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ABSTRACT 

Many distributed systems replicate data .. ··- ,··· 

tolerance, availability and In a 
,· .. ,'l •.;· 

one copy distributed database each data item i~ stor~d at 

exactly one site. In a replicated database, ~ome ctCita it~ID.$ 

are stored at multiple sites. In such systems~ C1 ~o.gica1 

update on data item results in physical upqa1;:e qn a nuJD.}Je~ 
·-~ .:• .. '. ··: '· 

of copies. By storing important data at m';lJ~~pJ..e ~,~~~s t}l~ 

distributed database system can op~rat~ w~e.n t:pq:ugb. $01Ue 

sites have failed. 

Recently several strategies have bee~ ~~opo~ed f()r 

transaction processing in replicat~d .~~~~FfP:'ttr<i p~ta):)ase 

systems. In this report some of the st_:ra:tegi~!? hCiye bee11 

surveyed. At first the motivation to r~pl~cation is 

discussed. Then, the problems and correctn~§§ f?f~terion ;ire 
. . ·· .. ·, . .. ' . 

presented. Next, different strategies are pres,ente!;}, aft~r! 

these are compared in the light of cos,t_, .Ci~hieving hi_g,}l 

availability and fault tolerance. 

A new algorithm is discuss•ed based .. c:>~ ~e~~c:~~_inCJ ,the 

transaction after visiting majority of sites. Tbe alg.o,ri~PJll 

is discussed with proof and examples. 
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CHAPTER 1 

CONCURRENCY CONTROL AND RECOVERY IN A DISTRIBUTED 

REPLICATED DATA BASE ENVIRONMENT 

1.1 INTRODUCTION 

Developments in technology have made it possible to 

inter-connect a number of computer systems to form a 

computer network. The problem of distributing a database 

among the different computer systems or sites to form a 

distributed database system is an active research area. 

1.2 DISTRIBUTED DATABASES 

The main difference between centralized and distributed 

data base systems is that, in the former the data resides in 

one location while in the later the. data resides in the 

several locations. There are number of differences between 

supporting a centralized database and distributed database 

such as transaction execution, reliability of processing, 

and problems in supporting distributed database are listed 

below. 

Consider a distributed database, each data item 't' 

having only one 

[ESWA76] (which 

copy at any site. If any transaction 

issues reads and writes) needs that data 

item then, the message must be communicated to that site and 

response is also delayed. A lot of communication overhead 
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on the communication (telephone or microwave) system. In 

this, both read and write requests need equal communication 

overhead, even though read request does not modify the 

database (which is not in case of replicated one). That is, 

the request is communicated to that site where a data item 

resides, and response is also transmitted to the site, where 

the request is originated. 

The second aspect is that of reliability problem. In a 

single copy database system, (DBS) if site crashes, then the 

data at that site is lost. The transactions which depend on 

the data cannot be executed, and the system must be shutdown 

until recovery. This is undesirable in the case of many 

applications such as in airline reservation system, railway 

reservation system, telephone operating systems. These and 

similar applications, must be supported with uninterrupted 

service. 

The other problem is that of improving response time. 

For example, if the number of transactions needs single item 

(by maintaining two phase locking or time stamping)l the 

queue would be very long, and response is delayed 

considerably. 

1.3 DATA REPLICATION 

One of the approaches to the above problem is that data 

is stored reduntantly at various sites. But there is a lot 
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of over head on storage. Can we tolerate this extra burden? 

Consider the recent advances in technology [HEVMBB]. 

* Hardware advances include high speed VLSI processors, 

large capacity memories, rapid magnetic and optical 

disk drives and sophisticated input/output devices. 

These components enabled the developments of micro 

computer work stations with impressive capabilities to 

serve as a distributed system sites. 

* Communication and networking advances include rapid 

media, such as optical fibre, data transmission 

microwave and satellite. 

* Software advances allowed most application systems to 

function efficiently and correctly on distributed 

networks with multiple users. 

In addition, 

technologies into 

developed and 

community. 

standards for integrating all the above 

a complete distributed system are being 

accepted by most of the international 

With these advances, we can go for replicated data base 

systems (RDBS) . 

Basically, replication means that, data items are 

stored redundantly at geographically disperSed locations. 

In replicated environment, read can access at local site 
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which is nearest. But for write operation, each copy must be 

updated. That is, read operations executed efficiently. 

But, for write operations there is a lot of communication 

overhead. 

1.4 ADVANTAGES OF REPLICATION 

The main advantages for going replication are 

reliability, increase in parallelism and performance. 

* Reliability:- There are many types of failures. For 

example, node failures, communication link failures, 

malevolent failures etc. Some of the failures are 

detectable, while others are not. We should know which 

type of failures the system is protected against and 

also how many. In the ROBS if one site fails the 

remaining 

Transactions 

failure the 

sites are able to continue operating. 

can be run at any site. 

transactions which belong 

After detecting 

to that failed 

site can be forwarded to other sites. Thus the failure 

of the site does not necessarily imply the shutdown of 

the system. 

The failure of any site must be detected by the 

system, then appropriate action may be needed to 

recover from failure. The system no longer uses the 

services of failed site. Finally, when the failed site 

recovers (or repaired) mechanisms must be available to 
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integrate it 

the ability 

smoothly back into the system. In ROBS 

of the most of the system to continue to 

operate, despite the failure of the one site results in 

increase in availability. Availability is crucial for 

real time applications. Loss of access to data, for 

example in airline may result in the loss of potential 

ticket buyers to competitors. 

* Increased parallelism:- In case, where the majority of 

access to the data items results in any reading of the 

data item, the several sites can process queries 

involving that data item, in parallel. The more 

replicas of data item there are the greater the chance 

that needed data is found in the site, where the 

transaction is being executed. Hence, data replication 

minimizes data accessing overhead. Data copies are 

placed to provide acceptable availability to all system 

sites that are closely located. 

Till now it is clear as to how the replication 

technique is superior to single copy distributed systems. 

However, there remains a fair amount of overhead and 

problems involved in designing and implementation phase. 

The benefits and cost of data replication are very difficult 

to measure. 
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1.5 PROBLEMS AND ISSUES OF REPLICATION 

Some of the problems of replication technique are 

presented below. 

Redundant update problem:- The system must ensure that all 

replicas of data item 'x' are consistent [DAVI86]. But, the 

inherent communication between sites maintain copies of 

database makes it impossible to ensure that all copies 

remain identical at all times when update requests are being 

processed. The principal goal of update mechanism is, to 

guarantee that updates get applied to the database copies in 

a way that, preserves the mutual consistency [STON83] of the 

collection of database copies as well as the internal 

consistency or each database copy. Otherwise, erroneous 

computations may result. The notion of database consistency 

has two aspects. 

Mutual consistency of redundant copies 

The update transactions incur greater overhead to 

ensure mutual consistency. Mutual consistency requires all 

copies of database must be identical. This means whenever a 

data item is updated, then update must be propagated to all 

sites containing, replicas, resulting in an increased data 

maintenance overhead. For example, in a banking system 

where account information is replicated in various sites, it 

is necessary that transactions must ensure, the balance in a 

particular account agrees at all sites, ·to a common value. 
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consider a banking database that contains a checking 

account and saving account for a certain customer, with a 

copy of each account stored at both sites A and B. Figure 

1.1 shows the value of accounts at site A and site B. 

Site 'A' 

Checking: Rs.100/-

Saving Rs.200/-

Figure 1.1 

Site 'B' 

Checking: Rs.100/­

Saving Rs.200/-

Suppose two update requests come at the same time at site A 

and site B. 

R1 : Checking= checking -50; 

Saving = saving + 100. 

R2 : Checking = checking +100. 

Each update is based on the database state in Figure 

1.1. If both updates are processed at their home sites 

there is no ordering then the new state of the database is 

shown in the Figure 1.2 

Checking = 50 Checking = 200 

Saving = 300 saving = 200 

Figure 1. 2 
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In the figure 1.2, the value of each account is not same in 

both sites. So, the mutual consistency of database has been 

disturbed. 

Internal consistency 

The internal consistency requires that each copy of the 

database remain consistent within itself just as a non-

redundant database must. It concerns the preservation of 

invariant relations that exist among items within a 

database. Maintaining internal consistency is overhead as 

compared to single copy database. Most of the responsibility 

for the internal consistency of database must rest with the 

application process which updates it. The update mechanism 

should not destroy the internal data relationships of the 

database. 

Consider the same banking database as shown in the 

figure (1.1) 

Further assume that the relation 

(Checking + saving) > = 0 

must be preserved for the database. 

Consider the update requests 'R3' and 'R4' 

R3 : Checking 

R4 : Checking 

= Checking - 200; 

= Checking - 150; 

Each of which is based on the initial database state. 

If both R3 and R4 are applied regardless of the order of 
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application, the internal consistency of the database (the 

~~{relation (checking + saving) > = 0) will be destroyed. 

Hence, one of the requests must be rejected, in order to 

preserve the internal consistency of the database. 

Concurrency control 

Concurrency control [BERN81] is the activity of 

coordinating concurrent accesses to a database in a 

distributed database system. Concurrency control permits 

users to access a database in a multi-programmed fashion 

while preserving the illusion that each user is executing 

alone on a dedicated system. The main technical difficulty 

in attaining this goal is, to prevent database updates 

performed by one user from interfering with database 

retrievals and updates performed by another. Read and write 

actions issued by users, concurrently can corrupt data 

correctness. 

The goal of concurrency control is to prevent 

interference among users who are simultaneously accessing a 

database. Let us illustrate the problem with two examples. 

Example #1: Suppose two customers simultaneously try to 

deposit money into the same account. In the absence of 
,... 

concurrency control, the two activities could interfere. 

Initially the balance in the account is Rs.500/-. 
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Execution of customer 1 Execution of customer 2 
Read (balance) ~ Read (balance) 
Add.Rs.lOOO/- ~~~ Rs.2000/-

a~ . a 
~B 

~ 

B 
Figure 1.3 

The · two machines handling the two customers could read 

the account balance at approximately same time, compute new 

balance in parallel and then store new balance back into the 

database. The net effect is incorrect (Figure 1.3). 

Although two customers deposited the money, the database 

only reflects one activity; the other deposit is lost by the 

system. 

Example #2: Suppose two customers simultaneously execute 

the following transactions with the initial database state 

given in figure 1.4. 

Customer 3: Move Rs.1000/- from saving account to checking 

account. 

-
Customer 4: Read the total balance in saving and checking. 
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J 

Execution of customer 3 

s 2000 
c 500 

Read (saving) ~ 

Subtract 1000 

Write (result) 

Read(checking) 

Add 1000. 

Write (result) 

J 

~ 
..._____ - s 1000 
~ c 500 

/ 
B 

J 
~ ~I ~~~~ l, 

Figure 1. 4 

Execution of 9ustomer 4 

(saving,checking) 

s 1000 
c 500 

In the absence of concurrency control these two 

transactions could interfere. The first transaction might 

read the saving account balance. Subtract Rs.1000/- and 

store result back into the database. The second transaction 

might read the savings and checking account balance and 

print the total. Then, the first transaction might finish 

the funds transfer by readings the checking account balance, 

adding Rs.1000/-, and finally s·toring the result in the 
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database (Figure 1.4). In this, the final value placed into 

the database by this execution is correct. But, still the 

execution is incorrect because the balance received by the 

customer 4 is Rs.1000/- short. 

The above examples don't exhaust all possible ways 

in which concurrent users can interfere. However, these 

examples are typical concurrency control problems that 

arise in distributed DBS. Concurrency control methods such 

as two-phase locking [KORT86] are expensive and may lead to 

system dead lock. 

However, the problem of controlling concurrent updates 

by several transactions to replicated data is more complex 

than the centralized approach to concurrency control. 

1.6 FAILURES AND.RECOVERY 

failures and transaction abortions due to System 

concurrency 

consistent 

failure 

complex 

and 

than 

control requires recovery methods that ensure 

recovery [KOHL81] to all data copies. The 

recovery problem for a distributed DBS is more 

that for centralized DBS. More kinds of 

failures must be considered. Communication links cause new 

kinds of failures such as partition failures. 

A distributed 

components: sites 

system 

which 

consists of two kinds of 

process information, and 

communication links, which transmit information from site to 

12 



site. 

where 

A distributed system is commonly depicted as a graph 

nodes are sites and undirected edges are bi~ 

directional communication links as shown in the Figure 1.5. 

Figure 1.5 

We assume that the graph is connected, means that there 

is a path from every site to every other. Thus, every two 

sites can communicate either directly via link joining them, 

or indirectly via a chain of links. The combination of 

hardware and software that is responsible for moving 

messages between sites is called a computer network. 

A distributed system may suffer from the same types of 

.. failures that a centralized system does. (for example: memory 

failure, disk crash). There are however additional failures 

that need to be dealt with in a distributed environment, 

including: 

a) The failure of a site; 

b) The failure of link; 

c) Loss of message; 

d) Network partition. 

13 



In order to be robust, the system must therefore detect 

any of these failures, reconfigure the system so that 

computation may continue, and recover, when a processor or 

link is repaired. 

site failures 

When a site experiences a system failure, processing 

and contents of volatile storage are 

this case, we will say the site has failed. 

stops abruptly 

destroyed. In 

When the site recovers from failure it first executes a 

recovery procedure, which brings the site to a consistent 

state so that, it can resume normal processing. 

In this model of failure, a site is always either 

working correctly or not working at all; it never performs 

incorrect actions. This type of behaviour is called 

fail-stop [SCHL88], because sites fail only by stopping. 

Even though each site is functioning properly or has 

failed, different sites may be in different states. A 

partial failure is a situation where some sites are 

operational while others are down. Total failures occur 

when all sites are down. 

Partial failures are tricky to deal with. Mainly this 

is because, operational sites may be uncertain about the 

state of failed ones. Atomic commitment protocols are 

designed to minimize the effect of one sites failure on 

14 



other site's ability to continue processing. 

Communication failures 

Communication links are also subject to failures. Such 

failures may prevent processes at different sites from 

communicating. A message may be corrupted due to noise in a 

link; a link may malfunction temporarily, causing a message 

to be completely lost; or link may be broken for a while, 

causing all messages sent through it to be lost. 

Message corruption can be effectively handled by using 

error detecting codes, and by retransmitting a message in 

which the receiver detects an error. Loss of messages due 

to transient link failures can be handled by retransmitting 

lost messages. If a message is sent from site A to site B, 

but, the network is unable to deliver the message due to 

broken link, it may attempt to find another path from A to B 

whose intermediate links and sites are functioning properly. 

Error correcting codes, 

rerouting are usually 

protocols. 

Network partitioning 

message 

provided 

retransmission, and 

by computer network 

Unfortunately, even with automatic routing a 

combination of site and line failures [BERN87] can disable 

the communication between sites. This will happen if all 

the paths between two sites A and B contain a failed site or 

15 



a broken 

partition. 

link. This phenomenon is called a network 

In general a network partition divides the 

operational sites into two or more components, where every 

two sites within a component can communicate with each 

other, but sites in different components cannot. Figure 1.6 

shows the partitioning of the system of Figure 1.5. The 

partition consist of two components, {B,C} and {D,E}, and is 

caused by the failure of site A and links (C,D) and (C,E). 

Figure 1.6 

As sites recover and communication links are repaired, 

communication is re-established between sites that could not 

previously exchange messages, thereby merging the components. 

For example, in figure 1.6, if site A recovers or if either 

link (C,D) or (C,E) is repaired, the two components merge 

and every pair of operational sites can communicate. 

It is generally not possible to differentiate between 

link failure and network partition. We can usually detect 

that a failure has occurred. 

16 



Security 

Replication of data increases the security risk of 

exposing sensitive information and of providing an 

opportunity for the corruption of data. 

Although there is a considerable overhead with 

1' t. ) rep 1ca 1on;,, on the whole, it enhances the performance of 

read operations and increases the availability, parallelism 

and reliability. Because of advances in technology people 

are working for better replicated techniques to minimize the 

overhead. 

1.7 CORRECTNESS CRITERIA 

There are two correctness criteria for replicated 

databases. 

(1) concurrency control 

When a set of transactions execute concurrently, the 

operations may be interleaved. We model such an execution 

by a structure called a history. A history indicates the 

order in which the operations of the transactions executed 

relative to each other. Since some of these operations may 

be executed in parallel, a history is defined as partial 

order [BERN87]. If transaction 1 T. 1 specifies the order of 
1 

its operations, there two operations must appear in that 

order in any history that includes 

17 
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require that a history specify the order of all conflicting 

operations that appear in it. 

Two operations are said to conflict if they both 

operate on the same data item and at least one of them is a 

write. Thus read(x) conflicts with write(x), while write(x) 

conflicts with both operations read(x) and write(x). If two 

operations conflict, their order of execution matters. The 

value of 'x' returned by read(x) depends up on whether or 

not that operation proceeds or follows a particular 

write(x). Also, the final value of 'x' depends on which of 

the write(x) operations is processed last. 

To illustrate, consider the two transactions. (r = 

read, w = write, c = commit) 

T 2 : r [z]-----w [Y] 
2 ~2 

w2 [x]----->c2 . 

The possible history (H1 ) is shown in Figure 1.7. 

w1[y] 

/ ~ 
r 1 [x]--> r 1 [y] c 1 

\ 

~w1 [x]/' 
/ r [z]------w [y] , 

/ 2 2,~ 
w2 [x]----------------------------->c2 

Figure 1.7 

18 



Consider figure 1.3 suppose two transactions are 

executed one at a time in the order 'customer 1' followed by 
fl~ 

customer 2. The execution sequence is as shown in 1.8(a). 

Customer 2 after Customer 1 customer 1 after Customer 2 

Road (balance) Road (balance) 

Add Rs.1000/- Add Rs.2000/-

Read (balance) Read (balance) 

Add Rs.2000/- Add Rs.1000/-

(a) (b) 

Figure 1.8 

The final value of balance is correct. Similarly if 

the transactions are executed one at a time customer 2 

followed by customer 1, then corresponding execution 
. . y\~ 

sequence 1s shown 1n 1.8(b). 

The execution sequences described above are called 

serial histories. Thus, a serial history represents an 

execution in which there is no interleaving of the 

operations of different transactions. Each transaction 

executes from beginning to end before the next one can 

start. 

The histories described above are called serial 

histories. When serial transactions are executed in 

parallel, the corresponding history need no longer be 

serial. But not all parallel executions result in an 

incorrect state. 
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Each transaction when executed alone, transfers the 

system from one consistent state to another consistent 

state. A natural way to define a correctness in a 

concurrent system, is to require that the outcome of 

processing a set of transactions concurrently, be the same 

as one produced by running these transactions serially in 

the same order. A system that ensures this property is. said 

to ensure serialiability [BERN79]. 

In order to formalize the concept of serializability, 

we need to define a notion of equivalent histories [BERN87]. 

We can say two histories are equivalent(=) if 

1) They are defined over the same set of transactions and 

have the same operation; and 

2) They order conflicting operations of non-aborted 

transactions in the same way that is, for any 

conflicting operations lp. I and lq, I belonging to 
1 J 

transactions T. and T. (respectively if P· <H q. then 
1 J 1 J 

p. <H q .. 
1 J 

Jfwl[~ 
H3 = rl[x]-->rl[~] )fl 

w
1

[y] 

t· 
r2[~]-~---->w2[y] 

w [x]-------------->c 2 2 

Figure 1. 9 
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j 
4 
) 
) 

Underlying this definition, the outcome of a concurrent 

execution of transactions depends only on the relative 

ordering of conflicting operations. To see this observe 

that executing nonconflicting operations in either order has 

the same computational effect. Conversely, the 

computational effect of executing two conflicting operations 

depends on their relative order. 

For example, given the three histories shown in 

Fig.1.9, H
1 

= H2 but, H3 is not equivalent to either. 

We can determine whether a history is serializable by 

analyzing a graph derived from the history called a 

serialization graph. Let H be a history over T={T1 , ... ,Tn}· 

The serialization graph(SG) for H, denoted SG(H), is a 

directed graph whose nodes are the transactions in T that 

are committed in H and whose edges are all T.-->T. (ifj) 
1 J 

such that one of the T. 's operations precedes and conflicts 
1 

with one of Tj's operations in H. For example: 

,.[x]~w3.[x]~c3 

H4 = r 1 [x)~~1[x]~1 [y)~c1 . ===>>SG(H4 ) = 

r2 [x]~w2 [x]~c2 

The edge T1 --> T3 is in SG(H4), because w1 [x]<r3 [x], 

and the edge T2 --> T3 is in SG[H4 ] because r 2 [x]<w3 [x]. 

Notice that a single edge in SG(H4) can be present because 



/ 

of more than one pair of conflicting operations. For 

instance, 

T. 's 
l. 

This 

Each edge Ti --> Tj in SG(H) means that at least one of 

operations precedes 

r:r~-~ ..... _ .. 

'--~-~ • ~·· .::!._ 

,. ' 
··;:·<y ;::._:,,-· 

and conflicts with one of T.'s. 
J 

suggests that T. should 
l. 

precede T. 
J 

in any serial history that is equivalent to H. 

If we can find a serial history, Hs' consistent with all 

edges in SG(H), then Hs =Hand soH is SR. We can do this 

as long as SG(H) is acyclic. 

The correctness criteria for concurrency control is, as 

long as SG(H) of the history of corresponding parallel 

execution is acyclic the database is is consistent. 

(2) Replication control 

In replicated database, each data item 'x' has one or 

more copies, denoted by xA, xB, .. , at different sites. 

Users interact with the system by running transactions that 

issues reads and writes on data items. 

But, as far as users are concerned they should not feel 

that complexity of replication. So, for the DBS managing a 

replicated database should behave like a DBS managing a one 

copy (non replicated) database. In a one copy database, 

users expect the interleaved execution of their transactions 
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to be equivalent to a serial execution of those 

transactions. since replicated data should be transparent 

to them, they would like the interleaved execution of their 

transactions on a replicated database to be equivalent to 

serial executions of those transactions on a one copy 

database. Such executions are called one copy serializable 

(1-SR). This is a goal of concurrency control for replicated 

data. 

The correctness criteria for replication can be 

explained by considering two types of histories: replicated 

data (RD) histories and one copy histories. 

Replicated data histories [BERNSS] 

Let T = {T, .. , T} be a set ·of transactions. To o n 
process operations from T, a DBS translates T's operations 

on data items into operations on the replicated copies of 

those data items. We formalize this translation by a 

function 'h' that maps each ri[x] into ri[xA]' where xA is a 

copy of x· I each w. [x] 
1 

copies xA1 , ... ,xAm of x 

(abort) into a .• 
1 

into wi[xA1 ], ... ,wi[xAm] for some 

(m>O); each c. to c. and each a. 
1 1 1 

A complete replicated data(RD) history H over T = 

(T0 , .. ,Tn) is a partial order with ordering relation< 

where: 

n 
1. H = h( U T.) for some translation function h; 

i=O 1 
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2. 

3. 

For 

then 

each T. and all operations p., c. in T., if p.<q., 
1 1 1 1 1 1 

every operation in h(p.) is related by< to every 
1 

operation in h(q.); 
1 

For there is at 

rj (XA] i 

4. All pairs of conflicting operations are related by <, 

5. 

where two operations conflict if they operate on the 

same copy and at least one of them is write; and 

If w. [X] 
1 

h(wi[x]}. 

W (X) 
0 \t 

<i ri[x] and 

For example 

h(ri[x)=ri[xA] 

consider the 

belongs to 

following 

T =w [y]-->c 
0 0 0 

T2=w2 [x]-->r2 [x]-->w2 [y]-->c2 

r3[~ 
T =r [x]-->w [x]-->c 1 1 1 1 T3=r3[y]-->c3 

Figure 1.10 

The database consists of data items x, y with copies 

xA' xB, Yc' y 0 . The following history, H5 (Figure 1.11} is 

an RD history over {T
0 

•• T3}: 

Figure 1.11 
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Two histories are equivalent (=) if they have same 

reads-form's relationship. 

A RD log is one-copy serializable (1-SR) if it is 

equivalent to one-copy history. 

One copy serializability is our correctness criterion 

for managing replicated data. 

An serializable RD history need not be 1-SR. The 

following example illustrates this fact. The transactions 

are: 

The history of above is: 

In any serial one copy-log over {T
0

, T1 , T2}, either T1 

or T2 must read from the other. But in the~, both T1 and 

T2 read from T
0

. Thus~ is not 1-SR. 

To ensure that an RD log is 1-SR, the DBS must ensure 

that each transaction reads from correct transaction i.e. 

the transaction it would have read from there had been only 

one copy. This notion is captured by a graph called a 

logical serialization graph (LSG) [BERN85], defined below. 

Given RD history H, Let 'G' be a directed graph whose 

nodes represent the transactions in ~· 

25 



G induces write order for ~ if all data items x, and 

transactions Ti and Tk (i f k} that write x, either Ti << Tk 

<< T .• 
1 

This definition just says that if two 

transactions write x, one transaction must precede the 

other. 

G induced a read order for~ is for all x:(1} if Tj 

reads x from T
1
., then T. << T.; and (2} if T. reads x-from 

1 J J 

Ti' Tk writes x(i,j,k} distinct}, and Ti << Tk' then Tj << 

Tk. This definition says that Tj follows the transaction, 

Ti' from which it reads x, and precedes all transactions, Tk 

that subsequently write x. 

One possible LSG for H5 is shown in the figure 1.12. 

If the LSG is acyclic then it is in 1-SR. H
5 

is z,cyclic so, 

it is not 1-SR.-

Figure 1.12 

Over all the main idea for correctness is one-copy 

serializability. An · execution of transactions in a 

replicated database is one copy serializable (1-SR}, if it 

is equivalent to a serial execution of the same transactions 
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in the nonreplicated database. A replicated data algorithm 

is correct if all of its executions are 1-SR. An execution 

is 1-SR if and only if it has an acyclic LSG. 

1.8 ORGANIZATION OF THE STUDY 

Chapter 2 

algorithms and 

presents the various replica 

brief discussions on them. 

control 

Chapter 3 

provides the details comparison of various algorithms which 

are discussed in chapter 2. This comparison is based on the 

cost in term of number of messages, recovery mechanisms in 

the case of site failures and partitioning failures, ratio 

of read requests and write requests and so on. Chapter 4 

represents new replica control algorithm. In this 

transaction visits majority of sites before execution. 

Chapter 5 concludes the report. 

bibliography is given. 
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CHAPTER 2 

REPLICA CONTROL ALGORITHMS 

2.1 INTRODUCTION 

Concurrency control in replicated environment is 

more complex than centralized one. The basic requirement 

for any replica control algorithm is that databases should 

mutually and internally remain consistent. In addition we 

assume that the algorithm should robust with site and 

partition failures. So, the design of replica management 

algorithm is a notoriously hard problem. 

This chapter deals with the description of various 

replica control algorithms. Here, these are described in 

briefly, to highlight the central idea behind existing ones. 

Mathematical description is avoided in order to describe 

these in simplified form. We have further group this 

algorithms into various categories. The comparison based on 

various criteria of requirement is presented in chapter 3. 

2.2 COMMON ASSUMPTIONS 

In almost all algorithms we have certain common assumptions. 

A Site failures are clean. when site fails it simply 
. ·~ 

stops running. Most times when fault occurs, the site 

runs incorrectly some time until it detects the fault. 

By assuming failures are clean, we are assuming that 
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faults are detected before serious damage is done. We 

assume that site failures are detectable. While a site 

is down the other sites can detect this fact. 

B Communication system is reliable. 

c All sites are treated equal. i.e., any site can 

generate update requests. 

D The database is assumed, it consists of a collection of 

named elements. It may be records. 

E Routine communication errors, lost duplicates, and 

garbled messages are handled by the network. 

2.3 CONCURRENCY CONTROL AND CONSISTENCY OF MULTIPLE COPIES 

OF DATA IN DISTRIBUTED 'INGRES' [STON 79] 

Introduction 

The algorithm presented here is based on primary site 

model. In 

to which 

this each object possesses a known primary site 

all updates in the network for that object are 

first directed. Different objects may have different number 

of primary sites. 

been 

The environment of DBS, 

designed is for 'INGRES' 

in which this algorithm has 

system. For distributed 

environment it can be assumed that for each data item, one 

replica is considered as a primary copy. Different primary 
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copies may be stored at various sites. The sites which do 

not contain any primary copy can fail, i.e. in case of 

failing of such sites the system will not be affected. In 

this algorithm fragmentation is considered. In case of 

partitioning of network, primary copies are divided among 

two partitions. The system response is poor. Deadlock 

occurs. It needs special treatment. 

In this, recovery entails two tasks: handling the 

failures of a single mode in the network and dealing with 

the failures that partitions the network. 

Assumptions 

A Atleast 95 percent of the traffic to be processed by a 

distributed data base system is local. 

B Closeness Non local interaction are not expected to 

be scaled on closeness and notion of near by site is 

not assumed to be useful. 

C The algorithm should work well for both broad cast and 

point to point network. 

Algorithm and Environment 

In this environment an object is a subset of the rows 

of a relation. A relation is parfitioned in to fragments, 

each with a primary site and some number of redundant 

copies. 
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In this each transaction originates from user process 

at some site·•i• in the network. A 'MASTER' or coordinating 

collection of INGRES processes at other site ensures that 

each slave knows identity of all other slaves. SLAVE INGRES 

exists at all sites where processing takes place. A local 

concurrency controller (CC) runs at each site. Then CC sees 

a transaction by saying 'done' or no response. Deadlock 

detection and resolution can also distributed. But, this 

task is allocated to one machine called the SNOOP. 

Failure handling 

In this Algorithm MASTER, SLAVE and COPY are executed. 

The other three algorithms are run in the context of 

failure. Algorithm LOCAL RECOVERY perform local clean up 

and is run when a site wishes to resume service. Algorithm 

RECONFIGURE is used to adjust the uplist after a failure or 

a service restoration. Algorithm SLAVE PROMOTE is run when 

a MASTER crashes. 

2.4 A MAJORITY CONSENSUS APPROACH TO CONCURRENCY CONTROL 

FOR MULTY COPY DATABASES. [THOM79] 

Introduction 

In this algorithm database sites 1vote on the 

acceptability of update requests. The important property of 

majority consensus is that the intersection of any two 

majorities has at least one DBMP in common. For a request 
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to be accepted and applied to all database copies only a 

majority need approve it. For any two requests that are 

accepted at least one DBMP voted OK for both [This situation 

will not occur]. Query and update access to the database 

are initiated by application process (AP). 

Assumption 

A It employs time stamping mechanism, used both in the 

voting procedure and in the application of accepted 

updates to the database copies. 

B It is deadlock free and preserves both internal 

consistency and mutual consistency of the database. 

c It can recover from and function effectively in the 

presence of communication system and database site 

failures. It does not require special recovery mode 

operation. 

D The data item copy at each site is accessible only 

through database managing process (DBMP) . 

Alqorithm 

1 At first AP locates the data items which are used in its 

update computation. These variables are called Base 

variables. The DBMP also supplies the time stamps of 

base variables to the AP. 
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2 The AP computes new values for the data elements to be 

updated. The set of elements to be updated are called 

the Update variables. This algorithm requires that the 

update 

Then AP 

update 

variables be a subset of the base variables. 

constructs an update request composed of the 

variables with their new values and base 

variables with their time stamps and submits it to a 

DBMP. 

3 The update request is transmitted to all DBMPs by 

broadcasting or daisy chaining type of communication. 

Request are said to be fn conflict if the intersection 

of the base variables of one request and update 

variables of other requests are not empty. The voting 

process is as stated below. 

3A Compare the time stamps for the request base variables 

with the corresponding time stamps in the local 

database copy. 

3B Vote 'REJ' 

obsolete. 

(REJECTED) if any of the base variable is 

3C Vote 'OK' and mark the request as pending if each base 

variables is current and request does not conflict with 

any pending request. 

3D Vote 'PASS' if each base variable is current but the 

request conflicts with a pending request does not 



conflict with a pending request of higher priority. 

3F Otherwise defer voting and remember the request for 

later reconsideration. 

4 After voting on request 'R': 

4A If vote was OK and majority consensus exists accept 'R' 

and notify all DBMPs that 'R' has accepted. 

4B If vote was 'REJ' or 'PASS' then majority consensus is 

no longer possible, then reject R. 

4C Otherwise forward R and votes accumulated so for to a 

DBMP, that has not voted on it. 

5 If R has been accepted then it updates its local copy 

then notify all DMBPs that R has accepted and reject 

conflicting requests that were deferred because of R. 

It R is rejected then use the voting procedure again. 

Discussions 

The basic characteristic of this algorithm is every 

update request collects the majority in case it limits its 

flexibility (GIFF79]. It is resilient to number of 

failures. It is sufficient that one request message 

succeeds in acquiring a majority vote set. At a moment when 

two nodes communicate over a link all other nodes and links 

may be down. It supports partitioning. Deadlock will not 

occur. But with this algorithm the internal consistency of 

database may be disturbed. This can be removed by 
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improvements (DROS88]. In case of conflicts the number of 

rejections are more. It employs time stamp mechanism for 

updates and consistency purpose which needs more cost and 

storage. This algorithm is proved correct using system-wide 

invariants [DROS88]. This is a first voting based algorithm 

in replication. 

2.5 THE QUORUM CONSENSUS ALGORITHM [GIFF79] 

Introduction 

The first voting approach was the majority consensus 

algorithm. Quorum consensus is the generalization of 

majority consensus algorithm. 

In this approach every copy of replicated item is 

assigned some number of votes. Every transaction must 

collect a read quorum of 'r' votes to read an item and write 

quorum of 'w' votes to write an item. Quorum must satisfy 

two constraints. 

1 For each 

intersection 

read quorum R 

W should not 

and write quorum W, R 

be null i.e. there is at 

least one copy common and (R+W) exceeds the total number 

·of votes assigned to that item. 

2 For each pair of write quorums there is at least one 

copy common or in other words the total number of votes 

for each write quorum must except half of the votes. 
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The first constraint ensures that there is a non null 

intersection between every read quorum and every write 

quorum. Any read quorum is therefore guaranteed to have a 

current copy of that item. Each copy has a version number, 

initially zero. When DBS processes write (x) on quorum 'w', 

it calculates VN. The maximum version number over all 'Xa' 

belongs to 'W' and updates each version number to (l+VN). 

When DBS processes read (x) on quorum R, each access returns 

its copies version number, and the DBS reads the copy with 

largest version number. In QC, the TM is responsible for 

translating reads and· writes on data items into·reads and 

writes in to copies. 

Discussions 

In this algorithm recovery of copies requires no 

special treatment. A copy of x that was down and therefore 

missed some writes will not have the largest version number. 

Therefore, transactions will automatically ignore its value 

until it has been brought up-to-date. 

This algorithm guarantees serial consistency for update 

requests [Gi~9]. This doesn't insist the majority of 

copies to be updated. This improves the flexibility by 

weighted voting. It supports site and partition failure. 

The major drawback of this algorithm is that it pays the 

same cost to reads and writes. QC needs more number of 

copies to tolerate a given number of site failure. 
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2.6 AN ALGORITHM FOR CONCURRENCY CONTROL AND RECOVERY IN 

REPLICATED DISTRIBUTED DATABASES [BERN84] 

Introduction 

Available copies algorithm handles replicated data by 

using simple technique called 'write-all-approach'. 

In ideal world, where sites never fail, there is a 

simple way to manage replicated data. When user wishes to 

read 'x' the system reads any copy of 'x' and when user 

updates 'x' the system applies the updates to all copies of 

'x'. Concurrency control is done by distributed two phase 

locking. This algorithm is nothing but an extension of this 

simple algorithm to an environment where sites fail and 

recover. 

Assumptions 

A The network never becomes partitioned. If two sites 

are up they can always communicate. 

B Every site runs centralized recovery algorithm. 

c Distributed DBS runs a distributed atomic commit 

algorithm, such as two phase commit. 

D Site must fail infrequently. 

Environment 

This algorithm uses directories to define the set of 

sites that are currently stores the copies of an item. For 
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each data item •x•, there is a directory D(x) listing the 

set of x•s copies. Like a data item a directory may be 

replicated, it may be implemented as a set of directory 

copies and stored at different sites. The directory for •x• 

at site U, denoted D (x), contains a list of copies for x 
u 

that site U believes are available. After a copy has been 

initialized and before it has failed, it is sa~to be 

available, otherwise it is settto be unavailable. Usually a 

site will store both directory and data item copies. 

Concurrent access to directory copies is controlled by same 

scheduler that controls concurrent access to data item 

copies. 

This algorithm runs special transactions called status 

transactions, which makes copies available and unavailable. 

These are : 

INCLUDE(X ) --> makes X available. a a 

EXCLUDE(X ) --> makes X unavailable. a a 

DIRECTORY-INCLUDE(Dt) --> makes Dt available. 

The DBS involves EXCLUDE transactions when a site fails, and 

INCLUDE and DIRECTORY-INCLUDE transactions when site 

recovers. 

Algorithm 

1 To read, it can consult directory (Dt) of that site, 

then reads by locking it. 
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2 To write, it set lock on 'Dt' and test Dt. data items 

whether that data item still available and so, then 

lock it and write it. If it becomes unavailable then 

ignore it. 

3 Consider the case if sites fail and some are recovering 

during execution. In this every transaction as its 

locking point. It will not reach its locking point 

until it gets all locks. 

3A When failure occurs during the execution then the 

transaction will. not reach its locking point until it 

gets exclude lock. Then, it is aborted. 

3B When some site recovers it will not reach its locking 

point until it gets include lock. Then transaction. 

commits. 

In both cases transaction either commits or aborts. So, 

database is consistent. 

Discussions 

In this algorithm locking is used for replication 

control. It pays more cost for writes, but for reads it 

requires no message. Deadlock may occur which require 

special algorithms to be run. In case of site failures, 

running status transactions increases complexity. When site 

failures occur frequently, this algorithm is not preferred. 

Overall, this algorithm is not resilient to more number of 
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system crashes, partitioning, which is not considered as 

a robust and flexible. 

2.7 MISSING WRITES ALGORITHM [EAGE83] 

Introduction 

In missing writes (MW) algorithm, during reliable 

period, the DBS processes read(x) by reading any copy of 'x' 

and write(x) by writing all copies of 'x'. When a failure 

occurs the DBS resorts to quorum consensus (QC) . After the 

failure is repaired, returns to available copies algorithm. 

Thus it only pays the cost of QC during periods in which 

there is a site or communication failures. 

Algorithm Description 

Each transaction executes in one of the two modes: 

normal mode, in which it reads any copy and write all copies 

or failure mode, in which it uses QC. A transaction must 

use failure mode if it is aware of 'missing writes'. 

Otherwise it can use normal mode. 

A transaction is aware of missing writes (MW) if it 

knows that a copy 'X a 
I does not contain updates, that have 

been applied to other copies of 'X I. For example, if 

transaction sends a write to 'X I but a receives no 

acknowledgement, then it becomes aware of MWs. 
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To implement this algorithm we need a mechanism where 

by a transaction is aware of MWs. If a transaction 'Ti' 

becomes out an acknowledgement to one of its writes then its 

immediately becomes aware of MW. If a transaction 'Tj' 

comes after Ti, it must be aware of MWs of 'Ti'· Otherwise 

'T.' will read (write) missing copies which will not ensure 
J 

serializability. To do this 'T.' should attach a list 
1 

'L' of the MWs, it is aware of which copy 'Yb' it accesses. 

It tags 'L', to indicate whether it read or write Yb. When 

Tj accesses Yb then it conflicts L's tag then it becomes 

aware of those MWs. 

Data Manager (DM) should acknowledge T. 's access to 
1 

'Yb' by returning a copy of L. 'Ti can now propagate 'L' 

along with other such list received to all the copies that 

it accesses. The way a transaction 'T.' propagates MWs that 
J 

it's aware of all transactions that follows 'T. I 

J 
in the 

serialization graph (SG). 

After recovery from failure, the DBS at site 'a' has 

two jobs to do: first it must bring each newly recovered 

copy 'X ' up-to-date. This is easy to do with a copier a 

transaction. The copier simply reads a quorum of copies of 

'x' and writes in to all of those copies the most up do date 

value that it read. Version numbers can be used to 

determine this value. 

Second, after a copy 'Xa' has been brought up-to-date, 
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the DBS should delete 'X I from the list of MWs on all 
a 

copies so that, transactions which will come after update 

should not incur the overhead of QC. This entails sending a 

message to all sites, invalidating entries for xa on their 

list of MWs. 

Discussions 

In missing writes algorithm the performance depends 

upon the frequency of switching between normal mode to 

failure mode. The supporting fact over available copies 

algorithm is that, it supports partitioning by paying cost 

over running special transactions. 

Overall missing writes algorithm will reduce the cost 

of reads, if the communication failures are infrequent. 

2.8 RESILIENT EXTENDED TRU-COPY TOKEN SHCEME FOR A 

DISTRIBUED DATABASE SYSTEM.[MIN082] 

Introduction 

In the true copy taken scheme true copy tokens are used 

to establish logical data. Among multiple physical copies, 

true copy tokens designate physical data copies that can be 

identified with the current logical data. Such physical data 

copies are called true copies. The concept of logical data 

is crucial in the new resiliency scheme, since resilient 

system operation can be realized if the continuity of 
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the logical data is preserved in the case of subsystem 

failures. 

Environment 

Transactions and operations are same as those described 

in chapter 1. 

In this scheme, version numbers, assigned to the 

contents of logical components plays a key role. Initially 

each logical component contains versions zero, and each time 

a logical component value is updated, its version number is. 

incremented by one, and this version number is assigned to 

each of the updates applied to the replicated physical 

components associated with the logical component. The read­

set versions of a transaction are the versions read by the 

transaction and write-set versions of transaction are the 

versions created by the transaction. 

The main feature in this algorithm is transaction 

buffer that supports the abortion of partially executed 

transaction without causing any ill effect to the systems. 

When a transaction is allowed to access pending updates 

(updates created by transaction are pending until 

transaction issue a commit commend) every transaction that 

has accessed the pending update must also be aborted, if the 

transaction that created the pending update is aborted. A 
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transaction buffer is provided for each transaction. Once a 

commit command is received, the updates in the transaction 

buffer are written into the database. The consistency 

constraints for updating database as same as described in 

Chapter 1. 

Failure modes 

The types of failures handled in this schemes are site 

crashes and message link failures. In both cases it is 

assumed that sites and message links simply cease to 

function, when they fail. 

Algorithm 

At first-true copy token scheme has been reviewed. 

This scheme first establishes true copies that can be 

identified with the logical components, and performs locking 

over these true copies. When update request comes it must 

get locks over all true copies it needs . 

. A physical component contains either an exclusive copy, 

a shared 

copies are 

identical 

components. 

copy or a void copy. Exclusive copies and shared 

called true copies, and their data values are 

to the current data value of associated logical 

The content of void copy may be absolete. 

Read-write accesses are allowed on exclusive copies and read 

only accesses are allowed on shared copies, but void copies 
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are not accessed for normal transaction processing. We 

assume that a true copy possesses a true copy token. Two 

types of locks namely share locks and exclusive locks are 

used over the true copies to realize consistent transaction 

processing. The locking must be two phase [ESWA76]. 

Resilient system operation 

To describe this scheme we must clear on atomic update 

set (AUS), me~ge of atomic update set. 

An AUS is a set of physical components that covers the 

complete set of logical components in the system, and it is 

always updated atomically. Multiple AUSs are provided so 

that at least one of them can survive under anticipated 

failures. In this algorithm we will consider only a fully 

replicated system where each site constitutes an atomic 

update. In general an AUS may span multiple sites. 

An AUS is characterized as follows. 

A An AUS is a set of physical components such that every 

logical component represented by at least one physical 

component in that AUS. 

B If any physical component in an AUS is affected by the 

updates of a transaction, then the updates will be 

completely performed to the physical components in the 

AUS as along as the AUS remains alive. 



c Updates 

if the 

versions 

the AUS. 

of a transaction are committed to an AUS only 

read-set versions and the preceding write-set 

of the transactions are already committed to 

Merging of atomic update sets and Recovery set 

The merge of AUSs is defined as the collection of the 

newest versions, relative to each logical component, found 

in those AUS. In principle, whenever a partitions are 

merged, all physical components in the new partition must be 

reinitialized by using the merge of AUSs in the new 

partition. 

A recovery set is defined as the merge of two atomic 

update sets in the systems. It is stronger than AUS, i.e., 

it is defined even some of the updates are lost. 

True copy generation 

When all true copies for a logical components are lost, 

the logical components can not be accessed and no new 

versions can be created for it. We do not worry about those 

versions that are lost by the system failures because the 

transactions that created these are automatically aborted. 

Once it is certain that all true copy tokens for some 

logical components are lost and we know its newest version 

surviving in the system, we can generate a true copy for it 
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by designating one of the physical copies of the newest 

version as the exclusive copy of the component. 

Scheme 

Once initiated, read operations must be applied on the 

shared copies. When the processing of transaction is 

completed, the exclusive copies of logical components, that 

the transaction wants to update must be exclusively locked. 

At this point shared locks held by the transaction can be 

released. Then exclusive copies are ready to be updated, 

the remote updates can be send to other sites. After 

updating those, the locks can be released. The set of 

updates created by the transaction must applied to each AUS 

only, if all of the read-set versions and preceding write­

set versions of the transaction have been applied to AUS. 

Partitions can be merged by merge defined by AUSs. A failed 

AUS can be restored by using merge of AUSs. 

Discussions 

Functionally, the resilient 

scheme can handle some problems 

handled by true copy token scheme. 

extended true-copy token 

in DDBS that could not 

This scheme does not employ log sub-systems and hence 

can support a total site crash. This feature is important 

for a system that includes a small site without a log sub­

system that must tolerate total site crash. 
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By 

system 

allowing transactions 

partitioning can be 

to access only true copies, 

supported with out any 

consistency problem. Merging of partitions can be performed 

by using the merge of the AUSs in those partitions. 

The new scheme allows us to add a new site to the 

system. The procedure for adding a new site to the system 

is logically identical to the site restoration procedure. 

2.9 SEMANTICS BASED TRANSACTION MANAGEMENT TECHNIQUES FOR 

REPLICATED DATA [KUMA88] 

Introduction 

This algorithm is 

transactions. Conventional 

based on the semantics of 

multicopy algorithms have fast 

response time and more availability for read only 

transactions while sacrificing these goals for updates. 

This algorithm works well in the both retrieval and update 

environments by exploiting special application semantics by 

subderiving transactions into 

utilizing commutativity property. 

transactions issue additions 

various categories, and 

For example in case where 

and substractions to the 

database, updates can be send in any order, then after some 

time the database will be consistent. 

Assumptions and environment 

In this algorithm commutativity property of 
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transactions is exploited. Generally, replication provides 

multiple versions of same object at different sites for 

small duration. No writes should be processed during this 

time, i.e. in this algorithm data items may not represent 

same value. However read-only transactions always see a 

consistent database if they read data items from a single 

site for a restricted set of sites. 

In this we assume full replication. Further it is 

assumed that a scheduler [BERN81] at each site serializes 

local transactions using two phase locking or any standard 

concurrency control mechanism, Here we view a transaction as 

a function, FR(x) which transforms an object 'X' to new 

value as follows. 

where 'R' is a read vector (r-vector} or constants or other 

database objects (r1 ,r2 , ... rn)· In the special case where 

'R' is a vector of all constants (c.) the transaction is 
1 

represented as Fc(X) and 'c' is called a constant vector. 

Some examples of function on numeric data objects are: 

Flc(X) = c x· 1 , 

In this algorithm the transactions are divided into two 

categories. 
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1) Commute(C) type, 

2) Not Self (NC) commute type. 

There are transactions in which a vector consists of 

constants. such transactions occur frequently in banking 

applications. For example; withdrawing 40 rupees from a bank 

account. 

Consider the following functions: 

FlR(X) = X + r 1 , 

F2R(Y) = Y - r 2 . 

If r 1 = Y, r 2 = X then the final result depends on the 

order the two transactions will execute. On the other hand 

if r 1 , r 2 replaced by constants c 1 and c 2 respectively then 

Fl and F2 will always commute. Here, examples are given to 

understand commute type and not self commute type of 

transactions. 

Consider Simplified banking application. 

Deposit: Add c 1 to account 'X' 

Withdrawal: Subtract c 2 from account 'Xx. 

Add interest: Compute 5% of the amount in account 'X' and 

add it to 'X'. 

In above the transactions can be represented as 

functions Fl, F2, F3 respectively as follows. 
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In above Fl, F2 are self commute type and F3 is not 

self commute type. 

Algorithm 

The algorithm is presented based on the preanalysis of 

transactions. The preanalysis consists of first identifying 

all transactions which self commute and grouping them such 

that all pairs of transactions in a group also commute with 

each other. 

Each site maintains a state vector (S-vector) NCi' c1 

where; 

c.: Number of C type transactions completed at site 1 1 1 • 
1 

NC.: Number of NC type transactions completed at site 1 1 1 • 
1 

c1 , NCi are counters which are advanced each time a new 

transaction is performed at a site. C and NC transactions 

observe different protocols for processing. 

A c transaction 

1 Performs updates to local copies and commits upon 

compilation (A scheduler at each site guarantees 

serializability among local transactions) . 
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2 After commit; the corresponding c-vector, the 

transaction name, and the data item names are send to 

all remote sites. 

An NC type transaction 

1 Form a quorum of sites by locking a majority of copies 

of accessed data items. 

2 Selects the objects at the site with the highest value 

of NC. for updating. 
l . 

3 Performs updates to copies at the chosen site. 

4 Computes s-vector with respects to one c-type 

transaction, and execute it at the other sites in the 

quorum. 

5 Release locks and spools the S-vector and the object 

name to all sites not in the quorum. 

The spooler program runs at each site and performs the 

following actions. 

1 It accepts an update message from a transaction and 

ensures it is transmitted reliably to all other sites. 

2 It receives messages from other sites and runs them as 

transaction at the local site. 

3 Updates the state vector. 
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Discussions 

In this the transactions are divided into C type and NC 

type. This requires a special preanalysis procedure. The 

authors [KUMA88] have given provisions to deal with 

integrity. This technique ensures correctness, though not 

serializability, and takes advantage of fact that several 

versions of each object exist in a multicopy environment. 

Deadlock may happen. The authors do not mention the case of 

site crash and partitioning problem. Overall this algorithm 

works better in case where, C-type of transactions are more 

frequent then NC type. 

2.10 CONCLUSION 

In this chapter we have discussed the algorithms 

briefly, without missing an essentials. Examples have been 

given to illustrate certain algorithms in greater clarity. 

following this overview of algorithms, we proceed to compare 

replica control algorithms in Chapter 3. 
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CHAPTER 3 

COMPARISON OF ALGORITHMS 

3.1 INTRODUCTION 

A number of algorithms are resented in chapter 2. There 

are difference among these in terms of crash recovery, 

number of messages transferred, partitioning behavior and so 

on. In this chapter the various approaches are first grouped 

into different categories and later after, these are compared 

in the light of various criteria such as number of messages 

required to accomplish an update, site failures and 

partition failures, by pointing differences among them. The 

algorithms can be divided into groups based on the 

techniques used for updating the database. The algorithms 

are classified as follows. 

A Token based 

1 Concurrency control and consistency of multiple copies 

of date in distributed 'INGERS' (Primary copy 

algorithm). 

2 Resilient extended true-copy token scheme for a 

distributed database system (True copy token scheme). 

B Voting based 

1 A majority consensus approach to concurrency control 

for multi copy databases (majority consensus). 
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2 Quorum consensus algorithm. 

c Locking based 

1 An algorithm for concurrency control and recovery in 

replicated distributed databases (Available copies). 

2 Missing writes algorithm. 

D semantics based: 

1 Semantics based transaction management techniques for 

replicated data (Semantics based). 

In this chapter the properties such as failure 

handling are discussed group wise. However Deadlock 

detection is not dealt by us. An algorithm for this has been 

proposed by Badal [BADA86]. To compare the above algorithms 

the different criteria are given below. 

1 Cost: Cost in general, is taken to the number of 

messages required to be transmitted for meeting a 

single processing requirement. Communication between 

any two sites can be termed as one message. The cost 

of accomplishing an update includes computation and 

communication costs. Here we neglect the computation 

cost. In most cases these are considered negligible 

compared to the communication costs. 

2 Site failures: There are many reasons for the site to 
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fail. In case of site crashes different algorithms 

follow different procedures. Recovery procedures are 

compared in this heading. 

3 Partitioning behavior: As mentioned earlier, sites may 

get partitioned into groups such that these groups can 

not communicate among themselves. Some algorithms 

support network partition heading. 

4 Read write ratio: From the previous chapter it is clear 

that, in some 

than writes. 

heading. 

algorithms reads are processed faster 

This property is discussed under this 

5 Dead locks, and others: Some algorithms need to run 

special recovery procedures to recover. This increases 

complexity. Some suffer from Deadlocks. These 

complexities, and among other are discussed in this 

part. 

3.2 COST COMPARISON 

For cost comparison certain assumptions are made. When 

update request comes it requires no messages to initiate 

update. There are 'N' sites in the system. After execution, 

the updates can be propagated through any path. To reduce 

complexity different notations.are used depending on the 

algorithm. This part can be explained by cost evaluation and 

comparison which is discussed below. 
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A cost evaluation 

1 Majority consensus 

This algorithms is based on the majority voting. Each 

update request 

accomplish it. 

instead of DSMP. 

must collect a majority number of votes to 

In the evaluation the term site is used 

lA No conflicts with other update requests, no site 

failures, no rejections 

To achieve a consensus: inter site messages : N/2. 

To notify the home site set of acceptance : N-1. 

Total number of messages(Mm) = (N/2)+(N-1) = 3{N/2)-1. 

So, the minimum number of messages to accomplish update = 

3{N/2)-1. 

lB Conflicts occur, no site failures, no rejections 

In case of conflicts votes of more than (N/2) sites may 

be required to resolve a request. Each additional site 

requires an additional message. In the worst case it 

requires (N-1) site messages. Then the maximum number of 

messages required in worst case conditions are 2N-2. 

If rejections will be more, than number of messages 

will increase. 
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2 Quorum consensus 

In this algorithm each update collects read quorum to 

read, and write quorum to write. For simplicity, assume 

that read write quorums are same for update request. 

If the number of votes in the quorum= 'V', then the 

number 

depends 

So, the 

of sites communicated by each update request varies 

on the site, where the update request originated. 

number of messages required to get quorum varies 

from request to request. So we take 

R = QV 

Where 

R --> Number of messages needed to get quorum · (the 

number of sites). 

Q --> A factor such that 

V --> Number of votes. 

0 < Q < 1. 

2A No conflicts, No rejections, No failures 

To achieve consensus. 

To notify the DBMP the set of acceptance. 

Total number of messages(Qm) 

2B Conflicts occur, No rejections, No failures 

R-1 

N-1 

R+N-2. 

If there are conflicts at some site, then the request 

proceeds to another sites to get quorum. Consider the case 

where, there is a only one conflict. 
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Then 

Number of messages required = Qm+l. 

Similarly in the worst case condition the number of messages: 

= Qm+(N-R) 

= R+N-2+N-R (Substituting M = R+N-2). 

Qw = 2N-2. 

2C Conflicts, rejections, and failures, occur 

If a request is rejected then it has to resubmit again. 

The minimum number of messages required, if it submits one 

time = Qw 

Because, it may be rejected by home site. 

The maximum number of messages needed, if it resubmits one 

time = Qw + Qw 

If the request is resubmitted 'K' number of times then 

Minimum number of messages (K+l) (2N-2) 

Maximum number of messages = (2N-2). 

Here also, when the update request is rejected, then it is 

recomputed again. 

So, the computation cost increases by increasing number of 

rejections. 
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3 Available copies algorithm 

This algorithm uses locking principle. To read, a 

transaction can read at any site. To write it must update 

all replicas. 

3A When sites never fails 

Messages to lock the copies of all sites N-1 

Messages to inform the update and unlock 

the database copies N-1 

Total number of messages = (2N-2) 

So, for any update it requires (2N-2) messages to accomplish 

update. 

3B crashes occur 

In case of 

transactions. These 

crashes, then, the 

transactions update 

DBS 

and 

runs status 

remove each 

variable depending upon the type. When crash occurs then it 

must be detected (Assumption). Then, the EXCLUDE transaction 

excludes all failed copies from each site. 

The number of messages required to exclude all 

available copies : (N-1) 

To recover from failure INCLUDE transaction includes 

all copies into sites directories. 
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The number of messages required to recover all copies: (N-1) 

Total number of messages required for one crash and 

recovery : 2(N-1) 

When crash occurs than the request is aborted. It has 

to resubmit again. 

Another (2N+1) messages required to accomplish update. 

So number of messages depends upon the number of crashes. 

If there are 'K' crashes then, to recover, this algorithm 

requires 

= 2K{~-1) + K(~i~) number of messages. 

The first term is for recovery and second is for 

resubmision. 

3C Read-Write Ratio 

The number of messages depends upon number of read 

requests and write requests. In this algorithm reads require 

no messages. It can simply lock the nearest data item (if it 

is available) then it reads. 

If read-write ratio is 'R' then, the number of messages 

= ~(2N) = 2NR 

So the number of messages depends up on the variable 

"R'. If 'R' = 0.1, then write requests= 10; read requests= 
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90. In total, the number of :messages are 

proportional to coefficient of read-write (R) • 

directly 

3D Deadlock 

In this algorithm deadlock may occur. So, each deadlock 

requires backup of one update. It has to be resubmitted 

again. 

If it is resubmitted one time the number of messages 

(total number of messages for that update) = (2N+1) + (2N+1) 

To 

depends 

[BADA86). 

resolve the deadlock, number 

upon the type of deadlock 

4 Primary copy algorithm 

of messages needed 

resolution algorithm 

This algorithm is based on the primary copy. In cost 

evaluation we generalize this for distributed system. The 

number of messages in this algorithm depends on the network 

structure. If two sites want to communicate, they may 

require (N-1) number of messages. 

Now we introduce one variable called network variable 

which depends on the structure of the network and location 

of two sites that wants to communicate. 

In the worst case the maximum number of messages required to 

get lock: = (N-1) 
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The number of messages required to get lock from particular 

site: = V(N-1). ( 0 <= V <= 1) 

We can say the variable 'V' takes the values between 

zero to one. When locked data item has found at home site, 

then V = o. In the worst case, V = 1. After getting lock it 

sends its updates to all sites. For this, this requires 

(N-1) number of messages. 

So, the total number of messages required to get lock on 

single data item and sending updates = (N-1) + V(N-1) 

= (N-1) (V+1) 

The number of messages required for locking, when a 

request which contains more than one variable (the 'V' 

varies from variable to variable). 

= vt (N-1) 

including messages for updating = (Vt+1) (N-1) 

5 Missing writes algorithm 

This is a combination of quorum consensus and available 

copies algorithms. For bothJcost has already been evaluated. 

We can describe this algorithm by variable 'U' in which the 

site failures occur. 

The number of messages required: = (1-U)A + u Q 
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A --> Number of messages required in available copies 

algorithm 

Q --> Number of messages required in quorum consensus 

U --> Variable that failures occur. 

Suppose U = 0.01, means failures occur one in hundred. 

6 Resilient extended true copy token scheme 

In evaluating number of messages the true copy token, 

and resilient methods take same number of messages. 

In this true copies owns tokens. For simplicity, assume 

that there are 'T' number of tokens in the system. For each 

update request 

To get locks on true copies T 

To send updates all sites N-1 

Total number of messages = T+(N-1} 

One can not, however guarantee that, since each update 

request gets locks on true copies in 'T' number of messages. 

Because, the tokens are spanned over entire system. So, we 

have to introduce a coefficient(S) which depends on the 

distribution of the tokens. The maximum number of messages 

(then s = 1} required to get lock for each update request is 

N-1. 

In total, we can say 

required to get lock over all 
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For read request these can lock any copy which contain 

token, then reads. So, the number of messages required for 

reads are little more flexible. 

Semantics based 

It is based on the semantics of the transactions. The 

number of messages depends son the ratio of commute and not 

self commute type. If the transaction is C type if requires 

no messages. If it is NC type it has to get lock of majority 

of copies. 

For each update request: 

Messages to get locks over majority of copies (N/2)-1 

Messages for sending updates to all sites N-1 

So, for each update request if it is NC type; the number of 

messages = 3N(N/2)-2 

For the commute types no messages required. The total cost 

of number messages required = 3WN(N/2)-2 

where W is the ratio of commute type to not commute type 

(W = NC /C ) n n 

B Cost comparison 

For cost comparison, consider group by group. In token 

based algorithm the number of messages depends on the· 

location: of site and network structure (depends on whether 

the network is fully or partially connected) . In, primary 
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copy method the number of messages depends on the location 

of primary copy. If we know a particular site gets number of 

update requests, then we can locate more of primary copies 

on that site, resulting in overall reduction of number of 

messages, so the cost depends on the design considerations. 

But, in the resilient scheme, because of increasing 

resiliency its response is slightly delayed, i.e. it has to 

update the AUSs consistently. Dead lock detection considered 

as another overhead. Compared to other algorithms, this 

requires less number of messages. 

In the majority consensus, the number of messages 

required for transactions depends on the number of sites. In 

the case of conflicts, rejections will be more. So, the 

transactions has to be resubmitted again which will increase 

the computation cost. Quorum consensus will reduce the 

number of messages by weighted voting scheme. Here the 

number of messages depend on the number of votes the update 

request has to collect. Some sites may have more number of 

votes (weight is high). In this case, the number of messages 

depends on the home site. Quorum consensus takes less number 

of messages, as compared to majority consensus. It pays 

equal price to reads and writes, which is not the case with 

a locking and token based algorithms. 

In locking based, the cost of algorithm strictly 

depends on the number of write requests. For write requests 
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it requires (N-1) messages to lock all copies, which is not 

in the case of voting based algorithms. If the read requests 

are more than write requests this can be considered for 

implementation. Same is the case with missing writes 

algorithm. 

In the semantics based, locking is used. It requires 

pre-analysis of transactions which increases complexity of 

running extra algorithms to do this. This is not designed 

for complex updates. In the case of this algorithm we can 

say that, if commute type of transactions are more in 

number, it requires less number of messages. 

3.3 SITE FAILURES 

Here, we consider the failures are.detectable. Failures 

can be detected by time out, missing acknowledgments and 

some other techniques. This detection part is supported by 

communication network. 

In the case of token based algorithms, the ability to 

tolerate failures depends on various factors. In primary 

copy method, site which contains the primary copy is lost, 

there is no way to recover from such type of failures. so, 

this method is vulnerable to failures of site which contains 

primary copy. In extended true copy token scheme, tokens are 

assigned for more number of copies for each date item. If 

the token is lost, then there is no way to assign a token. 

Sites which are not having tokens can fail and recover. In 

67 



resilient scheme this drawback is removed by main 

maintaining AUSs, which are updated consistently. So this 

scheme is vulnerable to more number of site failures. 

In majority consensus the recovery needs no special 

provision. The recovery of sites can process parallelly with 

updates. When site failure is detected the update request 

automatically ignores that site. Time stamps are used for 

this purpose. Same is the case with quorum consensus 

algorithm. A copy of 'x' that was down and therefore missed 

some writes will not have the largest version number. 

Therefore the transactions will automatically ignores that 

data items (sites). Quorum consensus needs large number of 

copies to tolerate a given number of failures. The quorum 

consensus needs three copies to tolerate one failure, five 

copies to tolerate two failures and so forth, in particular 

case two copies are no help at all. With the two copies 

this can not even tolerate one failure [BERN87]. 

In available copies algorithm, the site failures 

require execution of status transactions. (BERN84]. In this 

sites must fail infrequently. It requires 2(N-2) number of 

messages for recovery of single site. This is lot of work. 

When sites fail too often, quorum consensus, missing writes 

algorithm are better options (BERN84]. But, when sites fail 

frequently the switching will be more, which will increase 

extra burden of changing modes. 
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In semantics based one, if the site fails, the author 

(KUMA88] has given no mechanism for recovery. We can say 

that it is vulnerable to failure of majority of sites. 

Because, it uses majority principle for locking. 

3.4 PARTITIONING BEHAVIOUR 

At first when a partition occurs it must be detected. 

Managing a partition is a notoriously hard problem Typically 

the cause of a partition failures cannot be known by sites 

them selves. At best, a site may be able to identify the 

other sites in its partition. But for the sites out side of 

its partition it will not be able to distinguish between the 

case in which those sites are simply isolated from it and 

the case in which those sites are down. In addition low 

response from other sites can cause the network to appear 

partitioned. 

In token based algorithm, which is a resilient 

technique for items sharing distributed resources, the 

primary activity. In case of partition failure, only the 

partition containing the primary copy can access the data 

item. All updates are simply forward after recovery for 

execution. This approach works well only if site failures 

are distinguishable from network failures. If primary site 

for data item fails then new primary can be elected 

(EAGA86]. For discussion of election process see (GARG82]. 

The problem arises in case of two copies of an object. In 
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this situation any network partition can make both copies 

inaccessible. In the token based, each item has a token 

associated with it, permitting the update to access the 

item. In the event of network partition, only the group 

containing the token will be able to access the item. The 

major weakness in this scheme is that the accessibility is 

lost, if the token is lost as a result of site or 

communication media failure. Resilient scheme removes this 

drawback. By providing AUSs, it can recover in case of 

partition. If the token is lost it can recover that token by 

identifying recent data item from AUSs. 

In voting based algorithm, the quorum constraints 

ensure that an item can not be read in one partition and 

return in another. Hence the read write conflicts cannot 

occur between partitions. Another constraint (number of 

votes ' to be collected are greater than half of total votes) 

ensures that writes cannot happen in parallel, or if the 

system is partitioned the writes cannot occur in two 

different partitions at the same time. So, the data base is 

consistent in the case of partition. 

In locking based, the available copies algorithm does 

not support partition. It assumes that partition occurs 

rarely. In missing writes, at the time of failure it 

follows quorum consensus. But when it changes mode every 

site must maintain several files about the information of 
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missing updates and their values and so on. These files can 

grow faster. In all missing writes algorithm tolerates 

partitioning. 

About semantics based one, the behavior in case of 

partition requires special analytical study in which the 

author [K~88] has not mentioned. It is possible to make 

this algorithm (if not) consistent with slight 

modifications, because it uses majority principle. 

3.5 READ WRITE RATIO 

Basically replication introduces the major difference 

between read requests and write requests in execution part. 

Here some algorithms treats these as equal in terms of 

number of messages. Ensuring availability and robustness in 

case of failures by the replica control algorithm 

constitutes an optimization problem. Some designers put 

stress on availability by reducing robustness, and others 

vice versa. 

For both reads and writes in primary copy method, takes 

same number of messages. But, in the token based approach, 

number of tokens for each data item are greater in number, 

which increases accessibility for reads by reducing number 

of messages. Similarly is the case with the resilient 

scheme. 
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In voting based approach the read and write requests 

are considered to be equal, with respect to number of 

messages. A request has to collect quorums. The graph in 

which the ratio of reads and writes versus total number of 

messages shown in figure 4.1. 
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locking based approach the reads require no 

messages, but for write it has to get locks over all copies. 

So read-write ratio effects number of messages. The graph 

is shown in figure 4.1. 

In semantics based approach the flexibility is not 

there in terms of reads and writes. The number of messages 

depends on the ration of commute and not commute type of 

transactions. The graph is shown in figure 4.2. 
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3.6 DEADLOCK DETECTION AND OTHERS 

In this section we discuss the properties of algorithms 

with respect to dead locks, inclusions of other site among 

others. 

In resilient scheme, as compared to other token based 

algorithms, the concept of atomic update sets had been 

introduced. This AUSs had to updated atomically, which 

requires extra burden and may delay the response. Deadlocks 

algorithms, which will delay the responses of update 

requests. Addition of new site poses no problem, which 

follows the recovery procedure. 

In majority consensus, if there are conflicts, the 

number of rejections increases. Time stamps maintenance 

also requires extra storage and communication costs. 

Addition of new site is not a problem. But, in quorum 

consensus all copies of each data item must be known in 

advance. A known copy of 'x' can recover, but a new copy of 

'x' cannot be created, because it could alter the definition 

of x•s quorums, in principle, one can change the weights of 

sites, while DBS is running. But, this requires special 

synchronization technique. It uses version numbers which 

need extra storage requirement. 

In available copies, recovery requires running of 

status transactions, which will increase the complexity. 
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Dead locks may occur frequently. 

Finally, in semantics based approach, deadlock may 

happen, and it requires pre-analy~is of transactions. 

3.7 CONCLUSION 

In this chapter, 

approaches into different 

comparison. 

algorithms. 

Than, we 

first we divided the various 

categories to facilitate 

compared these. categories 

the 

of 

Token based algorithms reduces the number of messages, 

but increases the vulnerability in case of failures. it is 

a balanced scheme between number of messages and complexity. 

Voting based approaches, are robust as compared to the 

others. These support the partitioning of system. But, in 

this case cost of reads, writes is same. In the case of 

more read requests, and less number of site failures however 

locking based algorithms are preferred. 
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CHAPTER 4 

AN ALGORITHM BASED ON EXECUTING REQUESTS AFTER VISITING 

MAJORITY OF SITES 

4.1 INTRODUCTION 

A number of replica control algorithms, described in 

the literature based on the voting, locking, tokens and 

semantics of update requests are presented in chapter 2, and 

a comparison is presented in the chapter 3. The basic 

characteristic of some of these algorithms is that each 

update request is executed first (independent of other 

requests) and, there is a possibility that the update 

request may be rejected. In case of rejections the request 

is resubmitted again. In the voting based algorithms also, 

each update request has no guarantee that it will not be 

rejected. The reason behind ·this is that in these 

algorithms when request arrives, it is executed and the base 

·variables and update variables [THOM79] with time stamps are 

sent for voting. 

The basic philosophy of serializability theory is that, 

if a set of transactions {T, T1 , .. , T} try to update the o n 

database, the execution sequence is correct, if they execute 

and updates one after another, and the database remains 

consistent. 
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Based on the above algorithms, 

to reduce the 

we have explored an 

overhead without alternating approaches 

distroying the database consistency. Our approach is based 

on the notion that, when an update request comes, we can 

identify the update variables without executing it and send 

these to other sites for majority approval, instead of 

sending new update values. In systems like banking and 

railway reservation systems the most update requests are 

single or double line (SQL) statements. So, identifying the 

reads and writes in the update request is not a major 

problem for the system. In the next section, we describe 

the update technique which will take less number of messages 

and rejections, as compared to previous algorithms. About 

consistency, we guarantee that this algorithm preserves 

mutual and internal consistency which is described in 

chapter 2. 

4.2 ENVIRONMENT 

We assume an 

are accessible at 

algorithm further 

environment in which copies of database 

a number of database sites. This 

assumes that the architecture of a 

distributed database management systems (OOBMS), is same as 

described[BERN81]. In this, each site is a computer, running 

one or both of the following software modules: a transaction 

manager (TM) and a data manager (OM). The TMs supervise 

interactions between users and the OOBMS while OMs manage 
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actual database. A network is a computer-to-computer 

communication system. The network is assumed to perfectly 

detect failures when they occur. In addition we assume that 

between any pair of sites the network delivers messages in 

the order, they were sent. 

Transaction 
I ~ 
: /TM 

Transaction 

Trans:ction> 
r 

Transaction 
Transaction 

' Transaction 

1---------i database 

+-----------~database 

Figure 4.1 

Users interact with the DDBMS by executing 

transactions. Transactions may be on-line queries 

expressed in a self contained query language, or application 

programs written in general purpose programming languages. 

However we do assume that transactions represent complete 

and correct computations; each transaction, if executed 

alone on an initially consistent database, would 

terminate, produce correct results, and leave the database 
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consistent. In this algorithm the concept of request is 

used~ The structure of DDBMS is shown in figure 4.1. 

From users perspective, the database consist of a 

collection of a logical data items, denoted by x, y, z. We 

leave granularity of logical data items unspecified; in 

practice, they may be files, records, etc. A logical 

database state is an assignment of values to the logical 

data items composing a database. 

In 

database, 

multiple 

operation 

this algorithm we are considering fully replicated 

i.e each data item is stored reduntantly at 

sites. A transaction is a set of operations. An 

is an activity that manipulates data. There are 

three types of operations: read operations, write operations 

and local computations. The operations that can be 

performed on a replicated data items are read, which returns 

its value, and write, which changes its value. 

Read and write operations either logical or physical 

are used to access the components. Local computations can 

transform the data read by read operation and supply the 

transformed data to write operations. Further more data may 

be passed in the from of messages between two physical 

operations that occur at different sites. Message links, 

connecting sites are used to send messages. 

Physical read operation read [xi]' returns the current 
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content of physical component x. 
1 

and physical write 

operation write [x.] updates the content of physical 
1 

We can say a logical read operation read component of X, • 
1 

[x.] corresponds to physical read operation for some 'i'. A 
1 

logical write operation write [x] corresponds to the set of 

physical write operations 

each of Which writes some data value write (X]. 

Update Requests 

A transaction 'T' is modeled as a sequence of read and 

write operations. Because reads and writes are responsible 

for changing the state of database. When the update request 

comes to a particular site, it identifies the reads and 

writes, needed for the execution of that update request. 

Then, the site prepares 'request' which has to be sent to 

other sites for majority approval. The request contains the 

data i terns to be locked, request number, and the i;:f~~~:H.t 

·.:~t.:J.·-- . The various terms are explained in further sections. 
' ' 

·~ • r ' • '.. 

4.3 ASSUMPTIONS AND TERMINOLOGY 

Here we consider a fully replicated database. When 

ever a transaction is received, it is the job of local 

concurrency controller (TM) to deal with it. So, we assume 

that every site contains local concurrency controller. 

Here, unique time stamps are assigned to each request 

[transaction]. Every request finds the consistent state of 

79 



the database at particular time 't', updates it and leaves 

the consistent state of the database. Every site follows 

the same methods to preserve internal consistency. Another 

assumption is that rejections will not occur. Every 

conflict is ordered by this algorithm. In this algorithm 

the words transaction and update requests are used 

interchangeably with no difference. 

The following terms are used to present this algorithm. 

These are request, request variables, Request wait for 

graph, Request number (time stamp), locking table majority 

and request messages. 

Request: It contains the request variables, request 

number, request table and visiting sites. It is prepared by 

home site of each request (when update request comes), and 

sent to majority of sites. 

Request Variables: when update request comes to 

particular site, the variables are identified. These are 

(data items) forming the read set and write set. 

Request Wait For Graph [RWFG]: When a request visits 

particular site, it puts its Request number into the RWFG of 

that site (according to rules) and it copies the request 

numbers to its own RWFG. This has to be maintained by every 

site. 

Request Number (RN): This is a time stamp, assigned by 
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the home site assigns. 

Allocation of time stamps is described in another section. 

Looking Table (LT): Every site has to maintain this table. 

When the request comes to any site, to visit majority of 

sites, it puts its request variables in to that table. This 

is used to identify conflicting operations. 

Majority : In [THOM79] 'Majority' word is used. Majority 

means the number of sites that each request must visit. 

If 'N' is a number of sites then 

Majority= (N+1)/2 +1 (if N is odd) 

= (N/2)+1 (if N is even) 

Request Message Table (RMT): This table is maintained at 

every site. 

coming to 

After visiting a majority of sites, before 

home site, the request(R ) sends messages to all m 

other sites which are ordered before 'R I m' about R 's m 

ordering. These messages are stored in RMT of particular 

site. 

4.4 INTER SITE COMMUNICATION 

Update requests made by sites must be communicated 

among the sites to visit majority of sites. There are two 

possible communication methodologies (Figure 4.2). 
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(a) (b) 

Figure 4.2 

1. Broadcast: After receiving the update request (Figure 

4.2a), then that site transmits that request to visit 

majority. After visiting sites, the request must 

return to the original site. 

2. Daisy Chaining: The site receiving the request (Figure 

4.2b), decides the order and the request is passed to 

next site with incrementing the number of sites 

visited. After visiting the majority of sites, the 

request is returned to original site. 

Use of a broadcast discipline allows requests to be 

resolved with minimum delay at the possible expense of extra 

messages. On the other hand daisy chaining results in 

resolution with the minimum number of messages at the 

expense of relatively high delay. In practice, the choice 

of communication discipline should be based upon the 

performance requirements for the database system as well as 

the characteristics of the underlying communication system. 

In this algorithm the discussion is based on the daisy 
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chaining communication. For broadcast type of communication 

this algorithm is slightly modified. 

4.5 TIME STAMPS 

In this algorithm time stamps are used to resolve 

conflicts. Conflicting operations are defined in the 

Chapter 1. The properties that time stamps use for this 

purpose should have uniqueness and monotonicity (i.e., 

successively generated time stamps should have a high value) 

All time stamps in the distributed system come 

ultimately from update requests. The question of when one 

by whom should the request be time stamped, arises. 

Here, it is assumed that, each site has access to a 

local, monotonically increasing clock, but there is no 

common clock accessible to all sites. A time stamp 

generated by a site 'S' is a pair (T, S) where T is a time 

obtained from the local site clock. T is called the C-part 

(for clock) of the time stamp and s is called the S-part 

(for site) of the time stamp. 

Equality, greater than, and less then for time stamps 

can be defined as follows. 

Equality (=) : T1 = T2 if and only if c1 = c2 and s 1 = s2 . 

Greater than (>) : T1 > T2 if and only if c1>c2 or c1=c2 
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4.6 FAILURE ASSUMPTIONS 

The components of a distributed DBS can fail in many 

ways. Here we assume that site failures are clean : when 

site fails, it simply stops running; when the site recovers, 

it knows that it failed and initiates a recovery procedure. 

We do not consider failures of type, in which a site 

containues to run but performs incorrect actions. 

We assume that a site failures are detectable: when the 

site is down, then the other sites detect that fact. 

4.7 ALGORITHM 

In this algorithm time stamps will play a role in 

ordering of transactions. Here, the term ordering is used. 

When we say, R
1
• is ordered after R. (R.-->R.), it means that 

J J l 

Ri is executed after Rj' irrespective of time stamps. 

In each request (Ri)' when it completes visiting 

majority sites, broadcasts the RWFG of this request to all 

sites which are in the request. 

When the update request comes to site 'Si' then that 

follows the following actions. 

1 The site prepares the 'request' then sends it to the 
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other sites. It assigns the time stamp and puts its 

number into RWFG of that site (it assigns N=l). Then, 

this request is sent to visit the majority of sites. 

After visiting the majority of sites it must come back 

to this originating site (home site). 

Request (Ri) = (RN, L, RWFG, N) 

where, 

RN--->Request number 

L---->Locking variables. 

~WFG---->Request wait for graph (TWFG) (The ordering of 

request in which Ri is executed after) . 

N---->Number of visiting sites. This is a counter 

which is incremented at every site. This is used 

to test whether a request has visited the majority 

of the sites or not. 

2 The request (Rm) comes to site 'A'. Let, Ri(i=l, .. ,k) 

to be requests of the request table A. Set N=N+l; 

i=i+l. Got 2A. 

2A Test whether locking variables of 'R ' are conflicting m 

with 'R. '· If yes, then go to 2B, otherwise go to 2C. 
1 

2B The request number 'R ' is ordered after R. (R.-->R ) in m 1 1 m 

the RWFG if i # k then i=i+l; go to 2A, else go to 2C. 

2C i = i + 1; go to 2A. 

2D Store the request number of Rm' locking variables in 

site 'A' after R1 , ... ,Rk' if N=M (Majority), then Rm's 
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RWFG will be sent to every home site of 1 R. 1 such that 
1 

Ri belongs to RWFG. 

After visiting the majority of sites, the request (Rm) 

comes to home site, it will not be executed until it 

gets RWFG messages, or updates from all requests, which 

are ordered before IR I m . In broadcast type after 

receiving the RWFG from all sites then the home site 

(Ri) sends the RWFG to all request (Rj) home sites, if 

R. belongd to RWFG, and it will not execute until it 
J 

receives the RWFGs or updates from all requests which 

are order before IR. I. 
1 

When request message comes from particular request 

to R. then these two are tested whether cycles 
J 

are formed. Cycle means in the RWFG of R., R. is 
J 1 

ordered before, and in the RWFG of R., R. is ordered 
1 J 

before. These can be removed, by ordering according to 

time stamps. when the request receives messages or 

updates from all R. 1 s which are ordered before R , then 
1 m 

Rm can execute the database. 

After receiving the updates of request (Rm)' then this 

request, and its locking variables will be deleted from 

all sites, and RWFG 1 s. 

~ EXAMPLE 

The following example will clarify the algorithm. 
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Example 1: Consider the five site network. 

1.20 
5.20 

(a) 

Figure 4.2 

Request Request number. 

R
1

(1241) ------------1.20 

R5 (5425) ------------5.20 

R3 (3153) ------------3.21 

(b) 

and further assume requests, as shown in figure 4.2(b). In 

this the first part of time stamp shows the site number, and 

the second part shows the clock (Two digit). Here, number 

of sites in the majority is three. The path of each request 

is shown in the brackets (Figure 4.2(b)). Let us assume that 

the transmission time between two sites is one unit. The 

following table (Figure 4.3) clears the transmission of 

requests. All three requests are of conflicting type. 

------------------------------------------------------------
Requests/Time --> 2.20 2.21 2.22 2.23 2.24 

1.20 1 2 4 1 

5.20 5 4 2 5 

3.21 3 1 5 1 

This can be explained as follows. When request R1 visits 

site number 2 it puts the 1.20 at site 1 (RWFG) and visits 

site 4. But at this site request R5 has already visited. 
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so, it puts the request number after R5 , then it stores the 

R
5 

in its RWFG such that 1 R5---R1
1

, similarly for all 

others. Now at this point it has got majority, then it 

sends the message 1 R5-->R1
1 to site 5. When requests gets 

majority the request tables of R1 , R3 contain the order 

shown below. 

R1-----5.20 ----> 1.20 

R5-----1.20 ----> 5.20 

R3-----1.20 ----> 5.20 ~3.21 

1.20 (Here, R3 will execute after R1 , R5 ) 

R1 will not execute until it receives the message or 

update from R5 , and the same is for others. When R1 

receives the message 1 1.20--->5.20 1 from R5 , cycle is formed 

then R1 orders according to time stamps. At the end the 

orders are as follows. 

R1----1.20--->1.20 

R5----1.20--->5.2o 

R3----1.20----;t.21 

5.20 

(Here, R3 receives no messages, so it executes after 

receiving updates of R1 , R5 ) 

The above order is consistent. In this R1 will 

execute, then after receiving updates of R1 , R5 will 

execute, then R3 . 
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4.9 SITE CRASHES AND PARTITIONING BEHAVIOUR 

In this it is assumed that when site failures occur 

then those are detected. If site fails then each update 

request ignores that site without stopping normal 

processing. When a site recovers a message is communicated 

to all sites. It can recover data by copying data from 

other sites. 

When partitioning occurs, then the partition which is 

having majority of sites can process update requests. 

4.10 WHY THE ALGORITHM WORKS 

The way the requests visit majority of sites, sending 

of messages to other sites to resolve the cycles, and time 

stamps are the basis of this algorithm. 

The mutual exclusion necessary to make preservation of 

internal consistency is achieved by each individual site by 

making request to visit majority of the sites. In 

particular, concurrency control is achieved by the concept 

of visiting majority that ensures that the majority sites 

for any two update requests have at least one site common 

and this algorithm ensures that conflicting requests are 

ordered one after another. 

In this algorithm, if two up-date requests conflict at 

a time only one request sees the consistent state of 
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database. After receiving updates of one request the other 

will execute, which .will ensure the one copy version of 

database. 

A formal proof of the correctness of the algorithm is 

not described; however, the rest of this section informally 

argues for its correctness. In particular, to establish 

correctness of algorithm we claim that: 

A This algorithm ensures serializability; i.e. 

conflicting transaction will execute one by one. 

B This algorithm ensures 1-serializability. 

A This algorithm ensures 1-serializability 

Proof: Here we use the concept of serializability. A 

definition of serializability and conflicting operations 

used here is the same as in Chapter 1. Assume that the 

update requests in SG(R) by this algorithm is (R1 , .. , Rn)' 

we have to show, SG(R) is acyclic. 

A1 If R1 , R2 are conflicting update requests. Then R1-->R2 

or R2-->R1 but not both. 

Proof: Suppose assume that two update requests R1 , R2 

orders the transactions individually as follows. 

But at the site they get the majority R1 sends the 
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message 1 R
2 

--> R
1

1 to R2 and; R2 sends the message 'R1 --> 

R2
1 to R1 . 

With respect to time stamps the final ordering will be done. 

So the final execution will be either R1 --> R2 or R2 --> 

R1 , not both. 

A2 Let (R1 , 

algorithm. 

R
2

, ••. , Rn) be the final ordering of this 

Then R will execute after all. n 

Proof : If R
1 

--> R
2 

is a final ordering then R2 executes 

after receiving the updates of R1 (From A1). 

Similarly for R2 --> R3 . So by transitivity, 'Rn' will 

execute after receiving the updates of all (R1 , .. , Rn_ 1 ). 

Suppose by contradiction assume that, SG(R) has a cycle over 

The above is violated the rules of the algorithm, in which 

Rn, R1 sends their orders to each other, then cycle is 

resolved on the order of time stamps. So, either Rn-->R1 or 

R1-->Rn will present in the SG(R). 

So, SG(R) is acyclic. 

Hence, the execution sequences produced by this algorithm is 

serializable. 

B The execution sequences produced by this algorithm is 

1-copy serializable. 
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Proof In order to prove 1-copy serializability, we must 

prove that, the execution sequences produced by this 

algorithm follows the following two rules. (From Chapter 1) 0 

(a) If R. 
J 

reads data item 'X' from R. 
1 

then R.<<R. 
1 J 

(b) If R. 
J 

reads 'X' from Ri, ~ writes 'X' ( i' j' k 

distinct), and Ri<<Rk, then Rj<<Rk. 

Part (a) can be proved easily, R. reads data item 'X' from 
J 

R., it means both are conflicting type. In this algorithm 
1 

each request is visiting majority of sites, in which Ri and 

R. are ordered as R.<<R .. 
J 1 J 

Part (b) Ri' Rj and Rk are update requests. 

The following orders are true. 

R.<<Rk; R.-->R. 
1 J 1 

If R. reads the value of R., according to part (a) it 
1 J 

executes after receiving the updates of R .. suppose assume 
J 

that Rk writes 'X' in between R. and R .. Then according to 
J 1 

algorithm if Rj and Rk are conflicting type they must have 

ordered one after (i.e., Ri-->Rk or Rk-->Ri)' and Rk also 

conflicting type. 

So, the order will be R. --> Rk --> R. 
J 1 

But from (b) Rj reads the value written by 

contradicts with this. 
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So, the executions produced by this algorithm is 1-copy 

serializable. 

4.11 CONCLUSION 

In voting type approaches the update request is 

executed first, then the update variables are sent to 

other sites for majority approval. In quorum consensus 

approach the majority is replaced by quorum. In these 

approaches, if the update requests are conflicting type, 

then the rejections are more in number. 

In this algorithm, rejections will not be there but it 

is assumed that, when update request comes, we must identify 

the variables, it reads and writes. This is little more 

complex in case of large update requests. But, in the case 

of banking, railway reservation system, these variables can 

be identified with less effort. 

Overall, this 

conflicts; and needs 

algorithm works well in case of 

less number of messages than voting 

approaches. 

occur and 

The main advantage is, 

it is robust to site 

rejections will not 

crashes and network 

partitioning. 
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CHAPTER - 5 

CONCLUSIONS 

The advent of distributed system has added a new aspect 

to fault tolerance. To increase fault tolerance replicated 

data is stored redundantly at multiple locations. This 

report contains the discussion and comparison various 

approaches to replication. After that new technique is 

presented. 

The first 

and overhead of 

we discussed replication issues, advantages 

replication. Correctness criteria for 

concurrency control and replication control is presented. 

Then, various approaches are described in brief. After 

these are divided into different categories based on the 

central idea. The approaches are compared in groups with 

respect to number of messages required for each update 

request, site crashes, partitioning behaviour. 

At last, we presented an algorithm based on the 

executing update requests after visiting majority of sites. 

In this, we use time stamps to order the update requests. 

Overall, the replicated distributed system, provides 

adequate performance in case of failures. Different 

algorithms can be proposed depending on the type of 

environment. 

In broadcast environment the new technique exhibited 

less delay, by reducing number of messages in case of 

conflicts and, it is robust to site failures and network 

partitioning. 

94 



BIBLIOGRAPHY 

[AHAM87] Ahamaa, M., Ammar, M. Performance Characterization 
of Quorum Consensus Algorithms For Replicated Data. In 
Proceedings of the Symposium on Reliability in 
Distributed Software and Database System. (1987), pp, 
161-168. 

[ALLC83] Allchin, J.E. A Suite of Rubust Algorithms for 
Maintaining Replicated Data Using Weak Consistency 
Conditions. In Proceedings of the 3rd Symposium in 
Distributed Software and Database Systems. 1983, pp,47-
56. 

[ALSB76] Alsberg, P.A., Belford, G.G., Day, J.D., Grapa, E. 
Multi-copy Resiliency Techniques. Techanical report 
CAC Document No.202, Center for Advanced Computation, 
University Illinois at Urbana-Champaign, May, 1976. 

[BADA86] Badal., D.J. The Distributed Deadlock Detection 
Algorithm. ACM Transactions on Computer Systems. 
Nov.1986, pp.,320-327. 

[BARB84] Barbara, D., Garcia-Molina, H. The Vulnerability of 
Voting Mechanisms. In Proc. 4th Symp. on Reliability 
in Distributed Software and Database Systems, pages 45-
53. IEEE, Silver Spring, MD, 1984. 

[BERN77] Bernstein, P.A., Rothie, J.B., Goodman, N., 
Papadimitrious, C.A. The Concurrency Control Mechanism 
of SDD-1: A System for Distributed Databases (The Fully 
Redundant Case). IEEE Trans. on Software Engg. Vol.SE-
4, No.3, May 1978, pp.154-168. 

[BERN81] Berstein, P.A., Goodman, N. Concurrency Control in 
Distributed Database Systems. ACM Computing Surveys. 
Vol.13, No.2, June 1981, pp.185-221. 

[BERN83] Bernsteain, P.A., Goodman, N. Concurrency Control 
and Recovery for Replicated Distributed Databases. TR-
20-83, Center for Research in Computing Technology, 
Harward Univ., July 1983. 

[BERN83a] Bernstein, P.A., Goodman, N. The Failure and 
Recovery For Replicated Databases. In Proceedings of 
the 2nd Annual Symposium on Principles of Distributed 
Computing, Montreal, August, 1983, pp, 114-121. 

[BERN84] Bernstein, P.A., Goodman, N. An Algorithm for 
Concurrency Control and Recovery in Replicated 
Distributed Databases. ACM Trans. on Database Systems, 
9(4), December 1984, pp. 596-615. 



[BERN85] Bernstein, P.A., Goodman, N. Serializability Theory 
for Replicated Databases. Journal of Computer and 
System Sciences 31, (1985), pp. 355-374. 

[BERN87] Bernstein, P.A., Goodman, N. Serializability 
Theory for Replicated Databases. Journal of Computer 
and System Sciences 31, (1985), pp. 355-374. 

[BERN87] Bhargava, B. Transaction Processing and Consistency 
Control of Replicated Copies During Failures in 
Distributed Databases. Journal of Management 
Information Systems. Vol.4, No.2, Fall 1987, pp.93-112. 

[BHAR88] Bhargava, B., Ng, P., A dynamic Majority 
Determination Algorithm for Reconfiguration of Network 
Partitions. Information Sciences. 46, pp.27-45. 

[BHAR90] Bhargav, B., Browne. s. Hybrid Value/Event 
Representation of Replicated Objects. Department of 
Computer Sciences. CST-TR-967, Purdue University. 
March, 1990. 

[BHAR90] Bhargava, B., Lian, s. Typed Token Approach for 
Database Processing During Netowrk Partitioning. In 
Conference on Management of Data, (COMAD90) December 
1990, New Delhi, India. 

[BLAU83] Blaustein, S.T., Garcia, H., Ries, D.R., 
Chilenskes, R.M., Kaufman, c.w. Maintaining Replicated 
Databases Even in the Presence of Network Partitions. 
In Proceedings of the IEEE 16th Electrical and 
Aerospace Systems Conference (Washington, D.C., Sept.), 
IEEE, Newyork, pp.,353-360. 

[BLAU84] Blaustein, B.T., Kaufman, c.w. Updating Replicatd 
Data During ·.Communication Failures. In Proc. 11th 
International VLDE Conference, Stockholm, August 1985. 

[BLOC87] Block, J.J., Deniels, D.S., Spector, A.Z. A 
Weighted Voting Algorithm For Replicated Directories. 
1987, To Appear in Journal of ACM. 

[BIRM85] Birman. K. Replication and Fault-Tolerence in the 
Isis System. In Proceeqings of the lOth ACM Symposium 
on Operating System Principles, December, 1985. 

[BREI82] Breitweiser, H., Leszak, M.A. Distributed 
Transaction Processing Protocol Based on Majority 
Consensus. In Proceedings Ist ACM SIGACT-SIGOPS 
Symposium on Principles of Distributed Computing, 
Aug.1982, pp.224-237. 

( ii) 



[DANI83] Daniels, D., Spector, A.Z. An Algorithm For 
Replicated Directories. In Proceedings 2nd ACM SIGACT­
SIGOPS Symposium on Principles of Distributed 
Computing, (Aug. 1983), pp.104-114. 

[DAVI83] Davidson, S.B., Garcia-Monila, 
Consistency in Partitioned Networks. 
Surveys, Vol.17, No.3, September 1985. 

B., Skeen. D. 
ACM computing 

[DROS88] Drost, N.J., Leeuwen J .. v. Assertional Verification 
of a Majority Consensus Algorithm for Concurrency 
Control in Multicopy Databases. In Lecture Notes in 
Computer Science (No.335), 1988. 

[EAGE81] Eager, D.L. Rubust Concurrency Control in 
Distributed Databases. Technical report CSRG#135, 
Computer System Research Group, University of Toronto, 
October, 19 81. 

[EAGE83] Eager, D.L., savcik, K.C. Achieving Robustness in 
Distributed Database Systems, ACM Trans. Database 
Syst.8,3 (Sept.1983), 354-381. 

[ELAB85] El 
Efficiency 
Management. 
Principles 
March 1985, 

Abbadi, A., Skeen, D., Cristian, F. An 
Fault-Tolerent Protocol for Replicated Data 

In Proc. 4th ACM SIGACT-SIGMOD Symp. on 
on Database Systems, Portland, Oregaon, 
pp.215-228. 

[ELAB86] El Abbadi, A., Toueg, s. Availability in Partioned 
Replicated Databses. In proc. 5th ACM SIGACT-SIGMOD 
Symp. on Principles of Database Systems. Cambridge, MA, 
March, 1986, pp.240-251. 

[ELAB87] El Abbadi, A., Toueg, s. Maintaining Availability 
in Partitioned Replicated Databases. Tech. Rep.TR-87-
857, Dept. of Computer Science, Cornell University, 
Ithacea, N.Y., 1987. 

[ELLI77] Ellis, C.A. Consistency and Correctiness of 
Duplicate Database Systems. 6th Symp. Operating System 
Principles, Nov.1977, pp.67-84. 

[ELLI77a] Ellis, C.A. A Robust Algorithm for Updating 
Dublicate Databases. In Proc. 2nd Berkeley Workshop 
Distributed Data management and Computer Networks., 
1977, pp.1146-1158. 

[ESWA76] Eswaran, K.P., Gray, J.N. 
The Notions of Consistency 
Database System. Comm. ACM 
pp.624-633. 

(iii) 

Lorie,R.A., Taiger, T.L. 
and Predicate Locks in a 
19(11), November, 1976, 



[GARC79] Garcia-Molina, H. Performance of Update Algorithms 
for Replicated Data in a Distributed Database. Tech. 
Rep. STAN-CS-744, Department of Computer Scinece, 
stanford University, June 1979. 

[GARC82] Garcia-Molina, H. 
Computing System, IEEE 
January, 1982, 48-59. 

Elections in a Distributed 
Trans. on Computers C-31(1): 

[GARC82a] Garcia-Molina, H. Reliability issues for Fully 
Replicated Distributed Databases, IEEE Computer, 15, 9 
(Sept.1982), pp.34-42. 

[GARC82b] Garcia-Molina, H., Wiederhold, G. Read-
Only transactions in Distributed Database. ACM 
Transactions on Database Systems, Vol.7, No.2, June 
1982, pp.209-234. 

[GARC83a] Gacia-Monila, H., Barbara, D. How to Assign Votes 
in a Distributed System. Technical Report TR 311-
3/1983, Department of Electrical Engineering and 
Computer Science, Princeton University, 1983. 

[GARC86] Garcia-Molina, H. The Future of Data Replication. 
In 5th Symp. on Reliability in Distributed Software and 
Database Systems, IEEE, Los Angeles, 
January, 1986, pp.13-19. 

[GARD79] Gerdarin, G., Lebaux, P. Centralized Control Update 
Algorithm for Fully Redundant Distributed Databases. 
In Proc. Ist Int'l Conf. on Distributed Computing 
Systems, IEEE, October, 1979, pp.699-705. 

[GARDSO] Gardarin, G., Chu, w.w.A. Distributed Control 
Algorithm for Reliably and Consistently Updating 
Replicatd Databases. IEEE Trans. on Computers C-
29(12):December, 1980, pp.1060-1068. 

[GELE79] Gelenoe,E., savick, K. Analysis of update 
synchronization for Multicopy Databases. IEEE Trans.· 
Computer. c-28, 10(0ct 1979), pp.737-747. 

[GIFF79] Gifford,D.K. Weighted Voting for Replicated Data. 
In Proc. 7th ACM SIGOPS Symp. on Operating System 
Principles, Pacific Grove, CA, December, 
1979, pp.150-159. 

[HERL84] Herlihy. M.P. Replication Methods for Abstract Data 
Types. Ph.D. Thesis, Massachusetts Institute of 
Technology, May 1984. 

[HERL86] Herlihy, M.A. Quorum-Consensus Replication Method 
for Abstract Data Types. ACM Trans. on Computer Systems 
4(1) :February, 1986, pp.32-53. 

(iv) 



[HERL87] Herlihy, M.P. Availability vs. Concurrency 
Atomicity Mechanisms For Replicated Data. ACM Trans. 
Comput. Syst.4,3(Aug.1987), pp.249-274. 

[HERL88] Herlihy, M.P., Weihl, W.E. Hybrid Concurrency 
Control for Abstract Data Types. In Proceedings of the 
7th ACM SIMOD-SIGACT Symposium on Principles of 
Database Systems (PGDS) (March 1988), pp.201-210. 

[HERL90] Herlihy, M. Apolizing Versus Asking Permission: 
Optimistic Concurrency Control for Abstract Data Types. 
ACM Trans. on Database Systems Vol.15, No.1, March 
1990, pp.96-124. 

[HEVN88] Hevner., A.R., 
Allocation Strategies. 
Computers 1988. 

Arune Rao. 
A Chapter 

Distributed Data 
in 'Advances in 

[JAJ087] Jajodia, s., Meadows, C.A. Mutual Consistency in 
Decentralized Distributed Systems. In Proceedings of 
3rd Int. Conf. ort Data Engineering. Los Angles, 
Februrary, 1987, pp.396-404. 

[JAJ087a] Jajodia, s., Mutchler, D. Dynamic Voting. In 
Proceedings of ACM Int. Conf. on Management of Data 
(SIGMOD) Sanfrancisco, May 1987. 

[JAJ090] Jajodia, s., Mutchler, D. Dynamic Voting Algorithms 
For a Maintaining the Consistency of a Replicated 
Database. ACM Transactions on Database Systems. Vol.15, 
No.2, June 1990, pp.230-280. 

[JOHN75] Johnson, P.R., Thomas, R.H. The Maintenance of 
Duplicate Databases. Tech. Rep. RFC677C31507, Network 
Working Group, January, 1975. 

[JOSE86] Joseph. T. Low Cost Management of Replicated Data. 
Department of Computer Science, Cornell University, 
Ph.D. Dissertation. Jan. 1986. 

[JOSE86] Joseph, T.A., Birman, K.P. Low Cost Management of 
Replicated Data in Fault-Tolerant Distributed Systems. 
ACM Trans. on Computer Systems 4(1):Februray, 1986, 
pp.54-70. 

[KANE79] Kaneko, A. Logical Clock Synchronization Method for 
Duplicated Database Control. In Ist Int'l Conf. 
Distributed Computing systems, Huntsville, Ala., Oct. 
1979, pp.601-611. 

[KOON86] Koon, T., Ozsu, M.T. Performance Comparison of 
Resilient Concurrency Control Algorithms for 
Distributed Databases. In Proc. Int' Conf. on Data 
Engineering, IEEE, Los Angles, Feb., 1986, pp.565-573, 

(v) 



[KOHL81] Kohler, W.H. A Survey of Techniques for 
synchronization and Recovery in Decentralized Computer 
systems. ACM computing surveys, Vol.13, No.12, June 
1981. 

[KORTH86] Korth., H.F., Silberschatz., A. Database Systems 
Concepts. Me Graw-Hils Book Company, 1986. 

[KUMA88] Kumar, A., Stonebraker, M. Semantics Based 
Transaction Management Techniques for Replicated Data. 
ACM SIGACT-SIGNOD 1988. 

[LAMP78] Lamport, L. Time, Clocks and Ordering of Events in 
a Distributed System. Comm. ACM21(7):July 
1978, pp.558-565. 

[MIN082] Mincura, T. Wiederhold, 
True Copy Token Schemes for 
Systems. IEEE Trans. on Software 
No.3, May 1982. 

G.R. Resilient Extended 
a Distributed Database 
Engineering, Vol.SE-8, 

[NDE85] Noe, J.D., Proudfoo1, A., Pu, c. Replication in 
Distributed Systems: The Eden Experinece. Technical 
Report 85-08-06, Department of Computer Science, 
Univesity of Wshington, September 1985. 

[PAPA79] Papadimitriou,c.H. Serializability of Concurrent 
Database Updates. Journal of the ACM 26(4): 
October, 1979, pp.631-653. 

[PAPA86] Papadimitriou, C.H. The Theory of Concurrency 
Control Computer Science Press, Rockville, MD, 1986. 

[PART88] Paris, J.F., Long, D.D.E. Efficient Dynamic Voting 
Algorithms. In Proc. 4th IEEE Int. Conf. on Data Engg. 
LA,Feb, 1988. 

[PARK83] Parker Jr., D.s., Popek, G.J., Rudisin, G., 
Stougton, A. Walker, B.J., Walton B., Chow, J.M., 
Edwards, D., Kiser, s., Kline, c. Detection of Mutural 
Inconsistency in Distributed Systems. IEEE Trans. on 
Software Engineering SE-9(3): pp.240-247, May, 1983. 

[PU86] Pu, c., Jerre, 
Replicated Objects 
Implimentation. 
Conference on Data 
1986. 

D., Proudfoot, A. Regeneration of 
A Technique and Its Eden 

In Proceedings International 
Engineering, IEEE Computer Society, 

[REED83] Reed, D.P. Implimenting Atomic 
Decentralized Data. ACM Transactions 
Systems. Vol,l.No.l, Feb.1983. 

Actions on 
on Computer 

(vi) 



[ROTH77] ~othie, J.B. Goodman, 
redudant Update Methodology 
Distributed Databases (The 
Rep. No.CCA-77-02, Computer 
1977. 

N., Bernstein, P.A. The 
of SDD-1: A System for 

Fully a Redundant Case), 
Corporation of America, 

[ROYH77a] Rothnie, J.B., Goodman, N., A Study of Updating in 
a Redundant Distributed Database Environment. Computer 
Corp. America, Cambridge, MA, Tech. Rep. CCA-77-01, 
Feb.15, 1977. 

[SARI86] sarin, S.K. Rubust Algorithm Design in Highly 
Available Distributed Databases. In Proc. of the 5th 
Symposium on Reliability in Distributed Software and 
Database System. Los Angles, January 1986, pp.87-94. 

[SCHL83] Schlicting, R.S., Scheneider, F. Fail Stop 
Processors An Approach to Designing Fault Tolerant 
Distributed Computer Systems. ACM Transactions on 
Computer Systems.1, 3(1983), pp.22-228. 

[SELISO] Selinger, P.G. Replicated Data in Distributed 
Databases. I.W. Draffen and F. Poole,Eds. Cambridge 
University Press, Cambridge 1980. 

[SKEE84] Skeen, D., Wright, D. Increasing Availability in 
Partitioned Networks. In Proc. of the 3rd SIGACT-SIGMOD 
symposium on Principles of Database Systems, New York, 
1984. 

[STON79] Stonbraker, M. Concurrency Control and Consistency 
of Multiple Copies of Data in Distributed INGRES. IEEE 
Trans. on Software Engineering 3(3):May, 1979, pp.188-
194. 

[TANG88] Tang, J., Natarjan, N.A. Formal Model for 
Pessimistic Schemes for Managing Replicated Databases, 
Tech., Report, Dept. of Computer Science, Pennsylvania 
State University 1988. 

[TANG89a] Tang, 
Scheme for 
Proceedings 
Conference on 

J., Natarajan, N.A. Static Pessimistic 
Handling Replicated Databases. In 

of the 1989 ACM SIGMOD International 
the Management of Data, Portland, Oregon. 

[TAKA79] Takagi, A. Concurrent and Reliable Updates of 
Distributed Databases. MIT Laboratory for Computer 
Science, Report, MIT/LCS/TM-144, Nov., 1979. 

[THOM78] Thomas, R.F.A. Solution to 
Problem for Multicopy Databases. 
COMPCON, Feb.28-March 3, 1978. 

(vii) 

Concurrency Control 
In Proc. Spring 



r 
[THOM79) Thomas, . R.H. A Majority Consensus. Approach :-t:6'> 

Concurrency antral for Multiple Copy ·Databases.-~~€M··' 
Trans. on Database systems 4 ( 2) :June 1979, p~:Vl·a-'0~"69'.;} • 

[TONG88] Tong, z., Kain, R;Y. Vote Assignmets,ifrl~\~W@:')f..tjhb~Gt·~"~ 
Voting Mechanisms. In Proc. of Seventh~~~~-.t-1-&'n':c~ 
Reliable Distributed Systems. october 198.$·~·rr~~i.]}~lJ43?P~;. 

[WEIH84] Weihl, W. Specification and Impl:t.~£4~~,_-;:;lj¥':': 
Atomic Data Types, Ph.D. Thesis, MIT, Marcij~;~:;.1.g~~: 

[WUU84] Wuu, G.T.J., Bernstein, A.J. Efficie'n~~~t'tt~il!f' 
the Replicated Log and Dictionary {.i.i>~~ 1j;~yi 
Proceedings of the 3rd ACM Symposium-·oh;·;pfrln~~-i~Jttf''" 
Distributed Computin<!. Vencourer, . Aug_~-.~·~-~~~~~~f!j~~~;;~~~~-
242. Also Appears 1n ACM Operat1ng ~,.~~y~lfi}n.l't~~w~: .. 
Vol.20, No.1, January 1986, pp.57-66. 

[YANN84] Yanakakis, M. Serializability by Locki·nq•:"~:~~~h:;.tS:l,.., 
April 1984, pp.227-234. 


	TH39220001
	TH39220002
	TH39220003
	TH39220004
	TH39220005
	TH39220006
	TH39220007
	TH39220008
	TH39220009
	TH39220010
	TH39220011
	TH39220012
	TH39220013
	TH39220014
	TH39220015
	TH39220016
	TH39220017
	TH39220018
	TH39220019
	TH39220020
	TH39220021
	TH39220022
	TH39220023
	TH39220024
	TH39220025
	TH39220026
	TH39220027
	TH39220028
	TH39220029
	TH39220030
	TH39220031
	TH39220032
	TH39220033
	TH39220034
	TH39220035
	TH39220036
	TH39220037
	TH39220038
	TH39220039
	TH39220040
	TH39220041
	TH39220042
	TH39220043
	TH39220044
	TH39220045
	TH39220046
	TH39220047
	TH39220048
	TH39220049
	TH39220050
	TH39220051
	TH39220052
	TH39220053
	TH39220054
	TH39220055
	TH39220056
	TH39220057
	TH39220058
	TH39220059
	TH39220060
	TH39220061
	TH39220062
	TH39220063
	TH39220064
	TH39220065
	TH39220066
	TH39220067
	TH39220068
	TH39220069
	TH39220070
	TH39220071
	TH39220072
	TH39220073
	TH39220074
	TH39220075
	TH39220076
	TH39220077
	TH39220078
	TH39220079
	TH39220080
	TH39220081
	TH39220082
	TH39220083
	TH39220084
	TH39220085
	TH39220086
	TH39220087
	TH39220088
	TH39220089
	TH39220090
	TH39220091
	TH39220092
	TH39220093
	TH39220094
	TH39220095
	TH39220096
	TH39220097
	TH39220098
	TH39220099
	TH39220100
	TH39220101
	TH39220102
	TH39220103
	TH39220104
	TH39220105
	TH39220106
	TH39220107
	TH39220108

