
CONCURRENCY CONTROL AND RECOVERY IN
REPLICA TED DISTRIBUTED OAT ABASES

Dissertation submitted to Jawaharlal Nehru University
in partial fulfilment of the requirements for the

award of the Degree of
MASTER OF TECHNOLOGY

IN
COMPUTER SCIENCE

POLEPALLI KRISHNA REDDY

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI -110067 INDIA
JANUARY 1991

CERTIFICATE

The research work entitled CONCURRENCY CONTROL AND

RECOVERY IN REPLICATED DISTRIBUTED DATABASES, embodied in

this Dissertation has been carried out in the School of

Computer and System sciences, Jawaharlal Nehru University,

New Delhi. This work is original and has not been submitted

in part or in full for any other degree or diploma of any

university.

SCSS, JNU
Dean
SCSS, JNU

' '
' ·.

ACKNOWLEDGEMENTS

I owe my sincere thanks to my supervisor Dr. Subhash

Bhalla for his uncompromising guidance, constant supervision

and constructive criticism without which this work would not

have been completed successfully.

I thank the dean and faculty of the School of Computer

and system Sciences at Jawaharlal Nehru University (JNU) for

teaching me Computer Science in a friendly and lucid

environment.

I thank library staff of JNU and I.I.T, Delhi, for

helping in getting references about this subject, and for

providing xeroxing facilities.

I thank my parents for their support, which has

encouraged me to do my M.Tech.

I wish to thank my friends who are directly and

indirectly helped me to complete this project.

--,--~ -Ji>LEPALLI KRISHNA REDDY
---., - J ',_ ----- .. January 1991

ABSTRACT

Many distributed systems replicate data .. ··- ,···

tolerance, availability and In a
,· .. ,'l •.;·

one copy distributed database each data item i~ stor~d at

exactly one site. In a replicated database, ~ome ctCita it~ID.$

are stored at multiple sites. In such systems~ C1 ~o.gica1

update on data item results in physical upqa1;:e qn a nuJD.}Je~
·-~ .:• .. '. ··: '·

of copies. By storing important data at m';lJ~~pJ..e ~,~~~s t}l~

distributed database system can op~rat~ w~e.n t:pq:ugb. $01Ue

sites have failed.

Recently several strategies have bee~ ~~opo~ed f()r

transaction processing in replicat~d .~~~~FfP:'ttr<i p~ta):)ase

systems. In this report some of the st_:ra:tegi~!? hCiye bee11

surveyed. At first the motivation to r~pl~cation is

discussed. Then, the problems and correctn~§§ f?f~terion ;ire
. . ·· .. ·, . .. ' .

presented. Next, different strategies are pres,ente!;}, aft~r!

these are compared in the light of cos,t_, .Ci~hieving hi_g,}l

availability and fault tolerance.

A new algorithm is discuss•ed based .. c:>~ ~e~~c:~~_inCJ ,the

transaction after visiting majority of sites. Tbe alg.o,ri~PJll

is discussed with proof and examples.

CONTENTS

ABSTRACT

CHAPTER 1 - CONCURRENCY CONTROL AND RECOVERY IN
DISTRIBUTED REPLICATED DATABASE ENVIRONMENT 1-27

1.1 INTRODUCTION 1

1.2 DISTRIBUTED DATABASES 1

1.3 DATA REPLICATION 2

1.4 ADVANTAGES OF REPLICATION 4

1.5 PROBLEMS AND ISSUES OF REPLICATION 6

1.6 FAILURES AND RECOVERY 12

1.7 CORRECTNESS CRITERIA 17

1.8 ORGANIZATION OF THE STUDY 27

CHAPTER 2 - REPLICA CONTROL ALGORITHMS 28-53

2.1 INTRODUCTION 28

2.2 COMMON ASSUMPTIONS 28

2.3 CONCURRENCY CONTROL AND CONSISTENCY
OF MULTIPLE COPIES OF DATA IN
DISTRIBUTED 'INGRES 1 29

2.4 A MAJORITY CONSENSUS APPROACH TO
CONCURRENCY CONTROL FOR MULTICOPY
DATABASES 31

2.5 THE QUORUM CONSENSUS ALGORITHM 35

2.6 AN ALGORITHM FOR CONCURRENCY CONTROL
AND RECOVERY IN REPLICATED DISTRIBUTED
DATABASES 37

2.7 MISSING WRITES ALGORITHM 40

2.8 RESILIENT EXTENDED TRUE COPY TOKEN
SCHEME FOR A DISTRIBUTED DATABASE
SYSTEM 42

2.9 SEMANTICS BASED TRANSACTION MANAGEMENT
TECHNIQUE FOR REPLICATED DATA 48

2.10 CONCLUSION

CHAPTER 3 - COMPARISON OF ALGORITHMS

3.1 INTRODUCTION

3.2 COST COMPARISON

3.3 SITE FAILURES

3.4 PARTITIONING BEHAVIOUR

3.5 READ-WRITE RATIO

3.6 DEADLOCK DETECTION AND OTHERS

3.7 CONCLUSION

CHAPTER 4 - AN ALGORITHM BASED ON EXECUTING REQUEST
AFTER VISITING MAJORITY OF SITES

4.1 INTRODUCTION

4.2 ENVIRONMENT

4.3 ASSUMPTIONS AND TERMINOLOGY

4.4 INTER SITE COMMUNICATION

4.5 TIME STAMPS

4.6 FAILURE ASSUMPTIONS

4.7 ALGORITHM

4.8 EXAMPLE

4.9 SITE CRASHES AND PARTITIONING
BEHAVIOUR

4.10 WHY THE ALGORITHM WORKS

4.11 CONCLUSION

CHAPTER 5 - CONCLUSION

BIBLIOGRAPHY

53

54-74

54

56

67

69

71

73

74

75-93

75

76

79

81

83

84

84

86

89

89

93

94

CHAPTER 1

CONCURRENCY CONTROL AND RECOVERY IN A DISTRIBUTED

REPLICATED DATA BASE ENVIRONMENT

1.1 INTRODUCTION

Developments in technology have made it possible to

inter-connect a number of computer systems to form a

computer network. The problem of distributing a database

among the different computer systems or sites to form a

distributed database system is an active research area.

1.2 DISTRIBUTED DATABASES

The main difference between centralized and distributed

data base systems is that, in the former the data resides in

one location while in the later the. data resides in the

several locations. There are number of differences between

supporting a centralized database and distributed database

such as transaction execution, reliability of processing,

and problems in supporting distributed database are listed

below.

Consider a distributed database, each data item 't'

having only one

[ESWA76] (which

copy at any site. If any transaction

issues reads and writes) needs that data

item then, the message must be communicated to that site and

response is also delayed. A lot of communication overhead

1

on the communication (telephone or microwave) system. In

this, both read and write requests need equal communication

overhead, even though read request does not modify the

database (which is not in case of replicated one). That is,

the request is communicated to that site where a data item

resides, and response is also transmitted to the site, where

the request is originated.

The second aspect is that of reliability problem. In a

single copy database system, (DBS) if site crashes, then the

data at that site is lost. The transactions which depend on

the data cannot be executed, and the system must be shutdown

until recovery. This is undesirable in the case of many

applications such as in airline reservation system, railway

reservation system, telephone operating systems. These and

similar applications, must be supported with uninterrupted

service.

The other problem is that of improving response time.

For example, if the number of transactions needs single item

(by maintaining two phase locking or time stamping)l the

queue would be very long, and response is delayed

considerably.

1.3 DATA REPLICATION

One of the approaches to the above problem is that data

is stored reduntantly at various sites. But there is a lot

2

of over head on storage. Can we tolerate this extra burden?

Consider the recent advances in technology [HEVMBB].

* Hardware advances include high speed VLSI processors,

large capacity memories, rapid magnetic and optical

disk drives and sophisticated input/output devices.

These components enabled the developments of micro

computer work stations with impressive capabilities to

serve as a distributed system sites.

* Communication and networking advances include rapid

media, such as optical fibre, data transmission

microwave and satellite.

* Software advances allowed most application systems to

function efficiently and correctly on distributed

networks with multiple users.

In addition,

technologies into

developed and

community.

standards for integrating all the above

a complete distributed system are being

accepted by most of the international

With these advances, we can go for replicated data base

systems (RDBS) .

Basically, replication means that, data items are

stored redundantly at geographically disperSed locations.

In replicated environment, read can access at local site

3

which is nearest. But for write operation, each copy must be

updated. That is, read operations executed efficiently.

But, for write operations there is a lot of communication

overhead.

1.4 ADVANTAGES OF REPLICATION

The main advantages for going replication are

reliability, increase in parallelism and performance.

* Reliability:- There are many types of failures. For

example, node failures, communication link failures,

malevolent failures etc. Some of the failures are

detectable, while others are not. We should know which

type of failures the system is protected against and

also how many. In the ROBS if one site fails the

remaining

Transactions

failure the

sites are able to continue operating.

can be run at any site.

transactions which belong

After detecting

to that failed

site can be forwarded to other sites. Thus the failure

of the site does not necessarily imply the shutdown of

the system.

The failure of any site must be detected by the

system, then appropriate action may be needed to

recover from failure. The system no longer uses the

services of failed site. Finally, when the failed site

recovers (or repaired) mechanisms must be available to

4

integrate it

the ability

smoothly back into the system. In ROBS

of the most of the system to continue to

operate, despite the failure of the one site results in

increase in availability. Availability is crucial for

real time applications. Loss of access to data, for

example in airline may result in the loss of potential

ticket buyers to competitors.

* Increased parallelism:- In case, where the majority of

access to the data items results in any reading of the

data item, the several sites can process queries

involving that data item, in parallel. The more

replicas of data item there are the greater the chance

that needed data is found in the site, where the

transaction is being executed. Hence, data replication

minimizes data accessing overhead. Data copies are

placed to provide acceptable availability to all system

sites that are closely located.

Till now it is clear as to how the replication

technique is superior to single copy distributed systems.

However, there remains a fair amount of overhead and

problems involved in designing and implementation phase.

The benefits and cost of data replication are very difficult

to measure.

5

1.5 PROBLEMS AND ISSUES OF REPLICATION

Some of the problems of replication technique are

presented below.

Redundant update problem:- The system must ensure that all

replicas of data item 'x' are consistent [DAVI86]. But, the

inherent communication between sites maintain copies of

database makes it impossible to ensure that all copies

remain identical at all times when update requests are being

processed. The principal goal of update mechanism is, to

guarantee that updates get applied to the database copies in

a way that, preserves the mutual consistency [STON83] of the

collection of database copies as well as the internal

consistency or each database copy. Otherwise, erroneous

computations may result. The notion of database consistency

has two aspects.

Mutual consistency of redundant copies

The update transactions incur greater overhead to

ensure mutual consistency. Mutual consistency requires all

copies of database must be identical. This means whenever a

data item is updated, then update must be propagated to all

sites containing, replicas, resulting in an increased data

maintenance overhead. For example, in a banking system

where account information is replicated in various sites, it

is necessary that transactions must ensure, the balance in a

particular account agrees at all sites, ·to a common value.

6

consider a banking database that contains a checking

account and saving account for a certain customer, with a

copy of each account stored at both sites A and B. Figure

1.1 shows the value of accounts at site A and site B.

Site 'A'

Checking: Rs.100/-

Saving Rs.200/-

Figure 1.1

Site 'B'

Checking: Rs.100/­

Saving Rs.200/-

Suppose two update requests come at the same time at site A

and site B.

R1 : Checking= checking -50;

Saving = saving + 100.

R2 : Checking = checking +100.

Each update is based on the database state in Figure

1.1. If both updates are processed at their home sites

there is no ordering then the new state of the database is

shown in the Figure 1.2

Checking = 50 Checking = 200

Saving = 300 saving = 200

Figure 1. 2

7

In the figure 1.2, the value of each account is not same in

both sites. So, the mutual consistency of database has been

disturbed.

Internal consistency

The internal consistency requires that each copy of the

database remain consistent within itself just as a non-

redundant database must. It concerns the preservation of

invariant relations that exist among items within a

database. Maintaining internal consistency is overhead as

compared to single copy database. Most of the responsibility

for the internal consistency of database must rest with the

application process which updates it. The update mechanism

should not destroy the internal data relationships of the

database.

Consider the same banking database as shown in the

figure (1.1)

Further assume that the relation

(Checking + saving) > = 0

must be preserved for the database.

Consider the update requests 'R3' and 'R4'

R3 : Checking

R4 : Checking

= Checking - 200;

= Checking - 150;

Each of which is based on the initial database state.

If both R3 and R4 are applied regardless of the order of

8

l

application, the internal consistency of the database (the

~~{relation (checking + saving) > = 0) will be destroyed.

Hence, one of the requests must be rejected, in order to

preserve the internal consistency of the database.

Concurrency control

Concurrency control [BERN81] is the activity of

coordinating concurrent accesses to a database in a

distributed database system. Concurrency control permits

users to access a database in a multi-programmed fashion

while preserving the illusion that each user is executing

alone on a dedicated system. The main technical difficulty

in attaining this goal is, to prevent database updates

performed by one user from interfering with database

retrievals and updates performed by another. Read and write

actions issued by users, concurrently can corrupt data

correctness.

The goal of concurrency control is to prevent

interference among users who are simultaneously accessing a

database. Let us illustrate the problem with two examples.

Example #1: Suppose two customers simultaneously try to

deposit money into the same account. In the absence of
,...

concurrency control, the two activities could interfere.

Initially the balance in the account is Rs.500/-.

9

Execution of customer 1 Execution of customer 2
Read (balance) ~ Read (balance)
Add.Rs.lOOO/- ~~~ Rs.2000/-

a~ . a
~B

~

B
Figure 1.3

The · two machines handling the two customers could read

the account balance at approximately same time, compute new

balance in parallel and then store new balance back into the

database. The net effect is incorrect (Figure 1.3).

Although two customers deposited the money, the database

only reflects one activity; the other deposit is lost by the

system.

Example #2: Suppose two customers simultaneously execute

the following transactions with the initial database state

given in figure 1.4.

Customer 3: Move Rs.1000/- from saving account to checking

account.

-
Customer 4: Read the total balance in saving and checking.

10

J

Execution of customer 3

s 2000
c 500

Read (saving) ~

Subtract 1000

Write (result)

Read(checking)

Add 1000.

Write (result)

J

~
..._____ - s 1000
~ c 500

/
B

J
~ ~I ~~~~ l,

Figure 1. 4

Execution of 9ustomer 4

(saving,checking)

s 1000
c 500

In the absence of concurrency control these two

transactions could interfere. The first transaction might

read the saving account balance. Subtract Rs.1000/- and

store result back into the database. The second transaction

might read the savings and checking account balance and

print the total. Then, the first transaction might finish

the funds transfer by readings the checking account balance,

adding Rs.1000/-, and finally s·toring the result in the

11

database (Figure 1.4). In this, the final value placed into

the database by this execution is correct. But, still the

execution is incorrect because the balance received by the

customer 4 is Rs.1000/- short.

The above examples don't exhaust all possible ways

in which concurrent users can interfere. However, these

examples are typical concurrency control problems that

arise in distributed DBS. Concurrency control methods such

as two-phase locking [KORT86] are expensive and may lead to

system dead lock.

However, the problem of controlling concurrent updates

by several transactions to replicated data is more complex

than the centralized approach to concurrency control.

1.6 FAILURES AND.RECOVERY

failures and transaction abortions due to System

concurrency

consistent

failure

complex

and

than

control requires recovery methods that ensure

recovery [KOHL81] to all data copies. The

recovery problem for a distributed DBS is more

that for centralized DBS. More kinds of

failures must be considered. Communication links cause new

kinds of failures such as partition failures.

A distributed

components: sites

system

which

consists of two kinds of

process information, and

communication links, which transmit information from site to

12

site.

where

A distributed system is commonly depicted as a graph

nodes are sites and undirected edges are bi~

directional communication links as shown in the Figure 1.5.

Figure 1.5

We assume that the graph is connected, means that there

is a path from every site to every other. Thus, every two

sites can communicate either directly via link joining them,

or indirectly via a chain of links. The combination of

hardware and software that is responsible for moving

messages between sites is called a computer network.

A distributed system may suffer from the same types of

.. failures that a centralized system does. (for example: memory

failure, disk crash). There are however additional failures

that need to be dealt with in a distributed environment,

including:

a) The failure of a site;

b) The failure of link;

c) Loss of message;

d) Network partition.

13

In order to be robust, the system must therefore detect

any of these failures, reconfigure the system so that

computation may continue, and recover, when a processor or

link is repaired.

site failures

When a site experiences a system failure, processing

and contents of volatile storage are

this case, we will say the site has failed.

stops abruptly

destroyed. In

When the site recovers from failure it first executes a

recovery procedure, which brings the site to a consistent

state so that, it can resume normal processing.

In this model of failure, a site is always either

working correctly or not working at all; it never performs

incorrect actions. This type of behaviour is called

fail-stop [SCHL88], because sites fail only by stopping.

Even though each site is functioning properly or has

failed, different sites may be in different states. A

partial failure is a situation where some sites are

operational while others are down. Total failures occur

when all sites are down.

Partial failures are tricky to deal with. Mainly this

is because, operational sites may be uncertain about the

state of failed ones. Atomic commitment protocols are

designed to minimize the effect of one sites failure on

14

other site's ability to continue processing.

Communication failures

Communication links are also subject to failures. Such

failures may prevent processes at different sites from

communicating. A message may be corrupted due to noise in a

link; a link may malfunction temporarily, causing a message

to be completely lost; or link may be broken for a while,

causing all messages sent through it to be lost.

Message corruption can be effectively handled by using

error detecting codes, and by retransmitting a message in

which the receiver detects an error. Loss of messages due

to transient link failures can be handled by retransmitting

lost messages. If a message is sent from site A to site B,

but, the network is unable to deliver the message due to

broken link, it may attempt to find another path from A to B

whose intermediate links and sites are functioning properly.

Error correcting codes,

rerouting are usually

protocols.

Network partitioning

message

provided

retransmission, and

by computer network

Unfortunately, even with automatic routing a

combination of site and line failures [BERN87] can disable

the communication between sites. This will happen if all

the paths between two sites A and B contain a failed site or

15

a broken

partition.

link. This phenomenon is called a network

In general a network partition divides the

operational sites into two or more components, where every

two sites within a component can communicate with each

other, but sites in different components cannot. Figure 1.6

shows the partitioning of the system of Figure 1.5. The

partition consist of two components, {B,C} and {D,E}, and is

caused by the failure of site A and links (C,D) and (C,E).

Figure 1.6

As sites recover and communication links are repaired,

communication is re-established between sites that could not

previously exchange messages, thereby merging the components.

For example, in figure 1.6, if site A recovers or if either

link (C,D) or (C,E) is repaired, the two components merge

and every pair of operational sites can communicate.

It is generally not possible to differentiate between

link failure and network partition. We can usually detect

that a failure has occurred.

16

Security

Replication of data increases the security risk of

exposing sensitive information and of providing an

opportunity for the corruption of data.

Although there is a considerable overhead with

1' t.) rep 1ca 1on;,, on the whole, it enhances the performance of

read operations and increases the availability, parallelism

and reliability. Because of advances in technology people

are working for better replicated techniques to minimize the

overhead.

1.7 CORRECTNESS CRITERIA

There are two correctness criteria for replicated

databases.

(1) concurrency control

When a set of transactions execute concurrently, the

operations may be interleaved. We model such an execution

by a structure called a history. A history indicates the

order in which the operations of the transactions executed

relative to each other. Since some of these operations may

be executed in parallel, a history is defined as partial

order [BERN87]. If transaction 1 T. 1 specifies the order of
1

its operations, there two operations must appear in that

order in any history that includes

17

IT. I.
1

In addition, we·

require that a history specify the order of all conflicting

operations that appear in it.

Two operations are said to conflict if they both

operate on the same data item and at least one of them is a

write. Thus read(x) conflicts with write(x), while write(x)

conflicts with both operations read(x) and write(x). If two

operations conflict, their order of execution matters. The

value of 'x' returned by read(x) depends up on whether or

not that operation proceeds or follows a particular

write(x). Also, the final value of 'x' depends on which of

the write(x) operations is processed last.

To illustrate, consider the two transactions. (r =

read, w = write, c = commit)

T 2 : r [z]-----w [Y]
2 ~2

w2 [x]----->c2 .

The possible history (H1) is shown in Figure 1.7.

w1[y]

/ ~
r 1 [x]--> r 1 [y] c 1

\

~w1 [x]/'
/ r [z]------w [y] ,

/ 2 2,~
w2 [x]----------------------------->c2

Figure 1.7

18

Consider figure 1.3 suppose two transactions are

executed one at a time in the order 'customer 1' followed by
fl~

customer 2. The execution sequence is as shown in 1.8(a).

Customer 2 after Customer 1 customer 1 after Customer 2

Road (balance) Road (balance)

Add Rs.1000/- Add Rs.2000/-

Read (balance) Read (balance)

Add Rs.2000/- Add Rs.1000/-

(a) (b)

Figure 1.8

The final value of balance is correct. Similarly if

the transactions are executed one at a time customer 2

followed by customer 1, then corresponding execution
. . y\~

sequence 1s shown 1n 1.8(b).

The execution sequences described above are called

serial histories. Thus, a serial history represents an

execution in which there is no interleaving of the

operations of different transactions. Each transaction

executes from beginning to end before the next one can

start.

The histories described above are called serial

histories. When serial transactions are executed in

parallel, the corresponding history need no longer be

serial. But not all parallel executions result in an

incorrect state.

19

Each transaction when executed alone, transfers the

system from one consistent state to another consistent

state. A natural way to define a correctness in a

concurrent system, is to require that the outcome of

processing a set of transactions concurrently, be the same

as one produced by running these transactions serially in

the same order. A system that ensures this property is. said

to ensure serialiability [BERN79].

In order to formalize the concept of serializability,

we need to define a notion of equivalent histories [BERN87].

We can say two histories are equivalent(=) if

1) They are defined over the same set of transactions and

have the same operation; and

2) They order conflicting operations of non-aborted

transactions in the same way that is, for any

conflicting operations lp. I and lq, I belonging to
1 J

transactions T. and T. (respectively if P· <H q. then
1 J 1 J

p. <H q ..
1 J

Jfwl[~
H3 = rl[x]-->rl[~])fl

w
1

[y]

t·
r2[~]-~---->w2[y]

w [x]-------------->c 2 2

Figure 1. 9

20

j
4
)
)

Underlying this definition, the outcome of a concurrent

execution of transactions depends only on the relative

ordering of conflicting operations. To see this observe

that executing nonconflicting operations in either order has

the same computational effect. Conversely, the

computational effect of executing two conflicting operations

depends on their relative order.

For example, given the three histories shown in

Fig.1.9, H
1

= H2 but, H3 is not equivalent to either.

We can determine whether a history is serializable by

analyzing a graph derived from the history called a

serialization graph. Let H be a history over T={T1 , ... ,Tn}·

The serialization graph(SG) for H, denoted SG(H), is a

directed graph whose nodes are the transactions in T that

are committed in H and whose edges are all T.-->T. (ifj)
1 J

such that one of the T. 's operations precedes and conflicts
1

with one of Tj's operations in H. For example:

,.[x]~w3.[x]~c3

H4 = r 1 [x)~~1[x]~1 [y)~c1 . ===>>SG(H4) =

r2 [x]~w2 [x]~c2

The edge T1 --> T3 is in SG(H4), because w1 [x]<r3 [x],

and the edge T2 --> T3 is in SG[H4] because r 2 [x]<w3 [x].

Notice that a single edge in SG(H4) can be present because

/

of more than one pair of conflicting operations. For

instance,

T. 's
l.

This

Each edge Ti --> Tj in SG(H) means that at least one of

operations precedes

r:r~-~ _ ..

'--~-~ • ~·· .::!._

,. '
··;:·<y ;::._:,,-·

and conflicts with one of T.'s.
J

suggests that T. should
l.

precede T.
J

in any serial history that is equivalent to H.

If we can find a serial history, Hs' consistent with all

edges in SG(H), then Hs =Hand soH is SR. We can do this

as long as SG(H) is acyclic.

The correctness criteria for concurrency control is, as

long as SG(H) of the history of corresponding parallel

execution is acyclic the database is is consistent.

(2) Replication control

In replicated database, each data item 'x' has one or

more copies, denoted by xA, xB, .. , at different sites.

Users interact with the system by running transactions that

issues reads and writes on data items.

But, as far as users are concerned they should not feel

that complexity of replication. So, for the DBS managing a

replicated database should behave like a DBS managing a one

copy (non replicated) database. In a one copy database,

users expect the interleaved execution of their transactions

22

to be equivalent to a serial execution of those

transactions. since replicated data should be transparent

to them, they would like the interleaved execution of their

transactions on a replicated database to be equivalent to

serial executions of those transactions on a one copy

database. Such executions are called one copy serializable

(1-SR). This is a goal of concurrency control for replicated

data.

The correctness criteria for replication can be

explained by considering two types of histories: replicated

data (RD) histories and one copy histories.

Replicated data histories [BERNSS]

Let T = {T, .. , T} be a set ·of transactions. To o n
process operations from T, a DBS translates T's operations

on data items into operations on the replicated copies of

those data items. We formalize this translation by a

function 'h' that maps each ri[x] into ri[xA]' where xA is a

copy of x· I each w. [x]
1

copies xA1 , ... ,xAm of x

(abort) into a .•
1

into wi[xA1], ... ,wi[xAm] for some

(m>O); each c. to c. and each a.
1 1 1

A complete replicated data(RD) history H over T =

(T0 , .. ,Tn) is a partial order with ordering relation<

where:

n
1. H = h(U T.) for some translation function h;

i=O 1

23

2.

3.

For

then

each T. and all operations p., c. in T., if p.<q.,
1 1 1 1 1 1

every operation in h(p.) is related by< to every
1

operation in h(q.);
1

For there is at

rj (XA] i

4. All pairs of conflicting operations are related by <,

5.

where two operations conflict if they operate on the

same copy and at least one of them is write; and

If w. [X]
1

h(wi[x]}.

W (X)
0 \t

<i ri[x] and

For example

h(ri[x)=ri[xA]

consider the

belongs to

following

T =w [y]-->c
0 0 0

T2=w2 [x]-->r2 [x]-->w2 [y]-->c2

r3[~
T =r [x]-->w [x]-->c 1 1 1 1 T3=r3[y]-->c3

Figure 1.10

The database consists of data items x, y with copies

xA' xB, Yc' y 0 . The following history, H5 (Figure 1.11} is

an RD history over {T
0

•• T3}:

Figure 1.11

24

Two histories are equivalent (=) if they have same

reads-form's relationship.

A RD log is one-copy serializable (1-SR) if it is

equivalent to one-copy history.

One copy serializability is our correctness criterion

for managing replicated data.

An serializable RD history need not be 1-SR. The

following example illustrates this fact. The transactions

are:

The history of above is:

In any serial one copy-log over {T
0

, T1 , T2}, either T1

or T2 must read from the other. But in the~, both T1 and

T2 read from T
0

. Thus~ is not 1-SR.

To ensure that an RD log is 1-SR, the DBS must ensure

that each transaction reads from correct transaction i.e.

the transaction it would have read from there had been only

one copy. This notion is captured by a graph called a

logical serialization graph (LSG) [BERN85], defined below.

Given RD history H, Let 'G' be a directed graph whose

nodes represent the transactions in ~·

25

G induces write order for ~ if all data items x, and

transactions Ti and Tk (i f k} that write x, either Ti << Tk

<< T .•
1

This definition just says that if two

transactions write x, one transaction must precede the

other.

G induced a read order for~ is for all x:(1} if Tj

reads x from T
1
., then T. << T.; and (2} if T. reads x-from

1 J J

Ti' Tk writes x(i,j,k} distinct}, and Ti << Tk' then Tj <<

Tk. This definition says that Tj follows the transaction,

Ti' from which it reads x, and precedes all transactions, Tk

that subsequently write x.

One possible LSG for H5 is shown in the figure 1.12.

If the LSG is acyclic then it is in 1-SR. H
5

is z,cyclic so,

it is not 1-SR.-

Figure 1.12

Over all the main idea for correctness is one-copy

serializability. An · execution of transactions in a

replicated database is one copy serializable (1-SR}, if it

is equivalent to a serial execution of the same transactions

26

in the nonreplicated database. A replicated data algorithm

is correct if all of its executions are 1-SR. An execution

is 1-SR if and only if it has an acyclic LSG.

1.8 ORGANIZATION OF THE STUDY

Chapter 2

algorithms and

presents the various replica

brief discussions on them.

control

Chapter 3

provides the details comparison of various algorithms which

are discussed in chapter 2. This comparison is based on the

cost in term of number of messages, recovery mechanisms in

the case of site failures and partitioning failures, ratio

of read requests and write requests and so on. Chapter 4

represents new replica control algorithm. In this

transaction visits majority of sites before execution.

Chapter 5 concludes the report.

bibliography is given.

27

At the end, up-to-date

CHAPTER 2

REPLICA CONTROL ALGORITHMS

2.1 INTRODUCTION

Concurrency control in replicated environment is

more complex than centralized one. The basic requirement

for any replica control algorithm is that databases should

mutually and internally remain consistent. In addition we

assume that the algorithm should robust with site and

partition failures. So, the design of replica management

algorithm is a notoriously hard problem.

This chapter deals with the description of various

replica control algorithms. Here, these are described in

briefly, to highlight the central idea behind existing ones.

Mathematical description is avoided in order to describe

these in simplified form. We have further group this

algorithms into various categories. The comparison based on

various criteria of requirement is presented in chapter 3.

2.2 COMMON ASSUMPTIONS

In almost all algorithms we have certain common assumptions.

A Site failures are clean. when site fails it simply
. ·~

stops running. Most times when fault occurs, the site

runs incorrectly some time until it detects the fault.

By assuming failures are clean, we are assuming that

28

faults are detected before serious damage is done. We

assume that site failures are detectable. While a site

is down the other sites can detect this fact.

B Communication system is reliable.

c All sites are treated equal. i.e., any site can

generate update requests.

D The database is assumed, it consists of a collection of

named elements. It may be records.

E Routine communication errors, lost duplicates, and

garbled messages are handled by the network.

2.3 CONCURRENCY CONTROL AND CONSISTENCY OF MULTIPLE COPIES

OF DATA IN DISTRIBUTED 'INGRES' [STON 79]

Introduction

The algorithm presented here is based on primary site

model. In

to which

this each object possesses a known primary site

all updates in the network for that object are

first directed. Different objects may have different number

of primary sites.

been

The environment of DBS,

designed is for 'INGRES'

in which this algorithm has

system. For distributed

environment it can be assumed that for each data item, one

replica is considered as a primary copy. Different primary

29

copies may be stored at various sites. The sites which do

not contain any primary copy can fail, i.e. in case of

failing of such sites the system will not be affected. In

this algorithm fragmentation is considered. In case of

partitioning of network, primary copies are divided among

two partitions. The system response is poor. Deadlock

occurs. It needs special treatment.

In this, recovery entails two tasks: handling the

failures of a single mode in the network and dealing with

the failures that partitions the network.

Assumptions

A Atleast 95 percent of the traffic to be processed by a

distributed data base system is local.

B Closeness Non local interaction are not expected to

be scaled on closeness and notion of near by site is

not assumed to be useful.

C The algorithm should work well for both broad cast and

point to point network.

Algorithm and Environment

In this environment an object is a subset of the rows

of a relation. A relation is parfitioned in to fragments,

each with a primary site and some number of redundant

copies.

30

In this each transaction originates from user process

at some site·•i• in the network. A 'MASTER' or coordinating

collection of INGRES processes at other site ensures that

each slave knows identity of all other slaves. SLAVE INGRES

exists at all sites where processing takes place. A local

concurrency controller (CC) runs at each site. Then CC sees

a transaction by saying 'done' or no response. Deadlock

detection and resolution can also distributed. But, this

task is allocated to one machine called the SNOOP.

Failure handling

In this Algorithm MASTER, SLAVE and COPY are executed.

The other three algorithms are run in the context of

failure. Algorithm LOCAL RECOVERY perform local clean up

and is run when a site wishes to resume service. Algorithm

RECONFIGURE is used to adjust the uplist after a failure or

a service restoration. Algorithm SLAVE PROMOTE is run when

a MASTER crashes.

2.4 A MAJORITY CONSENSUS APPROACH TO CONCURRENCY CONTROL

FOR MULTY COPY DATABASES. [THOM79]

Introduction

In this algorithm database sites 1vote on the

acceptability of update requests. The important property of

majority consensus is that the intersection of any two

majorities has at least one DBMP in common. For a request

31

to be accepted and applied to all database copies only a

majority need approve it. For any two requests that are

accepted at least one DBMP voted OK for both [This situation

will not occur]. Query and update access to the database

are initiated by application process (AP).

Assumption

A It employs time stamping mechanism, used both in the

voting procedure and in the application of accepted

updates to the database copies.

B It is deadlock free and preserves both internal

consistency and mutual consistency of the database.

c It can recover from and function effectively in the

presence of communication system and database site

failures. It does not require special recovery mode

operation.

D The data item copy at each site is accessible only

through database managing process (DBMP) .

Alqorithm

1 At first AP locates the data items which are used in its

update computation. These variables are called Base

variables. The DBMP also supplies the time stamps of

base variables to the AP.

32

2 The AP computes new values for the data elements to be

updated. The set of elements to be updated are called

the Update variables. This algorithm requires that the

update

Then AP

update

variables be a subset of the base variables.

constructs an update request composed of the

variables with their new values and base

variables with their time stamps and submits it to a

DBMP.

3 The update request is transmitted to all DBMPs by

broadcasting or daisy chaining type of communication.

Request are said to be fn conflict if the intersection

of the base variables of one request and update

variables of other requests are not empty. The voting

process is as stated below.

3A Compare the time stamps for the request base variables

with the corresponding time stamps in the local

database copy.

3B Vote 'REJ'

obsolete.

(REJECTED) if any of the base variable is

3C Vote 'OK' and mark the request as pending if each base

variables is current and request does not conflict with

any pending request.

3D Vote 'PASS' if each base variable is current but the

request conflicts with a pending request does not

conflict with a pending request of higher priority.

3F Otherwise defer voting and remember the request for

later reconsideration.

4 After voting on request 'R':

4A If vote was OK and majority consensus exists accept 'R'

and notify all DBMPs that 'R' has accepted.

4B If vote was 'REJ' or 'PASS' then majority consensus is

no longer possible, then reject R.

4C Otherwise forward R and votes accumulated so for to a

DBMP, that has not voted on it.

5 If R has been accepted then it updates its local copy

then notify all DMBPs that R has accepted and reject

conflicting requests that were deferred because of R.

It R is rejected then use the voting procedure again.

Discussions

The basic characteristic of this algorithm is every

update request collects the majority in case it limits its

flexibility (GIFF79]. It is resilient to number of

failures. It is sufficient that one request message

succeeds in acquiring a majority vote set. At a moment when

two nodes communicate over a link all other nodes and links

may be down. It supports partitioning. Deadlock will not

occur. But with this algorithm the internal consistency of

database may be disturbed. This can be removed by

34

improvements (DROS88]. In case of conflicts the number of

rejections are more. It employs time stamp mechanism for

updates and consistency purpose which needs more cost and

storage. This algorithm is proved correct using system-wide

invariants [DROS88]. This is a first voting based algorithm

in replication.

2.5 THE QUORUM CONSENSUS ALGORITHM [GIFF79]

Introduction

The first voting approach was the majority consensus

algorithm. Quorum consensus is the generalization of

majority consensus algorithm.

In this approach every copy of replicated item is

assigned some number of votes. Every transaction must

collect a read quorum of 'r' votes to read an item and write

quorum of 'w' votes to write an item. Quorum must satisfy

two constraints.

1 For each

intersection

read quorum R

W should not

and write quorum W, R

be null i.e. there is at

least one copy common and (R+W) exceeds the total number

·of votes assigned to that item.

2 For each pair of write quorums there is at least one

copy common or in other words the total number of votes

for each write quorum must except half of the votes.

35

The first constraint ensures that there is a non null

intersection between every read quorum and every write

quorum. Any read quorum is therefore guaranteed to have a

current copy of that item. Each copy has a version number,

initially zero. When DBS processes write (x) on quorum 'w',

it calculates VN. The maximum version number over all 'Xa'

belongs to 'W' and updates each version number to (l+VN).

When DBS processes read (x) on quorum R, each access returns

its copies version number, and the DBS reads the copy with

largest version number. In QC, the TM is responsible for

translating reads and· writes on data items into·reads and

writes in to copies.

Discussions

In this algorithm recovery of copies requires no

special treatment. A copy of x that was down and therefore

missed some writes will not have the largest version number.

Therefore, transactions will automatically ignore its value

until it has been brought up-to-date.

This algorithm guarantees serial consistency for update

requests [Gi~9]. This doesn't insist the majority of

copies to be updated. This improves the flexibility by

weighted voting. It supports site and partition failure.

The major drawback of this algorithm is that it pays the

same cost to reads and writes. QC needs more number of

copies to tolerate a given number of site failure.

36

2.6 AN ALGORITHM FOR CONCURRENCY CONTROL AND RECOVERY IN

REPLICATED DISTRIBUTED DATABASES [BERN84]

Introduction

Available copies algorithm handles replicated data by

using simple technique called 'write-all-approach'.

In ideal world, where sites never fail, there is a

simple way to manage replicated data. When user wishes to

read 'x' the system reads any copy of 'x' and when user

updates 'x' the system applies the updates to all copies of

'x'. Concurrency control is done by distributed two phase

locking. This algorithm is nothing but an extension of this

simple algorithm to an environment where sites fail and

recover.

Assumptions

A The network never becomes partitioned. If two sites

are up they can always communicate.

B Every site runs centralized recovery algorithm.

c Distributed DBS runs a distributed atomic commit

algorithm, such as two phase commit.

D Site must fail infrequently.

Environment

This algorithm uses directories to define the set of

sites that are currently stores the copies of an item. For

37

each data item •x•, there is a directory D(x) listing the

set of x•s copies. Like a data item a directory may be

replicated, it may be implemented as a set of directory

copies and stored at different sites. The directory for •x•

at site U, denoted D (x), contains a list of copies for x
u

that site U believes are available. After a copy has been

initialized and before it has failed, it is sa~to be

available, otherwise it is settto be unavailable. Usually a

site will store both directory and data item copies.

Concurrent access to directory copies is controlled by same

scheduler that controls concurrent access to data item

copies.

This algorithm runs special transactions called status

transactions, which makes copies available and unavailable.

These are :

INCLUDE(X) --> makes X available. a a

EXCLUDE(X) --> makes X unavailable. a a

DIRECTORY-INCLUDE(Dt) --> makes Dt available.

The DBS involves EXCLUDE transactions when a site fails, and

INCLUDE and DIRECTORY-INCLUDE transactions when site

recovers.

Algorithm

1 To read, it can consult directory (Dt) of that site,

then reads by locking it.

38

2 To write, it set lock on 'Dt' and test Dt. data items

whether that data item still available and so, then

lock it and write it. If it becomes unavailable then

ignore it.

3 Consider the case if sites fail and some are recovering

during execution. In this every transaction as its

locking point. It will not reach its locking point

until it gets all locks.

3A When failure occurs during the execution then the

transaction will. not reach its locking point until it

gets exclude lock. Then, it is aborted.

3B When some site recovers it will not reach its locking

point until it gets include lock. Then transaction.

commits.

In both cases transaction either commits or aborts. So,

database is consistent.

Discussions

In this algorithm locking is used for replication

control. It pays more cost for writes, but for reads it

requires no message. Deadlock may occur which require

special algorithms to be run. In case of site failures,

running status transactions increases complexity. When site

failures occur frequently, this algorithm is not preferred.

Overall, this algorithm is not resilient to more number of

39

system crashes, partitioning, which is not considered as

a robust and flexible.

2.7 MISSING WRITES ALGORITHM [EAGE83]

Introduction

In missing writes (MW) algorithm, during reliable

period, the DBS processes read(x) by reading any copy of 'x'

and write(x) by writing all copies of 'x'. When a failure

occurs the DBS resorts to quorum consensus (QC) . After the

failure is repaired, returns to available copies algorithm.

Thus it only pays the cost of QC during periods in which

there is a site or communication failures.

Algorithm Description

Each transaction executes in one of the two modes:

normal mode, in which it reads any copy and write all copies

or failure mode, in which it uses QC. A transaction must

use failure mode if it is aware of 'missing writes'.

Otherwise it can use normal mode.

A transaction is aware of missing writes (MW) if it

knows that a copy 'X a
I does not contain updates, that have

been applied to other copies of 'X I. For example, if

transaction sends a write to 'X I but a receives no

acknowledgement, then it becomes aware of MWs.

40

To implement this algorithm we need a mechanism where

by a transaction is aware of MWs. If a transaction 'Ti'

becomes out an acknowledgement to one of its writes then its

immediately becomes aware of MW. If a transaction 'Tj'

comes after Ti, it must be aware of MWs of 'Ti'· Otherwise

'T.' will read (write) missing copies which will not ensure
J

serializability. To do this 'T.' should attach a list
1

'L' of the MWs, it is aware of which copy 'Yb' it accesses.

It tags 'L', to indicate whether it read or write Yb. When

Tj accesses Yb then it conflicts L's tag then it becomes

aware of those MWs.

Data Manager (DM) should acknowledge T. 's access to
1

'Yb' by returning a copy of L. 'Ti can now propagate 'L'

along with other such list received to all the copies that

it accesses. The way a transaction 'T.' propagates MWs that
J

it's aware of all transactions that follows 'T. I

J
in the

serialization graph (SG).

After recovery from failure, the DBS at site 'a' has

two jobs to do: first it must bring each newly recovered

copy 'X ' up-to-date. This is easy to do with a copier a

transaction. The copier simply reads a quorum of copies of

'x' and writes in to all of those copies the most up do date

value that it read. Version numbers can be used to

determine this value.

Second, after a copy 'Xa' has been brought up-to-date,

41

the DBS should delete 'X I from the list of MWs on all
a

copies so that, transactions which will come after update

should not incur the overhead of QC. This entails sending a

message to all sites, invalidating entries for xa on their

list of MWs.

Discussions

In missing writes algorithm the performance depends

upon the frequency of switching between normal mode to

failure mode. The supporting fact over available copies

algorithm is that, it supports partitioning by paying cost

over running special transactions.

Overall missing writes algorithm will reduce the cost

of reads, if the communication failures are infrequent.

2.8 RESILIENT EXTENDED TRU-COPY TOKEN SHCEME FOR A

DISTRIBUED DATABASE SYSTEM.[MIN082]

Introduction

In the true copy taken scheme true copy tokens are used

to establish logical data. Among multiple physical copies,

true copy tokens designate physical data copies that can be

identified with the current logical data. Such physical data

copies are called true copies. The concept of logical data

is crucial in the new resiliency scheme, since resilient

system operation can be realized if the continuity of

42

the logical data is preserved in the case of subsystem

failures.

Environment

Transactions and operations are same as those described

in chapter 1.

In this scheme, version numbers, assigned to the

contents of logical components plays a key role. Initially

each logical component contains versions zero, and each time

a logical component value is updated, its version number is.

incremented by one, and this version number is assigned to

each of the updates applied to the replicated physical

components associated with the logical component. The read­

set versions of a transaction are the versions read by the

transaction and write-set versions of transaction are the

versions created by the transaction.

The main feature in this algorithm is transaction

buffer that supports the abortion of partially executed

transaction without causing any ill effect to the systems.

When a transaction is allowed to access pending updates

(updates created by transaction are pending until

transaction issue a commit commend) every transaction that

has accessed the pending update must also be aborted, if the

transaction that created the pending update is aborted. A

43

!

transaction buffer is provided for each transaction. Once a

commit command is received, the updates in the transaction

buffer are written into the database. The consistency

constraints for updating database as same as described in

Chapter 1.

Failure modes

The types of failures handled in this schemes are site

crashes and message link failures. In both cases it is

assumed that sites and message links simply cease to

function, when they fail.

Algorithm

At first-true copy token scheme has been reviewed.

This scheme first establishes true copies that can be

identified with the logical components, and performs locking

over these true copies. When update request comes it must

get locks over all true copies it needs .

. A physical component contains either an exclusive copy,

a shared

copies are

identical

components.

copy or a void copy. Exclusive copies and shared

called true copies, and their data values are

to the current data value of associated logical

The content of void copy may be absolete.

Read-write accesses are allowed on exclusive copies and read

only accesses are allowed on shared copies, but void copies

44

are not accessed for normal transaction processing. We

assume that a true copy possesses a true copy token. Two

types of locks namely share locks and exclusive locks are

used over the true copies to realize consistent transaction

processing. The locking must be two phase [ESWA76].

Resilient system operation

To describe this scheme we must clear on atomic update

set (AUS), me~ge of atomic update set.

An AUS is a set of physical components that covers the

complete set of logical components in the system, and it is

always updated atomically. Multiple AUSs are provided so

that at least one of them can survive under anticipated

failures. In this algorithm we will consider only a fully

replicated system where each site constitutes an atomic

update. In general an AUS may span multiple sites.

An AUS is characterized as follows.

A An AUS is a set of physical components such that every

logical component represented by at least one physical

component in that AUS.

B If any physical component in an AUS is affected by the

updates of a transaction, then the updates will be

completely performed to the physical components in the

AUS as along as the AUS remains alive.

c Updates

if the

versions

the AUS.

of a transaction are committed to an AUS only

read-set versions and the preceding write-set

of the transactions are already committed to

Merging of atomic update sets and Recovery set

The merge of AUSs is defined as the collection of the

newest versions, relative to each logical component, found

in those AUS. In principle, whenever a partitions are

merged, all physical components in the new partition must be

reinitialized by using the merge of AUSs in the new

partition.

A recovery set is defined as the merge of two atomic

update sets in the systems. It is stronger than AUS, i.e.,

it is defined even some of the updates are lost.

True copy generation

When all true copies for a logical components are lost,

the logical components can not be accessed and no new

versions can be created for it. We do not worry about those

versions that are lost by the system failures because the

transactions that created these are automatically aborted.

Once it is certain that all true copy tokens for some

logical components are lost and we know its newest version

surviving in the system, we can generate a true copy for it

46

by designating one of the physical copies of the newest

version as the exclusive copy of the component.

Scheme

Once initiated, read operations must be applied on the

shared copies. When the processing of transaction is

completed, the exclusive copies of logical components, that

the transaction wants to update must be exclusively locked.

At this point shared locks held by the transaction can be

released. Then exclusive copies are ready to be updated,

the remote updates can be send to other sites. After

updating those, the locks can be released. The set of

updates created by the transaction must applied to each AUS

only, if all of the read-set versions and preceding write­

set versions of the transaction have been applied to AUS.

Partitions can be merged by merge defined by AUSs. A failed

AUS can be restored by using merge of AUSs.

Discussions

Functionally, the resilient

scheme can handle some problems

handled by true copy token scheme.

extended true-copy token

in DDBS that could not

This scheme does not employ log sub-systems and hence

can support a total site crash. This feature is important

for a system that includes a small site without a log sub­

system that must tolerate total site crash.

47

By

system

allowing transactions

partitioning can be

to access only true copies,

supported with out any

consistency problem. Merging of partitions can be performed

by using the merge of the AUSs in those partitions.

The new scheme allows us to add a new site to the

system. The procedure for adding a new site to the system

is logically identical to the site restoration procedure.

2.9 SEMANTICS BASED TRANSACTION MANAGEMENT TECHNIQUES FOR

REPLICATED DATA [KUMA88]

Introduction

This algorithm is

transactions. Conventional

based on the semantics of

multicopy algorithms have fast

response time and more availability for read only

transactions while sacrificing these goals for updates.

This algorithm works well in the both retrieval and update

environments by exploiting special application semantics by

subderiving transactions into

utilizing commutativity property.

transactions issue additions

various categories, and

For example in case where

and substractions to the

database, updates can be send in any order, then after some

time the database will be consistent.

Assumptions and environment

In this algorithm commutativity property of

48

I

transactions is exploited. Generally, replication provides

multiple versions of same object at different sites for

small duration. No writes should be processed during this

time, i.e. in this algorithm data items may not represent

same value. However read-only transactions always see a

consistent database if they read data items from a single

site for a restricted set of sites.

In this we assume full replication. Further it is

assumed that a scheduler [BERN81] at each site serializes

local transactions using two phase locking or any standard

concurrency control mechanism, Here we view a transaction as

a function, FR(x) which transforms an object 'X' to new

value as follows.

where 'R' is a read vector (r-vector} or constants or other

database objects (r1 ,r2 , ... rn)· In the special case where

'R' is a vector of all constants (c.) the transaction is
1

represented as Fc(X) and 'c' is called a constant vector.

Some examples of function on numeric data objects are:

Flc(X) = c x· 1 ,

In this algorithm the transactions are divided into two

categories.

49

1) Commute(C) type,

2) Not Self (NC) commute type.

There are transactions in which a vector consists of

constants. such transactions occur frequently in banking

applications. For example; withdrawing 40 rupees from a bank

account.

Consider the following functions:

FlR(X) = X + r 1 ,

F2R(Y) = Y - r 2 .

If r 1 = Y, r 2 = X then the final result depends on the

order the two transactions will execute. On the other hand

if r 1 , r 2 replaced by constants c 1 and c 2 respectively then

Fl and F2 will always commute. Here, examples are given to

understand commute type and not self commute type of

transactions.

Consider Simplified banking application.

Deposit: Add c 1 to account 'X'

Withdrawal: Subtract c 2 from account 'Xx.

Add interest: Compute 5% of the amount in account 'X' and

add it to 'X'.

In above the transactions can be represented as

functions Fl, F2, F3 respectively as follows.

50

In above Fl, F2 are self commute type and F3 is not

self commute type.

Algorithm

The algorithm is presented based on the preanalysis of

transactions. The preanalysis consists of first identifying

all transactions which self commute and grouping them such

that all pairs of transactions in a group also commute with

each other.

Each site maintains a state vector (S-vector) NCi' c1

where;

c.: Number of C type transactions completed at site 1 1 1 •
1

NC.: Number of NC type transactions completed at site 1 1 1 •
1

c1 , NCi are counters which are advanced each time a new

transaction is performed at a site. C and NC transactions

observe different protocols for processing.

A c transaction

1 Performs updates to local copies and commits upon

compilation (A scheduler at each site guarantees

serializability among local transactions) .

51

2 After commit; the corresponding c-vector, the

transaction name, and the data item names are send to

all remote sites.

An NC type transaction

1 Form a quorum of sites by locking a majority of copies

of accessed data items.

2 Selects the objects at the site with the highest value

of NC. for updating.
l .

3 Performs updates to copies at the chosen site.

4 Computes s-vector with respects to one c-type

transaction, and execute it at the other sites in the

quorum.

5 Release locks and spools the S-vector and the object

name to all sites not in the quorum.

The spooler program runs at each site and performs the

following actions.

1 It accepts an update message from a transaction and

ensures it is transmitted reliably to all other sites.

2 It receives messages from other sites and runs them as

transaction at the local site.

3 Updates the state vector.

52

Discussions

In this the transactions are divided into C type and NC

type. This requires a special preanalysis procedure. The

authors [KUMA88] have given provisions to deal with

integrity. This technique ensures correctness, though not

serializability, and takes advantage of fact that several

versions of each object exist in a multicopy environment.

Deadlock may happen. The authors do not mention the case of

site crash and partitioning problem. Overall this algorithm

works better in case where, C-type of transactions are more

frequent then NC type.

2.10 CONCLUSION

In this chapter we have discussed the algorithms

briefly, without missing an essentials. Examples have been

given to illustrate certain algorithms in greater clarity.

following this overview of algorithms, we proceed to compare

replica control algorithms in Chapter 3.

53

CHAPTER 3

COMPARISON OF ALGORITHMS

3.1 INTRODUCTION

A number of algorithms are resented in chapter 2. There

are difference among these in terms of crash recovery,

number of messages transferred, partitioning behavior and so

on. In this chapter the various approaches are first grouped

into different categories and later after, these are compared

in the light of various criteria such as number of messages

required to accomplish an update, site failures and

partition failures, by pointing differences among them. The

algorithms can be divided into groups based on the

techniques used for updating the database. The algorithms

are classified as follows.

A Token based

1 Concurrency control and consistency of multiple copies

of date in distributed 'INGERS' (Primary copy

algorithm).

2 Resilient extended true-copy token scheme for a

distributed database system (True copy token scheme).

B Voting based

1 A majority consensus approach to concurrency control

for multi copy databases (majority consensus).

54

2 Quorum consensus algorithm.

c Locking based

1 An algorithm for concurrency control and recovery in

replicated distributed databases (Available copies).

2 Missing writes algorithm.

D semantics based:

1 Semantics based transaction management techniques for

replicated data (Semantics based).

In this chapter the properties such as failure

handling are discussed group wise. However Deadlock

detection is not dealt by us. An algorithm for this has been

proposed by Badal [BADA86]. To compare the above algorithms

the different criteria are given below.

1 Cost: Cost in general, is taken to the number of

messages required to be transmitted for meeting a

single processing requirement. Communication between

any two sites can be termed as one message. The cost

of accomplishing an update includes computation and

communication costs. Here we neglect the computation

cost. In most cases these are considered negligible

compared to the communication costs.

2 Site failures: There are many reasons for the site to

55

fail. In case of site crashes different algorithms

follow different procedures. Recovery procedures are

compared in this heading.

3 Partitioning behavior: As mentioned earlier, sites may

get partitioned into groups such that these groups can

not communicate among themselves. Some algorithms

support network partition heading.

4 Read write ratio: From the previous chapter it is clear

that, in some

than writes.

heading.

algorithms reads are processed faster

This property is discussed under this

5 Dead locks, and others: Some algorithms need to run

special recovery procedures to recover. This increases

complexity. Some suffer from Deadlocks. These

complexities, and among other are discussed in this

part.

3.2 COST COMPARISON

For cost comparison certain assumptions are made. When

update request comes it requires no messages to initiate

update. There are 'N' sites in the system. After execution,

the updates can be propagated through any path. To reduce

complexity different notations.are used depending on the

algorithm. This part can be explained by cost evaluation and

comparison which is discussed below.

56

A cost evaluation

1 Majority consensus

This algorithms is based on the majority voting. Each

update request

accomplish it.

instead of DSMP.

must collect a majority number of votes to

In the evaluation the term site is used

lA No conflicts with other update requests, no site

failures, no rejections

To achieve a consensus: inter site messages : N/2.

To notify the home site set of acceptance : N-1.

Total number of messages(Mm) = (N/2)+(N-1) = 3{N/2)-1.

So, the minimum number of messages to accomplish update =

3{N/2)-1.

lB Conflicts occur, no site failures, no rejections

In case of conflicts votes of more than (N/2) sites may

be required to resolve a request. Each additional site

requires an additional message. In the worst case it

requires (N-1) site messages. Then the maximum number of

messages required in worst case conditions are 2N-2.

If rejections will be more, than number of messages

will increase.

57

2 Quorum consensus

In this algorithm each update collects read quorum to

read, and write quorum to write. For simplicity, assume

that read write quorums are same for update request.

If the number of votes in the quorum= 'V', then the

number

depends

So, the

of sites communicated by each update request varies

on the site, where the update request originated.

number of messages required to get quorum varies

from request to request. So we take

R = QV

Where

R --> Number of messages needed to get quorum · (the

number of sites).

Q --> A factor such that

V --> Number of votes.

0 < Q < 1.

2A No conflicts, No rejections, No failures

To achieve consensus.

To notify the DBMP the set of acceptance.

Total number of messages(Qm)

2B Conflicts occur, No rejections, No failures

R-1

N-1

R+N-2.

If there are conflicts at some site, then the request

proceeds to another sites to get quorum. Consider the case

where, there is a only one conflict.

58

Then

Number of messages required = Qm+l.

Similarly in the worst case condition the number of messages:

= Qm+(N-R)

= R+N-2+N-R (Substituting M = R+N-2).

Qw = 2N-2.

2C Conflicts, rejections, and failures, occur

If a request is rejected then it has to resubmit again.

The minimum number of messages required, if it submits one

time = Qw

Because, it may be rejected by home site.

The maximum number of messages needed, if it resubmits one

time = Qw + Qw

If the request is resubmitted 'K' number of times then

Minimum number of messages (K+l) (2N-2)

Maximum number of messages = (2N-2).

Here also, when the update request is rejected, then it is

recomputed again.

So, the computation cost increases by increasing number of

rejections.

59

3 Available copies algorithm

This algorithm uses locking principle. To read, a

transaction can read at any site. To write it must update

all replicas.

3A When sites never fails

Messages to lock the copies of all sites N-1

Messages to inform the update and unlock

the database copies N-1

Total number of messages = (2N-2)

So, for any update it requires (2N-2) messages to accomplish

update.

3B crashes occur

In case of

transactions. These

crashes, then, the

transactions update

DBS

and

runs status

remove each

variable depending upon the type. When crash occurs then it

must be detected (Assumption). Then, the EXCLUDE transaction

excludes all failed copies from each site.

The number of messages required to exclude all

available copies : (N-1)

To recover from failure INCLUDE transaction includes

all copies into sites directories.

60

The number of messages required to recover all copies: (N-1)

Total number of messages required for one crash and

recovery : 2(N-1)

When crash occurs than the request is aborted. It has

to resubmit again.

Another (2N+1) messages required to accomplish update.

So number of messages depends upon the number of crashes.

If there are 'K' crashes then, to recover, this algorithm

requires

= 2K{~-1) + K(~i~) number of messages.

The first term is for recovery and second is for

resubmision.

3C Read-Write Ratio

The number of messages depends upon number of read

requests and write requests. In this algorithm reads require

no messages. It can simply lock the nearest data item (if it

is available) then it reads.

If read-write ratio is 'R' then, the number of messages

= ~(2N) = 2NR

So the number of messages depends up on the variable

"R'. If 'R' = 0.1, then write requests= 10; read requests=

61

90. In total, the number of :messages are

proportional to coefficient of read-write (R) •

directly

3D Deadlock

In this algorithm deadlock may occur. So, each deadlock

requires backup of one update. It has to be resubmitted

again.

If it is resubmitted one time the number of messages

(total number of messages for that update) = (2N+1) + (2N+1)

To

depends

[BADA86).

resolve the deadlock, number

upon the type of deadlock

4 Primary copy algorithm

of messages needed

resolution algorithm

This algorithm is based on the primary copy. In cost

evaluation we generalize this for distributed system. The

number of messages in this algorithm depends on the network

structure. If two sites want to communicate, they may

require (N-1) number of messages.

Now we introduce one variable called network variable

which depends on the structure of the network and location

of two sites that wants to communicate.

In the worst case the maximum number of messages required to

get lock: = (N-1)

62

The number of messages required to get lock from particular

site: = V(N-1). (0 <= V <= 1)

We can say the variable 'V' takes the values between

zero to one. When locked data item has found at home site,

then V = o. In the worst case, V = 1. After getting lock it

sends its updates to all sites. For this, this requires

(N-1) number of messages.

So, the total number of messages required to get lock on

single data item and sending updates = (N-1) + V(N-1)

= (N-1) (V+1)

The number of messages required for locking, when a

request which contains more than one variable (the 'V'

varies from variable to variable).

= vt (N-1)

including messages for updating = (Vt+1) (N-1)

5 Missing writes algorithm

This is a combination of quorum consensus and available

copies algorithms. For bothJcost has already been evaluated.

We can describe this algorithm by variable 'U' in which the

site failures occur.

The number of messages required: = (1-U)A + u Q

63

A --> Number of messages required in available copies

algorithm

Q --> Number of messages required in quorum consensus

U --> Variable that failures occur.

Suppose U = 0.01, means failures occur one in hundred.

6 Resilient extended true copy token scheme

In evaluating number of messages the true copy token,

and resilient methods take same number of messages.

In this true copies owns tokens. For simplicity, assume

that there are 'T' number of tokens in the system. For each

update request

To get locks on true copies T

To send updates all sites N-1

Total number of messages = T+(N-1}

One can not, however guarantee that, since each update

request gets locks on true copies in 'T' number of messages.

Because, the tokens are spanned over entire system. So, we

have to introduce a coefficient(S) which depends on the

distribution of the tokens. The maximum number of messages

(then s = 1} required to get lock for each update request is

N-1.

In total, we can say

required to get lock over all

64

that the number of messages

varies from 'T' to (N-1}

For read request these can lock any copy which contain

token, then reads. So, the number of messages required for

reads are little more flexible.

Semantics based

It is based on the semantics of the transactions. The

number of messages depends son the ratio of commute and not

self commute type. If the transaction is C type if requires

no messages. If it is NC type it has to get lock of majority

of copies.

For each update request:

Messages to get locks over majority of copies (N/2)-1

Messages for sending updates to all sites N-1

So, for each update request if it is NC type; the number of

messages = 3N(N/2)-2

For the commute types no messages required. The total cost

of number messages required = 3WN(N/2)-2

where W is the ratio of commute type to not commute type

(W = NC /C) n n

B Cost comparison

For cost comparison, consider group by group. In token

based algorithm the number of messages depends on the·

location: of site and network structure (depends on whether

the network is fully or partially connected) . In, primary

65

copy method the number of messages depends on the location

of primary copy. If we know a particular site gets number of

update requests, then we can locate more of primary copies

on that site, resulting in overall reduction of number of

messages, so the cost depends on the design considerations.

But, in the resilient scheme, because of increasing

resiliency its response is slightly delayed, i.e. it has to

update the AUSs consistently. Dead lock detection considered

as another overhead. Compared to other algorithms, this

requires less number of messages.

In the majority consensus, the number of messages

required for transactions depends on the number of sites. In

the case of conflicts, rejections will be more. So, the

transactions has to be resubmitted again which will increase

the computation cost. Quorum consensus will reduce the

number of messages by weighted voting scheme. Here the

number of messages depend on the number of votes the update

request has to collect. Some sites may have more number of

votes (weight is high). In this case, the number of messages

depends on the home site. Quorum consensus takes less number

of messages, as compared to majority consensus. It pays

equal price to reads and writes, which is not the case with

a locking and token based algorithms.

In locking based, the cost of algorithm strictly

depends on the number of write requests. For write requests

66

it requires (N-1) messages to lock all copies, which is not

in the case of voting based algorithms. If the read requests

are more than write requests this can be considered for

implementation. Same is the case with missing writes

algorithm.

In the semantics based, locking is used. It requires

pre-analysis of transactions which increases complexity of

running extra algorithms to do this. This is not designed

for complex updates. In the case of this algorithm we can

say that, if commute type of transactions are more in

number, it requires less number of messages.

3.3 SITE FAILURES

Here, we consider the failures are.detectable. Failures

can be detected by time out, missing acknowledgments and

some other techniques. This detection part is supported by

communication network.

In the case of token based algorithms, the ability to

tolerate failures depends on various factors. In primary

copy method, site which contains the primary copy is lost,

there is no way to recover from such type of failures. so,

this method is vulnerable to failures of site which contains

primary copy. In extended true copy token scheme, tokens are

assigned for more number of copies for each date item. If

the token is lost, then there is no way to assign a token.

Sites which are not having tokens can fail and recover. In

67

resilient scheme this drawback is removed by main

maintaining AUSs, which are updated consistently. So this

scheme is vulnerable to more number of site failures.

In majority consensus the recovery needs no special

provision. The recovery of sites can process parallelly with

updates. When site failure is detected the update request

automatically ignores that site. Time stamps are used for

this purpose. Same is the case with quorum consensus

algorithm. A copy of 'x' that was down and therefore missed

some writes will not have the largest version number.

Therefore the transactions will automatically ignores that

data items (sites). Quorum consensus needs large number of

copies to tolerate a given number of failures. The quorum

consensus needs three copies to tolerate one failure, five

copies to tolerate two failures and so forth, in particular

case two copies are no help at all. With the two copies

this can not even tolerate one failure [BERN87].

In available copies algorithm, the site failures

require execution of status transactions. (BERN84]. In this

sites must fail infrequently. It requires 2(N-2) number of

messages for recovery of single site. This is lot of work.

When sites fail too often, quorum consensus, missing writes

algorithm are better options (BERN84]. But, when sites fail

frequently the switching will be more, which will increase

extra burden of changing modes.

68

In semantics based one, if the site fails, the author

(KUMA88] has given no mechanism for recovery. We can say

that it is vulnerable to failure of majority of sites.

Because, it uses majority principle for locking.

3.4 PARTITIONING BEHAVIOUR

At first when a partition occurs it must be detected.

Managing a partition is a notoriously hard problem Typically

the cause of a partition failures cannot be known by sites

them selves. At best, a site may be able to identify the

other sites in its partition. But for the sites out side of

its partition it will not be able to distinguish between the

case in which those sites are simply isolated from it and

the case in which those sites are down. In addition low

response from other sites can cause the network to appear

partitioned.

In token based algorithm, which is a resilient

technique for items sharing distributed resources, the

primary activity. In case of partition failure, only the

partition containing the primary copy can access the data

item. All updates are simply forward after recovery for

execution. This approach works well only if site failures

are distinguishable from network failures. If primary site

for data item fails then new primary can be elected

(EAGA86]. For discussion of election process see (GARG82].

The problem arises in case of two copies of an object. In

69

this situation any network partition can make both copies

inaccessible. In the token based, each item has a token

associated with it, permitting the update to access the

item. In the event of network partition, only the group

containing the token will be able to access the item. The

major weakness in this scheme is that the accessibility is

lost, if the token is lost as a result of site or

communication media failure. Resilient scheme removes this

drawback. By providing AUSs, it can recover in case of

partition. If the token is lost it can recover that token by

identifying recent data item from AUSs.

In voting based algorithm, the quorum constraints

ensure that an item can not be read in one partition and

return in another. Hence the read write conflicts cannot

occur between partitions. Another constraint (number of

votes ' to be collected are greater than half of total votes)

ensures that writes cannot happen in parallel, or if the

system is partitioned the writes cannot occur in two

different partitions at the same time. So, the data base is

consistent in the case of partition.

In locking based, the available copies algorithm does

not support partition. It assumes that partition occurs

rarely. In missing writes, at the time of failure it

follows quorum consensus. But when it changes mode every

site must maintain several files about the information of

70

missing updates and their values and so on. These files can

grow faster. In all missing writes algorithm tolerates

partitioning.

About semantics based one, the behavior in case of

partition requires special analytical study in which the

author [K~88] has not mentioned. It is possible to make

this algorithm (if not) consistent with slight

modifications, because it uses majority principle.

3.5 READ WRITE RATIO

Basically replication introduces the major difference

between read requests and write requests in execution part.

Here some algorithms treats these as equal in terms of

number of messages. Ensuring availability and robustness in

case of failures by the replica control algorithm

constitutes an optimization problem. Some designers put

stress on availability by reducing robustness, and others

vice versa.

For both reads and writes in primary copy method, takes

same number of messages. But, in the token based approach,

number of tokens for each data item are greater in number,

which increases accessibility for reads by reducing number

of messages. Similarly is the case with the resilient

scheme.

71

In voting based approach the read and write requests

are considered to be equal, with respect to number of

messages. A request has to collect quorums. The graph in

which the ratio of reads and writes versus total number of

messages shown in figure 4.1.

Number of
messages

In

l?o votinq, ~-3ird c:t~go!"itl}n,t.s.
100 ------~-:-'-~ ;--;~.::~;~ _-:;;_; :.::..~_/'::·

J..o~king ·based.

\00% 50% 100'/\-.: :~.~
Ratio of re~ds and writes

·Figure 4.1

locking based approach the reads require no

messages, but for write it has to get locks over all copies.

So read-write ratio effects number of messages. The graph

is shown in figure 4.1.

In semantics based approach the flexibility is not

there in terms of reads and writes. The number of messages

depends on the ration of commute and not commute type of

transactions. The graph is shown in figure 4.2.

Nu.m\:>e"V" of IS"o
\'V\e.s;~oqes

so

Vo-ting bB.£e.d.

.. ~ e man ll.c.s based...

Rat'\o of.Oc tipe
Figure 4.2

72

3.6 DEADLOCK DETECTION AND OTHERS

In this section we discuss the properties of algorithms

with respect to dead locks, inclusions of other site among

others.

In resilient scheme, as compared to other token based

algorithms, the concept of atomic update sets had been

introduced. This AUSs had to updated atomically, which

requires extra burden and may delay the response. Deadlocks

algorithms, which will delay the responses of update

requests. Addition of new site poses no problem, which

follows the recovery procedure.

In majority consensus, if there are conflicts, the

number of rejections increases. Time stamps maintenance

also requires extra storage and communication costs.

Addition of new site is not a problem. But, in quorum

consensus all copies of each data item must be known in

advance. A known copy of 'x' can recover, but a new copy of

'x' cannot be created, because it could alter the definition

of x•s quorums, in principle, one can change the weights of

sites, while DBS is running. But, this requires special

synchronization technique. It uses version numbers which

need extra storage requirement.

In available copies, recovery requires running of

status transactions, which will increase the complexity.

73

Dead locks may occur frequently.

Finally, in semantics based approach, deadlock may

happen, and it requires pre-analy~is of transactions.

3.7 CONCLUSION

In this chapter,

approaches into different

comparison.

algorithms.

Than, we

first we divided the various

categories to facilitate

compared these. categories

the

of

Token based algorithms reduces the number of messages,

but increases the vulnerability in case of failures. it is

a balanced scheme between number of messages and complexity.

Voting based approaches, are robust as compared to the

others. These support the partitioning of system. But, in

this case cost of reads, writes is same. In the case of

more read requests, and less number of site failures however

locking based algorithms are preferred.

74

CHAPTER 4

AN ALGORITHM BASED ON EXECUTING REQUESTS AFTER VISITING

MAJORITY OF SITES

4.1 INTRODUCTION

A number of replica control algorithms, described in

the literature based on the voting, locking, tokens and

semantics of update requests are presented in chapter 2, and

a comparison is presented in the chapter 3. The basic

characteristic of some of these algorithms is that each

update request is executed first (independent of other

requests) and, there is a possibility that the update

request may be rejected. In case of rejections the request

is resubmitted again. In the voting based algorithms also,

each update request has no guarantee that it will not be

rejected. The reason behind ·this is that in these

algorithms when request arrives, it is executed and the base

·variables and update variables [THOM79] with time stamps are

sent for voting.

The basic philosophy of serializability theory is that,

if a set of transactions {T, T1 , .. , T} try to update the o n

database, the execution sequence is correct, if they execute

and updates one after another, and the database remains

consistent.

75

Based on the above algorithms,

to reduce the

we have explored an

overhead without alternating approaches

distroying the database consistency. Our approach is based

on the notion that, when an update request comes, we can

identify the update variables without executing it and send

these to other sites for majority approval, instead of

sending new update values. In systems like banking and

railway reservation systems the most update requests are

single or double line (SQL) statements. So, identifying the

reads and writes in the update request is not a major

problem for the system. In the next section, we describe

the update technique which will take less number of messages

and rejections, as compared to previous algorithms. About

consistency, we guarantee that this algorithm preserves

mutual and internal consistency which is described in

chapter 2.

4.2 ENVIRONMENT

We assume an

are accessible at

algorithm further

environment in which copies of database

a number of database sites. This

assumes that the architecture of a

distributed database management systems (OOBMS), is same as

described[BERN81]. In this, each site is a computer, running

one or both of the following software modules: a transaction

manager (TM) and a data manager (OM). The TMs supervise

interactions between users and the OOBMS while OMs manage

76

actual database. A network is a computer-to-computer

communication system. The network is assumed to perfectly

detect failures when they occur. In addition we assume that

between any pair of sites the network delivers messages in

the order, they were sent.

Transaction
I ~
: /TM

Transaction

Trans:ction>
r

Transaction
Transaction

' Transaction

1---------i database

+-----------~database

Figure 4.1

Users interact with the DDBMS by executing

transactions. Transactions may be on-line queries

expressed in a self contained query language, or application

programs written in general purpose programming languages.

However we do assume that transactions represent complete

and correct computations; each transaction, if executed

alone on an initially consistent database, would

terminate, produce correct results, and leave the database

77

consistent. In this algorithm the concept of request is

used~ The structure of DDBMS is shown in figure 4.1.

From users perspective, the database consist of a

collection of a logical data items, denoted by x, y, z. We

leave granularity of logical data items unspecified; in

practice, they may be files, records, etc. A logical

database state is an assignment of values to the logical

data items composing a database.

In

database,

multiple

operation

this algorithm we are considering fully replicated

i.e each data item is stored reduntantly at

sites. A transaction is a set of operations. An

is an activity that manipulates data. There are

three types of operations: read operations, write operations

and local computations. The operations that can be

performed on a replicated data items are read, which returns

its value, and write, which changes its value.

Read and write operations either logical or physical

are used to access the components. Local computations can

transform the data read by read operation and supply the

transformed data to write operations. Further more data may

be passed in the from of messages between two physical

operations that occur at different sites. Message links,

connecting sites are used to send messages.

Physical read operation read [xi]' returns the current

78

content of physical component x.
1

and physical write

operation write [x.] updates the content of physical
1

We can say a logical read operation read component of X, •
1

[x.] corresponds to physical read operation for some 'i'. A
1

logical write operation write [x] corresponds to the set of

physical write operations

each of Which writes some data value write (X].

Update Requests

A transaction 'T' is modeled as a sequence of read and

write operations. Because reads and writes are responsible

for changing the state of database. When the update request

comes to a particular site, it identifies the reads and

writes, needed for the execution of that update request.

Then, the site prepares 'request' which has to be sent to

other sites for majority approval. The request contains the

data i terns to be locked, request number, and the i;:f~~~:H.t

·.:~t.:J.·-- . The various terms are explained in further sections.
' '

·~ • r ' • '..

4.3 ASSUMPTIONS AND TERMINOLOGY

Here we consider a fully replicated database. When

ever a transaction is received, it is the job of local

concurrency controller (TM) to deal with it. So, we assume

that every site contains local concurrency controller.

Here, unique time stamps are assigned to each request

[transaction]. Every request finds the consistent state of

79

the database at particular time 't', updates it and leaves

the consistent state of the database. Every site follows

the same methods to preserve internal consistency. Another

assumption is that rejections will not occur. Every

conflict is ordered by this algorithm. In this algorithm

the words transaction and update requests are used

interchangeably with no difference.

The following terms are used to present this algorithm.

These are request, request variables, Request wait for

graph, Request number (time stamp), locking table majority

and request messages.

Request: It contains the request variables, request

number, request table and visiting sites. It is prepared by

home site of each request (when update request comes), and

sent to majority of sites.

Request Variables: when update request comes to

particular site, the variables are identified. These are

(data items) forming the read set and write set.

Request Wait For Graph [RWFG]: When a request visits

particular site, it puts its Request number into the RWFG of

that site (according to rules) and it copies the request

numbers to its own RWFG. This has to be maintained by every

site.

Request Number (RN): This is a time stamp, assigned by

80

the home site assigns.

Allocation of time stamps is described in another section.

Looking Table (LT): Every site has to maintain this table.

When the request comes to any site, to visit majority of

sites, it puts its request variables in to that table. This

is used to identify conflicting operations.

Majority : In [THOM79] 'Majority' word is used. Majority

means the number of sites that each request must visit.

If 'N' is a number of sites then

Majority= (N+1)/2 +1 (if N is odd)

= (N/2)+1 (if N is even)

Request Message Table (RMT): This table is maintained at

every site.

coming to

After visiting a majority of sites, before

home site, the request(R) sends messages to all m

other sites which are ordered before 'R I m' about R 's m

ordering. These messages are stored in RMT of particular

site.

4.4 INTER SITE COMMUNICATION

Update requests made by sites must be communicated

among the sites to visit majority of sites. There are two

possible communication methodologies (Figure 4.2).

81

(a) (b)

Figure 4.2

1. Broadcast: After receiving the update request (Figure

4.2a), then that site transmits that request to visit

majority. After visiting sites, the request must

return to the original site.

2. Daisy Chaining: The site receiving the request (Figure

4.2b), decides the order and the request is passed to

next site with incrementing the number of sites

visited. After visiting the majority of sites, the

request is returned to original site.

Use of a broadcast discipline allows requests to be

resolved with minimum delay at the possible expense of extra

messages. On the other hand daisy chaining results in

resolution with the minimum number of messages at the

expense of relatively high delay. In practice, the choice

of communication discipline should be based upon the

performance requirements for the database system as well as

the characteristics of the underlying communication system.

In this algorithm the discussion is based on the daisy

82

chaining communication. For broadcast type of communication

this algorithm is slightly modified.

4.5 TIME STAMPS

In this algorithm time stamps are used to resolve

conflicts. Conflicting operations are defined in the

Chapter 1. The properties that time stamps use for this

purpose should have uniqueness and monotonicity (i.e.,

successively generated time stamps should have a high value)

All time stamps in the distributed system come

ultimately from update requests. The question of when one

by whom should the request be time stamped, arises.

Here, it is assumed that, each site has access to a

local, monotonically increasing clock, but there is no

common clock accessible to all sites. A time stamp

generated by a site 'S' is a pair (T, S) where T is a time

obtained from the local site clock. T is called the C-part

(for clock) of the time stamp and s is called the S-part

(for site) of the time stamp.

Equality, greater than, and less then for time stamps

can be defined as follows.

Equality (=) : T1 = T2 if and only if c1 = c2 and s 1 = s2 .

Greater than (>) : T1 > T2 if and only if c1>c2 or c1=c2

83

4.6 FAILURE ASSUMPTIONS

The components of a distributed DBS can fail in many

ways. Here we assume that site failures are clean : when

site fails, it simply stops running; when the site recovers,

it knows that it failed and initiates a recovery procedure.

We do not consider failures of type, in which a site

containues to run but performs incorrect actions.

We assume that a site failures are detectable: when the

site is down, then the other sites detect that fact.

4.7 ALGORITHM

In this algorithm time stamps will play a role in

ordering of transactions. Here, the term ordering is used.

When we say, R
1
• is ordered after R. (R.-->R.), it means that

J J l

Ri is executed after Rj' irrespective of time stamps.

In each request (Ri)' when it completes visiting

majority sites, broadcasts the RWFG of this request to all

sites which are in the request.

When the update request comes to site 'Si' then that

follows the following actions.

1 The site prepares the 'request' then sends it to the

84

other sites. It assigns the time stamp and puts its

number into RWFG of that site (it assigns N=l). Then,

this request is sent to visit the majority of sites.

After visiting the majority of sites it must come back

to this originating site (home site).

Request (Ri) = (RN, L, RWFG, N)

where,

RN--->Request number

L---->Locking variables.

~WFG---->Request wait for graph (TWFG) (The ordering of

request in which Ri is executed after) .

N---->Number of visiting sites. This is a counter

which is incremented at every site. This is used

to test whether a request has visited the majority

of the sites or not.

2 The request (Rm) comes to site 'A'. Let, Ri(i=l, .. ,k)

to be requests of the request table A. Set N=N+l;

i=i+l. Got 2A.

2A Test whether locking variables of 'R ' are conflicting m

with 'R. '· If yes, then go to 2B, otherwise go to 2C.
1

2B The request number 'R ' is ordered after R. (R.-->R) in m 1 1 m

the RWFG if i # k then i=i+l; go to 2A, else go to 2C.

2C i = i + 1; go to 2A.

2D Store the request number of Rm' locking variables in

site 'A' after R1 , ... ,Rk' if N=M (Majority), then Rm's

85

RWFG will be sent to every home site of 1 R. 1 such that
1

Ri belongs to RWFG.

After visiting the majority of sites, the request (Rm)

comes to home site, it will not be executed until it

gets RWFG messages, or updates from all requests, which

are ordered before IR I m . In broadcast type after

receiving the RWFG from all sites then the home site

(Ri) sends the RWFG to all request (Rj) home sites, if

R. belongd to RWFG, and it will not execute until it
J

receives the RWFGs or updates from all requests which

are order before IR. I.
1

When request message comes from particular request

to R. then these two are tested whether cycles
J

are formed. Cycle means in the RWFG of R., R. is
J 1

ordered before, and in the RWFG of R., R. is ordered
1 J

before. These can be removed, by ordering according to

time stamps. when the request receives messages or

updates from all R. 1 s which are ordered before R , then
1 m

Rm can execute the database.

After receiving the updates of request (Rm)' then this

request, and its locking variables will be deleted from

all sites, and RWFG 1 s.

~ EXAMPLE

The following example will clarify the algorithm.

86

Example 1: Consider the five site network.

1.20
5.20

(a)

Figure 4.2

Request Request number.

R
1

(1241) ------------1.20

R5 (5425) ------------5.20

R3 (3153) ------------3.21

(b)

and further assume requests, as shown in figure 4.2(b). In

this the first part of time stamp shows the site number, and

the second part shows the clock (Two digit). Here, number

of sites in the majority is three. The path of each request

is shown in the brackets (Figure 4.2(b)). Let us assume that

the transmission time between two sites is one unit. The

following table (Figure 4.3) clears the transmission of

requests. All three requests are of conflicting type.

--
Requests/Time --> 2.20 2.21 2.22 2.23 2.24

1.20 1 2 4 1

5.20 5 4 2 5

3.21 3 1 5 1

This can be explained as follows. When request R1 visits

site number 2 it puts the 1.20 at site 1 (RWFG) and visits

site 4. But at this site request R5 has already visited.

87

so, it puts the request number after R5 , then it stores the

R
5

in its RWFG such that 1 R5---R1
1

, similarly for all

others. Now at this point it has got majority, then it

sends the message 1 R5-->R1
1 to site 5. When requests gets

majority the request tables of R1 , R3 contain the order

shown below.

R1-----5.20 ----> 1.20

R5-----1.20 ----> 5.20

R3-----1.20 ----> 5.20 ~3.21

1.20 (Here, R3 will execute after R1 , R5)

R1 will not execute until it receives the message or

update from R5 , and the same is for others. When R1

receives the message 1 1.20--->5.20 1 from R5 , cycle is formed

then R1 orders according to time stamps. At the end the

orders are as follows.

R1----1.20--->1.20

R5----1.20--->5.2o

R3----1.20----;t.21

5.20

(Here, R3 receives no messages, so it executes after

receiving updates of R1 , R5)

The above order is consistent. In this R1 will

execute, then after receiving updates of R1 , R5 will

execute, then R3 .

88

4.9 SITE CRASHES AND PARTITIONING BEHAVIOUR

In this it is assumed that when site failures occur

then those are detected. If site fails then each update

request ignores that site without stopping normal

processing. When a site recovers a message is communicated

to all sites. It can recover data by copying data from

other sites.

When partitioning occurs, then the partition which is

having majority of sites can process update requests.

4.10 WHY THE ALGORITHM WORKS

The way the requests visit majority of sites, sending

of messages to other sites to resolve the cycles, and time

stamps are the basis of this algorithm.

The mutual exclusion necessary to make preservation of

internal consistency is achieved by each individual site by

making request to visit majority of the sites. In

particular, concurrency control is achieved by the concept

of visiting majority that ensures that the majority sites

for any two update requests have at least one site common

and this algorithm ensures that conflicting requests are

ordered one after another.

In this algorithm, if two up-date requests conflict at

a time only one request sees the consistent state of

89

database. After receiving updates of one request the other

will execute, which .will ensure the one copy version of

database.

A formal proof of the correctness of the algorithm is

not described; however, the rest of this section informally

argues for its correctness. In particular, to establish

correctness of algorithm we claim that:

A This algorithm ensures serializability; i.e.

conflicting transaction will execute one by one.

B This algorithm ensures 1-serializability.

A This algorithm ensures 1-serializability

Proof: Here we use the concept of serializability. A

definition of serializability and conflicting operations

used here is the same as in Chapter 1. Assume that the

update requests in SG(R) by this algorithm is (R1 , .. , Rn)'

we have to show, SG(R) is acyclic.

A1 If R1 , R2 are conflicting update requests. Then R1-->R2

or R2-->R1 but not both.

Proof: Suppose assume that two update requests R1 , R2

orders the transactions individually as follows.

But at the site they get the majority R1 sends the

90

message 1 R
2

--> R
1

1 to R2 and; R2 sends the message 'R1 -->

R2
1 to R1 .

With respect to time stamps the final ordering will be done.

So the final execution will be either R1 --> R2 or R2 -->

R1 , not both.

A2 Let (R1 ,

algorithm.

R
2

, ••. , Rn) be the final ordering of this

Then R will execute after all. n

Proof : If R
1

--> R
2

is a final ordering then R2 executes

after receiving the updates of R1 (From A1).

Similarly for R2 --> R3 . So by transitivity, 'Rn' will

execute after receiving the updates of all (R1 , .. , Rn_ 1).

Suppose by contradiction assume that, SG(R) has a cycle over

The above is violated the rules of the algorithm, in which

Rn, R1 sends their orders to each other, then cycle is

resolved on the order of time stamps. So, either Rn-->R1 or

R1-->Rn will present in the SG(R).

So, SG(R) is acyclic.

Hence, the execution sequences produced by this algorithm is

serializable.

B The execution sequences produced by this algorithm is

1-copy serializable.

91

Proof In order to prove 1-copy serializability, we must

prove that, the execution sequences produced by this

algorithm follows the following two rules. (From Chapter 1) 0

(a) If R.
J

reads data item 'X' from R.
1

then R.<<R.
1 J

(b) If R.
J

reads 'X' from Ri, ~ writes 'X' (i' j' k

distinct), and Ri<<Rk, then Rj<<Rk.

Part (a) can be proved easily, R. reads data item 'X' from
J

R., it means both are conflicting type. In this algorithm
1

each request is visiting majority of sites, in which Ri and

R. are ordered as R.<<R ..
J 1 J

Part (b) Ri' Rj and Rk are update requests.

The following orders are true.

R.<<Rk; R.-->R.
1 J 1

If R. reads the value of R., according to part (a) it
1 J

executes after receiving the updates of R .. suppose assume
J

that Rk writes 'X' in between R. and R .. Then according to
J 1

algorithm if Rj and Rk are conflicting type they must have

ordered one after (i.e., Ri-->Rk or Rk-->Ri)' and Rk also

conflicting type.

So, the order will be R. --> Rk --> R.
J 1

But from (b) Rj reads the value written by

contradicts with this.

92

(1)

R .•
1

Equation (1)

So, the executions produced by this algorithm is 1-copy

serializable.

4.11 CONCLUSION

In voting type approaches the update request is

executed first, then the update variables are sent to

other sites for majority approval. In quorum consensus

approach the majority is replaced by quorum. In these

approaches, if the update requests are conflicting type,

then the rejections are more in number.

In this algorithm, rejections will not be there but it

is assumed that, when update request comes, we must identify

the variables, it reads and writes. This is little more

complex in case of large update requests. But, in the case

of banking, railway reservation system, these variables can

be identified with less effort.

Overall, this

conflicts; and needs

algorithm works well in case of

less number of messages than voting

approaches.

occur and

The main advantage is,

it is robust to site

rejections will not

crashes and network

partitioning.

93

CHAPTER - 5

CONCLUSIONS

The advent of distributed system has added a new aspect

to fault tolerance. To increase fault tolerance replicated

data is stored redundantly at multiple locations. This

report contains the discussion and comparison various

approaches to replication. After that new technique is

presented.

The first

and overhead of

we discussed replication issues, advantages

replication. Correctness criteria for

concurrency control and replication control is presented.

Then, various approaches are described in brief. After

these are divided into different categories based on the

central idea. The approaches are compared in groups with

respect to number of messages required for each update

request, site crashes, partitioning behaviour.

At last, we presented an algorithm based on the

executing update requests after visiting majority of sites.

In this, we use time stamps to order the update requests.

Overall, the replicated distributed system, provides

adequate performance in case of failures. Different

algorithms can be proposed depending on the type of

environment.

In broadcast environment the new technique exhibited

less delay, by reducing number of messages in case of

conflicts and, it is robust to site failures and network

partitioning.

94

BIBLIOGRAPHY

[AHAM87] Ahamaa, M., Ammar, M. Performance Characterization
of Quorum Consensus Algorithms For Replicated Data. In
Proceedings of the Symposium on Reliability in
Distributed Software and Database System. (1987), pp,
161-168.

[ALLC83] Allchin, J.E. A Suite of Rubust Algorithms for
Maintaining Replicated Data Using Weak Consistency
Conditions. In Proceedings of the 3rd Symposium in
Distributed Software and Database Systems. 1983, pp,47-
56.

[ALSB76] Alsberg, P.A., Belford, G.G., Day, J.D., Grapa, E.
Multi-copy Resiliency Techniques. Techanical report
CAC Document No.202, Center for Advanced Computation,
University Illinois at Urbana-Champaign, May, 1976.

[BADA86] Badal., D.J. The Distributed Deadlock Detection
Algorithm. ACM Transactions on Computer Systems.
Nov.1986, pp.,320-327.

[BARB84] Barbara, D., Garcia-Molina, H. The Vulnerability of
Voting Mechanisms. In Proc. 4th Symp. on Reliability
in Distributed Software and Database Systems, pages 45-
53. IEEE, Silver Spring, MD, 1984.

[BERN77] Bernstein, P.A., Rothie, J.B., Goodman, N.,
Papadimitrious, C.A. The Concurrency Control Mechanism
of SDD-1: A System for Distributed Databases (The Fully
Redundant Case). IEEE Trans. on Software Engg. Vol.SE-
4, No.3, May 1978, pp.154-168.

[BERN81] Berstein, P.A., Goodman, N. Concurrency Control in
Distributed Database Systems. ACM Computing Surveys.
Vol.13, No.2, June 1981, pp.185-221.

[BERN83] Bernsteain, P.A., Goodman, N. Concurrency Control
and Recovery for Replicated Distributed Databases. TR-
20-83, Center for Research in Computing Technology,
Harward Univ., July 1983.

[BERN83a] Bernstein, P.A., Goodman, N. The Failure and
Recovery For Replicated Databases. In Proceedings of
the 2nd Annual Symposium on Principles of Distributed
Computing, Montreal, August, 1983, pp, 114-121.

[BERN84] Bernstein, P.A., Goodman, N. An Algorithm for
Concurrency Control and Recovery in Replicated
Distributed Databases. ACM Trans. on Database Systems,
9(4), December 1984, pp. 596-615.

[BERN85] Bernstein, P.A., Goodman, N. Serializability Theory
for Replicated Databases. Journal of Computer and
System Sciences 31, (1985), pp. 355-374.

[BERN87] Bernstein, P.A., Goodman, N. Serializability
Theory for Replicated Databases. Journal of Computer
and System Sciences 31, (1985), pp. 355-374.

[BERN87] Bhargava, B. Transaction Processing and Consistency
Control of Replicated Copies During Failures in
Distributed Databases. Journal of Management
Information Systems. Vol.4, No.2, Fall 1987, pp.93-112.

[BHAR88] Bhargava, B., Ng, P., A dynamic Majority
Determination Algorithm for Reconfiguration of Network
Partitions. Information Sciences. 46, pp.27-45.

[BHAR90] Bhargav, B., Browne. s. Hybrid Value/Event
Representation of Replicated Objects. Department of
Computer Sciences. CST-TR-967, Purdue University.
March, 1990.

[BHAR90] Bhargava, B., Lian, s. Typed Token Approach for
Database Processing During Netowrk Partitioning. In
Conference on Management of Data, (COMAD90) December
1990, New Delhi, India.

[BLAU83] Blaustein, S.T., Garcia, H., Ries, D.R.,
Chilenskes, R.M., Kaufman, c.w. Maintaining Replicated
Databases Even in the Presence of Network Partitions.
In Proceedings of the IEEE 16th Electrical and
Aerospace Systems Conference (Washington, D.C., Sept.),
IEEE, Newyork, pp.,353-360.

[BLAU84] Blaustein, B.T., Kaufman, c.w. Updating Replicatd
Data During ·.Communication Failures. In Proc. 11th
International VLDE Conference, Stockholm, August 1985.

[BLOC87] Block, J.J., Deniels, D.S., Spector, A.Z. A
Weighted Voting Algorithm For Replicated Directories.
1987, To Appear in Journal of ACM.

[BIRM85] Birman. K. Replication and Fault-Tolerence in the
Isis System. In Proceeqings of the lOth ACM Symposium
on Operating System Principles, December, 1985.

[BREI82] Breitweiser, H., Leszak, M.A. Distributed
Transaction Processing Protocol Based on Majority
Consensus. In Proceedings Ist ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing,
Aug.1982, pp.224-237.

(ii)

[DANI83] Daniels, D., Spector, A.Z. An Algorithm For
Replicated Directories. In Proceedings 2nd ACM SIGACT­
SIGOPS Symposium on Principles of Distributed
Computing, (Aug. 1983), pp.104-114.

[DAVI83] Davidson, S.B., Garcia-Monila,
Consistency in Partitioned Networks.
Surveys, Vol.17, No.3, September 1985.

B., Skeen. D.
ACM computing

[DROS88] Drost, N.J., Leeuwen J .. v. Assertional Verification
of a Majority Consensus Algorithm for Concurrency
Control in Multicopy Databases. In Lecture Notes in
Computer Science (No.335), 1988.

[EAGE81] Eager, D.L. Rubust Concurrency Control in
Distributed Databases. Technical report CSRG#135,
Computer System Research Group, University of Toronto,
October, 19 81.

[EAGE83] Eager, D.L., savcik, K.C. Achieving Robustness in
Distributed Database Systems, ACM Trans. Database
Syst.8,3 (Sept.1983), 354-381.

[ELAB85] El
Efficiency
Management.
Principles
March 1985,

Abbadi, A., Skeen, D., Cristian, F. An
Fault-Tolerent Protocol for Replicated Data

In Proc. 4th ACM SIGACT-SIGMOD Symp. on
on Database Systems, Portland, Oregaon,
pp.215-228.

[ELAB86] El Abbadi, A., Toueg, s. Availability in Partioned
Replicated Databses. In proc. 5th ACM SIGACT-SIGMOD
Symp. on Principles of Database Systems. Cambridge, MA,
March, 1986, pp.240-251.

[ELAB87] El Abbadi, A., Toueg, s. Maintaining Availability
in Partitioned Replicated Databases. Tech. Rep.TR-87-
857, Dept. of Computer Science, Cornell University,
Ithacea, N.Y., 1987.

[ELLI77] Ellis, C.A. Consistency and Correctiness of
Duplicate Database Systems. 6th Symp. Operating System
Principles, Nov.1977, pp.67-84.

[ELLI77a] Ellis, C.A. A Robust Algorithm for Updating
Dublicate Databases. In Proc. 2nd Berkeley Workshop
Distributed Data management and Computer Networks.,
1977, pp.1146-1158.

[ESWA76] Eswaran, K.P., Gray, J.N.
The Notions of Consistency
Database System. Comm. ACM
pp.624-633.

(iii)

Lorie,R.A., Taiger, T.L.
and Predicate Locks in a
19(11), November, 1976,

[GARC79] Garcia-Molina, H. Performance of Update Algorithms
for Replicated Data in a Distributed Database. Tech.
Rep. STAN-CS-744, Department of Computer Scinece,
stanford University, June 1979.

[GARC82] Garcia-Molina, H.
Computing System, IEEE
January, 1982, 48-59.

Elections in a Distributed
Trans. on Computers C-31(1):

[GARC82a] Garcia-Molina, H. Reliability issues for Fully
Replicated Distributed Databases, IEEE Computer, 15, 9
(Sept.1982), pp.34-42.

[GARC82b] Garcia-Molina, H., Wiederhold, G. Read-
Only transactions in Distributed Database. ACM
Transactions on Database Systems, Vol.7, No.2, June
1982, pp.209-234.

[GARC83a] Gacia-Monila, H., Barbara, D. How to Assign Votes
in a Distributed System. Technical Report TR 311-
3/1983, Department of Electrical Engineering and
Computer Science, Princeton University, 1983.

[GARC86] Garcia-Molina, H. The Future of Data Replication.
In 5th Symp. on Reliability in Distributed Software and
Database Systems, IEEE, Los Angeles,
January, 1986, pp.13-19.

[GARD79] Gerdarin, G., Lebaux, P. Centralized Control Update
Algorithm for Fully Redundant Distributed Databases.
In Proc. Ist Int'l Conf. on Distributed Computing
Systems, IEEE, October, 1979, pp.699-705.

[GARDSO] Gardarin, G., Chu, w.w.A. Distributed Control
Algorithm for Reliably and Consistently Updating
Replicatd Databases. IEEE Trans. on Computers C-
29(12):December, 1980, pp.1060-1068.

[GELE79] Gelenoe,E., savick, K. Analysis of update
synchronization for Multicopy Databases. IEEE Trans.·
Computer. c-28, 10(0ct 1979), pp.737-747.

[GIFF79] Gifford,D.K. Weighted Voting for Replicated Data.
In Proc. 7th ACM SIGOPS Symp. on Operating System
Principles, Pacific Grove, CA, December,
1979, pp.150-159.

[HERL84] Herlihy. M.P. Replication Methods for Abstract Data
Types. Ph.D. Thesis, Massachusetts Institute of
Technology, May 1984.

[HERL86] Herlihy, M.A. Quorum-Consensus Replication Method
for Abstract Data Types. ACM Trans. on Computer Systems
4(1) :February, 1986, pp.32-53.

(iv)

[HERL87] Herlihy, M.P. Availability vs. Concurrency
Atomicity Mechanisms For Replicated Data. ACM Trans.
Comput. Syst.4,3(Aug.1987), pp.249-274.

[HERL88] Herlihy, M.P., Weihl, W.E. Hybrid Concurrency
Control for Abstract Data Types. In Proceedings of the
7th ACM SIMOD-SIGACT Symposium on Principles of
Database Systems (PGDS) (March 1988), pp.201-210.

[HERL90] Herlihy, M. Apolizing Versus Asking Permission:
Optimistic Concurrency Control for Abstract Data Types.
ACM Trans. on Database Systems Vol.15, No.1, March
1990, pp.96-124.

[HEVN88] Hevner., A.R.,
Allocation Strategies.
Computers 1988.

Arune Rao.
A Chapter

Distributed Data
in 'Advances in

[JAJ087] Jajodia, s., Meadows, C.A. Mutual Consistency in
Decentralized Distributed Systems. In Proceedings of
3rd Int. Conf. ort Data Engineering. Los Angles,
Februrary, 1987, pp.396-404.

[JAJ087a] Jajodia, s., Mutchler, D. Dynamic Voting. In
Proceedings of ACM Int. Conf. on Management of Data
(SIGMOD) Sanfrancisco, May 1987.

[JAJ090] Jajodia, s., Mutchler, D. Dynamic Voting Algorithms
For a Maintaining the Consistency of a Replicated
Database. ACM Transactions on Database Systems. Vol.15,
No.2, June 1990, pp.230-280.

[JOHN75] Johnson, P.R., Thomas, R.H. The Maintenance of
Duplicate Databases. Tech. Rep. RFC677C31507, Network
Working Group, January, 1975.

[JOSE86] Joseph. T. Low Cost Management of Replicated Data.
Department of Computer Science, Cornell University,
Ph.D. Dissertation. Jan. 1986.

[JOSE86] Joseph, T.A., Birman, K.P. Low Cost Management of
Replicated Data in Fault-Tolerant Distributed Systems.
ACM Trans. on Computer Systems 4(1):Februray, 1986,
pp.54-70.

[KANE79] Kaneko, A. Logical Clock Synchronization Method for
Duplicated Database Control. In Ist Int'l Conf.
Distributed Computing systems, Huntsville, Ala., Oct.
1979, pp.601-611.

[KOON86] Koon, T., Ozsu, M.T. Performance Comparison of
Resilient Concurrency Control Algorithms for
Distributed Databases. In Proc. Int' Conf. on Data
Engineering, IEEE, Los Angles, Feb., 1986, pp.565-573,

(v)

[KOHL81] Kohler, W.H. A Survey of Techniques for
synchronization and Recovery in Decentralized Computer
systems. ACM computing surveys, Vol.13, No.12, June
1981.

[KORTH86] Korth., H.F., Silberschatz., A. Database Systems
Concepts. Me Graw-Hils Book Company, 1986.

[KUMA88] Kumar, A., Stonebraker, M. Semantics Based
Transaction Management Techniques for Replicated Data.
ACM SIGACT-SIGNOD 1988.

[LAMP78] Lamport, L. Time, Clocks and Ordering of Events in
a Distributed System. Comm. ACM21(7):July
1978, pp.558-565.

[MIN082] Mincura, T. Wiederhold,
True Copy Token Schemes for
Systems. IEEE Trans. on Software
No.3, May 1982.

G.R. Resilient Extended
a Distributed Database
Engineering, Vol.SE-8,

[NDE85] Noe, J.D., Proudfoo1, A., Pu, c. Replication in
Distributed Systems: The Eden Experinece. Technical
Report 85-08-06, Department of Computer Science,
Univesity of Wshington, September 1985.

[PAPA79] Papadimitriou,c.H. Serializability of Concurrent
Database Updates. Journal of the ACM 26(4):
October, 1979, pp.631-653.

[PAPA86] Papadimitriou, C.H. The Theory of Concurrency
Control Computer Science Press, Rockville, MD, 1986.

[PART88] Paris, J.F., Long, D.D.E. Efficient Dynamic Voting
Algorithms. In Proc. 4th IEEE Int. Conf. on Data Engg.
LA,Feb, 1988.

[PARK83] Parker Jr., D.s., Popek, G.J., Rudisin, G.,
Stougton, A. Walker, B.J., Walton B., Chow, J.M.,
Edwards, D., Kiser, s., Kline, c. Detection of Mutural
Inconsistency in Distributed Systems. IEEE Trans. on
Software Engineering SE-9(3): pp.240-247, May, 1983.

[PU86] Pu, c., Jerre,
Replicated Objects
Implimentation.
Conference on Data
1986.

D., Proudfoot, A. Regeneration of
A Technique and Its Eden

In Proceedings International
Engineering, IEEE Computer Society,

[REED83] Reed, D.P. Implimenting Atomic
Decentralized Data. ACM Transactions
Systems. Vol,l.No.l, Feb.1983.

Actions on
on Computer

(vi)

[ROTH77] ~othie, J.B. Goodman,
redudant Update Methodology
Distributed Databases (The
Rep. No.CCA-77-02, Computer
1977.

N., Bernstein, P.A. The
of SDD-1: A System for

Fully a Redundant Case),
Corporation of America,

[ROYH77a] Rothnie, J.B., Goodman, N., A Study of Updating in
a Redundant Distributed Database Environment. Computer
Corp. America, Cambridge, MA, Tech. Rep. CCA-77-01,
Feb.15, 1977.

[SARI86] sarin, S.K. Rubust Algorithm Design in Highly
Available Distributed Databases. In Proc. of the 5th
Symposium on Reliability in Distributed Software and
Database System. Los Angles, January 1986, pp.87-94.

[SCHL83] Schlicting, R.S., Scheneider, F. Fail Stop
Processors An Approach to Designing Fault Tolerant
Distributed Computer Systems. ACM Transactions on
Computer Systems.1, 3(1983), pp.22-228.

[SELISO] Selinger, P.G. Replicated Data in Distributed
Databases. I.W. Draffen and F. Poole,Eds. Cambridge
University Press, Cambridge 1980.

[SKEE84] Skeen, D., Wright, D. Increasing Availability in
Partitioned Networks. In Proc. of the 3rd SIGACT-SIGMOD
symposium on Principles of Database Systems, New York,
1984.

[STON79] Stonbraker, M. Concurrency Control and Consistency
of Multiple Copies of Data in Distributed INGRES. IEEE
Trans. on Software Engineering 3(3):May, 1979, pp.188-
194.

[TANG88] Tang, J., Natarjan, N.A. Formal Model for
Pessimistic Schemes for Managing Replicated Databases,
Tech., Report, Dept. of Computer Science, Pennsylvania
State University 1988.

[TANG89a] Tang,
Scheme for
Proceedings
Conference on

J., Natarajan, N.A. Static Pessimistic
Handling Replicated Databases. In

of the 1989 ACM SIGMOD International
the Management of Data, Portland, Oregon.

[TAKA79] Takagi, A. Concurrent and Reliable Updates of
Distributed Databases. MIT Laboratory for Computer
Science, Report, MIT/LCS/TM-144, Nov., 1979.

[THOM78] Thomas, R.F.A. Solution to
Problem for Multicopy Databases.
COMPCON, Feb.28-March 3, 1978.

(vii)

Concurrency Control
In Proc. Spring

r
[THOM79) Thomas, . R.H. A Majority Consensus. Approach :-t:6'>

Concurrency antral for Multiple Copy ·Databases.-~~€M··'
Trans. on Database systems 4 (2) :June 1979, p~:Vl·a-'0~"69'.;} •

[TONG88] Tong, z., Kain, R;Y. Vote Assignmets,ifrl~\~W@:')f..tjhb~Gt·~"~
Voting Mechanisms. In Proc. of Seventh~~~~-.t-1-&'n':c~
Reliable Distributed Systems. october 198.$·~·rr~~i.]}~lJ43?P~;.

[WEIH84] Weihl, W. Specification and Impl:t.~£4~~,_-;:;lj¥':':
Atomic Data Types, Ph.D. Thesis, MIT, Marcij~;~:;.1.g~~:

[WUU84] Wuu, G.T.J., Bernstein, A.J. Efficie'n~~~t'tt~il!f'
the Replicated Log and Dictionary {.i.i>~~ 1j;~yi
Proceedings of the 3rd ACM Symposium-·oh;·;pfrln~~-i~Jttf''"
Distributed Computin<!. Vencourer, . Aug_~-.~·~-~~~~~~f!j~~~;;~~~~-
242. Also Appears 1n ACM Operat1ng ~,.~~y~lfi}n.l't~~w~: ..
Vol.20, No.1, January 1986, pp.57-66.

[YANN84] Yanakakis, M. Serializability by Locki·nq•:"~:~~~h:;.tS:l,..,
April 1984, pp.227-234.

	TH39220001
	TH39220002
	TH39220003
	TH39220004
	TH39220005
	TH39220006
	TH39220007
	TH39220008
	TH39220009
	TH39220010
	TH39220011
	TH39220012
	TH39220013
	TH39220014
	TH39220015
	TH39220016
	TH39220017
	TH39220018
	TH39220019
	TH39220020
	TH39220021
	TH39220022
	TH39220023
	TH39220024
	TH39220025
	TH39220026
	TH39220027
	TH39220028
	TH39220029
	TH39220030
	TH39220031
	TH39220032
	TH39220033
	TH39220034
	TH39220035
	TH39220036
	TH39220037
	TH39220038
	TH39220039
	TH39220040
	TH39220041
	TH39220042
	TH39220043
	TH39220044
	TH39220045
	TH39220046
	TH39220047
	TH39220048
	TH39220049
	TH39220050
	TH39220051
	TH39220052
	TH39220053
	TH39220054
	TH39220055
	TH39220056
	TH39220057
	TH39220058
	TH39220059
	TH39220060
	TH39220061
	TH39220062
	TH39220063
	TH39220064
	TH39220065
	TH39220066
	TH39220067
	TH39220068
	TH39220069
	TH39220070
	TH39220071
	TH39220072
	TH39220073
	TH39220074
	TH39220075
	TH39220076
	TH39220077
	TH39220078
	TH39220079
	TH39220080
	TH39220081
	TH39220082
	TH39220083
	TH39220084
	TH39220085
	TH39220086
	TH39220087
	TH39220088
	TH39220089
	TH39220090
	TH39220091
	TH39220092
	TH39220093
	TH39220094
	TH39220095
	TH39220096
	TH39220097
	TH39220098
	TH39220099
	TH39220100
	TH39220101
	TH39220102
	TH39220103
	TH39220104
	TH39220105
	TH39220106
	TH39220107
	TH39220108

