A PASCAL COMPILER FOR N
A STACK BASED MACHINE /éu%]

Dissertation Work Submitted to

Jawaharlal Nehru University

in partial fulfiiment of the requirements for
the award of the Degree of
Master of Technology
in
Computer Science and Technology

by
SUNIL RAINA

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES

JAWAHARLAL NEHRU UNIVERSITY
NEW DELHI - 110 067

JANUARY 1991

CERTIFICATE

This is to certify that the dissertation entitled
""A PASCAL Compiler For a Stack Baéed Machine", being submitted by
me to Jawaharlal Nehru University in the partial fulfilment of the
requirements for the awérd of the degree of Master of Technology,
is a record of original work done by me under the supervision of
Dr. P. C. BSaxena, Associate Professor, School of Computer and
Systems Sciences, Jawaharlal Nehru University during the year
1990, Monsoon Semester.

The results reported in this dissertation have not
4been submitted in part or full to any other University or

Institute for the award of any degree or diploma, etc.

St e

SUNIL RAINA

(oo Cooe—5

Prof. N. P. Mukherjee Dr. P. C. Saxena

Dean, Associate Professor,
School of Computer and School of Computer and
Systems Sciences, Systems Sciences,
J.N.U., J.N.U.,

New Delhi. New Delhi.

ACKNOWLEDGEMENT

I owe my sincere thanks to my supervisor Dr. P. C. Saxena
for his uncompromising guidance, constant supervision and
constructive criticism without which this work would not have been
completed successfully.

I extend my sihcere thanks to Prof. N. P. Mukherjee, Dean,
VSchool of Computer and Systems Sciences, Jawaharlal Nehru
University for his encouragement and facilities provided . for the
completion of this work.

I also take this opportunity to thank all faculty and staff

members and the friends who helped me in every way possible.

SUNIL RAINA

CONTENTS

1. COMPILERS) 1 - 10"
Translators 2
- The Tasks of a Compiler 3
2, ABSTRACT MACHINES 11 - 20
Portability and Abstract Machine 11
A Standard Abstract Machine 13
Advantages of the Abstract Machine 14
- Some Existing Abstract Machines 14
3. STACK COMPUTERS 21 - 28
Stacks) _-22
A Simple Stack Mechanism 23
Arithmetic Evaluation Stacks 24
Control Stack 25
Storage for Simple Variables 27

4. DESCRIPTION OF THE HYPOTHETICAL STACK MACHINE 29 - 39

The Assembly Language 29
The Instruction Set 30
The Grammar 34
PASCAL 37
The Abstract Machine for PASCAL 38
5. PROGRAM DESCRIPTION 40 - 55
Module Lex.c 40
Module Main.c 40
Module Par.c 43
Module Sym tab.c 47
Module Type check.c 50
Module Code.c 51
Module Error.c 54
APPENDIX

Program Listing
Sample Run

REFERENCES

PREFACE

- The apellation ‘stack computer’ designates a class
of computers using one or more_étacks. Over the years é
number of 'such machines have appeared, and that includes the
Burroughs B5500,B5700,B6700 etc. Even the conventional
machines incorporate some sort of elaborate stack
mechanisms, along with the usual hardware. It is felt that
computers, operating systems and programs in general are
both easier to write for and run more comfortably than on
conventional computers.

We have worked on the design, analysis and
implementation of a Pascal Compiler for such a stack based
machine. Due to shortage of time only a working subset of
Pascal has been taken for consideration. The language
features two pre-defined data types integer and real,
standard I/O procedures, expressions through binary
arithmetic and relationship operators. It is a block type
language following Pascal type scope rules and the
procedures may be recursive. All the parameters may be
passed by reference unlike Pascal where both call by vaiue
and call by reference are allowed. The object code is
composed of instructions éapable of directly executing on a

stack based architecture.

Two areas where the stack based machines are at
variance with the conventional machines are STOﬁAGE
EFFICIENCY and MEMORY REFERENCE EFFICIENCY. Storage
efficiency which refers to the compactness of the encoding

-of programs with the idea that the instruction sets are
efficient, 1is definitely a gainer as far as stack based
machines are concerned. Memory reference efficiency
generally refers to the amount of memory actually referenced
to execute a particular instruction-set. It is believed
that stack based machines have a poor efficiency in this
field. We tried to indicate the reasons for these views and

found the strengths and weaknesses of stack designs.

CHAPTER 1

COMPILERS

Interactions involving humans are most effectively
carried out through the medium of language. Language
permits the expression of thoughts and ideas, and without
it, communications, as we know it, would be difficult.

A programming language serves as a means of
communication between the person with a problem and the
computer. A program solution to a giveﬁ problém will be
easier and more natural to obtain if the programming
language used is close to the problem. Such a programming
language is usually high level.

The hierarchy of programming languages based on
increasing machine independence includes the following:

1. Machine level languages
2. Assembly language
3. Higher level or user oriented languages

4. Problem-oriented languages.

1. A machine-level langﬁage is the lowest form of computer
language. Each instruction in the program is represented by
numeric code and numeric addresses are used throughout the

program to reference the memory.

2. Assembly language is essentially the sy;nbolic version of
the machine level language. |

3. A high-level language offers most of the features of .the
assembly language in addition to -a set of features 1like
structured control constructs, nesteci statements, blocks,
procedures etc.-

4. A problem-oriented language provides for the expression

of the problem in a specific application_or problem area.

TRANSLATORS

A translator inputs and then converts a source
program into an object or ta;‘get program. The source
prl:gram is written in the source language and the object
program belongs to an object language. A translator which
transforms a high level language such as FORTRAN, Pascal,

COBOL into a particular computer’s machine or assembly

language is called compiler.

Da+ta

Source
ource. - | Comeiner Os3ect Executineg R
ProarAM Procaam CompuTen €EsuULTS
Rouw~
CompPiLe
Tite
TIME

The CompiiaTion [2Rocess.

The Tasks of a Compiler

The compilation 1is usually implemented as a
sequence of transformations (SL,L1), (L1,L2) . . . (Lx,TL).
Where SL is the source language and TL “isuthe target
language. Each language Li is called an intermediate
language. Intermediate L\anguages are conceptual tools used
in decomposing the task; i.e. Compiling from the source

language to the target language.

Any compilation can be broken down into two major

tasks: ™~
*Analysis : Discover the structure the primitives of the

- source program, determinging its meaning.
*Synthesis : Create a target program equivalent to the

source program.
COMPONENTS O©OF A CoMPILER

Seuvrce Ogiecr
ProcrAM PRoGRAM
Lericar YNTATIC SeranT Coon
 —— o COE ~
AnNALYSER ANALYSER ANALY GErvermm orTi
- ; ; T —W—.

| =

TABLES

The analysis concerns itself solely with the
properties of the source language. It converts the program
text submitted by the programmer into an abstract
represéntation embodying the essential properties of the
algorithm. The analysis phase may be divided into three
sections - themlexical analyser, parser and the intermediate
code generator.

(1) Lexical analyser -

The lexical analyser converts the source program
from a character string to a sequence of semantically
relevant symbols. The symbols and their encoding form the
intermediate language output from the lexical anaiyser. The
lexical analyser interfaces with the other modules of the

compiler as shown in the following figure:

SymaoL
Sounrce TRE&LE
ProcRrRAM '
ComnsTANT
Lexicac TABLE
ANALYSER
, l
‘ RALR.
PARSER E
HANOLER

T ThE LENCAI_ ANALy,sER

4

The lexical analyser reads the input text
indentified as a basic symbol. After this identification,
the lexical analyser either creates a "token" describing it
or restarts in.a new state. Thus formed tokens are passed on
to the parser to form grammatically correct sentences out of
these tokens. These tokens are also placéd in the symbol or
constant tables accordingly.

If lekgcal errors such as unrecogn{zed input
characters and violations of the basic symbol grammar are
encountered, the error handler is invoked which determines
the continuation of the lexical analysis.

The parsing of a source program determines the
semantically-relevant phrases and, at the same time,
verifies syntactic correctness. As the output of the
parser, we obtain a parse tree of the program. Besides, the

parser interfaces with other modules of the compiler as

follows:
LExncm_ Toxer PARSER Commection SeMmaNTIC
ANALYSER Potetts] ANALYSIS
EMR;; SYNTHE 128D
L, TorsNS
Error
HAanNOLER

A_PARSER’s EI;WRONMENT
5

The parser accepts a sequence of basic symbols,
fecognizes the extant syntactic structure, and outputs that
structure along with the ideptity of relevant sympols. If
the syntactic structure of the input text is not error free,
the parser invokes the error handler to report errors and to
aid in recovery so that processing can continue.

(iii) Intermediate Code Generator:

An intermediate source form is an internal form of
a program created by the compiler while translating the
program from a high-level language to assembly-level or
machine-level code. There are many advantages of using the
intermediate source forms. For example, it represents a
more attractive form of target code than the assembly or the
machine code. Besides, certain optimization strategies can
be more easily performed on intermediate source forms than
on either the original program or the assembly-level or
machine-level code.

The compilers which produce a machine independent
intermediate source form are more portable than those which
do not.

However, there is a certain disadvantage associated
with the intermediate code forms which is that code produced
can be 1less efficient than producing machine-level code
directly. The argument behind this is that an intermediate

language necessitates another level of translation(i.e. from

the intermediate source form to the machine level code).

The intermediate code generator takes the parse
tree provided by the parser as the input and generates
'equivalent intermediate source forms such as poiish
notation, n-tuple notation, abstract syntax trees, threaded

code and pseudo or abstract machine code.

Synthesis proceeds from the abstraction developed
during the analysis phase. It augments the intermediate
code by attaching additional information that reflects the
source-to-target mapping.

The synthesis consists of two distinct subtasks -
code generation and assembly. The code dgeneration
transforms the abstract source program appearing at the
analysed synthesis interface into an equivalent target
machine program. This transformation is carried out in two
steps: first we map the algorithm from source concepts to
target concepts, and then we select a specific sequenée of
target machine instructions to implement the algorithm.

Assembly resolves all target addressing and
converts the target machine instructions into an appropriate
output format. By the term "assembly" we do not imply that
the code generator will produce symbolic assembly code for
input to the assembly task. Instead, it delivers an

internal representation of target instructions in which most

addresses "remain unresolved. The output of the assembly
task should be in the format accepted by the standard link
editor or loader on the target machine.
(i) code Genperator ;
The code generator creates a target tree from a
structure tree. This task has three sub—tasks:‘
a) Resource allocation: Determine the sources that
will be required and used during execution of
instruction sequences.
b) Execution order determination: Specify the
sequence in which ﬁhe descendants of a node will
be evaluated.
c) Code Selection: Select the final instruction
sequence corresponding to the operations appearing

in the structure tree.

In order to produce code optimum under a cost
criterion that minimises either program length or execution

time, these subtasks must be intertwined and iterated.

(ii) Assembly ;

The task of the assembly is to convert the target
tree produced by the code generator into the target code
required by the compiler specification. This target code

may be a sequence of bit patterns to be interpreted by the

control unit of the target machine, or it may be text
subject to further processing by a link editor or loader.

Assembly is essentially independent of the source
language and should be implemented by a common module that
can be used in any compiler for the given machine. To a
large extent, this module can be made machine independent in
design.

During the entire compilation process of analysis
and synthesis, errors may appear at any time. In order to
detect as many errors as possible in a single run, repairs
must be made such that the program is consistent, even
though it may not reflect the proérammer's intent.
Violations of the rules of thé source language nmnust be
detected and reported during analysis. If the source
algorithm uses concept of the source language for which no
target equivalent has been defined in a particular
implementation, or if the target algorithm exceeds
limitations of a specific target language interpreter, this
should be reported during synthesis. Besides, errors must
also be reported if any storage 1limits of the compiler
itself are violated.

In addition to the actual error handling, it is
useful for the compiler to provide extra information for
run-time error detection and debugging. In fact, the task

of the error handler is to detect each error, report it to

the user, and possibly make some repair to allow processing
to continue. It cannot generallly determine the cause of
the error, but can only diagnoze the visible symptoms.
Similafly, any repair cannot be considered a correction; i%
merely neutralizes the symptom so that processing may

continue.

The above discussion highlights the major functions

a compiler has to perform.

10

CHAPTER 2

ABSTRACT MACHINES

The emphasis in compﬁter design is on producing
compilers that are both portable and adaptable. One of the
approaches used is to produce a form'of intermediate source
code for an abstract machine. The instruction set for this
machine should closely model the constructs qf the source

languages that are to be compiled.

Portability and abstract machine

A program is said to be portable if it can be moved
to another machine with relative ease while a program is
adaptable if it can be readily customized to meet several
user and system requirements. Suppose a given compiler is
to be ported from machine X to machine Y. To realize this,
the code generation routines must be rewritten for the
machine Y. The task would be much easier if the compiler
had been divided into two parts - the front-end dealing with
the source code and the back-end dealing with the target
machine with a well defined interface. For a well defined
interface only the target machine part need be changed.

The flow of information between:3two parts of a
compiler takes the form of language coﬁstructs in one

direction (front-end to back-end), and theﬁtarget machine

11

information in the other direction (back to front-end). The
interface can be realized by using anh abstract machine. -The
source language constructs can be mapped into pseudo
operations oﬁ this abstract machine. An abstract machine
can be designed for a particular source language (e.g.
Pascal in this case)."

An abstract machine is based upon operations and
modes that are primitive iq programming language. The
language dependent translator translates the program into
abstract machine code by breaking constructs of the language
into a sequence of primitive operations on the primitive
modes. A primitive mode and a primitive operation foirm~ a
pair which describe an instruction.

The architecture of the abstract machine forms an
environment in which the modes and operations interact to
model the language. Unlike a real machine whose
architecture is governed by economic considerations and
technical limitations, the abstract machine has a structure
which facilitates the operations required by the given
programming language.

The abstract machine can be embedded into the
language dependent translator by a series of - interface
procedures, one for each abstract machine instruction.

The use of an abstract machine allows the language
dependent translation and the machine dependent translator

12

to be seperated by well defined interface. One can refine
either part of the compiler without gffecting the other.
Another advantage would be the choice it allows ‘in
implementing the machine dependent tranlator. The language
dependent translator’s interface procedures could produce a
symbolic assembly code for the abstract machine. The MOT
would then be an abstract machine assembler which could be
implemented by using a macro processor, either the one
provided with the real machine’s assembler or a machine-

independent macro-processor.

A Standard Abstract Machine

A standard abstract machine is a machine which has
been carefully defined around a model that can be used for
many programming languages. Many lot’s can produce assembly
code for the standard abstract machine, and one assembler
could be used to translate this assembiy code for the target
machine.

The standard abstract machine language should be
enhancible to allow new operations and modes that appear in
a new ﬁrogramming language. The designer of an abstract
machine can concentrate on a structure which facilitates the
operations in the given source language. The designer must

also, however, take into consideration the efficient

13

implementation of the abstract machine on an actual

computer.

Advantages of the Abstract Machine .

The most important advantage of using an abstract
machine is the clean separation of the front-end and the
back-end processes of the compiler.

Suppose it is required to implement ‘m’ distinct
languages on ’‘n’ different machines. Without using some
form of intermediate source code, such as an abstract
machine, m * n different compilers would have to be written,
that is one for each language/machine combination. In an
abstract machine apporach, h;wever, only m front ends and n
back-ends are required. A compiler for a certain
programming language and target machine can then be
generated by selecting the appropriate front-end and back-

end. Using this approach m * n different compilers can be

generated from m + n components.

S8ome Existing Abstract Machines

Today it is quite feasible for a given programming
language such as Pascal to produce efficient object code for
several different térget machines. A more difficult problem
is to h$ve an abstract machine from which efficient objéct

code can be produced for several programming languages. The

14

difficulty is to have an abstract machine that efficiently

models all these programming languages.

JANUS

-

A family of abstract machines called ‘Janus’ has
been developed at the University of Colarado in order to
study the problems of producing portable software and in

particular portable compilers.

%—OU&CE SYHGO‘-‘C
ANGUAGE CopE ABSTRACT MACHINEG
;'ANAL\/ZER ‘ CoDE
GenERATOR
SYMBouC
ABSTRACT
MACKHIN
MAacHINE
&)?5- STAaGE 2 > Assemerer ——5
LANGUAGE

The Translation Process

The symbolic Jaﬁus code 1is translated to the
assembly language of the target computer by a program such a
STAGE. Simple translation rules are supplied by the user to
describe the various Janus constructs and the primitive
modes and operators. Final translation to object code is

provided by the normal assembler of the target compﬁter.

15

MemMory

/
Accumurate Processor < INDEX
Recister
Stack

hit -t} famil - A ! b
It favours computers with a single arithmetic
registers or with multiple arithmetic registers and

register/storage arithmetic.

16

2. The IBM 8/360 FORTRAN(G) COMPILER

The IBM FORTRAN IV G-level compiler exemplifies an
approach to compiler portability in which the abstract
machine 1is. implemented on the real machine via an
interpreter.

The compiler is written ih.the language of an
abstract machine called POP whose design is well suited to
the implementation of compilers. POP is a machine organized
around a number of last-in first-out queue i.e. push down
stacks. The instructions of the machine are set up to
operate on these stacks as well as on a linearly organized
memory. There are two stacks, WORK and EXIT which are an
integral part of the machine so that the access is
efficient.

There are about 100 instructions in the abstract
machine, the operation code can be represented in one byte.
The operand which represents either a value or a relative
address can also be represented in one byte. Since access
to WORK and EXIT must be efficient, the pointers to these

stacks are maintained in general registers.

The abstract machine called a P-machine is a simple
machine-independent stack computer. The language can be
easily transported onto a variety of hardware platforms.

The hypothetical stack machine has five regisﬁers
and a memory. The registers are

PC - Program Counter
NP - New Pointer
SP - Stack Pointer
MP - Mark Pointer
EP - Extreme Stack Pointer
The last four pointers are associated with the

management of storage in memory.

CopE
o
r STAck
« sP
v
" T e« ne
SToRE J ear

LArgqe
InTEGER
Reacs
SETS CONSTANTS
BounOARY
PAains
\ STRINGS

The ARsTRACT STAck MACHINE
18

The memory which can be viewed as a linear array of
words is divided into two main parts. The first part of -the
memory CODE contains the machine instructions. The second
part of the memory, éhe STORE , contains the data (i.e. non
instructions) store part of the program. The layout of the
computers’ memory is aé in the figure. PC - refers to the
location of the instruction in CODE. STORE contains two
parts; the first part represents the various constants of a
given program while the second part is dedicated to the
other data requirements of the executing program.

The stack whose top element is denoted by SP,
contains &il directly addressable data according to the data
declaration in the prégram. The heap with associated top
element NP, consists of the data that have been created as a
result of direct programmer control. The heap is similar to
a second stack structure.

The stack consists of a sequence of data segments.

Each data segment is associated with the activation of a

procedure or a function.

The data segment contains the following sequence of
items.
1) A mark stack part.
2) A parameter section.

3) A local data section for any ilocal variables.

19

4) Temporary elements that are required by the processing

statements.

The mark stack part has the following fields: .
1. value field for a function
. 2. static link

The basic modes of PASCAL (e.g. INTEGER and REAL)

are supported on the stack compiler. There are several
classes of instructions - arithmetic, 1logical and
relational.

P-code has been extended to U-code(Perkins and
Sites 1979) to facilitate certain kinds of code

optimizations.

N

2414

CHAPTER 3

Y STACK_COMPUTERS

A‘stacﬁ i€ a last-in first-out data structure and
the simplest operations that can be performed on it are PUSH
and POP. A PUSH operation pushes ne& data onto the top of
the stack while a POP operation removes the most recently
pushed data item.

The appellation ’‘stack computer’ designates a class
of computers using one or more stacks. In the actual
implementation, a number of conceptually different stacks
are niixed into one tightly-bound interleaved structure.

Much work has been done on the concept of stack
computers which includes papers by Bauer, Randell, Russel,
et. al. One of the earlist stack based machines to come
into existance was KDF9 computer. Commercial stack based
computers followed with B5000 Burroughs being among the
first ones to be followed by B5500,B5700,B6700. Hewlett-
Packard HP3000 also supports a stack mechanism and so does
Burroughs B1700 with a stack mechanism controlled by a
writable microcode. Further DEC’S PDP11 series also
supports some basic features of a stack machine.

In a stack machine, a datum of width n is
visualized as a contiguous vector of n independent bits of
information, thus it can take only 2" values. A datum is

<D isg
21 6813 - 06PASCIL
2134

’1:0\

the basic unit of transactions between the various parts of
the computer. The data pushed onﬁo the stack comes from
somewhere in the computer; the data popped goes somewhere.
Each action involving PUSH and POP takes the- form of an
assignment. An assignment to a stack implies a PUSH onto
the stack, an assignment from a stack implies a POP

operation.

S8TACKS

Simple stacks can be implemented in a variety of
ways; the more complex versions are generally restricted to
being placed in main memory and being accessed through index
registers.

MAIN MgmMoRy

InoEx RecisTERS

S7Tack
Larmyr - —_

Pusy~Pop
Pyt e i e - STACK

Stace > _

22

The actions PUSH,POP can be defined in terms of A,B,C and

the memory.
Action

PUSH X

POP X

A Simple Stack Mechanism

Definition

IF B>=C THEN OVERFLOW
ELSE MEMORY[B]:=X; B:=B+1;

B :=B - 1;
IF B<A THEN UNDERFLOW
ELSE X:=MEMORY[B]

[NPUTS QuTeuts
PopP
U FLO
PUSH
o0 FLO

STACK

N
=)

ouT

_/
=

In this scheme, the PUSH and POP are control singnals that

cause the corresponding actions to take place. The datum

must be present at the IN prior to PUSHing. Output signals

UFLO and OFLO correspond to stack failure indications.

The PUSH and POP variants used for the hypothetical

stack machine visualized in thit project are as follows:

PushCI, Pushl, PopI,Pushgl, Popgl, fetchI, popI,pusha,
pushga.

All these operations either exchange data between

the I/O device and the stack or between the system part of

the stack pointed to by the frame pointer(FP) and the data

part of the stack pointed to by SP.

Arithmetic Evaluation Stacks

The concept of arithmetic stacks can be understood
by the evaluation of an expression say (2 + 3 * 8). The

following primitive sequence of operations can be allowed to

take place.
push 2
push 3
push 8
mul --> (popping two topmost operands and pushing
the results back again)
add --> (popping two topmost operands and pushing

the sum back again)

The action falls into two classes: placing the
operands at the top of the stack and operating on the
operands at the top. The operations can be accomplished by
the use of reverse polish, or postfix which would look 1like
238*+ in our case.

Conventional computers accomplish arithmetic

evaluation with registers instead of stacks. The use of

24

stacks eliminated the need for explicit temporary stores - and

associated book-keeping.

The size of an arithmetic stack determines how
complex én expression can be computed. A difficulty arises
when different types of data are mixed (say integer and
real). Here thé data may have different widths and bit
patterns and different interpretations.

One solution to this problem is to tag the
operations(i.e. have different operators for different types
of data e.g. "+, " for real addition and "+" for wusual
addition).

A second approach 1is to provide a scparate
evaluation stack for different types of data.

Yet another approach would be to use tagged data
such that only when the operands happen to be of the same
type, an operation is carried out otherwise a conversion

operation converts the dissimilar one to the usual format.

Control Stack

During the execution of a program, the machine code
resides in the main memory and is pointed to by a register
called program counter (PC). There are two important
control points for subroutine entry and exit. PC must be
first set to the entry point and the execution allowed to

proceed. When the execution is finished , the PC must be

25

PVSB
for

ARITHMET1E

26

ONIT
[
| ReqisTeER
UFLO
—
OFLO
STACK
oNIT
ovT
ARITHMETIC STACK

reset to the value it had prior to entry, allowingy the
calling routine to proceed.

A separate stack is used for accomplishing this,
and may be implemented in-another part of the memory. The
value of PC is saved in the control part of stack-and when
the souroutine is executed, it may be popped off from the
top of the control stack. A stack can be used for the
precise reason that CALL and RETURN pairs are nested in
time. A distinct advantage in in this mechanism is that
subroutine may call each other to any depth and in any

order. With no more storage used than is actually needed.

8torage for Simpls Variables

The local variables of a subroutine have a property
that they can be accessed only from statements within the
subroutine.

When the definition of one subroutine is nested
within the definition of another, the inner subroutine has
access to the variables lécal to the containing subroutine
but not vice-versa. Storage need not be allocated to the
local variables until the subroutine is called and may be
freed for other uses as soon as control has left the
subroutine. This is accomplished by using a stack for local
variables. The local variables are not accessed by PUSH and
POP , but at random at any time during the execution of

their scope.

27

LocaL VARRGLES
oF R

L >

Lecac VMIA‘LF'S
oF 8
C Tr=PorARILY

levaccress NSL&]

G LoGAL
VARIARLE S

G S

S TMmCw

Global variables are at the bottom of the stack
pointed to by G and are accessible to all. Register L
points to the base of the area which contains most 1local

variables of the subroutine being currently executed.

28

CHAPTER 4

Description of the Hypothetical Stack Machine

The machine is composed of the following:
1. There is a word-addressable memory partition for data
called ’‘stack’.
2. Word-addressable memory partition for the program called
fCode’.
3. There are three special purpose registers:
- PC - Program Counter register
SP - Stack Pointer register
FP - Frame Pointer register
4. Arithmetic, Logic Unit (ALU), capable of performing
various Stack Operations.
5. I/0 unit, capable of reading/printing.
The memory partition code contains a program (the
byte code of the program written in the corresponding
Assembly Language). The—memory partition stack is used for

storing data and other necessary information.

The Assembly lLanguage

Each 1line of the Assembly 1language for the
hypothetical stack machine must contain either a comment, a
label definition, or an instruction (micro-instruction).

Comments - A Comment begins with a number sign(#) in the

first column and extends until the end of the
line. These comments are ignored.

Labels : A label is an identifier, and beginé with a ($)
sign. There must be exactly one definition of
every label. The label ‘main’ indicates the
main entry point.

Instructions: An instruction is composed of an instruction
name (mnemonic), optionally followed by =zero,
one or two operaﬁds. The mnemonic and
operands (if they are present) are separated by
space(s) and/or tab(s). An instruction must
begin in a column higher than one; otheryise

they are treated as a label definitions.

The Instruction Set

CI - represents an integer constant,

CR - represents a floating point constant,

L. - represents a label; &L-label; address,

O -~ represents a memory offset,

N - represents an integer constant, which represents
either stack frame size, number of parameters, or

a stack level (nesting), difference and

~ —m e oo

Oopc

ode Name Arg Action

0 pushcI CI SP:=SP+1;Stack([SP]:=CI;

1 pushl O SP:=SP+1;Stack[sp]:=Stack{FP+0];

2 popl- O Stack[FP+0]:=Stack[SP];SP:=SP-1;

3 pushgl N,O0 SP:=SP+1;Stack({SP]:=Stack(base(N)+0];

4 popgl N,O Stack({base(N)+0]:=Stack[SP];SP:=SP-1;

5 fetchI Stack[SP]:=Stack[Stack[SP]];

6 popil - Stack[Stack[SP-1]]:=Stack(SP];SP:=SP-2;

7 pusha O SP:=SP+1;Stack(SP]:=FP+0;

8 pushga N,0 SP:=SP+1;Stack{SP]:=base(N)+0;

10 addl Stack([SP-1]:=Stack[SP-1]+Stack[SP];SP:=S5P-1;

11 subI Stack{SP-1]:=Stack[SP-1]}-Stack[SP];SP:=SP-1;

12 mull Stack[SP-1):=Stack[SP-1]*Stack[SP];SP:=SP-1;

13 divl Stack[SP-1]:=Stack[SP-1] div Stack[SP];SP:=SP-1;
14 negl Stack[SP]:= -Stack([SP];

40 eqI Stack{SP-1]}:=ord(Stack[SP-1]=Stack([SP]);SP:=SP-1;
41 nel Stack[SP-1]:=ord(Stack[SP-1]<>Stack[SP]) ;SP:=5S8P-1,
42 1tT Stack{SP-1]:=ord(Stack([SP-1]<Stack[SP]) ;SP:=SP-1;
43 leI Stack[SP-1]:=ord(Stack[SP-1]<=Stack([SP]) ;SP:=SP-1,
44 gtI Stack[SP-1]:=ord(Stack[SP-1]>Stack({SP]) ;SP:=SP-1;
45 gel Stack[SP-1]):=ord(Stack[SP-1]>=Stack(SP]);SP:=SP-1,
60 Jjumpz if Stack([SP]=0 then PC:=&L;SP:=SP-1;

L
61 jumpnz L if Stack[SP]}<>0 then PC:=&L;SP:=SP-1;
62 Jjump L PC:=&L;

70 enter N Stack[SP+1]:=base(N) ;Stack[SP+2]:=FP;SP:=SP+3;
71 alloc N SP:=SP+N;

72 call L,N FP:=SP-(N+2) ;Stack[FP+2]:=PC;PC:=&L;
73 return SP:=FP-1;PC:=Stack[FP+2];FP:=Stack([FP+1];

Floating Point Instructions

Floating point instructions are obtained by
replacing the 1last letter ‘I’ with ’'R’. For example,
’pushR’ corresponds to ’‘pushl’. Opcodes of the floating
point instructions are always greater by 128 than the

opcodes of the corresponding integer instructions. For

31

example, the opcode of ‘pushIl’ is 129. The only additional
instructions are ‘int’(convert to integer representation),
’intb’ (convert to integer below SP), ‘fit’ (convert to
floating point representation; function float changes the

type of its argument), and ‘ftlb’(convert to float below

SP) .

Opcode Name Arg Action

15 int Stack[SP]:=trunc(Stack[SP]);

16 intb Stack([SP-1]:=trunc(Stack(SP-1]);

144 flt Stack{SP]:=float(Stack(SP]);

145 fltb Stack[SP-1]:=float (Stack[SP-1]);
Description of the lanqguage for which the compiler

is built. (A subset of Pascal with slight variations to

make the programming somewhat less tedious and easier to
understand). The language is case insensitive except for

strong constants.

Comments

A comment is a sequence of characters enclosed
within a pair of matching braces (’{’ and ’}’). Comments
can extend over several lines and are ignored as are

newline(\n), tab(\t) and white spaces().

32

Tokens

Sequence of characters enclosed within the double
quotes (") are literals (ground tokens). Any other sequence

of characters denotes a name of a lexical class.

letter s = fnan l "b"l e e | naon l wan] "B"| ... | LAl
digit Ctr= mow|myiv|, . . . |"o®
Identifiers

An identifier is a finite sequence of letters and
digits which begin with a letter. Upper and lower case
letters are allowed but there is no distinction between the
corresponding lower and upper case letters. Identifiers may
Be of any length, but only the first ten characters are
significant.

identifier ::= letter (letter|digit)”

Numbers

An unsigned integer is a sequence of one or more

digits.

unsigned-integer ::= digit digit*

A floating point number is defined as
floating-point ::= unsigned-integer "." unsigned-integer.

String Constants

A string constant is a sequence of characters

33

enclosed within two single quotes. A single gquote preceded
by a backslash (\) is treated as a character in the string
in which it occurs. sSimilarly, the letter n preceded by a
backslash (\n) denotes the newline(ASCII 10) character and
two consecutive backslashes (\\) denote a single backslash.
A string constant may not extend beyond the end of the line.
A { } pair included within a string constant is not treated
as a comment. A string constant is used only as an argument
of the standard procedure ‘writeset’. Also, corresponding
upper and lower case letters are considered different with
string constants.

string-char ::= ASCII-char|["\\"|"\n"|"\"

string-constant ::= "/n string-bhar*"’"
Operators
add—op s = "+nlu_u
mul—op s = "*"I"/"I"diV"I
rel_op s = n<u|u<=n[u="|u<>u|u>u'n>=n

The Grammar

program @ —=—-—--- > 'program" identifier ";" block "."
block ------ > declarations "begin" statement list "end"
declarations ----- > declafations declaration|e
declaration ----- > variable declarations|

procedure_declarations

variable_declaration ---> "var" variable declaration|

34

variable declarations
variable declaration.

variable_declaration--->identifier_list":"type_name" ;"
type name « ----- > "integer"|"real"

procedure declarations ----> procedure declaration|
procedure_declarations
procedure declaration

procedure declaration ---> procedure_header block";"

procedure header -—---> ‘'procedure" identifier " ("
parameter list")'"";"|
"procedure" identifier";"

parameter_list ----> parameter group | parameter list
;" parameter_group

parameter group ----> identifier list ":"type name
statement list ----> statement|statement list ";"
statement
statement ----> e/* empty statement*;/ |
identifier|
identifier " (" expression list")"|
variable ":=" expression]
"while" expression "do" statement
list"end"|

"if" expression"then"statement list
"else"statement list "end"

expression list---> expression|expression list":"

expression
expression ------— > simple expression |
simple_expression rel op simple_
expression
simple_expression----> term|add_op term|

simple expression add op term

term ----> factor | term mul op factor

factor ----> variable | constant | "("expression")"
variable----> identifier

constant ----- > string constant | number

35

"," l1aentirier

Data types

There are two standard (predefined) types : integer

and real.

Blocks

There are seven predefined identifiers. Integer
and real represent two standard data types, readi, readr,
writei, writer and writetxt are the names of standard I/O
procedures. Each of the 1I/0 procedures takes only one
actual parameter. readi, readr can be used to read a single
number of types integer or real, respectively. writei,
writer may be used to writeout a value of type integer or
real respectively. The last procedure writetxt is used to
write out a string constant. The language follows usual

scope rules of Pascal and the procedures may be recursive.

Expression
There are five binary operators +,-,%*,/,div.
div - represents division of integers with integer result.
+ and - have lower precedence than *,/,div

+ and- - may also be used as unary operators

36

Given integer arguments, each operation réturns
integer results, except for /(division), which always
returns a real result. If any of the arguments is of the
real type, the result is always of the type real. There are

six binary relational operations <,<=,=,<>,>,>=,

Statements
Five types of statements have been defined
- enmpty statement.
- procedure call
- assignment
- while statement

- 1if statement

Parameter Passing

All parameters are passed by reference.

PASCAL

Pascal 1is fairly complete in terms of the
programming tools it provides to a programmer, providing a
rich set of data types and structuring methods that allow
the programmer to define his own data types.

Pascal 1s a procedure-oriented language. A
procedure is the basic unit of a program ahd each is always

defined within another procedure.- The main program is

37

considered to be a procedure without parameters which is

defined in and called from the software system.

The Abstract Machine for Pascal

The Pascal followed in this project is a subset of

the standard PASCAL with minor syntactic modifications.

Standard Identifiers

There are seven predefined identifiers:

integer, real -- predefined data types
writei, writer -- standard output procedure
readi, readr -- standard input procedure

STANDARD PROCEDURES

writei,writer,readi,readr

RESERVED WORDS

PROGRAM, BEGIN END, VAR, INTEGER, REAL, PROCEDURE,

WHILE, DO, IF, THEN, ELSE.

OPERATORS
Procedure Operators
1(highest) *,/,div‘
2 +, -
3(lowest) =,<>,<,<=,>,>=

38

Scope of Variablés

The scope rules followed are the usual Pascal.Scope
rules. The constants and variables that appear within the
action statements of a procedure may have been declared
externally,-within a program block that contains the
procedure itself. Those constants and»variables which are
declared within a block containing the procedure declaration
can be utilized anywhere within the block, whether inside of
or external to the procedure. Identifiers defined in this
manner are considered to be global to the procedure.

The scope of an identifier refers to the region
within which the identifier is declared and can hence be
utilized. This applies to all declarations. To transfer
information across procedure boundaries is to make use of
global identifiers, since global identifiers can be
referenced whenever neceésary. Procedures can be nested
within other procédures but a procedure can not be accessed

outside the block that contains the procedure declaration.

39

CHAPTER 5

PROGRAM DESCRIPTION

Module Lex.C

This module contains the main program called
main(argc,argv) which is invoked when the program starts
executing. argc is an integer defining the number of
arguments on the command 1line, argv 1is an array of
characters holding all words on the command line. This
would generally be the name of the program to be compiled.
The input filename must be of the form filename.u.and the
maximum length of the filename can be of only 15 characters
with the rest of the characters being ignored by the
compiler. An output file of the name filename.asm is opened
in the write mode and object code is put into this file.
Control is transferred to the module PAR-C after obtaining a
token by the routine getsym() . Finally both the files are
closed and a success message (--Happy Halt--) is displayed.

An error message is displayed in case of an error.

Module Main.C

This module contains functions which generate
tokens for use by the parser module. The various functions
within this module are:

1. getsym() - this returns a token and in case of an error

40

2.

passes the control to the error module through

print-tok (tok) where tok is of type token.

getsym2() - This function again returns a token and is

invoked by the function getsym(). mIt stripé
out all blanks’()’, tabs ‘\t’ and newlines
‘\n’ from the input program file, at.the same
time keeping track of the 1line no (by
counting the number of newline characters
‘\n’) to be used by the error routines in
case of an error. All the comments within
{}’ pair of braces are ignored. If an EOF
char is encountered in thc comments, an error

message is displayed.

a) All numeric constants without any intervening
spaces are separated out as integer and real
constants(reals or floating point constants are
defined as integer constant followed ﬁy decimal
point, followed by an integer constant). The two
tokens returned in this case are

---- float_sym

---- int_sym
b) In case of relational operators, it looks for
r=!,/<!’,’>! or a combination of these and the

various tokens returned are

41

c)

1t _sym

eq_sym
---- gt_sym

In the case of a

iteq_sym

gteq sym

(less than symbol)
(equal to symbol)
(greater than symbol)
(less than or equal to symbol)

(greater than or equal to symbol)

noteq_sym (not equal to symbol)

string of alphanumeric

characters starting with an alphabet, a token type

of identifier is returned.

In case the identifier

matches with one of the reserved words of the

language as defined in the declaration keyword[],

tokens of folldwing types are returned.

begin
dir
do
else
end
if
integer --
procedure
program

real

then

var

while ----

returns begin sym

returns dir_ sym
returns do_sym
returns else_sym
returns end_sym
returns if sym
returns integer_sym

--- returns procedure sym
--- returns program_sym
-- returns real sym
-- returns then_sym
- returns var_sym

returns while sym

42

identifier ---- returns ident_sym (could not find a
matching key word)

d) If the tokens are relational operators or-

parenthesis, following tokens are returned.

(- returns lparen_sym
) - returns rparen_sym
* - returns mult_ sym

+ - returns a plus_sym

' - returns comma_sym
- - returns minus_sym
e - returns period sym

/ - returns divide_sym

returns assign_sym

- returns semicolon_sym

-

3. Lower(c)

This function takes any uppercase alphabetic
character and returns the corresponding lowercase character.
In this manner, this version of Pascal makes no difference

g

between uper and lower case alphabets.

Module par.C

This is the parser module and contains a number of
functions which parse the input program in accordance with
the defined grammar. 7The different functions used in this

module are as follows.

43

1. Program (sset)

Control is handed over to this function by the
lexical module after getting a token from the token
generator. The inbﬁt sset is of type sef which is defined
of the unsigned integer. The function installs the symbol
table and starts off with the first token which should be
program_sym and should be followed by ident_sym (i.e. an
identifier) and a semicolon sym. Next the function block is
invoked and in case of an error each stage will send out an
unique error-message.

o-var,no-para,proc-ptr

This function 1looks for the declarations by
invoking the function declarations and 1looks for the
begin sym. Function statement list is invoked thereafter
and if end_sym is found after that control is returned back
to program.

3. decls(sset, no-var,no-para)

Until a beéin_sym or a procedure _sym is found, this
function stores all the declarations following the var_sym
adding them to sset.

4. var-decls (sset,no-var), var decl(sset, no-var)

These two functions are invoked by function decls
look for the identifier 1list.

5. Proc-decl (sset,no-para)

This function looks for procedure defined with the

44

main program followed by its own separate block.

6. proc-header (sset no-para,proc-ptr)

Procedure_sym is looked for when the function takes
over followed by the procedure name in the form of an
identifier which may or may not be followed by a parameter

list enclosed within left and right parenthesis.

7 .Parameter-list(sset, no-para)

This function looks for a parameter group until a
semicolon is obtained.
8 .Parameter-group (sset, no-para)

This function is invoked by the parameter_ list
function and 1looks for an identiiier list followed by a
colon_sym and a type name.

9.Statement list(sset)

This function looks for a statement followed by a
statement_list with a semicolon_sym as a delimiter. Control
is passed on to function statement. -

l10.Statement (sset)

A statement in this language may consist of either
assignment statements or control statement. If the first
symbol is ident sym, then the symbol table is searched to
see i1f the identifier has been declared at the beginning .
An optional expression list is looked for within a pair of
braces (lparen_sym and rparen_sym) and finally an assign_sym

followed by an expression. In case the token is a

45

while sym, control is transferred to expression function. A
do_sym token should be followed by a statement_ list and an
end_sym should conclude the statement if the token generated
is if sym. Control is transferred to expression and when the
function returns, a then_sym is checked for followed by
invokincj the function statement list. If the next tok‘en
happens to be else sym, control is again transferred to
function statement list followed by an end_sym.

l1l.expression list (p,sset,para)

This function checks for an expression or an
expression_list followed by a comma sym and an expression.
It invokes function exp readi(tp,sset) to find out if the
identifier or variables used have already been declared.
12.expression(lp, sset,para)

It looks for a simple expression or a combination
of a simple_expression followed by rel op token(of the type
=,<>,>,<,>=,<=) followed by a simple_ expression.
13.simple_expression (tp,sset,para)

This function looks for a simple term or an add op
followed by a term (in case of unary operation like +X or -
X) or a simple_expression followed by add op(+,-) and a term.
14. term(tp,sset,para)

This function checks for a factor or a term
followed by a mul op (i.e. mult sym, dir_sym,divide sym)

followed by a factor.

46

15.factor(tp,sset,para)

Control 1is passed oh to this function by the
function term. It checks for a variable or a constant or an
expression within left and right parenthesi;. The list of
variables and constants are checked in the symbol table and
if an entry is not found, an error messagel is outputted

through the function st _error.

Module symbtab.c

The structure of each node of the sy
as follows:
ident type -- variable or the procec

ident_name[10]

label no —- the label of the procec
no_raram -- number of paramete
proceudure

para_list([10]

var_type -- real or integer variabl
location -- offset in actuation recor
param -- this value is 1 if paramet
left -- node pointer to the left nc
right -- node pointer to the right

The various functions in this module ar

1) table add():- Increases the symbol tab arr:

assigns its value Null, each time it is called.

47

2)add_ident():- This function returns the nodeptr, which is

the address of a struct sym node. Initially when
add_ident() is called, the node pointer p, which is first
argument of add_ident, is null. Now it assigns storage of
the size of the sym node and then assigns the address of
that storage to p.. At the same time it checks for
symbol table[] array. If top of it is found null, it stores
the address of the recently allocated storage to
symbol table{top]. Now the ident name of that structure is
assigned to string lex and the left and the right nodes of
this structure are assigned null values. Now if it is found
that isvar is true i.e. some integer value, it starts
increasing the size of the singly linked list, otherwise if
isvar is zero; the number of parameters for that sym node
structure is zero and success is assigned one and pointer is
returned as the value of it. Next time when add_ident is
called, with the pointer p, which is not null now, it checks
for string error one, by comparing ident name field of the
structure pointed to by p with lex. If both are the same,
success 1is set to zero. If both are not same, it increases
the tree to left side or right side depending on value of
condition, by calling add_ident recursively. Therefore
add_ident increases the binary tree and singly linked list.

3)generate label () :

It generates the label name for each new procedure.

48

Procedure name starts with "$proc" string and number of

procedures is appended to it.

4) Update type(type,param):

It updates the type of all variables by changing
var _type of all sym nodes which are pointed to by the first
field of all nodes of var_list.

5) update params(p,type):

It updates the no_param field of structure sym_node
which is pointed to by p, by increasing it by the number of
nodes in var_list.

6) search() :

It searches for the node ptr p which is passed to
it as its argument in binary tree. If p is null, null is
returned and if p is the root node of the sub_tree, which is
formed as a result of recursive call in search() itself, it
returns that p.

7) table search():

It searches all node pointers in symbol table[]
array which are below a level indicated by t which is an
argument of table_search. And that index of symbol table
where node ptr is found in binary tree is returned as value
of level which is a pointer variable of integer type and
also argument of table_search(). Otherwise st_error number
2 is returned if number of the node ptr below 1level in

symbol table[] is. found in binary tree by search() function.

49

8) free var list():

It implies the storage allocated to singly linked
list which is pointed by var list and marks var_list to
point to null.

9) free table(p):

If free, the storage is ‘allocated to the sub_tree
of the binary tree which has got p as its root node.

10) print_table:

It prints the ident name and its location for all
node pointers in the subtree of the binary tree which has

got p as its root node.

Module type check.c -

1) param_check(p,count, tp):

It checks for number of parameters of sym node
structure pointed to by p with count 1. If it finds counts+1l
> p->no_param, then it returns st error(12), otherwise it
checks for para list[] field for that node ptr. Now if it
findé para list[] field of p equal to zero, it checks for
id_type by comparing tp with argument of param_check with
int_ type.

2) check_type:

It checks the id type of two identifiers tpl and
tp2 . It first ensures both tpl and tp2 are not of
err type. It then checks for tpl if it is float it sets tpil

to float_type otherwise tpl is set to integer type and

50

finally tpl is returned, otherwise st _error(5) is printed
and tpl is set.

3)assign_check:

It checks first ident type of sym node pointed to
by pt and if it is equal to 1, st error(7) is printed;
otherwise pt->ident type = 1, which means pt->var_ type will
be either 0 or 1. Therefore, tpl which is a local variable
of assign_check() is set to int type or float_type or
err type depending on whether pt->var type is 0, 1, or
undefined. If pt->var_type is undefined or anything other
than 0 or 1, then st error(3) is printed. Finally, if tpl
is not of err type, the only assignment error which can
occur in the form of st_error(5) is if tpl=int_type and_fpz
is float_type i.e. the identifier which is stored in
structure sym nod and pointed to by point is having var_type
field equal to 0 and it is being assigned a float type value

in the form tp2.

Module code.c

This module is reponsible for the generation of the
final code by the compiler. The code is written in the
output file(filename.asm) which has already been opened by
the module lex. The module consists of functions:

1) factor code():

It develops the code factor which is defined in the

grammar. factor_code() is called with node ptr pointer and

51

its field param is checked. If ptr->param is equal to 1,
then the sym node is a variable which is a parameter of a
function. Now this parameter is either int type or
float type. But if ptr->param is not equal to 1 then
variable is ordiﬂary local or global variable in some
function. Now in first case when variable is parameter, the
variable type is compared with int type and if calling and
called integers are same, then it shows that the function is
called from within itself i.e. there is a direct recursive
call to function. Therefore the code generated is "pushlI
ptf—>location" where ptr->location is off-set for the value
of the variable in a frame which is pointed to by FP(a Frame
Pointer). That value is taken and stored at the top of
stack and "fetchI". This fetchl will make the top of the
stack equal to a value of a location pointed to by the value
of the top of stack. And if calling <> called i.e. a
function called from outside the function. This difference
is static level difference. A similar thing is done if idt
== float type. Next, when variable is not parameter, then
the only difference is that its value is simply put on the

top of the stack.

2) term divide code(tpl,tp2)

Both tpl and tp2 are identifiers of the same or

different types.

52

If tpl is of int type and tp2 is of float_type ,
then output is fltb and divR i.e. it cohverts tpl to
floating tYpe and then does a real division.

Similar operations are carried out if tpl. is of

type floating and tpl is of integer type.

3)term mult code(tpl,tp2)

If both tpl and tp2 are of the same type, a simple
mull or mulR is outputted. If one of them is of type float,
the other is also converted to type float by fltb and than a

mulR is outputted.

4)code exp(tpl,tp2,rel_op)

tpl and tp2 give the identifier type and rel op
defines the relational operator between them. If the
identifiers are of different types, both of them are
converted to real type. Then depending on the rel op, the

assembly code corresponding to -operator is outputted.

integers reals
1t sym 1tI 1tR
eq_sym eql eqR
gt _sym gtl gtR
lteq sym lel | leR
noteq_sym nel neR
gteq_sym gel . geR

53

5) code_s _exp (tpl,tp2,add_op)

Here again depending on tpl and tp2 types, addIl or
subI are outputted in case both operands are integer and

addR or subR in case of reals.

6) code assign(ptr,tp2,calling,called)

Ptr is the pointer to the node containing the
identifier tp2. Then if calling = called 1i.e. the
identifier is 1local to the procedure, it outputs a popI
otherwise a popgl if the variable is a global one. Similar
operations are carried out in case of reals.

If the variable 1is of the type parameter, then
.depending on whether it is real or integer; the following

codes are outputted -- popil and popiR.

Module error.c

This module is invoked when an error is encountered
in the lexical analyser or the parsér or one of the later

modules. It contains the following functions:

1) error(er_no)

This function is envoked by the token generator and
depending on the er no, it outputs a dignostic message
telling the user whether the string has a newline character

or whether there is an illegal symbol after \\ or if an EOF

54

has been encountered in the comment line and so on.

2)s_error(er_no)

Control is handed over to. this function by the
lexical analyser i;‘. it is found that the system of the input
program does nct match the grammar of the 1language.
Different er no values will generate different messages like
missing semicolons, colons,program names, begins’ and ends’

etc.

3)st_error(er_no)

This function takes over after an error has been
found during the parsing process and generation of the
symbol table. Error messages include those of undefined
variables being used in the programs, mismatch in variables,

parameter list mismatch etc.

55

CONCLUSTION

Developing a full compiler is a very complex task
requiring intimate knowledge of both the source language as
well as the object language. The abstract machine for which
this compiler was developed was found to be sufficient for a
language like Pascai.But slight difficulty is encountered
for implementing floating point constants and variables.
Again the code generated is found to be quite compact and
takes lesser storage than the corresponding code in any
other conventional machine language. The project can be
further extended by taking the standard Pascal as an input
languade and developing its language dependent translator.
On the other hand, a machine dependent transaction can be
developed to convert the stack-code into the assembly
language for any hardware platform. A simple way would be
to develop an interpreter which would build a stack in the
computer’s memory and implement the code directly through

user defined procedures like push,pop etc.

56

pendix

/] * Lex.c %/
/* Lexical analyser #/

#include<stdio.h>
#include<ctype.h>
#include<string.h>
#include "GLOBALS.h"
#define LIM 20

char *progname ‘;
FILE *fp ;

* FILE *ofp ;
main(argc,argv)
int argc ;

char *argv([] ;

{

char ch ;

int j = 0;

set st = 0 ;

FILE *efopen();
char outname[LIM] ;

int max = LIM - 5§ ;
int pos = 0 ;
char *cp ;

progname = argv{0] ;
if (argc != 2)

printf(" usage: %s filename\n", progname) ;
return 1 ;

}
fp = efopen(argv([1l],"r") ;
cp = strchr(argv([l}, '.’);
if (cp == NULL)
{
printf (" Filename must be of form: name.u \n") ;
return 1 ;
}
while ((argv([l] + pos) != cp)
pos++ ;
if (pos <= 0)

printf("File name must be of the form: name.u \n") ;
return 1 ;

}
if (pos <= max)
{
§trncpy(outname, argv[1l],pos) ;
J = pos;
}

else

{

strncpy (outname,argv{l],max);

j = max ;
}
outname(j] = /.’ ; .
outname[++j] = ‘a’ ;
outname[++j] = ’'s’ ;
outname[++j] = ‘m’ ;
outname[++j] = ‘\0’;

ofp = efopen(outname, "w");
sym = getsym();

program(st = add prog(st));
fclose(fp) ;

fclose(ofp);

if (is error)

printff"--- Errors in program\n") ;
else
printf ("--- Happy Halt\n");

}

/*function efopen */
FILE *efopen(file,mode)
char *file, *mode;
{
FILE *fp, *fopen() ;
if ((fp = fopen(file, mode)) != NULL)
return fp ;
fprintf (stderr, "%s: Can’t open file file %s, mode %s\n",
progname, file,mode);
exit (1) ;
}

/* Main.c */

include <stdio.h>
include <ctype.h>
include <string.h>
include "externs.h"

T e ¥ W

static debug = 0 ;
extern FILE *fp
char #*keywordf]
{
"begin" , wgiv"n , ndot , Halge" , "end® , wifn ,] integer" ,
"procedure", "program", "real", "then","var","while'

I~

}i
token getsym()

{
token getsym2();

token tok ;

tok = getsym2();

if (debug) print tok(tok) ;
return tok;

}
token getsym2 ()

{
void error();
int lower();
int t , last t, limit, j, i ;
float rem = 1.0;
while (TRUE)
{
while ((t = getc(fp)) == * * || t== ’\t’ || t== "\n’
if (£t == ’\n’)

++line no ;

if (£t == "{")
while (((t = getc(fp)) != ’}’) && (t != EOF))
if (t == ’\n’) ++line_no ;
if (t == EOF) '
{

error(5, line no) ;
ungetc(t, fp) ;
return error_sym ;
}
}

else
if (isdigit(t))

{ ,
int val =t - /0’ ;
while (isdigit(t = getc(fp)))

int val = int val * 10 + t - '0’ ;
if ((last_ t = t) == 46)

{
if (isdigit(t = getc(fp)))

float val = int val ;
ungetc(t, fp) ;
}
else
{
ungetc(t, fp) ;
ungetc(last_t,fp) ;
return int_sym ;
}
}
else
{
ungetc(t, fp);
return int_sym ;
}
while (isdigit(t = getc(£fp)))
{
rem = rem / 10.0 ;
float _val = float val + (t

}
ungetc(t, fp) ;
return float_sym ;

}

else

if ((last_t = t) >= 60 && t <= 62)
{

if ((t = getc(fp)) < 60]] t > 62)

{
ungetc(t , fp); t =

|
Q
~e

}
switch (t + last t)

{
case 60 : return 1lt_sym ;
case 61 return eq sym ;
case 62 : return gt _sym ;
case 121 : return lteq_sym ;
case 122 : return noteq sym ;

X

case 123 return gteq _sym ;
}
-}
else
if (isalpha(t))
{

lex[0] = lower(t) ;
for (limit = 1 : limit < MAXLEN - 1 &&

0’) * rem ;

++1limit)

lex[limit] = lower(t) ;
lex[limit] = ’\0’ ;
ungetc(t, fp) ; ‘
while (isalpha(t = getc(fp)) || isdigit(t)) ;
ungetc(t, fp) ; . e
for (j=0 ; j< NO KEYWORDS && (strcmp(lex,keyword(j])); J++);
switch (3J)
{
case 0 : return begin_sym ;
case 1 : return div_sym ;
case 2: return do_sym ;
case 3 return else sym ;
case 4 : return end_sym ;
case 5 : return if sym ;
case 6 : return integer_sym ;
case 7: return procedure sym ;
case 8: return program_sym ;
case 9 : return real sym ;
"case 10 return then sym ;
case 11 : return var_sym ;
case 12 : return while sym ;
case 13 : return ident sym :
}
}

else

if (t == 39)

A

i=o0;

while (i < MAX_STR LEN)

{
if ((last_t = (t = getc(fp))) == 92).
switch (t = getc(fp))
{
case 39 : strarray{i] = 92 ;
strarray ([++i] = 39 ; ++i ; break ;
case 92 : strarray(i] = 92 ;
strarray(++i] = 92; ++i ; break ;
case 110 : strarray(i] = 92 ;
strarray[++1i] = 110 ;
++1i .
; break ;

default : strarray{i] = 92 ; strarray[++i]
error(3, line_no) ; ++i ; break

~e |

}
else
switch(t)
{
case 39 : strarray(i] = ’\0’ ;
return string sym ;

case 10 : ++line no ;
error (1, line no) ;
default : strarray(i] =t ; ++i ;

}
}
if (1 >= MAX STR LEN) error(1, line_no) ;
while ((t = getc(fp)) != 39);
}
else
if (t == EOF) return eof sym ;
else
{
switch (t)
{
case 40 : return Ilparen sym ;
case 41 : return rparen_sym
case 42 : return mult sym
case 43 : return plus sym
case 44 : return comma_sym

case 45 : return minus_sym
case 46 : return period_sym
case 47 : return divide_sym
case 58 : if ((t = getc(fp)) == 61)
return assign_sym ;

We mE Wy My W My g

else
{
ungetc(t, fp) ;
return colon_sym ;
}
case 59 : return semicolon sym ;
default : error(4 , line no) ;
printf("sym %d\n", t) ; break ;

}
}
}
}
int lower(c)
int ¢ ;
{
1f (¢ >= A’ & Cc <= 2")
return ¢ + ‘a’ - A’ ;
else

return c ;

}

/* Code.c */
/* Code generator */

include <stdio.h>
include "externs.h"
extern FILE *ofp ;

void factor code(ptr, calling, called, idt)
node_ptr ptr ;
int calling ;
int called ;
id_type idt ;

{
if (ptr->param == 1)
{
if (idt == int_type)
if (calling == called)
{
fprintf (ofp, " pushI %d\n", ptr->location);
fprintf (ofp, " fetchI\n") ;
}
else
{
fprintf(ofp," pushl %d, %d\n",
calling-called, ptr->location);
fprintf (ofp, " fetchI\n");
}
else

if (idt == float type)
if (calling == called)

{ .
fprintf (ofp, " pushl %d\n", calling-called,
ptr->location);
}
}
else
{
if (idt == int_type)
if (calling == called)
fprintf (ofp, " - pushl %d\n", ptr->lacation);
else
fprintf (ofp," pushgl %d, %d\n", calling-called,
ptr->location) ;
else

if (idt == float type)
if (calling == called)

fprintf (ofp, ™ pushR %d\n", ptr->location);
else '
fprintf (ofp, " pushgR %d\n", calling-called,

ptr->location);

}

void factor para code(ptr, calling, called, idt)
node ptr ptr ;

int calling ;

int called ;

id _type idt ;

{
if (ptr->param == 1)

{
if (idt == int type)
if (calling == called)
fprintf (ofp," pushI %d\n", ptr->location);
else:

fprintf (ofp," pushgl %d, %d\n ", calling-called,
ptr->location) ;

else

if (idt == float type)
if (calling == called)

fprintf (ofp, " pushR %d\n", ptr->location) ;
else
fprintf (ofp, " pushgR %d, %d\n", calling-called,
ptr->location);
}
else
{
if (calling == called)
fprintf(ofp," pusha %d\n",ptr->location);
else
fprintf(ofp," pushga %d, %d\n",calling-called,
ptr->location);
}

}
void term divide code(tpl, tp2)
id type tp1l ;
id_type tp2 ;

{
if (tpl == int type)
{
if (tp2 == float_type)
{
fprintf (ofp, " fitb\n");
fprintf(ofp," divR\n"});
}
else

if (tp2 == int_type)

{

fprintf(ofp," flt\n");
fprintf(ofp," divR\n ");
}
else
if (tp2 == float type) .
fprintf(ofp , " divR\n") ;
}

void term mult_code(tpl, tp2)
id type tpl ;
id_type tp2 ;

{
if (tpl == int_type)
{
if (tp2 == float type)
{
fprintf(ofp, " fltb\n")
fprintf(ofp, " mulR\n") ;
}
else
if (tp2 == int_type)
fprintf(ofp, " " mulI\n "“);
}
else

if (tpl==float type)
if (tp2==int_type) {

fprintf (ofp," flt\n");
fprintf (ofp," mulR\n");
}
else
if (tp2 == float type)
fprintf (ofp, * mulR\n");}
void code_exp(tpl, tp2, rel op)
id_type tpl ;
id type tp2 ;
token rel op ;
{
if (tpl == int type)
{
if (tp2 == float type)
fprintf(ofp, " fltb\n")
}
else
if (tpl == float type)
if (tp2 == int type)
fprintf(.ofp, - " £f1t\n");
if ((tpl == int type) && (tp2 == int _type))

switch (rel op)

{

case 1t sym : fprintf(ofp," 1tI\n"); break ;
case eq _sym : fprintf(ofp," eqI\n"); break ;
case gt sym : fprintf(ofp," gtI\n "); break ;
case lteq sym : fprintf(ofp," leI\n"),; break ;
case noteqg sym : fprintf(ofp," neI\n"); break ;
case gteq sym : fprintf(ofp," geI\n") break ;
} .
}
else
switch (rel op)
{
case 1t sym : fprintf(ofp," 1tR\n"); break ;
case eq sym : fprintf(ofp," eqR\n"); break ;
case gt _sym : fprintf(ofp," gtR\n "); break ;
case lteq sym : fprintf(ofp," leR\n"); break ;
case noteq sym : fprintf(ofp," neR\n"); break ;
case gteq sym : fprintf(ofp," geR\n") ; break ;
}
}
void code s exp(tpl, tp2, add op)
id_type tp1l ; -
id type tp2 ;
token add _op ;
{ :
if (tpl == int_type) {
if (tp2 == int type)
switch (add op) {
case plus_sym : fprintf(ofp," addI\n"); break ;
case minus_sym : fprintf(ofp," subI\n"); break;

}

}
else
{ .

if (tpl == float type)
if (tp2 == int_type)

fprintf (ofp, " £1t\n");
if (tpl == int type)
fprintf (ofp, " fltb\n");
if (tp2 == float_type)
fprintf(ofp," fltb\n");

switch(add op)

{
case plus_sym : if ((tpl == float_type) ||
(tp2 == float type))
- fprintf (ofp," addrR\n") ;
else
if ((tpl == int type) && (tp2 == int_type))
_ . fprintf (ofp, " addI \n "); break ;
case minus_sym : if ((tpl == float type)||
(tp2 == float _type))
fprintf(ofp, " subR\n ");
else ' '

1)

if ((tpl == int type) &&
(tp2 == int _type))
fprintf(ofp," subI \n") ; break ;
}
}
}

void code iflhs para(ptr, calling, called)
node_ptr ptr ;
int calling ;

int called ;
{
id type tpl ;
if (ptr -> var_type) tpl = float_type ;
else tpl = int_type ;
if (ptr ->param == 1)
{
if (tpl == int_type)
if (called == calling)
fprintf (ofp," pushI %d\n", ptr->location);
else
fprintf (ofp," pushgIl %d\n",calling-called,
B ptr->location);
}
}

void code assign(ptr, tp2, calling, called)
node ptr ptr ;
id type tp2 ;
int calling ;
int called ;
{
id type tpl ;
if (ptr->var_type) tpl = float_type ;
else tpl = int type ;

if (ptr->param != 1)
{
if (tpl == int_type){
if (tp2 == int type)
if (called == calling)
fprintf (ofp," popl %¥d\n",ptr->location);
else
fprintf (ofp," popgIl %d\n",calling-called,ptr->location);
}
else
{
if (tpl == float type)

if (tp2 == float type)
if (called == calling) :
fprintf (ofp, " popR %d\n", ptr->location);

else
fprintf (ofp," popgR %d, %d\n", calling-called,

ptr->location);

1

else

if (tp2 int type)
fprintf(ofp," £1t ")

if (called == calling)
fprintf(ofp,"

popR%d\n", ptr->location) ;

%d %d\n", calling-called

, ptr->location) ;

else
fprintf(ofp," popgR
}
}
}
else
{
if (ptr->param == 1)
if (tpl == int type){
if (tp2 == int_type)
fprintf(ofp , " popiI\n");
}
else
{ _
if (tpl == float type)
if (tp2 == float type)
fprintf(ofp," popiR\n ");
else
if (tpl == int type)
{
fprintf(ofp," fite")
fprintf(ofp," popiR\n ") ;
}
'}
}
}
int strleng(st)
char *st ;
{
int len ;
for (1len = 0 ; *st l= ’0’; st++)
{ ,
if (*st == ’\\')
++st ;
len++ ;

}

return len ;

}

void code std proc(pt, tp, vt, vlevel)

node ptr pt ;

12

id type tp ;
node ptr vt ;
int vlevel ;

{
if ((strcmp(pt->ident name, "writei")) == 0)
fprintf (ofp," outI\n ")
else
if ((strcmp(pt->ident name, "writer")) == 0)
{
if (tp == float_ type)
fprintf(ofp," outR\n")
else
if (tp == int_type){
fprintf (ofp," flt\n");
fprintf(ofp," outR\n") ;
}
}
else
if ((strcmp (pt->ident name, "writetxt")) == 0)
{
fprintf(ofp," pushcI %¥d\n",strleng(strarray)) ;
fprintf(ofp," msg \ ‘%s’ \n", strarray)} ; -
}
else
if ((strcmp (pt->ident name, "readi")) == 0)

{
if (tp == int type)

{
fprintf(ofp," inpI\n") ;
if (top == vlevel)
fprintf(ofp," popI %d\n", vt->location) ;
else .
fprintf(ofp," popgl %d,%d\n", top-vlevel
, vt=>location) ;
}
}
else
if ((strcmp(pt->ident name, "readr")) == 0)

{
if (tp == float type)

{
fprintf (ofp, " inpR\n");
if (top == vlevel) _
fprintf (ofp, " popR %d\n", vt->location) ;
else
fprintf (ofp, " popgR %d, %d\n", top-vlevel,
vt->location);
}
}

15

/* Par.c */
/* Parser %/

#include <stdio.h>"
#include "externs.h"

extern FILE *ofp;

static int success;

static node_ptr ptr = NULL;
static node ptr proc = NULL ;
static debug = 0;

node ptr add ident(), search();

void block(),decls(),var _decls(),var_decl() , proc_decls(),
proc_decl(),
proc_header (), parameter list(),
parameter group(), statement list(),
statement (), expression list(), expression(),
simple expression(),
term(),factor(), identifier_ list(),
expression_std proc(), code std proc(), exp_readi();
void program(sset)
set sset;
{
set tset;
int no_var=0;
int no_para = 0 ;
node_ ptr *dummy = (node ptr *) malloc(sizeof (node_ptr)) ;

if (debug) printf("-In Program \n");
table add();
install procs();

if (sym == program_sym)
sym = getsym();

else

{

s_error(1l) ;
sym = syncr (sset);

}

if (sym == ident_sym)
sym = getsym() ;
else

{

S error(2):

tset = add block(sset);
block (tset, &no_var, &no_para, dumny);
if (sym == period_sym)
sym = getsym();
else

{
s_error(4);
sym = syncr(sset = add_set(eof sym, sset));

if (debug) printf("-Out Program\n ")

}
void block(sset, no_var, no_para, proc_ptr)
set sset;

int *no_var;
int *no_para;
node_ptr *proc_ ptr ;

{
set tset ;
int int temp ;

if (debug) printf(" -In Block\n");
int _temp = *no_para ;
no_var = &int_temp ;
decls(sset, no_var, no _para) ;

if (* proc ptr != NULL)
{
fprintf (ofp, " %s%d\n",proc_label, (*proc_ptr)-> label no);
fprintf (ofp, " alloc %d\n", *no_var);
}
else
{
fprintf (ofp," main\n ") ;
fprintf (ofp, " enter 0 \n ");
fprintf (ofp, " alloc %d\n", *no _var) ;
}
if (sym == begin sym)
sym = getsym();
else

S_error(6);
sym = syncr(sset);

}

tset = add_st list (sset);
statement list(tset);

if (sym == end sym)

{

free_table(symbol table[top]) ;
top--;

fprintf (ofp ," return\n");

sym = getsym() ;

}

else

{
s _error(5) ;
sym = syncr(sset);

}
if (debug) printf("-out Block\n");

void decls(sset, no_var, no_para)
set sset;

int *no_var;

int *no_para ;

{

set tset ;

int var = 0 , para = 0 ; _

if (debug) printf("-In Decls\n");
while (sym != begin sym)

{

if (sym == var_sym)

(_

var_decls(sset = add_decls(sset), no_var);
var = *no var - *no_para; para = *no_para ;
} B}
else

if (sym == procedure_sym)

{

var = *no var - *no para ;para = *no para ;

proc_decls(sset = add_decls(sset), no_para);
}
else
sym = syncr (sset = add_decls(sset)) ;
}
*no_var = var ; *no_para = para ;
if (debug) printf("-Out Decls\n");

}
void var_decls(sset, no_var)
set sset;

int *no_var ;

{

if (debug) printf("- In Var_decls\n");
sym = getsym();

var_decl (sset, no_var);

while (sym == ident sym)
var_decl(sset , no var);

if (debug) printf("-Out Var_decls\n");
}

void var_ decl(sset, no_var)

set sset; -

int *no var;

set tset;

if (debug) printf("-In var decl\n");
tset = add_id_list(sset);
identifier list(tset, no_var);

if(sym == colon sym)
sym = getsym();

else

{

s_error(8);
sym = syncr (sset);

}

if ((sym == integer sym) || (sym ==real sym))
{

if (sym == integer sym)

update_ type(0, 0);

else

update_type(1,0);
sym = getsym() ;
}

else

{
s_error(7);
sym = syncr(sset); -

}

free var list();

if (sym == semicolon_sym)
sym = getsym();
else

{

s_error(3) ;

sym = syncr (sset);

} ,

if (debug) printf("-Out Vvar decl\n");
}

void proc decls(sset, no_para)

<t ccet s

if (debug) printf("-In Proc_decl\n");
proc_header (sset,no_para, &proc_ptr);
block (sset,dummy, no_para, &proc_ptr);
if (sym == semicolon sym)
sym = getsym(};

else

s_error(3);
sym = syncr(sset);

}
if (debug) printf("-Out Proc_decl\n"};
}
void proc_header(sset, no_para, proc_ptr)
set sset ;
int *no_para ;
node_ ptr *proc_ ptr;

set tset ;
int level = 0 ;
node ptr temptr = (node ptr) malloc(sizeof (sym node));

if (debug) printf("-In proc_header\n");
if ((sym = getsym()) == ident sym)

add_ident(symbol table[top],success,0,0);
proc = table_search(top, &level);

temptr = proc;

*proc_ptr = temptr ;

proc=> label no = proc no++;
sym = getsym(});

}

else

{

s_error (11);

sym = syncr(sset) ;
}

*no_para = 0 ;

table add();

if (sym == lparen_sym)
{ .

sym = getsym();

tset= add p_list(sset);
parameter list(tset, no para);
if (sym == rparen_sym)

sym = getsym();

else

{

s_error(9);

sym = syncr(sset);

{8

}

if (sym == semicolon_sym)
sym = getsym();

else

{

s_error(3);
sym = syncr(sset);

}

}
else
if (sym == semicolon_sym)
sym= getsym();
else {

s_error(10);
sym = syncr(sset);

}
if (debug) printf("-Oout proc header\n");
}

void parameter list(sset, no para)

set sset ;

int *no_para;

{ ,

if (debug) printf("-In Parameter list\n");
parameter_ group(sset,no_para);

while (sym == semicolon sym)

{

sym = getsym();

parameter group(sset, no_para);

}
if (debug) printf("-Out Parameter list\n");

}

void parameter group(sset, no para)

set sset; - -

int *no para;

{

set tset;

if (debug) printf("-out Parameter group\n");
tset = add id list(sset);

identifier list (tset, no_para);

if (sym == colon_sym)
sym = getsym();

else

{

sS_error(8);

sym = syncr(sset) ;

1f ((sym == real sym)||(sym == integer_sym))
if (sym == integer sym)

A épdate_type(o, 1)

update params(proc, 0);
}

else

{

update_type(1,1);
update params(proc,1l);
}

sym = getsym();

}

else

{

s_error(7);

sym = syncr (sset);

}

free var_list();

if (debug) printf(" -Out Parameter group\n");
void statement list(sset)
set sset ;

{

if (debug) printf("-In statement list\n");
statement (sset) ;
while ((sym == semicolon_sym) || (sym == if sym)
|| (sym == while sym)||(sym == ident_sym))
{
if (sym == semicolon sym)
sym = getsym();
else
s_error(16) ;
statement (sset) ;

}
if (debug) printf("-out Statement list\n");
}
void statement(sset)
set sset;
{
node_ ptr pt ;
id_type tp ;
set tset ;
int level ;
if (debug) printf("-In Statement\n");
if (sym == ident sym)
{
pt = table search(top, &level);
if ((sym = getsym()) == assign_sym)
{
code_iflhs para(pt,top,level);
sym = getsym();
expression(&tp,tset= add exp assign(sset),0);
if (pt !=NULL)
assign_check(pt, tp);
else

st _error(14);
code_assign(pt, tp, top, level);
}
else
if (sym == lparen_sym)

{

if (pt != NULL)

if (pt-> ident type == 0)

{

fprintf(ofp, " enter %d\n", top- level+l) ;
sym = getsym();
expression_list(pt, tset = add_exp_stat(sset), 1) ;
if (sym == rparen_sym)
{
sym = getsym();
fprintf (ofp, " call %$s%d, %d\n", proc label,
pt->label no,pt->no param) ;
}
else
{
s _error(9);
sym = syncr(tset);
} ;
} P
else é;angﬁg
if (pt->ident type == 3) B S\
id_type tp; B F &L
node ptr vt; f‘*&ﬂdg
int vlevel ; -
sym = getsym();
vt = table_search(top, &vlevel);
expression_std proc(pt, tset = add_exp stat(sset),
&tp);
if (sym == rparen sym)
sym = getsym();
code_std _proc(pt, tp, vt, vlevel);
}
else
{
st_error(9);
sym = syncr(tset = add _not proc(tset));
}
else
{
st_error(14) ;
-sym = syncr(tset). ;
}
}
else
if (sym == semicolon sym)

if (pt !=NULL)

21

if (pt -> ident type == 0)

if (pt-> no_param == 0) {
fprintf(ofp, " enter %d\n",
top— level +1);
fprintf (ofp, " call %s%d, %d\n"

proc_label,pt->label no,
pt->no_param) ;

st_error(14);

}
else
st _error(15) ;
else

st_error(9);

else
else

{

s_error(16);
sym = syncr(sset);

}
}

else

if (sym == while sym)

int while no ;
while no = while count++ ;

fprintf(ofp,

" $s%d\n", while lab, while no) ;

sym = getsym();
expression (&tp, tset = add exp while(sset), 0);
if (tp != bool type)

{

st_error(6)
sym = syncr(tset = rm set(ident sym,tset));

’

}
if (sym == do_sym)
sym= getsym();
else
{

s_error(12);
sym = syncr(tset = add_set(ident sym, tset));

}

statement list(tset = add st list(sset));

fprintf (ofp,
fprintf (ofp,

jump %s%d\n", while lab, while no);
%s%d\n" ,w_end_lab, while _no);

if (sym == end sym)

sym = getsym(
else

{

s_error(5) ;

)

!

sym = syncr(sset) ;

}
}

else

22

if (sym == if sym)

{
int if no ;
if no = if count++ ;

sym = getsynm(); .
expression(&tp, tset = add_exp if(sset), 0) ;

fprintf (ofp, " jumpz %s%d\n", else lab, if no) ;
if (tp != bool type)
{

st _error(6) ; .
sym = syncr(tset = rm set(ident sym, tset));
}
if (sym == then sym)
sym = getsym();
else ‘
{
s_error (15);
sym = syncr(tset = add set(ident sym, tset));

}
statement list (tset = add st list(sset));
if (sym == else sym)
{
forintf {(ofp, "- jump %s%D\n"', if end lab,if no);
fprintf (ofp, " %s%d\n",else lab, if no);

sym = getsym() ;

statement list(tset) ;
fprintf (ofp, "%s%*d\n", if_end_lab, if no);
if (sym == end_sym) -
sym = getsym();
else {s_error(5); sym = syncr(sset);}

}
else

if (sym == end sym)

{ .
fprintf(ofp, "%s%d\n", else_lab, if no) ;
sym = getsym();
}

else
{
s_error(5);

sym = syncr(sset);
}
} .
if (debug) printf("-out Statement\n")
}

void expression_std proc(pt, sset,tp)
node_ptr pt ;

set sset;

id type *tp ;

{ . .
void param_check(), expression(),exp_readi();
int para = 0 , count = 0 ;
set tset ;

if (debug) printf("-In Exp_sdt_proc\n");
if ((strcmp(pt->ident name, "readi ") == 0)||
(strcmp (pt->ident _name, "readr") == 0))
{tset = add_e_lst(sset);
exp_readi (tp,tset);}
else .
expression(tp,tset =.add e lst(sset), para);
param check(pt,count, *tp) ;
if (debug) printf("-Out Exp_ sdt_proc\n");
'}
void exp readi(tp, sset)
id_type *tp ;
set sset ;
{
node_ptr p ;
int level ;
if (sym == ident_ sym)
{
p = table search(top, &level) ;
if (p != NULL)
{
if (p->ident type == 1)
{
sym = getsym() ;
switch (p->var_type)
{
case 0 : *tp = int_type ; break ;
case 1 : *tp = float type ; break ;
default : st error(3) ; *tp err type ;
}
}
else
{
st_error(2) ;
syncr (sset) ;
}
}

0~

else
{
st _error(15) ;
syncr (sset) ;
}
}
}

void expression list (p, sset, para)
node ptr p;
set sset. ;
int para;
{
void param check() , expression();
int count = 0 ;
id type tp ;

24

set tset ;

if (debug) printf("-In Exp list\n") ;
expression(&tp, tset = add e lst(sset),para);
param_check(p, count, tp);
while (sym == comma_sym)
{

sym = getsym();
expre551on(&tp, tset, para);

++count ;

param_check(p, count, tp);

}

if (count+l != p-> no param) st error(11l) ;
if (debug) printf("-Out Exp list\n");

}

void expression (tp, sset, para)

id_type *tp ;

set sset ;

int para ;

{

id type tpl,tp2, tp3 ;

short rel flag =0 ;
set tset ; -
token rel op ;
if (debug) printf(" -In Exp\n");
simple_expression(&tpl, tset= add s exp(sset), para);
while (((rel _op = sym) >= 1t sym) && (sym<= gteq_sym))

{
rel flag =1 ;
sym = getsym();
simple expression(&tp2, tset,para) ;
code_exp(tpl, tp2) ;
tpl = check type(tpl, tp2, rel _op);

if (tp1l != err _type) tp3 = bool_type ; else tp3 = tpl ;

}
if (rel_flag) *tp = tp3 ;
else
*tp = tpl ;
if (debug) printf(" -Out Exp\n");
}
void simple expression(tp, sset ,para)
id_type *tp ;
set sset;
int para ;
{
id _type tp1l, tp2 ;
set tset ;
token add op;
if (debug) printf("-IN S _exp\n");
if (((add_op = sym) == plus_synm)||(sym == minus_sym))
sym = getsym();

26

term (&tpl, tset = add_term(sset), para) ;
if (add op == minus_sym)
if (tpl == int type)

fprintf (ofp, " negI\n");

else
fprintf (ofp, " negR\n") ;

while (((add op = sym) == plus_sym)||(sym == minus_sym))
{

sym = getsym();

term (&tp2, tset, para) ;
code_s_exp(tpl, tp2, add_op);
tpl = check type (tpl, tp2);

}

*tp = tpl ;

if (debug) printf("-Out S exp\n");
}

void term (tp, sset,para)

id type *tp ;
set sset;
int para ;

{

token op_sym ;
id_type tpil, tp2;
set tset ;

if (debug) printf ("-In Term \n ");

factor (&tpl, tset = add factor(sset), para);
while (((op_sym = sym) == mult_sym)||(sym == div_sym)

[| (sym== divide sym))

{
sym = getsym();
factor (&tp2, tset, para);
switch (op_sym)
{
case mult_sym : term_mult code(tpil,tp2);
tpl = check_type(tpl,tp2); break ;

case div_sym : if ((tpl == int type) &&
(tp2 == int type))
{
tpl = int type ;
fprintf (ofp," div\n") ;
}
else
{
tpl = err_type ;st_error(5) ;
} break;
case divide_sym : if ((tpl == int type ||
tpl == float_type)

- && (tp2 == int type ||
tp2 == float type))

26

term_divide_code(tpl, tp2) ;
tpl = float type ;
) .

else
{
tpl = err_type ; st error(5) ;
}
break ;
}
}
*tp = tpl;
if (debug) printf("- Out Term\n");
void factor (tp, sset,para)
id_type *tp ;
set sset ;
int para ;
{
node_ptr p;
int level ;
if (debug) printf("-In Factor \n ");
if (sym == ident sym)
{
p= table_search(top , &level);
if (p != NULL)
{
if (p->ident type == 1)
{ .
switch (p-> var_type)
{
case 0 : *tp = int type ;
if (para)
factor_para_code(p,top,level, int type };
else
. factor_code(p, top,level,int type) ;
break ;
case 1 : *tp = float_type ;
if (para) ‘
factor para code(p, top, level,int type);
else
factor code(p, top,level, float type) ;
break ;

default : st _error(3) ;
*tp = err_type ;

27

t
else

*tp = err_ type ;
sym = getsynm();
}
else ‘
if (sym == string_sym)

err type ;
getsym();

3

if (sym == int sym)

*tp = int type ;
fprintf (ofp," pushcI %d\n", int val);
sym = getsym() ;
}
else
if (sym == float sym)

{
*tp = float_type ;
fprintf (ofp, " pushcR %f\n ", float val) ;

sym = getsym();
}
else
if (sym == lparen sym)
{
sym = getsym();
expression(tp, sset,para) ;

if (sym == rparen_sym)
sym = getsym() ;

else

{

s_error(9) ;
sym = syncr(sset) ;

}
}

else

{ s_error(13) ;

*tp = err type ;
sym = syncr(sset) ;

}
}

void identifier list(sset, no_var)
set sset ;
int *no_var ;

{

if (debug) printf("-Out Factor \n ");

if (debug) printf("- In Ident list\n");
if (sym == ident sym)

8

add_ident(symbol_table[top], success, 1, ++(*no_var));
sym = getsym() ;
} .

else

{
s_error(14);
sym = syncr(sset) ;

} R

while (sym == comma_sym)

if ((sym = getsym()) == ident_sym)
{

add_ident(symbol table([top],success, 1, ++(*no_var)) ;
sym = getsym();
}

else
{ _
s_error(14) ;
sym = syncr(sset) ;
}
if (sym != colon_sym) sym = syncr(sset) ;
if (debug) printf("-Out Ident list\n ");

}

29

/* Error.c %/
/* Error handler */

include <stdio.h>
include "externs.h"

void error(er_no)
int er_no; .

{
printf ("%d", er no);

}

void s_error (er no)
int er no ;
{ 1

is error =1 ;
switch (er no)

{

case 1 : printf(" Program symbol expected at line %d\n",

line no) ; break;

case 2 : printf("Program name expected at line %d\n",
line no) ; break;

case 3 : printf(" Semicolon expected at line %d4d\n",
line no) ; break; -

~e

case 4 : printf("Period expected at line %d\n", line_no)
break;

case 5 : printf("End expected at line %d\n", line no) ;
break;

case 6 : printf("Begin expected at line %d\n", line no) ;
break;

case 7 : printf("Type expected at line %d\n", line no) ;

: break;

case 8 : printf("Colon expected at line %d\n", line no) ;

break; -

case 9
line no) ; break;

printf ("Right parenthesis expected at line %d\n",

case 10 : printf("Left parenthesis expected at line %d\n",

line_no) ; break;

case 11 : printf("Procedure expected at line %d\n",
line no) ; break; :

case 12 : printf("Do expected at line %d\n", line no) ;

break;

case 13 : printf("Error in Factor at line %d\n", line no)
break;

case 14 : printf("Identifier expected at line %d\n",

"line_no) ; break;
case 15 : printf("Then expected at line %d\n", line no)
break;

case 16 : printf("Error in the statement at line %d\n",

line no) ; break;

}
}

void st_error(er no)
int er no ;

.
[

.
!

20

{

is_error =1 ;
switch(er_ no)
{ ' _
case 1 printf ("Redeclaration of variable %s at line %d\n",
lex, line_no) ;break ;
case 2 : printf("Identifier %s undeclared in 1line %d\n",
lex, line_no) ;break ;
case 3 : printf("Type of variable %s undefined in line %d\n",
lex, line no);break ;
case 4 : printf("Identifier %s not declared as a as a variable
in line %d\n", lex, line no);break ;
case 5 : printf("Type mismatch in line %d\n", 1line no);
break ;
case 6 : printf("Boolean expression expexted in line %d\n",
, line no); break ;
case 7 : printf("Variable expected on the lefthand side of
assignment,");
printf (" at 1line %d\n", line no);
break ;
case 8 printf ("Type mismatch in assignment statement in
line %d\n", line no);
break ;
case 9 : printf("Procedure name expected 1in line 3%a\n",
line no) ;break ;
case 10 printf ("Type mismatch in parameter list of procedure
at");
printf(" in line %d\n", line no);
break ;
case 11 : printf(" Mismatch in the no of parameters in
procedure at");
printf (" in line %d\n", line no);
break ;
case 12 : printf("Too many parameters in procedure in line
%d\n", line no);break ;
case 13 : printf("String expected in the argument at line
%¥d\n", line_no);break ;
case 14 : printf("Identifier undeclared in line %d\n",
line no) ;break ;
case 15 printf ("Parameter expected in line %d\n",
line no) ;break ;
case 16 : printf("Identifier expected in line %d4d\n",

}

}

line no) ;break ;

void set error (k)
int k ;

is error =1 ;
switch (k)

{

case 1: printf("Can’t put element in the set\n"); break;

}

21

}

void print tok(p_sym)
token p_sym ;

{
' switch (p_sym)

{ : ‘ |
case int sym : printf(" int sym %d\n int_val "); break;
case float sym : printf(" float_sym %f\n float_val"), break;
case 1t sym : printf(" 1t _sym\n"); break;
case eq_sym : printf(" eq_sym\n") ; break;
case gt sym : printf(" gt sym\n"); break;
case lteq sym : printf(" lteq sym\n"); break;
case noteq sym : printf(" noteq sym\n"); break;
case gteq sym : printf(" gteq sym\n"); break;
case 1lparen_sym : printf(" lparen sym\n"); break;
case rparen sym : printf(" rparen sym\n"); break;
case mult sym : printf(" mult sym\n"); break;
case plus sym : printf(" plus_sym\n"); break;
case comma_sym : printf(" comma_sym\n"); break;
case semicolon _sym : printf(" semicolon _sym\n"); break;
case begin_sym : printf(" begin_sym\n"); break;
case dJdo_sym : printf(" do sym\n"); break;
case div_sym : printf(" div_sym\n"); break;
case else sym : printf(" else sym\n"); break;
case end sym : printf(" end sym\n"); break;
case 1if sym : printf(" if sym\n"); break;
case 1integer sym : printf(" integer sym\n"); break;
case procedure sym : printf(" procedureplus sym\n"); break;
case program _sym : printf(" program sym\n"); break;
case real sym : printf(" real sym\n"); break;
case then sym : printf(" then sym\n"); break;
case var_gym : printf ("var_Eym\n"); break ;
case while sym : printf("while sym\n"); break ;
case ident sym : printf("ident sym\n"); break ;
case string sym : printf(" strYng_sym %¥s\n " , strarray);

break ;
case eof sym : printf(" eof sym\n") ;

}
}

/* Sets.c */

include <stdio.h>
include "“externs.h"

static debug = 0 ;
set setA = 0 ;

set add_set (elem, setvar)
token elem;
set setvar;
{
if (elem < 32)
return (setvar = setvar | (1 << elem));
else set error(1l);
}
set rm_set (elem, setvar)
token elenm ;
set setvar;
{
if (elem < 32)
return (setvar & (1 << elem));
else set error (1);
}
int is memb(elem, setvar)
set setvar;
{
if (elem < 32)
return (setvar & (1 << elem));
else return 0;
}
void print_ set(setvar)
set setvar;
{
int i; -
printf ("-In print set \n");
for (i =0 ; i < 32 ; i++)
if (is memb (i, setvar })
print_tok (i);
printf("-out print_set\n");
}

token syncr(setvar)
set setvar;

{
token tok;
tok = sym;

if (debug) printf("-In syncr\n");
if (is_memb(sym, setvar))

return tok ;

else

while(!is memb(tok, setvar))
tok = getsym();
if (debug) printf("-out syncr\n");

return tok;

}

set add prog(setvar) /* called from main */
set setvar ';

{

setvar = add_set (procedure sym, setvar);
setvar = add _set(var_sym, setvar);

setvar = add set(begln sym, setvar);
setvar = add _set(if sym, setvar);

setvar = add_set(whlle_sym, setvar) ;

return setvar ;

set add_block(setvar) /* called from procedure () ***/
set setvar ;

{

setvar = add_set(semicolon_sym, setvar);

setvar = add _set (period_sym, setvar);

setvar = rn set(ldent sym, setvar) ;

return setvar;

set add_decls(setvar)
set setvar;

{
setvar = add_set(colon_sym, setvar);
setvar = add _set(integer sym,setvar);
setvar = add _set(real sym, setvar);
setvar = rm_set(semlcolon_sym, setvar) ;
return setvar;

}

set add_st_list(setvar) /* called from block() ***/
set setvar;

{

setvar = add_set(end_sym, setvar);
setvar = add set(else sym, setvar) ;
setvar = add _set(semicolon_sym, setvar) ;
setvar = add_set(ldent sym, setvar) ;
return setvar; -

}
set add_id list(setvar) /*....from var_decl() **x/
set setvar; ’
{
setvar = add_set(integer_sym, setvar);
setvar = add _set(real_sym,setvar);
setvar = add set(comma _sym,setvar) ;
setvar = add set(colon sym, setvar) ;

return setvar,
set add p list(setvar) /* ... from proc_header() * Kk /

set setvar;

%4

{

setvar = add_set(rparen_sym, setvar);
setvar = add set(semlcolon sym, setvar) ;
return setvar;

set add _exp_ list(setvar) /* ... from étatement() K%k [
set setvar;
{ -
setvar = add_set(rparen_sym, setvar);
setvar = add _set(comma_sym, setvar) ;
return setvar;
} ;
set add _exp assign(setvar) /*....from statement() ***/
set setvar;
{
setvar add set(semicolon_sym, setvar);

setvar = add_set(end_sym,setvar);

setvar add set(else sym,setvar) ;
setvar = add set(whlle sym, setvar) ;
setvar = add_set(if_ sym, setvar);

return setvar,

} -

set add_e_ 1lst(setvar) /*....from var_decl() ***/
set setvar;

{

setvar = add_exp_ assign(setvar);
setvar = add set(comma sym, setvar) ;
setvar = add set(rparen sym, setvar) ;
return setvar,

}

set add _exp while(setvar) /*....from statements() ***/

{

setvar = add_exp assign(setvar);
setvar = add_set(do_sym,setvar);
return setvar;

}

set add_exp if(setvar) /*....from statements() *kk [

{

setvar = add_exp assign(setvar);
setvar = add_set(then_sym,setvar);
'return setvar;

}

set add_s_exp(setvar) /*....from expressions() ***/
set setvar;

{

setvar = add _set(plus_sym, setvar);
setvar = add_set(minus_sym,setvar);
setvar = add _set(1lt_sym,setvar);
setvar = add _set(lteq_sym,setvar);
setvar = add _set(eq_sym, setvar);
setvar = add _set (noteq_sym,setvar);
setvar = add _set (gteq_sym, setvar) ;
setvar = add_set(gt_sym,setvar);
setvar = add _set(rparen_sym, setvar);
setvar = add _set (comma_sym, setvar);
setvar = add set(semlcolon sym,setvar) ;
setvar = add _set (end_ sym,setvar) ;
setvar = add _set(else sym,setvar);
setvar = add _set (do_sym, setvar);
setvar = add set(then sym, setvar);
return setvar;

}

set add_term(setvar)
set setvar;

{

setvar add_s_exp(setvar);
/* call proc for simple_expression set */

setvar = add_set(mult sym,setvar);
setvar = add _set(divide sym,setvar);
setvar = add _set(div_sym,setvar);

return setvar,

}

set add_factor(setvar) /*....from statement() ***/
set setvar;

{

setvar = add_term(setvar);
return setvar;
}
set add_exp stat(setvar) /*....from statement() */
set setvar,

{

setvar = add_set(rparen_sym, setvar);
setvar = add set(semlcolon sym,setvar) ;
setvar = add _set(if sym,setvar),
setvar = add set(whlle sym, setvar) ;
setvar = add set(ldent _sym, setvar);
return setvar;
}
set add_not proc(setvar) /*....from statement() */

set setvar;

{
setvar = rm_set(rparen_sym, setvar);
return setvar;

}

26

/* Symbtab.c */
/* Ssymbol table generator #*/

#include <stdio.h>
#include <string.h>
#include "externs.h"

static debug =0;
void table_add()

{

++top;

symbol table{top] = NULL ;

}

node ptr add_ident(p, success,isvar, no_loc)
node_ptr p;
int success, isvar ,no_loc ;

{

list_ptr new_node;
short cond;
if (debug) printf("in add_ident %d\n", no_loc);

if(p == NULL)
{ p= (sym _node *) malloc(sizeof(sym node)) ;
if (symbol table[top] == NULL)

symbol table{top] = p ;
strcpy (p->ident name, lex);
p->left = p->right = NULL;
p->ident_type = isvar ;
if (isvar)

{

p->location = no loc +2 ;

new_node = (list:node *) malloc(sizeof(list node));
new_node->node = p ;

new_node->next = var list ;

var_list = new node ;
}
else
p->no_param = 0;
success = 1;

}

else
if ((cond = strcmp(lex, p->ident name)) == 0)
{
st_error(1);
success = 0 ;
}
else
if (cond < 0)
p->left = add ident(p->left,success,isvar,no_loc) ;
else
p->right = add ident(p->right,success, isvar, no_loc);
return p;

}

void generate label() /* generate the lable for

next procedure */

3%

{
strcpy (proc_label, "S$proc");

proc_label([5] = proc_no++ ;
printf ("label $s\n",proc_label);
}

void update_ type(type, param)
short type;
short param;
{
list ptr p;
for (p = var_list ; p!= NULL; p= p->next)
{
(p->node) ->var_ type = type ;
(p->node) ->param = param ;
}

}
void update params(p,type)

node ptr p ;
short type;

{ .

short count = 0;
short i;
list ptr temp =NULL ; -

for (temp = var_list ; temp != NULL; ++count)

temp = temp ->next ;
for (i = p->no_param; i<p->no_param + count; ++i) .
p->para_list[i] = type;
if (debug) printf ("# %d count %d\n", p->no param,count) ;
p->no_param = p->no_param + count ;

}

node_ptr search(p)

node ptr p;

{

short cond ;

if (p == NULL)

return NULL;
else
if ((cond = strcmp(lex,p->ident name)) == 0)
return p ;

else

if (cond < 0)
return search (p->left);

else

return search(p->right);

}

node ptr table search(t, level)
int t;

int *level;

{ int 1i;
node_ptr pt= NULL; -
for (*level = 1 = t; i>=0; *level = --1)

/*level is the level in the */
if ((pt = search(symbol table(i])) !=NULL)

/*symtab where var was found */
return pt;

st_error(2);

return pt;

}

void free var_list()

{

list_ptr p, q ;

for (p = var_list; p !=NULL; p = q)

{

g = p—->next ;

free(p);

}

var_list = NULL;

}
void free table(p)

node ptr p;

{

if (p != NULL)

{

if (p->left !=NULL)

{

free table(p->left);

p->left = NULL ;

}

if (p->right !=NULL)

{
free table(p->right);

p->right = NULL;
} N
if (p != NULL) free(p);
}

}
void print table(p)

node_ptr p;

{
if (p !'= NULL)

{

print_table(p->left);
printf(" %s %d ", p->ident name, p->location);
print table(p->right);

}

}

void install procs()
{node_ptr proc = NULL;
int success;
strcpy(lex, "readi") ;

21

add_ident (symbol table[top] success, 0) ;
proc—search(symbol table(top]);
proc->ident type=3;

proc->no_param=1;

proc->para list[0]=0;

free var llSt(),

strcpy(lex,"writei");

add_ident (symbol table[top],success,0);
proc=search (symbol _table[top]);
proc->ident type=3;

proc—->no_param=];

proc->para_ list[0]=0;

free_var_llst(),

strcpy(lex, "readr");

add_ident (symbol table[top] success, 0) ;
proc=search(symbol table[top]);
proc->ident type=3;

proc->no_param=1;

proc->para list{0]=1;

free var list(); '

strcpy(lex, "writer");

add_ident(symbol table[top],success,0);
proc—search(symbol _table[top]) ;
proc->ident type=3;

proc->no_param=1;

proc->para list[0]=1;

free var_ list();

strcpy(lex, "writetxt");

add_ident (symbol table[top],success,0);
proc=search (symbol _table[top]);
proc->ident type=3;

proc->no_param=1;

proc->para_ list[0]=3;

free var list();

40

/* Typechk.c */
#include Y“externs.h"

void param_check(p,count, tp)
node_ptr p;

int count;

id type tp ;

{
if ((-count + 1) <= p->no_param)
if (p->para list[count] == 0) /*if it’s integer type...*/
if (tp == int type) ; /* do nothing -- it’s fine.. */
else
st_error(10) ;
else
if (p->para_list[count] == 3) /* string */
if (tp == str type);
else -
st_error(13);
else
st_error(12);
}
id_type check type(tpl, tp2)
id _type tpl, tp2 ;
{ ,
if ((tpl != err_type) && (tp2 != err_type))
if ((tpl == float_type) &&

(tp2 == int_type || tp2 == float type))
tpl = float type;
else
if ((tp2 == float type) && (tp2 == int type))
tpl = int_type;
else
if ((tpl == int_type) && (tp2 == int_type))
tpl = int type ;
else
{

st_error(5);
tpl = err type ;
}
else
{
st_error (5) ;
tpl = err type ;
}
return tpl;
}
void assign_check(pt, tp2)
node_ptr pt;
id_type tp2;

{
id type tpi;

if (pt ->ident type t= 1)
st _error(7);
else

{

switch (pt->var_type) {

case 0 : tpl = int type ; break ;
case 1 : tpl = float_type ; break ;
default : tpl = err_type ;
st_error(3);

if ((tpl != err_type) &&

(tp2 == float_type || tp2 == int_type))
if ((tpl == int _type) && (tp2 == float type))
st_error(5);

}
}

/* Globals.h #*/

define TRUE 1

define MAXLEN 10

define NO_KEYWORDS 13
define MAX STR LEN 80

char strarry[MAX STR _LEN];
typedef enum {

lt sym, eq_sym, gt_sym, lteq sym, noteq_sym,gteq_sym,

1paren sym,rparen_sym, plus_sym,comma_sym,minus_sym,

period sym,assign_sym, colon_sym, semlcolon_sym,

begin sym,do sym,else_sym,end_sym, eof sym, if_ sym

integer sym,procedure sym,real_sym,then_sym,
var_sym,mult_sym,divide_sym,div_sym,while sym, ident_sym,

char lex[MAXLEN] ; ,
\
\

string sym, error sym,int sym,float_sym,
program_sym } token ;

token sym ;

token getsym();

void error(), S_error(), ST error(), print_tok();

void table_add(), update type(),free_var_list(),
frece *3ble() print table(),generate lable(),

typedef struct sym node *node ptr ;
typedef struct list node *1list _ptr ;
typedef struct list node

{
node_ptr node ;
list_ptr next ;

list_node;
typedef struct sym node
{ .
short ident type ;

char ident name{10] ;

int label no ;
short no_param ;
short para list{10] ;

short var_type ;

int location ;

short param ;
node_ptr left ;
node ptr right ;

}

sym_node ;
node_ptr add_ident(), search(), table search();

int int val = 0 ;
float float val = 0 ;
int line no =1 ;
node_ptr symbol table[20] ;
list_ptr var list = NULL ;
short top = -1 ;

typedef unsigned int set ;
int is_error = 0 ;
int proc no = 0

. 14
char proc label[] = "$proc" ;
int while count = 0 ;
char while lab[] = "$while"
char W_end _lab{] = "$end";
int if count = 0;
char if end_lab[] = "$ifend" ;
char else lab[] = "Selse" ;

44

{ sample run }
{ sample.u }

program factorial;

var n: integer;
result:integer;

procedure fact (n, r: integer);

var rl, nl: integer;

begin
if n<= Othen
r:=1
else
nl:= n-1 ;
fact (nl1, ri);
r :=n *ril
end
end;
begin
writetxt (’ Enter a number: ’);
readi(n);

if n < 0 then
writetxt (’Negative number entered\n’

else

fact (n,result);
writei(n)
writetxt(’ factorial is '’);
writei(result);
writetxt (’\n’)
end

end.

)i

{ Output file sample.asm }

$proco
alloc 2
pushI 3
fetchl
pushI O
leI
jumpz S$Selse0
pushI 4
pushcI 1
popil
jump $ifendoO
$elsel
pushI 3
fetchI
pushcI 1
subl
popI 6
enter 2
pusha 6
pusha 5
call S$proco, 2
pushI 4
pushI 3
fetchl
pushI 5
mull
popil
$ifendO
return
main
enter 0
alloc 2
pushcI 16
msg ‘/ Enter a number :’
inpI
popI 3
pushI 3
pushcI O
itI
jumpz $elsel
pushcI 24
msg ‘Negative number entered\n’
jump $ifendl
Selsel
enter 1
pusha 3
pusha 4
call $proco, 2
pushI 3
outl

pushcl 14
msg ‘factorial is

‘'pushI 4

Sifendl

outl
pushcI 1
nsg’\n’

return

4

AT

(1}

(2]

(3]

(4]

(5]

(e]

(7]

(8]

(9]

(10]

Aho, Alfred V
Ullman, Jeffrey D

Aho, Alfred V
Ullman, Jeffrey D

Amman, U
Bayer, F L
Eickel, J
(Ed.)

Bruno, J L
Lassange, T

Bruno, J L
Sethi, R

Hopcroft, J E
Ullman, J D

Nori, K V
Amman, U
Jenson, K
Nagel, H H
Jacob, C
Poole, P C

Stone, Chen,
Flynn and others

BIBLIOGRAPHY

Principles of Compiler Design
Addison-Weslet / Narosa

The Theory of Parsing, Translation
and Compilation, Vol. I Parsing,
Englewood Cliffs, N.J.
Prentice-Hall

On Code generation in PASCAL
computer.
Software Practise and Experience
7, 391-423 (1977)

Compiler Construction, An advanced
Course, 2nd Ed., Springer-Verlag

The Generation of optimal code for
stack machines, Journal of the ACM
22(j) 382-396 (1975)

Code Generation for a One Register
Machine, Journal of the ACM
23(j), 382-396 (1976)

Introduction to Automata theory,
Language and computation,
Addison-Wesley 1979

"Pascal-P implementation Notes'" in
Pascal - The language and impleme-
entation D.W Barron, ed. New York
John Wiley & Sons

"Portable and Adaptable Compiler,"
in G Goos and J Harlmams, Lecture
Notes in Computer Sciences, 2nd ed
New York : Springer-Verlag 1976

Intoduction to computer
architectures

(11]

(12]

Tremblay,
Jean Paul,
Sorenson
Paul, G

Waite, W M
Goos, G

The theory and practice of
Compiler writing
McGraw Hill (Computer Sci. series)

Compiler Construction, Texts and
Monographs in computer science.
Springer-Verlag

	TH36160001
	TH36160002
	TH36160003
	TH36160004
	TH36160005
	TH36160006
	TH36160007
	TH36160008
	TH36160009
	TH36160010
	TH36160011
	TH36160012
	TH36160013
	TH36160014
	TH36160015
	TH36160016
	TH36160017
	TH36160018
	TH36160019
	TH36160020
	TH36160021
	TH36160022
	TH36160023
	TH36160024
	TH36160025
	TH36160026
	TH36160027
	TH36160028
	TH36160029
	TH36160030
	TH36160031
	TH36160032
	TH36160033
	TH36160034
	TH36160035
	TH36160036
	TH36160037
	TH36160038
	TH36160039
	TH36160040
	TH36160041
	TH36160042
	TH36160043
	TH36160044
	TH36160045
	TH36160046
	TH36160047
	TH36160048
	TH36160049
	TH36160050
	TH36160051
	TH36160052
	TH36160053
	TH36160054
	TH36160055
	TH36160056
	TH36160057
	TH36160058
	TH36160059
	TH36160060
	TH36160061
	TH36160062
	TH36160063
	TH36160064
	TH36160065
	TH36160066
	TH36160067
	TH36160068
	TH36160069
	TH36160070
	TH36160071
	TH36160072
	TH36160073
	TH36160074
	TH36160075
	TH36160076
	TH36160077
	TH36160078
	TH36160079
	TH36160080
	TH36160081
	TH36160082
	TH36160083
	TH36160084
	TH36160085
	TH36160086
	TH36160087
	TH36160088
	TH36160089
	TH36160090
	TH36160091
	TH36160092
	TH36160093
	TH36160094
	TH36160095
	TH36160096
	TH36160097
	TH36160098
	TH36160099
	TH36160100
	TH36160101
	TH36160102
	TH36160103
	TH36160104
	TH36160105
	TH36160106
	TH36160107
	TH36160108
	TH36160109
	TH36160110
	TH36160111
	TH36160112

