-messages. From the remark above all the (t+1) messages are

witnesses for 0 and therfore r decides 0 in phase t+2.

Since any process that reaches phase t+2 decides Q, no process

can ever be in a phase higher than t+2 dnd no process can decide

1 •

Oegdlock-freedom:

Since processes wait for each other's messages, the protocol

might be exposed to deadlocks. we prove that the protocol is

deadlock free.

'Suppose for contradiction the protocol runs into a deadlock. Let

D be the set of deadlocked processed. Each process q in D is

3-23

, I

deadlocked in phase tq. Let tO = min t , and P belongs
(q belongs to 0) q

to D be a process that is deadlocked in phase tO. Let S be a set

of n-k correct processes. There are two possible cases.

1) No process in a phase t, t <= tO - 2. BY the minimality of tO,
'

every process in S either decides in phase tO - 1 or tO, or

it reaches Phase to without deciding in either case it send

tO - messages to all the processes. Therfore there will be at

least n k tO-messages in p's buffer and p cannot be

deadlocked .in phase to; this is a contradiction.

2) Some process decides in phase t, t <= tO - 2. Let t be the

smallest phase in which a process decides. In the proof of

the protocol consistency, we shwd that no process can ever be

in a phase greater than t+2 decides. Note that p is

deadlocked in phase tO >= t+2. This is a ~ontradiction, and

the proof of deadlock freedom is complete.

Convergence:

Let S be a ~et of n-k correct processes. Suppose no process in S

decides in a Phase t, t<to. We prove that there is a fixed Theta

such that, with probabililty greater than Theta, all the processes

in S decide in Phase tO + 2.

Since there are no deadlocks, every process in s will reach

Phase tO. Note that fort= tO , tO+ 1, and tO+ 2, from the

assumption of fair scheduler there is a positive constant Rho such

that ~ith probabilitY greater than p, every process in S receive

in phase t. In other ~ords, ·~ith probability greater than Theta =
3

<Rho) for three consecutive phase all the processes in S exchange

messages exclusively among themselves obviously to the rest of

the system. It is clear from the protocol that, if this happens,

then all the processes, in S decide in Phase tO + 2.

Bivalence:

If all the processes start ~ith the same input value, al1 the

correct processes decide that value ~ithin t~o steps.

lfH1A ~

With k-resilent consensus protocol, for any reachable

configuration c, and for any subset S of proesses that contain at

0 1
least n-k correct processes, either cs 1- Fs or cs 1- Fs by some

legal schedule.

PROOF:

The malicious processes can behave just like fail-stop processes

a~d die. The proof follo~s from this observation and the proof of

Lemma 4.1.

3-25

THEOREM !i...3.;.

There is no r n/3 I resi lent consensus protocol for the

malicious case.

PROOF:

Suppose there is a r- n/3-, - resilent protocol. Let S and T be

subsets of processes of size L 2n/3 _J such that IT U 51= n.

Note that IT intersection 51 <= n/3. Let C be a legallY reachable

configuration. All the mallicious processes have follo~ed the

protocol so far. If they contaniue to· folio~ the protocol then

there is no ~ay in ~hich they differ from correct processes.

i i
Therfore bY Lemma 4.3, Cs 1- Fs and Ct 1- Ft , for some decision

values i and j.

We claim that Cs and Ct are either both a-valent or both

1-Valent. Suppo~e not then ~lthout lo55 of generality there are

o-o o
legal schedules o-o and o-1 such that cs 1--- Fs and Ct

o-1 1
1--- Ft •

Suppose that all the processes in T intersection S are malicious.

The follo~ing schedule is possible.

From C by schedule o-O ~e first reach a configuration ~here all

the correct processes in S decide o. Then the malicious processes

in S intersection T change there states and their buffers' content

back to ~hat they ~ere in c, resulting in some configuration C'.

3-26

\

The only difference bet~een Ct' and Ct is that in Ct' the buffers

of the process in T may have additional messages (that ~ere added

o-1 1
during the execution of o-o). Since Ct 1---- Ft , the processes

in T can no~ follo~ the legal schedule o-1 from configuration c•,
until all the correct processes in T decide 1. Then shcedule

violates the consistency of the ~rotocol and the claim is proven •

. /

The rest of the proof follo~s closely the last part of the proof

of Theorem 4·1· Let I be the bivalent initial configuration

guranteed by Lemma 4.2. From the claim, ~ithout loss of

generallity, both Is and It are 1-valent. Let o- be a legal

o- o t
schedule such that I 1--- F • We denote bY I the configuration

I o- I
reached from I after the first t step in o-. Clearly both Is

I o- I
and It are a-valent. Let t be the smallest index such that both

t t
Is and It are a-valent. Note that t > o. From the initial claim

t-1 t-1
and the minimality of t, both Is and It must be 1-valent.

Let P be the process that performs the atomic step s such that

t-1 s t
I 1--- I

t 0
Assume that P belongs to s. We have Is 1- Fs, and

t-1 0 t-1
therefore Is 1-- Fs • However Is is 1-valent and this is a

contradiction. We obtain a similar contradiction if ~e assume

that P belongs to T.

3-27

THEOREM ~

Fpr any k, 0 <= k <= L < n - 1)/3 _J, the protocol 4_2 is a

k-resilent consensus protocol for the malicious case.

PROOF:

We show the protocol's d~adlock-freedom, consistency, convergence

and bivalence, in the presence of upto k faulty processes. we use

the same notation and definitions as in the proof of Theorem 4.2.

Oeadlock-frgedom:

We have to prove that it iS always POSSible -for a process to

accept n-k messages. Consider a correct process p in phase t,

where t is the smallest phase among correct processes in the

system. At least n-k correct processes are in phase t or in a

· higher phase. Let q ~e such a process. Process q has already sent

a (initial, q, v, t) message to all the other processes. Since

there are at least n-k correct processes, p's buffer will receive

at least n -k <echo, q, v, t) messages. Since n-k > (n+2)/2, then

P at phase t, eventually accepts this message with value v from

q. Therefore P accept n-k messages from correct processes and p

proceeds to the next phase.

Cortsisteocy:

Consider any two processes p and q at some phase t. we claim that,

if P and q accept a message from some processor, then these
/

3-28

messages must must have the same value. Suppose not then at phase

t, p accepts a message ~ith varue 0 from r and q accepts a

message ~ith value 1 from r. Then more than (n+k)l2 process sent

(echo, r, o, t) messages top, and more than cn+k)l2 processes
\

echoed (echo, r, Q, t) and (echo, r, 1, t). Since there are at

most k malicious processes then at least one correct process has

sent both <echo, r, o, t) and <echo, r, 1, t). From the

description of the protocol, correct processes cannot do that and

hence a conta~iction.

Let t be the smallest phase in ~hich a correct process decides.

Let'us us say process p decides 0 in phase t. Process p must have

accepted message ~ait value 0 from a set S of more than <n+2)/2

processes. BY deadlock-freedom, any'other cor~ect process q ~ill

accept at phase t, messages from n-k processes. Therfore it must

accept messages from more than (n + k) 1 2 - k = (n - k) I 2

proces?es in s. BY the claim the value of the messages accepted

by q from processes in S must ~e Q. So q accepts more than

C n - k) I 2 messages ~ith value o, and it changes its value to

o.
At Phase t+1, all the correct processes ~ill have o. Note that it

takes at least < n - k) 1 2 messages ~ait value 1 to change the

value of a correct process to 1.

Since there are only k < n/3 malicious processes and k < cn-k)l2,
'

this can never happen. Therfore from phase t on, all the correct

processes ~ill have value 0 and they can not decide 1.

Cooyergeoce:

Let S be a set of correct processes that have not decided yet.

Suppose no process in S decides in a phase t, t < tO. we prove

that there is a fixed Theta such that, with probability greater

than theta, all the processes inS decide in phose tO+ 1.

Since there are no deadlocks, every process in S reaches phase

tO. From the assumptions on the system behaviour there is such

that in phase tO and tO +1 the follpwing happeni with probabilitY

greater than Theta. At phase tO, every process in S accepts

messages from the same set of n-k processes. At phase tO+ 1,

every process in S accepts messages only from correct processes.

It is clear from the protocol that all the processes in S decide

in phase tO + 2.

'Bivalence:

If all the processes start with the same input value within two

Ph~~~~.all the correct processes decide that value.

THEOREM ~

It is impossible to achieve asynchronous BYzantine Agreement with

k >• n/3 •

PROOF:

Suppose it is possible; since K>• n/3, we can pa~tition the

processes to three disJoint sets, A, B and c, of size k or less • .

Let the transmitter be in A and consider the follo~ing scenarios:

<1) The processes in A and B are correct, and the transmitter

sends I a-messages. The processes in C are malicious, and they

do not send any messages during the protocol. Since the

transmitter is correct, the processes in A and B ~ill agree

on 0 ~ithin some time t.

(2) Only mthe tranmitter is malicious. It sends a-messages to

processes ih A and s, and 1~messages to processes in c. Also,

messages from C are delayed for a period longer than t before

they are received. The processes in A and B have the same
'

vie~ of the system as in scenario 1, and therefore can agree

on a at time t.

In a similar fashion ~e can construct scenario 3 ~ith the

follo~ing properties:

(3) Only the transmitter is malicious. It.-sends 1-messages to A

and c, and a-messages to B. Messages from B are delayed for a

period longer than t'. At time t' the processes in A and c
agree on 1.

N~w W~ bdH tombine ~cenarios 2 and 3 to yield a contradiction:

4) The processes in A are malicious, the processes in B and c are

correct. The processes in A send messages to processs in- B

as in scenario 2, and to processes in c as in scenario 3.

3-31

All messages bet~een in B and processes in C are delayed for

a period longer than max(t, t'). In this scenario at time

maxc t, t'), the processes in B ~ill agree on 0 and the

processes inC ~ill agree on 1, a contradiction.

THEOREM

The protocol 4.3 acheives Asynchronous BYzantine Agreement for

k = 1, ••••• , L n-1)13 _J malicious processes.

PROOF:

-We have to sho~ that if some correct process p decides some

value then all the correct then they alll decide on the

transmitter's value. ,

First ~e clalm that no t~o correct processes p and q can send

ready messages ~ith different values. Suppose this is possible,

then p received more than c n + k) 1 2 cecho, 1) messages, or a

< ready, 1) message from a correct process. Similarly, q received

more than (n + k) 1 2 (echo, 0) messages, or a (ready, 0)

message from a correct process. In either case, some t~o correct

processes, and s and t, received more than <n + k) 1 2 (echo, 0)

messages and more than < n + k) 1 2 <.echo, 1) messages,

respectively. Therefore, some correct process r must have sent

both < echo, 1) and < echo, 0) messages. But t.his is impossible

3-32

for a correct process. Since decision require 2k + 1 ready

messages ~ith the same value, it is also clear that no t~o

correct process can decide different values.

Suppose p decides i, then p received 2k+1 (ready, i) messages.

At least k + 1 of them ~ere sent bY correct processes. Therfore,
I

every correct process ~ill also receive at ~east k + 1 <ready ,i)

messages, and ~ill send its (ready, i) message. Thus, at least

n-k process ~ill send(ready, i) messages. Therefore, every

cor~ect process ~ill receive at least 2k+1 < ready, i) messages

and ~ill decide i.

It ls clear that if the transmitter is correct, then all the

correct processes ~ill decide on its value.

I FFMA .5...1..:.

Suppose that V and W are nonempty multisets. Then

1) IV intersection WI - IS(V) intersection s(~)l <=1;

2) IV inter.sec~ion WI - ll(V) intersection 1(~)1 <=1.

PROOF:

We prove the first inequality; the argument for the second is
/

symmetric.

3-33

If V and W have the same minimum, then the same element is

removed from each, and hence at most one element is removed from

their intersection. If the minima of V and W are not the same,

then same, then either the minmum of V is not in w, or the

minimum of w is not in v. In either case, at most one element is

removeq from the intersection.

IEEMA ~

Suppose that J is a nonnegative integer and that v and W are

multisets such that lVI >= 2J and IWI >= 2J. Then

j j
IV intersection WI - I reduce (V) intersection reduce (W) 1 <= 2J

PROOF:

Follo~s from repeated application of Leema 5.1.

I FFMA .5...3.:.

Suppose that J is a nonnegative integer and that u and v are

nonempty multisets such that IV - Ul <=J and lVI > 2J. Then

. j
A<reduce <V)) is a subset of A<U).

PROOF:

j

Suppose A<reduce <V)) is not a· subset of A<U). Then either

j j
min<reduce <V)) < min(U) or max(reduce <V)) > max(U).

3-34

j
·If min<reduce CV)) < min(U) , ·then

L, V< r) >= j + 1 •
r<min(u)

Hence IV- Ul >= j+1, which contradicts a hypothesis.

j
The case max<reduce (V)) > max(U) is symmetric.

Suppose K > 0 and t >= Opere integers. Suppose that U and V are

nonempty multisets such that I V - U I <= t'and lVI >2t.

Then fk,t(V) belongs to ACU).

PROOF:

Follows easilY from Lemma 5.3 < with j = t).

I Ft11A li...5.:.

Suppose v, W and U are multisets, and K > o, t >= o, and m > 2t

are integers, with I V I = I W I = m, I V - U I <= t, I W - U I

<= t, and I W - V I = I V - W I <= k. Then

&< u)
f (V) - f CW) <=
k,t k,t c(m - 2t, k) · ·

3-35

PROOF:
i

t t
Let M = reduce CV) and N = reduce (W). Since V and W each contain

exactly m elements, M and N each contain exactly m - 2t elements,

k k
and hence sele~t (M) and select CN) each contain exactlY c = c (

m - 2t, k) element. Let mO <= m1 <= •••.• <= mo-1 be the element

k
of select CM), and let nO <= n1 <=

k

.... <= n
c-1

be the elements

of select CN). Notice that there are at least k + 1 elements in M
i

that are less than or equal to m1, and at most ki elements in M

' that are strictly less than mi; similarly for N.

We begin by sho~ing that max(mi, ni) <=min(mi+1, ni+1) for 0

<= i <= c- 2. It suffices to sho~ that mi <= ni + 1; a symmetric

argument demonstrates that ni <= mi + 1.

We proceed by contradiction : Suppose that mi > ni + 1. As noted

above, there are at least k(i+1) + 1 elements inN less than or

equal toni+ 1. BY the supposition) these elements are strictlY

less than mi. Therefore, there are at least k (i + 1) + 1 - k i

(= k + 1) elements in N that are r')Ot in M; thus 1 N - M 1

>= k +1. No~ by hypothesis,. W - V I <= k, so IW intersect.ion VI

>= m -k. Then lemma 5.2 sho~s 1 N intersection M >= m - k - 2t,

and hence I N - M I <= (m - 2t) - (m - k - 2t) = k. This is a

contradiction and we conclude that mi <= ni + 1.

3-36

No~ ~e use the inequality sho~n above to obtain the desired

result.

1
=

c

1
=

c

1
<=

c

1
=

c

C..;.1

E < m
i=O i

c-1
~ m

i=O i

c-1
L <max<m ,
i=O i

n
i

n)
i

< by the
triangle
inequalitY)

n) - min(m , n)).
i i i .

BY the inequality demonstrated above, for 0 <= i <= c - 2,

(max(mi, ni) -min(mi, ni))

<=<min< mi + 1) -min(mi, ni) -min(mi, ni))

so ~eget,

:3-37

f eV) - f CW)
k,t k,t

1
< = [max e m , n) - mine m , n .) J •

c c-1 c-1 c-1 c-1

1 c-1
+ --- ~[maxem ,n) -min em' n)]

c i=O 1+1 1+1 i 1

Collecting terms then shows that

f eV) - f eW)
k,t k,t

1
< = [max em , n) - minem , n)].

c c-1 c-1 0 0

Now, AeM) is a subset of AeU) and AeN) is a subset of AeN) bY

Lemma 5.3 (with j = t) ' so max (m ' n) <= max e u) and
c-1 c;..1

min e m , n) >= min e u) . Hence,
0 0

f · eV) - f CW)
k,t k,t

1
' < = [max (u) - min< u)].

c

1
= &e u) .

c

as desired.

3-38

THEOREM .5.....ll

If n >= 3t + 1, then there exists at-correct synchronous

approximation algorithm ~ith n processes.

PROOF:

Given· in section 4.5.2 of chapter 4.

I

I EEMA .5...6..:.

Suppose n, t > 0 are such that n >= 3t + 1. LetT be a set of

processes,, ~i th 1 T 1 >'= n - t. Let h be a positive integer. Let

U and U' be the multisets of values of processes in T immediately

after round h, respectively, in a particular

r-eamputation of SO. Then

1) &< u).

&< U') = ---------------
C(n - 2t, t)

2) A< U') is a subset Of A< u)

EROOE:

Let p and q be arbitrary processes in T. Let V and W be the

multisets of values (including default values) received bY p and

q, respectively, at round h. Then 1 V 1 = 1 W 1 = n. Since there

ore at most t faulty processes, 1 V - U I <=t and I W - U <= t.

Moreover, since V and W contain identical enteries for all the

processes in T, ~e kno~ that I V - W I = 1 W ~ V 1 <= t.

1) The multisets v, w, and U satisfy the hypotheses of Lemma 5.5

(with m = n and k = t). Thus,

A< U)
f <V> - f <W> <= --------------
t,t t,t c(n - 2t, t)

2) The multiset V and U satisfy the hypotheses of Lemma 5.4 •

Thus ft.t(V) belongs to ACU). Since P and q were choosen

arbitrarily, the result follows.

I FFMA .5...1.;.

Assume that n >= 3t + 1. LetT be a set of processes, with ITI

>= n t. Let h be a positive integer. Let U and U' be the

multisets .of values off processes in T, immediately before and

after round h, respectively, in a particular T-computation of s.
Then A<U') is a subset of A<U>.

PROOF:

Let p be an arbitary process in T. Let v and v' be the values

held by p immediately before and after round h, respectively. It

suffices, since p is ar9itary, to show that v• is an element of

A<U). If p has terminated prior to the start of round h, then v~

= v belongs to A<U). If p has not halted prior to the start of

round h, then let V bet the multiset of values received by p in

round h. Then V and U satisfy the hypotheses of Leema 5.4, and

since v'=ft,t(V), it follows that v'belongs to A<U).

3-40.

'-THEOREM .5....2.:.

If n >= 5t + 1, then there exists at-correct asynchronous

approximation algorithm with n processes.

PROOF:

Given. in section 4.5.3 of chapter 4.

I EI'11A &&;.

Suppose n, t>O are such that n >= 5t + 1. LetT be a set of

processes, with 1 T 1 > n - t. Let h be a positive integer, Let U

and U' be the multisets of values of processes in r, immediately

before and after round h, respectively, in a particular

r-eamputation of AO. Then

1) &< u)
&< U') = ---------------·cc n - 3t, 2t)

2) AC U') is a subset of A< U)

PROOF:

Let P and q be arbitrary processes in T. Let v and w be the

multisets of values received bY p and q, respectively, at round h.

Then v = W I = n - t. Since there are at most t faulty

processes, V - U I <= t and I W - U I <= t. Moreover, since V
-and W both contain identical entries for all the processes in T

from which both p and q heard, we know that V intersectioh W I

>= -3t. Hence, V-W I = I W - V I = I V I - V intersection W 1

<= 2t.

1) The multisets v, w, and U sati$fY the hypotheses of Lemma 5.5

(with m : n and k =· 2t). Thus,

f (v) - f (w) 1 <=
2t,t 2t,t

AC U)

ccn - 3t, 2t)

2) The multiset V and U satisfy the hypotheses of Lemma 5.4 •

Thus f2t,t(V) belongs to ACU). Since P and q were choosen

arbitrarily, the result follows.

I EEMA .5.&.9..:.

Assume that n >= 5t + 1. LetT be a set of processes, with ITI

>= n t. Let h be a positive integer. Let U and U' be the

multisets of values of processes in T immediately before and

after round h, respectively, in a particular T-computation of A.

Then ACU') is a subset of ACU).

THEOREM .6.....1.;.

fUM t~ t i !jl1 1-,,-l I II.ITI-ll-'1-'
-'- IlL - ,j,j a weakly

dynamic-broadcast message-oblivious fault

global coin in the

model,where the

constant probabilitY for ~ither common outcome is at least·

< 1 $) /2e, pro~ided t <= $n < where $ is any constant less

than 1) •

PROOF

Refer to [6_Q].

THEOREM ~

The function COIN_TOSS produces a ~eaklY global coin in the

dynamic-reception message-oblivious fault model, ~hen t <= n< 114

e) for some constant e > Q. If t = n < fl4 - e), the

probability for either common outcome is at least o< I 2e, ~~ere

o< = Be 1 (4e + 5).

PROOF

Refer to [6_Q].

THEOREM ~

The function COIN TOSS2 produces a ~eaklY global coin in the

dynamic reception message-obliviou~ fault model, ~hen t < n/2.

The probabilitY for either common outcome is at least < 1 - < t I

n)) 12e.

THEOREM ~

Under the assumption (*) (given in section 4.6.3), if all

processors hold the same encryption and decryption key, then for

POlynomiallY many repeated calls~of the function COIN-TOSS , each
I

call produces a weaklY global coin in the .message-dependent fault

models. This procedure is correct, provided t <= n, ~here is any

constant less than 1 for the static and dynamic - broadcast case,

and t < n/2 for the dynamic - reception case. The probabilities

of each outcome are as in Theorems 6.1, 6.2, and 6.3 respectively.

PROOF

Refer to [6_0].

THEOREM .6.....5...:.

Under the assumption(•), but without ossuming common,
(_

predistributed encryption and de~ryption keys, polyriomiolly many

repeated calls of the function COIN_ TOS5_4, each produce a ·we.oklY

global' coin _in the message-dependent dynamic brodcost and ~ynomic
(

reception fault models provided that t < n/2.

THEOREM .6...£.:.·

The function ASYNCHRONOU5_COIN_TOS5_1 produces a weaklY global

coin in the asynchrnonous, message-oblivious fault model,

provided t < < < 3 - ..)5) /2)n.

· PRQOF
' '
Refer to [6_0].

THEOREM .6.J.;.

Under the' assumption (*), if all processors hold the some
·.t·i'~:~~,.,.,.,--~==~....,...,. ·-~~--~--------~~......._....__ _____ _:_

.-encryption and decryption key, then polynomiollY many repeated
-·-. ··-

calls ; . Of the
..: ,.

func~ion ASYNCHRNOU5_COIN_TOS5_2 produce g.weok!Y
,.

global coin . in the asynchnous m~ssoge dependent model .provi~ed

t < ((3 - J5) J 2)n. ..

,,
•• -1-.

PROOF

Refer to [6_0].

THEOREM .6....8.;.

Under the assumption (liE) but without assuming common,

predistributed encryption and decryption keys, repeated calls of

a modified function ASYNCHRNOU5_COIN_TOS5_2 preceded by a four

round encryption key distribution phase round a weaklY global

coin in the message dependent asynchronos fault model that

t < C C 3 - · ,/5) I 2)n •.

1811A' ..6....9..:.

During each epoch, both of the values 0 and 1 are never sent in

any execution of round 2 (step 10).

PROOF

It can be proved by a simple counting argument.

THEOREM 6.10:

Th~ ~l9orithm has the fcllo~ing three parts

Val id.i ty .
• If value v si distributed as input to all

processors decide v during each epoch 1.

Agreement : Let e be the first epoch in which a processor

decides. If processor P decides v in each

epoch e, then by the end of epoch e+1 all

processors decides v.

Termination • (a) In any epoch e, if the epoch iS not .
bivalent at the point when the fastest

processor begins executing step 18, then there

is at least one value that, if it is adopted

by L n/2 _J + t + 1 processors executing the

assignment in step 18, will cause each

processors to decide by the end of epoch e +1,

and otherwise

(b) in any epoch, e, if there is a value that

is adopted by L n/2 _J + t + 1 processors

executing the assignment in step 18 then epoch

e + 1 is not bivalent at the point that the

maJor'i ty value of , COIN.... TOSS in epoch e i£

uniquelY determined.

THEOREM 6.11:

Using the agreement algorithm with coin toss as a subroutine,

agreement is reached in constant expected number of rounds,

provided the number of fault t satisfies

(a) t < n/2 for the all varients of the synchronous model;

(b) t < < < 3 - sqrt(5))n for all varients of the asynchronous

mode.

THEOREM 7.2.1:

' If agreement algorithm A guarantee SBA for each history with at

most t orderly crash faults then A require at least min(n- 1,

t + 1) rounds to reach SBA in any serial history.

PROOF:

Given in section 4.7.1

I frt'IA 7.2.2:

Let H and J be histories in u. If A uses k rounds to reach SBA

in J and Hk is witness equivalent to Jk, then A uses K rounds to

rech SBA in H, and H and J are output equivalent.

PROOF:

The - proof for this lemma is straightforward, but long. Refer to

[7_0] for the proof.

I frtiA 7.2. 3:

If e is a significant outedge of a candidate p in round k <• t

of a serial history H, then there iS a serial history J such that

Jt is witness equivalent to Ht and Jk is identical to Hk except

that the state of the messa9e at e is altered (from correct to

absent or vice versa).

PROOF:

Refer to [7_0] for the detailed proof.

I fH1A 7.2.4:

If H and J are serial hostories then Ht is witness equivalent to

Jt.

PROOF:'

Refer to [7_0] for the detailed proof.

'·

COROI I ARY 7.2.5:

Algorithm A require at least min(n- 1, t + 1) rounds to reach

SBA when there are actually no faults.

THEOREM . 7 • 3.1 :

\
Let A be an agreement algorithm that reaches EBA in histories of

U< A, t). Then there is a history in U< A, t) with only f

faults in which A requires at least min(min- 1, t + 1, f + 2)

rounds to reach EBA.

PROOF:

Given in section 4.7.2

I fttiA 7 • 3 • 2:

Let H be an f-serial history. Then there is no critilical edge

in round f from a processor that is an f-candidate in round f of

H.

PROOF:

Refer to [7_0] for the detailed proof.

3-48

I fl'tiA 7. 3. 2:

If A· reaches EBA for all histories with at most t faults and if

A reaches EBA within min(t, f + 1) rounds for all histories

with at most 1 faults, then all f-serial histories are output

equivalent.

PROOF:

Refer to [7_0] for the detailed proof.

THEOREM 7.4.1

2
Execution of EAGREE by n > max(4t, 2< t + t - 1))) processors

results in EBA within min(f+2.t+1)rounds, where f, the actual

number of faults does not exceed t.

PROOF:

Refer to [7_0] for the detailed proof.

I fl't!A 7. 4. 2 .,;.

Suppose no correct processor is stopped at round i - 1 and let

p, · q, and r be correct processors. Then, at the end of round i,

no correct processor~ hQS the name of a correct processor in x,
every correct processor has pqs=rqs, and all correct processors

share the same value for qs.

PROOF:

Refer to [7_0] for the detailed proof.

I Er11A 7 , 4 • 3 ..:.

If a correct processor is convicted at round i <= i + 1, then

the value it has for s must have become persistent by round i -1.

PROOF:

Refer to [7_0] for the detailed proof.

I FrtiA 7 , 4, 4 ..:_

If a value becomes persistent before round t + 1, then it

remains persistent throughdut the execution of the algorithm and

is given as output by each correct processor. If a value become

persistent befor~ rount t, then all correct processors are

convicted at most two rounds later.

PROOF:

Refer to [7_0] for the detailed proof.

I fi11A 7, 4 , 5 ..:.

If the origin is correct, then all correct processors will

output its value.

PROOF:

Refer to [7_0] for the detailed proof.

3-50

I FI11A 7.4.6 _;_

If for some i, 2 <= i <= t, a fault p separates a witness set

from all other correct processors at round i, ·and if some

correct processor is not convinced by round min(i + 2, t = 1),

then there are correct processors that donot have P in their set

X by the end of round i, but bY round!+1 each correct processor

will have p in X and pps and ps to the default value o.

PROOF:

Refer to [7_0] for the detailed proof.

' I FI1'1A . 7 • 4 • 7 _;_

If there is a correct processor is not convinced by round i + 2

with 1 <= 1 < t - 1 , then there is a set { P1 1 1 <= j <= i } of

i distinct faulty processors such that, for each j, each correct

processor has pj in X and value pjs defaulted to 0 by the end of

round j + 1 (1 and in each succeeding round).

PROOF:

Refer to (7_0] for the detailed proof.

I Frt1A 7.4.8 _;_

If there are only f<t faults, then all correct processors are

convinced by round f + 2.

PROOF:

Refer~ to [7_0] for the detailed proof.

3-51

I FI'1MA 7.4.9 ~

All correct processors have the same value stored in s by round

t + 1.

PROOF:

Refer to [7_0] for the detailed proof.

3-52

AlGf)RITRHS Ff)R REACHING AGREEMENTS

MODULE ONE

The problem addressed nere concerns a set of isolated processor~

some subset of ~hich may be faulty, that communicate only by

means of t~o party messages. Each nonfaulty processor has o

private value of information that must be communicated to each

other non faulty processor. Nonfaulty processors always

communicate honestly, whereas faulty processor may lie. The

problem is to devise an_algorithm in ~hich processors communicate

their o~n value and relay values received from others that allo~s

each nonfaulty processor to infer a value for each other

processor. The value infered for a non faultY processor must be

that processor's Private value and the value inferred for a

faulty one must be consistent ~ith the corresponding value

inferred by each other nonfaulty procesor. Our results are

formulated using the notion of INTERACTIVE CONSISTENCY, as

defined in chapter 2 [1_0]. This problem is essentially the same

as the Byzantine general metaphor in [2_1] or Byzantine general

problem in [2_Q]. (refer to chapter 2 for definations).

It is shown that the problem is solvable for, and only for n)=

3m + 1, where m is the number of faultY processors and n is the

total number. It is also shown that if faulty processors can

refuse to pass on information but cannot falsely relay

information, the problem is solvable for arbitrary n >= m >=0.

This ~eaker assumption can be approximated in practice using

cryptographic methods.

In the follo~ing section ~e give algorithms devised to guarantee

interactive consistency for and only for n., m such that n >=3m+1•

In section 4.1.1, ~e consider the single fault case that is m=1.

we sho~ that a minimum of four processors are required for this

case.

Follo~ing this, in section 4.1.2, ~e consider a general algorithm

for n >=3m+ 1. It is also proved that these algorithms assure

interactive consistency (i.e.).

In 5ection ~.1.3 o proof of imPo5~ibility for n <3m +1 i~ giv~n.

In section 4.1.4, it is sho~n that interactive consistency can be

assured for arbitrary n >= m >= 0 if it is assumed that fau~ty

processors do not pass on information obtained from other

processors but cannot false report this information. This case

can be compared ~ith the fail-stop case in Module Four. This can

be implemented using authenticators and an algorithm usins

authenticators is the last algorithm presented.

SECTION 4.1.1: THE SINGLE-FAULT CASE

Here ~e consider a pr-ocedure for obtaining interactive consisten(Y'.r

in the simple case of m=1, n=4-

ALGORITHM:

The procedure consists of an exchange of messages, follo~ed by

the computation of the interactive consistency vector on the

basis of the results of the exchange.

T~o rounds of information exchange are required. In the first

round the processors exchange their private value. In the second

round theY exachange the results obtained in the first round.

The faultY processor (if there is one> may "lie,", or refuse to

send messages. If a nonfaulty processor P fails to receive a

message it expects from some other processor, p simply chooses a

value at random and act as if that value had been sent.

The exachange having b~~n compl~t~d, each nonfaulty processor p

records its private value vp for the element of the interactive

consistency corresponding to p itself. The element corresponding

to every other plrocessor q is obtained by examining the three

received reports of q•s value <one of these ~as obtained directly

from q in the first round, and the others from the remaining t~o

processors in the second round). If at least t~o of the three

reports agree, the majority value is used. Other~ise a default

value such as "NIL" is used.

PROOF showing that this procedure assures interactive consistency,

is given below.

First note that if q is nonfaulty, p will receive Vq both from q

and and from the other nonfaulty processor(s). Thus p will record

VP for q as desired. Now suppose q is faulty. we must show only

that p and the other two nonfaultY processors record the same

value for q. If every nonfaulty processor records NIL, we are

done. Otherwise, some nonfaultdy processor, say p, records a

non-NIL value v, having received v from at least two other

processors. Now if p received v from both of the other

nonfaulty processors,each other nonfaulty processor must receive

v from every plrocessor other tdhan p (and possiblY from p as

well);every nonfaulty processor will thus record v. OtherHise,p

must have received v from all processors other than some other

non faulty processor P'. In this case P' received v from all

processors other than q (so p• records v), and other nonfaulty

processors received v from all processors other than p. All

nonfaultY processors therefore record v as required.

SECTION 4.1.2 : AN ALGORITHM FOB N >= 3M + I

The procedure given in the last section requires tHo rounds of

information exchange, the first cosisting off the form "my

private value is~· and the second consisting of communications of

the form "processor x told me his private value is •••• ". In the

general case of m faults, m+1 rounds are required. In order to

descibe the algorithm, it will be convenient to characterize

this exchaange of messages in a more formal way.

ALGORITHM:

Let p be the set of processors, v a set of value for k>=1 and o

is a k-level scenario for string w=P1P2 ••••• pr, 2<=r<=k+1.

Note that for a given subset of nonfaulty processors, only

certain mapping are possible scenarios,in particular, since

nonfaulty processors are alHaYs truthful in relaying

information, a scenario must satisfy

o-(pqwJ= o-(qw)

for each nonfaultY processor q, arbitrary processor p, and string

w.

The message a processor p receives in a scenario o- are given by

the restriction o-p of o- to the strings beginning with p. The

procedure we present noH for arbitrary m>=O, n>=3m +1, is

described in terms of p's computation, fora given o-p,of the

element of the interactive-consistency vector corresponding to

each processor q.

fhe computation is as follow:

<1) If for some subset Q of p of size > (n+m)/2 and some value

v, o-p(pwq):v for each string w over Q of length <=m, P

records v.

<2> Otherwise, the

applied with

algorithm

p replaced

for

by

m-1 , n-1 is recursive 1 y

P - {q}, and o-p bY the

mapping o-p defined by o-p(pw):o-p(pwq)

for each string w of length <=m over p-{q}. If at least {floor

Jperator of (n+m)/21 of the n-1 elements in the vector obtained in

the recursive .call agree, p records the common value, otherwise P

--ecords NIL·

~hich q

is the

is excluded and in which each processor's private value

value it obtains directly from q in o-. Note also that

the algorithm essentially reduces to the one given in the last

section in the case m=1.n=4.

=>ROOF that the algorithm given above does indeed assure

interactive consistency proceeds by induction on m:

3asis m=O. In this case no processor is faulty, and the

Jlgorithm al~ays terminates in step <1)with p recording yq for q.

Induction .st.eQ ..1112.0. First note that if q is nonfaulty,

o-p(pwq) = Vq for each string w (including the empty string) of

length <=m over the set of nonfaulty processors. This set has

n-m members (Which, since n>3m, is><n+m/2) and so satisfies the

requirements, for Q in steP(1) off the algorithm. Any other set

satisfying these requirements,moreover,must contain a nonfaulty

pro~essor lSince it must be of size > cn+m)/2. and n >= 3m+1) and

must therefore also yield Vq as the common value. The algorithm

thus terminates at steP<1), and p records Vq and q as required.

Now suppose that q is faulty. we must show that the value p

records for q agrees with the value each other nonfaulty

processor p' records for q.

First consider the case in which· both p and p• exit the

procedure at step(1), each having found an appropiate set Q.

Since each such set has more than (n+m)/2 members, and since p

has onlY n members in all, the two sets must have more than

2<Cn+m)/2)-n=m common members. Since atleast one of these must

be nonfaulty, the two sets must give rise to the same value v,

as required.

Next suppose that P' exits at steP(1), having found an appropriate

set Q and common value v,and that p executes steP(2). we claim

that in the vector off n-1 elements thot p compuites in the

recursive call, the elements corresponding to members of

Q = Q- {q} are equal to v. Since Q has at least {floor operator

of (n:m)/2} members, it will then follow that p records v in

accordance with steP(2). To see that the elements corresponding

to members of Q are indeed equal to v,recall that the mapping o-p

that p uses to compute the vector in the recusive call is the

restriction, to strings beginning with p,of the m-level scenario

o-p defined by

for each

hypothesis,

string

this

o-p(w)= o-(wq)

w of length <=m over P - {q}a BY the induction

vector is identical to the one p' would have

computed using the restriction o-p of o- had p' made the recursive

call. Moreover, the value P' would have computed for the element

of this vector corresponding'to a given q' in Q must be v, since Q

and v satisfy step <1) of the algorithm. <Note that Q is of size

>=C<n+m)/2}>=C<n-1)]+(m-1)J/2, and that o-p(p'wq') = o-p(p'wq'q)=

v for each string w of length <=m-1 over Q.) The case in which p

exits at step <1) and P' exits at step(2) is handled similarly.

In the one remaining case, both p and p' exit at step (2). In

this case both recurse and must, bY the induction hYPOthesis,

compute exactly the same vector and hence the same value for q.

4-8

SECTION 4.1.3 : PROOF OF IMPOSSIBIUTY FOB N < 311 +I

The procedure of the 1 ast section guarantees interactive cons i st~l

only if n>=3m+1. In this section it is sho~n that the 3m+1 boun~

is tight. we ~ill prove not Only that it is impossible to assure: ...

interactive consistency for n<3m + rounds of information

exchange, but also that it is impossible, even allowing ah

infinite number of round exchange (i.e. using scenario mapping

from all nonempty strings over P to V).

Just to gain some intuitive feeling as to ~hy 3m processors not

sufficient,cosider the case of three processors A, s, C of ~hich

one say c, is faulty. BY prevaricating in Just the right way, c

can th~art A's and B's efforts to obtain consistency. In

particular, C's messages to A carr be such as to suggest to A

that C's private value is say ,·J; and that B is faulty. Similarly•,

C's messages to 8 cab be such a to suggest to B that C'sprivate

value is 2 and that a is faulty. If c Plays its cards just

right. A ~ill not be able to tell ~hether B or C is faulty, and

8 ~ill not be able to tell ~hether A or C is at fault.A ~ill thus

have no choice but to record 1- for C's value. ~hile 8 must

record 2, defeating interactive consistency.

Th~ precise statement of the impossibilitY result and its proof

is given as a THEOREM 1~1 in chapter 3 • This is using the formal

definations of Ci) scenario
(ii) o- consistency ~ith N
(iii)interactive consistency form faults

given in chapter 2.

SECTION 4.1.4: AN ALGORITHM USING AUmENTICATOBS

The negative result of the last section depends strongly on th~

assumption tbat a faultv processor mav refuse to pass on value~

it has recieved from other processors or may pass on fabricated

values. This section addresses the situation in ~hich the latter

possibilty is precluded. we ~ill assume, in other ~ords, that a

faultY processor may "lie" about its own value and may refuse to

relay values it has received, buyt may not relay altered values

~ithout betraying itself as faulty.

In practice, this assumption can be satisfied to an arbitrarilY

high degree of probability using authenticators. A processor p

constructs an authenticator for a data item d by calculating

AP[d], ~here AP is some mapping knoa~n only to p. It must be

highlY improbable that a processor q other than p can generate

the authenticatior AP[d] for a given d. At the same time, it

must be easy for q to check, for a given p,v, & d, that v=AP[d].

The problem of devising mappings ~ith these properties is a

cryptograPhic one. Methods for their constructions are discussed

in [1_2] and [1_3]. For many application in ~hich faults are due

to random errors rather than to malicious intelligence, any

mappings that "suitably randomize" the data suffice.

A scenario o- is carried out in the follo~ing ~ay. Let v=o-(p)

designate p's Private value. p communicates this value to r by

sending r the message consisting of the triple <p,a,v>, ~here

a=AP[V]. When r receives the message, it checks that a = AP[V].

If so, r takes v a.s the valu~ of o-(rp). Otherwise r lets o-(rp)

= NIL. More generally, if receives exactly one message of the

form (p1,· a1<P2,a2,a2 ••• (pk,ak,v) •••)), where ak = Ak[V] and for

1 <= i <= k-1, ai = Ai((pi+1,ai+1 ••• (pk,ak,v)J, then o-(rp1 ••• pk)

= v. Othe-rwise o-(rp1 ••• pk) = NIL.

A scenario o- constructed in this way is consistent with a given

choice N of nonfaulty processors, if for all processors P is an

element of N, q belongs to set P and strings w, w' over p.

(i) o-(qpw) = o-(pw)

(ii) o-(w'pw) is either o-(pw) or NIL •

Condition (i) ensures that nonfaulty processors are always

truthful. Condition (11) guarantees that a processor cannot relay

an altered value of information recieved from a nonfaulty

processor. That is it may fail to relay and act like a dead

process but it will never tell a lie that is it will never act

like a malacious process.

Next,. we consider an algorithm, using Cm+1)-level authenticated

scenarios, that guarantees interactive consistency for any n>=m.

As before, the procedure is described in terms of the value a

nonfaulty processor p records for a given processor q on the

basis of o-p:

A!GORITf-11:

Let Spq be the set of all non-NIL values Q-p(pwq), where w

ranges over strings of distinct element with length <=m over P -

{p,q}. If 5pq has exactly one element v, p records v for q;

otherwise, P records NIL.

PROOF: that the above algorithm assures interactive

constituency.

Consider first ·the case in which q is nonfaulty. In this case

o-p(p~d) is either o-(q) or NIL for each appropriate w bY

condition (ii) Since in particular, o-(pq) = o-(q) bY (i)·Spq =

{o-(q)}.p thus records o-(q) for q as required.

If q is faulty, it suffice to show only that for each two

nonfaulty processors p and p', Spq = Sprq. So suppose v belongs

to Spq, i.e., v= o~p(pwq) for some string w having no repetitions,

with length <= m over P - {p,q}. If p' occurs in w (say w=w1p'w2),

then o-(pwq) = o-(p'w2q) by (ii); hence v= o-(pwq) belongs to

Sp'q. If P' does not occur in w aned w is of length <m , then pw

is of length <=m; so v = o-(pwq) = o-(p'pwq) belongs to Sp'q.

Finally, if P' does not occur in w and w is of length m, w must

be of the form w1rw2 where r is non faulty giving that v =
.

o-(pwq) = o-(rw2q) (by (11)) = o-(p'rw2q) (by (1)) belongs to

Sp'q. In each case v belongs to Sp'q. A symmetrical argument

ShOWS that if v belongs to Sp'q, v belongs to Spq. Hence Sp'q =

Spq as required. · Q.E.D.

MODULE TWO

In the previous module ~e considered Interactive consistency

problem which is essentiallY the same as BYzantine geperal

pr~ob lem.

The Byzantine Generals Problem requires process to reach

agreement upon a value even though some of them may fail. In this

modeule the problem is ~eakend bY allo~ing them to agree upon an

incorrect value if a failure occurs.

The transaction commit problem for a distributed database is a

special case of the weaker problem. It is sho~n that, like the

original Bynzantine Generals Problem the ~eak version can be

solved only if fe~er than one theird of the processes may fail.

Unlike the original problem an approximate solution exists that

can tolerate arbitraly many failures.

In section 4.2.1 it is first sho~n that no solution to the WBG·

problem exists if 1/3 or more of the processes are faulty. Hence

the WBG problem discussed by L. Lamport in [2_0] is solvable in

precisely those situations in ~hich the original Byzantine Gener~al

prob 1 em [2_ 1 , 1_0 J is.

In section 4.2.2, ~e sho~ that if condition 2 of the WBG Problem

is replaced by a ~eaker condition requiring only approximate

equality, then the problem is solvable ~ith any number of faul~Y

processes. ~More precisely, if the set of possible values is a

bounded set of numbers, then for any c- ; 0 there is an algorithm

~hich garantees that the values chosen by any t~o nonfaultY

processes differ by less than c-. It ~as sho~n in [2_1] that no

such approximate solution exists for the original Byzantine

Generals problem.

In section 4.2.3, an algorithm that ~orks with any number of

faulty processes is given. This algorithm requires the processes

to send an infinite number of messages before choosing their

values and hence this "solution" is of no practical interest,

since it cannot be implemented. Its interest lies in fact that

the original Byzantine Generals Problem does not possess such a

"solution". Hence, the WBG Problem is in some sense strictly

~eaker than the Byzantine Generals Problem.

SECTION 4.Z.I : IMPOSSIBIUTY RESULT

A proof is given to sho~ that no solution to the WBG problem

exists if one-third or more of the processes are faulty.

Let

P donate the set { 0, • • • • • , n 1}, of processes

P~ the 5et bf all finite ~equen~e~ of element5 of p
(including the null sequences).

II denote the set of all finite sequences of the form Q,# ~ith

belonging to P• -i.e., all elements of P• ~hose first

element is o.

o, pi ••••• pk is a path of length k traveled by a message

that starts at process 0 and is relayed via processes

pi ••••• pk-1 to process pk.

IIi denote the subset of II consisting of all sequences

ending in i i.e. all message paths leading from

process 0 to process i.

A Scenario % is amapping from II into a set of values v. If ~e

think of an element # of II as a message path, then %(#) is the

contents of the message received at its final destination we say

that process i is nonfaulty in a.scenario% if for every message

path #,i belonging to II and every J belongJng top: %(#,i,J) =
%C#,i). That is, i is nonfaulty in% if process i correctly

relays

%(#) =
all

%(0)

messages. If all processes are nonfaulty in %,then

for all # belonging to II, ~hich means that every

destination process of a path receives values send by process o.

A solution to the WBG problem consists of an algorithm by ~hich

the processes send messages to one another based upon the

contents of messages already received. Initially, the only

information is the value v, ~hich is kno~n only to process o.
Therefore, all information travels along path in II. To send the

maximum amount of information to one another, Process 0 ~auld

send the value v to all processes, and then processess ~auld send

one another the contents of every message they receive. Thus, if

%<0) equals v, then a scenario % describes the maximum amount of

information that the processes could send to one another. A

nonfaulty process can al~ays ignore information that it receives,

and a faulty process can do anything - including guess any

information that ~as ~ithheld from it. Hence any ~lgorithm for

choosing values based upon the entire scenario ~. such an

algorithm is called m-fault W8G Algorithm 8 and is defined in

chapter 2.

Next it is sho~n that no m-fault W8G alogrithm exists if 3<n<3m.

<The problem becomes trivinal if n <= 2>

If the value of 8i(%i) depended upon the entire infinite

i-scenario %1, then the alogrithm 8 ~auld require an Infinite

amount of message passing and ~auld not be a real soluion to the

W8G Problem. We Consider the defination for "finiteness of a WBG

algorithm 8", given in chapter 2,~here II(k) is defined to be the

set of message of length at most ki and IIi(k) = ll(k)

intersection IIi.

A finite WBG alogrithm is one in ~hich for every scenario, there

is a k such that each process can choose its value after k rounds

of message passing. This is a natural definition, since it

insures that every process is eventually able to choose a value.

However , it does not immediately rule out the possibility that

the required number of rounds k can become arbitrarilY large. In

LEMMA . 2.1 it is shown that this is not the case, and that a

single value of k can be chosen for all scenarios.

To prove the nonexistence of an m-fault algorithm when n <= 3m,

we first prove the noneexistence of a 1 - fault algorithm for

n = 3. For this we assume that P = {Q,1,2} •

we define the signed distance function & on p by:

&co,,>= &<1,2> = &<2,0> = ,,
&(i,j) = -&(J,i).

For any path#= Q,p1 ••••• pk we define o-(#) to equal

&< p ' p)
i-1 i

If we think of the processes Q,1 and 2 being arranged clockwise

in a circle then &<i,J) is the clockwise angular distance from i

to J <where a distance of 3 represents a full circle), and o-(#)

is the singed angular distance traavelled by the path #.

Consider Lemma 2.2 and 2.3 given in chapter 2. Note that the·two

conditions of Lemma 2.3 define the values of all messages in the

(r)
scenario % except for the ones ·that Process r sends to itself.

Lemma 2.4 is a simple corollary of Lemma 2.3 •

The main result is proved in form of Theorem 2.1 •

SECTION 4.2.2 : APPROXIMATE SOWTION

The approximate solution of the WBG problem chat ~orks in the

presence of any number of faultY processes, is described next. BY

taking the lim-it of a sequence of such solutions, ~e obtain an

exact solution using an infinite number of messages, ~hiich iS

given in the follo~ing section. In order to make the concept of

on approximate solution meaningful, ~e assume that the set V of

possible values is a set of real numbers.

For each integer k>O, ~e define an algorthm AG(k) that requires

k rounds of message passing. Rather than describing it in terms

of formal scenarios ~e ~ill simPlY talk about processes sending

messages to one anotehr. NonfaultY processes are constrained to

follo~ the algorithm ~hile faulty ones may do anything. we assume

that a faultY process sends every message that it is supposed to

although possibly ~ith an incorrect value. Ho~ever value it sends

is assumed to be some element of v. It should be obvious ho~

this description can be translated into a definition of mappings

on i-scenarios.

ALGORITHM AG'Kl :

The follo~ing k rounds of message passing are executed to

<r>
compute the value vi for i belonging to p and 1 <= r<=k.

4-18

< 1) ROUND 1:

(a) Process 0 ends the value v to every Process 1

(1)
(b) each Process i sets vi equal to the value it

receives from Process o.

<2) ROUND r: < 1 < r <= k)

< r-1)
(a) Each Process J sends the value vJ to every

Process i.

(r)
(b) Each Process i sets vi equal to the maximum of

the n values it. recieves.

(3) Each Process i then sets vi equal to the average of the k

(r)
values vi •

Theorem 2,2 proves that the above algorithm is an approximate

solution to the WBG problem.

SECTION 4.%.3 : INFINITE SOWTION

To construct an infinite message solution to WBG problem, we let

each Process i take as its value of v the limit as k goes to

(k)

infinitY of the_yalue obtained bY the algorithm AG If the set:

v is unbounded then this limit could be infinte in which case

some arbitarv preassigned value is used. This gives us the

following.

ALGORITHM AQ.l•) :

(r) Ck)
compute the value v as described in Algorithm AG , for all i

i

belonging to· P and r >= 1. For each i, define v to equal
i

(r)
sup{V :r>=1 }, where ~ is interpreted to be some arbitary fixed

i

element of v.

Cb)

we now show that AG is a "solution" to the WBG problem that can

tolerate any number of faults. Since it requires choosing a value

based upon an infinte sequence of messages, it cannot be regarded

as a solution in any practical sense.

(liP)

Theorem 2.3 shows that AG is an infinite solution to WBG

algorithm.

MODULE THREE

A.fter going through modules one and t~o<Jo, we know that solutions

are known for the "Byzantine Generals" problem [2.._ 1, 2..._0, 1_0],

which is with reference to synchronous system.

In this module we consider an asynchronous system and problem of

reaching agreement here, is called consensus problem.

Refer to chapter 2 for the defination of consensus problem.

The consensus problem involves an asynchrnous system of processes

some of which may be unrealliable. The problem is for the

relliable processes to agree on binary value. In this module it

is shown that every protocol for this problem has the possibility

of nontermination even with only one faulty porocess.

For the main result of Fischers•s work refer to section 4.3.1.

In section 4.3.2, an algorithm is presented, which solves the

consensus problem for N processes, provided maJoritY of the

processes are nomn faulty and no ·process dies during the

execution of the algorithm.

SECTION 4.3.1 : HAIN RESULTS OF FISCHER'S WORK

A consensus protocol P is totally correct in spite of one fault

if it is partiallY correct, and every admissible run is a

deciding run.

The main theorem given bY Fischer, Lynch and Paterson sho~s that

every partiallY correct protocol for the consensus problem has

some admissible run that is not a deciding run. This theorem is

stated and proved in chapter 2 as theorem 3.1 •

This theorem uses t~o lemmas, Lemma 3.2 and 3.3 ~hich.are again

stated and proved in chapter 3.

SECTION 4.3.Z : ALGORimH FOR INITULLY DUD PROCESS

Here in this section, ~e exhibit a protocol that solves the

consensus problem for N processes, based on certain conditions.

This protocol ~as given by Fischer based on the follo~ing

conditions :

a. MaJority of processes are non faulty.

b. no process dies during the execution of the protocol.

c. no process kno~s in advance which of the other processes

are initiallY dead and which are not.

This protocol works in 2 stages :

Stage .1

Here the protocol constructs a directed graph in the following

way :

1· Processes construct a Directed graph G with a node

corresponding to each process.

2. Eve~y process broadcasts a message containing process

number.

3. It then listens for message from L-1 other processes.

L = f (N+1 > 12 l
4. G has an edge from i to J if and if only J recieves a

message from i. Thus G has an indegree given bY :

Indegree <G> = L - 1

Stage .2.&

In this stage the processes construct G+ that is the transitive

closure of G.

Each process K will know about :

1. all of the edges (J,k) incident on K in G+.

2. initial values of all such J.

This stage is carried out in the following stages :

1· Each process broadcasts to all other processes the

following :
- its process number.

- the initial value.

- names of L-1 processes it needs from the first
stage onwards.

4-23

2. It then waits until it has received a stage 2 message

from every ancestor in G that it knows about.

3. Waiting continues till such time as all currently known

about processes have been heard from.

4. Using the information obtained each process computes all

the edges of G+ incident on each of its ancestors.

- each process knows all of its ancestors.

- edges of G incident on them.

5. Determine the ancestors belonging to an initial cliques

of G+.(i.e. a clique with no incoming edges).

6. It can be shown that there can be only one initial

clique, i.e. cardinality >= L.

Every process that completes 2nd stage knows exactly the

set of processes comprising it.

Finally each process makes a decision based on :

1. initial values of processes in the initial cliques.

2. any agreed upon rule.

§iNc:~ c•J J proc:-.esse.s t.:nOMS the. ini tioJ voJues ct1= oJ J aeaL~ of

the initial clique, they all reach the same decision.

we now arrive at theorem 3.2 given in chapter 3.

MODULE FOUR

-·
In the previous module we presented a very primtive consensus

protocol. This module is an extension of the previous module i~-

the sense that it gives protocols that enable a system of h

asynchrnous processes, some of which ar~ faulty, to reach

agreement.

Here we consider two kinds of faultY processes : fail stop

processes that can only die and malicious processes that can also

send false messages. The class of asynchrnous systems with fair

shcedulers is defined and consensus protocols that terminate with

probabilitY 1 for these systems are investigated. With fail stop

process it is shown that r- (n+1)/2-, correct -processes are

necessary and sufficient to reach agreement. In the malicious

case it is shown that r-c2n+1)/3~ cor~ect processes are necessary

and sufficent to reach agreement. This is contrasted with an

earlier result [3_0] stating that there is no consensus protocol

for the fail stop case that always terminate within a bounded

number of steps, even if only one process can fail.

The possibilitY of. reliable broadcast CBYnzantine Agreement) in

asynchrnous systems is also investigated. Asynchrnous Bynzantine

Agreement is defined and it is shown that r- (2n+1)/3 ~ correct

processes are necessary and sufficient to acheive it.

The solutions in this module are different from solution given in

module three because here ~e consider protocols which may never

terminate, but this would occur with probabilitY o, and the

expected termination time is finite. This is done bY postulating

some probabilistic behavior about the message system. This is

done making probabilistic assumptions on the behaviour of a

scheduler (defined in chapter 2). Here class of fair schedulers

is considered (defined in chapter 2).

In section 4.3.1 we consider the fail-stop case. In this section

we ·first find the maximum number of faulty proceses which any

consensus protocol can manage. In other words a lower bound on

the number of correct processes is derived. Next a fair scheduler

is defined and finally a L <n-1)/2J resilient consensus

protocol is derived.

In section 4.3.2 we consider the malacious case. Here we first

discuss the model to be considered. Then we find the maximum

number of faulty proceses which any consensus protocol can manage.

That is, the lower bound on the number of correct processes is

derived and finallY a L <n-1)/3 _l. resilient consensus protocol

is derived.

In section 4.3.3 we consider Asynchronous Byzantine Agreement.

Here we· first discuss the problem. Then we find the lower bound

on the number of correct processes and finallY a protocol that

acheives Asynchronous BYzantine agreement for k= 1 to t_(n-1)/3..J

malacious processes is derived.

SECI'ION 4.4.1 :FAIL-STOP CASE

WWER BOUND ON NUMBER OF CORRECT PROCESSES

We could have undetectable deaths during the execution of the

protocols, this imPlies that, at any stage of the protocol,

processes ~ill have to act depending on partial informatio~

about the state of the system. This is formalized bY the

lemma 4-1 given in chapter 3.

Refer Theorem 4.1 give in chapter 3. It proves a very important

result.

FAIR SCHEDULERS

we may vie~ Protocols for asynchronous systems as consisting of

rounds. While in round t, a process sends messages to every

other process, and waits until it recieves n - k messages sent

bY different unique processes in round t. After this the process

changes its state, and starts round i+1. we notice that the ne~

state is a function of the old state and the messages are

recieved in round t.

Hence the processes cannot ~ait for more than n - k messages as

there is always the possibility in which all k faultY processes

do not send any messages in round t. We define R<q, p, t) to be

the event that p recieves a message from q in round t. The

progress of this system depends on the joint probability

distribution of the R(q, p, 1) events, ~hich is determined by

the schedular.

we can say that a schedular is fair provided the follo~ing

conditions prevail:

1). For any processes, p and q, and round t, ther~ is a positiv

constant e such that a Pr[R(q, p, t)J>t

2). For any distinct processes r, p, and q, and round t, the event

R<q, r, t) and Rc·q,, p, t) are independent.

These conditions in particular, guarantee that, for any round

k, there is a constant probability p that all processes recieve

n-k messages from the same set of correct processes.

L C n-1 l /2 ..J RES I I I FNT CONSENSIIS PROTOCOl

Here

~ith

~e describe a k-resilient consensus protocol for a system

a fair schedular and k = 1t2·····L<n- 1)/2J. The protocol

consists of rounds as seen earlier •

The state of a process and the messages exchanged consist of a

Phase number, a binary value, and a cardinality.

In each phase, a process does follo~ing step :

<1) A process sends a message ~ith its state to all the

processes.

<2> Then the process ~aits for messages.

(3) When a process receives n - k messages, ~ith same phase

number, it considers the sets of messages ~ith value 0

and value 1, respectively.

(4) If there is a message with value i and cardinalitY > n/2

then will be called a witness for 1.

(5) If a process recieves a witness for i, it changes its

value to i

else value = value of the largest message set.

(6) A process changes its cardinalitY to the size of the

message set with value 1.

<7) The process starts a new phase.

A process decides i if lt receives more than k witnesses for

value i. Since there are enough witnesses for that value in the

message system so force the rest of the processes to reach the

same decision.

Refer to theorem 4.2 to see that the following algorithm is a

k-resilient consensus protocol for the fail stop case, for any k,

0 <= k <= L < n - 1) I 2 _J •

The algorithm is given on the next page.

process p:k-consensus

value:integer init(iP)
cardinality: integer init(1)
phaseno:integer init(Q)
witness_count:array[Q •• 1J of integer init<O>
message_count:array(Q •• 1] of integer init(Q)
msg:record of

phaseno:integer
value: integer
cardinality: integer

while (witness_count(Q)<=k and witness_count(1)<=k)
message_count:=witness_count:=o

for all q, 1<=n, send(q, (phaseno,value,cardinality))

while (message_count(Q)+message_count(1 ><n-k)
receivecmsg)
case

(msg.phaseno=phaseno):
begin

message_count(msg.value):=message_count(msg.value)
if msg.cardinality)n/2
then

witness_count(msg.value):=witness_count(msg.value)+1
end

(msg.phaseno>phaseno):
·send(p.msg)

end
l f there is i such that wi tness_count(i))Q
then value:=i
else if message_count(1 >>message_count<O>

then value:=1

end

else value:=O
cardinality:=message_count(value)
phaseno:=phaseno+1

let i be such that witness_count(i))k

dp:=i

for all q, 1<=q<=n,
begin

send(q,(phaseno,value,n-k))
send(q,(phaseno+1, value,n-k))

end

SECTION 4.4.2 : IUUCIOUS STOP CASE

MODEL

Here we describe a model in which we investigate a stronger

failure behavior of the processes.

A malicious process is one which :

••• can send false and contradictory messages
ceven according to some malicious design),

••• can fail to send messages

••• can change its internal state to any other state.

The message system must be so designed that it must provide a

way for correct processes to verifY the identity of the sender

of each ~essage. Because if this was not done then one malicious

process can impersonate the whole system, leading the correct

processes to conflicting decisions.

The rest of the model described earlier in section II with the

with the following additional definitions.

A schedule is said to be legal if all its steps are according to

the protocol.

A configuration C is legally reachable if it is reachable by a

legal schedule.

Henceforth, we reserve the notation 1--- to denote only

transitions by legal schedules.

I OWER BOIIND .ill3l .I1:1E Nl tiBER ..QE CORRECT PROCESSES

Refer to Lemma 4.3 and theorem 4.3 for lo~er bound on the number

of:correct precesses for the malicious case.

I <n-1 l/3 I REST! IFNI CONSENSUS PROTOCOl

Here in this section ~e present a K-resilient consensus protocol

for a system ~ith a fair schedular and K=1,2 •••• ,L<n-1)/3J

malicious processes.

The state of a phase number, and a binary value. As seen

earlier the protocol consists of phases in Nhich processes send

to each other their states. To overcome misleading messages from

the malicious processes: ~e use the technique of initial and

echo.

Protocol Steps :

<1) A process in each phase first sends its state to all the

processes, and Naits until it accepts messages from n-K

processes bY follo~ing steps:

(a) In this a process sends to all the other processes an

initial message Nith its name and its state.

(b) After receiving the initial message, every process

echoes it bacK to all the processes.

(c) Process p, at phase t, accepts a message Nith value

1 from process q if it receives more than ·cn+K)/2

messages of the form (echo, q,i,t)

(2) It changes its value to the majoritY of the values of

the accepted messages.

(3) A process decides i if it accepts more than (n+k)/2

messages ~ith value i.

we prove· that, once a process decides i, thereafter all the

other correct processes ~ill have value i.

The protocol seen in Figure 2, sho~s that processes do not exit

the protocol after they decide. This feature ~as done for

notational convenience only, and it can be avoided in the

follo~ing manner:

When process p decides

message(initial,p,i) and

q's. The last messages

receives them, it sends

1, it sends to all the processes the

echoes of the form <echo,q,i) for all

are special so that ~henever a process

them back to itself. Once a correct

process has decided 1, all the correct processes ~ill have value

1. Hence ,this procedure ~ill have the same effect as the actual

participation of p in the protocol.

Refer to theorem 4.4 to see th~t the follo~ing algorithm is a

k-resilient consensus protocol for the malacious case, for any k,

0 <= k <= L < n - 1) I 3 _l

4-33

process p:k-consensus

value:integer init(i)
p

phaseno:integer init(O)
message_count:arrav[0 •• 1J of interger init(O)
echo_count:arrav[1 •• n:o •• 1J of integer init(0)
msg:record of

type:(initial, echo)
from: integer
value-: integer
phaseno:integer

while(true)
message_count:=o
echo_count:=o
for all q,1<=n,send(q(initial,p,value.phaseno))

while< message_ count(0)+message_ count(i)<n-k)
receive<msg)
if it is the first message received from the sender

with these values of msg.type, msg.from and msg.phaseno then
case

<msg.type=initial):
for all q,1<=q<=n,

send(q,msg.from,msg.value,msg.phaseno))
begin

echo_count(msg.from,msg.value):=echo_count(msg.from,
msg.value)+1
if echo_count<msg.from,msg.value):=<n+k)/2+1
then message_count<msg.value):=message_count(msg.value)+1

end
<msg.type = echo and msg.phaseno)phaseno):

send(p.msg)
end

end

if message_count(1)>message_count(O)
then value := 1
else value := 0

if there is such that message_count<O)
then value := 1
else value := 0

if there is such that message_count(i))(n+k)/2
then d := i

p

Phaseno:=phaseno + 1

end

SECTION 4.4.3 : ASYNCHRONOUS Bl'UNTINE AGREEMENT

we now come across a major problem of ensuring reliable

broadcasts in distribut_ed systems ,commonly knov.~n as Byzantine·

Agreement[4_6], Unanimity[~2J, or Interactive Consistency[4_7].

All earlier studies of Byzantine Agreement deal with a

synchronous system of n processes, where upto k processes can be

malicious. some specially designated process is a transmitter

that sends a value to all the rest of the processes. A Byzantine

Agreement is achieved if the follo~ing holds:

1) All correct processes agree on the same value.

2) If the transmitter is correct, all the correct processes

agree on its value.

we can view the whole system implicitlY as in one of the

following states :

a) "before broadcast,"

b) "executing the agreement protocol,"

c) "after broadcast."

Thus, queries about the transmitted valu~ can be handled in a
.

consistent manner bY any correct process.

The differnce in this view comes when we consider asynchronous

systems, • Some correct processes can proceed with the

protocol and reach agreement while others may not yet be aware ~

the protocol has begun.

4-35

It may be insufficient to start up the process on the protocol

even if a process receives a message from the transmitter or

from other processes • we definately require some threshold

activitY to start up a process, a threshold that guarantees that

all the other is necessary to start up a process, a threshold

that guarantees that all the other correct processes ~ill also

start the protocol and ~ill agree on the same value.

The follo~ing t~o conditions illustrate the necessitY of such a

scheme.

1) The transmitter is malicious. At time tO it sends to k

processes o- messages, to a different set of k processes

1-messages, and none to the rest. All these messages are

received at time t1. After that, the transmitter stops

participating in the protocol. If ~e regard this as a sufficie~t

condition to start up a Byzantine Agreement protocol, then the

system can proceed and agree, let us say on 1, at time t2.

2) The transmitter is correct and sends a-messages to all the

processes. At time the same k correct processes as in condition 1

receive these a-message. Also, k malicious processes receive O-

message~, but they treat them as if they ~ere 1 messages. AnY

other messages from the transmitter ~ill be received only at a

time later than t2. Consider the system during the interval

[t1,t2J. The processes vie~ of the system is the same as in
'

scenario 1, and therefore they can simulate it and agree on 1 at

time t2, thus violating requirement 2 of the Byzantine Agreement.

et us now study the two ways to overcome this phenomenon. We

an restrain the behaviour of a malicious transmitter (it will

e enough to force it to send 2k+1 messages ~ith the same

alue). Another way, the one ~e adopt, is to regard certain

iews of the system as insufficient to start the protocol.

rocesses may not start, unless presented ~ith a vtew that

uarantees starting up and agreement of all the correct processes.

or an asynchronous · Byzantine Agreement to be achieved· the

ollo~ing must hold : ·

) If the transmitter is correct, all the correct processes

ecide on its value.

) If the transmitter is malicious, then either no correct

recess will decide they ~ill all decide on the same value •

.owEB BOI!ND llli Nl tiBER 1l.E CORRECT PROCESSES

efer to theorem 4.5 for lo~er bound on the number of correct

recesses for the asynchronous Byzantine agreement.

SYNCHRONOIIS BYZANTINE AGREEMENT PROTOCOl

here are three types of messages in the protocol:initial, echo,

nd ready. The protocol starts ~1th:

<1) The transmitter sends the initial messages

(2) it then processes report to each other the value they

recived via (echo,v) messages.

(3) If more than (n+k)/2 (echo.v) messages are received bY a

process, it announces it with <ready,v) messages.

(4) If a process receives 2k+1 ready messages of the same
I

value, it decides that value.

Refer to theorem to see that the following algorithm

achieves Asynchronous Byzantine Agreement, for k=1 to l_(n-1)/3_1

malacious precesses.

The algorithm is given on the next page.

4-38

msg_count:array of (types:Q •• 1J of integer

msg:record of type:(initial,echo,ready)

value: integer

while(there is no 1 such that
msg_count(initial,i)>=1 or
msg_count(echo,1))(n+k)/2 or
msg_count(ready,1)):k+1)

receive(msg)

if it is the first message received from the sender
with these values of mesg.type,msg.from
then msg_count(msg.type,msg.value)=msg_count<msg.type,value)+1
end

for all q, send(echo,i)

while(there is no 1 such that
msg_count(echo.1)>(n+k)/2 or
msg_count(ready.1)>=k+1

receive(msg)

if it is the first message recieved from the sender
with these values of msg.type, msg.from
then msg_count(msg.type,msg.value)=msg_count(msg.type,msg.value)+
end

for all q, send(ready,i)

while(there is no 1 such that
msg_count< ready, i »=2k+1)

receive<msg)

if it is the first message received rom the sender
with these values of msg.type,msg.from

then
msg_count(msg.type,msg.value)=msg_count(msg.type,msg.value)+1

end

decide 1

MODULE FIVE

This paper considers a variant of the Byzantine Generals problem

is considered, in ~hich processes start ~ith arbitarv real values

rather Boolean values or values from some bounded range, and in

~hich approximate, rather than exact, agreement is the desired

goal. Algorithms are presented to reach approximate agreement in

asynchrnous as ~ell as synchronous systems. The asynchronous

agreement algorithm is an interesting contrast to a result of

Fischer et al, ~ho. sho~ that exact agreement with guaranteed

termination is not attainable in an asynchrnous system with as

few as one faultY process. This is what we considered in module

three. The algorithm work by successive :approximation with a

provable

number of

convergence rate that depends on the ration between the

faultY processes and the tool number of processes.

Lower bounds on the convergence rate for algorithms of this form

are proved and the algorithms presented are shown to be optimal.

In Section 4•5-1, we prove some combinatorial properties of the

approximation functions on which the algorithms depend. Then, in

section 4.5.2, synchronous model is introduced and the

synchronous approximate agreement algorithm is presented. In

Section 4.5.3, asynchronous problem is discussed and asynchronous

approximate agreement algorithm is presented. In section 4.5.4,

resilience properties of the algorithms are discussed.

SECTION 4.5.1: PROPERTIES OFJlPPBOXIHATION FUNCTIONS

Here, ~e state and prove the relevant properties of the

approximation functions.

Refer to the definations related to multisets. Lemma 5.1 sho~s

that the number of common elements in t~o nonempty sets is

reduced bY at most 1 ~hen the smallest (or the largest) element

is removed from each.

Lemma 5.2 extends the results of the lemma 5.1 to removing the j

largest and j smallest elements.

Lemma 5.3 is fundamental to the correctness of the algorithms.

It states that if V and U are multisets such that V contains at

j
most j values not in u, then every value in reduce CV) is in the

range of u. For example, if the multiset of values held bY

nonfaulty processes at some point in the algorithm is u, and the

multiset of values received bY some process is v, then at most t

of the values in V are not in u, ~here t is the maximum number of

t
faulty processes. The lemma then states that reduce CV) is a

multiset whose range is contained in the range of the values of

the nonfaultY processes. This property is essential in sho~ing

that the validity condition is satisfied.

.D:IE APPROXIMATION El!NCTIONSi

Suppose U is a nonempty multiset. Let m = I U '' and let uo <= u1

<= •••• <= um-1 be the elements of U in nondecreasing order. If

k > o, then define select <U> to be the multiset consisting of
k

the elements uo, uk, u2k, ••• , and ujk, where J = t_ <m-1)/k _I.

Thus, ~elect <U> chooses the smallest element of U and every kth
k

element therafter.

An important role is played by the constants

Lm- 1J c(m, k) = --~-- + 1

where c(m,k) is the number of elements in select <U) when u has
k

m elements. The constant c< n-2t, t) appears as the convergence

t of faulty processes, and (2) a constant k, the choice of which

depends on t and on whether the algorithm is synchronous or

asyncronous. For k > 0 and t >= 0 define the function fk, t bY

t
fk,t(V) = mean<select <reduce (V))),

k

for all multisets V with lVI > 2t. The approximation function for

the synchronous protcol with no more than t faulty processes is

ft,k. The approximation functilon for the asychronous protocol

with no more than t faulty processes is f2t.k.

To sho~ ~hv these functions are appropriate, consider Lemma 5.4

and 5.5.

LEMMA 5.4 is- used in verifying the validity condition.

LEEMA 5.5 is applied to determine the rate of convergence of the

approximation rounds. The multisets V and W are the multisets of

values received by t~o nonfaultY processes in a given round and U

is the multiset of avalues held bY honfaulty processes at the

begining of that round. Nonfaulty processes use the appropriate

approximation function to choose their values for the next round;

the lemma tells us ho~ quicklY those values converge.

SECI'ION 4.5.Z : THE SYNCHRONOUS PROBLEII

Refer to the defination of a synchronous approximate algorithm p

given in chapter 2.

We assume that the system acts synchromously, using a reliable

communication medium. Each process is able to send messages to

all process (including itself), and the sender of each message is

identifiable by the receiver.

A configuration consists of a state for each process. An initial

configuration consists of an initial state for each process. Let

T be any subset of the processes. Refer to chapter 2 for the

defination of T-computation.

Assume a fixed small value e- , a fixed number number of .Process

n, and fixed maximum number of faulty processes t.

A synchronous approximation algorithm is said to be t-correct

provided that for every subset T of processes with T I >= n -1,

and every r-eamputation, the following is true:

Every p belongs to T eventuallY enters a halting state and the

following two conditions hold for the values of those halting

states:

(a) Agreement:
If two processes in T enter halting states with

values r and s, respectively, then I r - s I <= E-.

(b) Validity:
If a process in T enters a halting state.with value

r, ·then there exist process in T having x and Y as

initial values, such that x <= r <= y.

Theorem 5.1 is proved next.

·Note that the following strategy would suffice to prove Theorem

5.1. The process could run n executions of a general (unlimited

value set) Byzantine Generals algorithm, such as the one in

(5_4], in order to obtain common estimates for the initial values

of all the process. After this algorithm completes, all processes

in 1 will have the same multiset v of values for all the

processes. Then each process halts with value f(v), where f is a

predetermined averaging function that is the same for all

processes. This algorithm actually achieves exact real - valued

agreement, with the required validity condition. However,solution

presented below is simpler and more elegant and, moreoyer,

extends directlY to the asynchronous case, for which exact

agreement is impossible. The algorithm has two additional

advantages over using a BYzantine Generals algorithm: It is more

resilient than typical BYzantine Generals algorithms, and it can,

in some cases, terminate in fewer than t + 1 rounds.

we now present the synchronous approximation algorithm s. First,

we describe a nonterminating algorithm, so, and then we discuss

how termination is achieved. we assume that n >= 3t + 1.

SYNCHRONOUS APPROXIMATION ALGORITHM SO ...
At each round, each nonfaultY process p performs the following

steps:

1) Process p broadcasts its current value to all processes,

including itself.

2) Process p collects all the values sent to it at that round

into a multiset v. If p does not receive exactly one correct

value from some particular other process (which means, in the

sunchronous model, that the other processes faulty), then p

simply picks some arbitary default value to represent that

process in the multiset. the multiset v, therfore, always

contains exactly n values.

3) Process P applies the function ft,t to the multiset V to

obtain its new value.

Lemma 5.6 states how the diameter and range of the nofaultY

processes' values are affected by each round of algorithm so.

Part 1 of Lemma 5.6 shows that, at each round, the diameter

of the multiset of values held bY nonfaulty processes decreases

bY a factor of c(n - 2t, t), which is at least 2 because n >= 3t

+1. Thus, the diameter of the multiset of values held bY

nonfaultY processes eventuallY decreases to E- or less. In

addition, repeated application of part 2 of Leema 5.6 shows that,

at each round h >= 1, the values held bY nonfaulty processes

immediately before round h are all in the range of the initial

values of nonfaultY processes.

It is now easy to see why the function ft,t is appropriate for

the synchronous algorithm. Since a correct process. can receive at

most t values in a round from faulty processes, t-fold

application of reduce is sufficient to ensure that extreme values

from faulty process are discarded. Thus, the second subscript of

f is t. Also, if p and·q are correct processes that receive

multisets V and w, respectively, in a round, then t is the

maximum number of values that can in v - w. APPlication of select

t to the reduced multisets is therefore sufficient to obtain

convergence, and the first subscript of f is also t.

Algorilthm SO is not a correct synchronous approximation

algorithm, for, as stated, it never teminates. we modify SO to

obtain a terminating algorithm s, as follows.

TERMINATING ALGORITHM S

-At the ftrst round, each nonfaulty process uses the range of all

the values it has received at that round to compute a round

number at which it is sure that the values of any two nonfaultY

processes will be at most €- _part. Each process can do this

because it knows the value of E-, the guranteed rate of

convergence, and, furt~ermore, it knows that the range of values

it receives on the first round that must be executed (including

the first round) is given bY [log < ACV) /€-)], where v is the
c

multiset of values received in the first round, and c =c<n-2t,t).

In general, different . processes might compute different round

different numbers. AnY process that reaches its computed round

simPlY halts and sends its value out with a special halting tag.

When any process, say p, receives a value with a halting tag, it

knows it has to use the enclosed value not only for the

designated round, but also for the future rounds (until p itself

decides to halt, on the basis of p's own computed round number).

Although nonfaulty processes might compute different round

numbers, it is clear that the smallest such estimate is correct.

Thus, at the time the first nonfaulty process halts, the range

is already sufficiently small. At subsequent rounds, the range of

values of nofaulty processes is never increased, although we can

no longer ·guarantee that it decreases. Lemma 5.7 makes these

ideas more precise.

SYNCHRONOUS APPROXIMATION ALGORITHM S

Round 1 (first Approximation Round):

Input v;

V <--- SvnchExchange(v);

v <--- ft,t<VH

H <--- [log (&CV) I E-) J, ~here c = c(n-zt,t)
c

Round h <2 <= h <= H) <Approximation Rounds):

V <--- SvnchExchange(v);

v <--- ft,t(V).

Round H + 1 <Termination Round):

Broadcast<<v,halted>);

Output v.

{ End of Main Algorithm }

Subroutine SvnchExchange(v);

Broadcast(v);

Collect n responses;

Fill in values for halted processes.

Fill in default values, if necessary.

Return the multiset of responses.

{ End of subroutine }

{ End of Algorithm S }

To show that S is a correct synchronous approximation algorithm,

we must show that all processes terminate, and that the agreement

and validitY conditions are satisfied. It is clear that all

processes terminate. consider the agreement property. At the

first r~ound at which some nonfaultY process halts, it is already

the case that the values off all nonfaulty processes are within

E- of each other. BY Leema 5.7, this diameter never increases at

subsequent rounds, so the final values of all the nonfaulty

processes are also within E- of each other. The validity propertv

also follows from repeated application of Leema 7. This completes

the proof of Theorem 5.1. Q.E.D.

As a final note, observe that algorithm S can be modified so that

a process need not always wait for its computed round to arrive

before halting : It can halt after it receives halting tags from

at least t+1 other processes.

SECTION 4.5.3 : THE ASYNCHRONOUS PROBLEM

In this section

model adapted

we reformulate the problem in an asynchronous

from the one in [5_9]. In an asynchrnous

approximation algorithm, we assume that processes have states as

before, but now the operation of the processes is described by a

transistion fuction that in one step tries to receive a message,

gets back either "null" or an actual message, and on the basis of

the message, changes state and sends out a finite number of other

messages. NonfaultY processes always follows the algorithm.

Faulty processes on the othe~ hand, are constrained so that their

steps at least follow the standard form - in each step they try

to receive a message, as nonfaultY processes do. However, they

can change state arbitrariy (not necessarilY according to the

given algorithm) and send out any finite set of messages, <not

necessarilY the ones specified bY the algorithm).

Refer to defination of T-computation

approximation algorithm given in chapter 2.

for asynchronous

An asynchronous approximation algorithm is said to be t-correct

provided that for every subset T of processes with I T I >= n - t

and every T-computation, every process in T eventuallY halts,

and the same agreement and validitY conditions hold as for the

sunchronous case.

It seems simplest here to insist on the standard form being

followed by all prqcesses. The requirement that faulty processes

keep taking steps until they enter halting states at any time

they wish. Similarly, the requirement that faulty processes

continue trying to receive messages is not a restriction, since

they are free to do whtever they like with the messages received.

Finally, the requirement that faulty processes only send

finitely many messages at each step is need4ed so that faulty

processes are unable to flood the message system, preventing

messages from other processes from getting through.

4-50

we assume that processes take steps at completely arbitary rates~

so that there is no ~ay (in finite time) of distinguishing~

faulty process from one that is simply slo~ in responding. Also~

~e assume that the message system takes arbitary lengths of tim~

to deliver messages and delivers messges and delivers them ih

m~b i tm~y or~der.

Theorem 5-2 is proved in the follo~ing text.

we describe the asynchronous approximation algorithm. As in the

synchronous case, first ~e describe a nonterminating algorithm

AO, in ~hich processes compute better and better approximations,

and ~e then modifY AO to produce a terminating algorithm A·

Assume that n >= 5t + 1.

ASYNCHRONOUS APPROXIMATION ALGORITHM AO

At round h, each nonfaulty process p performs the following steps~

1) Process P labels its current value with the current round

number h, and then broadcasts this labeled value to all

processes, including itself.

2) Process p waits to receive exactly n-t round h values and

collects these values into a multiset v. Since there can at

most t faulty processes, process p ~ill eventually receive at

least n t round h values. Note that, in contrast to the

synchronous case, process p does not choose any default

values.

3) Process P applies the function f2t,t to the multiset v to

contain its ne~ value.

4-51

BY analogy with Lemma 5.6, we have Lemma 5.8 which states the

convergence properties of the above algorithm.

Part 1 of Leema 5.8 shows that, at each round, the diameter of

the multiset of values of nonfaulty process decreases bY a factor

of c<n-3t,2t), which is at least 2 becauise n>=5t+1. thus, the

diameter of the multiset of values held by nonfaulty processes

eventuallY decreases to c- or less. In edition, repeated

application of part 2 of Lemma 5.8 sho~s that, at· each round h>=1,

the valuaes by nonfaulty process immediately before round h . are

all in the range of the intial values of nonfaulty processes.

we can now see whY f2t,t is the appropriate approximation
. .

function for the synchronous algorithm. The second subscript is t

because, as in the synchronous case, that is the maximum number

of values a correct process can receive in a round that are not

values of correct processes. The first subscript is 2t becasiue

if the correct processes p and q receive multisets V and w,

respectively, in a round then 2t is the maximum number of values

that can be in V-W(t faulty values, plus t nonfaulty values

received by p but not by q).

The only remaining problem is termination. We cannot use the some

technique that we used in the synchronous algorithm, because a

process

thus it

values

cannot wait until it hears from all other processes, and

cannot obtain an estimate of the range of the initial

of the nonfoultY processes. we solve this problem bY

4-52

adding an initialization round at the begining of the algorithm.

In this initialization round(round Q), each nonfaulty process P

performs the following steps:

Initialization Round £gc Asynchrnous Approximgtion Algorithm A

1) Process p labels its intial value with the round number 0 and

then broadcasts this labeled value to all processes,

including itself.

2) process p waits to receive exactlY n - t round 0 values and

collects these values into a multiset Vp.

2t
3) process p chooses an arbitary element of A<reduce CVP)) (say

2t
mean<reduce <VP))) as its initial value for use in round 1.

Let xp be this chosen value.

Suppose that p and q are arbitary nonfaultY processes. Then,

since VP I > 4t and I VP - Vq I <= 2t, it follows that VP and

Vq satisfy the hypotheses for the multisets V and u, respectively,

in Leema 5.3 < with J = 2t). An application of this result shows

that, for any nonfaulty processes p and q it is the case that xp

belongs to A(Vq). That is, the value xp computed bY process p

as the result of the initialization round is contained in the

range of all values received by process q in the initialization

round. Since each nonfaulty process q Knows

<1) that its range ACVq) contains all the round 1 values xp for

nonfaulty processes p,

4-53

(2) the value of c-, and

C3) the guaranteed rate of convergence, it can compute, before
·~

the neginilng of round 1, and round number at ~hich ~tis

sure that the values of any t~o nonfaulty process ~ill be at

most .c.- part.

The total number of rounds that must be executed by a process,

not including the initilization round, is r- log C A(V) I C-) -,
c

~here V is the multiset received in the initialization round and

c = c n - 3t, 2t).

As in the sunchronous case, different process will calculate

different round numbers at which they would like to halt. The

same modification, of sending a value out with a special halting

tag, ~arks here as well. we obtain lemma 5.9 which is analogous

to Leema 5.7.
-

ASYNCHRONOUS APPROXIMATION ALGORITHM A

Round 1 (first Approximation Round):

Input v;

V <--- SvnchExchange(v);

v <--- ft,t(VH

H <--- [log (&CV) I C-) J, where c = ccn-2t,t)
c

4-54

ound h (2 <= h <= H) (Approximation Rounds):

V <--- SynchExchange(v);

v <--- ft,t<V).

:ound H + 1 <Termination Round):

Broadcast<<v,halted>);

output v.

End of Main Algorithm }

Subroutine SynchExchange(v);

Broadcast(v);

Collect n responses;

Fill in values for halted processes.

Fill in default values, if necessary.

Return the multiset of responses.

{ End of subroutine }

End of Algorithm S }

~lgorithm A is summarized above. The remainder of the proof of

rheorem 5.2 is analogous to that of Theorem 5.1.

4-55

SECTION 4.5.4 : BESILENCE

The algorithms presented in this above have some intersti__og -

resilence properties, stronger than those usuallY claimed for

Byzantine agreement algorithms. So far, ~e have only claimed that

the algorithms are resilent to t different processes

Byzantine faults during the elntre course of the

exhibiting

algorithm.

Ho~ever, we can claim more for situations where processes fail

and recover repeatedly. Our algorithms actually support resilence

to any t Byzantine faulty processes at a time (under suitable

definitions of faultiness at a particular time); the total number

of faultY processes can be much greater that t, since we can

allow different processes to be faulty at different times.

we do not give a formal presentation of four resilence

properties. Rather, we just give a brief sketch of the main ideas.

First, consider the sunchrnous case. A faulty process is able to

recover easilY and reintegrate itself into the algorithm. It can

reenter the algorithm at any round, just bY sending an arbitary

value, collecting values and averaging them as usual to get a

new value. The process also needs to obtain an estimate of the

number of rounds required before termination. It can obtain such

an estimate in the reenty round, just as it could in the first

round.

asynchronous case is a little more complicated. A faultY

:ess p needs to rejoin the algorithm at some particular

1nchronous) round; however, it must be careful to reJoin at

round that is not "out of date". That is, in the absence of

.tional failures of p, it must be guaranteed to receive all of

messges

>lY wait

for that and subsequent rounds. Process p could not

until it received n-t messages for some particular

ld k, since those messages might have been delivered very late

messages ffor round k+1 might have already been lost.

~ver, it suffices for p to send out a "recovery" message, and

Lt acknowledgements form n - t processes carrying the number

their current round. Process p knows that the t + 1 st

llest of these round numbers plus 1, is an allowable round

Jer for it to use for reentry.

recovering process is not able to use the same method of

!mating a termination round as it did initial. Therefore, it

ns necessary to modifY the asynchronous algorithm to enable

overing processes to obtain termination estimates when needed.

easy modification that works is to have every process

gyback its estimate of the number of rounds to termination on

ry message it sends. Then a recovering process can obtain a

estimate Just by taking the t+1st smallest of the estimates

receives at the reentry round.

MODULE SIX

In this module we consider protocols for bOth synchronous and

asynchronous models. All the results are based on distributively

fliPPing a coin, which is usable by a significant majorit_x- of the

processors.

Thus the algorithms presented in this module are based on

producing a coin fliP that is essentiallY global. (A global coin

fliP has a random outcome that is viewed identicallY by every

processor.) we relax the condition that each process's view of

the coin must always be identical, and in fact, the coin may even

be somewhat biased.

For this module, we d~fine the consensus problem as follows :

processor i has a private binary value vi; at the termination of

the protocol all proce~~or~ have a9reed on a common Vdlu~ VJ if

1Ifl.Jl.Jl ';;'li ~!:11"-,f:'! ~~tJUil!fl.Jl]JTll] [:],!flil~'l·l f!l!T•f:'! lf.LiJTlh!P~ ~YI!II~l!!l!'! '!ll::1.ll"i.!:'\~Jl !!.~>i!!W j~; !hlili~;

common value.

We shall initiallY consider the following synchronous model. we

are given a system of n processors that can communicate through a

completely connected network. The processors act synchronously,

where at each step each processor can broadcast a message,

recieve all incoming messages, and perform some private

computation (possibly involving coin tossing). In the absence of

4-58

failure, any message sent at time i will be recieved at time 1+1.

As a result, we view the computation as occuring in rounds, each

consisting of transmission, reception, and private computation

Phases~

Again, n will be used to denote the number of processors, and t

will denote on upper bound on the number of failures tolerated.

Next protocols for achieving consensus in completely connected

networks

which can

failing:

constant

protocol

despite omission faults of various types, is presented,

tolerate up to a constant fraction of the processors

that is, for each protocol and fault type there is a

$ < 1/2, independent of the value of n, such that the

con tolerate as many ·as t=#n omission faults of the

given type.

Refer to the defination of weaklY global coin, given in chapter

2. The intution behind this definition is that if L_ n/2 _J +t+1

processors see the same outcome,then a maJority of the processors

< L_ n/2 _J + 1) will use this value in the consensus protocol,

and reach consensus in a few more rounds. The essence of weakly

global coin procedure is to randomly select a temporary leader,

and then to use the leader's local coin fliP for the given round.

After showing how such a coin can be produced in a variety of

omission faults models, we then indicate how to use it to achieve

consensus.

The design strategy of the protocols in [6_0] reflects a heuristic

rule prevalent in distributed protocol design: It should be

possible for simpiler alogrithms to defeat weaker adversaries. In

the search for provablY good alogrithms that are useful in

practise, this rule suggests that some complex protocols have

simple counterparts in more realistic fault models. In the case

studied ~ere the alogrithm against the adaptive adversary is

transparent in comparison to the protocol for the Byzantine case

that results from the combined work in [6_3] and [6_5].

In section 4.6.1, we consider the various failure models, for

the synchronous case.

In section 4.6.2 and 4.6.3, we consider the tw adaptive adversary

models.

In section 4.6.4, the asynchronous case is considered and finally

in section 4.6.5 we consider algorithm for achieving consensus

using a weakly global coin.

SECTION 4.8.1: FAILURE MODELS

Correctness proofs for fault - tolerent alogrithms have a game~

theoretic character. That is, the alogrithms behave appropriately)

even ~hen the faults are being caused by an intelligent

adversary. The capabilities attributed to this adversary have a

profound effect on the design of alogrithms meant to defeat it.

Indeed, there are cases in ~hich no alogrithm is capable of

defeating sufficiently po~erful adversaries [6_14, 6-20].

In Byzantine fault models, the adversary can control the

behaviour of some processors, causing them to send arbitrary

messages ~henever it likes. such an adversary is extremely

po~erful, and defeating it seems to require complex and expensive

alogrithms. If one is modelling Phisical failures < as opposed to

intentional attacks), such an adversary may be unrealisticallY

PO!f4erful.

Consider the follo~ing example. On october 27, 1980, the ARPANET

suffered a catastrophic failure as the result of hard~are

failures in t~o processors. T~o spurious messages ~ere generated

that brought do~n the ~hole net~ork for a period of several hours.

Clearly, the net~ork protocols~ere not capable of surviving even

a small number of Byzantine faults. Instead of changing the

protocols, hard~are error-detection ~as added in the next

generation n processors, reducing the likelyhood of repetition of

this Byzantine failure to an extremely small probability [6_23].

Rather than implementing protocols to defeat a Byzantine

adversary, the net~ork designers effectively choose to ~eaken

the adversary.

The ne~ ARPANET implementation might be best described by an

omission fault model. in ~hich processors never send spurious

messages, but some messages s may fail to arrive at their

destination. The adversary is thus limited to specifying ~hich

messages ~ill be delivered to their destination, and ~hich will

not. The failure models ~e consider here are variants of failure

bY omission.

For deterministic protocols, an adversary, causing failures to

produce the ~erst possible performance, can determine the outcome

of a strategy in advance. With randomization, this is no longer

possible, so that it may be advantageous for the adversary to

decide its strategy adoptively, as random bits are generated and

used. Therefore, in modeling the power of the adversary, it is

crucial to specifY the extent to ~hich the adversary is adaptive,

and the information it has available to determine its strategy.

We consider three limitations on the adaptiveness of the

adversary. Each of these is concerned solely with the

communication system that connects the processors, and thus

assumes that the processors are themselves non faulty. However,

as ~e elaborate bela~, the situation in ~hich processors are

allo~ed to fail in a "fail-stop" manner is a special case of one

of models considered in [6_0].

MODE! S ~ I imitations ~ ~ adaptiyes ~ ~ gdyecsgcy

Static Faults:

Throughout the life of a system, messages sent by at most t

processors fail to reach their destination on time < within the

round they are sent). Most previous work on omJssion fault model

has focused on this type of fault. In the traditional fail-stop

model, processors fail bY !halting prematurely, but the
. ··~ '

communication Metwork always delivers all messages that hav~ been
·~.

sent. Within this model, definition of the consensus problem is

flawed, since we require that all processors agree on a

valuei and it is hope less to require a faulty proc~ssor to do

anything. If we relax this requirement to all nonfaulty

processors,it is not hard to see that static communication faults

include the case of fail-stop processor faults.

Oyoqmic-Aroadcast:

During each round, messages sent by at most t processors fail to

reach their destination < but this may happen to a different set

of t processors each round). A processor that sends a message

that does not reach its destination is said to be erratic. These

models are more general than static fault models. They are

similar to models studied in [6_21].

Dynamic-Reception:

Each processor receives . all but at most t messages sent to it

during every round (so that, if all processors are supposed to

broadcast every round, each processor receives at least n - t

messages). However any two processors may fail to hear from a
'

)

different set of
. •.! •

:·:~~::~-- ·~. ~ 1 '··

.dYnamic-broadcast ... '·" '•·. . . ' . .

t others. These models are more general than

models, and ' are . s i m 11 or to the mode 1 s wet!b~e
,.........

'.:i' ,. ~

for the asynchronous case.

we present alogrithms for dynamic-broadcast and dynamic-reception

models~ Because these models are more general than the fail-stop

or static models, these a~ogrithms will work in these cases as

well.

In addition to the limitations on the adaptives of the adversary

mentioned above, we consider two different limi~ations on the

knowledge available to the adversary in determining its strategy.

MODE! S:Limitations ~ ~ knowledge available~~ adversary

Messgge-Oblivious:

The adversary's choice of failure, that is, which messages will

not be delivered, is independent of the contents of the messages~

However, this choice con depend, for example, on the patterri~bf

communication or on the length of messages.Before giving a more

precise definition, we first introduce a formal description of a

synchronous execution of a protocol in this model.

4-64

At round k + 1 of a protocol, the prior k rounds of execution

can be described in the following way. Consider a layered,

directed graph consisting of k + 1 vertices for each processor p,

(p, i), i = 1, ••• , k + 1, where there is an edge from (p, i)

to < q, i · + 1) whenever p sends a message to q at round i. A

subgraph of this graph represents the messages actually delivered.

These graphs will be known as the transmission and reception

graphs, and together will be reffered to as the communication

pattern. To complete the description of the prior execution, we

add labels to· the edges of the distribution graph,where the labels

correspond to the contents of the messages. we define the .ith

layer of these graphs to be the subgraphs induced on the vertices

with second coordinate i and i + 1.

Each processor p's view of the communication pattern consists of

the subgraphs of nodes labelled bY p , together with the labeled

out-edges of those nodes in the transmission graph (the messages

P sent), and the in-edges in the reception graph (the messages p

received). A protocol for p determines a distribution of a new

local state, out-edges and labels for node (p, k + 1), as a

function on of p's local state and p's view of the first k layers

of the

adversary

communication pattern, together with p's input value. An

determines a di~tribu~ion of in-edges for the k + 1st

layer of the reception graph as a function of the n processor

protocols and input values, the first k layers of the

communication pattern, and the k + 1st layer of the transmission

graph. An adversary is message-oblivious if for any given input

vector to the processors, any communication pattern up to round k,

and any kth layer of the transmission groph,the probability

distribution of the kth layer of the ·reception graph is

independent of the labels of the communication pattern through

the first k layers c inclusive).

In (6_6], a ~eaker probabilistic adversary ~as considered,

called a fair scheduler. At round i, a fair scheduler delivers to

processor p a random subset n-t messages out of all messages sent

to processor at this round. Furthermmore, set of messages sent

to different processors ore mutuallY independent. Brocho and

Toueg have demonstrated a constant fraction of failures for

executions under fair schedulers.

Message-Dependent:

This model Places fe~er restrictions on the adversary's

kno~ledge of communication in the net~ork.

The adversary is limited to polynomial resources (time and space

), but its choice of failures may depend on the contents of the

messages.

Note that these definitions assume that the adversary has full

knowledge of the hardware and software running at each processor

and of the communication over the net~ork (subject to the

limitations above), but does not kno~ the local state of

indiVidual processors during execution (which may depend on the

outcome of local coin tosses not observed bY the adversary). For

example, it ~ill be important that discription keys are stored in

local memory and are local part part of the local state. we

assume that the initial values can be seen by the adversary. For

each combination of adaPtiveness and kno~ledge constraints, ~e

present an alogrithm to achieve consensus in constant expected

time.

SECfiON 4.8.Z : mE HESSA6E-8BUVIOUS CASE

In this section ~e sho~ ho~ to toss a ~eaklY global coin in

message-oblivious models. For the dynamic-broadcast failure

model,the coin ~ill have the property that for each outcome

< heads or tails), there is some constant probability of that

outcome being received by every processor. For the dynamic

reception failure model, there is some constant probability that

for each outcome, at least L n/2 _j + t + 1 processors ~~ 11

receive that outcome, provided t is bounded a~ay from n/4.

4-67

The algorithms is perhaps the most natural one. A leader

randomly volunteers, and this leader tosses a coin. More

precisely, consider the follo~ing alogrithms:the procedure LEADER

produces a local biased bit ~here the probabilty of a 1 < "I

volunteer") is equal to 1/n; the procedure RANDOM BIT produces a

local unbiased bit.

Code for processor P:

1. function COIN_TOS5_1 :

2. lp <- LEADER

3. CP <- RANDOME BIT

4. broadcast (Cp,lp)

5. receive all cc, 1) messages

6. if all messages received ~ith 1=1 have the same C

7. then COIN_TOS5_1 <- C of these messages

8. else COIN_TOS5_1 <- local coin toss

Refer to Theorem 6.1 •

The protocol can also be vie~ed in the follo~ing ~ay. The tossing

of the 1/n biased coin is an approach to obtain a distribution

~here the maximum of n trials is likely to be unique. In this

context, the leader is the processor r ~ho tossed the unique

maximum. All processors receive the other processor's values,

determine the maximum and hence the leader, and choose the

unbiased bit of this processor. BY choosing other distributions

it is easy to see that the probability of a unique leader can be

pushed arbitrarilY close to 1. In implementing the protocol, this

means that it is possible to trade off additional bits transmitted

in order to reduce the expected number of rounds to reach

consensus. For example, if the leader identification consists of

3 log n unbiased bits binstead of a single bit 1, there is a very

high probabilty, >= 1-1 1 2n, that the maximum of n bit-sequences

~ill be unique.

Refer to Theorem 6.2 •

BY modifying the protocol, it is possible to significantly

strengthen the number of faults tolerated in the dynamic-reception

fault model. Before giving this ne~ protocol, ~e first describe

a basic building block that will be useful in several

constructions.

SIMl!l ATING DYNAMIC-BROADCASTS WITHIN A DYNAMIC-RECEPTION MODEl

We shall show that three rounds of broadcasting within the

synchronous dynamic-broadcast while maintaining the property of

message-obliviousness. The simulation consists of one round ·in

which each processor broadcasts the original desired message for

dynamic-broadcast <To simplifY the discussion, we asume every

processor has such a message to send.)ln the following two

rounds, every processor sends his message plus his view of every

other processor's message.

We begin bY showing that after executing this protocol, ther.e is

a set of at least n - t processors whose message has been relayed

to all n processors, assuming that t < n/2. This is done by a

simple counting argument. Consider the second round of the

simulation. we show now that there must be at least one processor

p whose second round messages reach t+1 processors. If all

processors reach no more than t, then m. the total number of

messages successfullY y transmitted in the second round, is at

most M <= nt. But each processor receives at least n - t, so that

n< n t) <= M .Thus we get nc n - t) <= nt, contracting the

assumption that t < n/2. Every processor receives at least n - t

messages

to relay

in each round, so that processor p must have attempted

at least this many messages to each processor in round

two. Since there are t +1 processors that have been relayed these

messages at the end of round two < from p), every processor will

be rel~yed these messages from one of the t+1 processors bY the

end of round three.

This proves that this three round dynamic-reception simulation

gives us the structure of one round of dynamic- broadcast. It is

not hard to see that one fewer round of echoing is not sufficient

to guarantee the structure of a dynamic-broadcast round.

we now show that

simulation. First

receiving messages

message contents.

message-obliviousness is preserved bY this

notice that the pattern of sending and

in the simulation itself does not depend on

From the definition of a message oblivious

adversary, the ith layer of the reception graph is independent of

the labeling of the transmission graph given the pattern of

communication up to this point. The analogous statement holds for

the i+1st layer, given the layer and the previous pattern of

communication. From the definition of conditional probability, we

get that the probability of any communication for both the ith

and 1+1st layers is independent of the previous labelings of the

pattern of communication. In this protocol, this imPlieS that the

set of at least n-t processors that reach at least t+1 processors

two rounds later, is independent of the contents of the messages

sent. Once this set reaches t+1 processors the adversary cannot

stop the set of messages from reaching all n processors in the

next round. Since the set is independent of the contents of the

messages sent, the pattern of the successful transmissions in the

contents of the messages sent,the pattern of the contents of the

messages. Thus we have shown that message-obliViciusness is

preserved.

The above two-round echoing scheme is a general tool. APPlYing

it for the case of producing a weakly global coin, we get the

following modified procedure.

Code for processor p ~ith t~o-round echoing:

1. function COIN-TOS5_2;

2. lp <- LEADER

3. CP <- RANDOME BIT

4. broadcast (Cp, lP)

5. receive all <C, 1) messages

6. broadcast <Cp, lP) and all <C1, 11) pairs received

7. receive a 11 compound < C1 , 11) •••• , <en, 1 n) messages

8. broadcast <Cp, lP) and all <C1, 11) pairs received

9. receive all compound <C1, 11) •••• , <Cn, ln) messages

10. if all messages received ~ith 1=1 have the same C

11. then COIN-TOS5_2 <- C of these messages

12. else COIN-TOS5_2 <- local coin toss

Although the echoing in this protocol requires a factor of n

more bits o be transmitted, it can tolerate up to t = r-n/2-, - 1

failures and the fraction of processors ~hose messages reach

every one is at least < n - t) /n

summary of above result is given in form of Theorem 6.3.

It is critical to the correctness of this protocol that the

adversary's choice of messages delivered each round be

independent of the contents of the messages. a stronger adaptive

. adversary might simPlY check each message as it is sent ;if the

processor is a potential leader (its message is (b,1)), then the

adversary blocks the message. This stronger adversary can also

be defeated, as long as the contents of the -messages are

intelligible to him. In this case, any attempt at blocking th~

leader's message is still an essentiaUy random act,because t~

adversary cannot understand the messages. This suggests that

encryption would be useful tool in designing a protocol that can

defeat a more powerful adversary.

SECTION 4.8.3 : mE HESSAGI-DEPINDINT CASE

In this section we show how cryptographic techniques can be used

to toss a weaklY global coin in the presence of an adaptive

adversary using a message-dependent strategy. We prove that if

the adversary can block the weaklY global coin, then it can break

the cryptosystem. Therefore, if we assume that the cryptosystem

is secure, and that the adversary is limited to polynomial

computing resources, then it cannot prevent consensus within
. .

constant expected time.

Let E be a probabilistic encryption scheme that hides one bit

[6._15]. We breifly describe the properties that E should possess.

Given a natural number h, the security parameter, E maps the 1
h

at random into a string o in a set 0 subset of { Q, 1 } and maps
h

the bit 0 at random into a string z in a set z subset of {Q, 1} •

Given a random string r an element of 0 U z, we assume that no

polynomial time alogrithm (that is, polynomial in h) can

distinguish the case r belongs to 0 from r belongs to z ~ith
c

success probabilitY greater than < 1 1 2) + < 1 1 n) for any

constant c > o. On the other hand, there is a polynomial-time

algorithm that,given additional secret information, distinguishes

bet~een the t~o cases ~ith probability 1. The scheme E can be

based on any trapdoor function (6_23]. In particular, the familar

RSA cryptosystem can be used, ~ith o encrypted by E<x), ~here x

is chosen at random among all numbers in zn ~ith least significant

bit 1 [6_1]. (For example,~e assume that RSA is hard to invert)

It is important to reiterate that the main theorem of this

section is based on the follo~ing hypothesis:

(*) The encryption function E cannot be inverted in random

polynomial time ~ithout the secret trapdoor information.

We first make the assumption that all processors use the same

public key E ~hose decryption key that all hold c but to ~hich

the adversary has no access)At the end of this section ~e indicate

ho~ this assumption can be removed, at some expense in the number

of· faults tolerated.

The only modification to the alogrithm of the previous section

is to replace the broadcasting of ((,1) (line 4 of the COIN_TOSS1

function) by the broadcasting of < E(C), E<l)).

The .modified code is given belo~:

Code for processor p:

1. function COIN-TOS5_3:

2. lP <- LEADE

3. CP <- RANDOM BIT

4. broadcast< E<CP), E<lP))

5. receive and decrypt all (C, 1) messages

6. if all messages received ~ith 1=1 have the same C

7. then COIN-TOS5_3 <- C of these messages

8. else COIN-T0$5_3 <- local coin toss

Theorem 6.4 proves that the ne~ protocol is as hard to break as

the cryptosystem it uses. This Theorem is based on the assumption

that the processors have already agreed on a common public key

E. This represents an additional assumption about the initial

state of the system. At the cost of a more complex protocol, this

asssumption can be avoided.

WEAK! V G! ORA! COINS WI THO! IT CCJ110N PIIBI I C KEYS

The problem of key distribution can be solved bY having each

processor p. broadcast its o~n (indiVidually generated) public

key EP· This is necessagry so that other processors can send

encrypted messages to p. Provided t < n/2 the algorithms bela~

~ill fliP a ~eaklY global coin.

In the dynamic broadcast model, processors spend. an extra initial

round broadcasting their public keys. This is done with every

toss execution. This guarantees that there are n - t processors

whose public keys are knwn to everyone. During the first round of

coin toss broadcast, each propcessor encrypts messages with the

public key of the receipent, or sens nothing if the recipients

public key is not knwn. In a second round of broadcast, all first

round messages are broadvast in the clear <unencrypted).

The code follows:
. '

Code for processor p:

1. function COIN_TOS5_4:

2. generate and broadcast encryption key EP·

3. receive all Eq messages

4. lP <-- LEADER

5. CP <-- RANDOM BIT

6. for each Eq received in step 3 send< Eq(Cp), Eq(lp))

7. receive and decrypts all (C, 1) messagess

8. broadcast all <C, 1) messages

10. if all messages received with 1=1 have the same c
11. then COIN_TOS5_4 <-- C of these messages

12. else COIN_TOS5_4 <-- local coin toss

As before, consider the case that th~re is a unique leader

chosen during the first round of the coin toss. Since the first

round messages are encrypted, an argument exactly analogous to

l

that for Theorem 6.4 establishes that the leadear•s messges will

be received in step 7 bY at least n-t recipients with probabilitY

attest 1/2. Since n - t > t, one of these recipients will forward

the leader's messages to everyone during the final clear round,

steps 8 and 9. Thus COIN_TOS5_4 produces a weakly global coin in

the dynamic broadcast model for t < n/2. ,

In the dynamic reception case, processors run the dynamic

broadcast algorilthm under the simulation from section 4-6-2,

running three rounds of broadcasting and forwarding to implement

one round of the dynamic broadcast algorlithm. this applies to

steps 2-3, 6-7 and 8-9 in the code. One additional change must be

made to the dynamic broadest algorilthm - the simulation asssumes

that the same message is brodcast each round. Thus, the vector of

encrypted values must be broadcast in step 6;

6'. broadcast< C E1CCp), E1(lp)) •••• < En<Cp), EP(lp)) >,

where< EiCCP), Ei(lp)) = "?" if Ei not received.

BY invoking the same counting arugment as before there must be

at least n-t processors whose encryption keys are transmitted to

everyone and these n-t processors will all in turn receive the

encrypted messages of at lest n-t processors. Again an argument

analogous to the proof of Theorem 4 shows that when there is a

single leader, there is a constant probability that will be one

of the latter n-t processors. since n-t>t, the leader's message

will then be successfullY forwarded to all the processors in t he

ensuing clear rounds. This is summarized as Theorem 6.5

SECI'ION 4.8.4 : THE ASYNCHRONOUS CASE

In the section-we abandon the assumption that processor run in

synchronous rounds. Processors may run arbitrarily fast or slow,

and messages may arrive out of order, or take arbitrarily long to

arrive even in the absence of failures. we make the following

assumption about the nature of failures in the asynchronous

model.

Refer to the defination of asynchronous failure. The definition

implies that if m messages are sent by distinct processors to the

same processorp, then p eventually receives at least m-t of those

messages.

We consider two failure models for the asynchronous case, the

asynchronous message-oblivious and asynchronous message-dependent

model. These both assume the asynchronous failure assumption,

adding, respectively, the message oblivous and message-dependent

limitations from the synchronous case. In these models, the

adversary has

messages and

more powerful

full control of the order and timming of arriving

of the rates of .internal clociks, and is therfore

than in the synchronous case. the adversary is

limited in only two ways. The constaints of the faulure assumption

require it to eventually delilver enough messages and the

message oblivious and message depend limitations restrict the

information it may use determine its strategy.

Message-ObliVious;

The adversary's order of events c and, in the particular, choice

of delayed and underlivered messages) is independent of the

contents of the messges. Before giving a more precise definition,

we first introduce , a formal description of ·an asynchronous

execution of a protocol. This definition is taken from Fischer et

al. (6_14]. An execution is a sequence of events that can be

applied, in that order starting from the initial configuration of

the system. An even(m, p) is the receipt of o message m that is
' either the empty message or is from processor p's message buffer

(that is, a message that was previously sent to p and not

received yet). As in the synchronous case, each processor's

protocols determine, upon the receipt of a message, a distribution

of actionsCthe new local state and up ton message sent). These

message are then placed in the addressees' message buffers. The

adversary determines, as a function of the protocols, the input

' vector and the asyncrhous execution, a distribution over the set

of possible next events. An adversary is message-oblivious if for

any given set of protocols(including the input vector to the

processors) and any past ~xecution(specified by events CEV1, EV2,

is independent of the message contents of nonempty messages of

the first k events.

4-79

Message~Oepeodeot:

The adversary is limited to polynomial resources (time and

space, but its choice of failures may depend on the contents of

the messages. In general defining the notion of time for an

asynchronous system is not a simple matter (see [6_2] and [6_13]).

Ho~ever the protocols ~e ore using are of a restricted type, in

~hich time is naturallY defined. These protocols all consist of

alternating broadcast and reception phases. In the broadcast

phose a processor sends a message to all n processors. In the

reception phose, the processor ~oits to receive messages from

exactlY n - t processors. This is follo~ed by a local computation

the next broadcast phase, and so on. we assume that processors

begin each consensus protocol ~ith the same value in their local

round counter. In these algorithms, processor append the current

value of the round counter to each message. Each processor counts

local rounds, consisting of a broadcasting phase and a reception

phase. During the reception phase, the processor ~aits for

exactlY n~t messages ~ith the current round number(some of which

may already be received and stored locally). For simplicitY we

assume that ~xtra messages with a given round number are discarded.

ln general, .no processor should wait for more than n - t messages

from a given round,since failures may prevent more than this many

messages from ever arriving._ The definition of local time

guarantees that no processor is more than one round a haead of

the majoriltY of other processors<recall that t<n/2). Of course,

the slo~est processors could lag far behind.

In spite of the adversary's increased power in the asynchronous

case, a t~o round echoing variant of the syncrhonous algorithm

~ill still gurantee that agreemehnt is reached in constant

expected time, provided t < < < 3 - ~) 1 2n is approximately

equal to 0.38n.

Before ~e give the proof let us first remark on the difficulties

arising in the asynchronous versus the synchronous case. one

might be tempted to argue that exactly the same proofs ~ark,

since "once the coin tosses are hidden < by assumption or bY

encryption), the adversary cannot know ~hich messages to block

and so everything· ~arks just as it did in the syncronous case."

This naive argument is incorrect because on adversary can, in

general infer information about messages from the way that

processors ~ho receive these messages react to them. If the

reaction of each processor to n-t coin-toss messages is sufficent

to infer that a single processor volunteered the adversary con

successively deliver different subsets of messogs to different

processors, implementing a simple elimination procedure to

the indentity of the leader. The leader's messages con

held bock from the remaining processors until they have

the coin toss, renderint the leader useless. < Notice

determine

then be

finished

that the adversary could not perform such elimation in the

synchronous case, ~here trhe reponse of processors ·is not

observeable until after the end of the round, by ~hich time every

processor already received its infoming messages for the current

round). To exemplifY these notions suppose we deal with a

different protocol in which a processor that received n - t

messages with round number i, among which a unique message 1s a

leader's message, sends its next message to that leader only <

and broadcasts • to all n processors otherwtse)~ In such case the

·identity of the ith round leader can be inferred from the

< unlabled) communication pattern alone. Thus a message oblivious

adversary can block the leaders messages to all other processor.

It is possible to hide the identity of the leader within the

consensus algorithm, by making the communication pattern identitY

of the leader. However consensus protocols are meant as general

purpose tools and it is not possible to anticipate foullY the

context in which they may be run. Thus once any processor leaves

the coin toss or agreement protocol it may behave in an arbitrary

way, releasing arbiltraty information to the adversary < such as

publishing cryptographic keys). These protocols must ensure that

information leaked by the faster processor will not Jeopardize

correctness by allowing the adversary undue influence over the

slower processors. The asunchronous protocols below use the

imposed round structure and explicit synchronization rounds to

satisfy these requirements.

4-82

Specifically

identitY of

in the cast that there is

the leader is hidden at least

a single leader the

until the fastest

processor completes the execution of the procotol. If the leader

is persuasice the coin has the additional property that the

maJoritY value of the coin (i.e. the unique value assumed bY

L-n/2-J +1 processors) has been determined bY this point. This is

an important property for asynchrnous coin tosses to have, in

particular for this application.

Because of the round structure we impose the leaders messages

are only effective if they are among the first n-t messages for

that round to arrive at L_ n/2 _j + t + 1 other processors.

For the asynchronous case this will be the definition of a

persuasive processor for a given round. These algorithms work by

guaranteeing a positive constant probability that a single

volunteer will be persuasive. Without making it explicit in the

code, we implicitly assume that a round counter is locallY

maintained and incremented by each processor. When we say that a

processor receives n - t messages we mean that it reads messages

from its buffer until receiving n - t messsages with its current

round number.

The code for the asynchronous, message oblivious model is as

follo~s:

Code for processor P:

1. funct.ion ASYNCHRONOU5_COII'LTOS5_ 1:

2. lp <-- LEADER

3. CP <-- RANDOM BIT

4. broadcast ((p, lP)

5. receive the first n-tcc, 1) messages ~ith current round number

6. broadcast the vector <<C1,11) ••••• ccn,ln)> ~here cC,li)="~" if
not received

7. receive n-t vectors <(C1,lt), ••• ccn,ln)>
number

~ith current round

8. receive n-t vectors <CC1, 11), ••• ccn, ln» ~here <C1, Ji) ~ith
current round number

9. receive n-t vectors <<C1, 11), ••• ccn, ln)> ~ith current round
number

10. if all· ~he messages received ~ith 1=1 have the same C

11. then COIN_TQS5_1 <-- C of these messages

12. else COIN_TOS5_1 <-- local coin toss

we call step 4 the coin distribution phase, step 6 the first

echoing phase, and step 8 the second echoing phase.

Refer to Theorem 6.6, ~hich proves the main result.

To defeat a message dependent adversary in the asynchrnous case,

~e make the same alteration as in the synchrnous case, encrypting

the random bits.

Code for processor p:

1. function ASYNCHRONOU5_COINLTOSS_2:

2. lp <-- LEADER

3. Ci <-- RANDOM BIT

4. broadcas~(E<Cp), E<lP))

5. receive the first n-t<E<C>, E(l)) messages with current round
number

6. broadcast the vector <E<C1,11) ••••• (ECn,ln)> where <C,li)="?"
if not received

7- receive n-t vectors <E<C1,lt), ••• E<Cn,ln)> with current round
number

8. receive n-t·vectors <E<C1, 11 >, ••• E< Cn, ln)) where <C1,Ii) with
current round· number

·9. receive n-t vectors <E< C1, 11), ••• E<Cn, In>> with current round
number.

10. if all the messages received with 1 = 1 have the same C

11. then COI~TOS5_2 <-- C of these messages

12. else COINLTOS5_2 <-- local coin toss

Refer to theorem·6.7. and 6-8 •

SBCI'ION 4.8.5 : IJSING A WUKLY GLOBAL COIN

In this section we present an agreement algorithm that can be

implemented using a weaKly global coin. For simplicity· of

presentation the algorithm given here is binary <reaching

agreement on one bit), and is basicallY a modification of those

in [6_4] and [6_6].

we begin with an informal description of the algorithm. The

algorithm is organized as a series of epochs of message exchange.

Each epoch consists of several rounds. The round structure is

provided automat 1 ca 11 y in the synchronous mode 1 • In · the

asychronous models, the round structure is imposed locallY by

each processor, as was discussed earlier. In this case,reaching

consensus in "constant expected time" means that each processor

will complete the protocol within a constant expected number of

local rounds.

We describe the algorithm for the processor p. (All processors

run the same.code). Epoch and round numbers are always the first

two components of each message. The variable CURRENT holds the

value that processor p currently favors as the answer of the

agreement algorithm. At the start of the algorithm CURRENT is set

tq processor P's input value. In the first round of each

epoch, processor P broadcasts CURRENT. Based on the round_1

messages recieved, processor P changes CURRENT. If it sees at

least L-n/2_j +1 round-1 messages for some particular value, then

it assign that value to CURRENT; otherwise, it assigns the

distinguished value "?" to CURRENT. In the second round of each

epoch, processor P broadcasts the new CURRENT. This is followed

by a synchronization round, in which all processors broadcast

waiting messages,then wait until n-t such messages are recieved.

the guarantees that at least n-t processors have finished the

previous

Next, the

round before the fastest processor leaves this ·round.

COIN TOSS subroutine is run • CO course, in an

asynchronous model this statement is a bit imprecise, since the

subroutine is first initiated at the point that the fastest

processor reaches the subroutine call.) Based on the round-2

messages received,processor P either changes CURRENT again, or

decides on an ans~er and exits the algorithm at the end of next

the epoch. Let ANS be the most frequent value (other than "?") in

round-2 messages recieved bY p. Let NUM be the number of such

messages. There are three cases depending on the value of NUM. If

NUM >= L_ n/2 _J NUM >= 1, then processor P assigns the value ANS

to the variable CURRENT and .continues the algorithm. If NUM = o,
then processor p assigns the result of the coin toss to the

variable CURRENT, and continues the algorithm.

Code for processor p:

1. procedure AGREEMENT<INPUT):

2. CURRENT <- INPUT

3. TERM.NEXT <- "OFF"

4. for e <- 1 to INFINITY do

5. broadcast(e, 1, CURRENT)

6. receive (e, 1, •> messages

7. if for some v there are >= L n/2 _J + 1 messages(e, 1, v)

8. then CURRENT <- v

9. else CURRENT <- "?"

10. broadcast(e, 2, CURRENT)

11. receive(e, 2, *)messages

12. if there exists v not equal to "?" such that
(e, 2, V) was recieved

13. then ANS <- the value v not equal to "?" such that
(e, 2, v) messages are most frequent

1~. else ANS is undefined

15. NUM <- number of occurences of (e, 2, ANS) messages

16. broadcast(e, 3, "waiting")

17. receive (e, 3, "waiting") messages

18. COIN <- COIN_TOSS

19. if TERM.NEXT = "ON" then terminate

20. if NUM >= I_ n/2 _I + 1 then decides ANS. set CURRENT <- ANS
and TERM.NEXT <- "ON"

21. else if NUM >= 1

22. then CURRENT <- ANS

23. else CURRENT <- COIN

we make several remarks about the algorithm. COIN TOSS,

depending on the fault model, is one of the protocols described

earlier for producing a weakly global coin. In message

descriPtions, "*" is a wild-card character that matches anything.

Notice that processor has decided, it participates in the

protocol for another epoch. Although not explicitlY given in the

code, during this extra epoch the processor ignors all "receive"

commands, since otherwise it may be left Halting for messages

from processors that have already terminated. The extra epoch is .,

needed because, once the first processor decidesand terminates,

the other processors may not decide until the next epoch (as ~e

argue below). The extra broadcast by decided processors are

solely to ensure that these "trady" processors recieve a

sufficient number of messages during each round of that epoch.

<Recall that in the asynchronous fault models, processors must

wait for n-1 message during each reception.)

If the input values are sufficiently biased towards a

particular value, the protocol ~ill reach agreement in one epoch.

If this is not the case, the protocol uses the ~eaklY global COIN

TOSS function to prevent the system (abetted by the adversary)

from "hovering" at an indeterminate point indefenitel·y. With each

cal1 to COIN TOSS, there is a constant probably that the outcome .

~ill biase the system sufficientlY to reach agreement quickly.

Thus, agreement will be reached in constant expected time.

Define value as legaL input to the algorithm either 0 or 1.

SPecially , "?" is not a value.

Lemma 6.9 is used in proving the desired properties of the

agreement algorithm.

Theorem 6.10 ~ill establish that this algorithm never produces

conflicting decisions and that in each epoch there is at least

one coin-toss value that will lead to termination of the

algorithm.

Consider theorem 6.10, with reference to the following key

notations.

The value ANS is critical in the analysis of the protocol. At

any instant of an execution of the protocol, an epoch e is

bivalent if for both v = 0 and v= 1 there exists an execution of

the protocol that continues from the that instantaneous position,

for which there eXists a processor that has ANS value in epoch e

equal to v. Furthermore, let ke be the number of processors that

have not determined ~hether ANS is 0 , 1 or undefined for epoch e

at the point that the fastest processor begins the coin-toss for

each epoch e. Note that in all the syncronous models discussed,

k = 0 at the point that the COIN TOSS protocol is executed in

round e. This may not be the case in the asynchronous cases,

~here the epoch may still be bivalent at the point ~hen the

fastest processor initiates the execution of COIN TOSS for that

epoch. ~o~ever, the round of "waiting" messages ensures that at

the point ~hen the COIN TOSS is first initiated, ke is at most t

c since the fastest processor must have received n - t "waiting"

messages in order to continue, and these processors have already

executed through step 16. Note that if an epoch is bivalent, then

any processor that has already determined ANS at this point has

ANS = "undefined".

All of the variants of the coin-toss procedure that ~e have

considered take a constant number of rounds. combining Theorem

6.10 ~ith the various versions of the coin-toss procedure, ~e get

Theorem 6-11 • ·

It is natural to ask ~hetherthe number of erratic processors

tolerated can be significantly improved. A result of Bracha and

Toueg (6_6] sho~s that no randomized concensus protocol can

tolerate mo~e than n/2 fail stop faults in an asynchronous model.

MODULE SEVEN

Two dl ffereR·t -·-kinds of Byzantine Agreement for distributed

systems with processor saults are defined and compared. The

different kinds of byzantine Agreement for distributed systems

with processor faults are defined and compared. The first is

required when coordinated actions may be performed bY each

participant at different times. This kind is called Simultaneous

Byzantine Agreement (SBA).

This module deals with the number of rounds of message exchange

required to reach Byzantine Agreement of.either kind <BA). If an

algorithm allo~ its partici~ants to reach Byzantine agreement in

every execution in which at: most t participants are faulty, then

the algorithm is said to tolerate t faults.· It is well known that

any SA algorithm that tolerates t faults(with t <n - t where n

denotes the total numder bf processors)·must run at least t + i

rounds in some execution. However, it might be supposed that in

executions where the number: f of actual foul ts is small compared

to t, the numbeMr of rounds could be correspondingly small. A

corollary of our first result states that (when t < n - 1) any

algorithm for SBA must run t+1 rounds in some execution where

there are no faults. For EBA (with t < n - 1), a lower bound of

min(t+1,f+2) rounds is proved. Finally, an algorithm for EBA is

presented that achieves the lower bound, provided that t is on

the order of the total number of processors.

The context for this study is a network of n processors that are

able to conduct synchronized rounds of information exchange, each

round consisting of message transmission, message receipt and

processing. In the following, n will always denote the number of

processors. we assume that the network is completely connected

and that only processors can fail.

In the Byzantine fault case, no assumption is made about the

behavior of faulty processors. During an execution of an

a lgor"i thm, a processor is said to be correct if it fo 11 ows the

specifications of the algorithm; otherwise, it is said to be

faulty.

We assume

value that

the origin.

that the agreement to be reached concerns a single

is initiallY given as input to one processor, called

This value is taken from a known set of values. All

processors, called are assumed to know when the input is given to

the origin. Each processor is to give exactly one output value

after some number of rounds of information exchange with the

other participating processors.

Refer to chapter 2 for defination of eventual agreement and

simultaneous agreement.

When no assumption is made about the behaviour of the faulty

processors, ~e modifY the term agreement with the adJective

BYzantine. Thus, ~e have the terms eventual Byzantine agreement

CEBA) and simultaneous Byzantine agreement <SBA). A protocol or

algorithm guarantees (Byzantine) agreement in some set of

executions if, in each execution of the set, oll correct

processors reach a CByzantine)agreement.

Note that a processor may give its output in one round and

also continue to send messages to other processors in that and

subsequent rounds. In this case, the processor has not finished

all rounds of message exchange required by its algorithm ~hen it

gives its output. A processor is said to have stopped in round r,

if it has given its output by round r+1, and other~ise sends no

messages in any round after r. In an execution of an algorithm

for reaching agreement, ~e count the number of rounds bet~een

initial input and final stopping of all correct processors as the

number of rounds required by the algorithm.

If an algorithm allo~s its participants to reach Byzantine

agreement in every execution in which at most t participants are

·faulty, then the algorithm is said to tolerate t faults. Here, we

investigate the number of rounds required to reach agreement as a

function of the number of actual faults and the number faults to

be tolerated.

Suppose A ' is

maximum of k

an algorithm that tolerate N-2 faults, requiring a

rounds. Let A' be the algorithm obtained by

modifying A so that, no matter ~hat happens, each processor stops

after k rounds, the origin al~ays gives as output its input value,

and each other processor gives as output the value A ~ould give,

if any, or a default value, other~ise. Inspection of the

definition of agreement sho~s that A' tolerates any number of

faults. Hence, ~e assume t > n- 1, unless other~ise indicated.

The initial ~ork of peaseet al. [7_21] sho~ed. that agreement in

the presence of upto t faults could be reached by round t + 1,

provided the number of processors ~as sufficiently l.arge. Later!

t + 1 ~as sho~n to be a lo~er bound on the number of rounds

required • in the ~orst case (7_3, 7_9, 7_15]. A natural question

arises from this ~orst case bound: Can an algorithm for agreement

be constructed to handlle up to t f'~lts so that ~henever the

number f of actual faults is smaller than t, the number of rounds

required to reach aggrement is smaller than t + 1 ? Section 4.7.1

and section 4.7.2 present lo~er bounds for this problem.

Later,

[7_12])

o~ork

by

and Moses extended this bound (first published in

processor

studying a closely related problem in ~hich each

has an input [7_13]. A function from the set of faulty

processors to integers that gives the round number at ~hich each

processor failed is called a pattern. OHork and Moses give a

lo~er bound on the number of rounds required for their problem as a

function of the pattern. Their bound is easily shoHn to be a

bound for the problem as ~ell by choosing the Horst pattern.

The < t + 1)-lo~er bound and also that of D~ork and Moses-hold

~hen the set of faults to be tolerated is restricted to a very

simPle type of fault called a crash fault. When a processor

suffers a crash fault, it sends a subset of messages it i~

specified to send in one round and simply ceases to operate from

then on. Ho~ever, Theorem 7.2.1 even holds if the faulty

behavior is further restricted to a class of Faults called

orderly crash faults.

In section 4.7.1, the lo~er bound for SBA is shown and proved •.

In this section, we count the number of rounds of information

exchange required to complete the actions specified bY the

protocol, not the number of rounds required for all incorrect

processors to have produced an output value. Since giving its

output early cannot help a processors to stop earlier, we assume

that a processor saves its output until the round after it last

sends a message to another processor. This assumption is a

notational convenience and is made without loss of generality. It

is easy to convert any simultaneous agreement algorithm to one

in ~hich all correct processors stop before they give their

outputs and outputs are give~ no later than in the unconverted

algorithm. It is easy to convert an eventual agreement algorithm
I

so that one round after every correct processor knows its output

value, every correct processor has stopped.

Extending the proof method of Section 4.7.1 ~e sho~ in Section

4.7.2 that EBA requires at least min(f+2, t+1) rounds. Our proof

~arks only for crash faults and ~e do not kno~ ho~ to prove this

result for orderly crash faults.

FinallY Section 4.7.3,presents an algorithm for EBA that achieves
2

the lo~er bound, provided n > max(4t, 2t - 2t + 2)·. This

algorithm does not depend on any authentication protocol. It

requires min(f + 2, t+1) rounds to reach EBA using a polynomial

(in both n and t) number of bits of information exchange.

Previous early stopping EBA algorithms did not achieve the lo~er

bound but did ~ark for n> 3t. Refer to [7_8], (7_24] and [7_1].

MODE! £OR EXFCIITION .DE AN AGREEMENT AI GORJTt-11

This model is used in both lo~er-bound proofs and in the

presentation of the algorithm. It is similar to the one

previously given bY Dolev and Strong [7_11]. The formal frame~ork

represents a round of an execution as a directed graph ~ith

labeled edges and nodes and as follo~s.

Let V denote a set of possible values (including the value 0 and

1) and let MSG denote a set of possible messages. A history is an

infinite sequence of rounds. Each round consists of a directed

labeled graph ~ith nodes corresponding to a set p of n

participating processors, together with special source and sink

nodes (that are not in p).There is an edge corresponding to every

ordered pair of nodes. Each edge is labeled by an element of Msg

(the message sent), an element of V (a value), or an empty label

(indicating no message). For notational cnvenience, each history

begins with round Q, in which the edge coming from the source

outside p to the origin is labeled with the input value from v.
All other edge have the empty label at round Q. At any subsequent

round, any node may have the edge from it to the sink node

outside p labeled with its output value. During this round and

subsequently all other edges from this node, carry the empty

label. If node p has such an edge to the sink at round k, then p

has stopped (information exchange) at round k-1 and its output

value is the value on the edge to the sink.

Messages (labels) on edge directed toward pin round k are said

to be received by p at round k. Likewise, message directed from p

in round i are said tom be sent by p at round k. If H is a

history we write PH for the view of H according to p which

consists of the sequence of subgraphs of the rounds of H that

have all the labeled nodes but only the edges that are adJacent

to p. We also write Hk and PHk for the initial sequence of H from

its beginning throygh round K and its view according to

p, repectively.

~-98

A protocol (or algorithm) A takes as input an initial

subsequence off a vie~ of a history according to a processor and

produces an ordered set of labeled edges directed from that

processor for the next round. Let U< A, t) be the set off all

histories on a fixed set of processors in ~hich all correct

processors follo~ a and in .~hich at most t processors fail to

follo~ A. <In each section, ~ere strict UC A, t) to histories

that have only failure of certain types. Also, ~e ~rite U for

U< A< t)), each ~hen the arguments A and t are clear from the

context.)

A t resilient agreement algorithm A such that in each history of

U< A, t), each correct processor stops in some round and the

processors reach agreement.

Note that a history includes the names of the processors, and

the Vie~ of

include the

a history according to one processor is assumed to

names of all its neighbours (in the completely

connected net~ork), ~hether they have sent it messages or not.

Thus, an agreement algorithm need not be uniform and the actions

it prescribes can depend on the name of the processor acting and

on the names of its targets.

SECTION 4.1.1: THE LOWER BOUND FOR SB.A

In section this section and the following section,-~e restrict~

attention to histories in ~hich the only ~ay a processor can fail

to follow its algorithm is to fail to send some or all of its

prescribed messages in one round and remain silent the read after.

This is the notion of a crash failure and is a close relative of

the notion of a "fail-stop processor" [7_22]. Note that in the

round in which a processor has a crash failure, it may send any

message at any subsequent round.

In proving the lower bound in this section, we further restrict

the failure mode to orderly crash failures.

A processor fails during the first round in which it does not

send all messages required by algorithm A. A processor that fails

in round r, sends no messages in each succeeding round.

Our lo~er-bound proofs are based on establishing certain

@Q~ivalences among histories. Let A be an agreement algorithm

. tho~ ~uaron~9@3 ~~A jn the presence of at most t orde[lY crash

faults. Let p be a fixed ~~e Of n Pn;)c~ssOr?· Recall that U(A,t)

is the set of histor1es with only orderlY ~FO§h faults 1n Whl'h

algorithm A is employed bY all correct processors, and th~

number of faulty pro"cessors does not exceed t.we introduce two

equivalence relations on the set UCA,t). These equivalences are

4-100

also defined for the set of K round initial sequences of such

histories,

equivalence

defination

for

and

of

any K. These are ~itness equivalence and output

are defined in chapter 2. Also refer to the

serial history, pattern, subpattern, conservative

extension and silencing given in chapter 2.

Note that each history of U in ~hich there are no faults is a

serial history.

The uniqueness od silencing is guaranteed because conditions <1)

and (3) completely determine the behavior of p. For the remaining

processors, observe that (2) forces all processors that are

correct in Hk to follo~ a in all subsequent rounds and processors

faulty by round k cannot send any messages after round Kc~e have

restricted to crash failures). If history H has processors other

than P that fail after round K,then H'resembles the conservative

extensionof Hk on those processors because they do not fail in

H'Ho~ever, the silencing of P at K is not necessarily the

. conservative extension of its K round initial sequence because A

may not call for P to send any messages in round K, but it might

call for P to send messages later. Since ~e ~ant p to remain

silent from round k on, ~e must allo~ for the possibility that p

fails in some round after round k. Note that if additng p to set

of aulty processors of H does not raise its cardinality above it,

then the silencing of pat round k of H is in u.

Refer to the defination of a candidate given in chapter 2.

Finally the main result given as Theoren 7.2.1 • This theorem is

proved in the following text.

we

from

for

base the proof on a sequence of lemmas that contain ideas

several previous related proofs [7_8, 7_11, 7_12]. Suppose

the rest of this section that algorithm A guarantees SBA for

each

there

min(

history with at most t orderly crash fau)ts. Assume that

is a serial history H in which reaches SBA in fewer than

n - 1, t + 1) rounds. If t > n - 2, then A guarantees SBA

for each history with at most t' = n - 2 orderly crash faults and

reaches SBA in H in fewer than n - 1 = t' + 1 rounds. Thus, a

counterexample with t > n - 2 would provide a counterexample with

t' = n - 2. Hence, we assume (without loss of generalitY) that n

is at least t+2.

Refer to lemma 7.2.2 •

In the rest of the proof, we show how to alter serial

histories in a way that preserves witness equivalence, but

changes the number. of faults and the place of their occurrence.

In any history H of U in which p fails to follow algorithm A,

there is a first message specified by A that p fails to send.

Also in any round of H in U in which p sends any messages, there

is a last message sent by p (in the order specified by A). we

call an outedge e of P in a round of a history H significant if

~-102

algorithm A specifies a message to travel over that edge and this

message is either the last message sent by p in this round of

history or the first message specified bY in the entire history

that p fails to send. Since we only orderly crash faults, the

message on any significant edge is either correct or absent but

not both. we show how to alter the. states of messages on selected

edges from absent to correct, or Vice versa, producing witness

equivalent initial sequences of histories and eventuallY

producing a desired result. In particular, we are able to correct

any faulty processor or cause any processor to fail in any round

that does not violate the requirement that the resulting history

be serial.

To finish the proof of Theorem 7.2.1 consider the assumed history

H, in which A reaces SBA in t or fewer rounds. Let v be the

output value of the correct processors in H, let v• be a value

different from v, and let J be the fault free (serial) history

with v•. BY the agreement condition, all processors have to

output v• in J. On the other hand, bY Lemma 7.2.4 Ht and Jt are

witness equivalent. BY Lemma 7.2.2, H and J are output equivalent.

This means that in J all processors had to outputd v, a

contradiction.

SECI'ION 4.7.2..: mE LOWER BOUND FOR ERA

Next, we consider the question of early stopping for EBA and

prove- a lower bound similar to t~rough stronger that the one in

[7_11 J. In this sec.tion, we restrict attention to histories in

which all failures are crash failures. Let A be a t-resilent

agreement algorithm that is supposed to guarantee EBA in UCA,· t)~

Note that U<A,t) has a different defination in this section;

faults in histories of UCA,t) may be crash faults rather than the

orderly crash faults of Section 4.7.1. When we refer to a

conservative extension in this section, we mean a history

defined as in the previous section but Hith respect to the

current u.

Refer to chapter 2 fOr defination of critical history.

For this section we require versions of the notions of serial

and candibte that are parameterized by f, that is f-serial· and

f-carididate <Refer to chapter 2).

Theoren 7.3.1 gives the main result and proof of the theorem

follows.

As we argued in the proof of Theorem 7.2.1 a counterexample with

t > n - 2 would provide a counterexample with t = n -· 2. Thus we

assume (without loss of generality) that t < n - t. Suppose that

algorithm A reaches EBA within min(t, f + 1) rounds in every

history of U with at most f faults.

4-104

First ~e give a strainghtfor~ard derivation of a contradiction

in the case f = o. Assume A is a t-resilence agreement algorithm

that uses only min(t, 1) rounds to reach EBA in any history ~f

U ~iith no faults. If t = 0 then processors send no messages to

other processors: othe~ise ~hen there are no faults, processors

send messages to other processors only in round 1 and all

processors send messages to other processors only in round 1 and

all processors give the input value as output in round 2. Let HO

be the preliminary round that gives input 0 to the origin and let

H be its conservative extension. Each correct processor of H must

give output 0 ·in round min(r + 1, 2). Let KObe the

preliminary round that gives input 1 to orgin and let k be its

conservative extension. Each correct processor of K must give

output 1 in round min(t + 1, 2). In at least one of Hand K the

origin must send at least one message in round 1, for other~ise

any processor except the origin ~ould have identical vie~s in the

t~o histories. Thus, t must be greater than o. Without loss of

generality, assume that th origin sends a message to processor p

in round 1 of H.

Let J1 be identical to H1 except that the origin fails in J1

after sending only its message to p and let J be the conservative

extension of J1. Clf the origin sends only one message in round 1

of H; then let J=H). Then J has at most one creash fault and is a

history in u. No~ PH1=PJ1 so p gives output 0 in round 2 of both

H and J. Thus, any correct processor in J must eve~tually give

output o. Since t>O and n-1>t, ~e have n.2. Hence there is a

Processor q that is neither the origin nor p. If the origin sent

4-105

no message to q in round 1 of K, then we would have nor p. If the

origin sent to message to q in round 1 of k, then we would have

qK1=qJ1. But q gives output 1 in round 2 of K and q gives output

o in some round of J. Therefore the origin must send a message to

q in round 1 of K. Let L1 be identical to K1 except that the

origin fails in round 1 by sending,only its message toP (if any)

and let L be the conservative extension of L1. Then L has one

crash fault and is a history in U Since PK1 = PL1, P gives output

1 in round 2 of K and L, so any correct processor of L must

eventuallY give output 1. Since p sends no messages to other

processors after round 1 in any of the histories H, j, K, and L,

we have qj = qL. But this contradicts the fact that q must output

0 in J and 1 in L.

Now we assume f <= 1. Since we assume n- 1 > t, there are at

least two correct processors in any history of u. In any

history of U with at most f faults there can be no critical edge

in round min(t, f + 1) because all correct processors have

stopped by round min(t, f + 1) (giving their outputs bY min(t +

1, f + 2)) and changing a value over any single edge cannot

affect the output of more than a single correct processor. we

first show that in any f-serial hstory there is no critical edge

in round f from a processor that is an f candidate in round. Then

we show that all f-serial histories, including all histories with

no faults, are output equivalent. As in the proof of Theorem

7.2.1, we then argue that histories with distinct inputs and no

faults must have the same outputs contradicting part (ii) of the

definition of agreement. ImPlies contradiction, Thus the proof.
(refer to Lemma 7.3.2 and 7.3.3).

4-10f>

SECTION 4.7.3: mE EBA ALGORITBH

In this section, we describe an algorithm for eventua{ Byzantine

agreement that achievs the lower bounds of the previous sections,

provided that n is sufficient larger than t. The algorit8m will ---
tolerate up to ·t Byzantine faults. ewe no longer restrict

attention to crash fa~lts.) The key to understanding this

algorithm is the notrion of separation, which ~ill be described

more formally _belo~. Informally ~hen a faulty processor sens

different information to t~o sunbsets f correct processors, it

seprates one set from another. The algorithm keeps track of t~o

rounds of informtion exchange at a time, so a fault that

separates from each other in one round ~ill be discovered by all

correct processors in the next round. In order to avoid discovery

bY all correct processors, a fault may only separate from others

a set of the size of the number of unkno~n potential faults that

must be tolreated.

2
Thus, t faults cannot separate more than t correct processors

from other correct processors without at least one of them

discovered The idea behind the algorithm is that ~hen n is

2
larger than maxC4t, 2t_- 2t +2), this algorithm ~ill allo~ correct

processors to obtain the agreement value at the end of any value
0

at the end of any round in ~hich no fqult gives itself a~ay and

to stop within one additional round.

4-107

Recall that ~e count only the rounds of information exchange

among the processors. The preliminary input and final output

rounds are only used to simply the description of the algorlithm.

we use the follo~ing notation:

p denotes the set of names of participooting processors.

s the name Of the origin,

X a symbol not in P and

v the set of POSSible input values.

Let 0 be an element of v,
let • a special value not in V (representing "undefined")

and let V' be the union of V and {•}.

To run the algorithm, each processor maintains a data structure

consisting of t~o type of variables; variables containing values

from the set V' and variables containilng sets of processor names.

For each othe strings s, ps, and pqs, ~here p and q run over all

the elements of p, ~e associte a variable of the first type. The

values stored in these variable ~ill be interpreted as

representing information received from the appropriate processors~

Thus, for example, the value stored in swill be interpreted as

the value sent by the origin of·the agreement. The value stored

in qs ~ill be intepred as the value q said that q said that s

sent to it. Notice that s denotes both the origin and the

variable associated ~ith it. The pseudocode of the algorithm uses

s only as a variable and not as a name for the origin.

4-108

With the string X and with pX, for every p in p, we associate a

variable of the second type. Values stored in strings ending in X

will be interpreted as representing information received from the

processors about faults. Thus, the set stored in X will be a set

of processors known to be faulty. Thus, the set stored in X will

be a set of processors kknown tobe faulty. The set stored in qX

will be the set of processors q claims to be faulty.

~e refer to the variable as strings.

Strings ending in s will be initialized to value o.
Strings ending in X will all be initialilzed to the empty set.

We use the following convention for naming sets of strings:

Let Q be any subset of p, let p be in p, and let R be any name

for a set according to this convention. Then

Qs :;: {qs q is in Q},

QX :: { qX q is in Q},

PR :: { pr 1r is in Rh and

QR - {qr lq is in Q and r is in Rl -

Thus, for. example, Ps is the set of strings of length 2 that end

with s, and PPs is the set of strings of length 3 that begin

with P and end with s.

Here, we introduce a simple one round process that is the heart

of many agreement algorithms. We give this process the name ROUND.

Each processor executes ROUND during every round from round 3

until it stops. we also introduce a variant of ROUNP called ROUND

2 that is executed in round 2 and collects the orignal information

in ps. Round has two functions:

<1) to exchange information on Ps with all other processors to

produce values for PPs that are then reduced to values for Ps

(2) to exchange information on X with all other procesor to

produce values for PX and to use PPs and PX to discover

faults.

It is expexted to operate synchronously with all participating

processors sendilng information to all and then receiving

information from all. If two processors are correct, it is assumed

that their information is correctly exchanged. It uses two

auxilliary processors, DETECT and REDUCE, which are defined below.

we assume that a processors sends messages to itself and process .

them as part of all the messges it receives.

Note that in ROUND 2 each processor sends the value it has stored

in s and receives the corresponding values from all processors.

It stores the value received from processor p 1~ ps. Thus,

ROUND2 has the instruction "RECEIVE ps from each p in P."

The action of each participating processor executing ROUND2 is

as follo~s:

ROUND2: /*for round 2*/

begin;

SEND s to all processors;

RECEIVE ps from each p in p;

(if ps is not received from p then set ps := s)

(if Ps does not contain at least n-t identical values
then put the origin in X;)

end ROUND2.

Note that in ROUND each processor sends the value it has stored

in Ps and X to all processors and then receives corresponding

values from every processor. The values received for Ps and X

from processor p are stored in pps and PX respectively. Thus

ROUND has the instruction, "RECEIVE pps, PX from each p in P."

The action of each participating processor executing ROUND is as

given on the next page.

~-111

ROUND: !•for rounds after round 2*/

begin;

SEND Ps, X to all processors;

RECEIVE pps, PX from each P in P;

(if pius already in X
then default its values for pps to 0)

(if p is not already in X but it does not send pps and PX
then for each q in p set pqs:=• and leave PX unchanged)

DETECT;

for each p and q in p if pqs=•then st pqs :=s;

REDUCE;

end ROUND

A correct processor may put the name of the origin in X during

the execution of ROUND2, qut only if Ps does not contain n-t

identical values so that the origin must be faulty. In later

rounds, the process DETECT is the only ~ay correct processors add

names to the set of kno~n faulty processors kept in x. DETECT is

designed so that correct processors ~ill never ddd· homes of

correct processors to x, and therefore, at any time the largest

possible number of faulty processors that a gilven correct

processors has not discovered is t- I X 1.

4-112

Since correct processors may stop at different times - the

difference can be at most one round as will be seen later-one has

to take care that a correct processor that has already stopped

and therefore does not send messagesw anymore is not considered

to be faulty. This is achiveved by first settitng ariable pqs for

which no value from p has been reveived to the undefined

value"*''. If p is not found faulty by DETECT, then pqs will later

be set to the actual value of s.

If more than t X processors claim that they have put

proccessor q in theilr set of known faulty processors then any

correct processor can safelyu put q in X (some other correct

processors put q in its X first).

In this algorithm, correct processors send identical data to all

participants. A property that will be preserved bY REDUCE is

that if p,q, and r are correct processors then the value stored

in pqs and rqs by any correct processor will be identical. Thus

if the multiset of values stored in CP-X) qs does not have at

least n-t identical values then q must be faulty.

The action of each participating processor executing DETECT is as

given on the next page.

4-113

DETECT:

begin;

for each q in P-x;

if I { p P is in P - X and q is in PX } I > t - I X I

or p - X contains two sets A and B each of

cardinalilty >= t such that Aqs and Bqs both have

only values in v, but no value occurs in both Aqs

and Bqs

then add q to X and default the values of qps to o;

end for~ each q;

end DETECT.

The process REDUCE uses values of PPs to update the value of Ps

using a maJority vote~Let g be the smallest integer greater than

n/2. In order to obtain the new value for string ps, a maJority

vote is taken over the values of the string pps.Note that all

these values are obtained directly from p. There is no voting by

others here on what P said as it is doen by DETECT for q. If p is

correct then it sends the same data <Ps) to each participant; all

correct participants will have the same value for ps after

REDUCE. These values ps determine the further action to be taken

by each processor. If correct processors all have the same set

Ps, then they behave identically and reach agreement very

quickly.

The action of each participating processor executing REDUCE is

as follows:

REDUCE;

begin;

for each p in p;

if·pps has at least g strings with value v

then ps:=v

else ps :=o;

end for each p;

end REDUCE.

For the remainder of this section we assume that :

2
n > max(4t, 2 (t - 1)))

so that the following properties are true of the maJoritY

threshold.

1) 29 > n;

2) n - 2t >= g;
2

3) n - t - (t - 1) >= g.

We use these properties of g to show that undelete faults cannot

cause correct processors xz to reach different values for s.

The algorithm will be called EAGREE. It takes a value as input

in round o. If no value is received the string s is left with its

initibl value o. we use the existence of a value other than 0

stored ins inround 0 to indicate that the processor executing the

code is the origin. All processors execute the same code. If a

processor has a value other 0 stored in s at the end of round o,
then it sends that value to all processors in round 1. we ~ssume

that no processor except the origin can have a value stored in s

other than o. If the input value is o, the origin acts Just like

the other participants and sends nothing. Receiving nothing from

the origin in the first round is interpreted as receiving 0 from

the origin. This is Just a convenince all processors know the

name(s) of the origin. This simply allows us to write EAGREE in a

uniform way without mentioning exPlicitlY the same of the

processors executing the code. Correct processor using EAGREE

reach EBA by round min(f + 2, t + 1) At the end of the algorithm

the variable

value. Note

s at

that

each correct processor will hold the output

round 0. and the output round involve no

information exchange among the processor and are not counted when

we discuss the number of rounds required to reach agreement.

The action of each participating processor executing EAGREE is

as given on the next page

4-116

EAGREE:

begin ;

1: =o; I• round 0 - the input round •I

RECEIVE s AS INPUT;
(if nothing is received leaves unchanged)

i: =1 ;

if s is not equal to 0 then SEND s to all processors;

RECEIVE s;

(if nothing is received from the origin,
leave s unchanged)

do i : =2 to t+1

if i=2 then ROUND2 else ROUND;

if Ps has at least g identical values v

then s := v;

else s := o;

if Ps has at least n-t identical; values

then leave this do loop;

end do;

i=i+1; 1• output for this processor •I

OUTPUT s;

end EAGREE.

Recall that 2g >n so that this algorithm is well defined.

Refer to Theorem 7.4.1, the proof of the theorem will be provided

in the following series of lemmas 7.4.2 to 7.4.9

We say that value v is per.Sistent at round 1, if at least 9

correct processors have stored in s at the end of round 1. Recall

that a processor is said to stop in round i, if the only action

it takes in round i+1 is to output its value. we say that a

processor in convicted in round i if it has at least n - t

identical values stored in Ps at the end of round 1. Note that if

a correct processor is convicted in round i, then it stops in

round i. Also if a correct processor stops in round i < t + 1,

then it is convinced in round i. Ho~ever, a processor may stop in

round t + 1 ~ithout being convicted. In this case it gives its

value for s as output ~ithout having n - t identical values in ps.

In order to keep any value from becoming persistent in a round,

the faults must send distinct sets of values Ps to different sets

of the correct processors. In fact, these sets Ps must reduce to

distinct values. We say that a fault P separates sets A and B of

.correct processors if it sends them sets ps so that after REDUCE,

no member of A has a value stored in Ps that is same as that of a

member of B. We call any set of correct processors a ~itness set

if its cardinalitY is at least t and at most n - 2t.

2
If n > max(4t, 2< t + < t - 1))) , then using Eagree the

correct processors reach eventuallY agreement by Leema 7.4.9

<condition (i)) and Lemma 7.4.5 (condition (ii)). BY Lemma 7.4.8

and its specification EAGREE requires at most min(f + 2, t + 1)

rounds of information exchange. This completes the proof of

Theorem 7.4.1.

Cf)NCLUSif)N AND FUTURE DIRECTION

The problems of obtaining interactive consitency appears to be

quite fundamental to the design of fault tolerant system in which

executive control is distributed. In the SIFT [1_4] fault-tolerant

computer under development at SRI, the need for an interactive

consitency algorithm arises in at least three aspects of the

design:

C1) synchronized of clocks

C2) stabilization of input from sensors, and

(3) agreement on results of dignostic tests.

In the preliminary stages of the design of this system, it was

naively assumed that simple majority voting schemes could be

devised to treat these situations. The gradual realization that

simple majorities are insufficent led to the results reported

in the first module of chapter 4.

The algorithm presented in module 1, are intended to demonstrate

that such algorithms exist. The construction of efficient

algorithms and algorithms that work under the assumption of

restricted communications is a topic for future research.

Other questions that are considered include those of reaching

approximate aggrement and reaching agreement under various

probabilistic assumptions.

In module 2 ~e could obtain a solution to weak Byzantine Generals

problem, ~hich is a weaker version of original Byzantine General

Problem 1 metaphor. Byzantine general metaphor is essentially the

same prob 1 em appear~ed in modu 1 e .1.

In module 3, it has been shown that the problem of fault-tolerant

cooperative computing cannot be solved in a totally asynchronous

model of computation. This does not mean that such problems

cannot be practicallY solved; rather, it means that a more

refined modeyof distributed computing that reflects realistic

assumptions about processor and communication timmings, is

needed. These models were considered in modules 4 to 7.

In module 4, probabilistic consensus protocols for asynchronous

system with fair schedulers is considered • For a system with

fail-stop processors, we showed that L< n+1)/2..._j correct

processes are necessary and sufficient for achieving consensus.

In a system with malicious processes, we showed that ft2n+1)/31

correct processes are necessary and sufficient for achieving

consensus. Finally asynchronous byzantine agreement protocol is

given along with necessary proofs.

In module 5, problem of approximate agreement on real numbers by

processes in a disributed system, is presented. Simple

approximation functions are used in t~o simple-to-implement

algorithms for acheiveing approximate agreement one for a

synchronous distributed system and the other for an asychronous

system.

The algorithms presented here have the undesirable property that

the faulty processes by their actions in the first round can

cause the range of values received bY correct processes to be

arbitratily large, and hence can cause the time to convergence

to be arbitratilY long. It appears that some of the ideas

of[5_2J can also be used to obtain improved initialization

rounds for the algorithms that eliminate this possibility.

For future ~ork, ~e can state a variant of the approximation

problem that uses a fixed number r of rounds and in ~hich e is not

predetermined. Each process starts ~ith a real value, as before r

rounds, the processes must output their final values. The

validity condition is the same as before. The object of the

algorithm is to ensure the best possible agreement, expressed as

a ration of the ne~ diameter of the nonfaulty processes• values

to the original diameter. For given n, t, and r, ~e ~auld like to

kno~ the best ratio.

In Module 6, using simple protocols, it is shown how to achieve

consensus in constant expected time, within a variety of

fail-stop and ommision failure models. Significantly, the

strongest models considered are completely asynchronous. All the

results were based on distributively flipping coin, which is

usable by a significant majoritY of the processors.

One limitation of the adversary that was crucial for the

performance of the protocols in module 6 is that the adversary

does not know the internal state of processors, even when they

are made faulty. The reason for this requirement is that

otherwise bY delivering all messages to one specific processor,

the adversary can find out the identitY of the unique leader by

examining the state of the receiving processor. The adversary can

then block the messages of the unique leader from reaching all

other processors.

A simple modifiation of the protocols given in modeule 6, can

make them immune to an adversary who can "peek into the memory''

of failed processors. The basic idea is that instead of sending a

pair of (possibly encrypted) bits ("leader" bit, ''coin" bit), to

all processors, a secret sharing scheme with threshold t can be

used. The message to processor 1 will consist of the ith piece of

the secret Suppose the adversary makes up to t processors

faulty and gets to see the contents of their memory. This does

not help in understanding the contents of any senders message. In

particular the adversary cannot use these pieces to identity the

unique leader. To reconstruct the secret, all processors later
~

brodcast all the piece of secrets that they have received. The
A

adversary cannot prevent such reconstuction of the secret of any

nonfaulty sender, since any t+1 pieces can be used. It appears

that this approach can be carried out in all va ants of the

adversary model that ~ere considered in module 6. This ~auld

yield consensus protocols ~ith constant expected running time for

t < $n, ~hich tolerate an adversary ~ho kno~s the internal state

of up to t failed processors.

Finally ~e note that our protocols of module 6 do not ~ork in

the presence of even a single Byzantine failure. A faulty

processor can simply claim, at every round, that is a leader thus

rendering the coin tossing subroutine ineffective. It remain an

intersting question to obtain Byzantine ag¢reement p~rocedures

that are both as simple as efficient.

In module 7, t~o kinds of Byzantine Agreement are defined and

compared. These are Eventual Byzantine Agreement <EBA) and

Simultaneous Byzantine Agreement <SBA). The lo~er bo~ds of these

algorithms are also sho~n in the module. Several unauthenticated

deterministic EBA algorithms are kno~n; but none attains the

lo~er bounds sho~n in this module,· for all n and t ~ith n > 3t.

The question even remains open for authenticated algorithms: Is

there a deterministic EBA algorithm that attains the lo~erbounds

for all n and t with n>3t when the faults are restricted not to

corrupt a

restricted

attainable:

EBA that

given authentication protocol? When the faults are

to crash, however, the lower bounds are known to be

Fishcher and Lamport provide a simple algorithm for

acheives early stopping by round f+2 CM. Fischer and

L.Lamport, private communications).

Finally, I conclude with the note that, his field is relatively

new, and considerable work in the field started Just a decade

back. Much work needs to be done here, to solve the problems

related to the field. In the text given above, Some ideas have

been given for future research which can be exploited.

BIIILf)(;IlllPHY

[1_0] M.PEASEr R.SHOSTAK, AND L-LAMPORT, Reaching Agreement in
the Presence of Faults. J. ACM, Vol 27, No. z, APr. 1980
228-234.

[1_1] DAVIES,D., AND WAKERLY,J. Synchrnization and matching in
redundant systems. IEEE Trans of compters. c-27, 6 (June
1978)' 531-539.

[1_2] DIFFIE,w., AND HELLMAN,M., Ne~ direction in cryptography
IEEE Trans. Inform. Theory IT-22, 6 <Nov. 1976) 644-654.

[1_3] RIVEST,R.L., SHAMIR,A., AND ADLEMAN,L.A., A method for
obtaining digital ·signatures and public key cryptosystems
Comm ACM 21, 2 <Feb 1978) 120-126.

[1_4] WENSLEY,J.H. ET AL SIFT : design and anoly~i~ df ~ f~Ult
tolerant computer. for aircraft control. Proc IEEE 66, 10
(Oct 1978) 1240-1.255.

[2...0J L. LAI"lPORT, The Weak Byzantine General Problem, J. ACM,
Vol 30, No. 3, July 1983, PP 668-676.

[2_1J LAMPORT. L, SHOSHTAK, R., AND PEASE, M. The Byzantine
Generals Problems~Trans.Prog Lang. Syst.4.3 <July 1~82),
382-401.

[2_2] same ds [1_0] ·

[2..__3] GRAY,J .. Notes on database operating systems. In operating
SYstems, an Advantage Course Lecture Notes in Computer
Science 60, R. Beyer, R.M. Graham and G. seegmuller, Eds
SPringer verlag, Ne~ York 1978, pp 393-481.

[3_0]

[3..._1]

[3_2]

[3_3]

[3_4]

[3_5]

[3_6]

[3_ 7]

[3_8]

MICHEAL J.FISCHER, NANCY A. LYNCH, MICHAEL s. PATERSON
Impossibility of Distributed Consensus with One faultY
Process, J. ACM, Vol 32, No. 2, APril 1985, PP 374-382·

ATTIYA,c., Dolev,D., AND GIL, J., Asynchronous BYZantine
consensus. In Proceedings of the 3rd Annual ACM
Symposium on Principles Of Distributed computing
cvancouver,s.c., canada, Aug.27-29).ACM,New york, 1984,
PP-119-133.

Ben_QR,M. Another advantage Of free choice: completely
asynchronous agreement protocols. In proceedings of the
2nd annual ACM Symposium on Principles of Distributed
Computing < Montreal, Quebec, Canada, Aug.17-19) ACM,
New York, 1983, pp. 27-30.

Sracha,G. An asynchronous [(n-1)/3]-resilient consensus
protocol. In Proceedings of the 2nd Annual ACM
Symposium on Principles of Distributed computing <
vancouver,s.c., Canada, Aug. 17-19). ACM, New York, 1984
PP-154-162.

BRACHA,G., AND Toueg,s. Resilient consnsus protocols.
In proceedings of the 2nd Annual ACM Symposium on
Principles of Distributed Computing <Montreal, Quebec,
C6nada, Aug. 17-19)~ ACM, New York, 1983, pp. 12-26.

DEMMILQ,R.A., Lynch.,N.A.,AND MERRITT.M.J. Cryprographic
protocols.In Proceedings of the 14th Annual ACM Symposium
on Theory of Computing <San Francisco, Calif., MaY 5-7).
ACM, New York, 1982, pp. 383-400.

Dolev,D.,AND STRONG-H.R. Distributed commit with bounded
waiting. In proceedings-of the 2nd Annual IEEE Symposium
on Reliability in Distributed Software and Database
systems. IEEE, New York, 1982, pp. 53-60.

Dolev,o., AND STRONG,H.r. Polynomial algorithms
multiple processor agreement. In proceedings of the
Annual ACM Symposium on Theory of Computing
Francisco, Calif., May 5-7). ACM, New York,
PP-'101-'107.

for
14th
<San/

1982,

Dolev,o.,FOWLER,R.,LYNCH,N.,AND STRONG,H.R. An efficient
algorilthm for Byzantine agreement wihotu authentication.
Inf control 52,3<1983), 257-27'1.

[3_9] same as [5_0J

[3_10] DOLEV,D., LYNCH,N., AND STORCKMEYER,L. Consensus in the
presence of partial synchrmnoy. In Proceedings of the
3rd annual ACM Symposium on Principles of Distirbuted
Computing < Vancouver, B.c., Canada Aug 27-29). ACM New
York 1984 PP 103-118.

[3_11] FISHCER,M., AND LYNCH N. A lower bound forth time to
assure interactive consistency. Inf Proc. Lett. 14.4
(1982) 183-186.

[3_12]

[3_13]

[3-14]

[3_15]

[3_16]

[3_17]

[3_18]

[3_19]

r

FISHCER, M., LYNCH,N., AND PATERSON, M. Impossibility of
distributed consens with one faultY process. In
proceedings of the 2nd Annual ACM SIGACT SIGMOD
Symposium on Principles of Database System <Atlanta
Ga., Mar 21-23)ACM New York 1983, PP 1- 7.

GARCIA-MOLINA, H. Elections in a distributed computing
system IEEE Trans comput <1982) 48-59.

~

LAMPORT L., SHOSTAK,R., AND PEASE,M. The Byzantine
Generals problem. ACM TRANS. PROG LANG. sYST 4,3 <JULY
1982) 382-401.

LAMPSON,B. RePlicated commit. CSL Notebook Entry xerox
Palo Alto Research Center, Palo alto CAlif., 1981.

LAMPSON, B., AND STURGIS,H. Crash recovery in a
distributed data storge system. Manuscript, xerox Palo
Alto research centre Palo Alto Calif 1979.

LINDSAY, B.F., SELINGER, P.G., FALTIERI, c., GRAY, J.N.,
LORIE,R.A. PRICE, T.G.,PUTZOLU,f.,TRAIGER,I.L.,AND WADE,
B.w. Notes on distributed databases. IBM Res Rep RJ2571,
IBM Reasearch Division San Jose Calif 1979.

LYNCH,N.,FISCHER,M.,AND FOWLER,R, A simple and efficient
Byzantine Generals algorithm, In proceedings of the 2nd
Annual IEEE Symposium on reliability in Distributed
software and Database systems. IEEE New York 1982 pp
46-52. '

same as [1_0J

(3_20] RABIN,M.Randomized BYzantine Generals. In proceedings of
the 24th annual IEEE Symposium on Foundations of
computer science IEEE, Ne~ York 1983, 403-409.

[3..._21 J REED, o. Naming and syncrnization in a decentr·allized
computer system. PhD dissetatlon Technical Report
MIT/LCS/TR-205, Massachusetts Institute ofd Technol;goy.
Cambridge Mass 1978.

[3._22]

[3._23]

ROSENKRANTZ,D.J. STREARNS, R.E., AND LEWIS, P.M., II
System level concurrecncy control for distributed
database systems ACM Trans. Database Syst. 3, 2 (June
1978) 178-198.

SKEEN,o., A decentrallized termination
proceedings of the . 2nd Annual IEEE
Reliability in Distributed Soft~are
systems. IEEE, Ne~ York 1982,PP 27-32.

proto co 1 • In
Symposium of
and database

[3_24] SKEEN,D., AND STONEBRAKER, M. A formal model of crash
recovery in a distributed system IEEE Trans Soft~.
Engineering SE-9, 3(May 1983), 219-228.

[3_25] TOUEG, s. Randomized Byzantine Agreements. In Proceeding
of the 3rd Annual ACM Symposium on Primnciples of
Distributed Computing <Vancouver, s.c. canada AU9 27-29).
ACM Ne~ York 1984,PP.163,pp. 163-178.

[4_0] GABRIEL BRACHA AND SAM TOUEG,Asynchronous Consensus and
Broadcast Protocols, JACM, Vol 32, No. z, APril 1985,
pp. 374-382.

['L 1 J

[4_2]

['L3]

same as [3._ 1 J

DOLEV, D. Unanimity in an unkno~n and unreliable
environment. In Proceedings of the 22nd Annual Symposium
on Foundation of Computer Science <Nashville,Tenn.,Oct.)
IEEE, Ne~ YOrk, 1981,PP 159-168.

same as [3._0]

(4_4]

(4_5]

(4_6]

[4_ 7]

[4._8]

[4._9]

[5_0]

[5_ 1]

[5_2]

[5_3]

ISSACSON,Q.L., AND MADSEN,R.W. MARKOV CHAINS THEORY
and PRACTICE. WILEY NEW YORK 1976, PP. 89-100.

ITAI,A. AND RODEH,M. Symmetry breaking in distributive
networks. In Proceedings of the 22nd Annual Symposium on
Foundation of Computer Science <Nashville, Tenn.
Oct) IEEE, New York, 1981, pp. 150-158·

same as [3._14]

same as [1_0 J

RABIN,M.,AND LEHMANN,D.On the advantages of free choice:
A symmetric and fullY distributed solution to the dinnng
Philosophers problem. In Proceedings of the 8th ACM
Symposium on the Principles of Programming Languages
<Williamsburg, Va Jan 26- 28). ACM New York 1981, PP
133-138.

SCHLICHTING,R.Q., AND SCHNEIDER,F.B Fail stop processes:
An approach to designilg fault tolerant computing
systems. ACM Trans, Ciomput. SYS <Aug 1983), 222-238.

DANNY DOLEV, NANCY A. LYNCH, SHLOMIT S.PINTER, EUGENE w.
STARK AND WILLIAM E.WEIHL. Reaching Approximate
Agreement in the Presence of Faults~ JACM Vol 33, 3<
July 1986), PP 499 - 516.

same as [3._2]

same as [3._3 J

same as [3_4]

same as .[3_ 7J

[5_5] DOLEV,D.,DWORK.,c., AND STOCKMEYER,L. On the the minimal
synchrnous needed for distrib;uted consens. In
Proceedings of 24th Annual Symposium on Foundation of
Computer Science<Nov.)IEEE, New York, 1983,PP.393-402.

[5_6] same as [3_9]

[5_7] same as [3_11]

[5_8] FISHCER, M.J.LYNCH,N.A., AND PATERSON,M.S. Impossibility
of distributed consens problems Distr COmputt. 1,1(1986)

[5_9] same as [3_0]

[5_10] same as [3_14]

[5_11] LUNDELIUS.,AND LYNCH,N.A. A new fault-tolerant algorithm
for clock synchronization. In Proceedings of 3rd ACM
Symposium on Principles of distributed Computing
<Vancouver, B.c., Canada, Aug 27-29). ACM , New York,
1984 pp. 75-88.

[5_10] same as [1_0]

[6_0] BENNY CHOR, MICHAEL MERRITT, AND DAVID B. SHMOYS, Simple
Constant-Time consensus Protocols in Realistic Failure
Models, JACM Vol 36, No. 3, July 1989, PP 591-614.

[6_1] ALEX!. w., CHOR, s.,GOLDREICH,.Q., AND SCHNORR,c.p. RSA
and Rabin : Certain parts are as hard as the wholw SIAM
J comput 17<1988). 194-209

[6_2] AWERBUCH. s. Complexity of network synchronization J.ACM
32.4(Qct 1985) 804-823

[6_3] AWERBUCH, B., BLDUM, M., CHOR, B., GOLDWASSERS AND
MICALL.S. How to implement Bracha's O<log n) Byzantine
agreement algorithm. Unpublished manuscript.

[6_4] same as [3_2]

. [6_5] BRACHA-G.An Q(log n) expected rounds randomized Byzantine
generals algorithm J ACM 34. 4<0ct 1987), PP)910-920.

cJ [6_ 4 J same as [4_0 J

[6_7] CHOR. B. AND COAN, B. A simple and efficient randomized
Byzantine agreement algorithm IEEE Trans. soft~. Eng SE-
11,6<1984),531-539.

[6_8] CHOR B.MERRITT, M,.AND SHMOYS, O.B. Simple constant time
consensus protocols in realilstic failute models. In
Proceedings of the 4th Annual ACM Symposium on Priciples
of Distributed Computing ACM Ne~ York 1985, pp, 152-162.

[6_9] COAN.B.Acheiving consensus in fault tolerant distributed
systems : Protocols. lo~er bounds and simulations. PhD.
dissertiation Mit Cambridge Mass 1987.

[6_ 1 0 J same as [3_ 71

(6_11] DWORK, C. SHMOYS, o., AND STORCKMEYER, L. Flipping
persuasively in constant expected time. In proceedings
of the 27th Symposium of Foundation on·computer Science
IEEE New York, 1986, PP 222-232.

[6_12J FELDMAN, P •• , AND MICALL, s, OPtimal aglorithms for
Byzantine agreement. in Proceedings of the 20the Annual
ACM Symposium on Theroy of computing ACM Ne~ York 1988
pp. 148-161.

[6_13] FISHER.M. J., AND LYNCH, N.A. On describing the behavour
and implementation of distributed systems. Theroet
COmputt Sci 13<1981),17-43.

[6_14]

[6_15]

same as [3_0]

GOLDWASSER, s., AND MICALI., S. Probabilstic encryption.
J.Computt. Syst. Sci. 28,2<1984), 270-299.

~

[6_16] GOLDWASSER,s., AND MICALI.,AND RACKOFF. c. The kno~ledge
complexitY of interactive proof system SIAM J. Comput.
18,1(1989)186-208.

[6_17J KARLIN,A.R., AND YAO,A.C. Probabilistic lo~er bounds for
Byntaine agreement and clock synchrnization. Unpublished
manuscript.

[6_18] same as [3_14]

[6_20] same as [1_0]

[6_21]. PINTER. s. Distributd Computation Systems. PhD.
dissertation Boston Univ., Boston. Mass., 1983.

[6_22]

[6_23]

[6_24]

[6_25]

[7_0]

[7_1]

[7_2]

same as [~20J

ROSEN, E.c. VulnerabilitY of net~ork control protocols:
An example ACM SIGSOFT soft~. Eng Notes, 6, 1<1981),6-8.

SHAMIR, A. Ho~ to share a secret Commun ACM 22,11 <Nov.
1979), 612-613.

YAO, A.C. Theory and applications of trapdoor functions.
In Proceedings of the 23rd IEEE Symposium on Foundation
of Computer Sciece. IEEE, Ne~ York 1982 80-91.

DANNY DOLEV, RUEDIGER REISCHUK AND H. RAYMOND STRONG
Early Stopping in Bvzatine Agreement, JACM, Vol 37, No.
4, October 1990, PP 720-741

coan.B. A communication-efficient canonical form fault -
tolerant distributed protocols. In procceedings of the
5th Annual ACM,Ne~ York,1986,pP.63-72. ·

Cristian.F.Aghili,H.Strong,R,and Dolev,D.Atomic broadcast
: from simple message diffusion to Vvdantine agrrement in
proceedings of th~ 15th International Conference on
Fault Tolerant Coputing (june).1985.PP·1-7.

[7_3]

[7_4]

[7_5]

[7_6]

[7_7]

[7_8]

[7_9]

[7_9]

[7_11]

[7_12]

[7_13]

Demillo.R.a., LYnch,N.A •• and Merrit.M.J. Cryptographic
protocol. In Proceedings of the 14th ACM SIGACT
symposium on Theory of computing<San Francisco,Calif,
May 5-7)ACM,New York, 1982,PP.383-4QQ.

same as [4_2]

Dolev.D. The Byzatine generals strike again, J.Algo, 3
(1982), 14-30.

same as [3_8]

Dolev.D.AND REISCHUK.R, Bounds on information exchange
for BYzantine agreement.J.ACM 32,1<Jan,1985).191-204

Dolev.D.REISCHUK,R.and Strong,R. "Eventual" is earlier
than "immediate". In Preceedings of the 23rd IEEE annual
Symposium on Foundations of cumputer Science. IEEE,New
York.1982,pp.196-203.

same as [3_7]

same as [3_6]

Dolev.D.,and Strong,H.R.Requirements for agreement
distributed system. In proceedings of the
international Symposium on Distributed
Bases(sept.).1982,PP-115-129.

Dolev.D.,AND STRONG.H.R. Authenticated algorithm
Byzantine agreement. SIAMJ>Conput 12 (1983).656-666.

in a
2nd

Data

for

DWORK,c.,AND MOSES, y. Knowledge and common knowledge in
a Byzantine environment !:Crash failures •. rn J.Halpern.,
ed., Thoeretical Aspects of Reasoning about knowledge
(~ionetery calif., Mar 19-22) Morgan Kaufman, San
Mateo, Calif 1986, PP 149-170.

[7_ 14 J

[7_ 15 J

[7_16]

[7_ 17 J

[7_18 J

[7_19 J

[7_20 J

[7_21 J

[7_22 J

Fishcher, M., FOWLER,R., AND LYNCH, N • A simple and
efficient Bynzantine generals algorithms. In proceeding
of the 2nd Symposium on Reliability in Distributed
Soft~are and Database Systems (Pittsburgh, Pa., July).
1982, pp. 46-52.

same as [3_11]

same as [2_0 J

LAMPORT, L. Using time instead of timeout for
fault-tlerant distributed systems. ACM Prog Lang Syst
6,2CAPr 1984 1984) 254- 280.

LAMPORT,L, AND MELLILAR SMITH, PM Synchrnozing clocks in
the presence of faults J ACM 32,1<Jan 1985) 52-78.

same as [3_14]

MOSEs,y., AND WAARTS, o. Coordinated transversal : < t +
1) - round Bynzantine agreement in polynomial time. In
Proceedings of the 29th Annual Sympsoium on Foundation
of Computer Science. IEEE, Ne~ York 1988.

same as [1_0 J

SCHNEIDER, F. Byantine
fall stop processors
1 984) 1 46-1 54.

generals in action Implementing
ACM Trans COmput. Syst. 2,2 CMav

[7_23] SRIKANTH,T.,AND TOUEG,s. Byzantine agreement made simPle
Simulation authentiacation ~ithout signature .Distt

comput. 2(1987),80-94.

[7_24] TOUEG.s.,PERRY.K., AND SRIKANTH.T. Fast disributed
agreement SIAM j. Comput. 16<1987) 445-457.

	TH39230001
	TH39230002
	TH39230003
	TH39230004
	TH39230005
	TH39230006
	TH39230007
	TH39230008
	TH39230009
	TH39230010
	TH39230011
	TH39230012
	TH39230013
	TH39230014
	TH39230015
	TH39230016
	TH39230017
	TH39230018
	TH39230019
	TH39230020
	TH39230021
	TH39230022
	TH39230023
	TH39230024
	TH39230025
	TH39230026
	TH39230027
	TH39230028
	TH39230029
	TH39230030
	TH39230031
	TH39230032
	TH39230033
	TH39230034
	TH39230035
	TH39230036
	TH39230037
	TH39230038
	TH39230039
	TH39230040
	TH39230041
	TH39230042
	TH39230043
	TH39230044
	TH39230045
	TH39230046
	TH39230047
	TH39230048
	TH39230049
	TH39230050
	TH39230051
	TH39230052
	TH39230053
	TH39230054
	TH39230055
	TH39230056
	TH39230057
	TH39230058
	TH39230059
	TH39230060
	TH39230061
	TH39230062
	TH39230063
	TH39230064
	TH39230065
	TH39230066
	TH39230067
	TH39230068
	TH39230069
	TH39230070
	TH39230071
	TH39230072
	TH39230073
	TH39230074
	TH39230075
	TH39230076
	TH39230077
	TH39230078
	TH39230079
	TH39230080
	TH39230081
	TH39230082
	TH39230083
	TH39230084
	TH39230085
	TH39230086
	TH39230087
	TH39230088
	TH39230089
	TH39230090
	TH39230091
	TH39230092
	TH39230093
	TH39230094
	TH39230095
	TH39230096
	TH39230097
	TH39230098
	TH39230099
	TH39230100
	TH39230101
	TH39230102
	TH39230103
	TH39230104
	TH39230105
	TH39230106
	TH39230107
	TH39230108
	TH39230109
	TH39230110
	TH39230111
	TH39230112
	TH39230113
	TH39230114
	TH39230115
	TH39230116
	TH39230117
	TH39230118
	TH39230119
	TH39230120
	TH39230121
	TH39230122
	TH39230123
	TH39230124
	TH39230125
	TH39230126
	TH39230127
	TH39230128
	TH39230129
	TH39230130
	TH39230131
	TH39230132
	TH39230133
	TH39230134
	TH39230135
	TH39230136
	TH39230137
	TH39230138
	TH39230139
	TH39230140
	TH39230141
	TH39230142
	TH39230143
	TH39230144
	TH39230145
	TH39230146
	TH39230147
	TH39230148
	TH39230149
	TH39230150
	TH39230151
	TH39230152
	TH39230153
	TH39230154
	TH39230155
	TH39230156
	TH39230157
	TH39230158
	TH39230159
	TH39230160
	TH39230161
	TH39230162
	TH39230163
	TH39230164
	TH39230165
	TH39230166
	TH39230167
	TH39230168
	TH39230169
	TH39230170
	TH39230171
	TH39230172
	TH39230173
	TH39230174
	TH39230175
	TH39230176
	TH39230177
	TH39230178
	TH39230179
	TH39230180
	TH39230181
	TH39230182
	TH39230183
	TH39230184
	TH39230185
	TH39230186
	TH39230187
	TH39230188
	TH39230189
	TH39230190
	TH39230191
	TH39230192
	TH39230193
	TH39230194
	TH39230195
	TH39230196
	TH39230197
	TH39230198
	TH39230199
	TH39230200
	TH39230201
	TH39230202
	TH39230203
	TH39230204
	TH39230205
	TH39230206
	TH39230207
	TH39230208
	TH39230209
	TH39230210
	TH39230211
	TH39230212
	TH39230213
	TH39230214
	TH39230215
	TH39230216
	TH39230217
	TH39230218
	TH39230219
	TH39230220
	TH39230221
	TH39230222
	TH39230223
	TH39230224
	TH39230225
	TH39230226
	TH39230227
	TH39230228
	TH39230229
	TH39230230
	TH39230231
	TH39230232
	TH39230233

