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To understand the problem raised by distributed working is to 
understand how tomorrow's information system will work. Just as there 
has come to be a standard structure for a car, agreed to by all manufac
turers as well understood by all users., there is no doubt that these 
future systems will consist of machines of a wide variety of types dis
tributed around a ring, raging from individual work station to a central
ized rue store, with general or special-purpose processors in between. 
Thus if we want all the processes to be implemented in order to mobilise, 
co-ordinate and stop the many activities of a distributed system, we 
shall understand the problems faced and a need of standards. 

Keeping the above in mind, the thesis centers around the need of 
standard algorithms dealing with different problems of distributed 
systems. In my thesis, I have considered only the problem of .. Reaching 
Agreement Ia the Presence offautts•. 

In this thesis, the_ algorithms have been investigated for both synchro
nous and asynchronous system. The algorithms considered include 
solutions for interactive consistency problem, solutions for Original and 
Weak Byzantine General problem, Asynchronous consensus and broad
cast protocols, variants of Byzantine general problem by assuming 
starting values as reals, simple constant time consensus protocols in 
realistic failure models, simultaneous byzantine agreement, eventual 
byzantine agreement, etc. 

The thesis is divided into 5 Chapters in the following fashion; Chapter 1, 
has the introduction to the subject and an abstract of the thesis. 
Chapter2 has general notations and definitions, theorems, lemmas 
along with their proofs are dealt with in Chapter 3. 

While going through the thesis, the reader inay want to skip over 
Chapters 2 & 3 and go directly to Chapter 4, in which the problem 
is explained in detail. While reading Chapter 4, you may revert back to 
Chapters 2 & 3 for referring to notations, definitions, theorems, lemmas 
and proofs. 

For sake of convieniance the defmitions are arranged alphabetically. 
Also in Chapter 3 you will fmd that the theorems appear in the same order 
as they do in the text of Chapter 4. 
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INTRf)DUCTif)N 
The field of distributed applications is constantly gro~ing. This 

increasein the use of computer science as a prefered tool in ever 

more diverse areas is essentially the result of developments in 

this discipline. 

The control of distributed applications is based on understanding 
I 

of what is known as "DISTRIBUTED SYSTEM". Compared to CENTRALIZED 

OPERATING SYSTEM, DISTRIBUTED SYSTEM differ essentially since the .., 

entities that form the latter cooperate in the achievement of 

common aim by exchanging messages, and thus there is no global 

state in the system that cdn be detected instantly by one of 

these entities. 

The problems related to distributed system include : 

(a) Mutual dependency of logical clocks 

(b) Network routes 

(c) Learning distributed information 

(d) Determination of global states. 

(e) Maximum delay in the transfer of messages 

(~) Topological structure of the network 

(g) Distributing a global synchronization constrain 

' (h) Reaching agreement in presence of faults 

Ci) Mutual exclusion 

(j) and many more. 



In this thesis, algorithms for reaching agreement in the 

presence of faults have been investigated for both synchronous and 

asynchronous system. The algorithms considered include solutions 

for interactive consistency problem, solutions for Original pnd 

weak Byzantine General problem, Asynchronous consensus and 

broadcast protocols, variants of Byzantine general problem by 
. I 

·assuming starting values as reels, simple constant time consensus 

protocols in realistic failure models, simultaneous byzantine 

agreement, eventual byzantine agreement, etc. 

Fault~tolerate systems often require a means by which independent 

·processors or processes can arrive'at,an exact mutual agreement 

of some kind. It may be necessary, ~or example, for the 

processors of a ~edundant system to synchronize their Internal 

clocks periodically. or they may have to settie upon a value of 

a time-varying input sensor that gives each of them a slightly 

different reading. In the absence of faults, reaching a 

satisfactory mutual agreement, is usually an easy matter. In most 
) I 

cases it suffic~s simply to exchange values, CCLOCK TIME, in the 

case of clock synchronization) and compute some k1nd of average. 

In the presence of ~aulty processors, howeve~ simple exchanges 

cannot be .relied upon, a ~ad processor might report one value to 

a given processor and another value to some other processors, 

causing each to calculate a different "average." 



One might imagine that the effect of faulty processors could be 

dealt with through the use of voting schemes involving more than 

one round of information exchange; such schemes might force 

faultY processors to reveal themselves as faultY or at least to 

behave consistently enough with respect to the nonfaulty 

processors to allow the latter to reach an exact agreement. As 

~e ~ill show, it is not always possible to devise schemes of 

this kind, even if it is known that the faulty processors are in 

a minority. Algorithms that allow exact agreement to be reached 

by the nonfaulty processors do exist, however, if they 

sufficiently outnumber the faulty ones. 

The Byzantine generals problem involves obtaining agreement 

among a collection of processes, some of which may be faulty. The 

precise defination is given in the chapter 2. 

Nonfaulty processes are assumed to correctlY follows their 

alogrithm, but faultY processes may do anything. we assume that 

the absence of a message is detectable, which is equivalent to 

assuming that a faulty process sends every message that it is 

supposed to--although it need not send the correct message. The 

difficulty of the problem lies in the fact that a faulty·process 

may send conflicting information to two different processes. 



This problem was described in [2_1] in term of byzantine general 

metaphor, hence its name. Essentially the same problem appeared 

in [1_0], where it is called the interactive consistency problem. 
) 

jn [1_0J the problem was shown there to be solvable if and only 

if fewer than one-third of the processes are faulty, no solution 

worKs for three processes in the presence of a single fault~ 

In th·e worK done by Lamport in [ 2-0 J we consider a weaKer version 

of the problem, in which i condition < 1) is replaced by : 

<1) If all processes are nonfaulty, then every process i obtains 

the value v 

A form of agreement problem quite well-Known is the the transact-

ion commit problem, which occu\s in distributed databas~ systems, 
. 1 ' ~ • t 

all the data manager processes which have participated in the 
'\ ., 

f ' • _..., 

processing of a particular transaction to agree on whether to 

install the transaction's results in the database or ,to discard 

them. The latter action·mig~t be necessary, for example, if some 
' . . I 

data managers were unable to carry o~t the required transaction 

processing. Whatever decision is made, all data managers must 

maKe the same decision in order to preserve the consistency of 

the database. 

The transaction commit ~roblem for a database is an instance of 

this weaKer problem, in which process 0 represent a transaction 

coordinator, and the other processes repr.sent the databas~:sites 

affected by the transaction [2_3]. l· 

..: . ~ { ' 

i : 



AnY solution to the original Byzantine Generals Problem is 

obviously a solution to the weak Byzantine Generals ,(WBG) Problem 

so the WBG Problem solvable if fewer than one-third of the 

processes may be faulty. 

The Byzantine Generals Problems arises in practice when trying 

to get· the nonfualtY processes to agree upon the value of some 

input quantity. The WBG problem arises when trying to get the 

nonfaulty processes simply to agree, regardless of what they 

agree upon. To.eliminate the trivial possibility of having them 

agree upon a prearranged value, we can assume that each process 

chooses a Private value, and that these private valuesare used 

in reaching agreement,can theh be formulated as WEAK INTERACTIVE 

CONSISTENCY PROBLEM, defined in the next chapter. 

A consensus protocol enables a system of n asynchronous process, 
I 

where some of the process are faulty, to reach to an agreement. 

Next we discuss protocols that enable a fullY interconnected 

system with reliable asynchronous transfering, to rreach an 

agreement. In reliable asynchronous message system, a message 

can be have arbitrary delays. 

The faulty processes considered, fall under two classes 

1) Fail stop Processes : A process may stop participating in the 

protocol that is, it may just Die. 

2) Malicious Process : A Faulty process may send incorrect 

messages. 

1-5 



A fail stop process creates problem even though it doesn't send 
' . 

\ any false messages, because there is no way to find a difference 

between a dead· process and a slow one. Whereas in case of a 

malicious process, the contradictory messages may cause trouble 

for the distributed system. 

The system involving fail-stop processors, was investigated in 

[3_0]. Fischer etal. It showed the impossibility of a consensus 

protocol if only one failure may occur. However, .in [3_0], the 

concept of an admissible solution is a protocol that always 

terminates within a finite numb.er of. steps. In \ Module 4 0 we are 

interested in a different kind. of solution: we consider 

protocols, which may never terminate, but this would occur 

with probability o, and the expected termination time i~ ~inite. 

There are two ways to introduce probabilities on the possible , 

executions of a protocol. The other approach, and the one we 

adopt in this thesis, is to postulate some probabilistic behavior 

about the message system. 

In the case of fail-stop processors, we describe a probabilistic 

protocol that can withstand up to L<n-1 )/2_j failures, where n 

is the number of processes •. We also show that there is no 

consensus protocol that can withstand up . to L< n-1 )/3....1 

processes may fail. Agreement among remote processes is one of 

the most fundamental problems in distributed computing and is at 

the centre of many algorithms for distributed data processing, 

distributed file management, and fault tolerant distributed 

applications. 



One may also consider more Byzantine types of failure in which 

faulty processes might go completely haywire, perhaps even 

sending · messages according to some malevolent plan. We would 

like to have an 'agreement protocol which is as reliable as 

POSSible in the presence of such faults. No completely 

asynchronous consensus protocol can tolerate even a single 

unannounced process death. we may not consider Byzantine 

failures,further-more ~e assume that the message system is reli-

able and that it delivers all messages correctly and exactly once. 

Still with these assumptions, the stopping of a single process at 

an inopportune time can cause any distributed commit protocol to 

fail to reach agreement. Hence this crucial problem has no 

convincing solution or still greater restrictions on the kind of 

failures to be-tolerated!. 
' 

As crucial to the proof that processing is completely asychronous 

we cannot make assumptions about the relative speeds of 

processes or~ about the delaY time in delivering a message. we 

can also assume that processess don't have access synchronized 

clocks, so algorithms based on time-outs,' for example, cannot be 

used. Finally we cannot postulate the ability to detect the 

death of a process, so it is impossible for one process t6 tell 

whether another has .died or is Just running very slowly. 



The impossibility in the result applies to even a very weak form 

of the consensus problem. Let us assume that every process 

starts with an initial value in {0, 1}. A nonfaulty process 

decides on a value in {Q,1} that is by enterin9 an appropriate 

decision state. Also all nonfaulty processes which make a 

decison are to choose the same value. For the purpose of the 

impossibility proof, we want only that some process eventually 
' 

make a decision. The solution in which· , 0 is always chosen is 

.ruled out by sayin9 that both 0 and 1 are possible decision 

values, althou9h perhap~ for differrent initial confi9urations. 

Process are also modelled as automata~one atomic step. Every 

messa9e is finallY sent as 1on9 as the destination process makes 

infinitely many attempts to receive, but messa9es can be delayed, 

arbitrarilY 1on9,and sent out of order. 

In module five we assume a different kind of model. 

We assume a model in which processes can be send messa9es 

containin9 arbitary real values and·store arbitray real values as 

-well. 

we assume that each process starts with an 

arbitary real value. For any preassi9ned t > 0 (as small as 

desired), an approximate 09reement al9orithm must satisfy the 

followin9 conditions: 

1-8 



(a) Agreement: All ITonfaulty processes eventuallY halt ~ith 

output values that are ~ithin of each other. 

(b) Validity: The output by each 

in the range of initial 

processes. 

nonfaulty 

values of 

process must be 

the nonfaulty 

Thus, in particular, if all nonfaulty processes should happen to 

start ~ith the same initial value, the final values are all 

required to be same as the common initial value. This is 

consistent with the usual requirments bY Byzantine agreement 

algorithms. However, should the nonfaulty processes start ~ith 

different values, we do not require that the nonfaulty processes 

agree on a unique final value. 

We consider both synchronous and asynchronous versions of the 

problem. Systems in which there is a finite bounded delay on the 

operations of the processes and on their intercommunication are 

said to be synchronous. In such systems, unannounced process 

deaths, as well as long delays, are considered to be faults. For 

synchronous ·system, we give a simple and rather efficient 

algorilthm for achieving approximate agreement. This algorithm 

works by successive approximation, with a provable convergence 

rate that depends on the ratio bet~een the number of faulty 

processes and the total number of processes are allowed to 

terminate at different times. 



For asynchronous systems, in which a very slow process cannot be 

distinguished from a dead process, exact agreement cannot be 

reached by an algorithm that is guaranteed to terminate [5_5, 

5_9]. Exact agreement can, however be attained by algorithms 

that only teminate with probabilitY 1 [5_1, 5_3]. An interesting 

constrast to the results in [5_5] and [5_9] is the second 

algorithm, which enables processes in an asychronous system to 

get as close to agreement as one chooses. 

our algorithm for the asynchronous case also works by successive 

approximation. In this case, however , the total number uf 

processes required by the algorithm is more than five times the 

number of possible faultY processes. As in the synchronous case 

we acheive termination using a technique that ensures that all 
\ 

nonfaulty processes halt but permits different processes to 

terminate at different times. our algorithm for obtaining 

approximate aggrement are of a very simple form. Namely, at each 

round, until termination is reached, each process sends its 

latest value to all processes (including itslef). On receipt of 

a collection V of ~lues, the process computes a certain function 

f(V) as its next value. The function f is a kind of averaging 

function. Here we use functions that are appropriate for handling 

t faulty processes. 

~rticularly for handling t faulty processes, We show that these 

funcations have particularly nice approximation • 
beha~ur. In 



particular, ~e show that, for algorithms of a specif~ form, no 

apprioximation function can provide uniformly faster convergence 

than the functions used in (5_0]. (5_6] presented similar 

algorithms but used approximation functions that provided slower 

convergence .than is achieved by the functions used in (5_0]. 

Randomization has proven to be an extremely useful tool in the 

.design of protocols for distributed agreement. New randomized. 

protocols for the consensus problem in synchronous and 

asynchronous fail-st;:op and failure-by-omission models are 

presented in the thesis. These protocols terminate within 

constant expected time, and unlike previous fast protocols, are 

very simple and need not rely on any preprocessing. Infect, we 

believe that these protocols ~ill be the method o( choice rn 

im~l~m~Ht~ti~H~: Th~ major novelty of algorith~s 

developed in (6_0] is -the notion of a weak form of a global 

coin~ and a method of generating it. 

The situation for deterministic alogrithms for consensus is ~ell 

understood. A result of Dolev and Strong implies that in 

asynchronous fail-stop model, at least t + 1 rounds are needed, 

in the worst case, to achieve consensus;they also provided an 

algorithms that achieves this bound and transmits only a 

polynomial number of messages [6_10]. In an asynchronous model, 

Fischer et al. showed that no protocol exists for consensus in 

the fail-stop model that tolerates even a single fault [6_14]. 



Fortunately, randomization can overcome this inherent 

intractability. 1Ben-Or describes a protocol for asynchronous 

consensus that tolerates upto~n/2 faults in the fail-stop model, 

and terminates with probability 1 [6_4]. Results of a similar 

nature were given by Bracha and Toueg [6_6]. However the expected 

number of rounds needed to reach agreement as maesured locally by 

every processor is exponential in the asynchronous case (can be 
I 

shown to be O< ,t/ ~ ) in the synchronous one). Rabin introduced 

the important notion of a global coin flip [6_22J,which is a coin 

fliP whose outcome is visible ' to all processors. He 

describes a different protocol that employs such a coin,so that 

each proce5sor can use the outcome of a common coin. The expected 

number of rounds to reach agreement is O< T c n ) ), where TC n ) 

is the time required to flip the coin in a network of n 

processors. In order to implement his global coin, Rabi~ required 

some predealt information to be distributed by a trusted third 

party. Bracha, using a beautiful "boot-strapping"construction, 

showed that Rabin's result could be improved so that agreement is 

reached in OC T< log n ) ) expected number of rounds ( i.e., the 

time to flip many independent coins in subnetwork whose size is 

logarithmic in n, in the size of original network ) [6_5]. It has 

been shown how to use cryptographic techniques to implement such 

a coin-toss in T< n ) = O< n ) rounds, so that overall, Bracha's 

Procedure can be run in OClog n ) expected time as shown in [6_3] 

and by , A.C. Yao, private communication ·• However, this scheme 

requires an assignment of processors to committees for which no 



explicit construction is known. In contrast, the protocol given 

by Benny Char in [6_0] is completely constructive. Feldman and 

Micali [6_12] have also the nonconstructive part of Bracha's 

probabilistic assignment, by having the processors generate the 

assignment themselves.However,in the process,Feldman and Micali 

introduced a prepbcessing phase that requires OCT)rDunds.Their 
A 

protocol is superior to deterministic protocols in an amortized 

sense,since additional agreements require only OC1) time. The 

best-~nown bound for a Byzantine fault model without predealt 

information or preprocessing is OClog n). Since the alogrithms 

given in [6_0], for omission faults run in constant expected 
··'-·----·-· ------------ -· - ----------·-·-- --------- -- --· --------------------

time, current results leave a log n seperation between the 

Byzantine and omission fault models. 
' 

Finally in the las~module of the thesis, I discuss two closely-

related types of agreement that can be reached in a distributed 

system in the presence of unde~ected processor faults.· 

One type is called Simultaneous Byzantine Agreement <SBA) and 

the other Eventual Byzantine Agreement CEBA). Corresponding to 

these two types of agreement, are two distinet problems in 

coordination among multiple processors in a distributed system. 

One problems is synchronization: Processors may be required to 

perform some action at the same time, immediately after reaching 

agreement on that action [7_18]. The other is consistency as 

required,for example, in the atomic commitment of a dist~ibuted 

database transaction. The participants in the transaction commit 



··protocol must agree on ~hether or not the transaction is to be 

committed. In this case,~ it is enough to kno~ that the choice 

~ill eventuallY be the choice of all other parties to the 

agreement [7_10]. 

The difference bet~een thes~ t~o problems and the consequent 

differences in requirements for their solution is discussed in 

the thesis. Because SBA implies EBA ~lthin the model considered, 

EBA can al~ays be· reached as early as SBA. It is sho~n th.at EBA 

can often be reached earlier than SBA. 

This thesis provides a complete survey report of ~ork done in the 

field, starting from the year 1980 to 1990. It.presents the 

protocols ~ith detailed proofs ~hereever found necessary. 
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This chapter is compiled for reference with respect to "Glossary 

of Notations" and "Definitions". The Definitions are arranged 

alphabetically to permit easy access to any definition as in a 

dictionary. 

o< • • 

o- .. 
• 

$ • • 

II . . 
# • . 
% • • 

& • • 

@ • • 

A • • 

l • • 

n • • 

p • . 
P• • • 

I I • • 

GLf)SSARY OF NOTATIONS 

General Notations: 

is Greek letter Alpha 

is Greek letter Sigma 

is Greek letter Beta 

stands for big Pi 

stands for small Pi 

stands for Phi 

stands for Delta 

stands for Si 

stands for Rho 

stands for Lemda 

the number of processes. 

the set {Q, ••••• ,n-1} of processes • 

the set of finite sequence of processes • 
(elements of P including empty set) 

the set of message paths from Q. This implies 
a sequence in P• begining with Q. 



I I i 

I I<k) 

IIl<k) 

v 
scenario 

• • 

• • 

• • 

• • 

• • 

i..;scenario: 

the set of message paths from 0 to 1, that is 
a sequence in II ending in i. 

set of message paths of length <= k in 11. 

set'of message paths of length <= k in Ill • 

the ~et of all possible values v. 

a mapping % : II --> V , specifYing the value 
of the content of every message. 
if # belongs to II then %(#) gives 

content of message received at final 
destination of path II • 

a mapping %i : IIi --> V , the port of a 
scenario "seen" by Process i. 

WBG algorithm B:a collection of mappings Bi from i-scenarios 
to v, such that for any scenario % in 
which atleast n-m processes are nonfaulty 
<1) If all processes-in p are nonfaulty 

Notation~ n=3.: 

&< 1 'J) 

o-(#) 

r 

(r) 
I I 

• • 

• • 

• • 

• • 

in % then for all i belonging to p , 
8i(%i) = %(0) • . 

(2) If any i , J belonging to P are 
nonfaulty in % than 81<%1) = BJ<%J) 

the signed, clockwise distance from 1 to J • 

the signed angular distance travelled by the 
path #. 

r mod 3 • 

a scenario in which a faulty Process r relays 

the value F to r - 1 and the value T to 

r + 1. 



Notation .used .1.D proof ..Qf Theorem 2...1.:. 

P' 

l 

i" 

1\ 

• • 

• • 

• • 

• • 

the set of process {Q',1 ',2'} 

a mapping assigning to each process in P a 
process in p•, ~hich assigns at most m 
proceses to each process in P'. Also its 
extension to a mapping from message paths 
in P to message paths in p•. 

an element in P that i~ assinged by 1 to ~", 
~here i = 0,1 or 2. 

a mopping that 
scenarios 
value of 
equal the 

tokes 
on p, 

1\ [% '] 
value of 

scenarios on p' into~ 
defined by letting the 
on the message path #~ 

%' on the path I (#). 

,_ 



(~()N(~EP1,S AND DEFINI'flf)NS 

Art1TSSTBI E RUN..:. we may add that a run is admissible if at most -

one process is faulty and that all 

messages sent to non-faulty processes 

are eventually received. 

AIITHFNTJCATORS: An authenticator is redundant augment to 

a data item that can be created 

ideally, only by the originator of_the 

data. 

A SYNCHRONOIIS APPROXIMATION AI GORTTHM .e..:. 
1
It is a system of n 

processes, n>=1. Each process p has a 

set of states, including a subset of 

states called initial states and , 

subset called halting states. There 15 

a value mapping that assigns a real 

number as the value of each state. For 

each real number r, there is exactly 

on initial state Hith value r. Each 

process acts deterministically 

according to a transition function and 

a message generation function. The 

transition function takes a nonhalting 



process state and a vector of messages 

received from all processes (one 

message per process state. The message 

generation function takes a nonhalting 

process state and a vector of messages 

received from all processes< one 

message per process) and produces a 

ne~ process state. The message 

generation fuction takes a nonhalting 

state ·and produces a vector of 

messages to be sent to all processes 

(one per process). 

ASYNCHRONO!!S FA I I !IRES; Except for a set of at most t sendins 
I 

processors, all messages sent by every 

processor are eventually dellivered. 

ATCJWI I C STEPS ..& In~an atomic step of the system, a process can 

attempt to 

••• Receive a message 

••• Perform local computation on the 
" 

I ' 

basis of ~hether or not a message 

~as delivered to it a~d if so which 

one. 



••• send an arbitrary but finite set 

of messages to other processes. 

The protocol prescribes the computation 

& the message sent as a function of the 

message recieved & the local state. 

BYZANTINE GENERA! 5 PROB! EM: given a collection of 

numbered from 0 to n 

processes 

1 Hhich 

communicate by sending messages to one 

another, to find an alogrithm by Hhich 

process 0 can transmit a value v to 

all the processes such that: 

<1) If process 0 is nonfaulty; then 

any nonfaulty process i obtains 

value v. 

<2) If processes i and J are 

nonfaulty, then they both 

obtain the same value. 

Note that conditiori 2 folloHs from 1 

if process 0 is nonfaulty. 

CANDIDATE: A prdcessor p is said to be a candidate in round 1 of 

a history H if p does not fail ~efore 

round i and if H and the silencing of p 

at round in of H are serial. Note that 

if P fails in round i' of H are serial. 



CONFTGIIRATTON ..L 

Note that if p fails in round i of 

serial history H, then p is a candidate 

in round i of H. However p can be both 

correct in H and a candidate in run in 

of H. 

of the system consists of : 

••• Internal state of each process 

••• Contents of message buffer. 

i 
F denotes any configuration where ·all 

the correct processes have decided i. 

CONSFNSIIS PROTOCOl : A consensus protocol enables an asynchronous 

system of n processes, with some 

faulty proceses, to reach an agreement. 

CONSERVATIVE EXTENSION: If Hk is an initial sequence of a history 

in u, 
of HK 

then the conservative extension 

is the unique history H' in U 

such that 

<1) H'K = Hk,_.. and 

<2> no processor fails after round K. 



CORRECT PROCESS .;, A corr'ect-~process """ ~is a process ~hi ch a 1 ~ays 

CRITICAl HISTORy: 

follo~s the protocol until the 

protocol completion. Ho~ever a fail-stop 

process may die during the execution 

of the protoco 1 , i • e. , it may stop 

participating in the protocol, also 

death of a process occurs ~ithout 

~arning messages. In the model, it is 

obvious that such a death can not,be 

detected· by other processes. In 

particular,. there is no ~ay to 

differentiate bet~een a slo~ process & 

a 'dead one. 

An edge e in round k of history H is critical 

if there is a history J in U such that 

1) J is not output equivalent to H. 

2) J is identical to H through round k 
except for edge e, and · 

3) J is the conservative extension of Jk 

In other ~ords, and edge is c~itical . 

if altering the state of its message 

and taking the conservative ext'ens ion 

alters the output values of correct 

processors. Note that A must speeifY 

for any critical edge. 

-~ -£-:§_ ~- ---



DECIDING~~ A run is said to be a deciding run if some process 

reaches a decision state in that run. 

DECISION STATE~ is the state in which the output register has 

value 0 or 1. 

DECISION VA! !IE~ A configuration C has decision value v if some 

process p is in a deci~ion ~tote ~ith 

yp ;:; v. 

EVENT~ The step is completely determined by the pair e=(p, m), 

EVENT! lA! AGREEMENT; 

which is called an event. 

The processors are said to have reached 

agreement when the following two 

conditions hold: 

<1) all correct processors have given 
the same value as output, 

<2) if the origin is correct, then all 
correct processors have ·given the 
input value as output. 

These two conditions define Byzantine 

agreement [7_21]. 

We call such a state eventual 

agreement, emphasizing the fact· tha't 

nothing is assumed about the relative 

times at which the cqrrect processors 
I 

give their output values. 



FINITENESS DE A~ AlGORITHM~ A W8G alogrithm 8 is said to be 

f-CANOTOATE ~ 

finite if every scenario % there is an 

integer k such that for any scenario @ 

and all i belonging to P such that if 

(k) 

the restrictions of %i and @i to II 

are equal, then 8i(%) = 8i(@). 

A processor p is said to be an £-candidate in 

round i of history H is p does not 

fail before round i, and if both H and 

the silencing of p in round i of H are 

£-serial. 

f-SERIAI HISTORY~ A history H is said to be £-serial if H is in 

u, H has no more than f faults, for 

each positive integer k<=f+1, the 

number of processors exhibiting faulty 

behaviour in Hk does not exceed k, and 

no processor fails in H after round f+1. 

INITIAl CONEIGl!RATTON ~ is said to be one in which each process 
' ' starts at an initial state and empty 

message buffers. 
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INITIAl STATE ~ The system initiallY starts with all the 

processes in some initial state, with 
' . 

all the buffers empty, YP undefined, 

and XP having some value in {Q, 1}. The 

value can be assigned to YP form {Q, 1} 

by the protocol. Once YP is assigned a 

value v it cannot be changed, and P is 

said to have decided v. 

INTERACTIVE CONSISTENCY ~ <Oefination) Consider a set of N 

isolated processors, of which it is 

known that maximum M are faulty. Which 

processors are faulty is not known. 

Assuming two-party messages system and 

the communicatin medium .to be 

fail-safe and of negligible delay. Also 

the sender of a message is always 

identifible by the receiver. Let each 

processor P has some private value of 

information VP. 

An algorithm for m,n > Q, based on an 

excha·nge of messages that allows each 

nonfaulty processor p to· compute a 

vector of values with an element for 

each of the N processors, such that: 

(a) the nonfaulty processors compute 
exactly the same vector, 

-' 



(b) the element of this vector 
corresponding to a given 
nonfaulty processsor is the 
private value of that processor. 

Such .an algorithm is said to achieve 

interactive consistency, since it 

allows · the nonfaulty p~ocessors to 

come to a consistent view of the 

values , held by all the processor, 

including the faulty ones. 

Note that the algorithm need not reveal 

which ~rocessor are faulty, and that 

the element of the computed vector 

corresponding to faultY processors may 

be· arbitrary, it matters only that the 

nonfaulty processsors compute exactly 

the sdme value for any given faulty 

processor. 

The computed vector is called an 

interactive consistency (i.e.) vector. 

Once interactive consistency has been 

achieved, each noonfoulty processor 

can apply on averaging or filter~ng 

function to the i.e. vector~ according 

to the needs of the application. Since 

each nonfoulty processor applies this 

function to the some vector of values, 

an exact 

reached. 
2-12 
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TNTERACTTVF CONSISTENCY £QR M EAIII IS: For each p belonging to p, 

let FP be a mapping that takes a 

p-scenario o-p and a processor q as 

arguments and returns a value in v. 
Intuitively, FP gives the value that p 

I 
computes for the element of the 

interactive consistency vector 

correspoding to q on the basis of o-p. 

we say that {FPIP belonging to p} 

assures interactive consistency for m 

faults if for choice of N subset of p, 

lnl >= n-m, and each scenario o-

consistent ~ith N, 
I 

(1) for all p,q belonging toN, 
FP< o-p, q )!!o-( q ;) , 

(2) for all p1 q belonging toN, 
r belonging to p, 

Fp(o-p,r)=Fq(o-q,r). 

~here o-p and o-q denote the 

restrictions of o- to strings beginning 

~ith p and q, respectively. 

Instultively, clause <1) requires that 

each non faulty processor p correctlY 

computes the Pnivate value of each 

nonfaulty processor q, and clause ~2) 

requires that each t~o nonfaulty 

Processors compute exactly the same 

vector. 



INTERNAl STATE ~ 

i-SCENARIO ..:. 

Internal state of a process constitutes 

••• va~ues in XP and YP 

••• Program counter 

••• Internal storage. 

An i-scenario is a mapping from IIi to V 

thus it describes the messages received 

by process i. For any scenario %,we let 

%i, be the !-scenario that is the 

restriction of % to IIi, so %i, is the 

part of % "seen" by process 1. 

K~ EVE! SCENARIO: Let p be the set of processors and v a 

set of value for k>=1, we define a 

k-level scenario as a mapping from the 

set of nonempty strings (possibly 

having repetitions) over p of length <= 

k+1, to v. For a given k-level scenario 

o- and string w = P1P2 ••• pr, 2<+r<=k+1, 

o-(w) is interpreted as the value P2 

tells p·t that P3 told P2 that P4 told 

P3 ••• that pr told pr-1 is pr's private 

Value. For a single-element string p, 

o-(p) simply designates P'S private 

value vp. A k-level scenario thus 

summarizes the outcome of a k-round 

exchange of information. 
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K-RESTI TENT CONSFN~IS PROTOCru ~ is defined as·a protocol that 

satisfies the following properties, 

provided at any time maximum number of 

faulty porocesses is K. 
~ 

(1) Bivalence: If all the processes 
0 1 

are correct and both F and F 

configurations are reachable. 

(2) Consistency : Here there is no 

(3) 

reachable configuration where 

correct processes decide different 

values. 

Convergence 

configuration, 

• • For any initial 

lim Pr[a correct process has not 
decided within t steps] 

t->infinitY 
= 0 

MESSAGE SYSTEM: The ·different processes may communi cote by sending 

messages to each other via the 

message system. A messgge consists of 

the pair (p, m) where p denotes the 

name of the destination process. "m" 

denotes the "message value" from a 

fixed universe M. The message system 

maintains a system buffer for each 

process for messages sent not yet 
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recieved called mesSage buffer. It also 

'includes the following primitives for 

each process q. 

SendCp.m>:Immediately place the message 
m in process p's buffer 

Recievecm>: 
( 1 ) 

Either : 
It take out some message 
from q's buffer and return 
it in ril 

The 

• 
or 

<2) It return the null value 
even when the buffer is 
not empty. It is a device 
to model the arbitrarilY 
long transmission delays 
spent in a message 
system. 

The choice of (1) or (2) is 

made nondeterministic subJect 

only to the condition that if 

receive< m ) is performed 

inf.ini tel y many times, then 

every messages < p , m ) in the 

message buffer is event~aily 

delivered. 

message system is allowed· to 

return null a finite number of times in 

response to receive(m) even .if a message 

(p,m) is available in the buffer. 



m-EAIJJ I .w.BG AI GDRITH1 .B.:. An m-foul t W8G olgori thm 8 consists of a 

set of mappings 81 from i .scenario 

values received by destination into V~ 

for all i belonging to p, such that' for 

any scenario % in ~hlch at least n - m 

processes are non faulty: 

< 1 ) If all processes in P are 
nonfaulty in %, then for all i 
belonging to p such that: 
8i(%i);;: %(Q). 

(2) For any i, J belonging to P such 
that if i and J ore nonfaulty 
in%, then 8i<%i) ;;: 8J<%J). 

Mill II SET REI ATED DEE I NATIONS ..l Let N be the natural numbers, 

including Q, and let R be the real 

numbers. we vie~ a finite inul tiset :U of 

reols as a function u: R --> N that ·rs 

nonzero on at most finitely many r 

belonging to R. Intuitively, the 

function U assigns a finite multiplicity 

to each value r belonging to R. The 
. I 

i 
cardinality of a multiset U is given by 

~ U(r) 
<r belonging to R) 

and is denoted by lUI. we say that a 

multiset is empty if its cardinatly is 

zero; other~ise it is nonempty. 



The difference U-V of multisets U and V 

is the multiset W defin~d by 

{

U(r) - V(r) if U(r) - V(r) >= 0 
W<r)= 

0 otherwise. 

The intersection of multisets U and V 

is the multiset W defined by 

W(r) = min < U(r), V<r) ). 

For the following deflnations, it is 

assumed that the term multiset always 

refers to finite multisets of real 

numbers. 

If g is a function on multisets, then 
. \ . 

k 
g denotes the k-fotld iteration of g; 

1 2 
thus g = g, g = g o g, etc. 

The minimum min(U) of a nonempty 

multiset U is defined by 

min(U)=min{r belongs to R:U(r) is non-0} 

The maximum max(U) is defined similarly. 

If U. is nonempty, let P(U) (the range 
' . 

of U) be interval [min(U), max(U)], and 

let &<U) (the diameter of U) be max(U) 

min(U). The mean mean(U) of a 

nonempty multiset U is defined by 
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r U(r) 
mean(U)= 

(r belonging to R) I U I· 

If U is nonempty multiset, we defin~ 

the multiset s(U) (intuitively, the 

mult~set obtained bY removing one 

occurence of the smallest value in U) 
I 

to be the multiset w defined by 

( U<rl 1 if r = min(U) 
W(r) = 

U<r) otherwise 

The multiset l<U) (remove one 

,occurrence of the largest value in U) 

is defined similary. If lUI >=2, then 
' define reduce< U ) = s< 1 < U ) ), the 

result of re~oving the largest and 

smallest element is removed from each. 

ORDER! V CRASH EAT! !IRE: iS a crash failures in Hhich failing 

processors must respect the order 

specified bY the protocol in sending 

messages to neighbour. <Recall that for 

each round a protocol produces an 

ordered set of labeled outedges that we 

identify with messages to be sent.) 



If a processor fails to send a 

specified message, it must also fail to 

send any message specified to be sent 

after that message in the protocol 

odering. 

O!!TPIIT EO!!TVAI ENCF: Here, we take the transitive closure of the 

relation that holds between H and J 

(or Hk and Jk) when some processor 

correct in ~both gives the same output 

value in both. 

PARTIAl CORRECTNESS 1l.E CONSENSIIS PROTOCOl :A consensus protocol is 

, 

PATTERN ..L 

partiallY correct if it satisfies two 

conditions. 

1) No accessible configuration has 
more than one decision value. 

2 ) For each v { 0., 1 }, some 
accessible , configuration has 
decision value: v.{ 

·A pattern (for a history) is a function from the 

set of faulty processors to integers 

that gives the round number at which 

each processor failed. 



REACHABI E ~ ~ 

REGISTERS _;. 

lf.all the processes performlng·atomic steps 

in t belong to a subset of processes 

s, then we write cs 1---- os, and say 

that os is regchgble £cQm cs. 

The configuration 0 is said to be 

reachable if it is reachable from some 

initial configuaration. 

Each process p has the following : 

*** Qne bit Input Register XP. 

••• Output Register YP with values in 
{ b, o, 1 }~ 

This )s also called Decision 

••• unbounded amount of Internal storage 

·~ _;. is the sequence of steps associated with a schedule. 

SCENARIO I 1~ o moppin9 from the set P+ (poe;1t1ve 

closure of p) of the nonempty strings 

over p, to v. For a given p belonging 

to P define a p-scenario as a mapping 
~ 

from the subset of P+, _consisting of 

strings beginning with p, to v. 



SCHFOIII F ..:, A schedule from C is a finite 1 infinite sequence-of 

events that can be applied, in turn, 

starting from c. Thus a schedule is a 

sequence of atomic steps • 

If the execution of a schedule t from 

a configuration c results in a 

configuration o, we write 

t 
c 1---- 0 

If there exists a schedule t such that 
t 

C 1--- o, we can also write C 1--- o; 

SCHFru!l FR..:. is an agent that will determine the next atomic step 

in the execution. 

• 
Probability measure on the space of 

all possible schedules is provided bY 

Probabilistic assumptions on the 

.behaviour of the scheduler. 

SERIAl HISTORY; An histor.y H is said to be serial if : 

(1) His in u, 
<2) for each positive integer k, k <= t, 

the number of processors exhibiting, 
faultY behaviour in Hk does not 
exceed k, .and 

(3) no processor fails after round t. 
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"o- lS CONSISTENT~~~ for a given chqice ~a subset of 

p of nonfaulty processors and a given 

scenario o-, say that o- is consistent 

~ith N if for each q belonging to N, p 

belonging to p, and ~ a set of all 

string over p, o-(pq~) = o-(q~). In 

other ~ords, o- is consistent ~ith N 

if each processor in N al~ays reports 

~hat it kno~ns or hears truth fully. 

STI FNCING: Given a processor p in a history H in u, the silencing 

'· 

' 

of p at rounf k of H is the unique 

history H' (no~ necessarily in U) such 

that 

<1) H'k = Hk except that p sends no 
messages in round k of H'. 

<2> no processor <except possibly P> 
fails after round k. 

<3> P sends no messages after round k. 

s TMI II IANEOI!S AGREEMENT: we say that the agreement is s i mu 1 taneous 
if 

<3> all correct processors give ~heir 

outputs at the same round. 

< . 



SIEE ~ A step takes one configuration to another and consists of 

a primitive step 'bY a single process 
/ i 

p. Let C be a configuration. The step 

occurs in two phases as given' below ' 
\ 

<1) receive(p) is performed on the 
message buffer in C to obtain a 
va}ue m from M U {null}~ 

<2) depending on p's internal state in 
C and on m, p enters a new internal 
state and sends a finite set of 
messages to other processes. 

~mcnNFT~~ATION ~- Let C be a confiQuration and S be a subset of 

SIIAPATTFRN ~ 

' 

processes. A subconfigurotion Cs is the 

restriction of C to the members of s. 
i 

Fs to denote any subconfiguration 
---· ~-------~---~-----

where all the correct processes in S 

have-decided i. 

We call one pattern a subpattern of another if the 
-' 

corresponding history for the first 

pattern has as faulty processors only 

a subset of that of the second and the 

first pattern- is the corresponding 

restriction of the second. 

If history H I 

in U has a pattern of 
\ 

failures that is a subpattern of that 

of a serial history, then H is also a 

serial history. 
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I-CCJ1PI!IAIIONS: A sequence of configurations <called rounds), co, 
C1, c2 ••• , is aT-computation provided 

there exist messages sent by each 

process at each round such that: 

'(O) CO is an initial configuratiDn; 

(b) for every i, and every p belongs 
to r, the messages sent out bY p 
after Ci are exactlY those specified 
bY p's message generation fuction, 
applied to p•s state in Ci; 

(c) for every 1, and every p belqngs 
to r, P'S state in Ci and the 
message sent to p after Ci. 

In a T-computation, processes in T are 

nonfaulty whereas processes ·not in T 

may be fau 1 t,y •. 

T-computation of an asynchronous 

approximation algorithm is one ih which 

the processes in T always ·follows the 

algorithm, all proc~~~~~ (foulty oMd 

nonfaultY) continue to take steps until 

they reach a halting state, and any 

process that falls to enter a haltfn~ 

state eventually receives all messages 

sent to it. 



\ . 

~ TNTFRACTTVF CONSISTENCY PROAl EM: Each process i chooses a 

···· .. 

WEAK! V 61 ORA! COIN: A 

private value wi. The process must be 

then communicate among themselves to 

allow each process to compute a public 

value, such that:. 

<1) If all processes are nonfaulty 
and all the wi have same value 
then every process computes 
this value as its public value. 

<2) Any two nonfaulty processes 
compute the same public value. 

This is equivalent to the WBG problem. 

coin is called weaklY global if there 

exists an absolute constant c > o, such 

that for all v BELONGING TO { o, 1 }, 

' the probability that at least min { 
I 

L n/2 _j + t + t, n } processors all 

see outcome V- is at least c. 

WITNESS FQIIIVAI ENCE: For k round initial sequences, this is the 

.J 

tran~ltlvo clo~uro of th~ r~l~ti~n th~t 

holds between Hk and J when for some 

processor ~ correct in both. PHk = PJk. 

Histories H and J witness equivalent if 

their k round initial sequences ure 

witness equivalent Jor every k • 



In other ~ords, ~itness equivalence 

(through round k) is the transitive 

closure of the relation that holds 

between t~o histories if there is a 

processor correct in both that cannot 

distinguish between the .t~o (through 

round k). 



TBEf)REMS, lEMMAS, AND T·BEIR PROf)FS 

THEOREM h.! 
. ··-.:.0. 

If lVI >= 2 and n>=3m, there exists no {FPIP belonging to P~ 

that assures interactive consistency for m faults. 

PROOF. 

Suppose, to the contratry, that{FPIP • p} assures interactiv@ 

consistency for m .faults. Since n<=3m, P can be portioned into 

three nonempty· sets A,8, and c:, each of which has no .. more than m 

members. Let v and v• be two: distinct values in v. The general 

plan is to construct three scenarios o< , $, and o- such that o< 

is consistent with N=A U c, $with N= 8 U C and;o- ~ith N =AU 8~ 

The members of C will all be given private value v in o< and v• 

In $. Moreovet, O(j $ and o-· will be constructed in such a way 

that no distinguish o< from o- (i.e. o<a = o-a), and no processor 

b belongs to 8 can distinguish$ from o- (i.e. $b = o-b). It 

will. then follow that for the scenario o- processors in A and 8 

will compte different values~for the members of c. 
'' 

we define the scenarios o< , $ ~nd o- recursively as follows: 

i) For each wan elemnt/·of positive closure of p, not ending in 

' member of c, let o<(w) = $(W) = o-(w) = v. 



ii) For each a belonging to A~ b belonging to·s, c belonging to C 

Let o<<c) = o<<ac) = o<(bc) = o<(cc) = v , 
I 

$ (C) : $ (aC) : $ (bC) : $ (CC) : V', 

o-(c) = o-(ac) = o-<cc) = v, o-(bc):v•. 

iii) For each a belonging to A, b belonging to s, c belonging to C 

, p belonging to p, w is any string over P ending in c. 

Let o<(paw~ = o<< aw ), $ (paw) = o<< aw), 

o<<PbW) = $ < bw), $ (PbW) = $ < bw), 

O((PCW) = 0(( cw), $ (pew) = $ ( cw), 

o-(paw) = o-< aw), 

o-(pbw) = o-< bw), 

o-(acw) = o<< cw), 

o-(bc:w) -= $ (cw). 

It 15 ec~5Y to verify by ii15Pect 1 on that o< , $ and o- ar~e in 

fact consistent with N= A u c, B U c, A U s, respectively. 

Moreover, one can show bY a simple induction proof on the length 

of w that O((OIN) = o-(aw), $ (bW) : o-(bW) 

for all a belonging to A, b belonging to s, w is any string over P 
' 

It then follows from the definition of interactive consistency 

that for any a belonging to A, b belonging to s, c belonging to c 
v = o<(c) = Fa<o<a,c) = Fa<o-a,C) = Fb($'b,c) = v•, 

giving a contradiction. 



I Ftf1A 2.....1 ..:.. 

. . 
For. any finite WBG alogrithm 8 there is a_ nonnegative integer k 

such that for any scenarios% and@ and all i bewlonging to P: 

(k) 
If the restrictions of %i and @i to IIi are equal, then 

BiC%i) = BiC@i) ·• 

PROOF: 

(r) 

Define an r-level finite scenario to be a mapping from II to v. 
For any fixed 1, we define a tree structure on the set of all 

such finite scenarios bY. lettilng an r~level scenario% be an 

ancestor of an r'-level senario %' if r < r' and %i and • is the 
\ 

(r) 
restriction of %'i to IIi • Consider the subtree consisting of 

r-level scenarios ro, for all r, such that there exist (infinite) 

<r> 
scenarios @ and A whose restrictions to IIi equal %i, and for. 

which BiC@i) does not equal 81(Ai). If this subtree were infinte 

then by Konig's lemma it would have an infinte path. Such an 

infinte path defines an infinte scenario % which contradicts the 
I definition of finiteness. Hence, this subtree must be finite, 

which implies the existence.of a ki such that for any scenarios% 

and @ 
( k i ) 

: if the restrictions of% and@ to IIi 

8 i (% i ) =8 i (@ i ) . 

are equal then 

\ 

To complete the Proof, we let k equal sup{ ki : 1 belongs to p} 



I FEMA .2....2...:. 

For any path Q,p1 ••••• pk belonging to II : o-(Q,p1, ••••••••• pk) 

mod 3 = pk. 

PROOF: 

This is simple consequence of the observation that 

_&(r,s) + &<s,t) is equivalent to< &cr,t)mod 3). 

For any integer r, we let r denote r mod 3, which equals Q, 1, 2. 

' we now choose two particular elements of v, which we denote T 

and F. The following lemma asserts the existence of a sequence of 

(r) 
scenarios % for integral values of r (including negative 

integers) which Will form the basis for a proof by contradiction. 

(r) 
Only two values, denoted T and F, appear in % • In this scenario, 

Processes r+1 and r+2 are nonfaulty, so they relay values 

-correctly. The faulty Process r acts correctlY excepts when 

relaying. messages # for which o-(#) = r , in which case it sends 

the value T to process r + 1 and the value F to Processor r -·1 = 

r + 2. 



I Rt1A .2....3.:. 

For any values T and F in v, and any integer r there is a 

Cr) 
scenario% such that for i = 1, 2 . . 

Cr) 
1 ) Process r ~ i is nonfaultY in % 

2) For any # belonging to II_ . . 
r+i 

(r) 

={~ 
if 

% (#) 
if 

PROOF: 

(r) 

o-(#) >= r + i . 
o-(#) < r + i . 

BY Leema 2, condition. 2 defines t___ for i = 1, 2. Since there 
r+i 

<r) , . 
are no requirements on %_ , and Process r is allowed to be faulty 

r 

, we need only show thpt Condition 2 is achievable when 

Processor r + 1 and r +2 correctly relay inessa.ges to one another. 

However, this follows easilY from the observation that if # 

belongs to II __ , then o-(#, r + i z.1 ) =a~(#):, 1 • 
r+i 

~ 

/ 
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For any integer r 

IFFMA ~ 

(r) (r) 
: if % is as in Lemma 2.3, then %___ 

r+2 

<r+1) 
= %___ 

r+2 

If there are at least two distinct elements in v, then.there 

does not exist a.1-fault W8G algorithm for n=3. 

PROOF; 

Let 8 be such an algorithm, and let T and F be distinct elements 

Of V. 

T 
Let % 

F T F 
and % be the scenarios defined by % (#) = T and r- (#) = F 

for all 1 belongs to II. It follows from condition 1 of the 

T F 
definition of a W8G·algorithm that. 8 <% ) = T and 8i<% ) =F. for 

1 i - 1 

(r) 
all i. For each integer r, let % be the scenario whose existence 

was proved in Lemma 3. 

Let k be the nonnegative integer whose existence is guaranteed 

T 
by Lemma 1, with% substitued for%. Since o-(1) is less than or 

(k) 
equal to the length of #, for any 1 in II ___ , we have o-(~) <• k 

1<+1 .. 



(I<) 
< K + 1 , so % (#) = T. Hence the restrictions of·the scenarios 

T (I<) (I<) (I< ) 
%.___ and %..__ to II- are equal, so we must have a__ (%.___). 

. 1<+1 1<+1 1<+1 1<+1 1<+1 

equal to r. Similarly, choosing such a nonnegative integer I<' 

F 
for % , since.- (O-(#)) is less than or equal to the length of #, 

(I<') 
for any# in II ___ , we have o-(#) >= -1<' = ( -I<'- 1 ) + 1 ' so 

-I<' 

< -I< '-1 > f < I< ' > 
%.___(#) = F. Hence the restrictions of %___ and %.___ are equal, 

-I<' -I<. -I<' 

so a___ %((-1<.'-1 )/(-1<.')) =f. 
-I<' 

<r> '<r+1) 
It follows from Lemma 2.4 that for any r:B___(%___)=~<%___ ). 

r+2 r+2 r+2 ·r+2 

(r) 
Since r + 1 and r + 2 are nonfaulty in % , it follows from 

(r) 

ljljMd it i ljli 2 ijf t~·,~; ct~;f i 11 it i ljM ljf W813 t1 1 ~ljf"' ithm tt'1t1t a__ ( "----- > l!l 

r+1 r+1 

(r) 
8___(%___). Hence, for each r: 

r+2 r+2 

(r) 
B..__(%__) 

r+1 r+1 

( r+1) 
= 8___(%.__ ) • 

r+2 r+2 

(I<) (-I< '-1 ) 
A s.imple induction argument shows that 8__(%__)=8__(%...__ ). 

(I<) 
However, we saw above that 8___(%___) = 

1<+1 1<+1 

1<+1 1<+1 -I<' -I<' 

(-I< '-1 ) . 
T and B___(%___ ) = f. 

-I<' -I<. 

Since T and F are distinct elements this provides the required 

contradiction. 



THEOREM .2...ll I 

If n>2 and V contains· at least. two distinct elements then there 

exists an m-fault WBG algorithm if and onlY. n > 3m. 

PROOF: 

The "if" part foll6ws from the existence of algorithm to solve 

the original Byzantine Generals Problems demonstrated in [2_1) 

~nd [1_0]. To prove the "only if" part we assume the ~xistence of 

such an algorithm and derive a contradiction. 

Assume 8 is an m-fault WBG algorithm Hith 3 <= n <= 3m. we Hill 

use it to construct,a 1-fault WBG algorithm for three processes, 

thereby contradicting Lemma 5. We first partition the cn-eleme.nt) 
t 

set P into three nonempty, disJoint sets PO, P1, P2 each 
' containing at most m elements., <We can do this becgsue 3<=n<=3m). 

Let 0 be an element of PO. We define the mapping 1 :P->{0',1 ',2'} 

by letting l(P) = i' if and only if p belongs to Pi. We extend l 

to- a mapping from P• into {0', 1 •, 2'}• in the obvious HOY by 

1 ett i ng 1 (PO, • • • , Pk ) = 1 (PO), • • • , 1 ( Pk) • 

We also let 0", 1", 2" be element in P such that o~ = 0 and 1" 

belongs to P1 and 2" belongs tp P2. Hence, !<1") = i' • 
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We construct a 1-fault WBG algorithm B' for the set P'={0',1 ',2'} 

·as follows. For any scenario%' on p•, we define the scenario 

/\[%'] on P by /\[%'](#) = %'(~(#)) • 

The WBG algorithm 8' is defined by .B' <%' ) = 8 < /\[%' J ) • 
i' i' i" i" 

( 

Observe that if i' is nonfaulty in %' , then every process in Pi 

(including i") t's nonfaultY in/\[%'] • 

. Tor show that B' is a 1-fault WBG algorithm, Ne must verifY the 

following conditions. 

1) If all process in P'are nonfaulty in%', then for all i! 

belonging toP': B' (%') = %'(0'). 
i ' i ' 

'2) For any ii', J' belonging toP' : if i' and J' are nonfaultY 

i n % ~ , then B ' <% ' ) = 8 ' <% ' ) • 
i' i' J''J' 

T~ prov~ these conditions Ne use the observatibn that if Process 

i' is nonfaultY in%' , then every process in Pi is nonfaultY iri 

1\C%']. Hence if all processes in P' are nonfaultY in %' then all 

processes in p·are nonfaulty in/\[%']. Using condition 1 for the 

m-fault WBG algorithm g, Ne.see that 

8' (%' ) = 8 ( /\[%' J ) 
i' i' i" i" 

= /\[%'](0") 

= %'(0'), 

which proves·condition 1 for 8'. 



\.; 

Next assume that the i' and J' are nonfaulty in%'. Since i" and 

J" are nonfaulty in /\[%'], condition 2_ for B Yields 

8' <%' ) = B (/\[%'] ) 
i' .i' i" i" 

= B </\E%'JJ") 
j" 

= B'<%' ) 
J" J' 

This proves condition 2 for B'· we have thus- constructed a 

1 :-foul t WBG algorithm for the three process 0', 1 ', 2', 

contradicting Lemma 2.5. 

JHEQREM .2....2.;. 

" I 

If lVI < o, ,for all v • v, then the algorithm AG<k) satisfies 
I 

the following properties. 

1) If all processes are nonfaulty then vi = v for every i. 

2) If Processes i an·d J are non fau 1 ty then 1 vi - v J 1 < 20/k 

PROOF: 

Note that no limit is placed upon the number of faulty ~recess~ 

The proof of this theorem uses the following lemma i.e. lemma 2.6 

3-10 



' 

' To prove the first property we simPlY observe that if all 

process are nonfaultY then they correctly relay values, so all 

(r) 
the v equal v. To prove the second property we note that if 

i 

Process i and J are nonfaulty, then they correctlY relqy the 

(r) (r) 
values ··of v and 

i 
v t? one another in round r+1. It therfore 

J 

follows that for each r ); 1 : 

< r) < r+1 ) < r) (r+1 ) 
v (; v ' v (; v • 

i J J i 

The second property then follows immediately from the aboye 

(r) 
lemma substituting v for s 

i r 

I F11!1A &.6._ : 

(r) 
and v 

J 
for t 

.r 
• 

Assume that lVI < · D for all v belonging to v. If s , t are 
r r 

elements of V such that: 

s (; t ' t (; s 
r r+1 r r+1 

for all r with 1 · <; r < k then· 
! . 

k k 

tr I }: s ~ < 20. 
r;1 r r;1 



PROOF: 

It follo~s from the first inequalitY of the, hYPOthesis that: 

k k 
L s <= s + 

- r=1 r k 
~ t 
r=2 r 

From this we deduce that 

The symmetric argument, 
\ 

k 
"L s 
r=1 r 

k 
... L. t <= s - t 

r=1 r k 1 

interchanging s and t Yields . 

k k 

L: t - "E s; <= 20 • 
r=1 r r=1 r 

<= 20 • 

and combining the t~o inequalitites proves the lemma.· 

Q •. E. o. 

THEOREM .2&3.:. I 

(•) 
If V is a bounded set of numbers then AG is an infinte m-fault 

WBG algorithm for any m. 

I 
PROOF: 

The proof is quite simple and rests upon the observation that if 

1 and J are nonfaultY then' 

for 

(r) < r+1) 
<= v 

(r) < r+1) 
v 

i j ' v 
J 

<= v 
1 

(r) 
all r>O ~hich in turn implies that sup{ v } = 

i 
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Sup·pose that from . some configuration C, the schedu 1 es o-1 and 

o-2 · lBad to configurations C1, C2, respectively. If the sets of 
I 

processes taking steps in o-1 and o-2, respectively, are disJoint, 

then · o-2 can be applied to C1 and o-1 can b~ applied to C2, and 

both lead to the same configuration C3. <See Figure 3.3.1.) 

PROOF: 

The result follows at once from the system definition, since o-1 

and o-2, do not interact. 

No consensus protocol is totallY correct inspite of one fault~ 

PROOF: 

Assume to the contrary that P is a consensus protocol that is 

totallY correct inspite of one fault. we prove a sequence of 

lemmas which eventually lead to a contradiction. 
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I 

The basic idea is to show circumstances under which the 

protocol remain forever indecisive. This involves two steps. 

First, we argue that there is some .initial configuration in Which 

the decision is not already predetermined. Second, we construct 

an admissible run that avoids ever taking a step that would 
I 

commlt the system to a particilar decision. 

Let C be a configuration and let v be the set of decision values 

. qf configurations reachable fr-om c. C is bivalent if _lVI = 1, let 

us say a-valent or 1-valent according to the corresponding 

decision value. BY the total correctness of p, and the fact that 

there are always admissibl~ runs, V is not a null set • 

P has a bivalent initial configuration. 

PROOF: 
I 

Assume not. Then P must have both O-valent and 1-valent initial 

canfi~ur~tions by the assumed partial correctness. Let us call 

two initial configurations adjacent if they differ only in the 

initial value XP of a ~Ingle process p. AnY two initial 

configurations are Joined by a chain of initial configurations, 

each adjacent to the next. Hence, there must exist a a-valent 

initial cofiguration CO .adjacent to a ~-valent initi9l 

configuration C1. Let p be the process in whose initial value 

they differ. 
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No~ consider some admissible deciding run 
I 

from CO in ~hich 

process p takes no steps, and let o- be the associated schedule. 

Then o- can be applied to C1 also, and corresponding 

configurations in ~~o runs are identical except for the internal 

state of process p. It is easi)Y sho~n that both runs eventuallY 

reach the same decision value. If the value is 1, then CO i~ 

.bivalent; other~ise, C1 is bivalent~ Either case contradicts the 

assumed nonexi~tence of a.bivalent ini~ial conffiguration. 

let C be a bivalent configuration of p, and let e = (p,m) be an 

event that is applicable to c. Let Q be the set of configurations 

reachable from C ~ithout applying e, .and let 0 = e(Q) = {e(E) 1 E 

belongs to Q and e is applicable to E}. Then, 0 contains a 

bivalent configuration. 

PROQF: 

Since e is aPPlicable to c, then by defination of Q and the fact 

that message can be delayed arbitrarily, e is applicable to every 

E belonging to Q. 

No~ assume that 0 contains no bivalent configurations, so every 

configuration 8 belonging to 0 is univalent. we proceed to derive 

a contradiction. 

3-15 



Let Ei, be an 1-valent configuration reachable from c, i = Q, 1 • 

<Ei exists since Cis bivalent.) If Ei belongs too, le~ Fi= e<Ei). 

Otherwise, e was apPlied in reaching Ei, and so there exists Fi 

belonging to 0 from which Ei is reachable. In either case, Fl is 

!-valent since Fi is not bivalent (since Fi belongs to D and 0 

contains no bivalent configurations) and one of Ei and Fi is 

reachable from •the other. Since Fi belongs too, i = Q, 1, 0 

contains both o-valeht aand 1-valent configurations. 

Call two configurations neighbours if one results from the other 

in a single step. BY an easy-induction, there exist neighbours 

CO,·. C1 belongs to 0 such that Bi = e<Ci) is !-valent, i =Q, 1. 
\ 

Without loss of generality, C1 - e'<CO) where e'=(p', m') • 

.c.cs.e 1...:. If p' is not equal to p, then 01 = e '<DO) bY Lemma 3.1 • 

This is impossibl~, since any successor of a a-valent 

' configuration is 0 - valent • 

.c.cs.e ~ If ~· = p, then consider any finite deciding run from CO 
• iri which P takes n steps. 

l ; 

Let o- be the corresponding schedule, and let A = o-<CO). Bv 

Lemma 3.1, o- is applicable to Oi, and it leads to an !-valent 

cof1guration El = o-(Oi), 1 =Q, 1. Also by·Lemma 1, e(A) =EO and 

e(e'(A)) = E1. Hence, A is bivalent. But this is impossible since 

the run to A is deciding (by assumption), so A must be univ·arent. 

In each case, we reached a contradiction, so 0 contains a 

bivalent configuration. 
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THEOREM 3..2.:. 

There is a partiallY correct consensus protocol in Hhich all 

nonfaulty processes alHays reach a decision, provided no 

processes die during. its execution and a strict maJoritY of t_he 

processes die during its execution and a strict maJoritY of the 

processes are alive initially. 

I EFMA ..4.J..:. 

With a k-resi lent consensus protocol, for any reachable 
I 
! 

configuration c, and for any subset S of process that contains· 

0 
at least n-k correct processes, either Cs 1- Fs or 

PROOF: 

1 
Cs 1- Fs. 

Let C be a reachable configuration; S be a subset of process that 

contains at least n-k correct proce~ses, and S be the complement 

of S (i.e.the set of processe~, that are not inS). Note that lSI 

, <=k. Assume first that all the process in S are fail-stop. 

Suppose that, after reaching configuration c, all the processes 

die Hithout sending Horning messages. This results in a 

configuration c•. we have C's=cs. From the consi~tency and the 

c.onvergenc.e propertles c•f the t:.-resi Jent protoc.oJ ~ ~~o~e must: hove 

0 1 
C's 1- Fs or C'SI- Fs. Since C's = cs, and since the death of 

0 
process in S cannot be detected, He have Cs 1- Fs 

1 
or cs 1- Fs. 

This must also hold even if ther are correct processes in s. 
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I ~A ~ [4 31: 

' For ,k>=1, any k-resi lent consensus protocol has a bivalent 

initial configuration. 
) 

PROOF: 

Suppose all the processs are correct. Initial configurations 

differ only by the processes input values. T~o initial 
-configuration differeing bY the input a value of only one process 

are adjacent. Assume, for contradiction there is a k-resilent 

protocol such that any initial confilguration is either a-volent 

or 1-valent. BY the bivalence property of the protocol there must 

be one of each. Therefore there must be t~o adjacent initial 

0 1 
configuration, I and I , that are a-valent and 1-valent, 

respectively. These configurations differ only by the input value 

of some process p. Therefore, Is=Is, ~here S includes all the 

0 0 0 1 
processes except p. From Lemma 4.1, either Is 1- Fs or Is 1- Fs. 

0 0 1 0 
If Is 1- Fs, then Is 1- Fs, and therefore ~e have I1 1- ~0 ~ But 

11 is 1-valent a contradiction. A similar contradiction is 

0 1 
obtained if ~e assume Is 1- Fs • 



THEOREM ~ 

There is no I n/2l -resilent consensus protocol for the fail 

stop case. · 

' .. 

·pROOF: 

Assume there is such a protocol and consider a system in which 

'all the processes are correct. Let C be any reachable 
' 

configuration, S be any subset of processes of size ·L_ n/2 _J and 

S be the complement of s. we claim that Cs and Cs are either both 

a-valent or both 1-valent. 

From Lemma 4.1 , since the protocol is r n/2 I - resilent and 

i i_ 
lSI, lSI >= n- I n/2 I, we have Cs 1- Fs and Cs 1- Fs for some 

decision values i and J. Suppose that there exists two schedules 

o-O o o-1 1_ 
o-O and o-1 sucn that Cs 1---- Fs and cs 1---- Fs (or viceversa). 

Then we can apply the schedule o- = o-O • o-1 to configuration 
' c, and this result in a confilguration where processes in S 

decide 0 and processes in S decide 1 (or,vice versa). This 

contradicts the consitency of the protocol and the claim is 

proved. \ 

BY Lemma 4.2, there is a bivalent initial configuration r. From 
I 

the claim without loss of generalitY both Is and Is are 1-Valent. 

o- o t 
Let o- be a schedule such that I 1---- F • we denote by I. the 

configuration reached from I after the first t steps in o-. 



o I a- o I o- _lo-1 
Note that· I = I and I = F • Clearly both Is and Is are 

tr t_ 
a-valent. Lett be the smallest index such that both IS and Is 

are a-valent. Note that t>a. From the initial claim, and the 

t-1 _t-1 
minimalitv of t, both Is and Is must be 1-valent. 

I 

Let p be the process that performs the atomic step s such that 

t-1 s t t-1 t 
I 1--- I • Suppose p belongs to s, and therfore Is 1- Is • 

t t 0 t-1 
Since Is is a-valent we have Is 1- Fs • Then we must have Is 1-

0 t-1 
Fs • But Is is 1-~alent and this is a contradiction. we obtain 

a similar contradiction if we.assume that p belongs to S. 

THEOREM ~ 

For any k, a<= k <= L < n- 1 ) ;· 2 _J, the protocol 4_1 is a 

k-resilient consensus protocol for the fail stop case. 

PROOF: 

We need the following few definition. Each execution of the 

protocol ou~erloop is called a phase. A process is in phase t ,if 

at the begining of thi~ Phase its var·iable phaseno has the value 

t. A message <witness fori) whose phaseno field is ~qual f6 t 

I 
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is called a t-message (t-message for i). A process P decide in 

phase t if it sets the decision variable~ ~hile its phaseno 

variable is equal to t. The value of the variable ~ of process 

t 
p, ~hen p is at the begining of phase t, is denoted bY ~ • 

we prove the therorem bY sho~ing the protocol's constitency, 

deadlock-freedom, convergence, and bivalence, in the presence of 

up to k faulty processors. 

Consistency: 

Let t be the smallest phase in ~hich a process decides. We claim 

that, for any processes p and q ~e cannot have both 

t t 
~i thness_count< 0 )P > 0 and ~i.tness_count( 1 )q >0. Suppose for some 

t 
i, ~ i tness_count( i )p > 0. Then process p, 1 n phase t-1 , mu·st have 

received from some process r a (t-1 )-~itness for i. So r must 

have received in phase t-2 more than n/2 (t-2)-message ~ith value 

t 
i. Therefore if both ~itness_count(Q)p > 0 

t 
and ~itness_count<1 )q 

>O, since there are at most n processors, there must be a least 

one processor that sent (t-2)-messages ~ith both values. This is 

impossible in the protocol 4_1,and the clalm is proved. From this 

claim and the description of the protocol, it is no~ easy to 

check that a process can never have both ~ltness_count(Q) and 

~i tness_count( 1) greater. than 0 in.- the same phase. 



Let t be the smallest phase in which a process decides, let us· 

say process p decides 0 in phase t. We prove that no other 

process q can decide 1. 

t 
Since p decides 0 in phase t, we have witness_count(Q)p > k. From 

t 
the claim, we cannot have witness_count<1 )q > k • Therefore if q 

decides in Phase t, it also decides o. 

We now show that all the t-messages sent are of the form ct, o, 

t 
cardinallity). Sice withness_count(0)P > k process p recives more 

• 
than k c t - 1 )-witness for Q. Consider a process r that sends a 

t message. Process r must have received n-k (t-1 )-messages, and 

one of them must be a (t-1 )-witness for Q. Then process r 

·increments witness_count(Q) in phase t-1. From the initial claim, 

process r sets its value to 0 in phase t-1, and it sends (t,.o, 

cardinality) message~ in phase t. 

\ ' 

Corisider a process q that decides in phase t+1. From the·obove 

remark, all the t-messages. received by q have.value o, and 

therfore q must decide o. 

We no~ prove that all the (t+1) messages sent are of the form 
.. 

<t+1, o, n-k). Consider a process r that sends (t+1 )-messages. 

From the description of the protocol 4_1, we see that if r 
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decides in phase t, the (t+1) messages it sends are of the form 

(t+1r Q, n-k). If r does not decide in phase t, it must have 

received n-k. Thefore it sends (t+1, o, n-k). If r does not 

decide in phase t, it must have received n-k t-message in phase 

t,.the Ct+1 )-messags it sends are of the form Ct+1, o, n-k). If r 

does not decide in phase t, it must have received n-k t-message 

in phase t. we already proved that all the t-messages have value 

Q. so, in phase t, process r sets its value to 0 and its 
\ 

cardinality ton-k. Therfore, i~ sends (t+1, Q, n-k) messages in 

phase t+1. 

A process r that reaches phase .t+2 must have received n-k 
I . 

(t+1 )-messages. From the remark above all the (t+1) messages are 

witnesses for 0 and therfore r decides 0 in phase t+2. 

Since any process that reaches phase t+2 decides Q, no process 

can ever be in a phase higher than t+2 dnd no process can decide 

1 • 

Oegdlock-freedom: 

Since processes wait for each other's messages, the protocol 

might be exposed to deadlocks. we prove that the protocol is 

deadlock free. 

'Suppose for contradiction the protocol runs into a deadlock. Let 

D be the set of deadlocked processed. Each process q in D is 
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, I 

deadlocked in phase tq. Let tO = min t , and P belongs 
(q belongs to 0) q 

to D be a process that is deadlocked in phase tO. Let S be a set 

of n-k correct processes. There are two possible cases. 

1) No process in a phase t, t <= tO - 2. BY the minimality of tO, 
' 

every process in S either decides in phase tO - 1 or tO, or 

it reaches Phase to without deciding in either case it send 

tO - messages to all the processes. Therfore there will be at 

least n k tO-messages in p's buffer and p cannot be 

deadlocked .in phase to; this is a contradiction. 

2) Some process decides in phase t, t <= tO - 2. Let t be the 

smallest phase in which a process decides. In the proof of 

the protocol consistency, we shwd that no process can ever be 

in a phase greater than t+2 decides. Note that p is 

deadlocked in phase tO >= t+2. This is a ~ontradiction, and 

the proof of deadlock freedom is complete. 

Convergence: 

Let S be a ~et of n-k correct processes. Suppose no process in S 

decides in a Phase t, t<to. We prove that there is a fixed Theta 

such that, with probabililty greater than Theta, all the processes 

in S decide in Phase tO + 2. 

Since there are no deadlocks, every process in s will reach 

Phase tO. Note that fort= tO , tO+ 1, and tO+ 2, from the 

assumption of fair scheduler there is a positive constant Rho such 



that ~ith probabilitY greater than p, every process in S receive 

in phase t. In other ~ords, ·~ith probability greater than Theta = 
3 

<Rho) for three consecutive phase all the processes in S exchange 

messages exclusively among themselves obviously to the rest of 

the system. It is clear from the protocol that, if this happens, 

then all the processes, in S decide in Phase tO + 2. 

Bivalence: 

If all the processes start ~ith the same input value, al1 the 

correct processes decide that value ~ithin t~o steps. 

lfH1A ~ 

With k-resilent consensus protocol, for any reachable 

configuration c, and for any subset S of proesses that contain at 

0 1 
least n-k correct processes, either cs 1- Fs or cs 1- Fs by some 

legal schedule. 

PROOF: 

The malicious processes can behave just like fail-stop processes 

a~d die. The proof follo~s from this observation and the proof of 

Lemma 4.1. 
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THEOREM !i...3.;. 

There is no r n/3 I resi lent consensus protocol for the 

malicious case. 

PROOF: 

Suppose there is a r- n/3-, - resilent protocol. Let S and T be 

subsets of processes of size L 2n/3 _J such that IT U 51= n. 

Note that IT intersection 51 <= n/3. Let C be a legallY reachable 

configuration. All the mallicious processes have follo~ed the 

protocol so far. If they contaniue to· folio~ the protocol then 

there is no ~ay in ~hich they differ from correct processes. 

i i 
Therfore bY Lemma 4.3, Cs 1- Fs and Ct 1- Ft , for some decision 

values i and j. 

We claim that Cs and Ct are either both a-valent or both 

1-Valent. Suppo~e not then ~lthout lo55 of generality there are 

o-o o 
legal schedules o-o and o-1 such that cs 1--- Fs and Ct 

o-1 1 
1--- Ft • 

Suppose that all the processes in T intersection S are malicious. 

The follo~ing schedule is possible. 

From C by schedule o-O ~e first reach a configuration ~here all 

the correct processes in S decide o. Then the malicious processes 

in S intersection T change there states and their buffers' content 

back to ~hat they ~ere in c, resulting in some configuration C'. 
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The only difference bet~een Ct' and Ct is that in Ct' the buffers 

of the process in T may have additional messages (that ~ere added 

o-1 1 
during the execution of o-o ). Since Ct 1---- Ft , the processes 

in T can no~ follo~ the legal schedule o-1 from configuration c•, 
until all the correct processes in T decide 1. Then shcedule 

violates the consistency of the ~rotocol and the claim is proven • 

. / 

The rest of the proof follo~s closely the last part of the proof 

of Theorem 4·1· Let I be the bivalent initial configuration 

guranteed by Lemma 4.2. From the claim, ~ithout loss of 

generallity, both Is and It are 1-valent. Let o- be a legal 

o- o t 
schedule such that I 1--- F • We denote bY I the configuration 

I o- I 
reached from I after the first t step in o-. Clearly both Is 

I o- I 
and It are a-valent. Let t be the smallest index such that both 

t t 
Is and It are a-valent. Note that t > o. From the initial claim 

t-1 t-1 
and the minimality of t, both Is and It must be 1-valent. 

Let P be the process that performs the atomic step s such that 

t-1 s t 
I 1--- I 

t 0 
Assume that P belongs to s. We have Is 1- Fs, and 

t-1 0 t-1 
therefore Is 1-- Fs • However Is is 1-valent and this is a 

contradiction. We obtain a similar contradiction if ~e assume 

that P belongs to T. 
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THEOREM ~ 

Fpr any k, 0 <= k <= L < n - 1 )/3 _J, the protocol 4_2 is a 

k-resilent consensus protocol for the malicious case. 

PROOF: 

We show the protocol's d~adlock-freedom, consistency, convergence 

and bivalence, in the presence of upto k faulty processes. we use 

the same notation and definitions as in the proof of Theorem 4.2. 

Oeadlock-frgedom: 

We have to prove that it iS always POSSible -for a process to 

accept n-k messages. Consider a correct process p in phase t, 

where t is the smallest phase among correct processes in the 

system. At least n-k correct processes are in phase t or in a 

· higher phase. Let q ~e such a process. Process q has already sent 

a (initial, q, v, t) message to all the other processes. Since 

there are at least n-k correct processes, p's buffer will receive 

at least n -k <echo, q, v, t) messages. Since n-k > (n+2)/2, then 

P at phase t, eventually accepts this message with value v from 

q. Therefore P accept n-k messages from correct processes and p 

proceeds to the next phase. 

Cortsisteocy: 

Consider any two processes p and q at some phase t. we claim that, 

if P and q accept a message from some processor, then these 
/ 
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messages must must have the same value. Suppose not then at phase 

t, p accepts a message ~ith varue 0 from r and q accepts a 

message ~ith value 1 from r. Then more than (n+k)l2 process sent 

(echo, r, o, t) messages top, and more than cn+k)l2 processes 
\ 

echoed (echo, r, Q, t) and (echo, r, 1, t). Since there are at 

most k malicious processes then at least one correct process has 

sent both <echo, r, o, t) and <echo, r, 1, t). From the 

description of the protocol, correct processes cannot do that and 

hence a conta~iction. 

Let t be the smallest phase in ~hich a correct process decides. 

Let'us us say process p decides 0 in phase t. Process p must have 

accepted message ~ait value 0 from a set S of more than <n+2)/2 

processes. BY deadlock-freedom, any'other cor~ect process q ~ill 

accept at phase t, messages from n-k processes. Therfore it must 

accept messages from more than ( n + k ) 1 2 - k = ( n - k ) I 2 

proces?es in s. BY the claim the value of the messages accepted 

by q from processes in S must ~e Q. So q accepts more than 

C n - k ) I 2 messages ~ith value o, and it changes its value to 

o. 
At Phase t+1, all the correct processes ~ill have o. Note that it 

takes at least < n - k ) 1 2 messages ~ait value 1 to change the 

value of a correct process to 1. 

Since there are only k < n/3 malicious processes and k < cn-k)l2, 
' 

this can never happen. Therfore from phase t on, all the correct 

processes ~ill have value 0 and they can not decide 1. 



Cooyergeoce: 

Let S be a set of correct processes that have not decided yet. 

Suppose no process in S decides in a phase t, t < tO. we prove 

that there is a fixed Theta such that, with probability greater 

than theta, all the processes inS decide in phose tO+ 1. 

Since there are no deadlocks, every process in S reaches phase 

tO. From the assumptions on the system behaviour there is such 

that in phase tO and tO +1 the follpwing happeni with probabilitY 

greater than Theta. At phase tO, every process in S accepts 

messages from the same set of n-k processes. At phase tO+ 1, 

every process in S accepts messages only from correct processes. 

It is clear from the protocol that all the processes in S decide 

in phase tO + 2. 

'Bivalence: 

If all the processes start with the same input value within two 

Ph~~~~.all the correct processes decide that value. 

THEOREM ~ 

It is impossible to achieve asynchronous BYzantine Agreement with 

k >• n/3 • 

PROOF: 

Suppose it is possible; since K>• n/3, we can pa~tition the 

processes to three disJoint sets, A, B and c, of size k or less • . 



Let the transmitter be in A and consider the follo~ing scenarios: 

<1) The processes in A and B are correct, and the transmitter 

sends I a-messages. The processes in C are malicious, and they 

do not send any messages during the protocol. Since the 

transmitter is correct, the processes in A and B ~ill agree 

on 0 ~ithin some time t. 

(2) Only mthe tranmitter is malicious. It sends a-messages to 

processes ih A and s, and 1~messages to processes in c. Also, 

messages from C are delayed for a period longer than t before 

they are received. The processes in A and B have the same 
' 

vie~ of the system as in scenario 1, and therefore can agree 

on a at time t. 

In a similar fashion ~e can construct scenario 3 ~ith the 

follo~ing properties: 

(3) Only the transmitter is malicious. It.-sends 1-messages to A 

and c, and a-messages to B. Messages from B are delayed for a 

period longer than t'. At time t' the processes in A and c 
agree on 1. 

N~w W~ bdH tombine ~cenarios 2 and 3 to yield a contradiction: 

4) The processes in A are malicious, the processes in B and c are 

correct. The processes in A send messages to processs in- B 

as in scenario 2, and to processes in c as in scenario 3. 
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All messages bet~een in B and processes in C are delayed for 

a period longer than max( t, t' ). In this scenario at time 

maxc t, t' ), the processes in B ~ill agree on 0 and the 

processes inC ~ill agree on 1, a contradiction. 

THEOREM 

The protocol 4.3 acheives Asynchronous BYzantine Agreement for 

k = 1, ••••• , L n-1 )13 _J malicious processes. 

PROOF: 

-We have to sho~ that if some correct process p decides some 

value then all the correct then they alll decide on the 

transmitter's value. , 

First ~e clalm that no t~o correct processes p and q can send 

ready messages ~ith different values. Suppose this is possible, 

then p received more than c n + k ) 1 2 cecho, 1) messages, or a 

< ready, 1) message from a correct process. Similarly, q received 

more than ( n + k ) 1 2 ( echo, 0 ) messages, or a ( ready, 0 ) 

message from a correct process. In either case, some t~o correct 

processes, and s and t, received more than <n + k) 1 2 ( echo, 0) 

messages and more than < n + k ) 1 2 <.echo, 1 ) messages, 

respectively. Therefore, some correct process r must have sent 

both < echo, 1 ) and < echo, 0 ) messages. But t.his is impossible 

3-32 



for a correct process. Since decision require 2k + 1 ready 

messages ~ith the same value, it is also clear that no t~o 

correct process can decide different values. 

Suppose p decides i, then p received 2k+1 ( ready, i ) messages. 

At least k + 1 of them ~ere sent bY correct processes. Therfore, 
I 

every correct process ~ill also receive at ~east k + 1 <ready ,i) 

messages, and ~ill send its ( ready, i ) message. Thus, at least 

n-k process ~ill send( ready, i ) messages. Therefore, every 

cor~ect process ~ill receive at least 2k+1 < ready, i ) messages 

and ~ill decide i. 

It ls clear that if the transmitter is correct, then all the 

correct processes ~ill decide on its value. 

I FFMA .5...1..:. 

Suppose that V and W are nonempty multisets. Then 

1) IV intersection WI - IS(V) intersection s(~)l <=1; 

2) IV inter.sec~ion WI - ll(V) intersection 1(~)1 <=1. 

PROOF: 

We prove the first inequality; the argument for the second is 
/ 

symmetric. 
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If V and W have the same minimum, then the same element is 

removed from each, and hence at most one element is removed from 

their intersection. If the minima of V and W are not the same, 

then same, then either the minmum of V is not in w, or the 

minimum of w is not in v. In either case, at most one element is 

removeq from the intersection. 

IEEMA ~ 

Suppose that J is a nonnegative integer and that v and W are 

multisets such that lVI >= 2J and IWI >= 2J. Then 

j j 
IV intersection WI - I reduce (V) intersection reduce (W) 1 <= 2J 

PROOF: 

Follo~s from repeated application of Leema 5.1. 

I FFMA .5...3.:. 

Suppose that J is a nonnegative integer and that u and v are 

nonempty multisets such that IV - Ul <=J and lVI > 2J. Then 

. j 
A<reduce <V)) is a subset of A<U). 

PROOF: 

j 

Suppose A<reduce <V)) is not a· subset of A<U). Then either 

j j 
min<reduce <V)) < min(U) or max(reduce <V)) > max(U). 
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j 
·If min<reduce CV)) < min(U) , ·then 

L, V< r) >= j + 1 • 
r<min(u) 

Hence IV- Ul >= j+1, which contradicts a hypothesis. 

j 
The case max<reduce (V)) > max(U) is symmetric. 

Suppose K > 0 and t >= Opere integers. Suppose that U and V are 

nonempty multisets such that I V - U I <= t'and lVI >2t. 

Then fk,t(V) belongs to ACU). 

PROOF: 

Follows easilY from Lemma 5.3 < with j = t ). 

I Ft11A li...5.:. 

Suppose v, W and U are multisets, and K > o, t >= o, and m > 2t 

are integers, with I V I = I W I = m, I V - U I <= t, I W - U I 

<= t, and I W - V I = I V - W I <= k. Then 

&< u ) 
f (V) - f CW) <= 
k,t k,t c( m - 2t, k ) · · 
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PROOF: 
i 

t t 
Let M = reduce CV) and N = reduce (W). Since V and W each contain 

exactly m elements, M and N each contain exactly m - 2t elements, 

k k 
and hence sele~t (M) and select CN) each contain exactlY c = c ( 

m - 2t, k ) element. Let mO <= m1 <= •••.• <= mo-1 be the element 

k 
of select CM), and let nO <= n1 <= 

k 

.... <= n 
c-1 

be the elements 

of select CN). Notice that there are at least k + 1 elements in M 
i 

that are less than or equal to m1, and at most ki elements in M 

' that are strictly less than mi; similarly for N. 

We begin by sho~ing that max( mi, ni ) <=min( mi+1, ni+1 ) for 0 

<= i <= c- 2. It suffices to sho~ that mi <= ni + 1; a symmetric 

argument demonstrates that ni <= mi + 1. 

We proceed by contradiction : Suppose that mi > ni + 1. As noted 

above, there are at least k(i+1) + 1 elements inN less than or 

equal toni+ 1. BY the supposition) these elements are strictlY 

less than mi. Therefore, there are at least k ( i + 1 ) + 1 - k i 

( = k + 1 ) elements in N that are r')Ot in M; thus 1 N - M 1 

>= k +1. No~ by hypothesis,. W - V I <= k, so IW intersect.ion VI 

>= m -k. Then lemma 5.2 sho~s 1 N intersection M >= m - k - 2t, 

and hence I N - M I <= ( m - 2t ) - ( m - k - 2t ) = k. This is a 

contradiction and we conclude that mi <= ni + 1. 
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No~ ~e use the inequality sho~n above to obtain the desired 

result. 

1 
= 

c 

1 
= 

c 

1 
<= 

c 

1 
= 

c 

C..;.1 

E < m 
i=O i 

c-1 
~ m 

i=O i 

c-1 
L <max<m , 
i=O i 

n 
i 

n ) 
i 

< by the 
triangle 
inequalitY) 

n ) - min(m , n )). 
i i i . 

BY the inequality demonstrated above, for 0 <= i <= c - 2, 

( max( mi, ni ) -min( mi, ni ) ) 

<=<min< mi + 1 ) -min( mi, ni ) -min( mi, ni)) 

so ~eget, 
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f eV) - f CW) 
k,t k,t 

1 
< = [max e m , n ) - mine m , n . ) J • 

c c-1 c-1 c-1 c-1 

1 c-1 
+ --- ~[maxem ,n ) -min em' n )] 

c i=O 1+1 1+1 i 1 

Collecting terms then shows that 

f eV) - f eW) 
k,t k,t 

1 
< = [max em , n ) - minem , n )]. 

c c-1 c-1 0 0 

Now, AeM) is a subset of AeU) and AeN) is a subset of AeN) bY 

Lemma 5.3 ( with j = t ) ' so max ( m ' n ) <= max e u ) and 
c-1 c;..1 

min e m , n ) >= min e u ) . Hence, 
0 0 

f · eV) - f CW) 
k,t k,t 

1 
' < = [max ( u ) - min< u )]. 

c 

1 
= &e u ) . 

c 

as desired. 
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THEOREM .5.....ll 

If n >= 3t + 1, then there exists at-correct synchronous 

approximation algorithm ~ith n processes. 

PROOF: 

Given· in section 4.5.2 of chapter 4. 

I 

I EEMA .5...6..:. 

Suppose n, t > 0 are such that n >= 3t + 1. LetT be a set of 

processes,, ~i th 1 T 1 >'= n - t. Let h be a positive integer. Let 

U and U' be the multisets of values of processes in T immediately 

after round h, respectively, in a particular 

r-eamputation of SO. Then 

1 ) &< u ). 

&< U' ) = ---------------
C( n - 2t, t) 

2) A< U' ) is a subset Of A< u ) 

EROOE: 

Let p and q be arbitrary processes in T. Let V and W be the 

multisets of values (including default values) received bY p and 

q, respectively, at round h. Then 1 V 1 = 1 W 1 = n. Since there 

ore at most t faulty processes, 1 V - U I <=t and I W - U <= t. 

Moreover, since V and W contain identical enteries for all the 

processes in T, ~e kno~ that I V - W I = 1 W ~ V 1 <= t. 



1) The multisets v, w, and U satisfy the hypotheses of Lemma 5.5 

(with m = n and k = t ). Thus, 

A< U ) 
f <V> - f <W> <= --------------
t,t t,t c(n - 2t, t) 

2) The multiset V and U satisfy the hypotheses of Lemma 5.4 • 

Thus ft.t(V) belongs to ACU). Since P and q were choosen 

arbitrarily, the result follows. 

I FFMA .5...1.;. 

Assume that n >= 3t + 1. LetT be a set of processes, with ITI 

>= n t. Let h be a positive integer. Let U and U' be the 

multisets .of values off processes in T, immediately before and 

after round h, respectively, in a particular T-computation of s. 
Then A<U') is a subset of A<U>. 

PROOF: 

Let p be an arbitary process in T. Let v and v' be the values 

held by p immediately before and after round h, respectively. It 

suffices, since p is ar9itary, to show that v• is an element of 

A<U). If p has terminated prior to the start of round h, then v~ 

= v belongs to A<U). If p has not halted prior to the start of 

round h, then let V bet the multiset of values received by p in 

round h. Then V and U satisfy the hypotheses of Leema 5.4, and 

since v'=ft,t(V), it follows that v'belongs to A<U). 
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'-THEOREM .5....2.:. 

If n >= 5t + 1, then there exists at-correct asynchronous 

approximation algorithm with n processes. 

PROOF: 

Given. in section 4.5.3 of chapter 4. 

I EI'11A &&;. 

Suppose n, t>O are such that n >= 5t + 1. LetT be a set of 

processes, with 1 T 1 > n - t. Let h be a positive integer, Let U 

and U' be the multisets of values of processes in r, immediately 

before and after round h, respectively, in a particular 

r-eamputation of AO. Then 

1 ) &< u ) 
&< U' ) = ---------------·cc n - 3t, 2t) 

2) AC U' ) is a subset of A< U ) 

PROOF: 

Let P and q be arbitrary processes in T. Let v and w be the 

multisets of values received bY p and q, respectively, at round h. 

Then v = W I = n - t. Since there are at most t faulty 

processes, V - U I <= t and I W - U I <= t. Moreover, since V 
-and W both contain identical entries for all the processes in T 

from which both p and q heard, we know that V intersectioh W I 

>= -3t. Hence, V-W I = I W - V I = I V I - V intersection W 1 

<= 2t. 



1) The multisets v, w, and U sati$fY the hypotheses of Lemma 5.5 

(with m : n and k =· 2t ). Thus, 

f ( v) - f ( w) 1 <= 
2t,t 2t,t 

AC U ) 

ccn - 3t, 2t) 

2) The multiset V and U satisfy the hypotheses of Lemma 5.4 • 

Thus f2t,t(V) belongs to ACU). Since P and q were choosen 

arbitrarily, the result follows. 

I EEMA .5.&.9..:. 

Assume that n >= 5t + 1. LetT be a set of processes, with ITI 

>= n t. Let h be a positive integer. Let U and U' be the 

multisets of values of processes in T immediately before and 

after round h, respectively, in a particular T-computation of A. 

Then ACU') is a subset of ACU). 

THEOREM .6.....1.;. 

fUM t~ t i !jl1 1-,,-l I II.ITI-ll-'1-' 
-'- IlL - ,j,j a weakly 

dynamic-broadcast message-oblivious fault 

global coin in the 

model,where the 

constant probabilitY for ~ither common outcome is at least· 

< 1 $ ) /2e, pro~ided t <= $n < where $ is any constant less 

than 1 ) • 

PROOF 

Refer to [6_Q]. 



THEOREM ~ 

The function COIN_TOSS produces a ~eaklY global coin in the 

dynamic-reception message-oblivious fault model, ~hen t <= n< 114 

e ) for some constant e > Q. If t = n < fl4 - e ), the 

probability for either common outcome is at least o< I 2e, ~~ere 

o< = Be 1 ( 4e + 5 ). 

PROOF 

Refer to [6_Q]. 

THEOREM ~ 

The function COIN TOSS2 produces a ~eaklY global coin in the 

dynamic reception message-obliviou~ fault model, ~hen t < n/2. 

The probabilitY for either common outcome is at least < 1 - < t I 

n ) ) 12e. 

THEOREM ~ 

Under the assumption (*) (given in section 4.6.3), if all 

processors hold the same encryption and decryption key, then for 

POlynomiallY many repeated calls~of the function COIN-TOSS , each 
I 

call produces a weaklY global coin in the .message-dependent fault 

models. This procedure is correct, provided t <= n, ~here is any 

constant less than 1 for the static and dynamic - broadcast case, 

and t < n/2 for the dynamic - reception case. The probabilities 

of each outcome are as in Theorems 6.1, 6.2, and 6.3 respectively. 

PROOF 

Refer to [6_0]. 



THEOREM .6.....5...:. 

Under the assumption(•), but without ossuming common, 
(_ 

predistributed encryption and de~ryption keys, polyriomiolly many 

repeated calls of the function COIN_ TOS5_4, each produce a ·we.oklY 

global' coin _in the message-dependent dynamic brodcost and ~ynomic 
( 

reception fault models provided that t < n/2. 

THEOREM .6...£.:.· 

The function ASYNCHRONOU5_COIN_TOS5_1 produces a weaklY global 

coin in the asynchrnonous, message-oblivious fault model, 

provided t < < < 3 - ..)5 ) /2 )n. 

· PRQOF 
' ' 
Refer to [6_0]. 

THEOREM .6.J.;. 

Under the' assumption (*), if all processors hold the some 
·.t·i'~:~~,.,.,.,--~==~....,...,. ·-~~--~--------~~......._....__ _____ _:_ 

.-encryption and decryption key, then polynomiollY many repeated 
-·-. ··-

calls ; . Of the 
..: ....... ,. 

func~ion ASYNCHRNOU5_COIN_TOS5_2 produce g.weok!Y 
,. 

global coin . in the asynchnous m~ssoge dependent model .provi~ed 

t < ( ( 3 - J5 ) J 2 )n. .. 

,, 
•• -1-. 

PROOF 

Refer to [6_0]. 



THEOREM .6....8.;. 

Under the assumption (liE) but without assuming common, 

predistributed encryption and decryption keys, repeated calls of 

a modified function ASYNCHRNOU5_COIN_TOS5_2 preceded by a four 

round encryption key distribution phase round a weaklY global 

coin in the message dependent asynchronos fault model that 

t < C C 3 - · ,/5 ) I 2 )n •. 

1811A' ..6....9..:. 

During each epoch, both of the values 0 and 1 are never sent in 

any execution of round 2 (step 10). 

PROOF 

It can be proved by a simple counting argument. 

THEOREM 6.10: 

Th~ ~l9orithm has the fcllo~ing three parts 

Val id.i ty . 
• If value v si distributed as input to all 

processors decide v during each epoch 1. 

Agreement : Let e be the first epoch in which a processor 

decides. If processor P decides v in each 

epoch e, then by the end of epoch e+1 all 

processors decides v. 



Termination • (a) In any epoch e, if the epoch iS not . 
bivalent at the point when the fastest 

processor begins executing step 18, then there 

is at least one value that, if it is adopted 

by L n/2 _J + t + 1 processors executing the 

assignment in step 18, will cause each 

processors to decide by the end of epoch e +1, 

and otherwise 

(b) in any epoch, e, if there is a value that 

is adopted by L n/2 _J + t + 1 processors 

executing the assignment in step 18 then epoch 

e + 1 is not bivalent at the point that the 

maJor'i ty value of , COIN.... TOSS in epoch e i£ 

uniquelY determined. 

THEOREM 6.11: 

Using the agreement algorithm with coin toss as a subroutine, 

agreement is reached in constant expected number of rounds, 

provided the number of fault t satisfies 

(a) t < n/2 for the all varients of the synchronous model; 

(b) t < < < 3 - sqrt( 5 ) )n for all varients of the asynchronous 

mode. 



THEOREM 7.2.1: 

' If agreement algorithm A guarantee SBA for each history with at 

most t orderly crash faults then A require at least min( n- 1, 

t + 1 ) rounds to reach SBA in any serial history. 

PROOF: 

Given in section 4.7.1 

I frt'IA 7.2.2: 

Let H and J be histories in u. If A uses k rounds to reach SBA 

in J and Hk is witness equivalent to Jk, then A uses K rounds to 

rech SBA in H, and H and J are output equivalent. 

PROOF: 

The - proof for this lemma is straightforward, but long. Refer to 

[7_0] for the proof. 

I frtiA 7.2. 3: 

If e is a significant outedge of a candidate p in round k <• t 

of a serial history H, then there iS a serial history J such that 

Jt is witness equivalent to Ht and Jk is identical to Hk except 

that the state of the messa9e at e is altered (from correct to 

absent or vice versa). 

PROOF: 

Refer to [7_0] for the detailed proof. 



I fH1A 7.2.4: 

If H and J are serial hostories then Ht is witness equivalent to 

Jt. 

PROOF:' 

Refer to [7_0] for the detailed proof. 

'· 

COROI I ARY 7.2.5: 

Algorithm A require at least min( n- 1, t + 1 ) rounds to reach 

SBA when there are actually no faults. 

THEOREM . 7 • 3.1 : 

\ 
Let A be an agreement algorithm that reaches EBA in histories of 

U< A, t ). Then there is a history in U< A, t ) with only f 

faults in which A requires at least min( min- 1, t + 1, f + 2 ) 

rounds to reach EBA. 

PROOF: 

Given in section 4.7.2 

I fttiA 7 • 3 • 2: 

Let H be an f-serial history. Then there is no critilical edge 

in round f from a processor that is an f-candidate in round f of 

H. 

PROOF: 

Refer to [7_0] for the detailed proof. 
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I fl'tiA 7. 3. 2: 

If A· reaches EBA for all histories with at most t faults and if 

A reaches EBA within min( t, f + 1 ) rounds for all histories 

with at most 1 faults, then all f-serial histories are output 

equivalent. 

PROOF: 

Refer to [7_0] for the detailed proof. 

THEOREM 7.4.1 

2 
Execution of EAGREE by n > max( 4t, 2< t + t - 1) ) ) processors 

results in EBA within min(f+2.t+1 )rounds, where f, the actual 

number of faults does not exceed t. 

PROOF: 

Refer to [7_0] for the detailed proof. 

I fl't!A 7. 4. 2 .,;. 

Suppose no correct processor is stopped at round i - 1 and let 

p, · q, and r be correct processors. Then, at the end of round i, 

no correct processor~ hQS the name of a correct processor in x, 
every correct processor has pqs=rqs, and all correct processors 

share the same value for qs. 

PROOF: 

Refer to [7_0] for the detailed proof. 



I Er11A 7 , 4 • 3 ..:. 

If a correct processor is convicted at round i <= i + 1, then 

the value it has for s must have become persistent by round i -1. 

PROOF: 

Refer to [7_0] for the detailed proof. 

I FrtiA 7 , 4, 4 ..:_ 

If a value becomes persistent before round t + 1, then it 

remains persistent throughdut the execution of the algorithm and 

is given as output by each correct processor. If a value become 

persistent befor~ rount t, then all correct processors are 

convicted at most two rounds later. 

PROOF: 

Refer to [7_0] for the detailed proof. 

I fi11A 7, 4 , 5 ..:. 

If the origin is correct, then all correct processors will 

output its value. 

PROOF: 

Refer to [7_0] for the detailed proof. 
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I FI11A 7.4.6 _;_ 

If for some i, 2 <= i <= t, a fault p separates a witness set 

from all other correct processors at round i, ·and if some 

correct processor is not convinced by round min( i + 2, t = 1 ), 

then there are correct processors that donot have P in their set 

X by the end of round i, but bY round!+1 each correct processor 

will have p in X and pps and ps to the default value o. 

PROOF: 

Refer to [7_0] for the detailed proof. 

' I FI1'1A . 7 • 4 • 7 _;_ 

If there is a correct processor is not convinced by round i + 2 

with 1 <= 1 < t - 1 , then there is a set { P1 1 1 <= j <= i } of 

i distinct faulty processors such that, for each j, each correct 

processor has pj in X and value pjs defaulted to 0 by the end of 

round j + 1 (1 and in each succeeding round ). 

PROOF: 

Refer to (7_0] for the detailed proof. 

I Frt1A 7.4.8 _;_ 

If there are only f<t faults, then all correct processors are 

convinced by round f + 2. 

PROOF: 

Refer~ to [7_0] for the detailed proof. 
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I FI'1MA 7.4.9 ~ 

All correct processors have the same value stored in s by round 

t + 1. 

PROOF: 

Refer to [7_0] for the detailed proof. 
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AlGf)RITRHS Ff)R REACHING AGREEMENTS 

MODULE ONE 

The problem addressed nere concerns a set of isolated processor~ 

some subset of ~hich may be faulty, that communicate only by 

means of t~o party messages. Each nonfaulty processor has o 

private value of information that must be communicated to each 

other non faulty processor. Nonfaulty processors always 

communicate honestly, whereas faulty processor may lie. The 

problem is to devise an_algorithm in ~hich processors communicate 

their o~n value and relay values received from others that allo~s 

each nonfaulty processor to infer a value for each other 

processor. The value infered for a non faultY processor must be 

that processor's Private value and the value inferred for a 

faulty one must be consistent ~ith the corresponding value 

inferred by each other nonfaulty procesor. Our results are 

formulated using the notion of INTERACTIVE CONSISTENCY, as 

defined in chapter 2 [1_0]. This problem is essentially the same 

as the Byzantine general metaphor in [2_1] or Byzantine general 

problem in [2_Q]. (refer to chapter 2 for definations). 

It is shown that the problem is solvable for, and only for n )= 

3m + 1, where m is the number of faultY processors and n is the 

total number. It is also shown that if faulty processors can 



refuse to pass on information but cannot falsely relay 

information, the problem is solvable for arbitrary n >= m >=0. 

This ~eaker assumption can be approximated in practice using 

cryptographic methods. 

In the follo~ing section ~e give algorithms devised to guarantee 

interactive consistency for and only for n., m such that n >=3m+1• 

In section 4.1.1, ~e consider the single fault case that is m=1. 

we sho~ that a minimum of four processors are required for this 

case. 

Follo~ing this, in section 4.1.2, ~e consider a general algorithm 

for n >=3m+ 1. It is also proved that these algorithms assure 

interactive consistency (i.e.). 

In 5ection ~.1.3 o proof of imPo5~ibility for n <3m +1 i~ giv~n. 

In section 4.1.4, it is sho~n that interactive consistency can be 

assured for arbitrary n >= m >= 0 if it is assumed that fau~ty 

processors do not pass on information obtained from other 

processors but cannot false report this information. This case 

can be compared ~ith the fail-stop case in Module Four. This can 

be implemented using authenticators and an algorithm usins 

authenticators is the last algorithm presented. 



SECTION 4.1.1: THE SINGLE-FAULT CASE 

Here ~e consider a pr-ocedure for obtaining interactive consisten(Y'.r 

in the simple case of m=1, n=4-

ALGORITHM: 

The procedure consists of an exchange of messages, follo~ed by 

the computation of the interactive consistency vector on the 

basis of the results of the exchange. 

T~o rounds of information exchange are required. In the first 

round the processors exchange their private value. In the second 

round theY exachange the results obtained in the first round. 

The faultY processor (if there is one> may "lie,", or refuse to 

send messages. If a nonfaulty processor P fails to receive a 

message it expects from some other processor, p simply chooses a 

value at random and act as if that value had been sent. 

The exachange having b~~n compl~t~d, each nonfaulty processor p 

records its private value vp for the element of the interactive 

consistency corresponding to p itself. The element corresponding 

to every other plrocessor q is obtained by examining the three 

received reports of q•s value <one of these ~as obtained directly 

from q in the first round, and the others from the remaining t~o 

processors in the second round). If at least t~o of the three 

reports agree, the majority value is used. Other~ise a default 

value such as "NIL" is used. 



PROOF showing that this procedure assures interactive consistency, 

is given below. 

First note that if q is nonfaulty, p will receive Vq both from q 

and and from the other nonfaulty processor(s). Thus p will record 

VP for q as desired. Now suppose q is faulty. we must show only 

that p and the other two nonfaultY processors record the same 

value for q. If every nonfaulty processor records NIL, we are 

done. Otherwise, some nonfaultdy processor, say p, records a 

non-NIL value v, having received v from at least two other 

processors. Now if p received v from both of the other 

nonfaulty processors,each other nonfaulty processor must receive 

v from every plrocessor other tdhan p (and possiblY from p as 

well);every nonfaulty processor will thus record v. OtherHise,p 

must have received v from all processors other than some other 

non faulty processor P'. In this case P' received v from all 

processors other than q (so p• records v), and other nonfaulty 

processors received v from all processors other than p. All 

nonfaultY processors therefore record v as required. 



SECTION 4.1.2 : AN ALGORITHM FOB N >= 3M + I 

The procedure given in the last section requires tHo rounds of 

information exchange, the first cosisting off the form "my 

private value is~· and the second consisting of communications of 

the form "processor x told me his private value is •••• ". In the 

general case of m faults, m+1 rounds are required. In order to 

descibe the algorithm, it will be convenient to characterize 

this exchaange of messages in a more formal way. 

ALGORITHM: 

Let p be the set of processors, v a set of value for k>=1 and o

is a k-level scenario for string w=P1P2 ••••• pr, 2<=r<=k+1. 

Note that for a given subset of nonfaulty processors, only 

certain mapping are possible scenarios,in particular, since 

nonfaulty processors are alHaYs truthful in relaying 

information, a scenario must satisfy 

o-(pqwJ= o-(qw) 

for each nonfaultY processor q, arbitrary processor p, and string 

w. 

The message a processor p receives in a scenario o- are given by 

the restriction o-p of o- to the strings beginning with p. The 

procedure we present noH for arbitrary m>=O, n>=3m +1, is 

described in terms of p's computation, fora given o-p,of the 

element of the interactive-consistency vector corresponding to 

each processor q. 



fhe computation is as follow: 

<1) If for some subset Q of p of size > (n+m)/2 and some value 

v, o-p(pwq):v for each string w over Q of length <=m, P 

records v. 

<2> Otherwise, the 

applied with 

algorithm 

p replaced 

for 

by 

m-1 , n-1 is recursive 1 y 

P - {q}, and o-p bY the 

mapping o-p defined by o-p(pw):o-p(pwq) 

for each string w of length <=m over p-{q}. If at least {floor 

Jperator of (n+m)/21 of the n-1 elements in the vector obtained in 

the recursive .call agree, p records the common value, otherwise P 

--ecords NIL· 

~hich q 

is the 

is excluded and in which each processor's private value 

value it obtains directly from q in o-. Note also that 

the algorithm essentially reduces to the one given in the last 

section in the case m=1.n=4. 

=>ROOF that the algorithm given above does indeed assure 

interactive consistency proceeds by induction on m: 

3asis m=O. In this case no processor is faulty, and the 

Jlgorithm al~ays terminates in step <1 )with p recording yq for q. 



Induction .st.eQ ..1112.0. First note that if q is nonfaulty, 

o-p(pwq) = Vq for each string w (including the empty string) of 

length <=m over the set of nonfaulty processors. This set has 

n-m members (Which, since n>3m, is><n+m/2) and so satisfies the 

requirements, for Q in steP(1) off the algorithm. Any other set 

satisfying these requirements,moreover,must contain a nonfaulty 

pro~essor lSince it must be of size > cn+m)/2. and n >= 3m+1) and 

must therefore also yield Vq as the common value. The algorithm 

thus terminates at steP<1 ), and p records Vq and q as required. 

Now suppose that q is faulty. we must show that the value p 

records for q agrees with the value each other nonfaulty 

processor p' records for q. 

First consider the case in which· both p and p• exit the 

procedure at step(1 ), each having found an appropiate set Q. 

Since each such set has more than (n+m)/2 members, and since p 

has onlY n members in all, the two sets must have more than 

2<Cn+m)/2)-n=m common members. Since atleast one of these must 

be nonfaulty, the two sets must give rise to the same value v, 

as required. 

Next suppose that P' exits at steP(1 ), having found an appropriate 

set Q and common value v,and that p executes steP(2). we claim 

that in the vector off n-1 elements thot p compuites in the 

recursive call, the elements corresponding to members of 



Q = Q- {q} are equal to v. Since Q has at least {floor operator 

of (n:m)/2} members, it will then follow that p records v in 

accordance with steP(2). To see that the elements corresponding 

to members of Q are indeed equal to v,recall that the mapping o-p 

that p uses to compute the vector in the recusive call is the 

restriction, to strings beginning with p,of the m-level scenario 

o-p defined by 

for each 

hypothesis, 

string 

this 

o-p(w)= o-(wq) 

w of length <=m over P - {q}a BY the induction 

vector is identical to the one p' would have 

computed using the restriction o-p of o- had p' made the recursive 

call. Moreover, the value P' would have computed for the element 

of this vector corresponding'to a given q' in Q must be v, since Q 

and v satisfy step <1) of the algorithm. <Note that Q is of size 

>=C<n+m)/2}>=C<n-1 )]+(m-1 )J/2, and that o-p(p'wq') = o-p(p'wq'q)= 

v for each string w of length <=m-1 over Q.) The case in which p 

exits at step <1) and P' exits at step(2) is handled similarly. 

In the one remaining case, both p and p' exit at step (2). In 

this case both recurse and must, bY the induction hYPOthesis, 

compute exactly the same vector and hence the same value for q. 
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SECTION 4.1.3 : PROOF OF IMPOSSIBIUTY FOB N < 311 +I 

The procedure of the 1 ast section guarantees interactive cons i st~l 

only if n>=3m+1. In this section it is sho~n that the 3m+1 boun~ 

is tight. we ~ill prove not Only that it is impossible to assure: ... 

interactive consistency for n<3m + rounds of information 

exchange, but also that it is impossible, even allowing ah 

infinite number of round exchange (i.e. using scenario mapping 

from all nonempty strings over P to V). 

Just to gain some intuitive feeling as to ~hy 3m processors not 

sufficient,cosider the case of three processors A, s, C of ~hich 

one say c, is faulty. BY prevaricating in Just the right way, c 

can th~art A's and B's efforts to obtain consistency. In 

particular, C's messages to A carr be such as to suggest to A 

that C's private value is say ,·J; and that B is faulty. Similarly•, 

C's messages to 8 cab be such a to suggest to B that C'sprivate 

value is 2 and that a is faulty. If c Plays its cards just 

right. A ~ill not be able to tell ~hether B or C is faulty, and 

8 ~ill not be able to tell ~hether A or C is at fault.A ~ill thus 

have no choice but to record 1- for C's value. ~hile 8 must 

record 2, defeating interactive consistency. 

Th~ precise statement of the impossibilitY result and its proof 

is given as a THEOREM 1~1 in chapter 3 • This is using the formal 

definations of Ci) scenario 
(ii) o- consistency ~ith N 
(iii)interactive consistency form faults 

given in chapter 2. 



SECTION 4.1.4: AN ALGORITHM USING AUmENTICATOBS 

The negative result of the last section depends strongly on th~

assumption tbat a faultv processor mav refuse to pass on value~ 

it has recieved from other processors or may pass on fabricated 

values. This section addresses the situation in ~hich the latter 

possibilty is precluded. we ~ill assume, in other ~ords, that a 

faultY processor may "lie" about its own value and may refuse to 

relay values it has received, buyt may not relay altered values 

~ithout betraying itself as faulty. 

In practice, this assumption can be satisfied to an arbitrarilY 

high degree of probability using authenticators. A processor p 

constructs an authenticator for a data item d by calculating 

AP[d], ~here AP is some mapping knoa~n only to p. It must be 

highlY improbable that a processor q other than p can generate 

the authenticatior AP[d] for a given d. At the same time, it 

must be easy for q to check, for a given p,v, & d, that v=AP[d]. 

The problem of devising mappings ~ith these properties is a 

cryptograPhic one. Methods for their constructions are discussed 

in [1_2] and [1_3]. For many application in ~hich faults are due 

to random errors rather than to malicious intelligence, any 

mappings that "suitably randomize" the data suffice. 

A scenario o- is carried out in the follo~ing ~ay. Let v=o-(p) 

designate p's Private value. p communicates this value to r by 

sending r the message consisting of the triple <p,a,v>, ~here 



a=AP[V]. When r receives the message, it checks that a = AP[V]. 

If so, r takes v a.s the valu~ of o-(rp). Otherwise r lets o-(rp) 

= NIL. More generally, if receives exactly one message of the 

form (p1,· a1<P2,a2,a2 ••• (pk,ak,v) ••• )), where ak = Ak[V] and for 

1 <= i <= k-1, ai = Ai((pi+1,ai+1 ••• (pk,ak,v)J, then o-(rp1 ••• pk) 

= v. Othe-rwise o-(rp1 ••• pk) = NIL. 

A scenario o- constructed in this way is consistent with a given 

choice N of nonfaulty processors, if for all processors P is an 

element of N, q belongs to set P and strings w, w' over p. 

(i) o-(qpw) = o-(pw) 

(ii) o-(w'pw) is either o-(pw) or NIL • 

Condition (i) ensures that nonfaulty processors are always 

truthful. Condition (11) guarantees that a processor cannot relay 

an altered value of information recieved from a nonfaulty 

processor. That is it may fail to relay and act like a dead 

process but it will never tell a lie that is it will never act 

like a malacious process. 

Next,. we consider an algorithm, using Cm+1 )-level authenticated 

scenarios, that guarantees interactive consistency for any n>=m. 

As before, the procedure is described in terms of the value a 

nonfaulty processor p records for a given processor q on the

basis of o-p: 



A!GORITf-11: 

Let Spq be the set of all non-NIL values Q-p(pwq), where w 

ranges over strings of distinct element with length <=m over P -

{p,q}. If 5pq has exactly one element v, p records v for q; 

otherwise, P records NIL. 

PROOF: that the above algorithm assures interactive 

constituency. 

Consider first ·the case in which q is nonfaulty. In this case 

o-p(p~d) is either o-(q) or NIL for each appropriate w bY 

condition (ii) Since in particular, o-(pq) = o-(q) bY (i)·Spq = 

{o-(q)}.p thus records o-(q) for q as required. 

If q is faulty, it suffice to show only that for each two 

nonfaulty processors p and p', Spq = Sprq. So suppose v belongs 

to Spq, i.e., v= o~p(pwq) for some string w having no repetitions, 

with length <= m over P - {p,q}. If p' occurs in w (say w=w1p'w2), 

then o-(pwq) = o-(p'w2q) by (ii); hence v= o-(pwq) belongs to 

Sp'q. If P' does not occur in w aned w is of length <m , then pw 

is of length <=m; so v = o-(pwq) = o-(p'pwq) belongs to Sp'q. 

Finally, if P' does not occur in w and w is of length m, w must 

be of the form w1rw2 where r is non faulty giving that v = 
. 

o-(pwq) = o-(rw2q) (by (11)) = o-(p'rw2q) (by (1)) belongs to 

Sp'q. In each case v belongs to Sp'q. A symmetrical argument 

ShOWS that if v belongs to Sp'q, v belongs to Spq. Hence Sp'q = 

Spq as required. · Q.E.D. 



MODULE TWO 

In the previous module ~e considered Interactive consistency 

problem which is essentiallY the same as BYzantine geperal 

pr~ob lem. 

The Byzantine Generals Problem requires process to reach 

agreement upon a value even though some of them may fail. In this 

modeule the problem is ~eakend bY allo~ing them to agree upon an 

incorrect value if a failure occurs. 

The transaction commit problem for a distributed database is a 

special case of the weaker problem. It is sho~n that, like the 

original Bynzantine Generals Problem the ~eak version can be 

solved only if fe~er than one theird of the processes may fail. 

Unlike the original problem an approximate solution exists that 

can tolerate arbitraly many failures. 

In section 4.2.1 it is first sho~n that no solution to the WBG· 

problem exists if 1/3 or more of the processes are faulty. Hence 

the WBG problem discussed by L. Lamport in [2_0] is solvable in 

precisely those situations in ~hich the original Byzantine Gener~al 

prob 1 em [ 2_ 1 , 1_0 J is. 



In section 4.2.2, ~e sho~ that if condition 2 of the WBG Problem 

is replaced by a ~eaker condition requiring only approximate 

equality, then the problem is solvable ~ith any number of faul~Y 

processes. ~More precisely, if the set of possible values is a 

bounded set of numbers, then for any c- ; 0 there is an algorithm 

~hich garantees that the values chosen by any t~o nonfaultY 

processes differ by less than c-. It ~as sho~n in [2_1] that no 

such approximate solution exists for the original Byzantine 

Generals problem. 

In section 4.2.3, an algorithm that ~orks with any number of 

faulty processes is given. This algorithm requires the processes 

to send an infinite number of messages before choosing their 

values and hence this "solution" is of no practical interest, 

since it cannot be implemented. Its interest lies in fact that 

the original Byzantine Generals Problem does not possess such a 

"solution". Hence, the WBG Problem is in some sense strictly 

~eaker than the Byzantine Generals Problem. 

SECTION 4.Z.I : IMPOSSIBIUTY RESULT 

A proof is given to sho~ that no solution to the WBG problem 

exists if one-third or more of the processes are faulty. 

Let 

P donate the set { 0, • • • • • , n 1}, of processes 

P~ the 5et bf all finite ~equen~e~ of element5 of p 
(including the null sequences). 



II denote the set of all finite sequences of the form Q,# ~ith 

# belonging to P• -i.e., all elements of P• ~hose first 

element is o. 

o, pi ••••• pk is a path of length k traveled by a message 

that starts at process 0 and is relayed via processes 

pi ••••• pk-1 to process pk. 

IIi denote the subset of II consisting of all sequences 

ending in i i.e. all message paths leading from 

process 0 to process i. 

A Scenario % is amapping from II into a set of values v. If ~e 

think of an element # of II as a message path, then %(#) is the 

contents of the message received at its final destination we say 

that process i is nonfaulty in a.scenario% if for every message 

path #,i belonging to II and every J belongJng top: %(#,i,J) = 
%C#,i). That is, i is nonfaulty in% if process i correctly 

relays 

%(#) = 
all 

%(0) 

messages. If all processes are nonfaulty in %,then 

for all # belonging to II, ~hich means that every 

destination process of a path receives values send by process o. 

A solution to the WBG problem consists of an algorithm by ~hich 

the processes send messages to one another based upon the 

contents of messages already received. Initially, the only 

information is the value v, ~hich is kno~n only to process o. 
Therefore, all information travels along path in II. To send the 

maximum amount of information to one another, Process 0 ~auld 



send the value v to all processes, and then processess ~auld send 

one another the contents of every message they receive. Thus, if 

%<0) equals v, then a scenario % describes the maximum amount of 

information that the processes could send to one another. A 

nonfaulty process can al~ays ignore information that it receives, 

and a faulty process can do anything - including guess any 

information that ~as ~ithheld from it. Hence any ~lgorithm for 

choosing values based upon the entire scenario ~. such an 

algorithm is called m-fault W8G Algorithm 8 and is defined in 

chapter 2. 

Next it is sho~n that no m-fault W8G alogrithm exists if 3<n<3m. 

<The problem becomes trivinal if n <= 2> 

If the value of 8i(%i) depended upon the entire infinite 

i-scenario %1, then the alogrithm 8 ~auld require an Infinite 

amount of message passing and ~auld not be a real soluion to the 

W8G Problem. We Consider the defination for "finiteness of a WBG 

algorithm 8", given in chapter 2,~here II(k) is defined to be the 

set of message of length at most ki and IIi(k) = ll(k) 

intersection IIi. 

A finite WBG alogrithm is one in ~hich for every scenario, there 

is a k such that each process can choose its value after k rounds 

of message passing. This is a natural definition, since it 

insures that every process is eventually able to choose a value. 

However , it does not immediately rule out the possibility that 



the required number of rounds k can become arbitrarilY large. In 

LEMMA . 2.1 it is shown that this is not the case, and that a 

single value of k can be chosen for all scenarios. 

To prove the nonexistence of an m-fault algorithm when n <= 3m, 

we first prove the noneexistence of a 1 - fault algorithm for 

n = 3. For this we assume that P = {Q,1,2} • 

we define the signed distance function & on p by: 

&co,,>= &<1,2> = &<2,0> = ,, 
&(i,j) = -&(J,i). 

For any path#= Q,p1 ••••• pk we define o-(#) to equal 

&< p ' p ) 
i-1 i 

If we think of the processes Q,1 and 2 being arranged clockwise 

in a circle then &<i,J) is the clockwise angular distance from i 

to J <where a distance of 3 represents a full circle), and o-(#) 

is the singed angular distance traavelled by the path #. 

Consider Lemma 2.2 and 2.3 given in chapter 2. Note that the·two 

conditions of Lemma 2.3 define the values of all messages in the 

(r) 
scenario % except for the ones ·that Process r sends to itself. 

Lemma 2.4 is a simple corollary of Lemma 2.3 • 

The main result is proved in form of Theorem 2.1 • 



SECTION 4.2.2 : APPROXIMATE SOWTION 

The approximate solution of the WBG problem chat ~orks in the 

presence of any number of faultY processes, is described next. BY 

taking the lim-it of a sequence of such solutions, ~e obtain an 

exact solution using an infinite number of messages, ~hiich iS 

given in the follo~ing section. In order to make the concept of 

on approximate solution meaningful, ~e assume that the set V of 

possible values is a set of real numbers. 

For each integer k>O, ~e define an algorthm AG(k) that requires 

k rounds of message passing. Rather than describing it in terms 

of formal scenarios ~e ~ill simPlY talk about processes sending 

messages to one anotehr. NonfaultY processes are constrained to 

follo~ the algorithm ~hile faulty ones may do anything. we assume 

that a faultY process sends every message that it is supposed to 

although possibly ~ith an incorrect value. Ho~ever value it sends 

is assumed to be some element of v. It should be obvious ho~ 

this description can be translated into a definition of mappings 

on i-scenarios. 

ALGORITHM AG'Kl : 

The follo~ing k rounds of message passing are executed to 

<r> 
compute the value vi for i belonging to p and 1 <= r<=k. 
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< 1 ) ROUND 1: 

(a) Process 0 ends the value v to every Process 1 

( 1 ) 
(b) each Process i sets vi equal to the value it 

receives from Process o. 

<2) ROUND r: < 1 < r <= k ) 

< r-1) 
(a) Each Process J sends the value vJ to every 

Process i. 

(r) 
(b) Each Process i sets vi equal to the maximum of 

the n values it. recieves. 

(3) Each Process i then sets vi equal to the average of the k 

(r) 
values vi • 

Theorem 2,2 proves that the above algorithm is an approximate 

solution to the WBG problem. 



SECTION 4.%.3 : INFINITE SOWTION 

To construct an infinite message solution to WBG problem, we let 

each Process i take as its value of v the limit as k goes to 

( k) 

infinitY of the_yalue obtained bY the algorithm AG If the set: 

v is unbounded then this limit could be infinte in which case 

some arbitarv preassigned value is used. This gives us the 

following. 

ALGORITHM AQ.l•) : 

(r) Ck) 
compute the value v as described in Algorithm AG , for all i 

i 

belonging to· P and r >= 1. For each i, define v to equal 
i 

(r) 
sup{V :r>=1 }, where ~ is interpreted to be some arbitary fixed 

i 

element of v. 

Cb) 

we now show that AG is a "solution" to the WBG problem that can 

tolerate any number of faults. Since it requires choosing a value 

based upon an infinte sequence of messages, it cannot be regarded 

as a solution in any practical sense. 

(liP) 

Theorem 2.3 shows that AG is an infinite solution to WBG 

algorithm. 



MODULE THREE 

A.fter going through modules one and t~o<Jo, we know that solutions 

are known for the "Byzantine Generals" problem [2.._ 1, 2..._0, 1_0], 

which is with reference to synchronous system. 

In this module we consider an asynchronous system and problem of 

reaching agreement here, is called consensus problem. 

Refer to chapter 2 for the defination of consensus problem. 

The consensus problem involves an asynchrnous system of processes 

some of which may be unrealliable. The problem is for the 

relliable processes to agree on binary value. In this module it 

is shown that every protocol for this problem has the possibility 

of nontermination even with only one faulty porocess. 

For the main result of Fischers•s work refer to section 4.3.1. 

In section 4.3.2, an algorithm is presented, which solves the 

consensus problem for N processes, provided maJoritY of the 

processes are nomn faulty and no ·process dies during the 

execution of the algorithm. 



SECTION 4.3.1 : HAIN RESULTS OF FISCHER'S WORK 

A consensus protocol P is totally correct in spite of one fault 

if it is partiallY correct, and every admissible run is a 

deciding run. 

The main theorem given bY Fischer, Lynch and Paterson sho~s that 

every partiallY correct protocol for the consensus problem has 

some admissible run that is not a deciding run. This theorem is 

stated and proved in chapter 2 as theorem 3.1 • 

This theorem uses t~o lemmas, Lemma 3.2 and 3.3 ~hich.are again 

stated and proved in chapter 3. 

SECTION 4.3.Z : ALGORimH FOR INITULLY DUD PROCESS 

Here in this section, ~e exhibit a protocol that solves the 

consensus problem for N processes, based on certain conditions. 

This protocol ~as given by Fischer based on the follo~ing 

conditions : 

a. MaJority of processes are non faulty. 

b. no process dies during the execution of the protocol. 

c. no process kno~s in advance which of the other processes 

are initiallY dead and which are not. 



This protocol works in 2 stages : 

Stage .1 

Here the protocol constructs a directed graph in the following 

way : 

1· Processes construct a Directed graph G with a node 

corresponding to each process. 

2. Eve~y process broadcasts a message containing process 

number. 

3. It then listens for message from L-1 other processes. 

L = f ( N+1 > 12 l 
4. G has an edge from i to J if and if only J recieves a 

message from i. Thus G has an indegree given bY : 

Indegree <G> = L - 1 

Stage .2.& 

In this stage the processes construct G+ that is the transitive 

closure of G. 

Each process K will know about : 

1. all of the edges (J,k) incident on K in G+. 

2. initial values of all such J. 

This stage is carried out in the following stages : 

1· Each process broadcasts to all other processes the 

following : 
- its process number. 

- the initial value. 

- names of L-1 processes it needs from the first 
stage onwards. 
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2. It then waits until it has received a stage 2 message 

from every ancestor in G that it knows about. 

3. Waiting continues till such time as all currently known 

about processes have been heard from. 

4. Using the information obtained each process computes all 

the edges of G+ incident on each of its ancestors. 

- each process knows all of its ancestors. 

- edges of G incident on them. 

5. Determine the ancestors belonging to an initial cliques 

of G+.( i.e. a clique with no incoming edges). 

6. It can be shown that there can be only one initial 

clique, i.e. cardinality >= L. 

Every process that completes 2nd stage knows exactly the 

set of processes comprising it. 

Finally each process makes a decision based on : 

1. initial values of processes in the initial cliques. 

2. any agreed upon rule. 

§iNc:~ c•J J proc:-.esse.s t.:nOMS the. ini tioJ voJues ct1= oJ J aeaL~ of 

the initial clique, they all reach the same decision. 

we now arrive at theorem 3.2 given in chapter 3. 



MODULE FOUR 

-· 
In the previous module we presented a very primtive consensus 

protocol. This module is an extension of the previous module i~-

the sense that it gives protocols that enable a system of h 

asynchrnous processes, some of which ar~ faulty, to reach 

agreement. 

Here we consider two kinds of faultY processes : fail stop 

processes that can only die and malicious processes that can also 

send false messages. The class of asynchrnous systems with fair 

shcedulers is defined and consensus protocols that terminate with 

probabilitY 1 for these systems are investigated. With fail stop 

process it is shown that r- (n+1)/2-, correct -processes are 

necessary and sufficient to reach agreement. In the malicious 

case it is shown that r-c2n+1)/3~ cor~ect processes are necessary 

and sufficent to reach agreement. This is contrasted with an 

earlier result [3_0] stating that there is no consensus protocol 

for the fail stop case that always terminate within a bounded 

number of steps, even if only one process can fail. 

The possibilitY of. reliable broadcast CBYnzantine Agreement) in 

asynchrnous systems is also investigated. Asynchrnous Bynzantine 

Agreement is defined and it is shown that r- ( 2n+1 )/3 ~ correct 

processes are necessary and sufficient to acheive it. 



The solutions in this module are different from solution given in 

module three because here ~e consider protocols which may never 

terminate, but this would occur with probabilitY o, and the 

expected termination time is finite. This is done bY postulating 

some probabilistic behavior about the message system. This is 

done making probabilistic assumptions on the behaviour of a 

scheduler (defined in chapter 2 ). Here class of fair schedulers 

is considered (defined in chapter 2). 

In section 4.3.1 we consider the fail-stop case. In this section 

we ·first find the maximum number of faulty proceses which any 

consensus protocol can manage. In other words a lower bound on 

the number of correct processes is derived. Next a fair scheduler 

is defined and finally a L <n-1 )/2 ....J resilient consensus 

protocol is derived. 

In section 4.3.2 we consider the malacious case. Here we first 

discuss the model to be considered. Then we find the maximum 

number of faulty proceses which any consensus protocol can manage. 

That is, the lower bound on the number of correct processes is 

derived and finallY a L <n-1 )/3 _l. resilient consensus protocol 

is derived. 

In section 4.3.3 we consider Asynchronous Byzantine Agreement. 

Here we· first discuss the problem. Then we find the lower bound 

on the number of correct processes and finallY a protocol that 

acheives Asynchronous BYzantine agreement for k= 1 to t_(n-1 )/3..J 

malacious processes is derived. 



SECI'ION 4.4.1 :FAIL-STOP CASE 

WWER BOUND ON NUMBER OF CORRECT PROCESSES 

We could have undetectable deaths during the execution of the 

protocols, this imPlies that, at any stage of the protocol, 

processes ~ill have to act depending on partial informatio~ 

about the state of the system. This is formalized bY the 

lemma 4-1 given in chapter 3. 

Refer Theorem 4.1 give in chapter 3. It proves a very important 

result. 

FAIR SCHEDULERS 

we may vie~ Protocols for asynchronous systems as consisting of 

rounds. While in round t, a process sends messages to every 

other process, and waits until it recieves n - k messages sent 

bY different unique processes in round t. After this the process 

changes its state, and starts round i+1. we notice that the ne~ 

state is a function of the old state and the messages are 

recieved in round t. 

Hence the processes cannot ~ait for more than n - k messages as 

there is always the possibility in which all k faultY processes 

do not send any messages in round t. We define R<q, p, t) to be 

the event that p recieves a message from q in round t. The 

progress of this system depends on the joint probability 

distribution of the R(q, p, 1) events, ~hich is determined by 

the schedular. 



we can say that a schedular is fair provided the follo~ing 

conditions prevail: 

1 ). For any processes, p and q, and round t, ther~ is a positiv 

constant e such that a Pr[R(q, p, t)J>t 

2). For any distinct processes r, p, and q, and round t, the event 

R<q, r, t) and Rc·q,, p, t) are independent. 

These conditions in particular, guarantee that, for any round 

k, there is a constant probability p that all processes recieve 

n-k messages from the same set of correct processes. 

L C n-1 l /2 ..J RES I I I FNT CONSENSIIS PROTOCOl 

Here 

~ith 

~e describe a k-resilient consensus protocol for a system 

a fair schedular and k = 1t2·····L<n- 1 )/2J. The protocol 

consists of rounds as seen earlier • 

The state of a process and the messages exchanged consist of a 

Phase number, a binary value, and a cardinality. 

In each phase, a process does follo~ing step : 

<1) A process sends a message ~ith its state to all the 

processes. 

<2> Then the process ~aits for messages. 

(3) When a process receives n - k messages, ~ith same phase 

number, it considers the sets of messages ~ith value 0 

and value 1, respectively. 



(4) If there is a message with value i and cardinalitY > n/2 

then will be called a witness for 1. 

(5) If a process recieves a witness for i, it changes its 

value to i 

else value = value of the largest message set. 

(6) A process changes its cardinalitY to the size of the 

message set with value 1. 

<7) The process starts a new phase. 

A process decides i if lt receives more than k witnesses for 

value i. Since there are enough witnesses for that value in the 

message system so force the rest of the processes to reach the 

same decision. 

Refer to theorem 4.2 to see that the following algorithm is a 

k-resilient consensus protocol for the fail stop case, for any k, 

0 <= k <= L < n - 1 ) I 2 _J • 

The algorithm is given on the next page. 



process p:k-consensus 

value:integer init(iP) 
cardinality: integer init(1) 
phaseno:integer init(Q) 
witness_count:array[Q •• 1J of integer init<O> 
message_count:array(Q •• 1] of integer init(Q) 
msg:record of 

phaseno:integer 
value: integer 
cardinality: integer 

while (witness_count(Q)<=k and witness_count(1)<=k) 
message_count:=witness_count:=o 

for all q, 1<=n, send(q, (phaseno,value,cardinality)) 

while (message_count(Q)+message_count(1 ><n-k) 
receivecmsg) 
case 

(msg.phaseno=phaseno): 
begin 

message_count(msg.value):=message_count(msg.value) 
if msg.cardinality)n/2 
then 

witness_count(msg.value):=witness_count(msg.value)+1 
end 

(msg.phaseno>phaseno): 
·send(p.msg) 

end 
l f there is i such that wi tness_count( i ))Q 
then value:=i 
else if message_count(1 >>message_count<O> 

then value:=1 

end 

else value:=O 
cardinality:=message_count(value) 
phaseno:=phaseno+1 

let i be such that witness_count(i))k 

dp:=i 

for all q, 1<=q<=n, 
begin 

send(q,(phaseno,value,n-k)) 
send(q,(phaseno+1, value,n-k)) 

end 



SECTION 4.4.2 : IUUCIOUS STOP CASE 

MODEL 

Here we describe a model in which we investigate a stronger 

failure behavior of the processes. 

A malicious process is one which : 

••• can send false and contradictory messages 
ceven according to some malicious design), 

••• can fail to send messages 

••• can change its internal state to any other state. 

The message system must be so designed that it must provide a 

way for correct processes to verifY the identity of the sender 

of each ~essage. Because if this was not done then one malicious 

process can impersonate the whole system, leading the correct 

processes to conflicting decisions. 

The rest of the model described earlier in section II with the 

with the following additional definitions. 

A schedule is said to be legal if all its steps are according to 

the protocol. 

A configuration C is legally reachable if it is reachable by a 

legal schedule. 

Henceforth, we reserve the notation 1--- to denote only 

transitions by legal schedules. 



I OWER BOIIND .ill3l .I1:1E Nl tiBER ..QE CORRECT PROCESSES 

Refer to Lemma 4.3 and theorem 4.3 for lo~er bound on the number 

of:correct precesses for the malicious case. 

I <n-1 l/3 I REST! IFNI CONSENSUS PROTOCOl 

Here in this section ~e present a K-resilient consensus protocol 

for a system ~ith a fair schedular and K=1,2 •••• ,L<n-1)/3J 

malicious processes. 

The state of a phase number, and a binary value. As seen 

earlier the protocol consists of phases in Nhich processes send 

to each other their states. To overcome misleading messages from 

the malicious processes: ~e use the technique of initial and 

echo. 

Protocol Steps : 

<1) A process in each phase first sends its state to all the 

processes, and Naits until it accepts messages from n-K 

processes bY follo~ing steps: 

(a) In this a process sends to all the other processes an 

initial message Nith its name and its state. 

(b) After receiving the initial message, every process 

echoes it bacK to all the processes. 

(c) Process p, at phase t, accepts a message Nith value 

1 from process q if it receives more than ·cn+K)/2 

messages of the form (echo, q,i,t) 



(2) It changes its value to the majoritY of the values of 

the accepted messages. 

(3) A process decides i if it accepts more than (n+k)/2 

messages ~ith value i. 

we prove· that, once a process decides i, thereafter all the 

other correct processes ~ill have value i. 

The protocol seen in Figure 2, sho~s that processes do not exit 

the protocol after they decide. This feature ~as done for 

notational convenience only, and it can be avoided in the 

follo~ing manner: 

When process p decides 

message(initial,p,i) and 

q's. The last messages 

receives them, it sends 

1, it sends to all the processes the 

echoes of the form <echo,q,i) for all 

are special so that ~henever a process 

them back to itself. Once a correct 

process has decided 1, all the correct processes ~ill have value 

1. Hence ,this procedure ~ill have the same effect as the actual 

participation of p in the protocol. 

Refer to theorem 4.4 to see th~t the follo~ing algorithm is a 

k-resilient consensus protocol for the malacious case, for any k, 

0 <= k <= L < n - 1 ) I 3 _l 
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process p:k-consensus 

value:integer init(i ) 
p 

phaseno:integer init(O) 
message_count:arrav[0 •• 1J of interger init(O) 
echo_count:arrav[1 •• n:o •• 1J of integer init(0) 
msg:record of 

type:(initial, echo) 
from: integer 
value-: integer 
phaseno:integer 

while( true) 
message_count:=o 
echo_count:=o 
for all q,1<=n,send(q(initial,p,value.phaseno)) 

while< message_ count( 0 )+message_ count( i )<n-k) 
receive<msg) 
if it is the first message received from the sender 

with these values of msg.type, msg.from and msg.phaseno then 
case 

<msg.type=initial): 
for all q,1<=q<=n, 

send(q,msg.from,msg.value,msg.phaseno)) 
begin 

echo_count(msg.from,msg.value):=echo_count(msg.from, 
msg.value)+1 
if echo_count<msg.from,msg.value):=<n+k)/2+1 
then message_count<msg.value):=message_count(msg.value)+1 

end 
<msg.type = echo and msg.phaseno)phaseno): 

send(p.msg) 
end 

end 

if message_count(1 )>message_count(O) 
then value := 1 
else value := 0 

if there is such that message_count<O) 
then value := 1 
else value := 0 

if there is such that message_count(i))(n+k)/2 
then d := i 

p 

Phaseno:=phaseno + 1 

end 



SECTION 4.4.3 : ASYNCHRONOUS Bl'UNTINE AGREEMENT 

we now come across a major problem of ensuring reliable 

broadcasts in distribut_ed systems ,commonly knov.~n as Byzantine· 

Agreement[4_6], Unanimity[~2J, or Interactive Consistency[4_7]. 

All earlier studies of Byzantine Agreement deal with a 

synchronous system of n processes, where upto k processes can be 

malicious. some specially designated process is a transmitter 

that sends a value to all the rest of the processes. A Byzantine 

Agreement is achieved if the follo~ing holds: 

1) All correct processes agree on the same value. 

2) If the transmitter is correct, all the correct processes 

agree on its value. 

we can view the whole system implicitlY as in one of the 

following states : 

a) "before broadcast," 

b) "executing the agreement protocol," 

c) "after broadcast." 

Thus, queries about the transmitted valu~ can be handled in a 
. 

consistent manner bY any correct process. 

The differnce in this view comes when we consider asynchronous 

systems, • Some correct processes can proceed with the 

protocol and reach agreement while others may not yet be aware ~ 

the protocol has begun. 
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It may be insufficient to start up the process on the protocol 

even if a process receives a message from the transmitter or 

from other processes • we definately require some threshold 

activitY to start up a process, a threshold that guarantees that 

all the other is necessary to start up a process, a threshold 

that guarantees that all the other correct processes ~ill also 

start the protocol and ~ill agree on the same value. 

The follo~ing t~o conditions illustrate the necessitY of such a 

scheme. 

1) The transmitter is malicious. At time tO it sends to k 

processes o- messages, to a different set of k processes 

1-messages, and none to the rest. All these messages are 

received at time t1. After that, the transmitter stops 

participating in the protocol. If ~e regard this as a sufficie~t 

condition to start up a Byzantine Agreement protocol, then the 

system can proceed and agree, let us say on 1, at time t2. 

2) The transmitter is correct and sends a-messages to all the 

processes. At time the same k correct processes as in condition 1 

receive these a-message. Also, k malicious processes receive O-

message~, but they treat them as if they ~ere 1 messages. AnY 

other messages from the transmitter ~ill be received only at a 

time later than t2. Consider the system during the interval 

[t1,t2J. The processes vie~ of the system is the same as in 
' 

scenario 1, and therefore they can simulate it and agree on 1 at 

time t2, thus violating requirement 2 of the Byzantine Agreement. 



et us now study the two ways to overcome this phenomenon. We 

an restrain the behaviour of a malicious transmitter (it will 

e enough to force it to send 2k+1 messages ~ith the same 

alue). Another way, the one ~e adopt, is to regard certain 

iews of the system as insufficient to start the protocol. 

rocesses may not start, unless presented ~ith a vtew that 

uarantees starting up and agreement of all the correct processes. 

or an asynchronous · Byzantine Agreement to be achieved· the 

ollo~ing must hold : · 

) If the transmitter is correct, all the correct processes 

ecide on its value. 

) If the transmitter is malicious, then either no correct 

recess will decide they ~ill all decide on the same value • 

.owEB BOI!ND llli Nl tiBER 1l.E CORRECT PROCESSES 

efer to theorem 4.5 for lo~er bound on the number of correct 

recesses for the asynchronous Byzantine agreement. 

SYNCHRONOIIS BYZANTINE AGREEMENT PROTOCOl 

here are three types of messages in the protocol:initial, echo, 

nd ready. The protocol starts ~1th: 

<1) The transmitter sends the initial messages 

(2) it then processes report to each other the value they 

recived via (echo,v) messages. 



(3) If more than (n+k)/2 (echo.v) messages are received bY a 

process, it announces it with <ready,v) messages. 

(4) If a process receives 2k+1 ready messages of the same 
I 

value, it decides that value. 

Refer to theorem to see that the following algorithm 

achieves Asynchronous Byzantine Agreement, for k=1 to l_(n-1 )/3_1 

malacious precesses. 

The algorithm is given on the next page. 
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msg_count:array of (types:Q •• 1J of integer 

msg:record of type:(initial,echo,ready) 

value: integer 

while(there is no 1 such that 
msg_count(initial,i)>=1 or 
msg_count(echo,1 ))(n+k)/2 or 
msg_count(ready,1 )):k+1) 

receive(msg) 

if it is the first message received from the sender 
with these values of mesg.type,msg.from 
then msg_count(msg.type,msg.value)=msg_count<msg.type,value)+1 
end 

for all q, send(echo,i) 

while(there is no 1 such that 
msg_count(echo.1)>(n+k)/2 or 
msg_count(ready.1 )>=k+1 

receive(msg) 

if it is the first message recieved from the sender 
with these values of msg.type, msg.from 
then msg_count(msg.type,msg.value)=msg_count(msg.type,msg.value)+ 
end 

for all q, send(ready,i) 

while(there is no 1 such that 
msg_count< ready, i »=2k+1 ) 

receive<msg) 

if it is the first message received rom the sender 
with these values of msg.type,msg.from 

then 
msg_count(msg.type,msg.value)=msg_count(msg.type,msg.value)+1 

end 

decide 1 



MODULE FIVE 

This paper considers a variant of the Byzantine Generals problem 

is considered, in ~hich processes start ~ith arbitarv real values 

rather Boolean values or values from some bounded range, and in 

~hich approximate, rather than exact, agreement is the desired 

goal. Algorithms are presented to reach approximate agreement in 

asynchrnous as ~ell as synchronous systems. The asynchronous 

agreement algorithm is an interesting contrast to a result of 

Fischer et al, ~ho. sho~ that exact agreement with guaranteed 

termination is not attainable in an asynchrnous system with as 

few as one faultY process. This is what we considered in module 

three. The algorithm work by successive :approximation with a 

provable 

number of 

convergence rate that depends on the ration between the 

faultY processes and the tool number of processes. 

Lower bounds on the convergence rate for algorithms of this form 

are proved and the algorithms presented are shown to be optimal. 

In Section 4•5-1, we prove some combinatorial properties of the 

approximation functions on which the algorithms depend. Then, in 

section 4.5.2, synchronous model is introduced and the 

synchronous approximate agreement algorithm is presented. In 

Section 4.5.3, asynchronous problem is discussed and asynchronous 

approximate agreement algorithm is presented. In section 4.5.4, 

resilience properties of the algorithms are discussed. 



SECTION 4.5.1: PROPERTIES OFJlPPBOXIHATION FUNCTIONS 

Here, ~e state and prove the relevant properties of the 

approximation functions. 

Refer to the definations related to multisets. Lemma 5.1 sho~s 

that the number of common elements in t~o nonempty sets is 

reduced bY at most 1 ~hen the smallest (or the largest) element 

is removed from each. 

Lemma 5.2 extends the results of the lemma 5.1 to removing the j 

largest and j smallest elements. 

Lemma 5.3 is fundamental to the correctness of the algorithms. 

It states that if V and U are multisets such that V contains at 

j 
most j values not in u, then every value in reduce CV) is in the 

range of u. For example, if the multiset of values held bY 

nonfaulty processes at some point in the algorithm is u, and the 

multiset of values received bY some process is v, then at most t 

of the values in V are not in u, ~here t is the maximum number of 

t 
faulty processes. The lemma then states that reduce CV) is a 

multiset whose range is contained in the range of the values of 

the nonfaultY processes. This property is essential in sho~ing 

that the validity condition is satisfied. 



.D:IE APPROXIMATION El!NCTIONSi 

Suppose U is a nonempty multiset. Let m = I U '' and let uo <= u1 

<= •••• <= um-1 be the elements of U in nondecreasing order. If 

k > o, then define select <U> to be the multiset consisting of 
k 

the elements uo, uk, u2k, ••• , and ujk, where J = t_ <m-1)/k _I. 

Thus, ~elect <U> chooses the smallest element of U and every kth 
k 

element therafter. 

An important role is played by the constants 

Lm- 1J c(m, k) = --~-- + 1 

where c(m,k) is the number of elements in select <U) when u has 
k 

m elements. The constant c< n-2t, t ) appears as the convergence 

t of faulty processes, and (2) a constant k, the choice of which 

depends on t and on whether the algorithm is synchronous or 

asyncronous. For k > 0 and t >= 0 define the function fk, t bY 

t 
fk,t(V) = mean<select <reduce (V))), 

k 

for all multisets V with lVI > 2t. The approximation function for 

the synchronous protcol with no more than t faulty processes is 

ft,k. The approximation functilon for the asychronous protocol 

with no more than t faulty processes is f2t.k. 



To sho~ ~hv these functions are appropriate, consider Lemma 5.4 

and 5.5. 

LEMMA 5.4 is- used in verifying the validity condition. 

LEEMA 5.5 is applied to determine the rate of convergence of the 

approximation rounds. The multisets V and W are the multisets of 

values received by t~o nonfaultY processes in a given round and U 

is the multiset of avalues held bY honfaulty processes at the 

begining of that round. Nonfaulty processes use the appropriate 

approximation function to choose their values for the next round; 

the lemma tells us ho~ quicklY those values converge. 

SECI'ION 4.5.Z : THE SYNCHRONOUS PROBLEII 

Refer to the defination of a synchronous approximate algorithm p 

given in chapter 2. 

We assume that the system acts synchromously, using a reliable 

communication medium. Each process is able to send messages to 

all process (including itself), and the sender of each message is 

identifiable by the receiver. 

A configuration consists of a state for each process. An initial 

configuration consists of an initial state for each process. Let 

T be any subset of the processes. Refer to chapter 2 for the 

defination of T-computation. 



Assume a fixed small value e- , a fixed number number of .Process 

n, and fixed maximum number of faulty processes t. 

A synchronous approximation algorithm is said to be t-correct 

provided that for every subset T of processes with T I >= n -1, 

and every r-eamputation, the following is true: 

Every p belongs to T eventuallY enters a halting state and the 

following two conditions hold for the values of those halting 

states: 

(a) Agreement: 
If two processes in T enter halting states with 

values r and s, respectively, then I r - s I <= E-. 

(b) Validity: 
If a process in T enters a halting state.with value 

r, ·then there exist process in T having x and Y as 

initial values, such that x <= r <= y. 

Theorem 5.1 is proved next. 

·Note that the following strategy would suffice to prove Theorem 

5.1. The process could run n executions of a general (unlimited 

value set) Byzantine Generals algorithm, such as the one in 

(5_4], in order to obtain common estimates for the initial values 

of all the process. After this algorithm completes, all processes 

in 1 will have the same multiset v of values for all the 

processes. Then each process halts with value f(v), where f is a 

predetermined averaging function that is the same for all 

processes. This algorithm actually achieves exact real - valued 



agreement, with the required validity condition. However,solution 

presented below is simpler and more elegant and, moreoyer, 

extends directlY to the asynchronous case, for which exact 

agreement is impossible. The algorithm has two additional 

advantages over using a BYzantine Generals algorithm: It is more 

resilient than typical BYzantine Generals algorithms, and it can, 

in some cases, terminate in fewer than t + 1 rounds. 

we now present the synchronous approximation algorithm s. First, 

we describe a nonterminating algorithm, so, and then we discuss 

how termination is achieved. we assume that n >= 3t + 1. 

SYNCHRONOUS APPROXIMATION ALGORITHM SO ... 
At each round, each nonfaultY process p performs the following 

steps: 

1) Process p broadcasts its current value to all processes, 

including itself. 

2) Process p collects all the values sent to it at that round 

into a multiset v. If p does not receive exactly one correct 

value from some particular other process (which means, in the 

sunchronous model, that the other processes faulty), then p 

simply picks some arbitary default value to represent that 

process in the multiset. the multiset v, therfore, always 

contains exactly n values. 

3) Process P applies the function ft,t to the multiset V to 

obtain its new value. 



Lemma 5.6 states how the diameter and range of the nofaultY 

processes' values are affected by each round of algorithm so. 

Part 1 of Lemma 5.6 shows that, at each round, the diameter 

of the multiset of values held bY nonfaulty processes decreases 

bY a factor of c( n - 2t, t), which is at least 2 because n >= 3t 

+1. Thus, the diameter of the multiset of values held bY 

nonfaultY processes eventuallY decreases to E- or less. In 

addition, repeated application of part 2 of Leema 5.6 shows that, 

at each round h >= 1, the values held bY nonfaulty processes 

immediately before round h are all in the range of the initial 

values of nonfaultY processes. 

It is now easy to see why the function ft,t is appropriate for 

the synchronous algorithm. Since a correct process. can receive at 

most t values in a round from faulty processes, t-fold 

application of reduce is sufficient to ensure that extreme values 

from faulty process are discarded. Thus, the second subscript of 

f is t. Also, if p and·q are correct processes that receive 

multisets V and w, respectively, in a round, then t is the 

maximum number of values that can in v - w. APPlication of select 

t to the reduced multisets is therefore sufficient to obtain 

convergence, and the first subscript of f is also t. 

Algorilthm SO is not a correct synchronous approximation 

algorithm, for, as stated, it never teminates. we modify SO to 

obtain a terminating algorithm s, as follows. 



TERMINATING ALGORITHM S 

-At the ftrst round, each nonfaulty process uses the range of all 

the values it has received at that round to compute a round 

number at which it is sure that the values of any two nonfaultY 

processes will be at most €- _part. Each process can do this 

because it knows the value of E-, the guranteed rate of 

convergence, and, furt~ermore, it knows that the range of values 

it receives on the first round that must be executed (including 

the first round) is given bY [ log < ACV) /€- ) ], where v is the 
c 

multiset of values received in the first round, and c =c<n-2t,t). 

In general, different . processes might compute different round 

different numbers. AnY process that reaches its computed round 

simPlY halts and sends its value out with a special halting tag. 

When any process, say p, receives a value with a halting tag, it 

knows it has to use the enclosed value not only for the 

designated round, but also for the future rounds (until p itself 

decides to halt, on the basis of p's own computed round number). 

Although nonfaulty processes might compute different round 

numbers, it is clear that the smallest such estimate is correct. 

Thus, at the time the first nonfaulty process halts, the range 

is already sufficiently small. At subsequent rounds, the range of 

values of nofaulty processes is never increased, although we can 

no longer ·guarantee that it decreases. Lemma 5.7 makes these 

ideas more precise. 



SYNCHRONOUS APPROXIMATION ALGORITHM S 

Round 1 (first Approximation Round): 

Input v; 

V <--- SvnchExchange(v); 

v <--- ft,t<VH 

H <--- [log ( &CV) I E- ) J, ~here c = c(n-zt,t) 
c 

Round h <2 <= h <= H ) <Approximation Rounds): 

V <--- SvnchExchange(v); 

v <--- ft,t(V). 

Round H + 1 <Termination Round): 

Broadcast<<v,halted>); 

Output v. 

{ End of Main Algorithm } 

Subroutine SvnchExchange(v); 

Broadcast(v); 

Collect n responses; 

Fill in values for halted processes. 

Fill in default values, if necessary. 

Return the multiset of responses. 

{ End of subroutine } 

{ End of Algorithm S } 



To show that S is a correct synchronous approximation algorithm, 

we must show that all processes terminate, and that the agreement 

and validitY conditions are satisfied. It is clear that all 

processes terminate. consider the agreement property. At the 

first r~ound at which some nonfaultY process halts, it is already 

the case that the values off all nonfaulty processes are within 

E- of each other. BY Leema 5.7, this diameter never increases at 

subsequent rounds, so the final values of all the nonfaulty 

processes are also within E- of each other. The validity propertv 

also follows from repeated application of Leema 7. This completes 

the proof of Theorem 5.1. Q.E.D. 

As a final note, observe that algorithm S can be modified so that 

a process need not always wait for its computed round to arrive 

before halting : It can halt after it receives halting tags from 

at least t+1 other processes. 

SECTION 4.5.3 : THE ASYNCHRONOUS PROBLEM 

In this section 

model adapted 

we reformulate the problem in an asynchronous 

from the one in [5_9]. In an asynchrnous 

approximation algorithm, we assume that processes have states as 

before, but now the operation of the processes is described by a 

transistion fuction that in one step tries to receive a message, 

gets back either "null" or an actual message, and on the basis of 

the message, changes state and sends out a finite number of other 



messages. NonfaultY processes always follows the algorithm. 

Faulty processes on the othe~ hand, are constrained so that their 

steps at least follow the standard form - in each step they try 

to receive a message, as nonfaultY processes do. However, they 

can change state arbitrariy (not necessarilY according to the 

given algorithm) and send out any finite set of messages, <not 

necessarilY the ones specified bY the algorithm). 

Refer to defination of T-computation 

approximation algorithm given in chapter 2. 

for asynchronous 

An asynchronous approximation algorithm is said to be t-correct 

provided that for every subset T of processes with I T I >= n - t 

and every T-computation, every process in T eventuallY halts, 

and the same agreement and validitY conditions hold as for the 

sunchronous case. 

It seems simplest here to insist on the standard form being 

followed by all prqcesses. The requirement that faulty processes 

keep taking steps until they enter halting states at any time 

they wish. Similarly, the requirement that faulty processes 

continue trying to receive messages is not a restriction, since 

they are free to do whtever they like with the messages received. 

Finally, the requirement that faulty processes only send 

finitely many messages at each step is need4ed so that faulty 

processes are unable to flood the message system, preventing 

messages from other processes from getting through. 
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we assume that processes take steps at completely arbitary rates~ 

so that there is no ~ay (in finite time) of distinguishing~ 

faulty process from one that is simply slo~ in responding. Also~ 

~e assume that the message system takes arbitary lengths of tim~ 

to deliver messages and delivers messges and delivers them ih 

m~b i tm~y or~der. 

Theorem 5-2 is proved in the follo~ing text. 

we describe the asynchronous approximation algorithm. As in the 

synchronous case, first ~e describe a nonterminating algorithm 

AO, in ~hich processes compute better and better approximations, 

and ~e then modifY AO to produce a terminating algorithm A· 

Assume that n >= 5t + 1. 

ASYNCHRONOUS APPROXIMATION ALGORITHM AO 

At round h, each nonfaulty process p performs the following steps~ 

1) Process P labels its current value with the current round 

number h, and then broadcasts this labeled value to all 

processes, including itself. 

2) Process p waits to receive exactly n-t round h values and 

collects these values into a multiset v. Since there can at 

most t faulty processes, process p ~ill eventually receive at 

least n t round h values. Note that, in contrast to the 

synchronous case, process p does not choose any default 

values. 

3) Process P applies the function f2t,t to the multiset v to 

contain its ne~ value. 
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BY analogy with Lemma 5.6, we have Lemma 5.8 which states the 

convergence properties of the above algorithm. 

Part 1 of Leema 5.8 shows that, at each round, the diameter of 

the multiset of values of nonfaulty process decreases bY a factor 

of c<n-3t,2t), which is at least 2 becauise n>=5t+1. thus, the 

diameter of the multiset of values held by nonfaulty processes 

eventuallY decreases to c- or less. In edition, repeated 

application of part 2 of Lemma 5.8 sho~s that, at· each round h>=1, 

the valuaes by nonfaulty process immediately before round h . are 

all in the range of the intial values of nonfaulty processes. 

we can now see whY f2t,t is the appropriate approximation 
. . 

function for the synchronous algorithm. The second subscript is t 

because, as in the synchronous case, that is the maximum number 

of values a correct process can receive in a round that are not 

values of correct processes. The first subscript is 2t becasiue 

if the correct processes p and q receive multisets V and w, 

respectively, in a round then 2t is the maximum number of values 

that can be in V-W(t faulty values, plus t nonfaulty values 

received by p but not by q). 

The only remaining problem is termination. We cannot use the some 

technique that we used in the synchronous algorithm, because a 

process 

thus it 

values 

cannot wait until it hears from all other processes, and 

cannot obtain an estimate of the range of the initial 

of the nonfoultY processes. we solve this problem bY 
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adding an initialization round at the begining of the algorithm. 

In this initialization round( round Q), each nonfaulty process P 

performs the following steps: 

Initialization Round £gc Asynchrnous Approximgtion Algorithm A 

1) Process p labels its intial value with the round number 0 and 

then broadcasts this labeled value to all processes, 

including itself. 

2) process p waits to receive exactlY n - t round 0 values and 

collects these values into a multiset Vp. 

2t 
3) process p chooses an arbitary element of A<reduce CVP)) (say 

2t 
mean<reduce <VP))) as its initial value for use in round 1. 

Let xp be this chosen value. 

Suppose that p and q are arbitary nonfaultY processes. Then, 

since VP I > 4t and I VP - Vq I <= 2t, it follows that VP and 

Vq satisfy the hypotheses for the multisets V and u, respectively, 

in Leema 5.3 < with J = 2t ). An application of this result shows 

that, for any nonfaulty processes p and q it is the case that xp 

belongs to A( Vq ). That is, the value xp computed bY process p 

as the result of the initialization round is contained in the 

range of all values received by process q in the initialization 

round. Since each nonfaulty process q Knows 

<1) that its range ACVq) contains all the round 1 values xp for 

nonfaulty processes p, 
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(2) the value of c-, and 

C3) the guaranteed rate of convergence, it can compute, before 
·~ 

the neginilng of round 1, and round number at ~hich ~tis 

sure that the values of any t~o nonfaulty process ~ill be at 

most .c.- part. 

The total number of rounds that must be executed by a process, 

not including the initilization round, is r- log C A(V) I C- ) -, 
c 

~here V is the multiset received in the initialization round and 

c = c n - 3t, 2t ). 

As in the sunchronous case, different process will calculate 

different round numbers at which they would like to halt. The 

same modification, of sending a value out with a special halting 

tag, ~arks here as well. we obtain lemma 5.9 which is analogous 

to Leema 5.7. 
-

ASYNCHRONOUS APPROXIMATION ALGORITHM A 

Round 1 (first Approximation Round): 

Input v; 

V <--- SvnchExchange(v); 

v <--- ft,t(VH 

H <--- [log ( &CV) I C- ) J, where c = ccn-2t,t) 
c 
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ound h (2 <= h <= H ) (Approximation Rounds): 

V <--- SynchExchange(v); 

v <--- ft,t<V). 

:ound H + 1 <Termination Round): 

Broadcast<<v,halted>); 

output v. 

End of Main Algorithm } 

Subroutine SynchExchange(v); 

Broadcast(v); 

Collect n responses; 

Fill in values for halted processes. 

Fill in default values, if necessary. 

Return the multiset of responses. 

{ End of subroutine } 

End of Algorithm S } 

~lgorithm A is summarized above. The remainder of the proof of 

rheorem 5.2 is analogous to that of Theorem 5.1. 
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SECTION 4.5.4 : BESILENCE 

The algorithms presented in this above have some intersti__og -

resilence properties, stronger than those usuallY claimed for 

Byzantine agreement algorithms. So far, ~e have only claimed that 

the algorithms are resilent to t different processes 

Byzantine faults during the elntre course of the 

exhibiting 

algorithm. 

Ho~ever, we can claim more for situations where processes fail 

and recover repeatedly. Our algorithms actually support resilence 

to any t Byzantine faulty processes at a time (under suitable 

definitions of faultiness at a particular time); the total number 

of faultY processes can be much greater that t, since we can 

allow different processes to be faulty at different times. 

we do not give a formal presentation of four resilence 

properties. Rather, we just give a brief sketch of the main ideas. 

First, consider the sunchrnous case. A faulty process is able to 

recover easilY and reintegrate itself into the algorithm. It can 

reenter the algorithm at any round, just bY sending an arbitary 

value, collecting values and averaging them as usual to get a 

new value. The process also needs to obtain an estimate of the 

number of rounds required before termination. It can obtain such 

an estimate in the reenty round, just as it could in the first 

round. 



asynchronous case is a little more complicated. A faultY 

:ess p needs to rejoin the algorithm at some particular 

1nchronous) round; however, it must be careful to reJoin at 

round that is not "out of date". That is, in the absence of 

.tional failures of p, it must be guaranteed to receive all of 

messges 

>lY wait 

for that and subsequent rounds. Process p could not 

until it received n-t messages for some particular 

ld k, since those messages might have been delivered very late 

messages ffor round k+1 might have already been lost. 

~ver, it suffices for p to send out a "recovery" message, and 

Lt acknowledgements form n - t processes carrying the number 

their current round. Process p knows that the t + 1 st 

llest of these round numbers plus 1, is an allowable round 

Jer for it to use for reentry. 

recovering process is not able to use the same method of 

!mating a termination round as it did initial. Therefore, it 

ns necessary to modifY the asynchronous algorithm to enable 

overing processes to obtain termination estimates when needed. 

easy modification that works is to have every process 

gyback its estimate of the number of rounds to termination on 

ry message it sends. Then a recovering process can obtain a 

estimate Just by taking the t+1st smallest of the estimates 

receives at the reentry round. 



MODULE SIX 

In this module we consider protocols for bOth synchronous and 

asynchronous models. All the results are based on distributively 

fliPPing a coin, which is usable by a significant majorit_x- of the 

processors. 

Thus the algorithms presented in this module are based on 

producing a coin fliP that is essentiallY global. ( A global coin 

fliP has a random outcome that is viewed identicallY by every 

processor.) we relax the condition that each process's view of 

the coin must always be identical, and in fact, the coin may even 

be somewhat biased. 

For this module, we d~fine the consensus problem as follows : 

processor i has a private binary value vi; at the termination of 

the protocol all proce~~or~ have a9reed on a common Vdlu~ VJ if 

1Ifl.Jl.Jl ';;'li ~!:11"-,f:'! ~~tJUil!fl.Jl ]JTll] [:],!flil~'l·l f!l!T•f:'! lf.LiJTlh!P~ ~YI!II~l!!l!'! '!ll::1.ll"i.!:'\~Jl !!.~>i!!W j~; !hlili~; 

common value. 

We shall initiallY consider the following synchronous model. we 

are given a system of n processors that can communicate through a 

completely connected network. The processors act synchronously, 

where at each step each processor can broadcast a message, 

recieve all incoming messages, and perform some private 

computation (possibly involving coin tossing). In the absence of 
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failure, any message sent at time i will be recieved at time 1+1. 

As a result, we view the computation as occuring in rounds, each 

consisting of transmission, reception, and private computation 

Phases~ 

Again, n will be used to denote the number of processors, and t 

will denote on upper bound on the number of failures tolerated. 

Next protocols for achieving consensus in completely connected 

networks 

which can 

failing: 

constant 

protocol 

despite omission faults of various types, is presented, 

tolerate up to a constant fraction of the processors 

that is, for each protocol and fault type there is a 

$ < 1/2, independent of the value of n, such that the 

con tolerate as many ·as t=#n omission faults of the 

given type. 

Refer to the defination of weaklY global coin, given in chapter 

2. The intution behind this definition is that if L_ n/2 _J +t+1 

processors see the same outcome,then a maJority of the processors 

< L_ n/2 _J + 1 ) will use this value in the consensus protocol, 

and reach consensus in a few more rounds. The essence of weakly 

global coin procedure is to randomly select a temporary leader, 

and then to use the leader's local coin fliP for the given round. 

After showing how such a coin can be produced in a variety of 

omission faults models, we then indicate how to use it to achieve 

consensus. 



The design strategy of the protocols in [6_0] reflects a heuristic 

rule prevalent in distributed protocol design: It should be 

possible for simpiler alogrithms to defeat weaker adversaries. In 

the search for provablY good alogrithms that are useful in 

practise, this rule suggests that some complex protocols have 

simple counterparts in more realistic fault models. In the case 

studied ~ere the alogrithm against the adaptive adversary is 

transparent in comparison to the protocol for the Byzantine case 

that results from the combined work in [6_3] and [6_5]. 

In section 4.6.1, we consider the various failure models, for 

the synchronous case. 

In section 4.6.2 and 4.6.3, we consider the tw adaptive adversary 

models. 

In section 4.6.4, the asynchronous case is considered and finally 

in section 4.6.5 we consider algorithm for achieving consensus 

using a weakly global coin. 



SECTION 4.8.1: FAILURE MODELS 

Correctness proofs for fault - tolerent alogrithms have a game~ 

theoretic character. That is, the alogrithms behave appropriately) 

even ~hen the faults are being caused by an intelligent 

adversary. The capabilities attributed to this adversary have a 

profound effect on the design of alogrithms meant to defeat it. 

Indeed, there are cases in ~hich no alogrithm is capable of 

defeating sufficiently po~erful adversaries [6_14, 6-20]. 

In Byzantine fault models, the adversary can control the 

behaviour of some processors, causing them to send arbitrary 

messages ~henever it likes. such an adversary is extremely 

po~erful, and defeating it seems to require complex and expensive 

alogrithms. If one is modelling Phisical failures < as opposed to 

intentional attacks ), such an adversary may be unrealisticallY 

PO!f4erful. 

Consider the follo~ing example. On october 27, 1980, the ARPANET 

suffered a catastrophic failure as the result of hard~are 

failures in t~o processors. T~o spurious messages ~ere generated 

that brought do~n the ~hole net~ork for a period of several hours. 

Clearly, the net~ork protocols~ere not capable of surviving even 

a small number of Byzantine faults. Instead of changing the 

protocols, hard~are error-detection ~as added in the next 

generation n processors, reducing the likelyhood of repetition of 



this Byzantine failure to an extremely small probability [6_23]. 

Rather than implementing protocols to defeat a Byzantine 

adversary, the net~ork designers effectively choose to ~eaken 

the adversary. 

The ne~ ARPANET implementation might be best described by an 

omission fault model. in ~hich processors never send spurious 

messages, but some messages s may fail to arrive at their 

destination. The adversary is thus limited to specifying ~hich 

messages ~ill be delivered to their destination, and ~hich will 

not. The failure models ~e consider here are variants of failure 

bY omission. 

For deterministic protocols, an adversary, causing failures to 

produce the ~erst possible performance, can determine the outcome 

of a strategy in advance. With randomization, this is no longer 

possible, so that it may be advantageous for the adversary to 

decide its strategy adoptively, as random bits are generated and 

used. Therefore, in modeling the power of the adversary, it is 

crucial to specifY the extent to ~hich the adversary is adaptive, 

and the information it has available to determine its strategy. 

We consider three limitations on the adaptiveness of the 

adversary. Each of these is concerned solely with the 

communication system that connects the processors, and thus 

assumes that the processors are themselves non faulty. However, 

as ~e elaborate bela~, the situation in ~hich processors are 

allo~ed to fail in a "fail-stop" manner is a special case of one 

of models considered in [6_0]. 



MODE! S ~ I imitations ~ ~ adaptiyes ~ ~ gdyecsgcy 

Static Faults: 

Throughout the life of a system, messages sent by at most t 

processors fail to reach their destination on time < within the 

round they are sent ). Most previous work on omJssion fault model 

has focused on this type of fault. In the traditional fail-stop 

model, processors fail bY !halting prematurely, but the 
. ··~ ' 

communication Metwork always delivers all messages that hav~ been 
·~. 

sent. Within this model, definition of the consensus problem is 

flawed, since we require that all processors agree on a 

valuei and it is hope less to require a faulty proc~ssor to do 

anything. If we relax this requirement to all nonfaulty 

processors,it is not hard to see that static communication faults 

include the case of fail-stop processor faults. 

Oyoqmic-Aroadcast: 

During each round, messages sent by at most t processors fail to 

reach their destination < but this may happen to a different set 

of t processors each round ). A processor that sends a message 

that does not reach its destination is said to be erratic. These 

models are more general than static fault models. They are 

similar to models studied in [6_21]. 



Dynamic-Reception: 

Each processor receives . all but at most t messages sent to it 

during every round ( so that, if all processors are supposed to 

broadcast every round, each processor receives at least n - t 

messages ). However any two processors may fail to hear from a 
' 

) 

different set of 
. •.! • 

:·:~~::~-- ·~. ~ 1 '·· 

.dYnamic-broadcast ... '·" '•·. . . ' . . 

t others. These models are more general than 

models, and ' are . s i m 11 or to the mode 1 s wet!b~e 
,......... ..... . . 

'.:i' ,. ~ 

for the asynchronous case. 

we present alogrithms for dynamic-broadcast and dynamic-reception 

models~ Because these models are more general than the fail-stop 

or static models, these a~ogrithms will work in these cases as 

well. 

In addition to the limitations on the adaptives of the adversary 

mentioned above, we consider two different limi~ations on the 

knowledge available to the adversary in determining its strategy. 

MODE! S:Limitations ~ ~ knowledge available~~ adversary 

Messgge-Oblivious: 

The adversary's choice of failure, that is, which messages will 

not be delivered, is independent of the contents of the messages~ 

However, this choice con depend, for example, on the patterri~bf 

communication or on the length of messages.Before giving a more 

precise definition, we first introduce a formal description of a 

synchronous execution of a protocol in this model. 
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At round k + 1 of a protocol, the prior k rounds of execution 

can be described in the following way. Consider a layered, 

directed graph consisting of k + 1 vertices for each processor p, 

( p, i ), i = 1, ••• , k + 1, where there is an edge from ( p, i ) 

to < q, i · + 1 ) whenever p sends a message to q at round i. A 

subgraph of this graph represents the messages actually delivered. 

These graphs will be known as the transmission and reception 

graphs, and together will be reffered to as the communication 

pattern. To complete the description of the prior execution, we 

add labels to· the edges of the distribution graph,where the labels 

correspond to the contents of the messages. we define the .ith 

layer of these graphs to be the subgraphs induced on the vertices 

with second coordinate i and i + 1. 

Each processor p's view of the communication pattern consists of 

the subgraphs of nodes labelled bY p , together with the labeled 

out-edges of those nodes in the transmission graph (the messages 

P sent), and the in-edges in the reception graph (the messages p 

received). A protocol for p determines a distribution of a new 

local state, out-edges and labels for node (p, k + 1 ), as a 

function on of p's local state and p's view of the first k layers 

of the 

adversary 

communication pattern, together with p's input value. An 

determines a di~tribu~ion of in-edges for the k + 1st 

layer of the reception graph as a function of the n processor 



protocols and input values, the first k layers of the 

communication pattern, and the k + 1st layer of the transmission 

graph. An adversary is message-oblivious if for any given input 

vector to the processors, any communication pattern up to round k, 

and any kth layer of the transmission groph,the probability 

distribution of the kth layer of the ·reception graph is 

independent of the labels of the communication pattern through 

the first k layers c inclusive ). 

In (6_6], a ~eaker probabilistic adversary ~as considered, 

called a fair scheduler. At round i, a fair scheduler delivers to 

processor p a random subset n-t messages out of all messages sent 

to processor at this round. Furthermmore, set of messages sent 

to different processors ore mutuallY independent. Brocho and 

Toueg have demonstrated a constant fraction of failures for 

executions under fair schedulers. 

Message-Dependent: 

This model Places fe~er restrictions on the adversary's 

kno~ledge of communication in the net~ork. 

The adversary is limited to polynomial resources (time and space 

), but its choice of failures may depend on the contents of the 

messages. 



Note that these definitions assume that the adversary has full 

knowledge of the hardware and software running at each processor 

and of the communication over the net~ork ( subject to the 

limitations above ), but does not kno~ the local state of 

indiVidual processors during execution ( which may depend on the 

outcome of local coin tosses not observed bY the adversary ). For 

example, it ~ill be important that discription keys are stored in 

local memory and are local part part of the local state. we 

assume that the initial values can be seen by the adversary. For 

each combination of adaPtiveness and kno~ledge constraints, ~e 

present an alogrithm to achieve consensus in constant expected 

time. 

SECfiON 4.8.Z : mE HESSA6E-8BUVIOUS CASE 

In this section ~e sho~ ho~ to toss a ~eaklY global coin in 

message-oblivious models. For the dynamic-broadcast failure 

model,the coin ~ill have the property that for each outcome 

< heads or tails ), there is some constant probability of that 

outcome being received by every processor. For the dynamic

reception failure model, there is some constant probability that 

for each outcome, at least L n/2 _j + t + 1 processors ~~ 11 

receive that outcome, provided t is bounded a~ay from n/4. 
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The algorithms is perhaps the most natural one. A leader 

randomly volunteers, and this leader tosses a coin. More 

precisely, consider the follo~ing alogrithms:the procedure LEADER 

produces a local biased bit ~here the probabilty of a 1 < "I 

volunteer" ) is equal to 1/n; the procedure RANDOM BIT produces a 

local unbiased bit. 

Code for processor P: 

1. function COIN_TOS5_1 : 

2. lp <- LEADER 

3. CP <- RANDOME BIT 

4. broadcast (Cp,lp) 

5. receive all cc, 1) messages 

6. if all messages received ~ith 1=1 have the same C 

7. then COIN_TOS5_1 <- C of these messages 

8. else COIN_TOS5_1 <- local coin toss 

Refer to Theorem 6.1 • 

The protocol can also be vie~ed in the follo~ing ~ay. The tossing 

of the 1/n biased coin is an approach to obtain a distribution 

~here the maximum of n trials is likely to be unique. In this 

context, the leader is the processor r ~ho tossed the unique 

maximum. All processors receive the other processor's values, 

determine the maximum and hence the leader, and choose the 

unbiased bit of this processor. BY choosing other distributions 

it is easy to see that the probability of a unique leader can be 



pushed arbitrarilY close to 1. In implementing the protocol, this 

means that it is possible to trade off additional bits transmitted 

in order to reduce the expected number of rounds to reach 

consensus. For example, if the leader identification consists of 

3 log n unbiased bits binstead of a single bit 1, there is a very 

high probabilty, >= 1-1 1 2n, that the maximum of n bit-sequences 

~ill be unique. 

Refer to Theorem 6.2 • 

BY modifying the protocol, it is possible to significantly 

strengthen the number of faults tolerated in the dynamic-reception 

fault model. Before giving this ne~ protocol, ~e first describe 

a basic building block that will be useful in several 

constructions. 

SIMl!l ATING DYNAMIC-BROADCASTS WITHIN A DYNAMIC-RECEPTION MODEl 

We shall show that three rounds of broadcasting within the 

synchronous dynamic-broadcast while maintaining the property of 

message-obliviousness. The simulation consists of one round ·in 

which each processor broadcasts the original desired message for 

dynamic-broadcast <To simplifY the discussion, we asume every 

processor has such a message to send.)ln the following two 

rounds, every processor sends his message plus his view of every 

other processor's message. 



We begin bY showing that after executing this protocol, ther.e is 

a set of at least n - t processors whose message has been relayed 

to all n processors, assuming that t < n/2. This is done by a 

simple counting argument. Consider the second round of the 

simulation. we show now that there must be at least one processor 

p whose second round messages reach t+1 processors. If all 

processors reach no more than t, then m. the total number of 

messages successfullY y transmitted in the second round, is at 

most M <= nt. But each processor receives at least n - t, so that 

n< n t ) <= M .Thus we get nc n - t ) <= nt, contracting the 

assumption that t < n/2. Every processor receives at least n - t 

messages 

to relay 

in each round, so that processor p must have attempted 

at least this many messages to each processor in round 

two. Since there are t +1 processors that have been relayed these 

messages at the end of round two < from p ), every processor will 

be rel~yed these messages from one of the t+1 processors bY the 

end of round three. 

This proves that this three round dynamic-reception simulation 

gives us the structure of one round of dynamic- broadcast. It is 

not hard to see that one fewer round of echoing is not sufficient 

to guarantee the structure of a dynamic-broadcast round. 



we now show that 

simulation. First 

receiving messages 

message contents. 

message-obliviousness is preserved bY this 

notice that the pattern of sending and 

in the simulation itself does not depend on 

From the definition of a message oblivious 

adversary, the ith layer of the reception graph is independent of 

the labeling of the transmission graph given the pattern of 

communication up to this point. The analogous statement holds for 

the i+1st layer, given the layer and the previous pattern of 

communication. From the definition of conditional probability, we 

get that the probability of any communication for both the ith 

and 1+1st layers is independent of the previous labelings of the 

pattern of communication. In this protocol, this imPlieS that the 

set of at least n-t processors that reach at least t+1 processors 

two rounds later, is independent of the contents of the messages 

sent. Once this set reaches t+1 processors the adversary cannot 

stop the set of messages from reaching all n processors in the 

next round. Since the set is independent of the contents of the 

messages sent, the pattern of the successful transmissions in the 

contents of the messages sent,the pattern of the contents of the 

messages. Thus we have shown that message-obliViciusness is 

preserved. 

The above two-round echoing scheme is a general tool. APPlYing 

it for the case of producing a weakly global coin, we get the 

following modified procedure. 



Code for processor p ~ith t~o-round echoing: 

1. function COIN-TOS5_2; 

2. lp <- LEADER 

3. CP <- RANDOME BIT 

4. broadcast (Cp, lP) 

5. receive all <C, 1) messages 

6. broadcast <Cp, lP) and all <C1, 11) pairs received 

7. receive a 11 compound < C1 , 11 ) •••• , <en, 1 n ) messages 

8. broadcast <Cp, lP) and all <C1, 11) pairs received 

9. receive all compound <C1, 11) •••• , <Cn, ln) messages 

10. if all messages received ~ith 1=1 have the same C 

11. then COIN-TOS5_2 <- C of these messages 

12. else COIN-TOS5_2 <- local coin toss 

Although the echoing in this protocol requires a factor of n 

more bits o be transmitted, it can tolerate up to t = r-n/2-, - 1 

failures and the fraction of processors ~hose messages reach 

every one is at least < n - t ) /n 

summary of above result is given in form of Theorem 6.3. 

It is critical to the correctness of this protocol that the 

adversary's choice of messages delivered each round be 

independent of the contents of the messages. a stronger adaptive 

. adversary might simPlY check each message as it is sent ;if the 

processor is a potential leader (its message is (b,1 )), then the 

adversary blocks the message. This stronger adversary can also 



be defeated, as long as the contents of the -messages are 

intelligible to him. In this case, any attempt at blocking th~ 

leader's message is still an essentiaUy random act,because t~ 

adversary cannot understand the messages. This suggests that 

encryption would be useful tool in designing a protocol that can 

defeat a more powerful adversary. 

SECTION 4.8.3 : mE HESSAGI-DEPINDINT CASE 

In this section we show how cryptographic techniques can be used 

to toss a weaklY global coin in the presence of an adaptive 

adversary using a message-dependent strategy. We prove that if 

the adversary can block the weaklY global coin, then it can break 

the cryptosystem. Therefore, if we assume that the cryptosystem 

is secure, and that the adversary is limited to polynomial 

computing resources, then it cannot prevent consensus within 
. . 

constant expected time. 

Let E be a probabilistic encryption scheme that hides one bit 

[6._15]. We breifly describe the properties that E should possess. 

Given a natural number h, the security parameter, E maps the 1 
h 

at random into a string o in a set 0 subset of { Q, 1 } and maps 
h 

the bit 0 at random into a string z in a set z subset of {Q, 1} • 

Given a random string r an element of 0 U z, we assume that no 

polynomial time alogrithm ( that is, polynomial in h ) can 



distinguish the case r belongs to 0 from r belongs to z ~ith 
c 

success probabilitY greater than < 1 1 2 ) + < 1 1 n ) for any 

constant c > o. On the other hand, there is a polynomial-time 

algorithm that,given additional secret information, distinguishes 

bet~een the t~o cases ~ith probability 1. The scheme E can be 

based on any trapdoor function (6_23]. In particular, the familar 

RSA cryptosystem can be used, ~ith o encrypted by E<x), ~here x 

is chosen at random among all numbers in zn ~ith least significant 

bit 1 [6_1]. ( For example,~e assume that RSA is hard to invert ) 

It is important to reiterate that the main theorem of this 

section is based on the follo~ing hypothesis: 

(*) The encryption function E cannot be inverted in random 

polynomial time ~ithout the secret trapdoor information. 

We first make the assumption that all processors use the same 

public key E ~hose decryption key that all hold c but to ~hich 

the adversary has no access)At the end of this section ~e indicate 

ho~ this assumption can be removed, at some expense in the number 

of· faults tolerated. 

The only modification to the alogrithm of the previous section 

is to replace the broadcasting of ((,1) (line 4 of the COIN_TOSS1 

function) by the broadcasting of < E(C), E<l) ). 



The .modified code is given belo~: 

Code for processor p: 

1. function COIN-TOS5_3: 

2. lP <- LEADE 

3. CP <- RANDOM BIT 

4. broadcast< E<CP), E<lP) ) 

5. receive and decrypt all (C, 1) messages 

6. if all messages received ~ith 1=1 have the same C 

7. then COIN-TOS5_3 <- C of these messages 

8. else COIN-T0$5_3 <- local coin toss 

Theorem 6.4 proves that the ne~ protocol is as hard to break as 

the cryptosystem it uses. This Theorem is based on the assumption 

that the processors have already agreed on a common public key 

E. This represents an additional assumption about the initial 

state of the system. At the cost of a more complex protocol, this 

asssumption can be avoided. 

WEAK! V G! ORA! COINS WI THO! IT CCJ110N PIIBI I C KEYS 

The problem of key distribution can be solved bY having each 

processor p. broadcast its o~n ( indiVidually generated ) public 

key EP· This is necessagry so that other processors can send 

encrypted messages to p. Provided t < n/2 the algorithms bela~ 

~ill fliP a ~eaklY global coin. 



In the dynamic broadcast model, processors spend. an extra initial 

round broadcasting their public keys. This is done with every 

toss execution. This guarantees that there are n - t processors 

whose public keys are knwn to everyone. During the first round of 

coin toss broadcast, each propcessor encrypts messages with the 

public key of the receipent, or sens nothing if the recipients 

public key is not knwn. In a second round of broadcast, all first 

round messages are broadvast in the clear <unencrypted). 

The code follows: 
. ' 

Code for processor p: 

1. function COIN_TOS5_4: 

2. generate and broadcast encryption key EP· 

3. receive all Eq messages 

4. lP <-- LEADER 

5. CP <-- RANDOM BIT 

6. for each Eq received in step 3 send< Eq(Cp), Eq(lp) ) 

7. receive and decrypts all (C, 1) messagess 

8. broadcast all <C, 1) messages 

10. if all messages received with 1=1 have the same c 
11. then COIN_TOS5_4 <-- C of these messages 

12. else COIN_TOS5_4 <-- local coin toss 

As before, consider the case that th~re is a unique leader 

chosen during the first round of the coin toss. Since the first 

round messages are encrypted, an argument exactly analogous to 

l 



that for Theorem 6.4 establishes that the leadear•s messges will 

be received in step 7 bY at least n-t recipients with probabilitY 

attest 1/2. Since n - t > t, one of these recipients will forward 

the leader's messages to everyone during the final clear round, 

steps 8 and 9. Thus COIN_TOS5_4 produces a weakly global coin in 

the dynamic broadcast model for t < n/2. , 

In the dynamic reception case, processors run the dynamic 

broadcast algorilthm under the simulation from section 4-6-2, 

running three rounds of broadcasting and forwarding to implement 

one round of the dynamic broadcast algorlithm. this applies to 

steps 2-3, 6-7 and 8-9 in the code. One additional change must be 

made to the dynamic broadest algorilthm - the simulation asssumes 

that the same message is brodcast each round. Thus, the vector of 

encrypted values must be broadcast in step 6; 

6'. broadcast< C E1CCp), E1(lp) ) •••• < En<Cp), EP(lp)) >, 

where< EiCCP), Ei(lp) ) = "?" if Ei not received. 

BY invoking the same counting arugment as before there must be 

at least n-t processors whose encryption keys are transmitted to 

everyone and these n-t processors will all in turn receive the 

encrypted messages of at lest n-t processors. Again an argument 

analogous to the proof of Theorem 4 shows that when there is a 

single leader, there is a constant probability that will be one 

of the latter n-t processors. since n-t>t, the leader's message 

will then be successfullY forwarded to all the processors in t he 

ensuing clear rounds. This is summarized as Theorem 6.5 



SECI'ION 4.8.4 : THE ASYNCHRONOUS CASE 

In the section-we abandon the assumption that processor run in 

synchronous rounds. Processors may run arbitrarily fast or slow, 

and messages may arrive out of order, or take arbitrarily long to 

arrive even in the absence of failures. we make the following 

assumption about the nature of failures in the asynchronous 

model. 

Refer to the defination of asynchronous failure. The definition 

implies that if m messages are sent by distinct processors to the 

same processorp, then p eventually receives at least m-t of those 

messages. 

We consider two failure models for the asynchronous case, the 

asynchronous message-oblivious and asynchronous message-dependent 

model. These both assume the asynchronous failure assumption, 

adding, respectively, the message oblivous and message-dependent 

limitations from the synchronous case. In these models, the 

adversary has 

messages and 

more powerful 

full control of the order and timming of arriving 

of the rates of .internal clociks, and is therfore 

than in the synchronous case. the adversary is 

limited in only two ways. The constaints of the faulure assumption 

require it to eventually delilver enough messages and the 

message oblivious and message depend limitations restrict the 

information it may use determine its strategy. 



Message-ObliVious; 

The adversary's order of events c and, in the particular, choice 

of delayed and underlivered messages ) is independent of the 

contents of the messges. Before giving a more precise definition, 

we first introduce , a formal description of ·an asynchronous 

execution of a protocol. This definition is taken from Fischer et 

al. (6_14]. An execution is a sequence of events that can be 

applied, in that order starting from the initial configuration of 

the system. An even( m, p ) is the receipt of o message m that is 
' either the empty message or is from processor p's message buffer 

(that is, a message that was previously sent to p and not 

received yet). As in the synchronous case, each processor's 

protocols determine, upon the receipt of a message, a distribution 

of actionsCthe new local state and up ton message sent). These 

message are then placed in the addressees' message buffers. The 

adversary determines, as a function of the protocols, the input 

' vector and the asyncrhous execution, a distribution over the set 

of possible next events. An adversary is message-oblivious if for 

any given set of protocols(including the input vector to the 

processors) and any past ~xecution(specified by events CEV1, EV2, 

is independent of the message contents of nonempty messages of 

the first k events. 
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Message~Oepeodeot: 

The adversary is limited to polynomial resources ( time and 

space, but its choice of failures may depend on the contents of 

the messages. In general defining the notion of time for an 

asynchronous system is not a simple matter (see [6_2] and [6_13]). 

Ho~ever the protocols ~e ore using are of a restricted type, in 

~hich time is naturallY defined. These protocols all consist of 

alternating broadcast and reception phases. In the broadcast 

phose a processor sends a message to all n processors. In the 

reception phose, the processor ~oits to receive messages from 

exactlY n - t processors. This is follo~ed by a local computation 

the next broadcast phase, and so on. we assume that processors 

begin each consensus protocol ~ith the same value in their local 

round counter. In these algorithms, processor append the current 

value of the round counter to each message. Each processor counts 

local rounds, consisting of a broadcasting phase and a reception 

phase. During the reception phase, the processor ~aits for 

exactlY n~t messages ~ith the current round number(some of which 

may already be received and stored locally ). For simplicitY we 

assume that ~xtra messages with a given round number are discarded. 

ln general, .no processor should wait for more than n - t messages 

from a given round,since failures may prevent more than this many 

messages from ever arriving._ The definition of local time 

guarantees that no processor is more than one round a haead of 

the majoriltY of other processors<recall that t<n/2). Of course, 

the slo~est processors could lag far behind. 



In spite of the adversary's increased power in the asynchronous 

case, a t~o round echoing variant of the syncrhonous algorithm 

~ill still gurantee that agreemehnt is reached in constant 

expected time, provided t < < < 3 - ~ ) 1 2n is approximately 

equal to 0.38n. 

Before ~e give the proof let us first remark on the difficulties 

arising in the asynchronous versus the synchronous case. one 

might be tempted to argue that exactly the same proofs ~ark, 

since "once the coin tosses are hidden < by assumption or bY 

encryption ), the adversary cannot know ~hich messages to block 

and so everything· ~arks just as it did in the syncronous case." 

This naive argument is incorrect because on adversary can, in 

general infer information about messages from the way that 

processors ~ho receive these messages react to them. If the 

reaction of each processor to n-t coin-toss messages is sufficent 

to infer that a single processor volunteered the adversary con 

successively deliver different subsets of messogs to different 

processors, implementing a simple elimination procedure to 

the indentity of the leader. The leader's messages con 

held bock from the remaining processors until they have 

the coin toss, renderint the leader useless. < Notice 

determine 

then be 

finished 

that the adversary could not perform such elimation in the 

synchronous case, ~here trhe reponse of processors ·is not 

observeable until after the end of the round, by ~hich time every 



processor already received its infoming messages for the current 

round ). To exemplifY these notions suppose we deal with a 

different protocol in which a processor that received n - t 

messages with round number i, among which a unique message 1s a 

leader's message, sends its next message to that leader only < 

and broadcasts • to all n processors otherwtse)~ In such case the 

·identity of the ith round leader can be inferred from the 

< unlabled) communication pattern alone. Thus a message oblivious 

adversary can block the leaders messages to all other processor. 

It is possible to hide the identity of the leader within the 

consensus algorithm, by making the communication pattern identitY 

of the leader. However consensus protocols are meant as general 

purpose tools and it is not possible to anticipate foullY the 

context in which they may be run. Thus once any processor leaves 

the coin toss or agreement protocol it may behave in an arbitrary 

way, releasing arbiltraty information to the adversary < such as 

publishing cryptographic keys). These protocols must ensure that 

information leaked by the faster processor will not Jeopardize 

correctness by allowing the adversary undue influence over the 

slower processors. The asunchronous protocols below use the 

imposed round structure and explicit synchronization rounds to 

satisfy these requirements. 
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Specifically 

identitY of 

in the cast that there is 

the leader is hidden at least 

a single leader the 

until the fastest 

processor completes the execution of the procotol. If the leader 

is persuasice the coin has the additional property that the 

maJoritY value of the coin (i.e. the unique value assumed bY 

L-n/2-J +1 processors) has been determined bY this point. This is 

an important property for asynchrnous coin tosses to have, in 

particular for this application. 

Because of the round structure we impose the leaders messages 

are only effective if they are among the first n-t messages for 

that round to arrive at L_ n/2 _j + t + 1 other processors. 

For the asynchronous case this will be the definition of a 

persuasive processor for a given round. These algorithms work by 

guaranteeing a positive constant probability that a single 

volunteer will be persuasive. Without making it explicit in the 

code, we implicitly assume that a round counter is locallY 

maintained and incremented by each processor. When we say that a 

processor receives n - t messages we mean that it reads messages 

from its buffer until receiving n - t messsages with its current 

round number. 

The code for the asynchronous, message oblivious model is as 

follo~s: 



Code for processor P: 

1. funct.ion ASYNCHRONOU5_COII'LTOS5_ 1: 

2. lp <-- LEADER 

3. CP <-- RANDOM BIT 

4. broadcast ((p, lP) 

5. receive the first n-tcc, 1) messages ~ith current round number 

6. broadcast the vector <<C1,11 ) ••••• ccn,ln)> ~here cC,li)="~" if 
not received 

7. receive n-t vectors <(C1,lt), ••• ccn,ln)> 
number 

~ith current round 

8. receive n-t vectors <CC1, 11 ), ••• ccn, ln» ~here <C1, Ji) ~ith 
current round number 

9. receive n-t vectors <<C1, 11 ), ••• ccn, ln)> ~ith current round 
number 

10. if all· ~he messages received ~ith 1=1 have the same C 

11. then COIN_TQS5_1 <-- C of these messages 

12. else COIN_TOS5_1 <-- local coin toss 

we call step 4 the coin distribution phase, step 6 the first 

echoing phase, and step 8 the second echoing phase. 

Refer to Theorem 6.6, ~hich proves the main result. 

To defeat a message dependent adversary in the asynchrnous case, 

~e make the same alteration as in the synchrnous case, encrypting 

the random bits. 



Code for processor p: 

1. function ASYNCHRONOU5_COINLTOSS_2: 

2. lp <-- LEADER 

3. Ci <-- RANDOM BIT 

4. broadcas~( E<Cp), E<lP) ) 

5. receive the first n-t<E<C>, E(l)) messages with current round 
number 

6. broadcast the vector <E<C1,11 ) ••••• (ECn,ln)> where <C,li)="?" 
if not received 

7- receive n-t vectors <E<C1,lt), ••• E<Cn,ln)> with current round 
number 

8. receive n-t·vectors <E<C1, 11 >, ••• E< Cn, ln)) where <C1,Ii) with 
current round· number 

·9. receive n-t vectors <E< C1, 11 ), ••• E<Cn, In>> with current round 
number. 

10. if all the messages received with 1 = 1 have the same C 

11. then COI~TOS5_2 <-- C of these messages 

12. else COINLTOS5_2 <-- local coin toss 

Refer to theorem·6.7. and 6-8 • 

SBCI'ION 4.8.5 : IJSING A WUKLY GLOBAL COIN 

In this section we present an agreement algorithm that can be 

implemented using a weaKly global coin. For simplicity· of 

presentation the algorithm given here is binary <reaching 

agreement on one bit), and is basicallY a modification of those 

in [6_4] and [6_6]. 



we begin with an informal description of the algorithm. The 

algorithm is organized as a series of epochs of message exchange. 

Each epoch consists of several rounds. The round structure is 

provided automat 1 ca 11 y in the synchronous mode 1 • In · the 

asychronous models, the round structure is imposed locallY by 

each processor, as was discussed earlier. In this case,reaching 

consensus in "constant expected time" means that each processor 

will complete the protocol within a constant expected number of 

local rounds. 

We describe the algorithm for the processor p. ( All processors 

run the same.code). Epoch and round numbers are always the first 

two components of each message. The variable CURRENT holds the 

value that processor p currently favors as the answer of the 

agreement algorithm. At the start of the algorithm CURRENT is set 

tq processor P's input value. In the first round of each 

epoch, processor P broadcasts CURRENT. Based on the round_1 

messages recieved, processor P changes CURRENT. If it sees at 

least L-n/2_j +1 round-1 messages for some particular value, then 

it assign that value to CURRENT; otherwise, it assigns the 

distinguished value "?" to CURRENT. In the second round of each 

epoch, processor P broadcasts the new CURRENT. This is followed 

by a synchronization round, in which all processors broadcast 

waiting messages,then wait until n-t such messages are recieved. 

the guarantees that at least n-t processors have finished the 



previous 

Next, the 

round before the fastest processor leaves this ·round. 

COIN TOSS subroutine is run • CO course, in an 

asynchronous model this statement is a bit imprecise, since the 

subroutine is first initiated at the point that the fastest 

processor reaches the subroutine call.) Based on the round-2 

messages received,processor P either changes CURRENT again, or 

decides on an ans~er and exits the algorithm at the end of next 

the epoch. Let ANS be the most frequent value (other than "?") in 

round-2 messages recieved bY p. Let NUM be the number of such 

messages. There are three cases depending on the value of NUM. If 

NUM >= L_ n/2 _J NUM >= 1, then processor P assigns the value ANS 

to the variable CURRENT and .continues the algorithm. If NUM = o, 
then processor p assigns the result of the coin toss to the 

variable CURRENT, and continues the algorithm. 

Code for processor p: 

1. procedure AGREEMENT<INPUT): 

2. CURRENT <- INPUT 

3. TERM.NEXT <- "OFF" 

4. for e <- 1 to INFINITY do 

5. broadcast(e, 1, CURRENT) 

6. receive (e, 1, •> messages 

7. if for some v there are >= L n/2 _J + 1 messages( e, 1, v) 

8. then CURRENT <- v 

9. else CURRENT <- "?" 

10. broadcast(e, 2, CURRENT) 



11. receive(e, 2, *)messages 

12. if there exists v not equal to "?" such that 
(e, 2, V) was recieved 

13. then ANS <- the value v not equal to "?" such that 
(e, 2, v) messages are most frequent 

1~. else ANS is undefined 

15. NUM <- number of occurences of (e, 2, ANS) messages 

16. broadcast(e, 3, "waiting") 

17. receive (e, 3, "waiting") messages 

18. COIN <- COIN_TOSS 

19. if TERM.NEXT = "ON" then terminate 

20. if NUM >= I_ n/2 _I + 1 then decides ANS. set CURRENT <- ANS 
and TERM.NEXT <- "ON" 

21. else if NUM >= 1 

22. then CURRENT <- ANS 

23. else CURRENT <- COIN 

we make several remarks about the algorithm. COIN TOSS, 

depending on the fault model, is one of the protocols described 

earlier for producing a weakly global coin. In message 

descriPtions, "*" is a wild-card character that matches anything. 

Notice that processor has decided, it participates in the 

protocol for another epoch. Although not explicitlY given in the 

code, during this extra epoch the processor ignors all "receive" 

commands, since otherwise it may be left Halting for messages 

from processors that have already terminated. The extra epoch is ., 

needed because, once the first processor decidesand terminates, 



the other processors may not decide until the next epoch (as ~e 

argue below). The extra broadcast by decided processors are 

solely to ensure that these "trady" processors recieve a 

sufficient number of messages during each round of that epoch. 

<Recall that in the asynchronous fault models, processors must 

wait for n-1 message during each reception.) 

If the input values are sufficiently biased towards a 

particular value, the protocol ~ill reach agreement in one epoch. 

If this is not the case, the protocol uses the ~eaklY global COIN 

TOSS function to prevent the system (abetted by the adversary) 

from "hovering" at an indeterminate point indefenitel·y. With each 

cal1 to COIN TOSS, there is a constant probably that the outcome . 

~ill biase the system sufficientlY to reach agreement quickly. 

Thus, agreement will be reached in constant expected time. 

Define value as legaL input to the algorithm either 0 or 1. 

SPecially , "?" is not a value. 

Lemma 6.9 is used in proving the desired properties of the 

agreement algorithm. 

Theorem 6.10 ~ill establish that this algorithm never produces 

conflicting decisions and that in each epoch there is at least 

one coin-toss value that will lead to termination of the 

algorithm. 



Consider theorem 6.10, with reference to the following key 

notations. 

The value ANS is critical in the analysis of the protocol. At 

any instant of an execution of the protocol, an epoch e is 

bivalent if for both v = 0 and v= 1 there exists an execution of 

the protocol that continues from the that instantaneous position, 

for which there eXists a processor that has ANS value in epoch e 

equal to v. Furthermore, let ke be the number of processors that 

have not determined ~hether ANS is 0 , 1 or undefined for epoch e 

at the point that the fastest processor begins the coin-toss for 

each epoch e. Note that in all the syncronous models discussed, 

k = 0 at the point that the COIN TOSS protocol is executed in 

round e. This may not be the case in the asynchronous cases, 

~here the epoch may still be bivalent at the point ~hen the 

fastest processor initiates the execution of COIN TOSS for that 

epoch. ~o~ever, the round of "waiting" messages ensures that at 

the point ~hen the COIN TOSS is first initiated, ke is at most t 

c since the fastest processor must have received n - t "waiting" 

messages in order to continue, and these processors have already 

executed through step 16. Note that if an epoch is bivalent, then 

any processor that has already determined ANS at this point has 

ANS = "undefined". 



All of the variants of the coin-toss procedure that ~e have 

considered take a constant number of rounds. combining Theorem 

6.10 ~ith the various versions of the coin-toss procedure, ~e get 

Theorem 6-11 • · 

It is natural to ask ~hetherthe number of erratic processors 

tolerated can be significantly improved. A result of Bracha and 

Toueg (6_6] sho~s that no randomized concensus protocol can 

tolerate mo~e than n/2 fail stop faults in an asynchronous model. 



MODULE SEVEN 

Two dl ffereR·t -·-kinds of Byzantine Agreement for distributed 

systems with processor saults are defined and compared. The 

different kinds of byzantine Agreement for distributed systems 

with processor faults are defined and compared. The first is 

required when coordinated actions may be performed bY each 

participant at different times. This kind is called Simultaneous 

Byzantine Agreement ( SBA ). 

This module deals with the number of rounds of message exchange 

required to reach Byzantine Agreement of.either kind <BA). If an 

algorithm allo~ its partici~ants to reach Byzantine agreement in 

every execution in which at: most t participants are faulty, then 

the algorithm is said to tolerate t faults.· It is well known that 

any SA algorithm that tolerates t faults(with t <n - t where n 

denotes the total numder bf processors)·must run at least t + i 

rounds in some execution. However, it might be supposed that in 

executions where the number: f of actual foul ts is small compared 

to t, the numbeMr of rounds could be correspondingly small. A 

corollary of our first result states that ( when t < n - 1 ) any 

algorithm for SBA must run t+1 rounds in some execution where 

there are no faults. For EBA ( with t < n - 1 ), a lower bound of 

min(t+1,f+2) rounds is proved. Finally, an algorithm for EBA is 

presented that achieves the lower bound, provided that t is on 

the order of the total number of processors. 



The context for this study is a network of n processors that are 

able to conduct synchronized rounds of information exchange, each 

round consisting of message transmission, message receipt and 

processing. In the following, n will always denote the number of 

processors. we assume that the network is completely connected 

and that only processors can fail. 

In the Byzantine fault case, no assumption is made about the 

behavior of faulty processors. During an execution of an 

a lgor"i thm, a processor is said to be correct if it fo 11 ows the 

specifications of the algorithm; otherwise, it is said to be 

faulty. 

We assume 

value that 

the origin. 

that the agreement to be reached concerns a single 

is initiallY given as input to one processor, called 

This value is taken from a known set of values. All 

processors, called are assumed to know when the input is given to 

the origin. Each processor is to give exactly one output value 

after some number of rounds of information exchange with the 

other participating processors. 

Refer to chapter 2 for defination of eventual agreement and 

simultaneous agreement. 



When no assumption is made about the behaviour of the faulty 

processors, ~e modifY the term agreement with the adJective 

BYzantine. Thus, ~e have the terms eventual Byzantine agreement 

CEBA) and simultaneous Byzantine agreement <SBA). A protocol or 

algorithm guarantees (Byzantine) agreement in some set of 

executions if, in each execution of the set, oll correct 

processors reach a CByzantine)agreement. 

Note that a processor may give its output in one round and 

also continue to send messages to other processors in that and 

subsequent rounds. In this case, the processor has not finished 

all rounds of message exchange required by its algorithm ~hen it 

gives its output. A processor is said to have stopped in round r, 

if it has given its output by round r+1, and other~ise sends no 

messages in any round after r. In an execution of an algorithm 

for reaching agreement, ~e count the number of rounds bet~een 

initial input and final stopping of all correct processors as the 

number of rounds required by the algorithm. 

If an algorithm allo~s its participants to reach Byzantine 

agreement in every execution in which at most t participants are 

·faulty, then the algorithm is said to tolerate t faults. Here, we 

investigate the number of rounds required to reach agreement as a 

function of the number of actual faults and the number faults to 

be tolerated. 



Suppose A ' is 

maximum of k 

an algorithm that tolerate N-2 faults, requiring a 

rounds. Let A' be the algorithm obtained by 

modifying A so that, no matter ~hat happens, each processor stops 

after k rounds, the origin al~ays gives as output its input value, 

and each other processor gives as output the value A ~ould give, 

if any, or a default value, other~ise. Inspection of the 

definition of agreement sho~s that A' tolerates any number of 

faults. Hence, ~e assume t > n- 1, unless other~ise indicated. 

The initial ~ork of peaseet al. [7_21] sho~ed. that agreement in 

the presence of upto t faults could be reached by round t + 1, 

provided the number of processors ~as sufficiently l.arge. Later! 

t + 1 ~as sho~n to be a lo~er bound on the number of rounds 

required • in the ~orst case (7_3, 7_9, 7_15]. A natural question 

arises from this ~orst case bound: Can an algorithm for agreement 

be constructed to handlle up to t f'~lts so that ~henever the 

number f of actual faults is smaller than t, the number of rounds 

required to reach aggrement is smaller than t + 1 ? Section 4.7.1 

and section 4.7.2 present lo~er bounds for this problem. 

Later, 

[7_12]) 

o~ork 

by 

and Moses extended this bound (first published in 

processor 

studying a closely related problem in ~hich each 

has an input [7_13]. A function from the set of faulty 

processors to integers that gives the round number at ~hich each 

processor failed is called a pattern. OHork and Moses give a 

lo~er bound on the number of rounds required for their problem as a 

function of the pattern. Their bound is easily shoHn to be a 

bound for the problem as ~ell by choosing the Horst pattern. 



The < t + 1 )-lo~er bound and also that of D~ork and Moses-hold 

~hen the set of faults to be tolerated is restricted to a very 

simPle type of fault called a crash fault. When a processor 

suffers a crash fault, it sends a subset of messages it i~ 

specified to send in one round and simply ceases to operate from 

then on. Ho~ever, Theorem 7.2.1 even holds if the faulty 

behavior is further restricted to a class of Faults called 

orderly crash faults. 

In section 4.7.1, the lo~er bound for SBA is shown and proved •. 

In this section, we count the number of rounds of information 

exchange required to complete the actions specified bY the 

protocol, not the number of rounds required for all incorrect 

processors to have produced an output value. Since giving its 

output early cannot help a processors to stop earlier, we assume 

that a processor saves its output until the round after it last 

sends a message to another processor. This assumption is a 

notational convenience and is made without loss of generality. It 

is easy to convert any simultaneous agreement algorithm to one 

in ~hich all correct processors stop before they give their 

outputs and outputs are give~ no later than in the unconverted 

algorithm. It is easy to convert an eventual agreement algorithm 
I 

so that one round after every correct processor knows its output 

value, every correct processor has stopped. 



Extending the proof method of Section 4.7.1 ~e sho~ in Section 

4.7.2 that EBA requires at least min(f+2, t+1 ) rounds. Our proof 

~arks only for crash faults and ~e do not kno~ ho~ to prove this 

result for orderly crash faults. 

FinallY Section 4.7.3,presents an algorithm for EBA that achieves 
2 

the lo~er bound, provided n > max( 4t, 2t - 2t + 2 )·. This 

algorithm does not depend on any authentication protocol. It 

requires min( f + 2, t+1 ) rounds to reach EBA using a polynomial 

(in both n and t) number of bits of information exchange. 

Previous early stopping EBA algorithms did not achieve the lo~er 

bound but did ~ark for n> 3t. Refer to [7_8], (7_24] and [7_1]. 

MODE! £OR EXFCIITION .DE AN AGREEMENT AI GORJTt-11 

This model is used in both lo~er-bound proofs and in the 

presentation of the algorithm. It is similar to the one 

previously given bY Dolev and Strong [7_11]. The formal frame~ork 

represents a round of an execution as a directed graph ~ith 

labeled edges and nodes and as follo~s. 

Let V denote a set of possible values (including the value 0 and 

1) and let MSG denote a set of possible messages. A history is an 

infinite sequence of rounds. Each round consists of a directed 

labeled graph ~ith nodes corresponding to a set p of n 



participating processors, together with special source and sink 

nodes (that are not in p).There is an edge corresponding to every 

ordered pair of nodes. Each edge is labeled by an element of Msg 

(the message sent), an element of V (a value), or an empty label 

(indicating no message ). For notational cnvenience, each history 

begins with round Q, in which the edge coming from the source 

outside p to the origin is labeled with the input value from v. 
All other edge have the empty label at round Q. At any subsequent 

round, any node may have the edge from it to the sink node 

outside p labeled with its output value. During this round and 

subsequently all other edges from this node, carry the empty 

label. If node p has such an edge to the sink at round k, then p 

has stopped (information exchange) at round k-1 and its output 

value is the value on the edge to the sink. 

Messages (labels) on edge directed toward pin round k are said 

to be received by p at round k. Likewise, message directed from p 

in round i are said tom be sent by p at round k. If H is a 

history we write PH for the view of H according to p which 

consists of the sequence of subgraphs of the rounds of H that 

have all the labeled nodes but only the edges that are adJacent 

to p. We also write Hk and PHk for the initial sequence of H from 

its beginning throygh round K and its view according to 

p, repectively. 
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A protocol (or algorithm) A takes as input an initial 

subsequence off a vie~ of a history according to a processor and 

produces an ordered set of labeled edges directed from that 

processor for the next round. Let U< A, t ) be the set off all 

histories on a fixed set of processors in ~hich all correct 

processors follo~ a and in .~hich at most t processors fail to 

follo~ A. <In each section, ~ere strict UC A, t ) to histories 

that have only failure of certain types. Also, ~e ~rite U for 

U< A< t ) ), each ~hen the arguments A and t are clear from the 

context.) 

A t resilient agreement algorithm A such that in each history of 

U< A, t), each correct processor stops in some round and the 

processors reach agreement. 

Note that a history includes the names of the processors, and 

the Vie~ of 

include the 

a history according to one processor is assumed to 

names of all its neighbours (in the completely 

connected net~ork), ~hether they have sent it messages or not. 

Thus, an agreement algorithm need not be uniform and the actions 

it prescribes can depend on the name of the processor acting and 

on the names of its targets. 



SECTION 4.1.1: THE LOWER BOUND FOR SB.A 

In section this section and the following section,-~e restrict~ 

attention to histories in ~hich the only ~ay a processor can fail 

to follow its algorithm is to fail to send some or all of its 

prescribed messages in one round and remain silent the read after. 

This is the notion of a crash failure and is a close relative of 

the notion of a "fail-stop processor" [7_22]. Note that in the 

round in which a processor has a crash failure, it may send any 

message at any subsequent round. 

In proving the lower bound in this section, we further restrict 

the failure mode to orderly crash failures. 

A processor fails during the first round in which it does not 

send all messages required by algorithm A. A processor that fails 

in round r, sends no messages in each succeeding round. 

Our lo~er-bound proofs are based on establishing certain 

@Q~ivalences among histories. Let A be an agreement algorithm 

. tho~ ~uaron~9@3 ~~A jn the presence of at most t orde[lY crash 

faults. Let p be a fixed ~~e Of n Pn;)c~ssOr?· Recall that U(A,t) 

is the set of histor1es with only orderlY ~FO§h faults 1n Whl'h 

algorithm A is employed bY all correct processors, and th~ 

number of faulty pro"cessors does not exceed t.we introduce two 

equivalence relations on the set UCA,t). These equivalences are 
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also defined for the set of K round initial sequences of such 

histories, 

equivalence 

defination 

for 

and 

of 

any K. These are ~itness equivalence and output 

are defined in chapter 2. Also refer to the 

serial history, pattern, subpattern, conservative 

extension and silencing given in chapter 2. 

Note that each history of U in ~hich there are no faults is a 

serial history. 

The uniqueness od silencing is guaranteed because conditions <1) 

and (3) completely determine the behavior of p. For the remaining 

processors, observe that (2) forces all processors that are 

correct in Hk to follo~ a in all subsequent rounds and processors 

faulty by round k cannot send any messages after round Kc~e have 

restricted to crash failures). If history H has processors other 

than P that fail after round K,then H'resembles the conservative 

extensionof Hk on those processors because they do not fail in 

H'Ho~ever, the silencing of P at K is not necessarily the 

. conservative extension of its K round initial sequence because A 

may not call for P to send any messages in round K, but it might 

call for P to send messages later. Since ~e ~ant p to remain 

silent from round k on, ~e must allo~ for the possibility that p 

fails in some round after round k. Note that if additng p to set 

of aulty processors of H does not raise its cardinality above it, 

then the silencing of pat round k of H is in u. 



Refer to the defination of a candidate given in chapter 2. 

Finally the main result given as Theoren 7.2.1 • This theorem is 

proved in the following text. 

we 

from 

for 

base the proof on a sequence of lemmas that contain ideas 

several previous related proofs [7_8, 7_11, 7_12]. Suppose 

the rest of this section that algorithm A guarantees SBA for 

each 

there 

min( 

history with at most t orderly crash fau)ts. Assume that 

is a serial history H in which reaches SBA in fewer than 

n - 1, t + 1 ) rounds. If t > n - 2, then A guarantees SBA 

for each history with at most t' = n - 2 orderly crash faults and 

reaches SBA in H in fewer than n - 1 = t' + 1 rounds. Thus, a 

counterexample with t > n - 2 would provide a counterexample with 

t' = n - 2. Hence, we assume (without loss of generalitY) that n 

is at least t+2. 

Refer to lemma 7.2.2 • 

In the rest of the proof, we show how to alter serial 

histories in a way that preserves witness equivalence, but 

changes the number. of faults and the place of their occurrence. 

In any history H of U in which p fails to follow algorithm A, 

there is a first message specified by A that p fails to send. 

Also in any round of H in U in which p sends any messages, there 

is a last message sent by p (in the order specified by A ). we 

call an outedge e of P in a round of a history H significant if 
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algorithm A specifies a message to travel over that edge and this 

message is either the last message sent by p in this round of 

history or the first message specified bY in the entire history 

that p fails to send. Since we only orderly crash faults, the 

message on any significant edge is either correct or absent but 

not both. we show how to alter the. states of messages on selected 

edges from absent to correct, or Vice versa, producing witness 

equivalent initial sequences of histories and eventuallY 

producing a desired result. In particular, we are able to correct 

any faulty processor or cause any processor to fail in any round 

that does not violate the requirement that the resulting history 

be serial. 

To finish the proof of Theorem 7.2.1 consider the assumed history 

H, in which A reaces SBA in t or fewer rounds. Let v be the 

output value of the correct processors in H, let v• be a value 

different from v, and let J be the fault free (serial) history 

with v•. BY the agreement condition, all processors have to 

output v• in J. On the other hand, bY Lemma 7.2.4 Ht and Jt are 

witness equivalent. BY Lemma 7.2.2, H and J are output equivalent. 

This means that in J all processors had to outputd v, a 

contradiction. 



SECI'ION 4.7.2..: mE LOWER BOUND FOR ERA 

Next, we consider the question of early stopping for EBA and 

prove- a lower bound similar to t~rough stronger that the one in 

[7_11 J. In this sec.tion, we restrict attention to histories in 

which all failures are crash failures. Let A be a t-resilent 

agreement algorithm that is supposed to guarantee EBA in UCA,· t)~ 

Note that U<A,t) has a different defination in this section; 

faults in histories of UCA,t) may be crash faults rather than the 

orderly crash faults of Section 4.7.1. When we refer to a 

conservative extension in this section, we mean a history 

defined as in the previous section but Hith respect to the 

current u. 

Refer to chapter 2 fOr defination of critical history. 

For this section we require versions of the notions of serial 

and candibte that are parameterized by f, that is f-serial· and 

f-carididate <Refer to chapter 2). 

Theoren 7.3.1 gives the main result and proof of the theorem 

follows. 

As we argued in the proof of Theorem 7.2.1 a counterexample with 

t > n - 2 would provide a counterexample with t = n -· 2. Thus we 

assume (without loss of generality) that t < n - t. Suppose that 

algorithm A reaches EBA within min( t, f + 1 ) rounds in every 

history of U with at most f faults. 
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First ~e give a strainghtfor~ard derivation of a contradiction 

in the case f = o. Assume A is a t-resilence agreement algorithm 

that uses only min( t, 1 ) rounds to reach EBA in any history ~f 

U ~iith no faults. If t = 0 then processors send no messages to 

other processors: othe~ise ~hen there are no faults, processors 

send messages to other processors only in round 1 and all 

processors send messages to other processors only in round 1 and 

all processors give the input value as output in round 2. Let HO 

be the preliminary round that gives input 0 to the origin and let 

H be its conservative extension. Each correct processor of H must 

give output 0 ·in round min( r + 1, 2 ). Let KObe the 

preliminary round that gives input 1 to orgin and let k be its 

conservative extension. Each correct processor of K must give 

output 1 in round min( t + 1, 2 ). In at least one of Hand K the 

origin must send at least one message in round 1, for other~ise 

any processor except the origin ~ould have identical vie~s in the 

t~o histories. Thus, t must be greater than o. Without loss of 

generality, assume that th origin sends a message to processor p 

in round 1 of H. 

Let J1 be identical to H1 except that the origin fails in J1 

after sending only its message to p and let J be the conservative 

extension of J1. Clf the origin sends only one message in round 1 

of H; then let J=H). Then J has at most one creash fault and is a 

history in u. No~ PH1=PJ1 so p gives output 0 in round 2 of both 

H and J. Thus, any correct processor in J must eve~tually give 

output o. Since t>O and n-1>t, ~e have n.2. Hence there is a 

Processor q that is neither the origin nor p. If the origin sent 
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no message to q in round 1 of K, then we would have nor p. If the 

origin sent to message to q in round 1 of k, then we would have 

qK1=qJ1. But q gives output 1 in round 2 of K and q gives output 

o in some round of J. Therefore the origin must send a message to 

q in round 1 of K. Let L1 be identical to K1 except that the 

origin fails in round 1 by sending,only its message toP (if any) 

and let L be the conservative extension of L1. Then L has one 

crash fault and is a history in U Since PK1 = PL1, P gives output 

1 in round 2 of K and L, so any correct processor of L must 

eventuallY give output 1. Since p sends no messages to other 

processors after round 1 in any of the histories H, j, K, and L, 

we have qj = qL. But this contradicts the fact that q must output 

0 in J and 1 in L. 

Now we assume f <= 1. Since we assume n- 1 > t, there are at 

least two correct processors in any history of u. In any 

history of U with at most f faults there can be no critical edge 

in round min( t, f + 1 ) because all correct processors have 

stopped by round min(t, f + 1 ) (giving their outputs bY min( t + 

1, f + 2 ) ) and changing a value over any single edge cannot 

affect the output of more than a single correct processor. we 

first show that in any f-serial hstory there is no critical edge 

in round f from a processor that is an f candidate in round. Then 

we show that all f-serial histories, including all histories with 

no faults, are output equivalent. As in the proof of Theorem 

7.2.1, we then argue that histories with distinct inputs and no 

faults must have the same outputs contradicting part (ii) of the 

definition of agreement. ImPlies contradiction, Thus the proof. 
(refer to Lemma 7.3.2 and 7.3.3). 
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SECTION 4.7.3: mE EBA ALGORITBH 

In this section, we describe an algorithm for eventua{ Byzantine 

agreement that achievs the lower bounds of the previous sections, 

provided that n is sufficient larger than t. The algorit8m will ---
tolerate up to ·t Byzantine faults. ewe no longer restrict 

attention to crash fa~lts.) The key to understanding this 

algorithm is the notrion of separation, which ~ill be described 

more formally _belo~. Informally ~hen a faulty processor sens 

different information to t~o sunbsets f correct processors, it 

seprates one set from another. The algorithm keeps track of t~o 

rounds of informtion exchange at a time, so a fault that 

separates from each other in one round ~ill be discovered by all 

correct processors in the next round. In order to avoid discovery 

bY all correct processors, a fault may only separate from others 

a set of the size of the number of unkno~n potential faults that 

must be tolreated. 

2 
Thus, t faults cannot separate more than t correct processors 

from other correct processors without at least one of them 

discovered The idea behind the algorithm is that ~hen n is 

2 
larger than maxC4t, 2t_- 2t +2), this algorithm ~ill allo~ correct 

processors to obtain the agreement value at the end of any value 
0 

at the end of any round in ~hich no fqult gives itself a~ay and 

to stop within one additional round. 
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Recall that ~e count only the rounds of information exchange 

among the processors. The preliminary input and final output 

rounds are only used to simply the description of the algorlithm. 

we use the follo~ing notation: 

p denotes the set of names of participooting processors. 

s the name Of the origin, 

X a symbol not in P and 

v the set of POSSible input values. 

Let 0 be an element of v, 
let • a special value not in V (representing "undefined") 

and let V' be the union of V and {•}. 

To run the algorithm, each processor maintains a data structure 

consisting of t~o type of variables; variables containing values 

from the set V' and variables containilng sets of processor names. 

For each othe strings s, ps, and pqs, ~here p and q run over all 

the elements of p, ~e associte a variable of the first type. The 

values stored in these variable ~ill be interpreted as 

representing information received from the appropriate processors~ 

Thus, for example, the value stored in swill be interpreted as 

the value sent by the origin of·the agreement. The value stored 

in qs ~ill be intepred as the value q said that q said that s 

sent to it. Notice that s denotes both the origin and the 

variable associated ~ith it. The pseudocode of the algorithm uses 

s only as a variable and not as a name for the origin. 
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With the string X and with pX, for every p in p, we associate a 

variable of the second type. Values stored in strings ending in X 

will be interpreted as representing information received from the 

processors about faults. Thus, the set stored in X will be a set 

of processors known to be faulty. Thus, the set stored in X will 

be a set of processors kknown tobe faulty. The set stored in qX 

will be the set of processors q claims to be faulty. 

~e refer to the variable as strings. 

Strings ending in s will be initialized to value o. 
Strings ending in X will all be initialilzed to the empty set. 

We use the following convention for naming sets of strings: 

Let Q be any subset of p, let p be in p, and let R be any name 

for a set according to this convention. Then 

Qs :;: {qs q is in Q}, 

QX :: { qX q is in Q}, 

PR :: { pr 1r is in Rh and 

QR - {qr lq is in Q and r is in Rl -

Thus, for. example, Ps is the set of strings of length 2 that end 

with s, and PPs is the set of strings of length 3 that begin 

with P and end with s. 



Here, we introduce a simple one round process that is the heart 

of many agreement algorithms. We give this process the name ROUND. 

Each processor executes ROUND during every round from round 3 

until it stops. we also introduce a variant of ROUNP called ROUND 

2 that is executed in round 2 and collects the orignal information 

in ps. Round has two functions: 

<1) to exchange information on Ps with all other processors to 

produce values for PPs that are then reduced to values for Ps 

(2) to exchange information on X with all other procesor to 

produce values for PX and to use PPs and PX to discover 

faults. 

It is expexted to operate synchronously with all participating 

processors sendilng information to all and then receiving 

information from all. If two processors are correct, it is assumed 

that their information is correctly exchanged. It uses two 

auxilliary processors, DETECT and REDUCE, which are defined below. 

we assume that a processors sends messages to itself and process . 

them as part of all the messges it receives. 

Note that in ROUND 2 each processor sends the value it has stored 

in s and receives the corresponding values from all processors. 

It stores the value received from processor p 1~ ps. Thus, 

ROUND2 has the instruction "RECEIVE ps from each p in P." 



The action of each participating processor executing ROUND2 is 

as follo~s: 

ROUND2: /*for round 2*/ 

begin; 

SEND s to all processors; 

RECEIVE ps from each p in p; 

(if ps is not received from p then set ps := s) 

(if Ps does not contain at least n-t identical values 
then put the origin in X;) 

end ROUND2. 

Note that in ROUND each processor sends the value it has stored 

in Ps and X to all processors and then receives corresponding 

values from every processor. The values received for Ps and X 

from processor p are stored in pps and PX respectively. Thus 

ROUND has the instruction, "RECEIVE pps, PX from each p in P." 

The action of each participating processor executing ROUND is as 

given on the next page. 
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ROUND: !•for rounds after round 2*/ 

begin; 

SEND Ps, X to all processors; 

RECEIVE pps, PX from each P in P; 

(if pius already in X 
then default its values for pps to 0) 

(if p is not already in X but it does not send pps and PX 
then for each q in p set pqs:=• and leave PX unchanged) 

DETECT; 

for each p and q in p if pqs=•then st pqs :=s; 

REDUCE; 

end ROUND 

A correct processor may put the name of the origin in X during 

the execution of ROUND2, qut only if Ps does not contain n-t 

identical values so that the origin must be faulty. In later 

rounds, the process DETECT is the only ~ay correct processors add 

names to the set of kno~n faulty processors kept in x. DETECT is 

designed so that correct processors ~ill never ddd· homes of 

correct processors to x, and therefore, at any time the largest 

possible number of faulty processors that a gilven correct 

processors has not discovered is t- I X 1. 
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Since correct processors may stop at different times - the 

difference can be at most one round as will be seen later-one has 

to take care that a correct processor that has already stopped 

and therefore does not send messagesw anymore is not considered 

to be faulty. This is achiveved by first settitng ariable pqs for 

which no value from p has been reveived to the undefined 

value"*''. If p is not found faulty by DETECT, then pqs will later 

be set to the actual value of s. 

If more than t X processors claim that they have put 

proccessor q in theilr set of known faulty processors then any 

correct processor can safelyu put q in X (some other correct 

processors put q in its X first). 

In this algorithm, correct processors send identical data to all 

participants. A property that will be preserved bY REDUCE is 

that if p,q, and r are correct processors then the value stored 

in pqs and rqs by any correct processor will be identical. Thus 

if the multiset of values stored in CP-X) qs does not have at 

least n-t identical values then q must be faulty. 

The action of each participating processor executing DETECT is as 

given on the next page. 
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DETECT: 

begin; 

for each q in P-x; 

if I { p P is in P - X and q is in PX } I > t - I X I 

or p - X contains two sets A and B each of 

cardinalilty >= t such that Aqs and Bqs both have 

only values in v, but no value occurs in both Aqs 

and Bqs 

then add q to X and default the values of qps to o; 

end for~ each q; 

end DETECT. 

The process REDUCE uses values of PPs to update the value of Ps 

using a maJority vote~Let g be the smallest integer greater than 

n/2. In order to obtain the new value for string ps, a maJority 

vote is taken over the values of the string pps.Note that all 

these values are obtained directly from p. There is no voting by 

others here on what P said as it is doen by DETECT for q. If p is 

correct then it sends the same data <Ps) to each participant; all 

correct participants will have the same value for ps after 

REDUCE. These values ps determine the further action to be taken 

by each processor. If correct processors all have the same set 

Ps, then they behave identically and reach agreement very 

quickly. 



The action of each participating processor executing REDUCE is 

as follows: 

REDUCE; 

begin; 

for each p in p; 

if·pps has at least g strings with value v 

then ps:=v 

else ps :=o; 

end for each p; 

end REDUCE. 

For the remainder of this section we assume that : 

2 
n > max( 4t, 2 ( t - 1 ) ) ) 

so that the following properties are true of the maJoritY 

threshold. 

1 ) 29 > n; 

2) n - 2t >= g; 
2 

3) n - t - ( t - 1 ) >= g. 

We use these properties of g to show that undelete faults cannot 

cause correct processors xz to reach different values for s. 



The algorithm will be called EAGREE. It takes a value as input 

in round o. If no value is received the string s is left with its 

initibl value o. we use the existence of a value other than 0 

stored ins inround 0 to indicate that the processor executing the 

code is the origin. All processors execute the same code. If a 

processor has a value other 0 stored in s at the end of round o, 
then it sends that value to all processors in round 1. we ~ssume 

that no processor except the origin can have a value stored in s 

other than o. If the input value is o, the origin acts Just like 

the other participants and sends nothing. Receiving nothing from 

the origin in the first round is interpreted as receiving 0 from 

the origin. This is Just a convenince all processors know the 

name(s) of the origin. This simply allows us to write EAGREE in a 

uniform way without mentioning exPlicitlY the same of the 

processors executing the code. Correct processor using EAGREE 

reach EBA by round min( f + 2, t + 1) At the end of the algorithm 

the variable 

value. Note 

s at 

that 

each correct processor will hold the output 

round 0. and the output round involve no 

information exchange among the processor and are not counted when 

we discuss the number of rounds required to reach agreement. 

The action of each participating processor executing EAGREE is 

as given on the next page 
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EAGREE: 

begin ; 

1: =o; I• round 0 - the input round •I 

RECEIVE s AS INPUT; 
(if nothing is received leaves unchanged) 

i: =1 ; 

if s is not equal to 0 then SEND s to all processors; 

RECEIVE s; 

(if nothing is received from the origin, 
leave s unchanged) 

do i : =2 to t+1 

if i=2 then ROUND2 else ROUND; 

if Ps has at least g identical values v 

then s := v; 

else s := o; 

if Ps has at least n-t identical; values 

then leave this do loop; 

end do; 

i=i+1; 1• output for this processor •I 

OUTPUT s; 

end EAGREE. 

Recall that 2g >n so that this algorithm is well defined. 

Refer to Theorem 7.4.1, the proof of the theorem will be provided 

in the following series of lemmas 7.4.2 to 7.4.9 



We say that value v is per.Sistent at round 1, if at least 9 

correct processors have stored in s at the end of round 1. Recall 

that a processor is said to stop in round i, if the only action 

it takes in round i+1 is to output its value. we say that a 

processor in convicted in round i if it has at least n - t 

identical values stored in Ps at the end of round 1. Note that if 

a correct processor is convicted in round i, then it stops in 

round i. Also if a correct processor stops in round i < t + 1, 

then it is convinced in round i. Ho~ever, a processor may stop in 

round t + 1 ~ithout being convicted. In this case it gives its 

value for s as output ~ithout having n - t identical values in ps. 

In order to keep any value from becoming persistent in a round, 

the faults must send distinct sets of values Ps to different sets 

of the correct processors. In fact, these sets Ps must reduce to 

distinct values. We say that a fault P separates sets A and B of 

.correct processors if it sends them sets ps so that after REDUCE, 

no member of A has a value stored in Ps that is same as that of a 

member of B. We call any set of correct processors a ~itness set 

if its cardinalitY is at least t and at most n - 2t. 

2 
If n > max( 4t, 2< t + < t - 1 ) ) ) , then using Eagree the 

correct processors reach eventuallY agreement by Leema 7.4.9 

<condition (i)) and Lemma 7.4.5 (condition (ii)). BY Lemma 7.4.8 

and its specification EAGREE requires at most min( f + 2, t + 1 ) 

rounds of information exchange. This completes the proof of 

Theorem 7.4.1. 



Cf)NCLUSif)N AND FUTURE DIRECTION 

The problems of obtaining interactive consitency appears to be 

quite fundamental to the design of fault tolerant system in which 

executive control is distributed. In the SIFT [1_4] fault-tolerant 

computer under development at SRI, the need for an interactive 

consitency algorithm arises in at least three aspects of the 

design: 

C1) synchronized of clocks 

C2) stabilization of input from sensors, and 

(3) agreement on results of dignostic tests. 

In the preliminary stages of the design of this system, it was 

naively assumed that simple majority voting schemes could be 

devised to treat these situations. The gradual realization that 

simple majorities are insufficent led to the results reported 

in the first module of chapter 4. 

The algorithm presented in module 1, are intended to demonstrate 

that such algorithms exist. The construction of efficient 

algorithms and algorithms that work under the assumption of 

restricted communications is a topic for future research. 



Other questions that are considered include those of reaching 

approximate aggrement and reaching agreement under various 

probabilistic assumptions. 

In module 2 ~e could obtain a solution to weak Byzantine Generals 

problem, ~hich is a weaker version of original Byzantine General 

Problem 1 metaphor. Byzantine general metaphor is essentially the 

same prob 1 em appear~ed in modu 1 e .1. 

In module 3, it has been shown that the problem of fault-tolerant 

cooperative computing cannot be solved in a totally asynchronous 

model of computation. This does not mean that such problems 

cannot be practicallY solved; rather, it means that a more 

refined modeyof distributed computing that reflects realistic 

assumptions about processor and communication timmings, is 

needed. These models were considered in modules 4 to 7. 

In module 4, probabilistic consensus protocols for asynchronous 

system with fair schedulers is considered • For a system with 

fail-stop processors, we showed that L< n+1 )/2..._j correct 

processes are necessary and sufficient for achieving consensus. 

In a system with malicious processes, we showed that ft2n+1 )/31 

correct processes are necessary and sufficient for achieving 

consensus. Finally asynchronous byzantine agreement protocol is 

given along with necessary proofs. 



In module 5, problem of approximate agreement on real numbers by 

processes in a disributed system, is presented. Simple 

approximation functions are used in t~o simple-to-implement 

algorithms for acheiveing approximate agreement one for a 

synchronous distributed system and the other for an asychronous 

system. 

The algorithms presented here have the undesirable property that 

the faulty processes by their actions in the first round can 

cause the range of values received bY correct processes to be 

arbitratily large, and hence can cause the time to convergence 

to be arbitratilY long. It appears that some of the ideas 

of[5_2J can also be used to obtain improved initialization 

rounds for the algorithms that eliminate this possibility. 

For future ~ork, ~e can state a variant of the approximation 

problem that uses a fixed number r of rounds and in ~hich e is not 

predetermined. Each process starts ~ith a real value, as before r 

rounds, the processes must output their final values. The 

validity condition is the same as before. The object of the 

algorithm is to ensure the best possible agreement, expressed as 

a ration of the ne~ diameter of the nonfaulty processes• values 

to the original diameter. For given n, t, and r, ~e ~auld like to 

kno~ the best ratio. 



In Module 6, using simple protocols, it is shown how to achieve 

consensus in constant expected time, within a variety of 

fail-stop and ommision failure models. Significantly, the 

strongest models considered are completely asynchronous. All the 

results were based on distributively flipping coin, which is 

usable by a significant majoritY of the processors. 

One limitation of the adversary that was crucial for the 

performance of the protocols in module 6 is that the adversary 

does not know the internal state of processors, even when they 

are made faulty. The reason for this requirement is that 

otherwise bY delivering all messages to one specific processor, 

the adversary can find out the identitY of the unique leader by 

examining the state of the receiving processor. The adversary can 

then block the messages of the unique leader from reaching all 

other processors. 

A simple modifiation of the protocols given in modeule 6, can 

make them immune to an adversary who can "peek into the memory'' 

of failed processors. The basic idea is that instead of sending a 

pair of (possibly encrypted) bits ("leader" bit, ''coin" bit), to 

all processors, a secret sharing scheme with threshold t can be 

used. The message to processor 1 will consist of the ith piece of 

the secret Suppose the adversary makes up to t processors 

faulty and gets to see the contents of their memory. This does 

not help in understanding the contents of any senders message. In 



particular the adversary cannot use these pieces to identity the 

unique leader. To reconstruct the secret, all processors later 
~ 

brodcast all the piece of secrets that they have received. The 
A 

adversary cannot prevent such reconstuction of the secret of any 

nonfaulty sender, since any t+1 pieces can be used. It appears 

that this approach can be carried out in all va ants of the 

adversary model that ~ere considered in module 6. This ~auld 

yield consensus protocols ~ith constant expected running time for 

t < $n, ~hich tolerate an adversary ~ho kno~s the internal state 

of up to t failed processors. 

Finally ~e note that our protocols of module 6 do not ~ork in 

the presence of even a single Byzantine failure. A faulty 

processor can simply claim, at every round, that is a leader thus 

rendering the coin tossing subroutine ineffective. It remain an 

intersting question to obtain Byzantine ag¢reement p~rocedures 

that are both as simple as efficient. 

In module 7, t~o kinds of Byzantine Agreement are defined and 

compared. These are Eventual Byzantine Agreement <EBA) and 

Simultaneous Byzantine Agreement <SBA). The lo~er bo~ds of these 

algorithms are also sho~n in the module. Several unauthenticated 

deterministic EBA algorithms are kno~n; but none attains the 

lo~er bounds sho~n in this module,· for all n and t ~ith n > 3t. 



The question even remains open for authenticated algorithms: Is 

there a deterministic EBA algorithm that attains the lo~erbounds 

for all n and t with n>3t when the faults are restricted not to 

corrupt a 

restricted 

attainable: 

EBA that 

given authentication protocol? When the faults are 

to crash, however, the lower bounds are known to be 

Fishcher and Lamport provide a simple algorithm for 

acheives early stopping by round f+2 CM. Fischer and 

L.Lamport, private communications). 

Finally, I conclude with the note that, his field is relatively 

new, and considerable work in the field started Just a decade 

back. Much work needs to be done here, to solve the problems 

related to the field. In the text given above, Some ideas have 

been given for future research which can be exploited. 
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